

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Work Report

Scholes Township

Work Carried Out On Legacy Claims: S3017117, S3014444, S4275001, S4275002 and applied to

Contiguous Legacy Claims: S3014444, S3017117, S3017138, S4275001, S4275002, S4275003 and S4275004

MLAS Cell/Claim IDs: (see Table)

NTS Map Sheet 41-I/16

December 17, 2018

Prepared By: Trefstone Corporation BaseLine Geomaterials Inc.

Table of Contents

Overview	3
Project Team	4
- Purpose	
Project Area	
Access	
Applicable Exploration Permits	
Daily Log of Activities	
Sampling	7
Sample Preparation and Delivery	
Conclusions/Recommendations	11
Appendix 1 - Photographs	12
Appendix 2 - Assay Results	15
Appendix 3 – Map(s)	16
Appendix 4 – Costs	17

Overview

This report details procedures and results for a Field Project Layout and Sampling Program undertaken for purposes of evaluating the mineral potential of the property. The property is composed of single cell mining claims (S) and boundary cell mining claims (B) in the MLAS system as per the table below.

Cell Count	Tenure ID	Tenure Type	Legacy Claim
1	183371	В	
2	330545	S	
3	326691	В	
4	251254	В	3014444
5	131074	В	
6	195286	S	3017117
7	223418	S	
8	239145	В	3017138
9	120660	В	
10	315634	В	
11	296173	В	
12	241542	В	4275001
13	106435	S	
14	298637	S	
15	279964	S	
16	279963	S	
17	279962	S	
18	231952	В	
19	120659	В	4275002
20	314841	S	
21	289422	S	
22	246017	S	4275003
23	233341	S	
24	252853	S	
25	281342	S	
26	225337	S	
27	246016	S	
28	318748	S	
29	340320	S	4275004

Project Team

The project team was comprised of:
Eglon Rose, Prospector (#2000282)-Trefstone Corporation
Steve Gossling, OLS, Prospector(#1014133)-BaseLine Geomaterials Inc.
Marc Gaudreau, Prospector (#1009179)
Douglas Miller, Field Assistant
Robert Roy, Field Assistant
David Vallillee – Prospector (#C31465)

Purpose

The purpose of this project was to follow up on earlier work on site and continue prospecting activities for gold, cobalt, PGEs and copper and to satisfy requirements for assessment work on behalf of the claimholders.

A magmatic iron formation found on the property (Dominion Gulf 1947-1949) contains a large iron deposit at depth. This banded iron formation may be connected to the formation found on a known former gold mine (the Golden Rose Mine) in the vicinity. At that location the gold values were reported to be found in a cherty iron formation.

The ground covered by the claims is on strike with known copper and gold occurrences in the area and is occupied by the same suite of rock types which include nipissing diabase and cobalt series sediments.

Project Area

Work was performed on legacy claims 3014444, 3017117, 3017138, 4275001, 4275002, 4275003 and 4275005 that are owned collectively in varying proportions by Trefstone Corporation, Marcus Martin (Estate) and Renata Koslowski.

Topography is rugged with steep hills trending north-east and some lower swampy areas. Vegetation is second growth, mixed forest with cedar, jack pine, white pine, birch, spruce and poplar.

Geology is pre-cambrian aged rocks. The oldest are keewatin with bands of greenstones and schists. Cobalt sediments occur in the younger and predominantly nipissing diabase. The sediments, greenstones and iron formations are exposed in the lower areas (Moore 1936/Rose 2006). Sulphides, gold, copper, PGEs and cobalt are the minerals of interest.

Access

The property is located in Scholes Township and can be accessed by travelling east from Sudbury, ON following Highway 17 to Warren; then northerly along Highway 539 to River Valley. Continue on Highway 539A approximately 10 km to a bridge crossing the Sturgeon River. Turn right at the T-intersection and continue northerly on Highway 805 for 40 km to where a road to the Obabika Lake Lodge intersects, turn right and proceed easterly for 3 km to Greenrod Lake, continue on this road for another 3km to an intersecting road (N5201300, E555770) turn right and follow this road easterly and southeasterly to a small pull off area where an overgrown road around a small lake on the right hand side intersects at (N5201110, E559650). Follow the mostly overgrown road southerly to an abandoned stockpile (N5200885, E 559950). (Note: all coordinates UTM NAD83, Zone 17).

Applicable Exploration Permits

The project consisted of grassroots prospecting (surface sampling only) and consequently no permits were required.

Daily Log of Activities

BaseLine Geomaterials Inc. and Trefstone Corporation supported by independent contractors completed work for this assignment over several days during the fall of 2018 on behalf of the registered owners of the claims.

September 21, 2018 (3hrs)

Ed Rose - work consisted of historical document review of access, topography and geology as well as project planning and securing of tools and supplies. Preparation of field layout sketches of the orebody projected to surface and grid line configuration for field investigation and surface sampling.

September 22, 2018 (11.5hrs)

Ed Rose, Steve Gossling, Dave Vallillee and Doug Miller. The fieldwork consisted of travel from Sudbury to the site; confirmation of access; initial investigations of rock types and mineralisations and obtain three (3) samples (SF-1, SF-2 and SF-3) at various outcrop locations.

October 20, 2018 (6hrs)

Ed Rose and Steve Gossling - Project planning and preparation of field layout sketches for the deep iron orebody projected to surface and determine proposed grid lines for field investigation and possible sampling.

October 22, 2018 (13hrs)

Ed Rose, Steve Gossling, Marc Gaudreau, Doug Miller and Robert Roy. Travel from Sudbury to the site, flag projected orebody at surface; mark and flag alterations and other noted structural features; layout of sample locations based on prospecting findings and gather samples, bag and label samples for preparation and laboratory analysis.

October 24, 2018 (12hrs)

Ed Rose, Steve Gossling, Marc Gaudreau, and Doug Miller. Travel from Sudbury to the site and continue with prospecting and sampling, bag and label samples for preparation and laboratory analysis.

November 12, 2018 (4hrs)

Ed Rose and Steve Gossling Sample prepare and deliver samples to AGAT for chemical laboratory testing.

November 18 to December 10, 2018 (50hrs) Ed Rose and Steve Gossling. Report compilation, review and editing.

Sampling

All of the sampling was done using hand tools only.

Sample Number	Sample ID	Comments/Observations	N	E
1	SF#1	3kg, mixed broken magnetite ore and waste material from old stockpile area. Tonalite section with narrow(a few mm) white quartz stringers and sulphide specks. Iron ore 60% (approx.), fine diabase waste 40%	5200867	559975
2	SF#2	2-3 kg, fine grained nipissing diabase with some 2-3% pyrite specks	5200885	559945
3	SF#3	Old stockpile - 3kg bedded inner layers of fine to medium grained magnetite jasper and chert with minor clastic sediments	5200885	559950
4	L1W and L4W#12	2kg composite, medium to coarse grained, slightly altered diorite with no sulphides. Hand	5201050	559450

		strip shallow moss covered area 3m by 4m to expose flat lying outcrop, composite chip sample		
5	EM#3	3kg chip sample from medium to fine grained diabase (diorite)	5201042	559495
6	EM#12B	3kg quartz diabase chio sample – some serpentine alteration	5201260	559630
7	2W-50N (soil) EM#1A	4 kg brownish grey soil with specs of sulphides	5201042	559495
8	EM#7	3kg chip sample-brecciated diabase (diorite)-sulphide specs.	5201035	559585
9	EM#5	same as EM#7 above	5201105	559600
10	EM#4	4kg medium grained grey- green diabase with occasional quartz threads	5201140	559600
11	EM-10	Medium grained diabase with scattered fractures and less than 1% pyrite grains. 4 kg chip sample from 5m by 4m face.	5201220	559500
12	L3W#11	Medium coarse grained quartz diabase with scattered grewacke sections and pressure cracks with 1% pyrite. 1m by 3m long old existing trench. 2kg sample.	5201270	559550
13	EM-12	Medium to coarse gained dioritic and blocky fractured rock. Some high fractured areas of finer grained diabase. Scattered narrow smoky quartz stringers. Pyrite specks in the altered/fractured sections with occassionall brecciations. 3kg chip sample taken from hand stripped 5m by 7m thinly covered moss area.	5201280	559610

14	4W-12A	Mixed greyish green medium to fine grained graywacke and diabase, scattered brecciation and altered with sporadic pyrite grains. 3kg random chip sample taken from 4m by 5.5m of cleaned sub-vertical wall.	5201210	559605
15	L4W#14	As EM12A and with quartz- diorite-porphry texture. Patches of pink feldspatic material. Scattered epidote in scistose sections. 3 kg chip sample.	5201210	559630
16	318A	Dark fine to medium grained diabase with narrow jasper quartz bands and stringers; some conglomerate contact and interbanded with chlorite. Epidote alteration - pyrite specks. Clean sample area - moss. 4 kg chip sample.	5200968	559958
17	SW#1	Variable altered fine to medium grained quartz diabase - diorite - some hornblende blebs and iron formation infolded with schist. Disseminated pyrite and chalco pyrite. 4 kg chip sample.	5201278	559899
18	SW#2	Medium grained quartz diabase variable alteration - magnetite fragments interbanded with chlorite and greenish rock - scattered pyrite specks. 4 kg chip sample.	5201296	560028
19	SW218A	Variable altered fine to medium grained quartz diabase - diorite - some hornblende blebs and iron formation infolded with schist. Disseminated pyrite and chalco pyrite. 4 kg chip sample.	5201280	559917
20	SW222	Mixed altered diabase and medium grained hard quartz	5201296	560018

		diabase, some hornblende and pyroxene blebs and grains. 4 kg chip sample.		
21	SW313	hard grey quartz diabase - medium grained patchy altered sections; narrow quartz stringers and needles; minor pyrite specks. 4 kg chip sample.	5200880	559748
22	EM #6	Altered shared gabbroic rock with scattered small quartz stringers and blebs. 4 kg chip sample.	5201150	559583

Sample Preparation and Delivery

After photographing and cataloging the individual sample locations the samples were placed in sample bags for subsequent preparation for lab testing. Subsequent preparation included washing, cleaning and scrubbing with a bristle brush to remove surface soil (if any). Samples were then split in half and bagged. Half of each sample was hand delivered to AGAT Laboratories in Sudbury for chemical analysis. The claim holders will store the remaining half of each sample.

Conclusions/Recommendations

The distribution of rock types found during the sampling program suggests that the surface projection of the deep (300m) iron ore was fairly represented.

Scattered sulphide mineralisation was observed in most of the samples, especially in and around altered rock sections. Visible Au, Ag and PGEs were not seen in any of the samples.

Based on rock types, alteration pattern and analytical information from the laboratory testing, future work should include more stripping, grid layout and more detailed sampling and rock analysis from other areas within the claim group. The samples should be analysed for Au, Ag and PGEs.

This report respectfully submitted December 17, 2018.

Ed Rose
Eglon (Ed) A. Rose

Steve J. Gossling

Appendix 1 - Photographs

Sample L1W

Sample L4W#14

Sample 218A

Sample SW222

Sample 318A

Sample SW313

Appendix 2 - Assay Results

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC. 492 SECOND AVE. S SUDBURY, ON P3B 3L5 705-988-4500

ATTENTION TO: STEVE GOSSLING

PROJECT: SC

AGAT WORK ORDER: 18T409215

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Dec 10, 2018

PAGES (INCLUDING COVER): 14

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC.

ATTENTION TO: STEVE GOSSLING

			(200-) Sample Lo	gin Weight	20
DATE SAMPLED: Nov 2	27, 2018		DATE RECEIVED: Nov 14, 2018	DATE REPORTED: Dec 10, 2018	SAMPLE TYPE: Other
e la companya de la c	Analyte:	Sample Login Weight	-		
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
W-50N (soil) EM#1A (9742	758)	0.301			
M#3 (9742759)		0.557			
M#12 (9742760)		0.708			
M#12B (9742761)		0.931			
M#1 (9742762)		0.292			
ne1W and L4W #12 (9742	763)	1.343			
3W #11 and L4W #14 (974	2764)	1.302			
M#10 (9742765)		0.640			
M#7 (9742766)		0.813			
M#5 (9742767)		0.997			
W-12A (9742768)		0.576			
M#4 (9742769)		0.511		경기를 잃었다. 그 사람은 기술에 가는 그런 그런 경기가 되었다.	
M#6 (9742770)		0.700			
W#2 (9742771)		0.560			
18A (9742772)		1.425			
W#1 (9742773)		0.642			
W218A (9742774)		0.527			
W222 (9742775)		1.087			
W313 (9742776)		0.659			
F#1 (9742777)		1.906			
F#2 (9742778)		0.708			
SF#3 (9742779)		1.650			

Comments:

RDL - Reported Detection Limit

Certified By:

Sherin Houssey

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.egatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC.

ATTENTION TO: STEVE GOSSLING

				(201-07	79) Sodii	um Pero	de Fus	ion - ICF	-OES fir	nish					
DATE SAMPLED: No	v 27, 2018			DATE REC	EIVED: No	v 14, 2018		DATE	REPORTE	D: Dec 10,	2018	SAN	IPLE TYPE	: Other	
	Analyte:	Al	As	В	Ba	Ca	Co	Cr	Cu	Fe	К	LI	Mg	Mn	Мс
	Unit:	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Sample ID (AGAT ID)	RDL:	0.01	0.005	0.01	0.001	0.05	0.001	0.005	0.001	0.01	0.05	0.01	0.005	0.005	0.005
2W-50N (soll) EM#1A (97	42758)	6.31	<0.005	<0.01	0.036	1.04	0.001	0.007	0.002	2.87	1.23	<0.01	0.560	0.035	0.007
EM#1 (9742762)		5.82	<0.005	<0.01	0.036	1.29	0.001	0.011	0.003	3.03	1.30	<0.01	0.756	0.041	0.005
L3W #11 and L4W #14 (9	742764)	7.91	0.005	<0.01	0.004	2.90	0.002	0.007	0.025	2.56	0.20	< 0.01	1.36	0.049	0.008
EM#10 (9742765)		4.60	<0.005	<0.01	0.008	6.96	0.006	0.009	0.004	9.58	0.36	<0.01	5.16	0.181	< 0.005
EM#7 (9742766)		7.24	<0.005	<0.01	0.016	7.46	0.005	0.006	0.016	7.85	0.67	<0.01	4.28	0.142	0.006
EM#5 (9742767)		6.95	0.005	<0.01	0.009	7.99	0.006	0.006	0.017	7.87	0.47	<0.01	4.34	0.148	0.006
4W-12A (9742768)		6.99	0.009	<0.01	0.005	7.30	0.004	< 0.005	0.006	8.42	0.14	<0.01	4.15	0.154	0.006
EM#4 (9742769)		7.09	<0.005	<0.01	0.007	7.11	0.005	0.005	0.022	8.32	0.46	<0.01	4.06	0.147	0.006
EM#6 (9742770)		7.21	0.005	<0.01	0.011	7.76	0.004	< 0.005	0.011	7.86	0.53	<0.01	4.26	0.143	0.007
SW#2 (9742771)		7.07	<0.005	<0.01	0.009	7.44	0.004	0.010	0.010	7.17	0.45	< 0.01	3.58	0.138	0.006
SF#2 (9742778)		8.33	0.008	<0.01	0.055	1.18	0.003	0.016	0.004	5.42	2.41	<0.01	1.80	0.073	0.009
SF#3 (9742779)		0.07	<0.005	<0.01	0.221	0.34	<0.001	0.011	<0.001	26.3	<0.05	<0.01	0.307	0.020	<0.005
	Analyte:	NI	Pb	s	Si	Sn	т	V	w	Zn					
	Unit:	%	%	%	%	%	%	%	%	%					
Sample ID (AGAT ID)	RDL:	0.001	0.005	0.01	0.005	0.005	0.005	0.005	0.01	0.005					
2W-50N (soll) EM#1A (97	42758)	0.004	<0.005	0.05	30.8	<0.005	0.291	0.006	<0.01	0.005					
EM#1 (9742762)		0.004	< 0.005	0.06	32.4	<0.005	0.336	0.007	<0.01	< 0.005					
L3W #11 and L4W #14 (9	742764)	0.004	<0.005	0.07	31.9	< 0.005	0.215	0.007	<0.01	0.006					
EM#10 (9742765)		0.012	<0.005	0.09	25.7	0.005	0.543	0.031	<0.01	0.008					
EM#7 (9742766)		0.009	<0.005	0.12	25.3	0.010	0.416	0.023	< 0.01	0.007					
EM#5 (9742767)		0.009	<0.005	0.17	25.6	0.008	0.416	0.024	<0.01	0.007					
4W-12A (9742768)		0.008	<0.005	0.05	25.1	0.014	0.378	0.022	< 0.01	0.006					
EM#4 (9742769)		0.009	< 0.005	0.12	25.0	0.006	0.419	0.023	< 0.01	0.007					
EM#6 (9742770)		0.007	<0.005	0.10	25.5	0.009	0.428	0.024	< 0.01	0.007					
SW#2 (9742771)		0.008	< 0.005	0.17	25.5	< 0.005	0.410	0.019	< 0.01	0.006					
SF#2 (9742778)		0.007	< 0.005	0.02	30.3	< 0.005	0.382	0.011	<0.01	0.007					
SF#3 (9742779)		0.001	< 0.005	0.09	30.3	<0.005	< 0.005	<0.005	<0.01	<0.005					

Comments:

RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC.

ATTENTION TO: STEVE GOSSLING

*			(20	1-378) Sc	odium Po	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: No	v 27, 2018		V 212	DATE RECE	IVED: Nov	14, 2018	12-1-1	DATE	REPORTED	: Dec 10, 2	018	SAI	IPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	BI	Ca	Cd	Ce	Со	Cr	Cs	Ci
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppn
Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	
EM#3 (9742759)		<1	7.23	13	<20	108	· <5	<0.1	7.66	0.2	14.0	52.2	0.010	1.2	159
EM#12 (9742760)		<1	6.74	16	<20	42.0	<5	<0.1	2.36	<0.2	8.6	18.7	0.018	0.2	30
EM#12B (9742761)		<1	7.19	6	<20	133	<5	<0.1	4.26	<0.2	19.9	44.0	< 0.005	0.6	172
Line1W and L4W #12 (97	742763)	<1	7.04	<5	<20	108	<5	<0.1	6.77	<0.2	15.2	51.4	0.006	1.4	132
318A (9742772)		<1	4.14	10	<20	115	<5	<0.1	2.94	<0.2	26.5	18.6	0.015	0.5	93
SW#1 (9742773)		<1	7.08	<5	<20	89.3	<5	<0.1	8.25	<0.2	12.4	50.4	0.009	2.8	140
SW218A (9742774)		<1	7.02	5	<20	117	<5	<0.1	7.84	<0.2	13.6	51.1	0.007	2.5	146
SW222 (9742775)		<1	7.28	<5	<20	115	<5	<0.1	7.66	<0.2	12.8	50.1	0.007	2.0	142
SW313 (9742776)		<1	6.89	<5	<20	182	<5	<0.1	7.75	<0.2	20.8	48.5	0.008	1.3	163
SF#1 (9742777)		<1	0.16	<5	<20	288	<5	<0.1	0.98	<0.2	5.5	1.5	0.008	0.3	<
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	LI	L
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
EM#3 (9742759)		2.52	1.49	0.63	7.95	16.2	2.53	2	1	0.53	<0.2	0.46	6.4	11	0.20
EM#12 (9742760)		2.24	1.51	0.36	3.37	11.7	1.71	. 1	4	0.53	<0.2	0.10	3.8	<10	0.26
EM#12B (9742761)		3.25	1.78	0.87	9.18	15.9	3.71	2	1	0.65	<0.2	0.50	8.9	16	0.24
Line1W and L4W #12 (97	742763)	2.60	1.49	0.69	8.29	16.9	2.63	2	1	0.55	<0.2	0.52	7.1	18	0.22
318A (9742772)		1.54	0.93	0.63	15.7	9.95	2.15	2	2	0.33	<0.2	0.33	13.0	<10	0.14
SW#1 (9742773)		2.25	1.35	0.55	7.21	15.8	2.25	2	1	0.51	<0.2	0.70	5.6	<10	0.19
SW218A (9742774)		2.36	1.40	0.64	7.43	16.2	2.44	2	1	0.48	<0.2	0.58	6.1	12	0.19
SW222 (9742775)		2.22	1.39	0.68	7.10	15.5	2.26	2	. 1	0.49	<0.2	0.53	5.9	16	0.18
SW313 (9742778)		3.05	1.73	0.81	6.80	15.8	3.26	2	1	0.60	<0.2	0.71	9.0	15	0.23
SF#1 (9742777)		0.82	0.52	0.55	30.3	0.57	0.80	7	<1	0.21	<0.2	<0.05	3.2	<10	0.08

Certified By:

Sherin Houssey

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC.

ATTENTION TO: STEVE GOSSLING

			(20	1-378) S	odium P	eroxide F	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: No	v 27, 2018	1114		DATE RECE					REPORTED		018	SAM	PLE TYPE:	Other	
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	9/
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
EM#3 (9742759)		4.26	1470	5	<1	7.7	89	<0.01	<5	1.79	15.9	0.12	0.1	39	25.6
EM#12 (9742760)		1.71	599	11	6	5.1	46	<0.01	<5	1.10	2.3	0.02	0.5	15	32.6
EM#12B (9742761)		4.55	1460	<2	<1	11.3	98	0.01	<5	2.66	21.8	0.08	0.7	39	24.5
Line1W and L4W #12 (97	(42763)	4.29	1440	3	<1	8.8	79	0.03	<5	2.01	21.7	0.15	0.2	37	25.3
318A (9742772)		1.76	786	16	2	11.5	58	0.09	<5	3.02	13.9	0.29	1.0	8	28.0
SW#1 (9742773)		4.52	1330	3	<1	7.3	104	0.01	<5	1.65	25.6	0.15	0.2	38	24.9
SW218A (9742774)		4.68	1390	2	<1	7.8	94	<0.01	6	1.79	24.6	0.11	0.5	38	25.4
SW222 (9742775)		4.53	1420	2	<1	7.3	98	0.02	<5	1.63	19.2	0.13	0.7	37	25.1
SW313 (9742776)		4.85	1400	2	<1	11.6	113	0.04	8	2.66	25.3	0.14	0.7	41	25.6
SF#1 (9742777)		1.00	224	5	<1	2.7	8	0.05	<5	0.64	1.1	0.02	1.8	<5	25.3
	Analyte:	Sm	Sn	Sr	Ta	Tb	Th	TI	П	Tm	U	v	w	Y	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
EM#3 (9742759)		2.0	<1	178	<0.5	0.42	1.5	0.40	<0.5	0.20	0.42	240	<1	13.3	1.4
EM#12 (9742760)		1.3	<1	98.4	<0.5	0.36	8.6	0.18	<0.5	0.23	1.41	84	<1	13.5	1.7
EM#12B (9742761)		3.2	<1	109	<0.5	0.59	1.6	0.39	<0.5	0.23	0.41	228	<1	18.0	1.7
Line1W and L4W #12 (97	742763)	2.4	<1	169	<0.5	0.44	1.7	0.44	<0.5	0.23	0.53	245	<1	14.2	1.4
318A (9742772)		2.3	<1	151	<0.5	0.29	1.6	0.25	<0.5	0.13	0.37	52	4	9.7	0.9
SW#1 (9742773)		2.0	1	195	<0.5	0.38	1.3	0.38	<0.5	0.20	0.41	233	<1	12.7	1.3
SW218A (9742774)		1.9	<1	171	<0.5	0.37	1.5	0.38	<0.5	0.20	0.51	231	<1	12.9	1.3
SW222 (9742775)		1.9	<1	184	<0.5	0.39	1.3	0.37	<0.5	0.20	0.43	225	<1	12.5	1.2
SW313 (9742776)		2.8	<1	219	<0.5	0.52	2.2	0.38	<0.5	0.25	0.73	216	<1	15.7	1.6
SF#1 (9742777)		0.6	<1	119	<0.5	0.12	0.1	<0.01	<0.5	0.09	<0.05	<5	<1	7.9	0.5

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com

ATTENTION TO: STEVE GOSSLING

SELINE GEO	MATERIAL	S INC.		ATTENTION TOTALLE	
		(20	1-378) Sodium Peroxide Fusi	on - ICP-OES/ICP-MS Finish	
v 27, 2018		Y ALL	DATE RECEIVED: Nov 14, 2018	DATE REPORTED: Dec 10, 2018	SAMPLE TYPE: Other
Analyte:	Zn	Zr			
Unit:	ppm	ppm			
RDL:	- 5	0.5			
	83	43.6			
	27	140			
	87	31.3			
42763)	80	51.0		Mark Salah Barat Baratan Principal Continue	
	39	72.4			
	71	41.0	Carlotte Commence of the Comme		
	67	43.6			
	65	41.0			
	111	48.2			
	103	<0.5			
	/ 27, 2018 Analyte: Unit: RDL:	7 27, 2018 Analyte: Zn Unit: ppm RDL: 5 83 27 87 42763) 80 39 71 67 65 111	Analyte: Zn Zr Unit: ppm ppm RDL: 5 0.5 83 43.6 27 140 87 31.3 42763) 80 51.0 39 72.4 71 41.0 67 43.6 65 41.0 111 48.2	(201-378) Sodium Peroxide Fusi (27, 2018 DATE RECEIVED: Nov 14, 2018 Analyte: Zn Zr Unit: ppm ppm RDL: 5 0.5 83 43.6 27 140 87 31.3 42763) 80 51.0 39 72.4 71 41.0 67 43.6 65 41.0	(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish DATE RECEIVED: Nov 14, 2018 DATE REPORTED: Dec 10, 2018 Analyte: Zn Zr Unit: ppm ppm RDL: 5 0.5 83 49.6 27 140 87 31.3 42763) 80 51.0 39 72.4 71 41.0 67 43.6 65 41.0 111 48.2

Comments:

RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 18T409215

PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: BASELINE GEOMATERIALS INC.

ATTENTION TO: STEVE GOSSLING

(202-552) Fire Assay - Trace Au, ICP-OES finish (50g charge) (ppm)										
DATE SAMPLED: No	v 27, 2018		DATE RECEIVED: Nov 14, 2018	DATE REPORTED: Dec 10, 2018	SAMPLE TYPE: Other					
	Analyte:	Au		The state of the s						
	Unit:	ppm								
Sample ID (AGAT ID)	RDL:	0.001								
SF#2 (9742778)		0.002	*1							
SF#3 (9742779)		0.051								

Comments:

RDL - Reported Detection Limit

Certified By:

-Sherin Houssof

Quality Assurance - Replicate AGAT WORK ORDER: 18T409215 PROJECT: SC

LIENT NAM	E: BASELIN	NE GEOM	ATERIALS			ATTENTION TO: STEVE GOSSLING 11-079) Sodium Peroxide Fusion - ICP-OES finish										
				(2	201-079) Sodiu	m Perc	xide Fu	sion - 10	CP-OES	finish					
		REPLIC	ATE #1													
Parameter	Sample ID	Original	Replicate	RPD												
Al	9742770	7.21	7.19	0.3%												
As	9742770	0.005	< 0.005													
В	9742770	< 0.01	< 0.01	0.0%												
Ва	9742770	0.011	0.011	0.0%												
Ca	9742770	7.76	7.69	0.9%												
Co	9742770	0.0044	0.0048	8.7%												
Cr	9742770	0.005	0.005	0.0%												
Cu	9742770	0.011	0.011	0.0%	0 -											
Fe	9742770	7.86	7.85	0.1%												
К	9742770	0.53	0.52	1.9%												
Ц	9742770	< 0.01	< 0.01	0.0%	5	-										
Mg	9742770	4.26	4.28	0.5%												
Mn	9742770	0.143	0.143	0.0%		15										
Мо	9742770	0.007	0.007	0.0%												
Ni	9742770	0.007	0.007	0.0%												
Pb	9742770	< 0.005	< 0.005	0.0%												
S	9742770	0.10	0.11	9.5%												
Si	9742770	25.5	25.4	0.4%												
Sn	9742770	0.009	< 0.005													
TI	9742770	0.428	0.424	0.9%												
V	9742770	0.024	0.024	0.0%												
W	9742770	< 0.01	< 0.01	0.0%												
Zn	9742770	0.007	0.007	0.0%												
				(201-	378) So	dium P	eroxide	Fusior	- ICP-C	ES/ICP	-MS Fi	nish				
7	T	REPLIC	CATE #1	•	T											
Parameter	Sample ID	Original	Replicate	RPD												
Ag	9742759	<1	<1	0.0%												
Al	9742759	7.23	7.18	0.7%			10.7									
As	9742759	13	6	72.5			- 15.2	10	for the							
В	9742759	< 20	< 20	0.0%				100	official way	N. S.						
Ва	9742759	108	106	1.9%	1 1 500			T-1-1-1								

Laboratories

Quality Assurance - Replicate AGAT WORK ORDER: 18T409215 PROJECT: SC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: STEVE GOSSI ING

CENSUL DROVES	ME: BASELII													T	_
Ве	9742759	< 5	< 5	0.0%											_
BI	9742759	< 0.1	< 0.1	0.0%											
Ca	9742759	7.66	7.59	0.9%											
Cd	9742759	0.2	< 0.2												
Ce	9742759	14.0	13.3	5.1%											
Co	9742759	52.2	52.2	0.0%					120000000000000000000000000000000000000						
Cr	9742759	0.0095	0.0072	27.5%											
Cs	9742759	1.18	1.13	4.3%											
Cu	9742759	159	153	3.8%				1							
Dy	9742759	2.52	2.37	6.1%	0.14.1	1									
Er	9742759	1.49	1.44	3.4%				1							
Eu	9742759	0.633	0.707	11.0%				i i K							
Fe	9742759	7.95	7.82	1.6%				-							
Ga	9742759	16.2	16.5	1.8%		4 .									
Gd	9742759	2.53	2.45	3.2%	Colonia sonem									Ì	
Ge	9742759	2	2	0.0%			+1				-				
Hf	9742759	1	1	0.0%		1	100	-	 						
Но	9742759	0.532	0.556	4.4%											
In	9742759	< 0.2	< 0.2	0.0%		1 10		-							1
К	9742759	0.456	0.427	6.6%					-						
La	9742759	6.35	6.01	5.5%											1
LI	9742759	11	9	20.0%	7						_				
Lu	9742759	0.20	0.20	0.0%								†	 -		1
Mg	9742759	4.26	4.22	0.9%								 	 		1
Mn	9742759	1470	1450	1.4%		-				,		1			1
Мо	9742759	5	4	22.2%		5 5			1						1
Nb	9742759	<1	<1	0.0%							†				†
Nd	9742759	7.75	7.79	0.5%		0.00.00					 				
Ni	9742759	89	86	3.4%					1						†
Р	9742759	< 0.01	0.01							-	 				1-
Pb	9742759	< 5	< 5	0.0%											
Pr	9742759	1.79	1.68	6.3%			1						 		-
Rb	9742759	15.9	15.4	3.2%							 		 -		-
8	9742759	0.12	0.12	0.0%				-			ļ		 		-

Quality Assurance - Replicate AGAT WORK ORDER: 18T409215 PROJECT: SC

CLIENT NAM	E: BASELI	NE GEON	ATERIAL	S INC.						ATT	ENTION T	O: STEVE	GOSSLIN	G	
Sb	9742759	0.1	< 0.1	- 14		T			T						
Sc	9742759	39	39	0.0%			- 7		1						
Si	9742759	25.6	25.2	1.6%											
Sm	9742759	1.99	1.93	3.1%											
Sn	9742759	<1	<1	0.0%											
Sr	9742759	178	177	0.6%		1									
Та	9742759	< 0.5	< 0.5	0.0%		70 7									
Tb	9742759	0.42	0.40	4.9%				2					E		
Th	9742759	1.5	1.5	0.0%					İ						
Ti	9742759	0.40	0.39	2.5%											
П	9742759	< 0.5	< 0.5	0.0%											
Tm	9742759	0.20	0.20	0.0%	A - 1		0								
U	9742759	0.42	0.42	0.0%							1 1				
٧	9742759	240	235	2.1%	1 Tan	-									
W	9742759	<1	<1	0.0%				ray-th							
Υ	9742759	13.3	13.0	2.3%											
Yb	9742759	1.40	1.24	12.1%			A 170								
Zn	9742759	83	77	7.5%			2.39								
Zr	9742759	43.6	44.3	1.6%					7	4					
			(2	02-552)	Fire A	ssay - 1	Trace A	u, ICP-	OES fini	sh (50g	charge	e) (ppm)		
		REPLIC	CATE #1	10-4											
Parameter	Sample ID	Original	Replicate	RPD			1								
Au	9742779	0.051	0.017				16								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T409215 **PROJECT: SC**

LIENT NAM	E: BASEL	INE GEO	MATERIA	LS INC.						ATT	ENTION 1	O: STEVE	SOSSLING	}	Contract Contract	
				(2	01-079	9) Sodi	ım Per	oxide Fu	sion - I	CP-OES	finish					
		CRM #1	(ref.SY-4)				****									
Parameter	Expect	Actual	Recovery	Limits						1	T					
Al	10.95	10.69	98%	90% - 110%												
Ca	5.72	5.64	99%	90% - 110%				Maca de Politico								
Fe	4.34	4.26	98%	90% - 110%		1				1						
K	1.37	1.37	100%	90% - 110%	- It - I'm -		1									
Mg	0.325	0.299	92%	90% - 110%												
SI	23.3	24.2	104%	90% - 110%												
Ti	0.172	0.167	97%	90% - 110%	11 8 8	100	. b		100							
				(201-3	78) Sc	dium P	eroxid	e Fusion	- ICP-C	ES/ICF	-MS Fi	nish				***
		CRM #	1 (ref.SY-4)	(,											
Parameter	Expect	Actual	Recovery	Limits		T	T				T	I	<u> </u>			
Al	10.95	10.56	96%	90% - 110%		-	+				 		<u> </u>			
Ba	340	314	92%	90% - 110%					-		-		-			
Be	2.6	2.9	110%	90% - 110%			-	+		 						-
Ca	5.72	5.61	98%	90% - 110%				Eponomica de		-	 					
Ce	122	129	106%	90% - 110%		-	-		-	 			 			
Co	2.8	2.6	94%	90% - 110%				-	 		<u> </u>					
Cs	1.5	1.6	107%	90% - 110%		 			 		-					
Dy	18.2	18.6	102%	90% - 110%		 	-			1	-					
Er	14.2	14.9	105%	90% - 110%												
Eu	2.0	1.9	97%	90% - 110%		 	-		-		-					
Fe	4.34	4.21	97%	90% - 110%			-		-							
Ga	35	36	103%	90% - 110%						_	-					
Gd	14	15	109%	90% - 110%	·	-		 	†		-		-			
Hf	10.6	10.2	97%	90% - 110%				 	 	-						
Но	4.3	4.6	107%	90% - 110%		 			 							
К	1.37	1.36	99%	90% - 110%			-	+	 	 	 	-	-			
La	58	59	103%	90% - 110%		 	+			+	 		-		-	
П	37	40	108%	90% - 110%		+			 	 	-					
Lu	2.1	2.1	102%	90% - 110%		-	+	 		 	 		-			
Mg	0.325	0.298	92%	90% - 110%		 					-				-	
Mn	836	818	98%	90% - 110%			-	1 1458 1 0								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T409215

PROJECT: SC

LIENT NAM	E: BASELI	NE GEO	MATERIA	LS INC.		h e				ATT	ENTION	TO: STEV	E GOSSLII	NG	1160,074	ww.agatiabs.t
Nb	13	12	91%	90% - 110%			T									
Nd	57	59	104%	90% - 110%												
NI	9	10	115%	90% - 110%											1	
Pb	10	10	96%	90% - 110%											1	
Pr	15.0	15.5	104%	90% - 110%		-										
Rb	55	53	96%	90% - 110%												
Si	23.3	24	103%	90% - 110%												
Sm	12.7	12.4	98%	90% - 110%												
Sn	7.1	7.3	102%	90% - 110%												
Sr	1191	1181	99%	90% - 110%												
Tb	2.6	2.8	109%	90% - 110%												
Th	1.4	1.3	95%	90% - 110%	t t											
Π	0.172	0.165	96%	90% - 110%												
Tm	2.3	2.3	101%	90% - 110%												
U	0.8	0.8	99%	90% - 110%												
Y	119	119	100%	90% - 110%												
Yb	14.8	15.6	105%	90% - 110%												
Zn	93	97	104%	90% - 110%												
Zr	517	523	101%	90% - 110%			- Fr. 15	100		1 2 7						
				(202-552)	Fire /	Assay -	Trace	Au, ICP-	OES fir	nish (50g	char	ge) (ppn	n)			
		CRM #1	(ref.GS6E)													
Parameter	Expect	Actual	Recovery	Limits												
Au	6.06	6.16	102%	90% - 110%												

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: BASELINE GEOMATERIALS INC.

PROJECT: SC SAMPLING SITE: AGAT WORK ORDER: 18T409215

ATTENTION TO: STEVE GOSSLING

SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/OES
В	MIN-200-12001		ICP/OES
Ba	MIN-200-12001		ICP/OES
Ca	MIN-200-12001		ICP/OES
Co	MIN-200-12001		ICP/OES
Cr	MIN-200-12001		ICP/OES
Cu	MIN-200-12001		ICP/OES
Fe	MIN-200-12001		ICP/OES
κ	MIN-200-12001		ICP/OES
U	MIN-200-12001		ICP/OES
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001		ICP/OES
Ni	MIN-200-12001		ICP/OES
Pb	MIN-200-12001		ICP/OES
s	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sn	MIN-200-12001		ICP/OES
Ti	MIN-200-12001		ICP/OES
Ÿ	MIN-200-12001		
w	MII4-200-12001		ICP/OES
	MIN-200-12001		ICP/OES
Zn	MIN-200-12001		ICP/OES
Ag	MIN 000 40004		ICP/MS
As	MIN-200-12001		ICP/MS
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Cd	MIN-200-12001		ICP-MS
Се	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cs	MIN-200-12001		ICP-MS
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
ln .	MIN-200-12001		ICP-MS
La	MIN-200-12001		ICP-MS
Lu	MIN-200-12001		ICP-MS
Mo	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
	WIII 7 200 1 200 1		IOL-MO

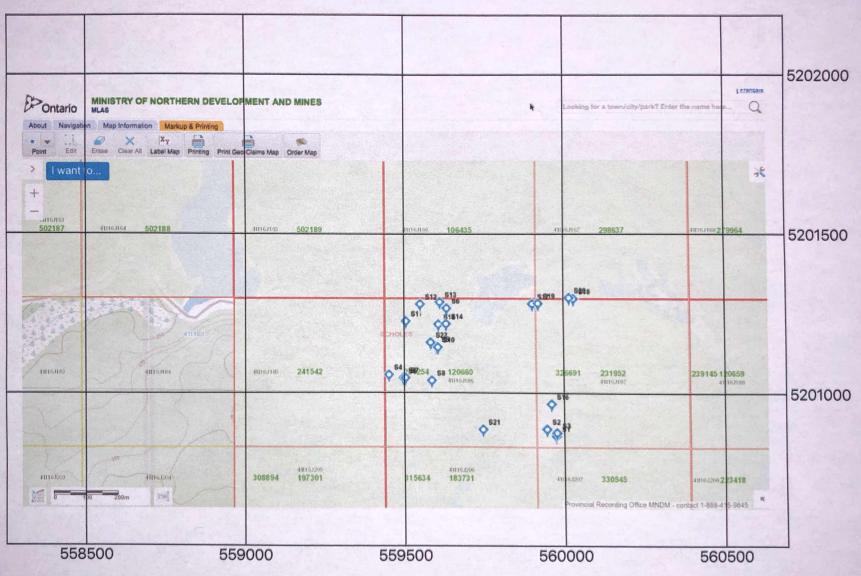
10,00

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

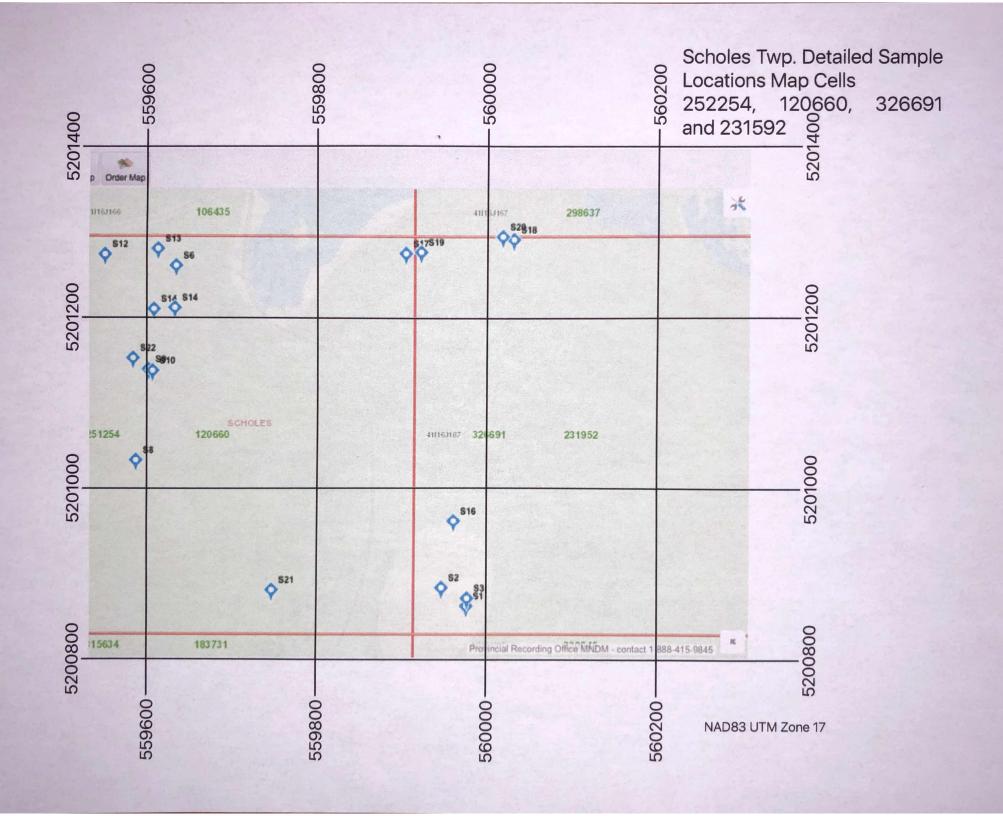
Method Summary

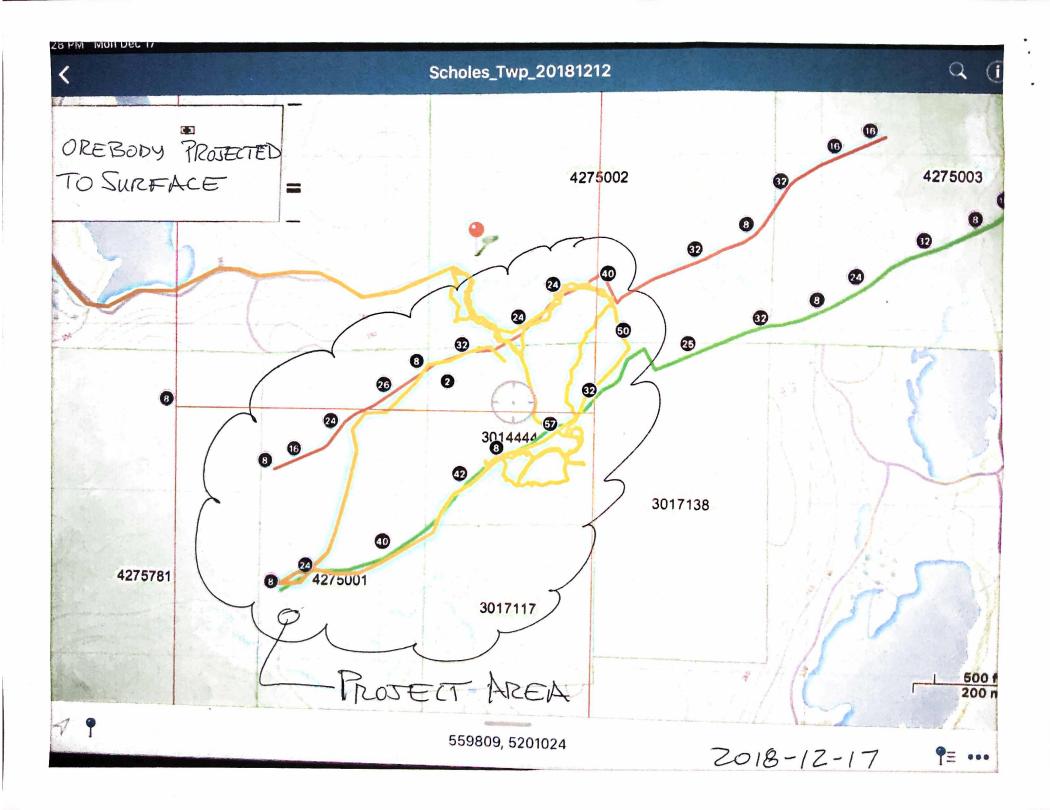
CLIENT NAME: BASELINE GEOMATERIALS INC.

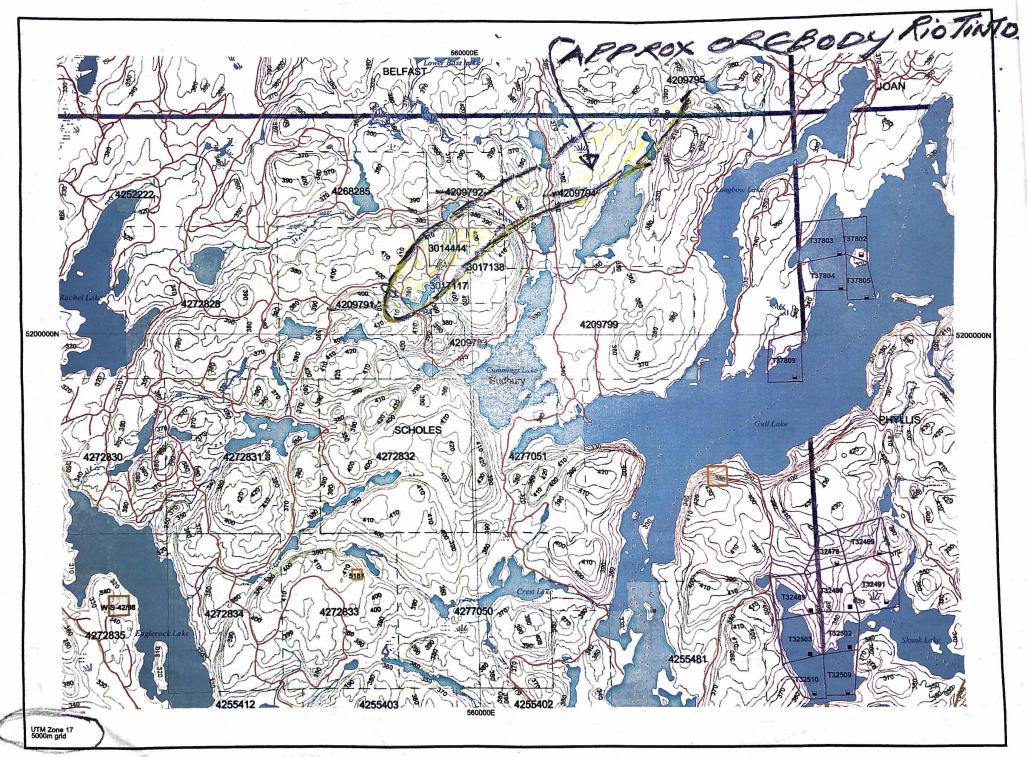
PROJECT: SC


AGAT WORK ORDER: 18T409215

ATTENTION TO: STEVE GOSSLING


SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Rb	MIN-200-12001		ICP/MS							
Sb	MIN-200-12001		ICP-MS							
Sc	MIN-200-12001		ICP/OES							
Sm	MIN-200-12001		ICP-MS							
Sn	MIN-200-12001		ICP/MS							
Sr	MIN-200-12001		ICP-OES							
Та	MIN-200-12001		ICP-MS							
ТЬ	MIN-200-12001		ICP-MS							
Th	MIN-200-12001		ICP-MS							
π	MIN-200-12001		ICP-MS							
Tm	MIN-200-12001		ICP-MS							
U	MIN-200-12001		ICP-MS							
w	MIN-200-12001		ICP-MS							
Y	MIN-200-12001		ICP-MS							
Yb	MIN-200-12001		ICP-MS							
Zr	MIN-200-12001		ICP-MS							
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES							


Appendix 3 – Map(s)


Scholes Twp. Sample Locations - Fall 2018

NAD83 UTM Zone 17

Appendix 4 – Costs

(See Separate Submission)