

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2017 Iron Mask Mapping Program Report

Meteoric Resources

Hart Township, Ontario NTS 41I / 12E 46° 39' 49" N, 81° 39' 59" W

Kyle Whitney, GIT Michaela Kuuskman, P.Geo. Jacob Bellrose, GIT March 26th, 2019

Table of Contents

1.0	SUMMARY	. 2
2.0	PROPERTY DESCRIPTION, LOCATION AND ACCESS	. 2
3.0	PREVIOUS WORK	.7
4.0	GEOLOGICAL SETTING	.7
4.1	REGIONAL GEOLOGY	.7
4.2	LOCAL GEOLOGY	.7
4.3	Alteration and Mineralization	.8
4.4	Structure	.8
5.0	SAMPLING	.8
5.1	Assay Results: Grab Samples	.8
6.0	CONCLUSIONS AND RECOMMENDATIONS	.9
7.0	REFERENCES	11
8.0	STATEMENT OF QUALIFICATIONS	12

LIST OF TABLES

TABLE 1: LIST OF CLAIMS FOR IRON MASK PROPERTY, JURISDICTION OF ONTARIO.	. 5
TABLE 2: SUMMARY OF HISTORICAL WORK	. 7

LIST OF FIGURES

FIGURE 1: IRON MASK PROPERTY LOCATION MAP	. 3
FIGURE 2: IRON MASK PROPERTY CLAIMS MAP SHOWING TRACKS COMPLETED 1:30,000	4
FIGURE 3: ASSAY GRAB SAMPLE LOCATIONS	. 9

LIST OF APPENDICES

APPENDIX A: HIGH RESOLUTION MAPS	15
APPENDIX B: LITHOLOGIES AND DESCRIPTIONS	18
APPENDIX C: ASSAY GRAB SAMPLE DESCRIPTIONS AND LOCATIONS	21
APPENDIX D: ALS ASSAY CERTIFICATE	23

1.0 SUMMARY

From October to November 2017, Meteoric Resources Sub Inc. ("Meteoric Resources" or "MEI") retained the services of Orix Geoscience Inc. to map at the Iron Mask property located in Hart Township, Greater Sudbury, Ontario (Fig. 1). The goal was to visit historic EM anomalies and to map the geology of the property at a 1:6000 scale with the aim of identifying skarn-type Copper-Lead-Zinc occurrences, as observed historically outside the northeastern edge of the property (Choudhry 1984). This would be accomplished by exploring for the continuity of the Espanola Formation limestone in contact with Nipissing Diabase Southwest along strike into the property. Field work was carried out by Kyle Whitney (Mapping Geologist), Jacob Bellrose (Mapping Geologist), Jesse Carol (Mapping Assistant), and Shawn Mohammed (Mapping Assistant) between October 26, 2017 and November 6, 2017 for a total of 12 field days. Geologic information and grab samples for assay were taken from outcrops throughout the property accessed by trucks, ATVs and traversing. All tracks were recorded using a handheld Garmin GPS (Universal Transverse Mercator NAD 87, Zone 17N) as shown in Figure 2.

The project was unsuccessful in identifying Espanola Limestone in contact with the Nipissing Diabase, as observed to the northeast of the property. To potentially identify this mineralized contact below surface, line cutting across the property, an induced polarization survey, and detailed mapping around areas of interest are recommended.

2.0 PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Iron Mask Property is held by Meteoric Resources and is located 50 km north-west of Sudbury, Ontario (Fig. 1), centered at approximately 449000m E, 5168000m N (UTM NAD 87, Zone 17N), 46° 39' 49" N, 81° 39' 59" W. The property consists of 41 boundary cell mining claims and 45 single cell mining claims in Hart Township, 8 of which border the Tofflemire Township (Fig. 2, Table 1).

From Sudbury, the property can be accessed by taking Regional Road 35 north-west out of town. After driving approximately 15km, continue straight on to highway 144-N for another 40km until you reach a service road on the left past the town of Cartier. Continue along this access road for 5.5km to reach the start of an ATV trail which will access the Northern end of the property.

FIGURE 2: IRON MASK PROPERTY CLAIMS MAP SHOWING TRACKS COMPLETED, 1:30,000

TABLE 1: LIST OF CLAIMS FOR IRON MASK PROPERTY, JURISDICTION OF ONTARIO.:

Tenure	Tenure	Provincial	Legacy Cell Number	Township	Anniversary
ID	Туре	Grid Cell ID			Date
192840	Boundary	41I12G070	4284365, 4284366	HART, TOFFLEMIRE	2019-05-09
228129	Standard	41I12G071	4284365, 4284366	HART	2019-05-09
128800	Boundary	41I12G090	4284365	HART, TOFFLEMIRE	2019-05-09
288111	Standard	41I12G091	4284365	HART	2019-05-09
194376	Standard	41I12G092	4284365	HART	2019-05-09
146291	Boundary	41I12G093	4284365	HART	2019-05-09
336426	Boundary	41I12G110	4284365	HART	2019-05-09
174853	Boundary	41I12G111	4284365	HART	2019-05-09
192841	Boundary	41I12G112	4284365	HART	2019-05-09
174852	Boundary	41I12G113	4284365	HART	2019-05-09
288112	Boundary	41I12G130	4284365	HART	2019-05-09
248996	Boundary	41I12G131	4284365	HART	2019-05-09
213066	Boundary	41I12G010	4284366	HART, TOFFLEMIRE	2019-05-09
279496	Standard	41I12G011	4284366	HART	2019-05-09
184198	Standard	41I12G012	4284366	HART	2019-05-09
317551	Boundary	41I12G030	4284366	HART, TOFFLEMIRE	2019-05-09
242938	Standard	41I12G031	4284366	HART	2019-05-09
196351	Standard	41I12G032	4284366	HART	2019-05-09
338412	Boundary	41112G050	4284366	HART, TOFFLEMIRE	2019-05-09
250980	Standard	41I12G051	4284366	HART	2019-05-09
317553	Standard	41I12G052	4284366	HART	2019-05-09
308836	Standard	41I12G072	4284365, 4284366	HART	2019-05-09
241487	Boundary	41I12G073	4284365, 4284366, 4284367	HART	2019-05-09
196350	Boundary	41I12J390	4284366, 4284368	HART, TOFFLEMIRE	2019-05-09
131020	Boundary	41I12J391	4284366, 4284368	HART	2019-05-09
131019	Standard	41I12J392	4284366, 4284368	HART	2019-05-09
184197	Standard	41 12 393	4284366, 4284367, 4284368	HART	2019-05-09
213065	Standard	41I12G013	4284366, 4284367	HART	2019-05-09
233510	Standard	41112G014	4284367	HART	2019-05-09
300598	Standard	41I12G015	4284367	HART	2019-05-09
262789	Standard	41112G016	4284367	HART	2019-05-09
233509	Boundary	41I12G017	4284367	HART	2019-05-09
213067	Standard	41I12G033	4284366, 4284367	HART	2019-05-09
216877	Standard	41I12G034	4284367	HART	2019-05-09
270772	Standard	41I12G035	4284367	HART	2019-05-09
300599	Standard	41I12G036	4284367	HART	2019-05-09
233511	Boundary	41I12G037	4284367	HART	2019-05-09
317552	Standard	41I12G053	4284366, 4284367	HART	2019-05-09
148629	Standard	41I12G054	4284367	HART	2019-05-09
262790	Standard	41I12G055	4284367	HART	2019-05-09
204766	Standard	41I12G056	4284367	HART	2019-05-09
300600	Boundary	41I12G057	4284367	HART	2019-05-09
204767	Boundary	41I12G074	4284367	HART	2019-05-09
167493	Boundary	41I12G075	4284367	HART	2019-05-09
113701	Boundary	41I12G076	4284367	HART	2019-05-09
196757	Boundary	41I12G077	4284367	HART	2019-05-09
239099	Boundary	41I12J350	4284368	HART, TOFFLEMIRE	2019-05-09

259204	Boundary	41112J351	4284368	HART	2019-05-09
239100	Boundary	41I12J370	4284368	HART, TOFFLEMIRE	2019-05-09
158483	Standard	41112J371	4284368	HART	2019-05-09
259205	Standard	41112J372	4284368	HART	2019-05-09
306395	Standard	41112J373	4284368	HART	2019-05-09
308839	Standard	41112J394	4284367, 4284368, 4284369	HART	2019-05-09
267583	Boundary	41I12J357	4284369, 4284371	HART	2019-05-09
194378	Standard	41I12J374	4284368, 4284369	HART	2019-05-09
128803	Standard	41I12J375	4284369	HART	2019-05-09
336428	Standard	41I12J376	4284369	HART	2019-05-09
228131	Standard	41I12J395	4284367, 4284369	HART	2019-05-09
315573	Standard	41I12J396	4284367, 4284369	HART	2019-05-09
140826	Boundary	41112J397	4284367, 4284369	HART	2019-05-09
228499	Boundary	41112J312	4284370	HART	2019-05-09
221018	Boundary	41112J313	4284370	HART	2019-05-09
174566	Boundary	41112J332	4284370	HART	2019-05-09
221019	Standard	41112J333	4284370	HART	2019-05-09
155666	Boundary	41112J352	4284368, 4284370	HART	2019-05-09
174567	Standard	41112J353	4284368, 4284370	HART	2019-05-09
208956	Standard	41112J354	4284368, 4284369, 4284370, 4284371	HART	2019-05-09
118335	Boundary	41I12J274	4284371	HART	2019-05-09
154351	Boundary	41I12J275	4284371	HART	2019-05-09
189759	Boundary	41I12J276	4284371	HART	2019-05-09
173173	Boundary	41I12J277	4284371	HART	2019-05-09
345380	Boundary	41I12J294	4284371	HART	2019-05-09
154352	Standard	41I12J295	4284371	HART	2019-05-09
126403	Standard	41I12J296	4284371	HART	2019-05-09
227157	Boundary	41I12J297	4284371	HART	2019-05-09
189760	Boundary	41112J314	4284370, 4284371	HART	2019-05-09
118336	Standard	41I12J315	4284371	HART	2019-05-09
173174	Standard	41112J316	4284371	HART	2019-05-09
274375	Boundary	41112J317	4284371	HART	2019-05-09
220371	Standard	41112J334	4284370, 4284371	HART	2019-05-09
267582	Standard	41I12J335	4284371	HART	2019-05-09
206939	Standard	41112J336	4284371	HART	2019-05-09
206938	Boundary	41112J337	4284371	HART	2019-05-09
227835	Standard	41112J355	4284369, 4284371	HART	2019-05-09
127084	Standard	41I12J356	4284369, 4284371	HART	2019-05-09
241488	Boundary	41I12J377	4284369	HART	2019-05-09

RESOURCES

3.0 PREVIOUS WORK

A summary of the historical exploration work completed on the Iron Mask property, as compiled from the MNDM assessment file, is shown in **TABLE 2**2:

N						
Year	Company	rownsnips	Description			
1979	BP Minerals Ltd.	Hart	Geology and rock chip mapping			
1985	Jedburgh Resources Ltd.	Hart	Geological mapping, magnetic and soil survey.			
1999	Champion Bear Resources Ltd.	Hart	Mag, EM, and VLF survey			
2002	Champion Bear Resources Ltd.	Hart	Mag, EM, and VLF survey interpretation result			
2003	Champion Bear Resources Ltd.	Hart	Magnetometer survey			
2004	Champion Bear Resources Ltd.	Hart	Geological mapping and magnetometer survey			
2004	Champion Bear Resources Ltd.	Hart	IP and resistivity survey			
2004	Champion Bear Resources Ltd.	Hart	Gravity survey			

TABLE 2: SUMMARY OF HISTORICAL WORK

4.0 GEOLOGICAL SETTING

4.1 REGIONAL GEOLOGY

All regional geology and mineralization showings have been interpreted by Choudhry, 1984 and are described herein. The Hart Township of Ontario is dominated by a plutonic suite of Archean rocks of granitoid composition, unconformably overlain by the Proterozoic Huronian Supergroup consisting of conglomerates, sandstones, siltstones, mudstones, wackes, and limestones to dolostones. The Huronian supergroup is composed of (from oldest to youngest in age) the Mississagi, Bruce, Espanola, Serpent, Gowganda, and Lorrain Formations. The Mississagi and Bruce Formations are not present within the property. Both the plutonic suite and Huronian rocks were subject to regional scale metamorphism and overturning of the Huronian units in the Hart Township. All units were intruded by the early-mid Proterozoic Nipissing Diabase dyke swarm in a discordant manner. Sudbury breccia or pseudotachylite can be observed within all above-mentioned units as a result of the late Proterozoic impact event responsible for the Sudbury Igneous Complex. Unconsolidated glacial till of the Pleistocene now covers most of the bedrock.

Mineralization pertinent to Iron Mask is attributed to the intrusion of the Nipissing Diabase in contact with limestones of the Espanola Formation. Ag, Cu, Pb, Co and Zn occurrences typical of a skarn deposit have been identified outside of the northeastern edge of the property.

4.2 LOCAL GEOLOGY

The Iron Mask Property is centrally dominated by early Precambrian plutonic rocks ranging from granitic to dioritic in composition. The rocks are grey to pink and weathered to light grey, coarse grained, equigranular, and massive to foliated. Magnetite rich veins were observed cross cutting the unit in the central part of the property where EM anomalies were previously identified. Early Proterozoic sediments of the Huronian Supergroup mark the northeastern and southwestern extents of the property. However, only consolidated rocks of the Lorrain and Gowganda Formations were observed on the property. In the

north-east, matrix and clast supported conglomerates of the Gowganda formation are found with outcrops of fine-grained sandstones and rare siltstone beds. These rocks are normally dark grey with a light grey weathered surface, containing clasts generally ranging in size from 1-3cm and in rare cases up to 50cm. Clast composition is generally heterolithic. To the southern and western edges of the property, quartz-rich sandstones outcrop as part of the higher Lorraine formation. These rocks are dominantly light grey to yellow with a grey weathered surface, fine-grained, and bedded. Rare instances of green coloured micaceous and chlorite-altered sandstone were observed, displaying approximately 15% 1-2mm quartz and feldspar pebbles.

4.3 ALTERATION AND MINERALIZATION

The main alteration style in the sedimentary package is silicification, along with minor hematite fracture fill locally. This alteration is mainly seen in the Lorraine sandstone in the southern end of the property, and locally in the northern end. No significant alteration is seen in the granites which dominate much of the property, apart from minor magnetite veins seen locally in a few outcrops. Mineralization is localized to the sedimentary rock and diabase intrusions, with the granite appearing void of any visible mineralization. Sandstones throughout the property contain trace to 1% pyrite disseminated locally throughout the groundmass. Diabase intrusions also contain disseminated pyrite in all outcrops, typically localised, showing trace to 1% pyrite with a single instance of 5% pyrite. No sphalerite, galena, or native metals were observed.

4.4 STRUCTURE

The local stratigraphy trends NE-SW to ENE-WSW and dips near vertical. Bedding and foliation in the conglomerates and sandstones to the north and western edges of the property strike roughly NE, parallel to stratigraphy, and are near vertical. Outcrops of sandstone on the southern edge of the property have bedding trending E-W to NW-SE, indicating possible folding in this region. The property is cut by several NW-SE faults and shears as mapped by the Ontario Geological survey (Choudhry, 1984).

5.0 SAMPLING

5.1 Assay Results: GRAB SAMPLES

A total of 12 grab samples were collected and a sample description with site location, obtained from a handheld Garmin GPS using Latitude and Longitude - later converted to Universal Transverse Mercator (UTM, datum NAD 87 Zone 17N) - were noted on a pre-numbered sample booklet. Sample locations are shown in Figure 3. Sample descriptions include lithology, structure, and mineralization (*see Appendix C: Assay Grab Sample Descriptions*). The sample sites were flagged and tagged with a numbered aluminum tag to ensure the site is clearly marked for future visits.

Samples were submitted to ALS Minerals for analyses. Samples were prepared using PREP-31 method and analyzed using the Au-AA23 and ME-MS41 methods.

A total of 13 samples, including a blank sample, were submitted to ALS Minerals, Sudbury, Ontario with the result of these analyses contained in

Appendix C: Assay Grab Sample DescriptionsALS Assay Certificate.

FIGURE 3: ASSAY GRAB SAMPLE LOCATIONS

6.0 CONCLUSIONS AND RECOMMENDATIONS

No outcropping of the Espanola Formation was observed on the property, and only rock of the Lorrain and Gowganda were recorded from the Huronian Supergroup. Investigation of the EM anomalies on the

property were revealed to be caused by quartz-magnetite veining that cross cut the plutonic rocks. Assay results of grab samples did not produce any results to promote further exploration targets. The absence of Espanola limestone immediately across the property line to the northeast may also suggest a fault offset. Further investigation of the area would be required to confirm any structural features.

The sandstones and conglomerates found on the property are several stratigraphic units above the prospective Espanola Limestone found in contact with the Nipissing Diabase to the north-east of the property. To potentially identify a mineralized contact below surface, the following work is recommended:

- 1) Line cutting across property
- 2) Induced Polarization survey
- 3) Detailed mapping around areas of interest

7.0 REFERENCES

Choudhry, A.G., 1984, Geology of Hart, Ermatinger and Totten Townships, Open File Report 5525

8.0 STATEMENT OF QUALIFICATIONS

I, Michaela Kuuskman, B.A.Sc., P.Geo, of Toronto do hereby certify that:

- 1) I am a consultant for Orix Geoscience Inc., with a business address at 25 Adelaide St. East, Suite 1400, Toronto ON, M5C 3A1.
- 2) I graduated with a B.A.Sc. (Geological Engineering) degree in 2011 from Queen's University. I am a Professional Geologist in Ontario through the Association of Professional Geoscientists of Ontario (APGO, Licence No. 2641).
- 3) I have supervised the preparation of this report titled '2017 Iron Mask Mapping Program Report' for Meteoric Resources NL dated March 26th, 2019.
- 4) I do not hold any shares, options or warrants in Meteoric Resources NL.

Signed on this 26th day of March, 2019 in the Toronto, Ontario

M. Kuukana

Michaela Kuuskman, B.A.Sc., P.Geo

I, Jacob Bellrose, B.Sc. Hons, GIT, of Orix Geoscience Inc. do hereby certify that:

- 1) I am a geologist employed by Orix Geoscience Inc., with a business address at Upper Unit 3B, 1300 Kelly Lake Road, Sudbury, Ontario, P3E 5P4
- 2) I graduated with a degree of B.Sc. Hons in Geology from Laurentian University of Sudbury, Ontario in 2016
- 3) I am acting as a Consulting Geologist for Meteoric Resources Sub Inc.
- 4) I am responsible for the statements made within this assessment report

Signed by

Jacob Bellrose, B.Sc. Hons, GIT.

I, Kyle Whitney, B.Sc. Hons, GIT, of Orix Geoscience Inc. do hereby certify that:

- 1) I am a geologist employed by Orix Geoscience Inc., with a business address at Suite 1400, 25 Adelaide Street East, Toronto, Ontario, M5C 3A1
- 2) I graduated with a degree of B.Sc. Hons in Geology from Carleton University of Ottawa, Ontario in 2013
- 3) I am acting as a Consulting Geologist for Meteoric Resources Sub Inc.
- 4) I am responsible for the statements made within this assessment report

Signed by

h HAND

Kyle Whitney, B.Sc. Hons, GIT.

Appendix A: High Resolution Maps

OUTCROP AND GEOLOGY INTERPRETATION MAP, 1:6000 NOTE: INTERPRETATION WAS BASED ON OGS MAPPING FROM 1984 (CHOUDHRY, 1984), AND ADJUSTED FOR INFORMATION FOUND DURING THIS MAPPING PROGRAM

Appendix B: Lithologies and Descriptions

Lithology	Outcrop Description	Lithological Description	Sample ID
Nipissing Diabase	1		
Diabase	2x1m to 8x5m exposures. Heavy moss coverage.	Dark grey to green weathered and fresh, massive. Aphanitic to fine grained, equigranular. Local weak patchy epidote alteration. Trace to locally 5% fine grained disseminated subhedral pyrite. Non to weak irregular magnetism.	W708912, W708917, W708907, W708902
Gowganda Formation	n		
Polymictic clast- supported conglomerate	Average 1x1m exposures, single 10x5m exposure observed at topographic high.	Dark grey weathered. 5-15% rounded 1-7cm clasts of granite and aphanitic mafic rock.	N/A
Polymictic matrix- supported conglomerate	1x1m mossy exposure.	Dark grey weathered with pale green matrix. Up to 5% rounded, often 3cm clasts of granite and aphanitic mafic rock. 1cm wide massive quartz veinlets. Patchy moderate chlorite-altered matrix. Quartz veinlets: 214°/78°. Bedding 259°/N.A. Foliation 261°/86°.	N/A
Quartz-feldspar arenite and sandstone	N/A	Weakly bedded. Fine to medium grained. Moderately silicified. Rarely hematized. Bedding 262°/81°. Bedding 211°/81°.	N/A
Lorrain Formation			
Micaceous pebbly arenite	3x1m exposure along ATV trail.	Dark green grey weathered, dark green brown fresh. 5% biotite. 15% 1mm quartz/feldspar pebbles. Weak chlorite alteration.	N/A
Pebbly feldspathic arenite	10x2m exposure (ridge peak)	5% quartz and feldspar, rounded 2-5mm pebbles. Light grey weathered, slightly darker grey fresh. Bedding defined by 1-10cm thick layers lacking pebbles. Minor carbonate as disseminated grains within matrix. Moderate silicification. Bedding: 154°/14°.	N/A
Quartz arenite and Sandstone	5x5m up to 20x15m ridge exposures.	Light to dark grey, sometimes brown weathered. Light grey to white to tan fresh. Sometimes contains 1-3% rounded 0.1-0.3cm or 3-5cm pebbles of granitoid composition. Single occurrence of 2% fine grained red/brown accessory mineral. Rarely able to define bedding. Often 1% disseminated pyrite. Rare blebby pyrite. Often silicified, locally very strong.	W708905, W708916

	MET	TEO	RIC
R	ESO	UR	CES

Early Precambrian			
Granite	Average of 3x3m rounded exposures, up to 40x40m ridges.	Coarse grained, equigranular, massive. Rare foliations observed. Grey weathered, pink on fresh surface. Average modal abundances of 60% feldspar, 30% quartz, and 10% biotite. Rare chlorite alteration of biotite or as fracture infillings. Few instances of quartz veining, averaging 1.5cm in width, with single 40cm vein observed. Magnetite contained in quartz veining, up to 30%. Single instance of 5% fine grained cubic disseminated pyrite within quartz vein. Quartz vein: 326°/52°. Quartz veinlets: 092°/N.A. Oblique magnetite veinlets: 015°/80°. Foliation: 085°/N.A.	Quartz vein - W708908, W708919
Unknown			
Mafic intrusive	2x3m exposure.	Dark grey fresh. Aphanitic. Potential shearing on western extent of outcrop - possible slatey cleavage of siltstone. Weakly magnetic to rarely strong with 20% magnetite phenocrysts. Rare chlorite altered veinlets. Shearing: 060°/90°. Weak foliation 078°/80°.	W708951, W708915
Siltstone	10m high x 50m long ridge often mossy and lichen covered across.	Dark grey weathered, dark grey to green fresh. Very fine grained to aphanitic approaching contact. Moderate foliation defined by quartz veinlet alignment and cleavage planes away from contact. Gradational transition into massive. Weak pervasive chlorite alteration. Rare, often tarnished subhedral fine to medium grained pyrite and chalcopyrite. Foliation: 350°/72°.	W708910, W708911

Appendix C: Assay Grab Sample Descriptions and Locations

	ME	TEO	RIC
R	ESC	UR	CES

Sample	Sample	Description	Easting	Northing	Certificat
Number	Туре		(m)	(m)	e
W708902	Assay	Diabase. Medium-grained, massive. Trace disseminated pyrite, weakly magnetic.	449076	5170780	SD17248 968
W708903	Blank				SD17248 968
W708905	Assay	Sandstone. Fine-grained, bedded. Strongly silicified proximal to contact with pebbly sandstone.	449126	5167798	SD17248 968
W708907	Assay	Diabase. Medium-grained, massive. Weakly magnetic, trace pyrite	450321	5170641	SD17248 968
W708908	Assay	Quartz Vein. Very coarse-grained. Magnetite bearing cross cutting granite	450045	5170329	SD17248 968
W708910	Assay	Diabase. Medium-grained, massive. Trace fine- to medium-grained sudhedral pyrite, moderately magnetic.	449349	5168283	SD17248 968
W708911	Assay	Foliated Mafic. Fine- to medium-grained, foliated. Further from granite contact then previous sample but likely same unit.	449355	5168258	SD17248 968
W708912	Assay	Diabase. Medium-grained, massive. Trace fine- to medium-grained subhedral pyrite, moderately magnetic.	449371	5167743	SD17248 968
W708915	Assay	Sheared Mafic. Fine-grained, slightly rusted. Shear contact between granite and suspected mafic intrusive.	450339	5169798	SD17248 968
W708916	Assay	Sandstone. Fine-grained, sugary texture. Silicified with trace pyrite.	448627	5166860	SD17248 968
W708917	Assay	Diabase. Medium-grained, massive, very magnetic. Up to 1% pyrite occurring in clusters. Contains chlorite stringers	448993	5166907	SD17248 968
W708919	Assay	Granite. Coarse-grained, massive. Trace pyrite.	449579	5166907	SD17248 968
W708951	Assay	Diabase. Fine grained with weak epidote alteration. Sparse 1cm pyrite blebs, magnetic.	450578	5169612	SD17248 968

Appendix D: ALS Assay Certificate

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: -1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27- NOV- 2017 Account: MRDLVHMY

CERTIFICATE SD17248968

Project: IRON MASK

This report is for 13 Rock samples submitted to our lab in Sudbury, ON, Canada on 13- NOV- 2017.

The following have access to data associated with this certificate: MIKE KILBOURNE MICHAELA KUUSKMAN MAX NIND

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI- 21	Received Sample Weight						
LOG- 22	Sample login - Rcd w/o BarCode						
CRU- 31	Fine crushing - 70% < 2mm						
SPL- 21	Split sample - riffle splitter						
LOG- 23	Pulp Login - Rcvd with Barcode						
CRU- QC	Crushing QC Test						
PUL- QC	Pulverizing QC Test						
PUL- 31	Pulverize split to 85% < 75 um						

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA- AA finish	AAS
ME- MS41	Ultra Trace Aqua Regia ICP- MS	

To: ORIX GEOSCIENCE INC. ATTN: MICHAELA KUUSKMAN FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: - 1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27- NOV- 2017 Account: MRDLVHMY

Project: IRON MASK

	,								С	ERTIFIC	CATE O	F ANA	LYSIS	SD172	48968	
Sample Description	Method	WEI-21	Au- AA23	ME-MS41	ME- MS41	ME-MS41	ME- MS41	ME-MS41	ME-MS41	ME- MS41	ME-MS41	ME- MS41	ME-MS41	ME-MS41	ME-MS41	ME- MS41
	Analyte	Recvd Wt.	Au	Ag	Al	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.02	0.005	0.01	0.01	0.1	0.02	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1
W708951 W708902 W708903 W708905 W708907 W708908		1.29 2.77 0.12 1.87 1.61 3.96	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.13 0.05 <0.01 0.01 <0.01 0.10	2.82 2.19 0.01 0.11 2.33 0.04	2.7 1.4 0.1 3.7 0.9 2.6	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10 <10	260 80 <10 20 180	0.25 0.11 <0.05 <0.05 0.56 0.05	0.02 0.02 <0.01 0.12 0.15 1.63	1.13 0.96 0.01 0.01 0.21 0.01	0.10 0.03 0.02 0.03 <0.01 <0.01	7.39 14.60 0.80 30.3 24.1 11.70	33.0 24.9 0.1 2.8 14.5 22.3	115 57 <1 14 88 5
W708910		1.52	<0.005	0.04	3.14	0.9	<0.02	<10	170	1.12	0.05	3.42	0.36	31.0	29.0	62
W708911		1.99	<0.005	0.06	4.08	0.9	<0.02	<10	20	0.79	0.02	0.29	0.17	43.0	47.0	981
W708912		1.55	<0.005	0.02	7.31	1.0	<0.02	<10	10	1.18	0.13	0.94	0.04	8.74	72.2	127
W708915		0.99	<0.005	0.11	4.26	1.9	<0.02	<10	550	2.30	0.39	1.30	0.06	50.0	39.9	181
W708917		1.15	<0.005	0.11	0.13	3.3	<0.02	<10	20	0.08	0.05	0.84	0.84	19.15	2.7	13
W708917		1.29	<0.005	0.05	3.45	9.8	<0.02	<10	70	2.02	0.19	2.97	0.13	31.9	61.8	31
W708919		0.89	<0.005	0.02	0.54	1.4	<0.02	<10	60	0.48	0.03	0.24	0.06	123.5	2.7	5

(ALS)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: + 1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27- NOV- 2017 Account: MRDLVHMY

Project: IRON MASK

									С	ERTIFIC	CATE O	F ANAI	YSIS	SD172	48968	
Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME-MS41 Ca ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME- MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
W708951 W708902 W708903 W708905 W708907		1.66 0.53 <0.05 0.16 1.13	95.2 51.2 0.9 2.0 2.2	5.15 3.45 0.02 0.35 4.30	6.69 5.00 <0.05 0.60 10.10	0.12 0.08 <0.05 <0.05 0.07	0.14 0.19 0.03 0.07 0.49	<0.01 <0.01 <0.01 <0.01 <0.01	0.012 0.006 <0.005 <0.005 0.022	0.96 0.27 <0.01 0.07 1.04	3.4 7.2 0.4 15.7 10.9	11.0 10.1 0.2 0.5 15.3	1.95 1.82 <0.01 0.02 1.96	993 540 <5 30 409	0.38 0.70 <0.05 1.49 1.30	0.05 0.03 <0.01 0.02 0.04
W708908 W708910 W708911 W708912 W708915		0.05 1.20 0.44 0.24 4.12	1.1 96.7 270 3.2 198.0	3.25 9.09 5.92 14.45 7.91	0.58 14.75 13.90 32.5 24.9	<0.05 0.23 0.17 0.23 0.16	0.08 0.41 0.86 0.19 1.61	0.01 <0.01 <0.01 <0.01 <0.01	<0.005 0.085 0.035 0.036 0.057	0.01 0.60 0.11 0.06 2.73	6.3 14.3 21.9 4.2 17.7	0.3 17.1 14.2 77.5 30.4	<0.01 2.78 5.78 5.68 3.09	27 500 937 669 1120	18.60 0.60 0.36 0.19 0.25	0.04 0.03 <0.01 <0.01 0.02
W708916 W708917 W708919		0.11 0.82 0.32	3.2 129.5 12.6	0.49 10.80 1.01	0.56 17.70 4.14	<0.05 0.20 0.08	0.20 0.26 0.21	0.03 0.01 <0.01	0.005 0.078 0.014	0.08 0.27 0.16	11.8 14.3 68.1	0.9 15.3 3.6	0.05 3.01 0.25	296 852 186	1.07 0.78 0.63	0.02 0.03 0.06
		1														1

(ALS)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: + 1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27-NOV-2017 Account: MRDLVHMY

Project: IRON MASK

(,									С	ERTIFIC	CATE O	F ANAI	LYSIS	SD172	48968	
Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME- MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2
W708951 W708902 W708903 W708905 W708907 W708908		0.12 0.26 <0.05 <0.05 0.16 0.49	49.1 35.7 0.4 2.6 61.6 2.0	450 360 10 50 570 40	16.5 7.0 0.6 11.1 1.1 9.5	82.3 24.9 0.1 4.2 56.0	0.001 0.001 <0.001 <0.001 0.001	0.12 0.05 0.01 <0.01 0.03 0.12	0.17 0.50 <0.05 0.05 0.08	6.1 3.4 <0.1 0.2 4.8	0.5 0.2 <0.2 <0.2 0.3 0.9	0.2 0.7 <0.2 <0.2 0.4	48.8 30.8 0.6 2.5 4.7 2.1	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.01 <0.01 <0.01 0.02 0.06	0.6 1.7 <0.2 5.0 6.5 3.3
W708910 W708911 W708912 W708915		0.11 <0.05 <0.05 0.12	43.2 436 116.0 92.3	920 590 770 530	11.2 10.5 0.8 42.6	58.1 15.4 12.5 242	<0.001 <0.003 <0.001 0.001 <0.001	0.02 0.02 0.14 0.21	0.07 0.08 <0.05 <0.05	35.1 3.2 29.4 22.6	<0.2 0.3 0.2 0.3	1.2 0.3 <0.2 0.9	44.7 5.1 10.6 20.5	0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.01 0.03 0.02	2.4 6.3 1.3 2.0
W708916 W708917 W708919		<0.05 0.09 2.08	6.6 52.9 1.8	170 930 280	21.4 9.7 37.8	4.2 25.4 18.8	<0.001 0.004 <0.001	0.02 0.19 0.01	0.08 0.05 <0.05	1.0 38.4 2.1	<0.2 0.2 0.3	<0.2 0.8 1.5	16.0 48.7 12.0	<0.01 0.01 0.01	0.01 0.02 <0.01	14.4 2.2 64.5

ALS

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: -1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 27- NOV- 2017 Account: MRDLVHMY

Project: IRON MASK Г

· /	C)								С	ERTIFIC	CATE OF AN	ALYSIS	SD17248968	
Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME-MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	CRU- QC Pass2mm % 0.01	PUL- QC Pass75um % 0.01			
W708951 W708902 W708903 W708905 W708907		0.303 0.255 <0.005 <0.005 0.208	0.79 0.16 <0.02 0.07 0.37	0.10 0.26 0.05 0.43 1.49	105 79 <1 1 57	0.08 0.11 <0.05 <0.05 0.07	6.14 5.43 0.48 0.53 6.62	107 55 3 7 39	3.6 6.9 0.8 2.4 19.1	91.5 64.0	98.7 96.4			
W708908 W708910 W708911 W708912 W708915		<0.005 0.192 0.067 0.016 0.424	0.02 0.46 0.10 0.09 2.29	0.59 0.40 0.90 0.80 16.20	12 297 128 300 233	0.50 0.23 0.13 <0.05 0.07	0.51 23.5 4.95 6.08 24.5	2 88 291 205 236	4.0 16.5 42.0 7.3 74.7	92.7 88.5				
W708916 W708917 W708919		<0.005 0.140 0.065	0.04 0.23 0.13	0.86 0.31 7.58	4 421 9	<0.05 0.18 0.06	5.55 30.7 11.60	150 151 27	7.2 10.9 8.9					

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: - 1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 401 BAY STREET, SUITE 2702 TORONTO ON M5H 2Y4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 27- NOV- 2017 Account: MRDLVHMY

Project: IRON MASK

		CERTIFICATE OF ANALYSIS	SD17248968
	CERTIFICAT	E COMMENTS	
Applies to Method:	Gold determinations by this method are semi- quantita ME- MS41	ANALYTICAL COMMENTS tive due to the small sample weight used (0.5g).	
Applies to Method:	Processed at ALS Sudbury located at 1351- B Kelly Lake CRU- 31 CRU- QC PUL- 31 PUL- QC	LABORATORY ADDRESSES Road, Unit #1, Sudbury, ON, Canada. LOG- 22 SPL- 21	LOG- 23 WEI- 21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Au- AA23 ME- MS41	Hwy, North Vancouver, BC, Canada.	