

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

GEOPHYSICAL INTERPRETATION REPORT

ON THE RESULTS OF AN AIRBORNE HORIZONTAL MAGNETIC GRADIANT, MATRIX VLF-EM AND RADIOMETRIC SURVEY, CREE LAKE PROJECT

Cree Lake Gold Property

Swayze Township, Ontario, Canada

LAT 47.78° N, LON 86.66° W

NTS 410/15

Prepared for

John Leliever

9 Blue Horizon Crescent

Caledon Village, Ontario

L7K 0T9

Prepared by:

Jeremy Brett, M.Sc., P.Geo.

MPH Consulting Ltd.

And

Walter Hanych, P.Geo.

Hanych Geological Consulting Ltd.

January 17, 2019

Table of Contents

1.0	Summary	4
2.0	Mining Lands	5
3.0 Acc	ess and Population Centres	11
4.0 Key	Map	12
4.	1 Location	12
5.0 Hist	tory	14
6.0 Reg	ional Geology	17
7.0 Exp	loration Model	18
8.0 Dat	a Verification	21
9.0 Disc	cussion of Interpretation	21
10.0 Ex	ploration Targets	23
11.0 Re	commendations	23
12.0 Re	ferences	24
13.0 Ce	ertificates	26
14.0 Ma	aps	28

LIST OF FIGURES

FIGURE 1: CLAIM MAP SHOWING PROPERTY BOUNDARY	10
FIGURE 2. ACCESS MAP	11
FIGURE 3. GENERAL LOCATION MAP, CREE LAKE PROPERTY	12
FIGURE 4: KEY MAP: CREE LAKE PROPERTY	13
FIGURE 5. REGIONAL GEOLOGY; CREE LAKE CLAIM GROUP AFTER AYER ET.AL. 2005	19
FIGURE 6. CREE LAKE PROPERTY COMPILATION MAP	20
FIGURE 10: FIRST VERTICAL DERIVATIVE WITH INTERPRETED HOST LITHOLOGIES	31
FIGURE 11: TOTAL COUNT RADIOMETRIC MAP WITH INTERPRETED INTRUSIONS	32
FIGURE 12: NORTH-SOUTH VLF ELECTROMAGNETIC MAP WITH INTERPRETED STRUCTURES	33
FIGURE 13: EAST-WEST VLF ELECTROMAGNETIC MAP WITH INTERPRETED STRUCTURES	34

LIST OF TABLES

TABLE 1: LIST OF CLAIMS	5
TABLE 2: CHRONOLOGICAL HISTORY	15

1.0 Summary

The purpose of this report is to document the interpretation of an Airborne Magnetic Gradiant, High Resolution Matrix VLF-EM and Radiometric Survey conducted over the Cree Lake Property in 2016. The Operational Report of this survey titled *"Final Operations Report, Blackrock Exploration Inc, Cree Lake Project, Swayze Township, Northern Ontario, Airborne Horizontal Magnetic Gradient, Matrix VLF-EM and Radiometric Survey*", dated May 23, 2017 was submitted for assessment work on June 8, 2017.

The survey was conducted by Terraquest Ltd. in 2016.

Jeremy Brett, M.Sc., P.Geo. senior geophysical consultant with MPH Consulting Limited, was commissioned to provide the geophysical services which included: advanced filter processing and interpretation of airborne geophysical data in relation to property geology and ore deposit models for the purpose of identifying possible targets and assist with interpretation of the geology of the property.

Walter Hanych, P.Geo. of Hanych Geological Consulting Ltd. provided documentary material in the form of reports and maps, having worked as a consultant on the property for many years. Mr. Hanych composed the sections of the report exclusive of sections 8 and 9, and assisted with target definition.

The report was prepared for Mr. John Leliever. The geophysical interpretation and accompanying report were accomplished in the period January 10th to 19th, 2019.

Based on past results and this geophysical interpretation of the latest Airborne Geophysical Survey (2017), the property warrants further work as tabulated below:

- 1. Mapping and Prospecting over selected target areas.
- 2. Further geophysical interpretation of the 2017 Airborne Survey.
- 3. Soil sampling employing the Mobile Metal Ion technique over selected target areas.
- 4. Ground geophysical Induced Polarization Surveying as possible follow up to above.

2.0 Mining Lands

The Cree Lake Property consists of 151 single cell claims and 43 boundary cell claims. The claims are located in Swayze, Cunningham and Dore Townships within the jurisdiction of the Porcupine Mining Division, NTS 41010.

Tab	le 1:	List	of	Claims	
-----	-------	------	----	--------	--

Township / Area	Tenure ID	Tenure Type	Ownership
SWAYZE	123460	Single Cell Mining Claim	Leliever 100%
SWAYZE	341679	Single Cell Mining Claim	Leliever 100%
SWAYZE	303433	Single Cell Mining Claim	Leliever 100%
SWAYZE	283246	Single Cell Mining Claim	Leliever 100%
SWAYZE	283245	Single Cell Mining Claim	Leliever 100%
SWAYZE	281138	Single Cell Mining Claim	Leliever 100%
SWAYZE	254223	Single Cell Mining Claim	Leliever 100%
SWAYZE	245857	Single Cell Mining Claim	Leliever 100%
SWAYZE	236101	Single Cell Mining Claim	Leliever 100%
SWAYZE	216120	Single Cell Mining Claim	Leliever 100%
SWAYZE	199643	Single Cell Mining Claim	Leliever 100%
SWAYZE	185873	Single Cell Mining Claim	Leliever 100%
SWAYZE	180660	Single Cell Mining Claim	Leliever 100%
SWAYZE	141496	Single Cell Mining Claim	Leliever 100%
SWAYZE	135448	Single Cell Mining Claim	Leliever 100%
SWAYZE	135447	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	120858	Single Cell Mining Claim	Leliever 100%
SWAYZE	298767	Single Cell Mining Claim	Leliever 100%
SWAYZE	251668	Single Cell Mining Claim	Leliever 100%
SWAYZE	251667	Single Cell Mining Claim	Leliever 100%
SWAYZE	251666	Single Cell Mining Claim	Leliever 100%
SWAYZE	243632	Single Cell Mining Claim	Leliever 100%
SWAYZE	148916	Single Cell Mining Claim	Leliever 100%
SWAYZE	300220	Single Cell Mining Claim	Leliever 100%
SWAYZE	300219	Single Cell Mining Claim	Leliever 100%
SWAYZE	263679	Single Cell Mining Claim	Leliever 100%
SWAYZE	243633	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	197029	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	120859	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	148917	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	197030	Single Cell Mining Claim	Leliever 100%

CUNNINGHAM,SWAYZE	300221	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	115423	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	333954	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	333953	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	328935	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	323017	Single Cell Mining Claim	Leliever 100%
SWAYZE	286977	Single Cell Mining Claim	Leliever 100%
SWAYZE	285519	Single Cell Mining Claim	Leliever 100%
SWAYZE	274901	Single Cell Mining Claim	Leliever 100%
SWAYZE	273402	Single Cell Mining Claim	Leliever 100%
SWAYZE	271094	Single Cell Mining Claim	Leliever 100%
SWAYZE	199381	Single Cell Mining Claim	Leliever 100%
SWAYZE	160342	Single Cell Mining Claim	Leliever 100%
SWAYZE	153555	Single Cell Mining Claim	Leliever 100%
SWAYZE	322121	Single Cell Mining Claim	Leliever 100%
SWAYZE	303397	Single Cell Mining Claim	Leliever 100%
SWAYZE	226606	Single Cell Mining Claim	Leliever 100%
SWAYZE	170121	Single Cell Mining Claim	Leliever 100%
SWAYZE	273403	Single Cell Mining Claim	Leliever 100%
SWAYZE	285525	Single Cell Mining Claim	Leliever 100%
SWAYZE	105415	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	274902	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	206975	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	173219	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	226605	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	218652	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	189318	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	105416	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	153226	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	183293	Single Cell Mining Claim	Leliever 100%
SWAYZE	226607	Single Cell Mining Claim	Leliever 100%
SWAYZE	238741	Single Cell Mining Claim	Leliever 100%
SWAYZE	293216	Single Cell Mining Claim	Leliever 100%
SWAYZE	305364	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	111064	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	280391	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	232372	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	165132	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	130448	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	194618	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	241781	Single Cell Mining Claim	Leliever 100%

CUNNINGHAM	249853	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	268604	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	111063	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	241780	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	337248	Single Cell Mining Claim	Leliever 100%
SWAYZE	103047	Single Cell Mining Claim	Leliever 100%
SWAYZE	315340	Single Cell Mining Claim	Leliever 100%
SWAYZE	315339	Single Cell Mining Claim	Leliever 100%
SWAYZE	296622	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	249422	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	249421	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	154378	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	106917	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	341122	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	320260	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM	302327	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	302326	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	290266	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	246210	Single Cell Mining Claim	Leliever 100%
CUNNINGHAM,SWAYZE	246209	Single Cell Mining Claim	Leliever 100%
SWAYZE	246208	Single Cell Mining Claim	Leliever 100%
SWAYZE	233161	Single Cell Mining Claim	Leliever 100%
SWAYZE	215124	Single Cell Mining Claim	Leliever 100%
SWAYZE	185343	Single Cell Mining Claim	Leliever 100%
SWAYZE	134317	Single Cell Mining Claim	Leliever 100%
SWAYZE	123576	Single Cell Mining Claim	Leliever 100%
SWAYZE	123575	Single Cell Mining Claim	Leliever 100%
SWAYZE	340812	Single Cell Mining Claim	Leliever 100%
SWAYZE	289228	Single Cell Mining Claim	Leliever 100%
SWAYZE	251982	Single Cell Mining Claim	Leliever 100%
SWAYZE	173218	Single Cell Mining Claim	Leliever 100%
SWAYZE	103911	Single Cell Mining Claim	Leliever 100%
SWAYZE	299052	Single Cell Mining Claim	Leliever 100%
SWAYZE	261741	Single Cell Mining Claim	Leliever 100%
SWAYZE	261740	Single Cell Mining Claim	Leliever 100%
SWAYZE	244584	Single Cell Mining Claim	Leliever 100%
SWAYZE	232371	Single Cell Mining Claim	Leliever 100%
SWAYZE	224397	Single Cell Mining Claim	Leliever 100%
SWAYZE	178561	Single Cell Mining Claim	Leliever 100%
SWAYZE	173217	Single Cell Mining Claim	Leliever 100%
SWAYZE	154380	Single Cell Mining Claim	Leliever 100%

SWAYZE	154379	Single Cell Mining Claim	Leliever 100%
SWAYZE	126431	Single Cell Mining Claim	Leliever 100%
SWAYZE	120545	Single Cell Mining Claim	Leliever 100%
SWAYZE	119185	Single Cell Mining Claim	Leliever 100%
SWAYZE	119184	Single Cell Mining Claim	Leliever 100%
SWAYZE	103912	Single Cell Mining Claim	Leliever 100%
SWAYZE	129095	Single Cell Mining Claim	Leliever 100%
SWAYZE	325661	Single Cell Mining Claim	Leliever 100%
SWAYZE	296499	Single Cell Mining Claim	Leliever 100%
SWAYZE	296498	Single Cell Mining Claim	Leliever 100%
SWAYZE	277629	Single Cell Mining Claim	Leliever 100%
SWAYZE	259064	Single Cell Mining Claim	Leliever 100%
SWAYZE	259063	Single Cell Mining Claim	Leliever 100%
SWAYZE	242573	Single Cell Mining Claim	Leliever 100%
SWAYZE	242572	Single Cell Mining Claim	Leliever 100%
SWAYZE	192518	Single Cell Mining Claim	Leliever 100%
SWAYZE	192517	Single Cell Mining Claim	Leliever 100%
SWAYZE	104443	Single Cell Mining Claim	Leliever 100%
SWAYZE	104442	Single Cell Mining Claim	Leliever 100%
SWAYZE	222414	Single Cell Mining Claim	Leliever 100%
SWAYZE	296500	Single Cell Mining Claim	Leliever 100%
SWAYZE	325660	Single Cell Mining Claim	Leliever 100%
SWAYZE	338603	Single Cell Mining Claim	Leliever 100%
SWAYZE	329215	Single Cell Mining Claim	Leliever 100%
SWAYZE	308963	Single Cell Mining Claim	Leliever 100%
SWAYZE	250514	Single Cell Mining Claim	Leliever 100%
SWAYZE	250513	Single Cell Mining Claim	Leliever 100%
SWAYZE	250512	Single Cell Mining Claim	Leliever 100%
SWAYZE	212480	Single Cell Mining Claim	Leliever 100%
SWAYZE	195822	Single Cell Mining Claim	Leliever 100%
SWAYZE	174934	Single Cell Mining Claim	Leliever 100%
SWAYZE	173216	Single Cell Mining Claim	Leliever 100%
SWAYZE	161270	Single Cell Mining Claim	Leliever 100%
SWAYZE	147176	Single Cell Mining Claim	Leliever 100%
SWAYZE	111582	Single Cell Mining Claim	Leliever 100%
SWAYZE	102389	Single Cell Mining Claim	Leliever 100%
SWAYZE	336586	Single Cell Mining Claim	Leliever 100%
SWAYZE	276921	Single Cell Mining Claim	Leliever 100%
SWAYZE	258411	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	257880	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	249192	Boundary Cell Mining Claim	Leliever 100%

SWAYZE	241123	Boundary Cell Mining Claim	Leliever 100%
DORE,SWAYZE	212481	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	159941	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	159940	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	112256	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	156442	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	201049	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	209179	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	110768	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	136263	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	137035	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	201849	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	222456	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	237035	Boundary Cell Mining Claim	Leliever 100%
DORE,SWAYZE	242615	Boundary Cell Mining Claim	Leliever 100%
DORE,SWAYZE	255697	Boundary Cell Mining Claim	Leliever 100%
DORE,SWAYZE	255698	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	273797	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	156364	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	175814	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	276922	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	325012	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	170628	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	208606	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	208607	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	220176	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	274606	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	304432	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	311210	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	311211	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	323920	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	334322	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	334323	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	334324	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	103048	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	103049	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	189784	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	189785	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	293797	Boundary Cell Mining Claim	Leliever 100%
SWAYZE	293798	Boundary Cell Mining Claim	Leliever 100%

1592 2846 2447	2 62 41015 538 7 68	124837 410158045	343573 410158046	410158842 317511 218715	268540 410158048	175036 410158040	315750 410158050	299363 410158051	318056 410156052	339544 410158053	223708 410158054	268390 410158055	103372 410158856	183895 410158857	119006 410158058	249729 410158050	193055 410158060	217252 410154041	342865 410154042	237333 41015/040	283230 410154044	316422 41015/045	337334 41015/04	109222 41015/4147	
10158 3433 1848	R064 575 123	410158065 343574 339603	410158066 226034 184822	41015E67 2.44769 18882.7	328475 410158069	268541 410158000	309058 410138070	301412 410158071	CF S	REE L	.AKE YZE T	PRO	PER1	ΓY >	177171 410158078	298481 410158679	279833 410158080	279832 410154601	331018 410154652	151825 410154013	217253 410154004	213223 41015405	111.474 41015/06	244254 410154667	
2447	783	232636 410158885	299319 410158080	410158087 317512 185962	341429 410108088	2 52 633 410158080	329047 410158010	121956. 410158091	193368 410158052	222581 410158003	193180 410158094	118529 410158095	278259 4101586W	297176 410116087	278258 4101158099	165074 410158029	120486 410138100	41015A001 296498 158965	410154082 135932 325661	41015/083 277629 272451	41015484 325660 254084	205875 410154865	1,000 m	197135	Î
2601	128-11015	101115982 410158105	278183 410158100	410158107 260127 104300	245973 410158109	289848 410158100	341430 41015R10	104299 41015811	297274 410158112	250070 410158113	338694 410158114	259723 410158115	338693 410158110	193181 410159117	129745 410158118	178505 40158119	298482 410158120	41015A101 242572 231816	104442 41015A102	192517 410154103	41015404 222414 179462	134247 41015495	NTS 410 134246 410154100	341063 41015A107	Î
1289	88 141015	61.24 2.797.03 4101568.25	115983 410158126	410 138127 32 9048 1582 54	281766 410158129	2 52 63 4 410158130	121957 410158130	341 431 410158131	297275 410158832	163311 410158133	229119 410150134	175215 410158135	32 492 0 410158136	156282 41015813/	295707 410158138	175902 410158139	156947 410158140	410154121 192518 241942	296499 410154122	2.42573 410(5A12)	41015A124 129095 134249	282883 410154125	341064 410154126	265703 410154127	Î
2121	641015	9141 279704 410158145	326790 410158146	410158147 312761 259686	297140 410158148	410158149 299041 278228	410158150 271193 340033	410158151 299040 245974	41011 2221 1201	PROP	PERTY	BOUND	ARY	62364 0158157	156283 410158158	156948 410138159	337448 410158800	410154141 119619 259064	104443 410154142	259063 410154140	272981 296500 265705	41015A145 3.43997 3.02270	410154140 341065 207501	41015A147 117526 265704	Ī
2601	2949015	410158905	11598-4 410158966	41015B167 278230 164279	278229 410158968	410158100 224390 177135	165121 490158170	327640 410158171	280380 410158172	286452 410158173	173169 410150174	103023 410138175	410119776 156284 154348	241280 410158177	241279 410138178	191906 410158179	289036 410158180	410154161 255697 229782	136263 410154162	273797 410154163	410154164 201049 169608	207582 410154355	196946 410154166	196945 410154167	Ī
0158	194	410158185	SWAY 410158186	2E 193197 41015Rte7	259687 410158188	410158189 22,4391 163,741	159016 410158780	184570 410158191	327641 410158112	3.45376 410158113	219713 410158104	274572 410158195	410158136 274371 162365	258329 41013818*	1@304 4101158118	221816 410158899	258990 410158200	41015A181 119620 137035	255698 410154182	237035 410154183	41015A194 285047 156442	DORE 217792 41015A185	321600 410154186	285046 410154187	2
	410158	820-441-01 51820 5	410158200	223079 410158207	157707 410158208	159018 246210 193198 40015829	410158210 2.462.09 3.4003.4	410158211 261731 2462.08	41015012 159017 123575	410138213 293763 249422	410118214 118328 2.49421	410118215 250513 227155	102305 250512 126397	410158217 111582 191229	410118218 221140 212480	410158218 2.41 123 27702.0	410158220 229783 159940	41015A201 2 57880 2 41968	410 201849 41015A202	154 410154203 110768 236449	410154204 292380 209175	3.43.998 41015A295	196947 410154206	285048 41015A207	
101562	224	410158225	410158226	104592 410158227	163793 410158229	410158220 302327 163792	290266	134317 410198291	302326 410156232	315339 410158233	296622 410158294	2 5051 4 410158235	338603 410158296	161270 410158237	308963 410158298	249192 410158299	112256 410156040	410154221 102389 199347	410154222 2.42615 2.36450	410154229 3032.02 222.456	135165 410154294	275042 410154225	275041 410154225	335461 41015A227	Î
01580	244	410158245	135447 410158346	199643 410156247	236101 410158048	283245 41015824	32 02 60 410158250	341122 410158251	123576 410158252	106917 470158259	315340 410158254	195822 410156255	32 92 1 5 410158259	1.47176 410156252	174934 410118258	212481 410158259	159941 410156260	276921 410154341	156364 410194312	410154240 32 5012 170719	254512 410154244	155016 410154345	287116 410154245	208947 410154247	Ì
	410158	264 410/15/8263	216120 410158286	123460 410158267	135448 410158058	281138 410158259	233161 410158270	1853.43 410158271	215124 410156272	103047 410158273	154378 410158274	173216 410158275	126431 410158276	261740 410158277	103912 410156278	103911 410158279	336586 410158280	258411 41015A201	175814 40015A282	410155203 304527 276922	274698 41015A254	294428 410154285	127070 410154265	275043 41015A267	Ì
	e10158	204 41015R285	254223 410158286	341679 410158287	303433 410158288	2.45857 410158289	2 51982 410158200	340812 410158291	289228	173218 410158293	189784 410158294	2.93797 410118255	173217 410158296	178561 410158297	232371 410158298	12.0545 410138299	208607 41015000	208606 410154281	304432 41015A382	410154383 267948 170628	220765 410154254	335462 41015A285	287119 410153286	155017 41015A287	Î
	41015E	014 410156003	2832.46 410158000	141496 410158887	180660 410158008	185873	271094 450158010	1603.42 410158011	328905 410158012	274901 410158813	293798 410156914	103048 410156015	154379 410156016	119184 410156917	2 990 52 4101 580 18	22 43 97 410158219	274606 410158920	220176 41015/301	311210 410154382	410154383 135771 323920	141209 41015/304	271296 410154305	149196 41015/000	111232 41015/007	Î
	41015E	24.410158925	251667 410158926	251666 41015892/	148916 410156029	243632 41015803)	285519 410158230	199381 410156031	333953 410156532	286977 410158033	103049 410156034	189785 410158335	154380 41015636	244584 410158837	261741 410156538	410130039 119185 141880	410158940 334324 274608	410154321 334323 304433	410154322 334322 334325	410154320 311211 310537	254577 410154324	167863 410154325	271297 410154926	301174 41015A327	Î
	410158	410158345	300219 410158340	243633 410158347	251668 410158948	298767 410158949	273402 410158850	153.555 410158831	333954 410158052	323017 410158959	274902 410156054	206975 410158955	173219 410158056	165132 410156857	280391 410158358	41015058 208608 232372	255237 410156910	141882 410154841	PAT-44 141881 41015A342	199921 410(5434)	207928 410154344	PAT-11049 197332 PAT-1105 400154345	185451 PAT-11050 41015/846	167864 410154347	Ì
	4101565	64 410158365	12 08 58 410158966	263679 410158367	300220 410158968	197029 410156369	322121 450158970	170121 410158871	410158872 303397 153557	410158073 226606 206883	226605 410158874	218652 410118875	189318 410156276	111063 410158877	2.41780 410156278	410156070 274609 337248	410156980 237183 188690	410154361 105297 136425	2 08 6 09 41015 A 26 2	410154383 141210 PAT-44684	135772 410154354	41015085 PAT-1105 PAT-11051	410154860 PAT-11052 198010	319190 410154367	Î
	4101363	84 105585 410156385	410158985 316479 120859	410158387 197030 161239	410158388 300221 195279	410156389 333965 148917	40158390 273403 303398	410156391 115423 303909	41013882 333967 285525	410158888 322122 305364	226607 410158094	293216 410158995	238741 41015899	2 49853 410128997	130448 41015858	4101368999 304434 194618	410158400 136426 125220	410154381 321748 200590	220177 410154382	410154383 2:54578 PAT-44685	141211 410154384	PAT-11053 PAT-11053 410154383	PAT-11054 265261 410154580	319191 410154387	AT
	41010.0	41010.005	316480 41010,005	262468 41018J867	1612.40 41010.008	133325 41010J002	303399 41010,010	22.62.91 41010.011	219003 41010J012	41010.012 303.910 105416	105415 41010.014	153226 41010J015	1832.93 41010,016	2 41 78 1 410103017	111064 41016,018	41010.019 2.08611 268604	40103020 208.610 12.522.1	41010501 2 553 43 1 7062 9	220178 41010002	141883 41010000	521232 41010804	PAT-1105 41010005 PAT-11055 521241	521233 410101005	521235 41010807	R
	41010.0	106586 41010.025	316481 41010.026	176415 41010.027	176414 41010.028	273404 41010.0029	265486 41010.030	285527 41010.031	285526	170122 41010,822	12540-8004 12790002 12790002	anonom	as Rock'	41010,032	410 m 200 10 120000	5093.97 41013.829	509399 4(010,040	509400 41010.521	509398 41018822	52 0932 41016823	521238 41016824	521239 410101025	521236 410101025	521234 41010.027	

Figure 1: Claim map showing property boundary

3.0 Access and Population Centres

Access to the property can be gained by motor vehicle by travelling west from the cross-road of secondary Highway 560 (locally known as the Sultan road) and Highway 144. Approximately, 55-kilometers west of the cross-road Highway 560 intersects a logging haul road known as the Doré road. From this point, north for 27-kilometers to a fork in the road, the left fork which bears northward and ultimately westward leads to a restricted access logging road. The gate positioned 4.8-kilometers from the fork is controlled by Domtar and can be locked to prevent unauthorized access. At 2.7-kilometers from the gate, a 500-meter long truck drivable trail leads to a clearing from which a rough ATV trail begins. This trail leads south for 1.8-kilometers and ends up at the Flint Rock occurrence.

The closest cities to the property are Sudbury with a population of 157,850, 195-kilometers, southsoutheast and Timmins with a population of 43,600, 130-kilometers northeast of the property. Both cities are well known mining centres supporting an extensive infrastructure, accommodating mining and mineral exploration. The Watershed Restaurant, Car & Truck Stop at the intersection of secondary highway 560 and highway 144, is the closest cross-road with fuel, food and limited accommodations, and is situated about 90-kilometers by road from the property.

Figure 2. Access Map

4.0 Key Map

4.1 Location

The Cree Lake property is located 195-kilometers north-northwest of Sudbury, Ontario primarily in Swayze Township. The Property lies within NTS map sheet 410/15. The geographic co-ordinate for the property is centered at latitude 47.78° north, longitude 86.66° west.

2	42C11	2	X	J. W. S.	J.T.	1.1	127	i (7) •**	immins	
5	42C06 4	2C 42C07	42008	42805	42B06 42	2B 42B07	42B08	42A05	42A06 42	2A 42A07
4	42C03	42C02	42C01	42B04	42B03	₽2802	Porcupine Mining Division	42A04	42A03	42A02
3	41N14	41N15	41N16	41013	41014	41015	41016	41P13	41P14	41P15
2 altSt	41N11 te: Marie	41N10	4 CREE I	LAKE PROPE	ERTY 211	41010	41009	41P12	41P11	41P10
5	41N06	41N07	41N08	41005	41006	41007	410.08	442051	41P06	41P07
4	41N03	41N02	41N01	41004	41003	41002	41001	41P04	41P03	41P02
	41K14	¥1K15	41K16	41J13	129 41J14	41J15	41J16	41113	41114	41115 Sudbury
1	-4	1K s 41K 0 M	ault 41K09 arie c	41J12	41J11 4	IJ 41J10	41J09	41112 Gre	Grand 4Slucklury 4 ater Sudbury	Mining Divisio
0	20 40kr	m	500] Scale 1:	2,311,162	• Go	Ellido a	41J08	41105	41106	41107

Figure 3. General Location Map, Cree Lake Property

Figure 4: Key Map: Cree lake Property

5.0 History

Prospecting in the Swayze area became active in 1931 when the Kenty gold discovery was made in August of the same year. In 1933, two shafts were sunk on the property, 510 (155m) and 534 (163m) feet deep, with 6,750 feet (2057m) of corresponding lateral development. By 1934, production at the mine was suspended due to low gold values. This was outside the present property boundary.

Exploration within the Swayze Gold area continued and in the early 1930's, Buffalo-Canadian Gold Mines Ltd. made a gold discovery south of Hook Lake and east of Cree Lake, named the 'Buffalo-Canadian' occurrence. This work was on the present Cree Lake property. They followed this with a trenching, stripping and diamond drill program in 1933.

The area was geologically mapped by Furse (1932), Rickaby (1934) and V.B.Meen (1941) for the Ontario government and most of the work would be outside the Cree Lake claims.

Little exploration activity occurred after 1941 until Flint Rock Mines Ltd. acquired claims in the area and proceeded to drill the 'Flint Rock' occurrence in 1962-63, on the mainland and the island in Cree Lake. INCO gained rights to the property and area in 1966 and carried out a small two hole drill program. The Flint Rock occurrence is located on the property.

The 1980s appeared to be the most active time for the property and area with many air and ground exploration programs taking place. Further geological mapping in the area was completed by Siragusa and a new map was generated from the results (1980). Most of this work was outside the claims.

During the 1990s, the ground passed between a junior company and individual prospectors.

The Cree Lake property was staked by prospectors R. Rintala and C. Johnson of Sudbury, Ontario and acquired under option by Mantis Explorations Inc. and they subsequently carried out trenching, sampling and drilling programs. The prospectors retain a 1.5% NSR royalty.

Table 2: Chronological History

	Chr	onological History
Year	Company	Work Performed
	/	
1930s *	Buffalo-Canadian Gold Mines Ltd.	The 'Buffalo-Canadian' occurrence was trenched, stripped and drilled to yield assay results of 0.02-0.08 oz. per ton Au in mineralized quartz within shear zones. Visible gold was reported from this site.
1932 **	Fruse	Geological mapping of the Swayze gold area.
1933 *	Buffalo-Canadian Gold Mines Ltd.	On the east shore of Cree Lake, a 500 foot trenching and diamond drill program was carried out
1934 **	Rickaby	Geological mapping of the Swayze gold area, including Dore and Swayze townships.
1941 **	V.B.Meen	Geological mapping.
1959 **	M.W.Bartley, P.Eng.	Prospecting in the Ridout-Swayze area
1961 *	Flint Rock Mines Ltd.	D.McKechnie wrote a report after visiting the Flint Rock property, recommendations included drilling, which was carried out the following year.
1961-1963 *	Flint Rock Mines Ltd.	From July 1962 - February 1963, 34-holes were drilled on the property, totalling 4,449.5 feet at what is now known as the 'Flint Rock' occurrence. On the mainland showing, 25-holes ranging from 28 to 379 feet in length were drilled, while on the island, nine holes from 85- to 160 feet in length were cored. Gold values ranged from 0.4- 20.7 oz. per ton and silver values were from 0.32-4.54 oz. per ton. The program also included re-sampling of old trenches.
1965 **	J.F.Donovan	Geological Report 33 "Geology of the Swayze and Dore Townships".
1966 *	INCO Ltd.	Two drill holes totalling 1,133 feet were completed. In vicinity of Flint Rock occurrence.
1968 **	J.F.Donovan	Geological mapping, Swayze township.
1976 **	UMEX Ltd.	A total of 1,158 line-miles of an airborne magnetic survey were flown over Denyes, Swayze, Dore, Heenan and part of Rollo Townships by Scintrex Survey Ltd, between January 29 and March 1, 1976.
1980 **	Siragusa	Geological mapping, Swayze area.
1980 **	ODM/OGS	An airborne INPUT electromagnetic survey and a magnetometer survey were completed in the area in late 1980 through early 1981.
1981 **	Canadian Nickel Company Ltd.	In the spring, 560-contiguous claims were staked in Denyes, Swayze and Dore Townships. In the fall, an airborne geophysical survey was carried out over the area, as well as reconnaissance mapping and prospecting. Eight samples, centered on Cree Lake returned assays greater than 100 ppb Au, and five samples ranged from 20-100 ppb Au.
1982 *	Troudor Resources Inc.	VLF-EM and magnetometer surveys were completed by S.Young and J.K.Filo. Based on these results, a report was written by D.R.MacQuarrie which recommended an IP survey and trenching or drilling, pending positive results.
1982 *	L.J.Cunningham	During October, the property was mapped, the pits were cleaned out and resampled and a report of this was submitted to Troudor.
1984 *	Troudor Resources Inc.	Utah Mines filed assays for Troudor Resources.
1984 *	Canadian Nickel Company Ltd.	A line grid, geological mapping, magnetic survey, IP survey and 3- diamond drill holes were completed in the area between Cree Lake and Cuckoo Lake.

1984 *	Quinterra Resources/Golden Rim Resources	In the fall, on the south shore of Cree Lake, extending south into Cunningham Township, preliminary geological mapping and prospecting was completed, with assays of grab samples performed. Terraquest Ltd. flew a combined VLF-EM and magnetic survey.									
1985 *	Quinterra Resources Inc.	From November 1985 to January 1986, 40 line-miles of grid were cut, south of Cree Lake onto which a magnetic, VLF-EM, self-potential and magnetometer survey, as well as detailed geological mapping were completed. A total of 7,010 feet were drilled by Longyear Canada Inc. in fourteen diamond drill holes, testing geological and geophysical targets, as well as a surface gold showing of 0.878 opt Au. Three zones of anomalous gold were intersected from five of these drill holes, including: 8.5 feet of iron-formation averaging 363 ppb Au; along a 37 foot length, best values obtained were 440 ppb, 280 ppb and 410 ppb Au in 5 foot, 3 foot and 5 foot intervals respectively; 37 feet averaging 183 ppb Au; 31.5 feet averaging 608 ppb Au, the best value of 3 feet of blue-grey to black chert, mineralized with 5% pyrite, yielded 2,000 ppb Au; and 20 feet of 600 ppb Au in quartz veined, metasomatized, altered core at the end of the hole. The highest value from the program was 1200 ppb Au over 5 feet.									
1987 *	Quinterra Resources/Golden Rim Resources	A further 6-diamond drill holes totalling 2,962 feet, testing geophysical targets, were completed between March and May by Longyear Canada Inc. In the fall, a small magnetic and VLF surveying program was carried out on 20 grid lines, as well as overburden stripping. In three of the holes, assay results showed: a 22 foot section of mineralized, altered mafic tuffs that averaged 0.0157 opt. Au; 23 feet of a graphitic zone that averaged 0.0122 opt. Au; and 6.5 feet of mafic tuffs, interlayered with graphite-pyrite beds that averaged 0.021 opt Au.									
1988 **	Charet Syndicate	Between March and April, an airborne magnetic and VLF-EM survey was carried out by Terraquest Ltd. on the north and northeast portion of Cree Lake, as well as further east in Swayze and Dore Townships.									
1990 *	Charles Mortimer	In January, Joe-Ann Salo was contracted to carry out a Total Field Magnetometer survey and Halo Explorations completed plugger work and blasting to obtain samples for assays.									
1990 *	Cree Lake Resources Corp.	Ground geophysical surveying of about 50 line miles, including MaxMin II EM and magnetic surveying were performed, along with data compilation and limited prospecting by MPH Consulting Ltd. from November to December, in the vicinity of Cree Lake.									
1992 *	Cree Lake Resources Corp.	A fall exploration program including mapping, prospecting, 801 overburden geochemistry samples, mechanized stripping of 14-areas, 1,100 feet of trenching and sampling was completed on its 100 claim gold property in the Cree Lake area.									
1993 *	Ron Crichton	A program involving hand stripping, 4.4 miles of line cutting, total field magnetometer, VLF EM, diamond drilling and assays was performed on the Cuckoo Lake property in Swayze Township. Two drill holes, one extended from 540ft to 692ft and the other totalling 402 ft. were drilled by Larry Salo and Ron Crichton, later logged by Mark Masson and samples sent for assay.									
2006 *	Johnson/Rintala	Sampling of Main trench at Flint Rock occurrence returned Au values ranging from .004 opt to 2.8 opt:									
2008 *	Mantis Explorations Inc.	A 155-meter stripping, trenching and sampling program was undertaken from September to November of the Flint Rock occurrence and the Buffalo-Canadian showing. Flintrock occurrence recommended for follow-up diamond drilling, Buffalo –Canadian showing results did not warrant immediate follow-up.									
2009 *	Mantis Explorations Inc.	A drill program consisting of 952.7m in 7-drill holes was carried out during the month of July of the Flint rock showing, which led to the									

		discovery of a new zone (Mantis showing). In the early fall, the Mantis showing was exposed to bedrock, mapped and sampled. At program completion the high and steep trench south wall was deemed to be a potential safety hazard and the trench was backfilled
2010 *	Probe Mines Limited	Mantis Mineral Corp. optioned property to Probe Mines Limited. Probe completed a Phase-1, 6-hole program of NQ, diamond drilling totalling 645-meters, in the vicinity of the Flint Rock showing.
2011 *	Probe Mines Limited	A Phase-2 diamond drill program consisting of 5-holes totalling 331.9- meters was completed in the vicinity of the Flint Rock showing (Error! R eference source not found.).
2012 *	Elcora Resources Corp	Claim post survey. Soil sampling program only partially completed. Samples collected on the South Cree Lake area but not submitted for analyses.
2016	Leliever	792 soil samples using the Mobile Metal Ion Technology south of Cree Lake. Elements analysed were: Au, Ag, Cu, Pb, Zn, As, Mo &Bi. Nodes of strongly elevated Au in the north trend of the survey were recognized and very high Cu responses correlating with Au.
2016-2017	Blackrock Exploration Inc	Airborne Horizontal Magnetic Gradiant, Matrix VLF-EM and Radiometric surveys conducted by Terraquest over entire claim fabric. Bi-directional survey conducted with 178 north-south lines totalling 834 kilometers and 139 east-west lines totalling 783 kilometers.

6.0 Regional Geology

The Cree Lake property lies in the Swayze area within the 2.6-2.8 Ga. south-western Abitibi Sub province, a Neoarchean granite-greenstone terrane. The area is bounded to the west by the Kapuskasing Structural Zone and to the east by the Kenogamissi Batholith, (see Appendix H).

The property is hosted within the Halcrow-Swayze assemblage, one of nine assemblages of the area that were historically and collectively referred to as the "Swayze Greenstone Belt". This assemblage, consisting of east trending komatiitic flows, tholeiitic basalts, felsic and calc-alkaline metavolcanics, and oxide facies iron formation, has been intruded by late quartz-feldspar porphyry and bodies of lamprophyre. Intense east to southeast striking shearing with 30° westerly plunging lineation occurs in the southern portion of the assemblage. The volcanic assemblages have been subjected to internal folding, producing sub vertically oriented stratigraphy.

In the Cree Lake area, ultramafic to mafic flows are spatially associated with margins of the assemblage while intermediate to felsic metavolcanics are concentrated towards the interior. Komatiitic flows at the northern and southern contacts of the assemblage are distinguished by a high magnetic signature and may correlate with each other through a large scale, west-northwest striking, west closing anticline.¹

Sedimentary rocks in the Swayze area characterize the Ridout and Raney-Newton assemblages, and in general terms consist of conglomerate, arkose, wackes and iron formation. The Raney-Newton assemblage, historically referred to as the "Swayze Series", occurs at the northern contact of the

¹ Jackson, S.L, Fyon, J.A. 1991. The Western Abitibi Sub province; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.448-449.

Halcrow-Swayze assemblage, while the Ridout assemblage occurs at the southern contact. Within the Ridout assemblage, east-west trending, vertically dipping oxide facies iron formations occur south of Cree Lake.

Two past producing gold mines are situated in the Swayze area; the Jerome and the Kenty. The Jerome gold mine is located 38-kilometers southeast of Cree Lake and occurs within the Ridout assemblage. The Kenty mine is located approximately 7,000-meters northeast of Cree Lake and like the Cree Lake property is hosted within the Halcrow-Swayze assemblage.

At the Jerome mine, 333,060 tons of ore was milled between 1941-1943 and yielded 56,879 ounces of gold at a recovered grade of 0.17 ounce per ton. The gold occurs within an intense deformation zone characterized by strong carbonate stockworks, quartz veining and breccia, at the contact between sediments and granodiorite porphyry. High gold values correlate with quartz veins containing appreciable amounts of molybdenum.

At the Kenty mine, development work between 1931 to 1934 consisted of the sinking of two shafts, 510feet and 534-feet deep, the No.1 and No.2 respectively. Three levels were accessed by the No.1 shaft and two by the No.2 shaft. Production figures are not available; however, published reserves of unspecified grade report that 69,000 tons of ore was outlined in the No.1 shaft area and 290,000 tons in the No.2 shaft area.

Gold mineralization is contained within quartz-carbonate veins in altered meta-volcanics within high strain zones spatially associated to a large body of feldspar porphyry

7.0 Exploration Model

The Cree Lake property gold mineralization is modelled as Archean lode gold associated with greenstone terranes, intrusive rocks and regional scale deformation zones. Dynamic hydrothermal fluid systems generating overpressure and fluid-rock interactions can promote ductile shear in less competent units and brittle deformation in more competent lithologies. This activity can generate dilatant zones which can form gold mineralizing environments as pressure, temperature and fluid chemistry changes. The overriding condition for this model type is the presence of deformation zones with extensional domains. On a local scale, mineralization may vary from shear hosted no veining to veining, to distinct dilational vein arrays, to prominent brittle fault vein systems where meter-scale veins develop.

A significant component of gold mineralization at Cree Lake is associated with sulphide/oxide facies iron formation considered to be chemical sediments of exhalative origin. Chemical sediments can host highly anomalous to ore-grade concentrations of gold, which may be modified by proximal intrusive activity remobilizing the gold into higher grade gold vein arrays.

Figure 5. Regional Geology; Cree Lake Claim Group after Ayer et.al. 2005

Figure 6. Cree Lake Property Compilation Map

8.0 Data Verification

Geophysical data for the Cree Lake Property was supplied directly to these authors by Terraquest Limited. These data meet industry standards for airborne geophysical data. Details on data acquisition and processing are outlined in the Terraquest logistics report (Barrie, 2017).

The airborne geophysical data consisted of Magnetic, Radiometric, and VLF Electromagnetic data types. The magnetic data have been filtered and/or otherwise presented in this report for interpretation and exploration target identification. One station of the digital VLF EM response (Station NAA located in Cutler Maine) has been selected for presentation and direct interpretation for conductor axes that can infer dilational faults. The Total Count radiometric product has been selected and presented for identifying certain lithologies. Interpretation lines and symbols have been added to the included geophysical maps and are discussed in Section 9.0, below.

The geophysical data was viewed and filtered using industry standard Geosoft Software.

9.0 Discussion of Interpretation

Geophysical data for the Cree Lake property have been interpreted in the context of the property geology and gold exploration model. Existing target areas for the property have been shown on all geophysical maps, and consist of Targets A, B, C and D in the North Cree Lake Area (labelled and shown as ovals), and 5 target in the South Cree Lake Area (targets shown as unlabelled ovals). The following have been observed:

Magnetic Data

The Magnetic data was Presented as the Total Magnetic Intensity Figure 8, (Map 1), Total Magnetic Intensity with a Linear Colour Bar (Map 2), and the First Vertical Derivative of the Total Magnetic Intensity (Map 3). The only filter product calculated was a basic First Vertical Derivative, via Fourier filtering in Geosoft.

The Total Magnetic Intensity with a Linear Colour exhibits a strong ~E-W linear magnetic anomaly in the North Cree lake Area, which is ~1100 nanoTeslas stronger than the magnetic background. This ~3.3km long linear feature is interpreted to be either an ultramafic sill or iron formation, both of which would be interesting as host lithologies for gold mineralization due to their iron content, which in turn would contribute to the formation of sulfide replacement minerals in a possible gold alteration and mineralization setting. The strike of this linear magnetic body is conformable with mapped ultramafics and quartz-feldspar-porphyries, as shown on Figures 8 to 10 (Maps 1 to 3) as purple and orange polygons, respectively.

The First Vertical Derivative particularly highlights the ~E-W linear magnetic anomaly patterns in the South Cree Lake Area, which may be extensions of known sulfide iron formation or volcanics, shown as long dashed lines. The linear patterns may also loop and connect as a possible antiform with a fold nose to the East (as labelled).

It should be noted that the identified linear magnetic horizons, within the South Cree Lake Area, are coincident with, and roughly parallel to, four of the five existing target ovals. The interpreted iron formation / mafics could upgrade these target as priorities.

Radiometric Data

The radiometric data provided only limited use for interpretation at this time. Further enhancement and filtering is recommended to enhance the Uranium, Thorium and Potassium channels. The Total Count has been used for interpretation in this report, and interpreted to show the extension of a known felsic intrusion in the South Cree Lake Area (magenta polygon on Map 4). A total of three other possible felsic intrusions have been identified with similar signatures. wo are within the North Cree lake Area, and two within the South Cree Lake Area. These are potentially significant for gold exploration on the property, as these could have acted as heat sources for hydrothermal fluid systems that related to alteration and mineralization along local structures.

It should be noted that the expanded / known felsic intrusion is close to two of the target ovals in the South Cree Lake Area, potentially upgrading these targets.

VLF Electromagnetic Data

The VLF Electromagnetic data exhibits two main sets of conductor axes, which are probably due to dilational /fractured structures.

An interpretation of the ~N-S oriented Traverse Line data for Station NAA (Cutler, Maine), is dominated by ~E-W conductor axes in both the North and South Cree Lake Areas. (See Figure 12,Map 5).

An interpretation of the ~E-W oriented Tie Line data for Station NAA is dominated by ~NW-SE conductor axes in both the North and South Cree Lake Areas. These may represent secondary structural controls on mineralization. (See Figure 13, Map 6).

The following should be noted:

A VLF conductor axis is coincident with the prominent linear magnetic high identified in the North Cree Lake Area. This could be indicative of fracturing along the interpreted ultramafic / iron formation, which could in turn be conducive to alteration and mineralization. In the same area, Targets A, B and C all lie to the North of a series of right-stepping short 500-700m VLF conductor axes, which could also

represent structures and a favourable gold environment in the pressure shadow to the North of these structures.

In the South Cree Lake Area, several ~E-W striking VLF conductor axes run parallel to the local interpreted linear magnetic anomalies, and are coincident with all five of the existing target ovals in this area. This could be indicative of favourable structures for alteration and mineralization, within these target areas.

10.0 Exploration Targets

Three classes of target are developed in this report for the Cree Lake property:

- 1) Magnetic horizons continuous with mapped iron formation (long dashed lines),
- 2) Magnetic horizons continuous with possible iron formation or ultramafics (long dashed lines),
- 3) VLF Conductor horizons indicating possible structures, coincident with the above (dotted lines),
- 4) (The lines and circles mentioned above are shown on Maps 1 through 6.)

All of the above could be prospective for alteration systems and related gold mineralization. Further follow-up exploration is recommended.

11.0 Recommendations

The Cree Lake property appears to be structurally complex and interesting for potential host lithologies and structures that could host alteration systems and related gold mineralization. This includes the linear magnetic anomalies and VLF conductor axes identified in both the North and South Cree Lake Areas, especially those which are in proximity to interpreted felsic intrusions from the radiometric data.

Mapping and prospecting of the identified lithologies and structures is recommended, to verify or refine the interpretation.

Further detailed structural interpretation of the geophysical data should be commissioned. Fault offsets along structures and linear lithological horizons need to be identified and catalogued as possible secondary controls on alteration and mineralization

More geochemistry in the form of Mobile Metal Ion soil sampling should be conducted on the property and compared in detail with the structures and favourable lithologies identified from the geophysics.

Mobile Metal Ion Survey has been successfully employed in the past over the sulphide-oxide facies iron formation in the South Cree Lake area, (Fedikow 2017). Additional surveying should be conducted west

of the survey grid established in 2017 and in other target areas in both the South Cree Lake area and North Cree Lake area identified by this report.

Further geophysical work should be considered in the form of Ground IP Surveys. over areas with favourable coincident geochemistry and interpreted structures, towards the goal of identifying focussed drill targets. IP surveys could be useful in identifying the resistivity lows associated with structural zones, plus the chargeable responses of disseminated sulfides which in turn could be associated with gold mineralization events

12.0 References

- Barrie, C., 2017, Final Operations Report, Blackrock Exploration Inc., Cree Lake Project, Swayze Twp. Northern Ontario, Airborne Horizontal Magnetic Gradient, Matrix VLF-EM and Radiometric Survey, B-449
- Bartley, M.W., 1959. A Report on the Prospecting in the Ridout-Swayze Area. Assessment Files.
- Bell, Robert C., 1984. Geological Survey Report on Claims in Swayze Township, NTS: 41015. Assessment Files.
- Brereton, W.E., 1990. Report on the Cree Lake Gold Property of Cree Lake Resources Corp, Swayze and Cunningham Townships, Porcupine Mining Division, Ontario. Assessment Files.
- Canadian Nickel Co. Ltd., 1985. Diamond Drilling Report for Hole 72525-0. Assessment Files.
- Canadian Nickel Co. Ltd., 1985. Diamond Drilling Report for Holes 72526-72528. Assessment Files.
- Canadian Nickel Company Ltd., 1985. Diamond Drilling Report on Hole 72529-0. Assessment Files.
- Caven, Roger J., 1976. A Report on the Airborne Magnetic Survey Flown for UMEX by Scintrex Surveys Ltd. Assessment Files.
- Colvine, A.C. et al., 1988. Archean Lode Gold Deposits in Ontario: Part I. A Depositional Model: Part II. A Genetic Model, Queen's Printer for Ontario, Ontario, Canada, p. 136.
- Crichton, Ron, 1993. Final Submission OPAP 92-814, Cuckoo Lake Property, Swayze Township. Assessment Files.
- Crichton, Ron, 1994. OPAP Final Submission, Swayze Township, OP93-711. Assessment Files.
- Cunningham, L.J., 1982. Report on the Swayze Township Property of Troudor Resources Inc., Porcupine Mining Division, Ontario. Assessment Files.
- Donovan, J.F., 1964. Map No. P.209 Swayze Township, Ontario Department of Mines. Assessment Files.
- Donovan, J.F., 1965. Ontario Department of Mines, Geological Report No. 33, Swayze and Dore Townships, Frank Fogg, Toronto, Ontario, Canada, p. 25.
- Dubeau, M., 1987. Report on the Diamond Drilling Programme on the Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources Ltd. Assessment Files.
- Fedikow, M., 2017. Results of Mobile Metal Ion Survey on the Cree Lake Property of JEX Exploration, Swayze Township, Ontario, p. 42.

Flint Rock Mines Limited, 1963. Diamond Drilling Report on Holes 1-12A on Claim S 116847. Assessment Files.

Flint Rock Mines Limited, 1963. Diamond Drilling Report on Holes 1-10 on Claim S 116850. Assessment Files.

- Fruse, G.D., 1932. Geology of the Swayze Area. ODM, Vol. XLI
- Goad, Robin E., 1989. Diamond Drill Record for Can-Mac Exploration Ltd. by Geological Engineering Services, North Bay, Ontario. Assessment Files.

Granges Exploration, 1977. Diamond Drilling Report on Hole SW-32. Assessment Files.

- Hamilton, Joseph A., 1993. Report on the 1992 Exploration Programme on the Cree Lake Gold Property of Cree Lake Resources Corp., Swayze and Cunningham Townships, Porcupine Mining Division, Ontario. Assessment Files.
- Hanych, W., 2009. Internal Geological Summary Report, Cree Lake property, for Mantis Explorations Inc. private company report
- Hanych, W and Ewanchuk S., 2008. Geological Technical Report, 2008 Trenching and Sampling Program, Cree Lake Gold Property, for Mantis Explorations Inc., p 44. Assessment Filed report.
- Hanych, W. and Ewanchuk, S., 2009, Geological Technical Report, 2009 Trenching and Sampling Program, Cree Lake Gold Property, Swayze Township, Ontario, Canada, for Mantis Explorations Inc., p 48.
- Hanych, W. and Ewanchuk, S., 2010, Geological Technical Report, 2009 Drilling and Sampling Program, Cree Lake Gold Property, Swayze Township, Ontario, Canada, for Mantis Explorations Inc., p 244. Assessment filed report.
- Hanych, W, and Palmer, D., 2012, Probe Mines Limited, Cree Lake Project, Drill Data Summary, 2010 and 2011Programs, p 33. Assessment filed report.
- MacQuarrie, D.R., 1982. VLF-EM and Magnetometer Survey on the Cree Lake Gold Prospect of Troudor Resources Inc., Sudbury District, Ontario. Assessment Files.
- Meen, V.B. 1941. Geology of the Cunningham Garnet area, ODM Vol. 44
- Rickaby, H.C., 1934. Map No. 43b Swayze Gold Area, Ontario Department of Mines. Assessment Files.
- Salo, J.G., 1990. Report on Geological Exploration Program on the Swayze Township Property for Charles Mortimer. Assessment Files.
- Salo, Larry J., 1998. Swayze Township, Work Report, Stripping, Assessment Files.
- Szetu, S.S., 1971. Report on a Program of Geophysical Check Surveys in March 1971. Assessment Files.
- Winter, L.D.S., 1986. Exploration Summary, Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources. Inc. Assessment Files.
- Winter, L.D.S., 1986. Report on the Exploration Program on the Cree Lake Property, Swayze Township, Ontario for Golden Rim Resources Inc. Assessment Files.

13.0 Certificates

STATEMENT of QUALIFICATIONS, DATE and SIGNATURE PAGE

I, Walter Hanych of the town of Collingwood, Province of Ontario, do hereby declare that:

- A. I am a geologist and reside at 235 11th Line, Collingwood, Ontario, L9Y 5G6.
- B. I graduated from Laurentian University in 1979, with an Honors Degree, Bachelor of Science in Geology.
- C. I have been practicing my profession since graduation, and that I am a member in good standing with the Association of Professional Geoscientists of Ontario.
- D. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which would make the Technical Report misleading.
- E. I consent to the filing of the Technical Report for assessment purposes through the Ministry of Northern Development and Mines, Mining Lands branch

(signed and sealed)

Signed at Collingwood

January 17, 2019

STATEMENT of QUALIFICATIONS, DATE and SIGNATURE PAGE

I, Jeremy S. Brett of the city of Toronto, Province of Ontario, do hereby declare that:

- A. I am a senior geophysical consultant with an office at 133 Richmond Street West, Toronto, Ontario, M5H 2L3.
- B. I graduated from the University of Toronto, with a Bachelor of Science in Physics (Geophysics) in 1992, and a Master of Science in Geology in 1995.
- C. I have been practicing my profession since graduation, and that I am a member in good standing with the Association of Professional Geoscientists of Ontario (#0923).
- D. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which would make the Technical Report misleading.
- E. I consent to the filing of the Technical Report for assessment purposes through the Ministry of Northern Development and Mines, Mining Lands branch

(signed and sealed) C 0 63 L. 000 JEREMY January 17, 2019 PRACTISI ONTP

Signed at Toronto

14.0 Maps

The following geophysical maps are referenced in the report, above.

Figure 8: Total Magnetic Intensity

Figure 9: TM Map with Interpreted Host Lithologies

Figure 70: First Vertical Derivative with Interpreted Host Lithologies

Figure 81: Total Count Radiometric Map with Interpreted Intrusions

Figure 92: North-South VLF Electromagnetic Map with Interpreted Structures

Figure 103: East-West VLF Electromagnetic Map with Interpreted Structures

1592 62 2 8 4 6 3 8 2 4 4 7 6 8	410158	044 124837 41015B045	343573 41015B046	410158047 317511 218715	268540 41015B048	Zine 1 373000 175036 41015B049	315750 410158050	299363 41015B051	17 OE 318056 41015E052	339644 41015B053	223708 41015B054	268390 41015B055	103372 410158056	183895 41015B057	377000 E 5208000N 119006 41015B058	249729 41015B059	373000E 5298000M 193055 41015E060	2172 52 41015A041	3 42 8 65 41015A042	237333 41015A043	283230 41015A044	316422 41015A045	337334 41015404	109222 410154047
1015B064 343575 184823	LEGEND Due Claims		268541 41015B069	309058 41015B070	301 412 41015B071	CF	REE L	.AKE /ZE T	PRO OWN	PER1	ΓΥ	177171 41015B078	298481 41015B079	279833 410155080	279832 41015A061	331018 41015A062	151825 41015A063	217253 41015A064	213223 41015A065	111 474 41015406	2442 54 41015A067			
2 4478 1015B08		Contiguous block for claim 189784 Contiguous block for claim 293797 Contiguous block for claim 293798 Contiguous block for claim 103048 Contiguous block for claim 103049 Contiguous block for claim 189785			2 52 63 3 410 15 80 89	32 90 47 410 1 5 80 90	121956 41015B091	17 000 1 93 368 410 1 580 9 2	222 581 41015B093	ne 17 50005 700 193180 41015B094	118529 410158095	Zine 17 876009 E 2 2 782 59 4101 5 B096	297176 41015B097	2782 58 4101 58098	165074 41015B099	2006 17 00 378000 E 12 048 6 41015B100	41015A081 2.96498 1.58965	41015A082 135932 325661	410154083 277629 272451	41015A084 325660 254084	205873 41015A085	1,000 m 1,000 m 410154985 SCALE: 1:20	197135 410154037 0000	
260128					289848 41015B109	341430 41015B110	104299 41015B111	297274 41015B112	250070 41015B113	338694 41015B114	259723 41015B115	338693 41015B116	193181 41015B117	129745 41015B118	178505 41015B119	2 98 482 41015B120	41015A101 2 42 572 2 31 81 6	104442 41015A102	192517 41015A103	41015A104 222 41 4 179462	134247 41015A105	NTS 410 ⁻ 134246 41015A106	15 341063 41015A107	
128981	410150				2 52 63 4 41015B129	121957 41015B130	341 43 1 41015B131	297275 41015B132	163311 41015B133	229119 41015B134	175215 41015B135	32 492 0 41015B136	156282 41015B137	295707 41015B138	175902 41015B139	156947 41015B140	41015A121 192518 241942	296499 41015A122	2 42573 41015A1 <i>2</i> 3	41015A124 12 9095 13 42 49	282883 41015A125	341064 41015A126	265703 41015A127	
212164	41015BI	44279704 326790 41015B147 297140 41015B145 41015B146 259686 41015B148		297140 41015B148	41015B149 299041 278228	41015B150 271193 340033	41015B151 299040 245974	41015 2223 1203	PROP	ERTY	BOUND	ARY	62364 015B157	156283 41015B158	156948 41015B159	337448 41015B160	41015A141 119619 259064	104443 41015A142	259063 41015A143	272981 296500 265705 41015444	41015A145 343997 302270	41015A146 341065 207581	41015A147 117926 265704	
260129	41015B	64 212165 41015B165	11 598 4 41015B166	41015B167 278230 164279	278229 41015B168	41015B169 22 4390 17713 5	165121 41015B170	327640 41015B171	280380 41015B172	286452 41015B173	173169 41015B174	103023 41015B175	41015B176 156284 154348	241280 41015B177	241279 41015B178	191 906 41015B179	289036 41015B180	41015A161 255697 229782	136263 41015A162	273797 41015A163	41015A164 201049 169608	207582 41015A165	196946 41015A166	17 1969 1969 41015A167
O15B184	5	41O15B185	SWAY 41015B186	ZE 193197 41015B187	259687 41015B188	41015B189 22 4391 163 741	159016 41015B190	184570 41015B191	327641 41015B192	345376 41015B193	219713 41015B194	274372 41015B195	41015B196 274371 162365	258329 41015B197	102304 41015B198	221816 41015B199	258990 41015B200	41015A181 119620 137035	255698 41015A182	237035 41015A183	41015A184 285047 156442	DORE 217792 41015A185	321600 41015A186	28 50 46 4101 5A 187
	41015B2	0441O15B205	41015B206	223079 41015B207	157707 41015B208	159018 246210 193198	41015B210 246209 340034	41015B211 261731 246208	410158212 159017 123575	41015B213 2 93 7 63 2 49 42 2	41015B214 118328 2.249421	41015B215 250513 227155	102305 250512 126397	41015B217 111582 191229	41015B218 221140 212480	41015B219 2 41 123 27702 0	41015E220 229783 159940	41015A201 2 57880 2 41 968	410 201849 41015A202	15A 41015A203 110768 236449	41015A204 2 92 3 80 2 0 91 79	343998 41015A205	196947 41015A206	4 285048 41015A207
015B224		Zone 17 37-1000E 529-400010 41015B225	41015B226	104592 41015B227	163793 41015B228	41015B209 41015B229 302327 163792	290266 41015B230	134317 41015B231	4000 E 302 32 6 41015E232	315339 41015B233	296622 41015B234	250514 41015B235	338603 41015B236	161270 41015B237	308963 41015B238	249192 41015B239	112256 41015B240	41015A221 102389 199347	41015A222 242615 236450	41015A223 303202 222456	135165 41015A224	275042 41015A225	275041 41015A226	33 5 4 6 1 41 0 1 5 A 2 2 7
015B244	7.4	410158245	135447 410158246	199643 41015B247	236101 41015B248	283245 41015B249	32 02 6 0 4101 5 B 2 5 0	341 122 41015B251	123576 410158252	106917 41015B253	31 53 40 41015B254	195822 41015B255	32 92 1 5 41015B256	147176 41015B257	174934 41015B258	212 48 1 41015B259	159941 410158260	276921 41015A241	156364 41015A242	41015A243 325012 170719	254512 41015A244	155016 41015A245	287116 41015A246	208947 41015A247
1	1015B26	2019 1 371000 5203000 14 41015B265	216120 41015B266	123460 41015B267	135448 41015B268	281138 41015B209	001 0001 233161 41015B270	185343 41015B271	0000000 215124 410158272	103047 41015B273	Zme 17 5203000N 154378 41015B274	173216 41015B275	12 6431 41015B276	261740 41015B277	103912 41015B278	103911 41015B279	378000E 336586 41015E280	258411 41015A261	175814 41015A262	41015A263 304527 276922	274698 41015A264	294428 41015A265	127070 41015A266	275043 41015A267
4	1015B28	4 41015B285	254223 41015B286	341679 41015B287	303433 41015B288	245857 41015B289	251982 41015B290	340812 41015B291	289228 41015B292	173218 41015B293	189784 41015B294	293797 41015B295	173217 41015B296	178561 41015B297	232371 41015B298	12 0 5 4 5 4101 5 B 2 9 9	208607 41015B300	208606 41015A281	304432 41015A282	41015A283 267948 170628	220765 41015A284	335462 41015A285	287119 41015A286	155017 41015A287
4	1015B30	Zine 37100 4 41015B3050	283246 41015B306	141496 41015B307	17 0E 011 180660 41015B308	185873 41015B309	271094 41015B310	1603 42 41015B311	328935 41015B312	274901 41015B313	375000E 5292000N 293798 41015B314	103048 41015B315	370000E 5202000N 154379 41015B316	11 91 8 4 410 1 5 B3 17	2005 17 520 2000011 2 990 52 410 15B3 18	22 43 97 41015B319	2006 (2 529,2000) 274606 41015B3,20	220176 41015A301	311210 41015A302	41015A303 135771 323920	1412 09 41015A304	271296 41015A305	149196 41015A306	1000E 111232 41015A307
	1015B32	4 41015B325	251667 41015B326	251666 41015B327	148916 41015B328	2 43 632 41015B3.29	285519 41015B330	199381 41015B331	333953 41015B332	286977 41015B333	103049 41015B334	189785 41015B335	154380 41015B336	244584 41015B337	261741 41015B338	41015B339 119185 141880	41015B340 334324 274608	41015A321 334323 304433	41015A322 334322 334325	41015A323 311211 310537	254577 41015A324	167863 41015A325	271297 41015A3 <i>2</i> 6	301174 41015A327
41	IO15B34	4 41015B345	■ 300219 № 41015B346	2 43633 41015B347	251668 41015B348	2 98 76 7 410 15 B3 49	273402 41015B350	153555 41015B351	2.06 17 994000 E 201 333954 41015B352	323017 41015B353	2009 17 375000 5 274902 41015B354	206975 41015B355	173219 41015B356	165132 41015B357	280391 41015B358	41015B359 208608 232372	255237 41015E360	141882 41015A341	PA 1-44 141881 41015A342	175 199921 41015A343	207928 41015A344	PAT-11049 197332 PAT-11050	186451 PAT-11050	1000E 21000E 21000N 167864 41015A347
41	O15B36	4 41015B365	12 08 58 41015B366	263679 41015B367	300220 41015B368	197029 41015B369	322121 41015B370	170121 41015B371	41015B372 303397 153557	41015B373 226606 206883	226605 41015B374	218652 41015B375	189318 41015B376	111063 41015B377	2 41 78 0 410 1 5 B 3 7 8	41015B379 274609 337248	41015B380 237183 188690	41015A361 105297 136425	208609 41015A362	41015A363 141210	135772 41015A364	41015A345 41015A365 PAT-11052 PAT-11051	41015A366 PAT-11052 198010	319190 41015A367
41	O15B38	4 106585 41015B385	41015B386 7 316479 5 120859	41015B387 197030 161239	41015B388 300221 195279	41015B389 333965 148917	41015B390 273403 303398	41015B391 115423 303909	41015B392 333967 285525	41015B393 322122 305364	226607 41015B394	293216 41015B395	238741 41015B396	249853 41015B397	130448 41015B398	41015B399 304434 194618	41015B400 136426 125220	41015A381 321748 200590	200 3700 220177 41015A382	PAT-44684	141211 41015A384	PAT-1105 PAT-11053 41015A385	4PAT-11054 265261 41015A386	2006 17 381000E 200000N - 319191 41015A387
41	010,0004	178006 41010,0005	316480 41010J006	262468 41010J007	161240 41010,008	133325 41010J009	303399 41010J010	22 62 91 41010J011	219003 41010J012	41010J013 303910 105416	105415 41010J014	153226 41010J015	183293 41010J016	2 41 78 1 41010J017	111 064 41010J018	41010,019 208611 268604	41010J020 208610 125221	41010001 2 553 43 1 7062 9	220178 410101002	141883 410101003	521232 410101004	PAT-1105 410101005 PAT-11055 521241	PAT-11056 PA 521233 410101006	521235 41010007
41	010J024	106586 41010J025-ne 3710	316481 1741010J026	176415 41010J0 <i>2</i> 7 Z	176414 41010,028	273404 41010J029	265486 41010J030	285527 41010J031	285526 341010J032 5289000N	170122 41010J033	120100,000 375000 E 5289000 N	41010,035	410 440 95 5 376000 E 5289000 N	41010J037	41010269517 41010395800E 52590001	509397 41010,0039	509399 41010J040	509400 41010021	509398 410101022	52 0932 410101023	521238 410101024	521239 410101025	521236 410101026	Zone 17 381000 521234 41010027