

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

TASHOTA RESOURCES INC.

HEMLO NORTH PROJECT WABIKOBA LAKE AREA NTS 42C/13

REPORT ON 2017 EXPLORATION POWER STRIPPING GEOLOGICAL MAPPING SAMPLING AND ANALYSIS

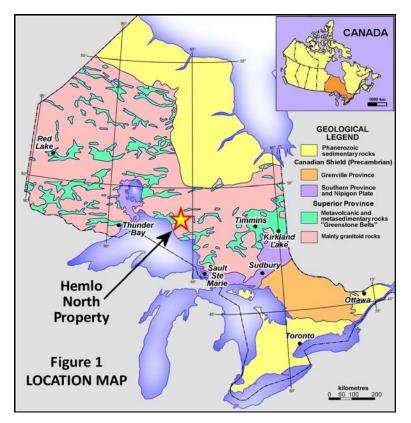
- by -

Colin Bowdidge, P.Geo. Gerry White, P.Geo.

January 2019

TABLE OF CONTENTS

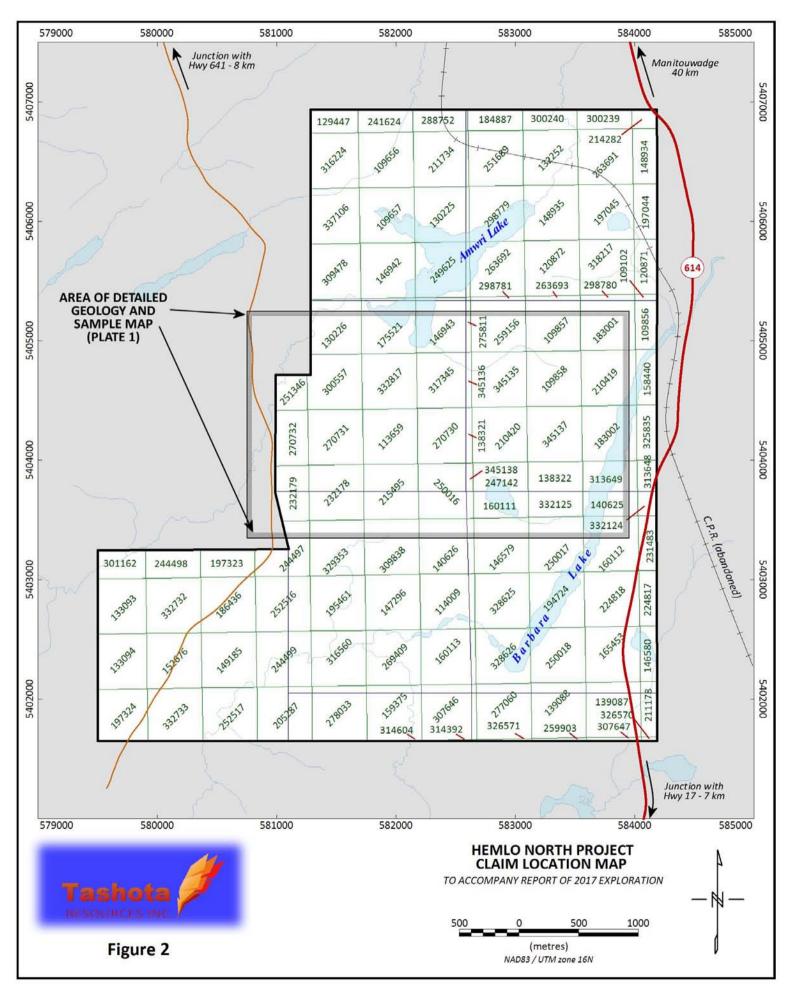
		•
PROPERTY, LOC/	ATION AND ACCESS	
HISTORY AND PR	REVIOUS WORK	
GEOLOGY		
Regiona	al Geology	ŀ
Local G	eology	;
Geophy	/sical Survey Information	;
2017 EXPLORAT	ION PROGRAM	
Strippir	ng12	
Samplir	ng and Analysis	
Geolog	ical Examination	
Geolog	ical Mapping	,
CONCLUSIONS A	ND RECOMMENDATIONS	;
REFERENCES		;
APPENDIX 1:	Claim Details	
APPENDIX 2:	Sample locations, descriptions and analyses	
APPENDIX 3:	Certificates of Analysis	
PLATE 1:	Map of 2017 Stripping, Sampling and Geological Mapping	
TEXT FIGURES	Page	2
	Page 0	
1. Location Map)	
 Location Map Claims Map 	D	
 Location Map Claims Map Subdivisions 	o	-
 Location Map Claims Map Subdivisions Geology of th 	D	
 Location Map Claims Map Subdivisions Geology of th Property Geo 	0. 1 . 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 ology from Muir (2000). 7	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag 	0	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad 	D 1	· · · · · · · · · · · · · · · · · · ·
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic 	D. 1	- - - - -
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo 	Description 1 Description 2 Def the Superior Province. 4 Def Central Part of the Hemlo Greenstone Belt. 5 Dology from Muir (2000). 7 Ignetic Map (first vertical derivative). 9 Diometric Map (Potassium Channel). 10 Map. 11 Inving beside a rare natural outcrop. 12	· · · · · · · · · · · · · · · · · · ·
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str 	D. 1	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wor Trail and str Philip Hough 	D 1 cof the Superior Province. 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 ology from Muir (2000). 7 gnetic Map (first vertical derivative). 9 iometric Map (Potassium Channel). 10 Map. 11 orking beside a rare natural outcrop. 12 ipped "sidewalk". 12 nton washing a stripped area. 12	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Houg Channel san 	D 1 Import of the Superior Province. 2 Import of the Hemlo Greenstone Belt. 4 Import of the Hemlo Greenstone Belt. 5 Import of Map (Fortassium Channel). 7 Import of Map. 11 Import of the Hemlo Of Component of Com	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Hough Channel san Uncovering 	D 1 Sof the Superior Province. 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 ology from Muir (2000). 7 gnetic Map (first vertical derivative). 9 iometric Map (Potassium Channel). 10 Map. 11 orking beside a rare natural outcrop. 12 ipped "sidewalk". 12 nton washing a stripped area. 12 nple. 13	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Hough Channel san Uncovering Rudy Wahl a 	b. 1 cof the Superior Province. 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 ology from Muir (2000). 7 gnetic Map (first vertical derivative). 9 iometric Map (Potassium Channel). 10 Map. 11 orking beside a rare natural outcrop. 12 ipped "sidewalk". 12 nton washing a stripped area. 12 nple. 13 a mineralized occurrence. 13	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Houg Channel san Uncovering Rudy Wahl a Folded mafi 	b. 1 cof the Superior Province. 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 ology from Muir (2000). 7 gnetic Map (first vertical derivative). 9 iometric Map (Potassium Channel). 10 Map. 11 urking beside a rare natural outcrop. 12 ipped "sidewalk". 12 nton washing a stripped area. 12 nple. 13 a mineralized occurrence. 13 and conglomerate. 13	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Hough Channel san Uncovering Rudy Wahl a Folded mafi Conglomera 	Description 1 In the Superior Province. 4 In the Central Part of the Hemlo Greenstone Belt. 5 Inlogy from Muir (2000). 7 Ingnetic Map (first vertical derivative). 9 Iometric Map (Potassium Channel). 10 Map. 11 Inrking beside a rare natural outcrop. 12 Ipped "sidewalk". 12 Inton washing a stripped area. 12 Inple. 13 a mineralized occurrence. 13 and conglomerate. 13 c metasediment. 15	
 Location Map Claims Map Subdivisions Geology of th Property Geo Airborne Mag Airborne Rad Topographic Excavator wo Trail and str Philip Houg Channel san Uncovering Rudy Wahl a Folded mafi Conglomera Folded quar 	n 1 construction 2 of the Superior Province. 4 ne Central Part of the Hemlo Greenstone Belt. 5 nology from Muir (2000). 7 gnetic Map (first vertical derivative). 9 iometric Map (Potassium Channel). 10 Map. 11 orking beside a rare natural outcrop. 12 ipped "sidewalk". 12 nton washing a stripped area. 12 nple. 13 a mineralized occurrence. 13 and conglomerate. 13 c metasediment. 15 ite. 16	


INTRODUCTION

This report presents the results of an exploration program carried out in the summer of 2017 on the Hemlo North property, which is held under option from Rudolf Wahl and North American Exploration Ltd. (NAMEX) by Tashota Resources Inc. The program is part of an integrated strategy by Tashota Resources Inc. to acquire, maintain and evaluate mining properties in the Hemlo greenstone belt, which is believed to have potential for significant new gold resources.

PROPERTY, LOCATION AND ACCESS

The property comprises 55 single cell claims and 66 boundary cell claims, of which 49 single cells and 52 boundary cells are registered to NAMEX and 6 single cells and 14 boundary cells are registered to Mr. Wahl. The claims are shown in figure 2, and full details are shown in Appendix 1. The area of the property (as measured on the map in figure 2) is approximately 1860.25 hectares (4597 acres).


The property is located 37 kilometres east of the town on Marathon, and 38 kilometres south of the town of Manitouwadge, in northwest Ontario. Figure 1 shows the location.

The property is accessible by road. Marathon, on the north shore of Lake Superior, is on provincial highway 17, part of the Trans-Canada Highway system. Highway 614 departs from highway 17 at a point 40 km east of Marathon and runs north to Manitouwadge. A forestry access road branches off highway 614 at a point 21 km north of highway 17 and 31 km south of Manitouwadge, and runs south for 11 km, giving access to the central and southern parts of the

Tashota Resources Inc.

Hemlo North 2017 Exploration

property. The railbed of the abandoned CPR line to Manitouwadge, which is in regular use by all-terrain vehicles and pickup trucks, gives access to the northern part of the property, and the southernmost part of the property, as well as its eastern edge, can be reached directly from highway 614, although there are no roads or trails in this area.

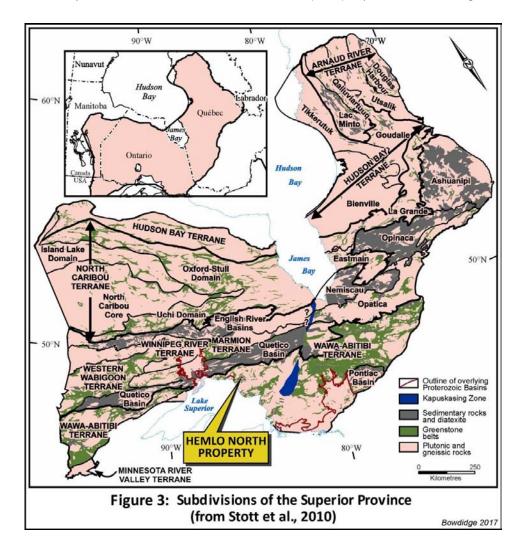
HISTORY AND PREVIOUS WORK

There is no record of any exploration being done on the Hemlo North property before the discovery of the Hemlo gold deposit in 1981. After this momentous discovery, there was a staking rush and many thousands of claims were staked, covering the entire Hemlo greenstone belt, and extending as far as Wawa in the east and Schreiber in the west. Claims were acquired by numerous junior companies; most had basic geological, geophysical or geochemical surveys done for assessment work purposes, with little subsequent follow up. In this period of the early 1980s, the area of the present Hemlo North property was covered by three claim groups. The north part was held by Pryme Resources, which was optioned to Noranda Exploration. The central portion was held by Vanstates Resources Ltd and Western Pacific Energy Corp., and the southern part by Vulcan Resources Ltd. All three groups extended beyond the present property limits.

In 1983, Vanstates Resources Ltd and Western Pacific Energy Corp held a property, the western half of which coincides with the central part of the present Hemlo North property. Line cutting and magnetic and VLF surveys were carried out (LeBel, 1983). There were a number of well defined VLF conductors in the area, but the absence of any topographic reference points on the maps makes them impossible to trace onto modern maps with any confidence.

In 1982 to 1983, Vulcan Resources Ltd carried out a program of line cutting, geological mapping, magnetic and vertical loop EM surveys and geochemical soil sampling over its property, the northeastern end of which covered approximately the southern one-third of the present Hemlo North property. The mapping showed that outcrop is extremely sparse. Soil geochemistry showed a weak gold anomaly, with analyses up to 30 ppb Au, on both sides of Barbara Lake, approximately in the area of present claim 313649 (Simunovic, 1983; Simunovic & Dadson, 1984). The vertical loop EM survey showed a number of very weak conductors (Carlson, 1982). The author had extensive experience of vertical loop EM surveys in the 1970s and does not consider anomalies defined by the method to be worthy of follow-up unless they are strong and defined by proper surveys with transmitters placed on conductor axes.

In 1984, Noranda Exploration, which did perform substantive exploration programs in the Hemlo area, carried out geological mapping over the very large Pryme Resources property. A part of this mapping covered the northern segment of the present Hemlo North property, around Amwri Lake. Mapping in this part of the project indicates very few outcrops, and there is little detail on the map (Kemp, 1984).


Following the short-lived flurry of exploration in the 1980s, little exploration was done in the Hemlo area, and nothing was done on the Hemlo North property until it was staked by Rudolf Wahl in 1995. In 1995, Mr. Wahl collected 31 rock samples around Amwri Lake and 33 samples on both sides of Highway 614 north of its intersection with the former CPR track (including 6 samples on the west side of the north end of Barbara Lake). The samples were assayed for gold. Sample 28, approximately 500 metres east of the southeast end of Amwri Lake, returned 0.87 g/t Au, and sample 62, on the west side of Barbara Lake returned 0.72 g/t Au (Wahl, 1995)

In 2015, Rudolf Wahl staked legacy claim 4258100, which forms part of the present property configuration. He carried out prospecting and rock sampling in the Barbara Lake area, approximately in the area of present claims 210420 and 345135. A total of 25 rock samples were collected and assayed, with the best result being 240 ppb Au (Wahl, 2015).

In 2015, the Hemlo North property was acquired under option by Tashota Resources Inc. In 2016, Tashota carried out a helicopter-borne magnetic, radiometric and time-domain EM survey (Bowdidge, 2017).

GEOLOGY

Regional Geology: The Hemlo South property is within the Archean age Superior Province of the Canadian Shield. The Superior province has been subdivided into subprovinces and "terranes" according to differences in structural styles and ages. The currently favoured subdivision is that of Stott et al. (2010), reproduced here as figure 3.

The Hemlo greenstone belt lies within the Wawa-Abitibi Terrane, which is well known for its prolific gold endowment. It has produced well over 200 million ounces of gold from over a hundred individual mines, and new resources and reserves continue to be developed.

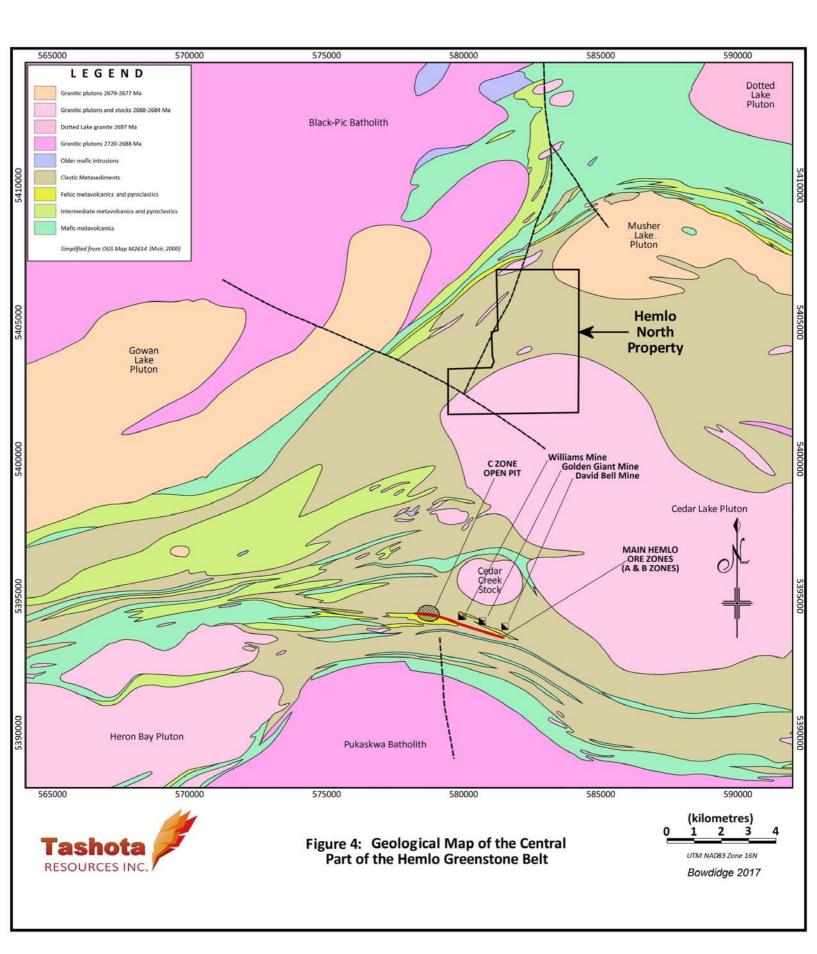
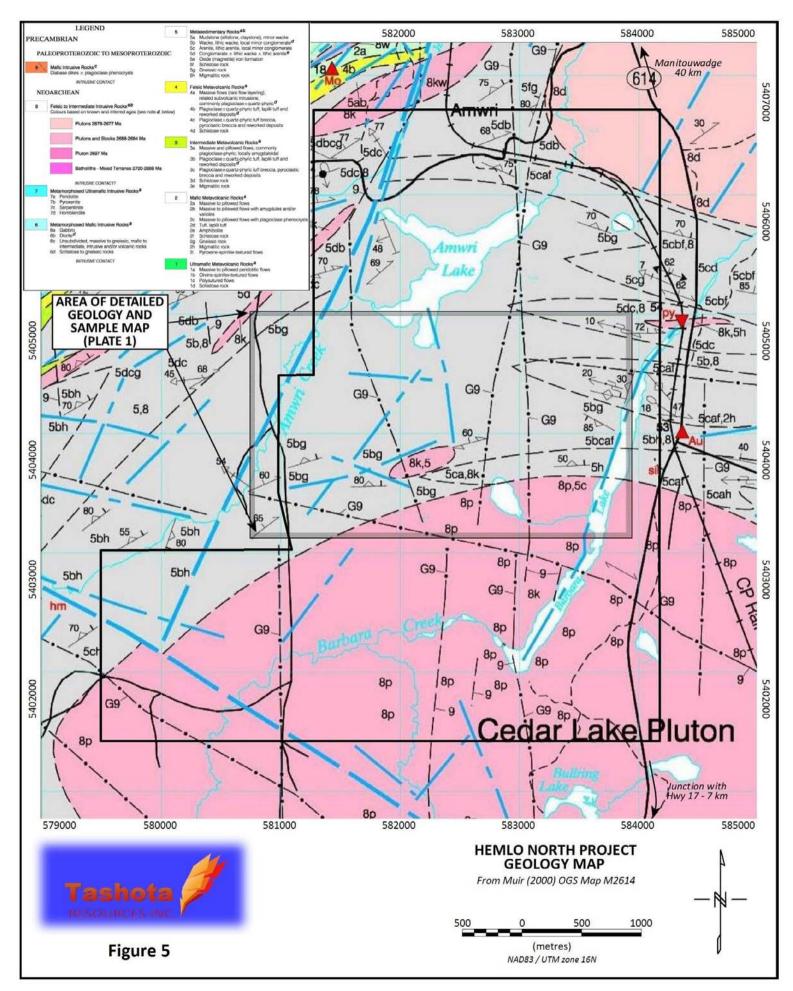


Figure 4 shows the geology of the central part of the Hemlo belt. Like most greenstone belts in the Canadian Shield, it is surrounded by granitoid rocks including later intrusives and earlier, generally migmatitic bodies that represent the basement, often partly remobilized, on which the surficial rocks of the belt were deposited.

The Hemlo belt is bounded on the south by the Pukaskwa Batholith (or Pukaskwa Gneissic Complex), and on the northwest by the Black-Pic Batholith. Both are "early" and probably represent remobilized basement rocks to the greenstone belt. The belt is intruded by later felsic intrusives which form large bodies (Cedar Lake, Heron Bay, Gowan Lake and Musher Lake Plutons) as well as smaller bodies. The largest of these smaller bodies is the 1.5 × 2.5 km Cedar Creek Stock, just north of the Hemlo gold mines, and there are numerous smaller intrusive bodies. The smallest felsic intrusives tend to be quartz- and/or feldspar-porphyries, which typically do not show on smaller-scale maps like that in figure 6, but are identified on property-scale maps filed for assessment work by companies.

In terms of its volcanic-sedimentary stratigraphy, the Hemlo greenstone belt is unusual in having a relatively small proportion of mafic volcanic flows, which form a roughly estimated 10 percent of the total volume of supracrustal rocks. Mafic volcanic flows form the apparent base of the stratigraphic sequence, around the margins of the belt, which is a typical feature of the greenstone belts of the Canadian Shield. The core of the belt is made up of felsic to intermediate flows and pyroclastics, and clastic metasediments. The field identification of many of these rocks is difficult; the early mapping by Muir (1980, 1982) showed them as mainly pyroclastic, while his later map (Muir, 2000) shows the majority to be metasediments. The relatively high grade of metamorphism, greenschist transitional to lower amphibolite facies in the core of the belt, grading to mid- to upper-amphibolite near the margins, has made rock identification difficult, even for experienced mappers.

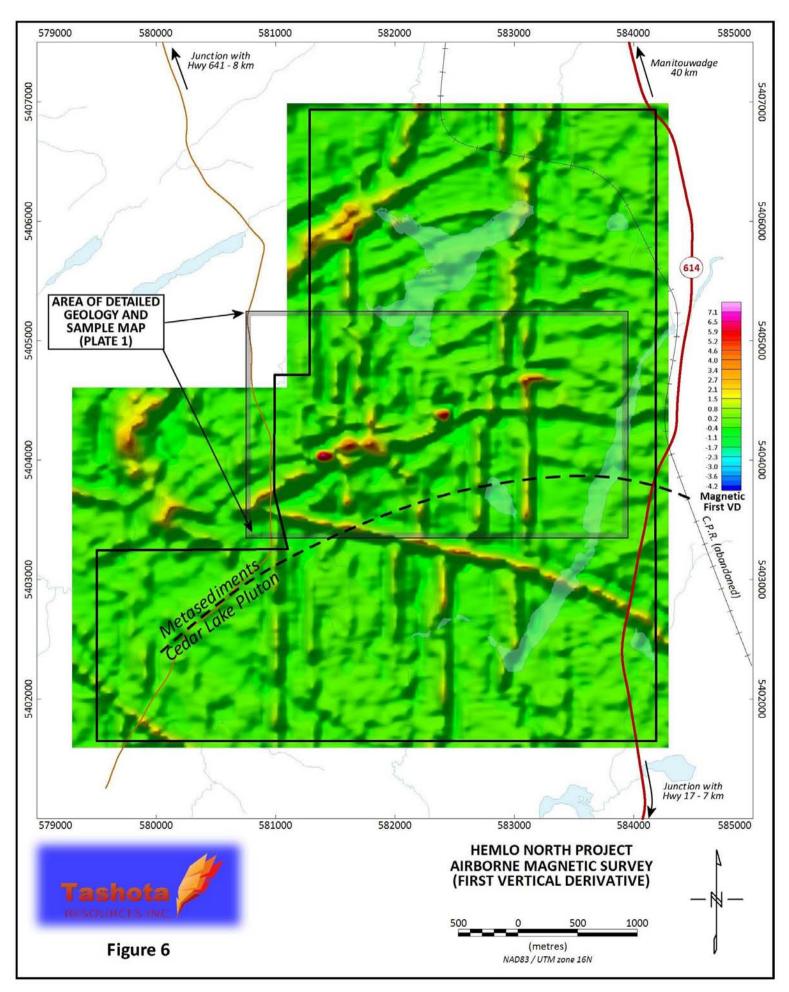

An important sedimentary rock type in the Hemlo belt is conglomerate. A conglomerate unit is present beside the main gold zone at the Hemlo mines. Conglomerate has also been mapped in the big "V" of the interfingering contact between intermediate volcanics/pyroclastics and metasediments, 6 kilometres northwest of the gold mines (Coster et al., 1984). Poulsen (2013) has articulated a (sometimes loose) spatial association between gold "camps" and conglomerates that is perhaps not as widely recognized as it should be. Possible underlying genetic reasons for the association are based on geological inferences and are discussed in detail by Poulsen (2013).

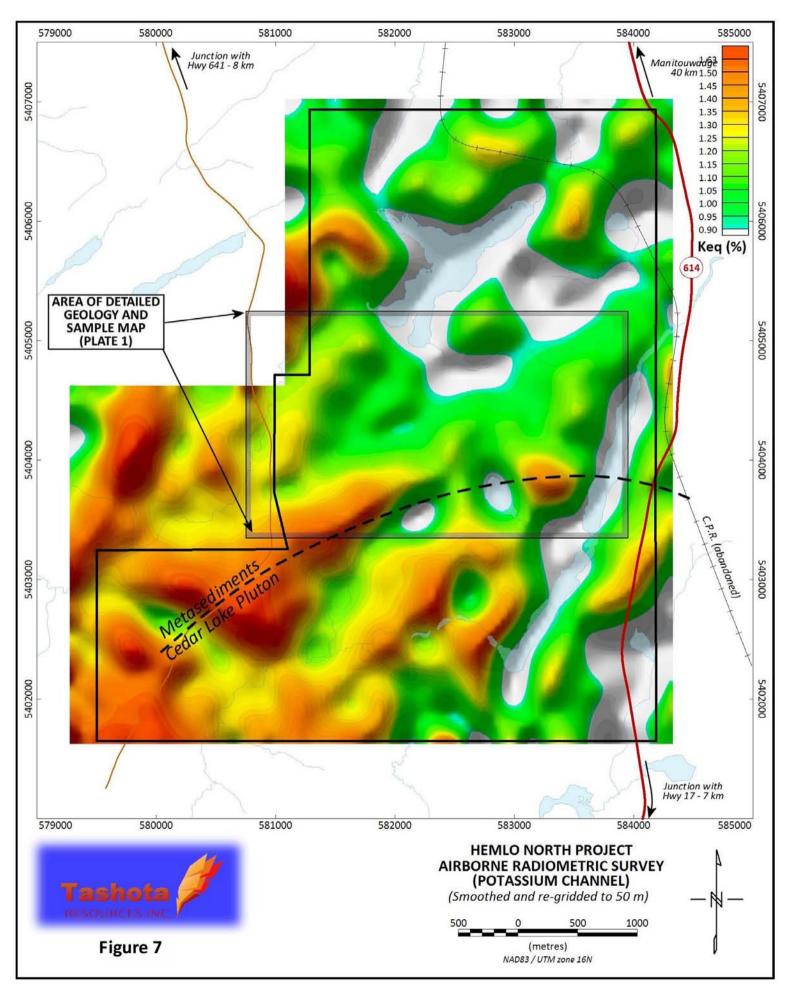
Local Geology: The area of the Hemlo North property was mapped by Milne (1968). Milne's mapping, with additional information from company mapping that had been filed for assessment work, was incorporated into Muir's (2000) compilation map, a small portion of which is reproduced here as figure 5.

The southern part of the property is underlain by the northern quadrant of the Cedar Lake Pluton, a 7 km × 25 km body of porphyritic to megacrystic granodiorite, which intrudes the core of the greenstone belt. The northeastern corner of the property is underlain by the margin of the Musher Lake tonalite pluton. Between these bodies is a sequence of metasediments including conglomerate, arenite and argillite. The sedimentary sequence is intruded by a number of small granodiorite plugs and sills. The 2017 mapping program described in this report shows that intrusive bodies in the sedimentary rocks are more common than shown on the maps of Milne (1968) and Muir (2000), which are lacking in detail because of the scarcity of outcrops.

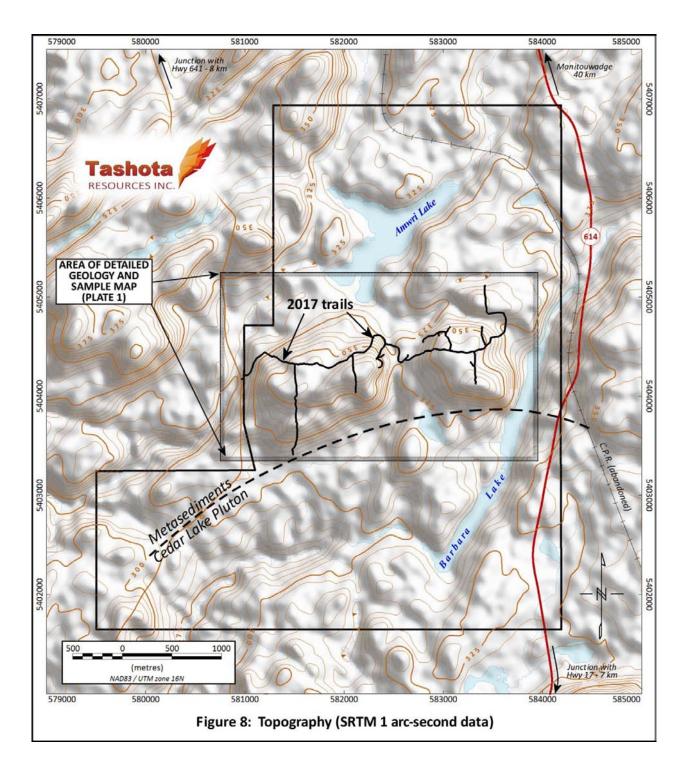
Tashota Resources Inc.

Page 7


Geophysical Survey Information: Figure 6 shows a portion of the helicopter-borne magnetic survey (first vertical derivative) performed for Tashota Resources in 2016. No electromagnetic anomalies are shown because the few anomalies detected by the survey in this block were extremely weak and unlikely to reflect bedrock conductivity. The background (faded down) is the first vertical derivative from the 1983 Aerodat magnetic-EM survey of the Hemlo area, which was reprocessed and released by the OGS (2002).


The magnetic data show a series of north-south diabase dykes crossing the property. There are also, within the sedimentary package, a number of magnetic units that have lateral continuity across the property. Some of the north-south diabase dykes are offset when they cross these magnetic sedimentary units; these are transform faults where the fracture that opens to form a dyke is offset when it crosses a less competent, or previously sheared zone in the wall rock. This clearly suggests that the magnetic sedimentary units are schistose and/or sheared argillites with some magnetite present; pointing to their being transitional to banded iron formations, and hinting at potential for associated gold mineralization.

The potassium channel from the 2016 airborne radiometric survey is presented in figure 7. The data were aggressively smoothed, put through a low-pass filter and re-gridded to a 50 metre cell size to suppress the high-frequency noise that tended to obscure large-scale features. Allowing for low radiometric response over lakes, swamps and valleys, this map clearly shows the Cedar Lake Pluton as having a higher potassium content than the sediments, although the difference is not that great. The Cedar Lake Pluton shows equivalent potassium (eqK) ranging from 1.2% to 1.6% while the sediments exhibit eqK values of 0.9% to 1.0%. The Cedar lake Pluton is potassium-rich and has microcline phenocrysts; so we may conclude that the clastic sediments are probably arkosic with a significant content of potash feldspar, indicating derivation from weathering of granitic terrains.


The presence of conglomerate in the sedimentary sequence is indicative of uplift, erosion and rapid deposition of the supracrustal rocks of the greenstone belt. This is considered to be a favourable indication of the potential for orogenic or greenstone-type gold, as noted above.

It was a combination of these directly observed and indirectly inferred features that led to the decision to focus attention on the sedimentary rocks in the central part of the Hemlo North property during the 2017 program.

The topography also suggested that this area, with two prominent hills rising 50 metres above adjacent valleys, would offer the best prospects for finding areas of outcrop with vegetation cover, or areas of thin overburden that could be removed with power stripping. Figure 8 shows a contour map derived from the SRTM 1arc-second digital elevation data provided by NASA. It also shows the trails that were made to gain access to the stripping areas.

2017 EXPLORATION PROGRAM

The power stripping was carried out between June 17th and June 30th, and again from July 4th to July 31st, 2017. Equipment was a Link-Belt 240 excavator supplied by Belham Inc of Kaministiquia, Ontario. Two prospectors from Beardmore, Ontario, Philip Houghton and Michael Goodman, were also on hand (starting June 15th) to examine stripped areas as they were exposed, take samples of mineralization, and guide the excavator to other areas of interest based on their observations. Plate 1 shows details of the stripped areas, geology and sample locations.

Figure 9: Excavator working beside a rare natural outcrop

Figure 10: Trail and stripped "sidewalk"

The strategy to explore a large area with little to no natural outcrop and no well defined targets, was to use the excavator to make trails throughout the area of interest, and to strip down to bedrock along one side of the trail, wherever the overburden was thin enough. Removed overburden was used to improve the surface of the trail. A total of approximately 6.9 kilometres of trail were made, and approximately 3.1 kilometres of linear strips were exposed.

Stripped areas of special interest were washed with a high-pressure hose, and in a few instances, a diamond saw was used to cut channels. Most samples collected were grab samples.

Figure 11: Philip Houghton washing a stripped area

This photo shows one of the rare saw cut channel samples. Inset is a detail of the cut surface showing the fine-grained mafic metasediment with quartz stringers. Sampling was completed by August 4th, and Michael Goodman and Philip Houghton

demobilized on August 5th.

Figure 12: Channel sample

This photo shows Michael Goodman examining a mineralized sample. The inset shows the slab of rusty quartz that his hand sample came from. This rock surface was stripped to a greater depth because quartz veining and sulphide mineralization were present.

Figure 13: Uncovering a mineralized occurrence

Figure 14: Rudy Wahl and conglomerate

This photo shows Rudolf Wahl, prospector and property vendor, standing on a stripped outcrop of intensely sheared conglomerate. Access trail is in the background. This outcrop was only covered in a thin layer of soil and moss.

Sampling and Analysis: Fifty-four rock samples were collected and send for gold assay by 30-gram fire assay and ICPemission spectroscopy, at ALS Global in Thunder Bay, Ontario. Appendix 2 gives brief descriptions of the samples, their locations determined by GPS and the assay result. Plate 1 shows the sample locations and sample numbers. All the gold assay results were very low, with most being below the 1 ppb (0.001 g/t) detection limit, and the highest being only 6 ppb.

Geological Examination: Gerry White, P.Geo. made an initial property visit from July 5th to July 7th, 2017, and returned after the stripping program to perform systematic geological mapping. Following is his report from the first visit.

"On Wednesday, July 5, I met backhoe operator Steve Hamer on the Hemlo North property. He toured me on the work conducted thus far and I initiated the GPS location and mapping of the stripped outcrop exposures. In areas of higher relief, although not evident at first glance, the overburden is less than 0.50 m thick in many areas. The combination of experience and skill by both prospectors Mike Goodman and Phil Houghton and operator Steve Hamer, is immediately evident by the quality of the exposed bedrock and drill trail. Even though no outcrop washing has been conducted, the exposures in most cases, are clean enough for first-pass mapping and sampling. This is a highly cost-effective method of initial exploration and provides excellent access to other parts of the property. The Hemlo North property is accessed by travelling north on the Manitouwadge Hwy 614 for 20.0 km and south on the Pinegrove bush road for 11.0 km to the new drill trail. The main stripped areas, a further 3.5 to 4.5 km east, are easily reached by ATV.

"On Thursday, July 6, I was accompanied by property owner Rudy Wahl again to the Hemlo North property, to further complete the location and mapping of the remaining significant exposed bedrock locations. Any gossaned and/or sulphide mineralized sections have been sampled by Mike and Phil. Visible alteration, other than silicification, was patchy and sporadic up to 0.50 m across. Most of the rock exposed in the central portion of the newly accessed area (UTM Zone 16, 583025E, 5404628) consists of highly sheared or foliated and deformed fine grained banded garnetbearing metasedimentary gneiss and lesser exposures of highly sheared conglomerate. The dominant strike of the rocks observed on the property averages 120° with a shallow northeast dip (65° to 80°). However, in areas exhibiting increased folding and deformation the orientation can vary from 60 to 134 . Shearing and deformation are best observed in the conglomerates which show stretched fine-grained granodiorite pebbles and cobbles, pressure shadows and boudinage layering. Recrystallized boudinage quartz veining and isolated quartz 'knots' were also noted. Sulphide content up to 1% is fine-grained, sporadic, most often associated with the gossan or rusty zones and consists of disseminated pyrite.

"On Friday, July 7, I attempted to locate, as well as mapping the outcrop exposure, the two mineral occurrences identified by Tom Muir on OGS Map 2614 (2000) and highlighted by Colin. These gold occurrences – No. 53 along Hwy 614 and No. 54 north along the old CPR railbed, assayed 2.74 and 0.823 ppm Au respectively – lie along and just outside the eastern boundary of the Hemlo North claim group. If we can identify the rock type that these samples came from, it can be used as a guide to prospecting on Tashota's properties. A large 150 m long outcrop (UTM Zone 16, 584348E, 5404249N) exposed along the east side of Hwy 614 approximately 10 km north of the Hwy 17 intersection, is the likely location of Muir's sample No.53. (There is no other outcrop in the immediate area and the location matches local features, namely the highway / CPR railbed intersection). The rock consists of fine-grained banded grey and white, garnet-bearing biotite gneiss (strikes 114 with a shallow NE dip of 65 ton 70). Two patchy gossan zones were also

noted near the middle and north end of the exposure, 10 m and 5 m wide respectively. Although no sulphides were observed, samples were collected for analysis from both sites. A smaller 80 m exposure of the same rock type continues across and along the west side of the highway. A 5 m wide patchy gossan zone was also observed at the north end of this exposure. Very fine-grained disseminated pyrite (< 1%) was note and a sample collected for analysis. In the same area, approximately 500 m north along the old CPR railbed from Hwy 614, is the likely location of Muir's sample No. 54. Outcrop occurs on both side of the rail cut and consists of fine-grained garnet-bearing gneiss with disseminated very fine pyrite (1%). A sample was also collected at this location (UTM Zone 16, 584284E, 5404549N).

Geological Mapping: Following is a summary of geological observations. Plate 1 shows details of the mapping.

"Geological mapping of exposed bedrock on Tashota Resources Inc.'s Hemlo North property was conducted over a twoweek period from September 24 to October 9, 2017. This work followed an extensive prospecting, stripping and sampling program completed by the company earlier in the season (July 2017). In general, the natural outcrop exposure in this area is extremely poor. However, the recent stripping program targeting areas of high topographic relief (a series of ridges), indicated the presence of bedrock with an average of only 0.5 m of overburden cover.

"The rocks observed in the work area are part of an amphibolite-grade metasedimentary package located in the northern portion Hemlo mine sequence. The Barrick-owned Hemlo gold deposit, which has produced close to 24 million ounces of gold since 1985, is located approximately 4 km southeast of Tashota's Hemlo North claims. These high grade metasedimentary rocks have been intruded primarily by fine to medium-grained granodiorite exposed in sections ranging from 120 m thick to dikes of less than 10cm and averaging from 1.0 to 0.5 m wide. The general trend of the sedimentary package ranges from 85° to 110° with a shallow (65° - 70°) north dip.

"The most dominant unit observed on the property is the fine-banded (or thin-bedded) dark grey to black mafic metasedimentary rocks which in many locations are highly sheared and deformed with garnet-rich layers. These sedimentary rocks have the appearance of banded iron formation and likely represent argillitic mudstones and siltstones. Boudin layering and small-scale (< 10 cm) chevron folding were observed in several bedrock exposures. To date,

Figure 15: Folded mafic metasediment

gossanous patches and sulphide mineralization (pyrite, pyrrhotite) discovered by prospecting and stripping have been restricted to this unit, often near its contact with the surrounding rocks. The best examples of this alteration are found along Hemlo North Trail 3 (zone 16, 0583039E, 5404646N) and Hemlo North Trail 5 (Zone 16, 0582332E, 5404381N). The apparent thickness of this mafic metasedimentary unit varies from 4 m to over 200 m (HN OC4, Zone 16, 0583307E, 5404457N).

"Often interlayered or adjacent to this mafic unit are bedded to sometimes massive sandstone and pebble to cobble conglomerate. The sandstone units are unremarkable white to dirty grey in colour with bedding thickness up to 5 cm. In places alternating beds stand in relief on the outcrop surface, indicating layers with a more resistant quartz-feldspar content. By far the most striking rock unit observed on the property are the highly sheared and deformed pebble to cobble conglomerates. At least five different clast types were observed in beds up to 20 m wide. The importance of these conglomerates in relation to gold mineralization cannot be ignored. Their presence indicates a period of quiescence adjacent to an uplifted area or fault zone where gold-bearing hydrothermal fluids can migrate. Conglomerates are prevalent and recognized as a significant marker units in many gold camps.

Figure 16: Conglomerate

"Other rock types observed on the property are restricted to dikes and sills (most < 0.5 m wide) ranging in composition from fine-grained diorite, coarse porphyritic gabbro to medium-grained granite.

"Mineralization comprising disseminated to banded to locally semi-massive pyrite and pyrrhotite, is associated with silicified zones and/or quartz stringers, and also with carbonate alteration in some cases. There are also occurrences where the sulphides follow what is probably primary bedding in the host sediments."

This photo shows folded quartz stringers in intensely carbonatealtered mafic meta-sediments. Minor amounts of pyrite are present in the quartz. Note thin schistosity-parallel quartz stringer cutting the folded quartz vein at the bottom of the photo.

Figure 17: Folded quartz stringers

This photo shows a rare occurrence of semimassive sulphides in a mafic metasediment. The sample contains about 35 percent pyrite. Folded quartz stringers are also present in this occurrence.

Figure 18: Pyrite-rich sample of mafic metasediment

CONCLUSIONS AND RECOMMENDATIONS

The 2017 program covered the metasedimentary sequence in the central part of the property very thoroughly, and no gold occurrences were located. This part of the property does not need any more work at this time. Future exploration should consider prospecting around the locations with low gold values reported by Wahl (1995, 2015) as well as the soil geochemical anomalies located by Simunovic & Dadson (1984), which are within the Cedar Lake Pluton, close to its contact with the metasediments.

Respectfully submitted,

0202

Colin Bowdidge, Ph.D., P.Geo.

January 2019

REFERENCES

Bowdidge, C., 2017. Report on airborne geophysical surveys, Hemlo West and North properties. MNDM assessment file AFRI No. 20000013545, AFRO No. 2.57670

- Carlson, H.D., 1982. Report on geophysical surveys of the property of Vulcan Resources Ltd., Hemlo area. MNDM Assessment File AFRI No. 42C13SW0075, AFRO No. 2.4831.
- Coster, I., Caira, N. & Middleton, R.S., 1984. Geological and Geophysical Report on the Melrose Resources Ltd. Property, Hemlo Gold Region, Rous Lake and Molson Lake Area, Thunder Bay Mining Division, Ontario. In MNDM Assessment Report, AFRI No. 42D09NE0013, AFRO No. 63.4580.
- LeBel, J.L., 1983. Report on geophysical surveys for Vanstates Resources Ltd and Western Pacific Energy Corp, Hemlo area. MNDM Assessment File AFRI No. 42C13SW0071, , AFRO No. 2.5688.
- Kemp. R., 1984. Noranda Exploration Co. Ltd. Geological assessment report, Pryme North Joint Venture, Wabikoba Lake Area. MNDM Assessment File AFRI No. 42C13SW0018, AFRO No. 2.7108
- Milne, V.G., 1968. Geology of the Black River area. Ont. Dept. Mines Geol. Rept. 72, and map 2147 (White Lake Area, scale 1:31,680)

Muir, T.L., 1980. Geology of the Hemlo Area, District of Thunder Bay. Ontario Geological Survey Open File Report 5280, 78 pp, includes maps.

Muir, T.L., 1982. Geology of the Hemlo Area, District of Thunder Bay. Ontario Geological Survey Report 217, 85 pp. Accompanied by Map 2452.

Muir, T.L., 2000. Geological Compilation of the Eastern Half of the Schreiber-Hemlo Greenstone Belt. Ontario Geological Survey Map M2614, 1:50,000 scale.

OGS, 2002. Ontario Airborne Geophysical Surveys, Magnetic and Electromagnetic Data, Hemlo Area. Ontario Geological Survey Geophysical Data Set 1207 rev.

Poulsen, K.H., 2013. Greenstone Gold. Notes for a Short Course, Lakehead University, February 2013.

- Simunovic, M., 1983. Geological report, Vulcan Resources Ltd., Hemlo area claims, Wabikoba Lake area. MNDM Assessment File AFRI No. 42C13SW0043, AFRO No. 2.6257
- Simunovic, M. & Dadson, P., 1984. Geochemical report, Vulcan Resources Ltd., Hemlo area claims, Wabikoba Lake area. MNDM Assessment File AFRI No. 42C13SE0037, AFRO No. 2.8365

Stott, G.M., Corkery, M.T., Percival, J.A., Simard, M. & Goutier, J., 2010. A Revised Terrane Subdivision of the Superior Province, *in* Summary of Field Work and Other Activities 2010, Ontario Geological Survey Open File Report 6260, pp 20-1 to 20-10.

Wahl, R., 1995. Sampling report. MNDM Assessment File AFRI No. 42C13SW0174, AFRO No. 2.17221

Wahl, R., 2015. Prospecting Report, Barbara Lake Property, Wabikoba Lake Area. MNDM Assessment File AFRI No. 200000014686, AFRO No. 2.56294

APPENDIX 1

CLAIM DETAILS

HEMLO NORTH CLAIM LIST

Tenure ID	Legacy Claim Id	Township / Area	Tenure Type	Anniversary Date	Claim Holder	Work Required	Work Applied	Consultation Reserve	Exploration Reserve	Total Reserve	Conversion Credit
109656	4281921	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
109657	4281921	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$4,600
113659	4281923	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
114009	4281925; 4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
120872	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
130225	4281921; 4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
132252	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
139087	4281926; 4281928	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
139088	4281926; 4281928	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
140626	4281925; 4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
146579	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
146942	4281921	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
147296	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$5,257
148935	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$5,257
149185	4281924	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
152676	4281924	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$5,257
160112	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
160113	4281925; 4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
165453	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
175521	4281921; 4281923	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
186436	4281924	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
194724	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$5,257
195461	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
197045	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
211734	4281921; 4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
215495	4281923; 4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
224818	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
232178	4281923; 4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
244499	4281924; 4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
249625	4281921; 4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
250017	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
250018	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
251689	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
252516	4281924; 4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
263691	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
263692	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
269409	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
270731	4281923	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
277060	4281926; 4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
298779	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
307646	4281925; 4281926; 4281927; 4281928	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
309838	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
316560	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
318217	4281922	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0

HEMLO NORTH CLAIM LIST

	Page	2	of	3
--	------	---	----	---

328625	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
328626	4281926	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
329353	4281925	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
332732	4281924	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$0
332817	4281923	Wabikoba Lk Area	Single Cell	2019-01-04	NAMex	\$400	\$0	\$0	\$0	\$0	\$4,928
109102	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
120871	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
129447	4281921	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
130226	4281921; 4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
133093	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
133094	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
140625	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
146580	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
146943	4281921; 4281922; 4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
148934	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
159375	4281925; 4281927	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
160111	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
184887	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
197044	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
197323	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
197324	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
205287	4281924; 4281925; 4281927	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
211178	4281926; 4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
214282	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
224817	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
231483	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
232179	4281923; 4281925	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
241624	4281921	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
244497	4.28192E+13	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
244498	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
250016	4281923; 4281925; 4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
251346	4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
252517	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
259903	4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
263693	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
270730	4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
270732	4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
278033	4281925; 4281927	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
288752	4281921; 4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
298780	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
298781	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
300239	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
300240	4281922	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
300557	4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
301162	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
307647	4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
			•						•		

HEMLO NORTH CLAIM LIST

Page 3 of	f 3	
-----------	-----	--

309478	4281921	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
314392	4281927; 4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
314604	4281927	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
316224	4281921	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
317345	4281923	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
326570	4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
326571	4281928	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
332124	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
332125	4281926	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
332733	4281924	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0	\$0	\$0	\$0
337106	4281921	Wabikoba Lk Area	Boundary Cell	2019-01-04	NAMex	\$200	\$0	\$0 • •	\$0	\$0	\$0
109858	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$2,380	\$2,380	\$2
183002	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$0	\$0	\$0
210419	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$0	\$0	\$0
210420	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$0	\$0	\$0
345135	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$0	\$0	\$0
345137	4258100	Wabikoba Lk Area	Single Cell	2019-04-02	R. Wahl	\$400	\$0	\$0	\$0	\$0	\$0
109856	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
109857	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
138321	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
138322	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
158440	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
183001	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
247142	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
259156	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
275811	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
313648	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
313649	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
325835	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
345136	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
345138	4258100	Wabikoba Lk Area	Boundary Cell	2019-04-02	R. Wahl	\$200	\$0	\$0	\$0	\$0	\$0
						\$35,200					

APPENDIX 2

SAMPLE LOCATIONS, DESCRIPTIONS

AND ASSAY RESULTS

APPENDIX 2 - HEMLO NORTH PROJECT

2017 EXPLORATION PROGRAM: SAMPLE DATA

Page 1 of 2

					- 0
Sample	UTM East	UTM North	Date	Sample	Assay
Number	NAD83 Zo	ne 16north	taken	Description	Au g/t
W063968	583299	5404318	2017-07-15	Rusty sil.metased, chloritte rich, dk blue-green, fine-gr qtz ass w py blebs	< 0.001
W063969	583299	5404318	2017-07-15	Rusty grey-green qtz + chlorite, some sericite, 5% diss py throughout	< 0.001
W063970	583299	5404318	2017-07-15	Rusty sed, silica flooded, glassy qtz veinlets, 5% fine diss py assoc with vnlts, trace po	< 0.001
W063971	583293	5404316	2017-07-15	4 to 5 m west of previous: rusty grey siliceous f-gr metased with \pm 1% fine diss py	< 0.001
W063972	583293	5404316	2017-07-15	Same as previous but more qtz & 5% diss py assoc with qtz-chlorite	< 0.001
W063973	583311	5404319	2017-07-16	Greyish qtz with greenish chlorite, 2% f-gr diss py-po	< 0.001
W063974	583311	5404319	2017-07-16	50 cm E of previous, rusty, sugary white metased, magnetite, 5% diss fine py, trace po	< 0.001
W063975	583311	5404319	2017-07-16	Very siliceous, f-gr dark black metased with ± 1% fine py & trace po	< 0.001
W063976	583311	5404311	2017-07-16	North 30 cm of a 60 cm saw-cut channel: 30% rusty glassy qtz, 30% biotitized f-gr sed, 40% chloritized rusty qtz with 1% fine diss py, trace po. Sulphides assoc with chlorite, not qtz	<0.001
W063977	583311	5404311	2017-07-16	South 30 cm of channel: Dark f-gr siliceous metased, blood red garnets throughout, qtz- chlorite veining throughout, 2% fine diss py assoc w chl-qtz veins, <1% py in sediment	<0.001
W063978	583317	5404368	2017-07-16	Qtz lenses in highly alt metased; rusty glassy qtz with <1% py	< 0.001
W063979	583317	5404368	2017-07-16	Same as previous, 30 cm south, different qtz lens	< 0.001
W063980	582381	5404383	2017-07-18	Very siliceous, chloritic metased with 10% to semi-massive very f-gr po-py	< 0.001
W063981	582381	5404383	2017-07-18	Same as previous but with 5% py in seams and diss po-py	< 0.001
W063982	582381	5404381	2017-07-18	2 m south of previous 2 samples: siliceous, chloritic metased with 5% fine diss py-po	< 0.001
W063983	582384	5404383	2017-07-18	3 m east on strike of W063980: sil-chlor metased with 5% fine py in seams	< 0.001
W063984	582384	5404384	2017-07-18	1 m north of previous: near contact of rusty zone, highly sheared siliceous, biotite-rich metased with <1% fine py	<0.001
W063985	582399	5404417	2017-07-18	Rusty, sheared chloritic siliceous metased with ± 1% fine diss py, possible arsenopyrite?	<0.001
W063985	582399	5404417	2017-07-18	Same as previous but with carbonate, 20% silicified patches with 10% fine py	<0.001
W063987	582398	5404418	2017-07-18	Very green chlorite-silica rich metased w 5-10% very fine diss py, trace po	0.001
W063988	582398	5404415	2017-07-18	Sheared looking, siliceous chlorite metaseds, 5% diss py-po	< 0.001
W063989	582398	5404415	2017-07-18	Rusty sheared chloritic metased with 5% fine pyrite in seams	<0.001
W063990	582394	5404415	2017-07-18	Rusty siliceous metased with 5% seams of very fine grained pyrite	<0.001
W063991	581505	5404208	2017-07-23	Sheared siliceous biotite rich black metased with <1% fine diss py	<0.001
W063991	581505	5404110	2017-07-23	Rusty slightly sheared metased with semi-massive magnetite, trace py	0.001
W063993	581513	5404110	2017-07-23	Rusty siliceous metased with 5% very fine-grained py-po	< 0.001
W063994	581513	5404112	2017-07-23	Same location as above, 5% magnetite and 2% fine diss py	0.001
W063995	581515	5404112	2017-07-23	2 m east of previous, chloritic metased, blue in colour, 5% dark red garnets, 1% fine py, possible galena	<0.001
W063996	581514	5404102	2017-07-23	Rusty magnetic, siliceous, chloritic metased with 10% semi-massive py, minor po	0.002
W063997	581552	5404075	2017-07-24	Rusty siliceous chloritic metased with 2% fine py in bands	<0.002
W063998	581552	5404030	2017-07-24	Strongly sheared rusty siliceous metased, 2% fine diss py; chip sample across 30 cm shear	<0.001

APPENDIX 2 - HEMLO NORTH PROJECT

2017 EXPLORATION PROGRAM: SAMPLE DATA

Page 2 of 2

Sample	UTM East	UTM North	Date	Sample	Assay
Number	NAD83 Zoi	ne 16north	taken	Description	Au g/t
W063999	541522	5404020	2017-07-24	Slightly sheared chlorite-silica metsed, 1% fine py assoc. with more chloritic sections	< 0.001
W064000	581510	5403983	2017-07-24	Sheared metased, 50% chlorite-quartz with trace py	<0.001
W075051	581517	5403954	2017-07-24	Chloritic metased with qtz flooding, 1% py blebs assoc with qtz	<0.001
W075052	581515	5403947	2017-07-24	Mainly chloritic glassy qtz in metased, <1% fine grained py	< 0.001
W075053	581508	5403938	2017-07-24	Slightly sheared qtz flooded chloritic metased with 1% fine py in qtz	0.006
W075054	581508	5403936	2017-07-24	2 m south of above, 40% qtz with 5% med-grained py cubes	< 0.001
W075055	581515	5403929	2017-07-25	Well fractured chloritic metased interbedded with conglom, 30% qtz, 2% fine py on fractures	<0.001
W075056	581512	5403909	2017-07-25	Highly sheared chloritic metased with 10% qtz, 1-5% med-grained py blebs	0.001
W075057	582377	5404491	2017-07-26	Rusty glassy qtz vein with ± 1% fine py blebs	<0.001
W075058	582377	5404491	2017-07-26	Same location, rusty glassy qtz with chlorite inclusions, 1-5% py assoc with chlorite., possible	<0.001
				trace of arsenopyrite	
W075059	582377	5404491	2017-07-26	Same location, glassy qtz with 1% of py assoc. with chlorite patches	<0.001
W075060	582377	5404491	2017-07-26	Same location, host rock of qtz veins, chloritic, siliceous metased with 1-5% fine py	<0.001
W075061	581509	5403873	2017-07-26	Rusty, sugary, slightly chloritic metased with trace py	<0.001
W075062	581509	5403869	2017-07-26	4 m south of above, slightly sheared rusty sil chlor metased with 1-5% vfg py	< 0.001
W075063	581514	5403876	2017-07-26	fine grained chlor, sil metased with 5-10% vfg py	<0.001
W075064	581512	5403876	2017-07-26	1.5 m west of above, rusty, carbonated siliceous metased with 1-5% vfg py	<0.001
W075065	581512	5403874	2017-07-26	2.5 m south pf previous; white sugary sil chlor metased with 15-20% fine py	<0.001
W075066	581516	5403850	2017-07-26	Chloritic metased with 30% bands of magnetite (BIF?), 2-5% fine diss py. Frost-heaved	<0.001
W075067	581516	5403845	2017-07-26	5 m south of previous; sil chlor metased with 5% vfg py	< 0.001
W075068	581474	5403453	2017-07-27	Grab sample from 14 ft down in test pit, filled in after sampling: massive magnetite band in	<0.001
				metased with 1-2% fine py; adjacent to pink granite	
W075069	581522	5404034	2017-07-28	170 cm channel cut: 48 cm at north end of channel, highly chloritic, siliceous metased with	<0.001
				bands of fine diss py, 5-10% of rock	
W075070	581522	5404034	2017-07-28	next 56 cm of channel, same as above with 10% qtz bands, 1-5% fine py	<0.001
W075071	581522	5404034	2017-07-28	Next 50 cm of channel, rrusty chlor, sil metased with 5-10% fine py	<0.001
W075072	581522	5404034	2017-07-28	Last 18 cm of channel at south end, rusty highly siliceous metased with orange qtz seams,	<0.001
				with 1% fine py	

APPENDIX 3

CERTIFICATES OF ANALYSIS

Project: Hemlo North

COLIN BOWDIDGE

on 20-JUL-2017.

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

This report is for 66 Rock samples submitted to our lab in Thunder Bay, ON, Canada

EDDA ELBOURNE

CHARLES ELBOURNE

The following have access to data associated with this certificate:

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W **SUITE 518 TORONTO ON M8V 3Y3**

Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12-AUG-2017 Account: TRIBGNXY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: TASHOTA RESOURCES INC. ATTN: COLIN BOWDIDGE 2275 LAKESHORE BLVD W **SUITE 518** TORONTO ON M8V 3Y3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 2 – A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

CERTIFICATE OF ANALYSIS TB17150755

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	
W063881 W063882 W063883 W063884 W063885		1.36 1.59 1.59 1.59 1.41	<0.001 <0.001 <0.001 <0.001 <0.001	
W063886 W063887 W063888 W063889 W063889		1.38 1.74 1.20 1.06 1.31	<0.001 <0.001 <0.001 <0.001 <0.001	
W063891 W063892 W063893 W063894 W063895		1.34 1.39 0.90 1.31 1.52	<0.001 <0.001 <0.001 <0.001 <0.001	
W063896 W063897 W063898 W063899 W063899 W063900		1.70 1.23 1.30 0.81 1.23	<0.001 <0.001 <0.001 <0.001 <0.001	
W063942 W063943 W063944 W063945 W063946		0.64 0.62 1.37 0.97 0.90	<0.001 <0.001 <0.001 <0.001 <0.001	
W063947 W063948 W063949 W063950 W063954		0.89 0.84 1.05 1.81 1.33	<0.001 <0.001 <0.001 <0.001 <0.001	
W063955 W063956 W063957 W063958 W063959		1.56 0.91 1.35 2.09 1.71	<0.001 <0.001 <0.001 <0.001 <0.001	
W063960 W063961 W063962 W063963 W063964		1.58 1.32 1.00 1.60 0.90	<0.001 <0.001 <0.001 <0.001 <0.001	

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 3 – A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

CERTIFICATE OF ANALYSIS TB17150755

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001			
W063965 W063966 W063967 W063968 W063969		0.76 2.34 1.79 1.25 0.95	<0.001 <0.001 <0.001 <0.001 <0.001			
W063970 W063971 W063972 W063973 W063974		0.90 1.63 1.46 0.87 1.14	<0.001 <0.001 <0.001 <0.001 <0.001			
W063975 W063976 W063977 W063978 W063979		0.84 1.84 2.38 0.89 1.30	<0.001 <0.001 <0.001 <0.001 <0.001			
W063980 W063981 W063982 W063983 W063984		1.40 1.38 1.57 1.69 1.48	<0.001 <0.001 <0.001 <0.001 <0.001			
W063985 W063986 W063987 W063988 W063988		1.34 2.90 0.78 0.87 0.78	<0.001 <0.001 0.003 <0.001 <0.001			
W063990		1.53	<0.001			

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 1 Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 12-AUG-2017 Account: TRIBGNXY

QC CERTIFICATE TB17150755

Project: Hemlo North

This report is for 66 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 20-JUL-2017.

The following have access to data associated with this certificate:

COLIN BOWDIDGE	EDDA ELBOURNE	CHARLES ELBOURNE

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample – riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: TASHOTA RESOURCES INC. ATTN: COLIN BOWDIDGE 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 2 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 12–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

QC CERTIFICATE OF ANALYSIS TB17150755

Method	Au-ICP21
Analyte	Au
Sample Description	ppm
LOR	0.001
	STANDARDS
AMIS0282	0.185
AMIS0282	0.182
Target Range – Lower Bound	0.178
Upper Bound	0.202
CDN-PGMS25	0.490
CDN-PGMS25	0.464
Target Range – Lower Bound	0.453
Upper Bound	0.513
CDN-PGMS28	0.198
Target Range – Lower Bound	0.180
Upper Bound	0.206
G912-1	7.32
G912-1	7.20
Target Range – Lower Bound	6.85
Upper Bound	7.73
LEA-16	0.494
LEA-16	0.493
Target Range – Lower Bound	0.470
Upper Bound	0.532
OREAS-904	0.045
Target Range – Lower Bound	0.041
Upper Bound	0.049
OxJ120	2.36
Target Range – Lower Bound	2.22
Upper Bound	2.51
PK2	4.91
Target Range – Lower Bound	4.50
Upper Bound	5.07

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 3 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 12–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

QC CERTIFICATE OF ANALYSIS TB17150755

Method	Au-ICP21
Analyte	Au
Sample Description	ppm
LOR	0.001
	BLANKS
BLANK	<0.001
BLANK	<0.001
BLANK	0.003
Target Range – Lower Bound	<0.001
Upper Bound	0.002
	DUPLICATES
ORIGINAL	0.149
DUP	0.159
Target Range – Lower Bound	0.145
Upper Bound	0.163
ORIGINAL	0.089
DUP	0.120
Target Range – Lower Bound	0.098
Upper Bound	0.111
ORIGINAL	0.011
DUP	0.037
Target Range – Lower Bound	0.022
Upper Bound	0.026
ORIGINAL	0.020
DUP	0.018
Target Range – Lower Bound	0.017
Upper Bound	0.021
W063900	<0.001
DUP	<0.001
Target Range – Lower Bound	<0.001
Upper Bound	0.002
W063980	<0.001
DUP	<0.001
Target Range – Lower Bound	<0.001
Upper Bound	0.002

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 4 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 12–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Method Analyte Sample Description LOR	Au-ICP21 Au ppm 0.001
W063981 DUP Target Range – Lower Bound Upper Bound	<0.001 <0.001 <0.001 <0.001 0.002
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.006 0.004 0.004 0.006
ORIGINAL DUP Target Range – Lower Bound Upper Bound	0.025 0.026 0.023 0.028
W063975 W063975 PREP DUP	<pre>PREP DUPLICATES <0.001 <0.001</pre>

т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-AUG-2017 Account: TRIBGNXY

Project: Hemlo North

		CERTIFICATE CO	MMENTS	
	Processed at ALS Thunder	LABOF Bay located at 645 Norah Crescent,	ATORY ADDRESSES	
Applies to Method:	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-21 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouve Au–ICP21	er located at 2103 Dollarton Hwy, N	orth Vancouver, BC, Canada.	

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 1 Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 22-AUG-2017 This copy reported on 3-JAN-2019 Account: TRIBGNXY

CERTIFICATE TB17164846

Project: Hemlo North

This report is for 82 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 8-AUG-2017.

The following have access to data associated with this certificate:

***** See Appendix Page for comments regarding this certificate *****

COLIN BOWDIDGE	EDDA ELBOURNE	CHARLES ELBOURNE
A DECEMBER OF A		

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
LOG-21	Sample logging - ClientBarCode		
CRU-QC	Crushing QC Test		
PUL-QC	Pulverizing QC Test		
CRU-31	Fine crushing - 70% <2mm		
SPL-21	Split sample – riffle splitter		
PUL-31	Pulverize split to 85% <75 um		

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 2 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 22–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	
W063991 W063992 W063993 W063994 W063995		0.73 1.38 1.29 1.55 1.78	<0.001 0.001 <0.001 0.002 <0.001	
W063996 W063997 W063998 W063999 W063999 W064000		0.60 1.32 2.07 1.46 1.15	0.002 <0.001 <0.001 <0.001 <0.001	
W075001 W075002 W075003 W075004 W075005		1.30 0.86 1.58 0.88 1.12	<0.001 <0.001 <0.001 <0.001 <0.001	
W075006 W075007 W075008 W075009 W075010		1.38 2.26 1.61 1.80 1.19	<0.001 <0.001 <0.001 <0.001 <0.001	
W075011 W075012 W075013 W075014 W075015		1.43 2.32 1.43 1.67 0.79	0.001 <0.001 0.002 0.002 0.001	
W075016 W075017 W075018 W075019 W075020		1.12 1.82 1.11 1.33 1.33	<0.001 0.008 <0.001 <0.001 <0.001	
W075021 W075022 W075023 W075024 W075025		1.32 1.21 0.80 1.59 0.86	<0.001 <0.001 <0.001 <0.001 0.001	
W075026 W075027 W075028 W075029 W075030		1.57 1.39 1.20 1.33 1.00	<0.001 <0.001 <0.001 <0.001 <0.001	

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 3 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 22–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	
W075031 W075032 W075033 W075034 W075035		1.79 1.89 1.89 1.46 1.15	<0.001 <0.001 <0.001 <0.001 <0.001	
W075036 W075037 W075038 W075039 W075040		1.38 1.16 0.95 1.16 1.17	0.001 <0.001 <0.001 <0.001 <0.001	
W075041 W075042 W075043 W075044 W075045		0.75 1.36 2.17 2.66 3.19	0.001 <0.001 <0.001 <0.001 <0.001	
W075046 W075047 W075048 W075049 W075050		3.03 3.30 2.79 2.90 2.09	<0.001 <0.001 <0.001 <0.001 <0.001	
W075051 W075052 W075053 W075054 W075055		1.17 1.16 1.19 0.99 1.91	<0.001 <0.001 0.006 <0.001 <0.001	
W075056 W075057 W075058 W075059 W075060		0.51 1.23 1.27 0.90 1.98	0.001 <0.001 <0.001 <0.001 <0.001	
W075061 W075062 W075063 W075064 W075065		1.74 0.93 1.49 1.36 1.72	<0.001 <0.001 <0.001 <0.001 <0.001	
W075066 W075067 W075068 W075069 W075070		1.48 1.14 1.40 4.82 5.55	<0.001 <0.001 <0.001 <0.001 <0.001	

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 4 – A Total # Pages: 4 (A) Plus Appendix Pages Finalized Date: 22–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	
W075071 W075072		3.65 1.58	<0.001 <0.001	

т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 22-AUG-2017 Account: TRIBGNXY

Project: Hemlo North

		CERTIFICATE CO	MMENTS		
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada				
Applies to Method.	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-21 WEI-21	PUL-31	
Applies to Method:	Processed at ALS Vancouve Au-ICP21	r located at 2103 Dollarton Hwy, N	orth Vancouver, BC, Canada.		

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 22-AUG-2017 This copy reported on 3-JAN-2019 Account: TRIBGNXY

QC CERTIFICATE TB17164846

Project: Hemlo North

This report is for 82 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 8-AUG-2017.

The following have access to data associated with this certificate:

COLIN BOWDIDGE	EDDA ELBOURNE	CHARLES ELBOURNE

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
LOG-21	Sample logging - ClientBarCode		
CRU-QC	Crushing QC Test		
PUL-QC	Pulverizing QC Test		
CRU-31	Fine crushing - 70% <2mm		
SPL-21	Split sample – riffle splitter		
PUL-31	Pulverize split to 85% <75 um		

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 2 – A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 22–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Method Analyte Sample Description LOD	Au-ICP21 Au ppm 0.001
	STANDARDS
AMI50282	0.191
Target Range - Lower Bound	0.178
Upper Bound	0.202
CDN-GS-8C Target Range – Lower Bound	8.53 8.07
Upper Bound	9.11
CDN-PGMS25	0.469
Target Range - Lower Bound	0.453
Upper Bound	0.513
CDN-PGMS28	0.207
Target Range – Lower Bound Upper Bound	0.180 0.206
GAu-12a	0.020
Target Range – Lower Bound Upper Bound	0.019 0.023
GLG305-1	0.099
Target Range - Lower Bound	0.094
Upper Bound LEA-16	0.109
Target Range – Lower Bound	0.521 0.470
Upper Bound	0.532
OxJ120	2.27
Target Range – Lower Bound Upper Bound	2.22 2.51
PK2	4.84
Target Range – Lower Bound Upper Bound	4.50 5.07
	BLANKS
BLANK	<0.001
BLANK	0.001
Target Range - Lower Bound	<0.001
Upper Bound	0.002

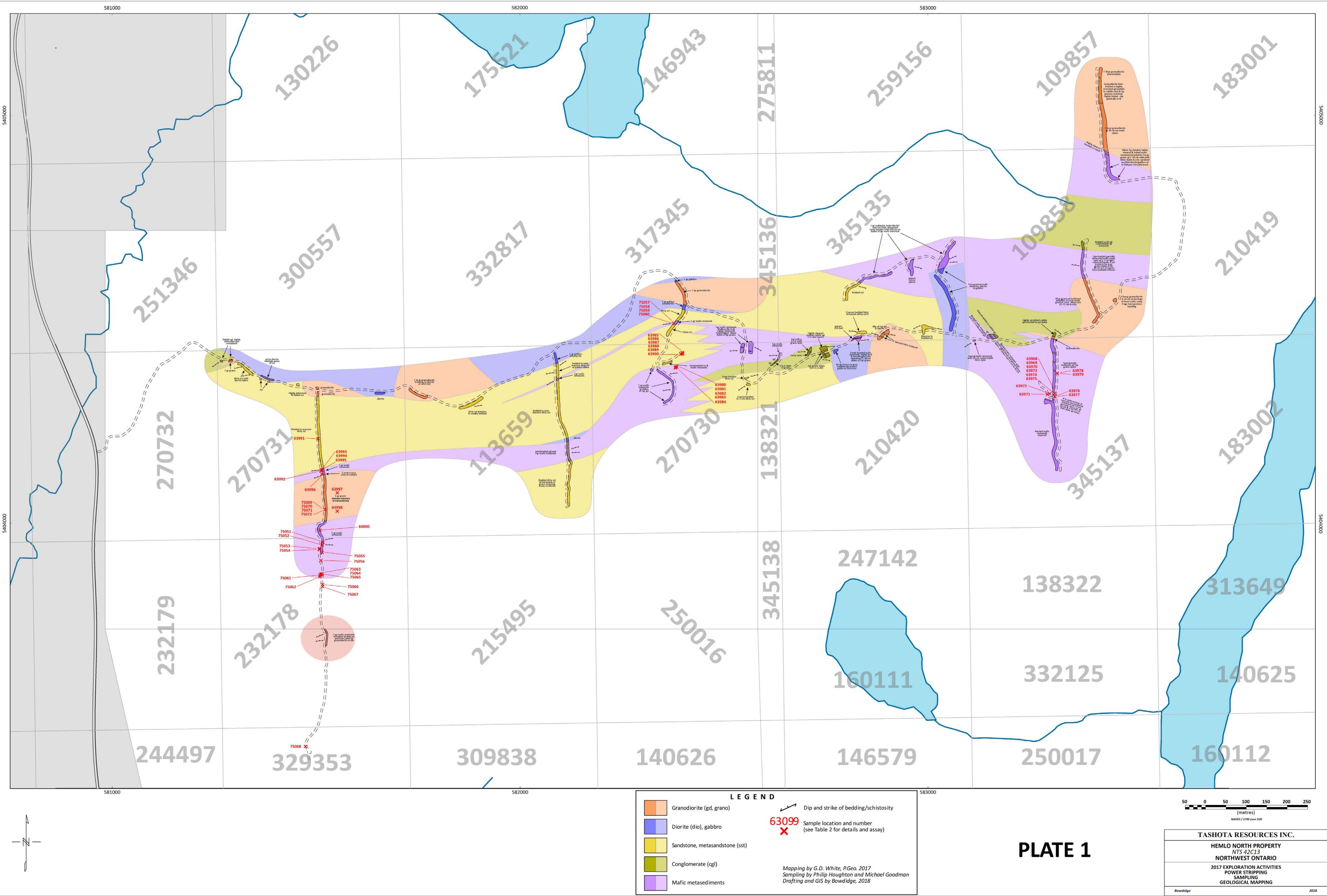
To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: 3 – A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 22–AUG–2017 Account: TRIBGNXY

Project: Hemlo North

Au-ICP21 Au ppm 0.001					
DUPLICATES					
0.014 0.015 0.013 0.016					
0.045 0.043 0.041 0.047					
<0.001 <0.001 <0.001 0.002					
<0.001 <0.001 <0.001 0.002					
<0.001 <0.001 <0.001 0.002					
PREP DUPLICATES					
0.001 <0.001					

т


ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TASHOTA RESOURCES INC. 2275 LAKESHORE BLVD W SUITE 518 TORONTO ON M8V 3Y3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 22-AUG-2017 Account: TRIBGNXY

Project: Hemlo North

		LABOR	ATORY ADDRESSES	
	LABORATORY ADDRESSES Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada			
Applies to Method:	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-21 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver lo Au-ICP21	ocated at 2103 Dollarton Hwy, No	orth Vancouver, BC, Canada.	

