## Ontario 8

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

# BENTON <br> RESOURCES INC. 

Technical Report on the 2016 Exploration of the Iron Duke Gold Project

NTS 52G/15<br>DUNNE LAKE AREA (G-2539)<br>Patricia Mining Division

N. Sims, P.Geo

April 9, 2019

## Contents

1: Summary ..... 3
2: Property Description and Location ..... 4
3: Accessibility, Climate, Local Resources, Infrastructure and Physiography ..... 7
4: Exploration History ..... 7
5: Regional Geology ..... 8
6: Property Geology ..... 9
7: Benton Exploration ..... 9
7.1 Prospecting ..... 10
7.2 Soil Sampling ..... 10
7.3 Trenching ..... 10
8: Sample Preparation, Analyses and Security ..... 11
9: Interpretation and Conclusions ..... 11
10: Recommendations ..... 11
11: References ..... 13
12: Assessment Expenditures ..... 14
Figure 1. Property Location Sketch ..... 4
Figure 2. Claim Sketch ..... 6
Table 1. Iron Duke Mining Claims ..... 5

## 1: Summary

During the 2016 winter, Benton Resources staked via helicopter three mining claims which created the Iron Duke Gold Project. The claims were staked after researching exploration in the area, which provided Benton with some historical gold showings associated with various deposit models (shear zone, quartz-hosted gold and iron formation). An interpreted regional iron formation is located near the Benderite Zone (the focus of Noranda's 1991-92 exploration on the property which they called Quill Lake and had samples up to 0.254 opt Au ) and Benton hopes that there be may have some similarities to the Musselwhite Gold Mine operated by Goldcorp and located 300km north of the Iron Duke project. Regionally the area has seen a variety of historical exploration for VMS style mineralization in and around the Mattabi, Lyon Lake and Sturgeon Lake deposits nearby (West, Northwest).

Benton spent a limited number of days collecting 64 grab (prospecting) samples as well as 100 reconnaissance soil samples. The prospecting was successful in duplicating significant gold grades in and around the Benderite Zone where the highest three assays were $64.1,38.2$ and $20.4 \mathrm{~g} / \mathrm{t}$ Gold. Sampling was very limited outside this zone and didn't return any significant results. The soil sampling resulted in a few anomalous clusters of samples that still need to be followed up on in the field. One of these anomalous areas was at the end of one of a recce survey line over a kilometre south of the Benderite zone.

Benton created 5 narrow N-S elongated trenches in overburden performed limited stripping using a 210 Hitachi excavator at the Benderite zone. The trenches were oriented to expose an EW trending fabric seen in limited outcrop. At the time of report the trenches have not been mapped but highlights of the channel sampling include: $8.17 \mathrm{~g} / \mathrm{t}$ Au over 1.8 m and $6.68 \mathrm{~g} / \mathrm{t}$ Au over 2 m (Trench C) and $1.55 \mathrm{~g} / \mathrm{t}$ over 3.8 m and $4.19 \mathrm{~g} / \mathrm{t}$ Au over 1.7 m (Trench D).

## 2: Property Description and Location

The Iron Duke project is composed of 98 individual mining claims (MLAS Cells) totalling almost 2000 hectares. The claims are contiguous to one another and each is wholly owned by Benton Resources Inc., and there are no underlying agreements, partnerships or royalties outstanding. The claims are located in the Dunne Lake Area (G-2539), 180km northwest of Thunder Bay, Ontario or 95 km east of Sioux Lookout, Ontario.


Figure 1. Property Location Sketch

| Tenure Number | Tenure Type | Tenure Number | Tenure Type |
| :---: | :---: | :---: | :---: |
| 339926 | Single Cell Mining Claim | 226394 | Single Cell Mining Claim |
| 100944 | Single Cell Mining Claim | 224973 | Single Cell Mining Claim |
| 100945 | Single Cell Mining Claim | 224887 | Single Cell Mining Claim |
| 102840 | Single Cell Mining Claim | 224888 | Boundary Cell Mining Claim |
| 102841 | Single Cell Mining Claim | 228504 | Single Cell Mining Claim |
| 100825 | Boundary Cell Mining Claim | 228505 | Single Cell Mining Claim |
| 100826 | Boundary Cell Mining Claim | 231683 | Single Cell Mining Claim |
| 118087 | Single Cell Mining Claim | 232270 | Single Cell Mining Claim |
| 120380 | Single Cell Mining Claim | 241163 | Single Cell Mining Claim |
| 125119 | Single Cell Mining Claim | 257722 | Single Cell Mining Claim |
| 125689 | Single Cell Mining Claim | 257718 | Single Cell Mining Claim |
| 129688 | Single Cell Mining Claim | 257719 | Single Cell Mining Claim |
| 153606 | Single Cell Mining Claim | 257720 | Single Cell Mining Claim |
| 153672 | Single Cell Mining Claim | 257721 | Single Cell Mining Claim |
| 153673 | Single Cell Mining Claim | 258409 | Single Cell Mining Claim |
| 153721 | Single Cell Mining Claim | 260937 | Single Cell Mining Claim |
| 159562 | Single Cell Mining Claim | 260938 | Single Cell Mining Claim |
| 159563 | Single Cell Mining Claim | 260939 | Single Cell Mining Claim |
| 159465 | Single Cell Mining Claim | 260838 | Single Cell Mining Claim |
| 162443 | Single Cell Mining Claim | 260839 | Single Cell Mining Claim |
| 165549 | Single Cell Mining Claim | 260840 | Single Cell Mining Claim |
| 165550 | Single Cell Mining Claim | 260841 | Single Cell Mining Claim |
| 165551 | Single Cell Mining Claim | 260842 | Single Cell Mining Claim |
| 170320 | Single Cell Mining Claim | 265665 | Single Cell Mining Claim |
| 172325 | Single Cell Mining Claim | 266222 | Single Cell Mining Claim |
| 178311 | Single Cell Mining Claim | 266271 | Single Cell Mining Claim |
| 178414 | Single Cell Mining Claim | 268932 | Single Cell Mining Claim |
| 178415 | Single Cell Mining Claim | 268844 | Single Cell Mining Claim |
| 183060 | Single Cell Mining Claim | 268845 | Single Cell Mining Claim |
| 183061 | Single Cell Mining Claim | 273683 | Single Cell Mining Claim |
| 183136 | Single Cell Mining Claim | 280991 | Single Cell Mining Claim |
| 183137 | Single Cell Mining Claim | 285699 | Single Cell Mining Claim |
| 188565 | Single Cell Mining Claim | 286330 | Single Cell Mining Claim |
| 188566 | Single Cell Mining Claim | 288962 | Single Cell Mining Claim |
| 188495 | Single Cell Mining Claim | 293071 | Single Cell Mining Claim |
| 194202 | Single Cell Mining Claim | 293141 | Single Cell Mining Claim |
| 194203 | Single Cell Mining Claim | 295796 | Single Cell Mining Claim |
| 194204 | Single Cell Mining Claim | 298293 | Single Cell Mining Claim |
| 194205 | Boundary Cell Mining Claim | 298193 | Single Cell Mining Claim |
| 194823 | Single Cell Mining Claim | 322244 | Single Cell Mining Claim |
| 207709 | Single Cell Mining Claim | 322245 | Single Cell Mining Claim |
| 208325 | Single Cell Mining Claim | 322246 | Single Cell Mining Claim |
| 208275 | Single Cell Mining Claim | 327493 | Single Cell Mining Claim |
| 219008 | Single Cell Mining Claim | 327494 | Single Cell Mining Claim |
| 218438 | Single Cell Mining Claim | 327495 | Single Cell Mining Claim |
| 218439 | Single Cell Mining Claim | 327496 | Single Cell Mining Claim |
| 218440 | Single Cell Mining Claim | 344693 | Single Cell Mining Claim |
| 219073 | Single Cell Mining Claim | 344694 | Single Cell Mining Claim |
| 221021 | Single Cell Mining Claim | 274238 | Boundary Cell Mining Claim |



Figure 2. Claim Sketch

# 3: Accessibility, Climate, Local Resources, Infrastructure and Physiography 

The property is accessed via the Graham Road (locally, a well-known and maintained forestry road) which intersects Hwy 17 (Trans-Canada) approximately 15 km west of Upsala, Ontario. After travelling north on the Graham logging road for 90 km , a smaller road (unofficially named the "Brightsands Road") travels west to the claims. The use of this road requires permission from the Ontario Ministry of Natural Resources (MNR) and is not open to public use due to potential Caribou habitat along this route. Accessing the claims via helicopter doesn't require road authorization but the MNR hopes that anyone working in the area will follow the Best Management Practices for Mineral Exploration and Development Activities and Woodland Caribou in Ontario document, created by their ministry. The Graham road is maintained by local forestry activity and is often plowed during winter months, but exploration should not rely on forestry to keep the road open 12 months of the year. The Brightsands Road is not maintained and is currently washed out due to beaver activity at a small creek 2 km before reaching the claims. Any new forestry (logging) operations may change the status of these roads.

The property is located within Ontario's Boreal forest which contains a mix of coniferous and deciduous trees and wetlands. The climate varies, with winter temperatures below $-30^{\circ} \mathrm{C}$ and accumulated snowfall greater than 1 m , and summer temperatures having a high between $20-30^{\circ} \mathrm{C}$ and moderate rainfall. The region has many changes in topography and has been shaped by glaciation, which as deposited an abundance of finer-grained till (sand) throughout the area.

Upsala, Ontario is the closest community and has basic groceries and fuel offered with all other exploration/mining needs available in Thunder Bay. The closest power transmission line is located adjacent to the Trans-Canada highway, over 100km south of the project and flanks and east-west rail line.

## 4: Exploration History

Exploration in the vicinity of the Iron Duke project has historically focussed on finding Sturgeon Lake-style VMS deposits with minor gold exploration.

In 1957 N.A. Timmins Exploration Ltd. conducted an 8-hole, 4366 foot drilling program into an iron formation at the eastern edge of what is now the Iron Duke property. The iron formation was discovered by prospectors using magnetometer surveys. The company then conducted a follow-up aeromagnetic survey 1960.

In 1970, Amax Exploration Inc. conducted a geological field survey in the area surrounding Karen Lake and Add Lake (immediately west of Iron Duke). The survey included mapping of outcrops along cut lines on the property with interest in the lithology, structure, and mineralization in the area.

In 1970, A 145 mile airborne EM survey was flown through what is now the centre of the Iron Duke property by Questor Surveys Ltd. for Ranworth Explorations Ltd.

Between 1991-1992 Hemlo Gold Mines (Noranda Exploration Ltd) completed reconnaissance geological and prospecting surveys, gridding, soil and humus geochemical surveys, trenching, and rock geochemistry were conducted over portions of their Quill Lake property. The object of these programs was to delineate and evaluate targets for gold mineralization using the Benderite showing as a starting point. The Benderite showing consists of arsenopyrite-bearing sulphide bands in schistose chloritic argillites within a mafic metavolcanic unit with grades up to 0.254 opt.

From 2008-2011 Excalubur Resources Ltd was active in working various portions of what is now peripheral Iron Duke, completing geophysics, geochemical surveys and diamond drilling.

## 5: Regional Geology

Adapted from Felix 1991
The property is located at the east end of the Sturgeon Lake Greenstone Belt within the Wabigoon Subprovince of the Precambrian Shield. The rocks are Archean in age. Mapping by N.F. Trowell (1975-76) shows a thick belt of mafic volcanics both pillowed and unpillowed and locally amygdaloidal running NW-SE between Quest Lake and Post Lake. The mafic volcanics encompass a wedge of felsic to intermediate pyroclastics which may represent a volcanic pile. The metavolcanics are bounded to the east and north paralleling Div and Quest Lakes by a belt of Timiskaming-type metasediments, mostly greywacke and siltstone with minor conglomerate, arkose, argillite and iron formation. Similarly, to the west and south paralleling Post and Add Lakes the volcanics are bounded by another belt of metasediments - the Sturgeon Lake - Post Lake metasediments. This metavolcanic-metasedimentary sequence has been intruded by ultramafic rocks, gabbro and diorite. Many of the gabbro and diorite bodies may represent feeder dykes and sills which were contemporaneous and coeval with the mafic volcanism. However, none of the rocks have been age dated. All of these rocks have been metamorphosed under greenschist and locally almandine-amphibolite facies conditions.

The supracrustal are bounded to the northeast and south by early felsic intrusive rocks predominantly represented by biotite granodiorite, hornblende-biotite granodiorite and hybrid granitic gneisses. A younger pluton of syenitic composition - the Vista Lake Complex intruded the granite gneiss on the east and the Quest Lake-Div Lake metasediments including iron formation to the west and south.

Mineralization found in the metavolcanics in the region is generally disseminated, consisting of pyrite, graphite and pyrrhotite (1-3\%) locally accompanied by very small amounts of chalcopyrite, although locally stringers or veinlets of sulphides are also present. Strong input anomalies (from assessment research) in the area appear to be due to both graphite +/-sulphides and iron formation (oxide faciestype) horizons. Disseminated sulphides also occur in the mafic intrusive and metasedimentary rocks. Aeromagnetic surveys of the region indicate magnetite iron formation is present in the metasedimentary belts.

## 6: Property Geology

Adapted from Felix 1991
The basal unit on the property is a fine to medium grained flow of mafic to intermediate composition. Porphyritic and amygdaloidal zones within the flows are noted; thickness and lateral extent of these zones have yet to be determined. Outcroppings of chlorite schist and schistose chloritic argillites (interflows sediments) are observed in scattered localities.

Metasediments are poorly exposed on the property (generally limited to greywackes, siltstone and argillites outcropping south of Div Lake and along the logging road southwest of the patented claim group), however several frost heaved blocks of magnetite iron formation were observed over a width of 25 meters immediately NW of Div Lake. The aeromagnetic expression of the iron formation which can be traced regionally for over 40 km suggests that a sinuous flexure occurs within the claim group stratigraphy.

Most of the metavolcanics and metasediments are foliated. Strike measurements ranged from 90 to 130 deg with steep dips to the south of 70 deg . Strike measurements are strongly affected by the magnetic attraction of the iron formation members within the metasediments. The mafic intrusive are generally massive and poorly foliated.

Gold mineralization on the property was first discovered and reported by Adam Benderite, on what is now claim 159563. The Benderite showing yielded gold values up to 0.254 opt from grab samples of poorly exposed arsenopyrite-bearing sulphide bands in schistose chlorite argillites within the mafic volcanic unit. The showing is located approximately 100 meters to 300 meters south of the volcanosedimentary contact and about 600 meters south of the lean iron formation. Schistosity of the rocks about the showing averages 100 to 105 * in strike. Additional (historical) prospecting in the vicinity of the showing evidenced sporadic exposure of discrete bands of arsenopyrite mineralization within an area 200 meters long and 90 meters wide and contained gold values of up to 0.131 opt.

Gold bearing mineralized zones are quartz and sulphide (arsenopyrite and pyrite) rich and occur in strongly foliated rocks. Other minerals present include pyrrhotite and sphalerite. Gold mineralization appears to be related to both sulphide rich replacement veins (in discontinuous layers and lenses parallel to the foliation) and quartz-sulphide breccia zones. Host rocks are strongly chloritized and exhibit a distinctive blue-green weathered surface. They are also locally brecciated and highly silicified. The influence of host rocks, structure, metamorphism and alteration and the effect plutonic activity had on those processes and on gold mineralization is yet to be determined.

## 7: Benton Exploration

Benton completed 3 different activities on the Iron Duke project in 2016/17 in hopes of delineating additional exploration targets and verifying historic ones. The work was semi-sporadic and occurred inbetween exploration programs on other Benton projects.

### 7.1 Prospecting

Prospecting the Iron Duke claims took place sporadically throughout the summer and fall of 2016 and was designed to locate historic showings, validate previous assays and find new occurrences. Benton prospectors, Mick Stares (12 days), J.(Rick) Crocker (4 days), T.Murray ( 5 days) and R. Dyer (3 days) were the individuals involved in this stage of exploration. Logs of their work are attached in the appendix.

Selective grab samples taken by Benton in the Benderite Zone (area in which Noranda focussed their efforts in '91 and '92) resulted in assays as high as $64.1,38.2$ and $20.4 \mathrm{~g} / \mathrm{t}$ Gold in highly foliated arsenopyrite-rich volcanics with carb alteration and silicified iron formation. Limited sampling outside of this zone did not result in any other significant gold assays (none over 50ppb Au).

A map showing sample location is included in the appendix as well as correlating assay results.

### 7.2 Soil Sampling

At the end of June 2017, R.Dyer and T. Murray spent twelve days collecting soils samples at Iron Duke. 100 samples were collected on 6 linear traverses designed to cover magnetic trends believe to be associated with mineralization. The lines were oriented NNE and length varied.

The soil sampling program resulted in two anomalous zones where gold values were elevated: immediately south of Div Lake and approx. 1km SSW of the Benderite zone. No ground truthing of these anomalous areas has been performed and their source hasn't been identified.

A map showing sample location is included in the appendix as well as correlating assay results.

### 7.3 Trenching

Benton dug 5 narrow trenches in overburden consisting of soil, till and weathered platey rock. The trenches were never washed and full of rubble, therefore efforts to map lithologies were unsuccessful. The freshly exposed outcrop appears to be a sheared volcanic with py/aspy mineralization but future work will describe lithologies in detail.

| Trench A | Furthest west strip at the Benderite (aka Quill Lake) Zone. Anomalous gold values <br> throughout ranging from trace to 839ppb. The trench could have extended further south as <br> the gold values are higher as you go south. Assay composites up to $0.52 \mathrm{~g} / \mathrm{t} \mathrm{Au} \mathrm{over} 5.4 \mathrm{~m}$. |
| :--- | :--- |
| Trench B | Poorly stripped/exposed. Sampling was sporadic with composites $0.43 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 2 m |
| Trench C | Nearly 80 m long but very narrow with minimal sampling in the southern half of the trench <br> where Benton grab samples were as high as $64.1 \mathrm{~g} / \mathrm{t}$ Au. The channel samples cut had a <br> large gap between the two best composites: $8.17 \mathrm{~g} / \mathrm{t} \mathrm{Au} \mathrm{over} 1.8 \mathrm{~m}$ and $6.68 \mathrm{~g} / \mathrm{t} \mathrm{Au} \mathrm{over} 2 \mathrm{~m}$ |
| Trench D | Also located where Benton grab samples had significant gold (up to $20.4 \mathrm{~g} / \mathrm{t}$. Channel <br> sampling highlights include $1.55 \mathrm{~g} / \mathrm{t}$ over 3.8 m and $4.19 \mathrm{~g} / \mathrm{t}$ Au over 1.7 m |
| Trench E | Furthest east and contained sporadic channel sampling where sulphides present. $0.92 \mathrm{~g} / \mathrm{t}$ <br> Au over 3.3 m and $0.98 \mathrm{~g} / \mathrm{t}$ Au over 3 m |

## 8: Sample Preparation, Analyses and Security

Soil samples were collected using craft paper bags including a sample ID tag and hung to dry on-site and at Benton's office. Grab samples were placed in plastic sample bags with an ID tag. Individual bags were collected in larger bags and taped shut during transport to Accurassay Laboratories (now bankrupt) and Activation Laboratories Ltd., both in Thunder Bay, ON.

Once delivered the samples are prepared for assay by crushing the sample and up to $80 \%$ passing a 2 mm screen then riffle split. 30g representative samples were then assayed for gold using a Fire Assay method.

## 9: Interpretation and Conclusions

The work performed by Benton was preliminary and incomplete in certain respects. While the sampling (grabs, soils and channels) did provide evidence showing the presence of economic gold grades in selectively taken samples, the work performed by Benton did not advance the project. The author cannot comment on style of mineralization at this time without proper geological mapping.

## 10: Recommendations

The trenches need to be washed to allow for proper mapping of lithology and structure. Further channel sampling should be completed to fill in gaps between samples containing anomalous gold.

Creating a local grid to allow for property scale mapping as well as systematic geochemical surveys would be an invaluable tool to locate the rocks associated with gold mineralization and to map regional/local structures to determine the controls on mineralization.

Any clusters of soil samples displaying anomalous gold values should be looked at in the field and trenching should take place if the anomalies are thought to represent in-situ weathering of the basement. Prospecting areas that have seen little work should continue once the factors controlling gold mineralization are determined.

A number of geophysical surveys overlap the claim block and should be compiled to assist in delineating exploration targets.

Respectfully submitted by



Nathan Sims, P.Geo
Benton Resources Inc.

## 11: References

Felix, R. 1992: Report of Work 1991 Quill Lake Property N.T.S. 52G/15 NORTHWEST ONTARIO DIVISION. AFRO number OM92-046

Mumin, A., Moody, R., 2011: Technical Report on the Summer/Fall 2010 Sturgeon Lake Soil Sampling and Drill Program - Excalibur Resources Ltd. AFRO number 2.48954

Pettijohn, F.J. 1937: Early Precambrian Geology and Correlational Problems of the Northern Subprovince of the Lake Superior Region; Geological Society of America Bulletin, Volume 48, p.153-202.

Trowell, N. F. 1981: North Arm of Sturgeon Lake; Ontario Geological Survey Map 2456, Precambrian Geology Series, Scale 1:50 000. Geology 1975

Trowell, N. F. 1981: Sturgeon Marrows; Ontario Geological Survey Map 2457, Precambrian Geology Series, Scale 1:50 000. Geology 1975-6

Trowell, N.F., Sage, R.P., Wright, W., Chamois, P., and Higgins, C. 1979: Sturgeon Narrows and Squaw Lake Alkalic Rock Cmplexes, District of Thunder Bay; OGS Preliminary Map P. 2223 Geological Series Scale 1:15840 Geology 1976

## Appendix I - Assay Certificates

## Final Certificate

| Benton Resources Inc. | Date Received: $10 / 05 / 2016$ |
| :--- | ---: |
| 684 Squier Street | Date Completed: $10 / 13 / 2016$ |
| Thunder Bay, ON, CA | Job \#: 201642066 |
| P7B4A8 | Reference: |
| Ph\#: (807) 475-7474 | Sample \#: 16 |
| Fax\#: (807) 475-7200 |  |
| Email: sstares@bentonresources.ca, cbarr@bentonresources.ca |  |


| Acc \# | Client ID | Au <br> g/t (ppm) |
| :--- | :--- | ---: |
| 219057 | 1321403 | $<0.005$ |
| 219058 | 1321404 | $<0.005$ |
| 219059 | 1321405 | 0.010 |
| 219060 | 1321406 | $<0.005$ |
| 219061 | 1321407 | $<0.005$ |
| 219062 | 1321408 | $<0.005$ |
| 219063 | 1237801 | 0.469 |
| 219064 | 1237802 | 0.015 |
| 219065 | 1237803 | 0.006 |
| 219066 | 1237804 | $<0.005$ |
| 219067 | 1237804 Dup | $<0.005$ |
| 219068 | 1237805 | $<0.005$ |
| 219069 | 1237806 | 0.047 |
| 219070 | 1237807 | $<0.005$ |
| 219071 | 1321352 | 0.007 |
| 219072 | 1321353 | $<0.005$ |
| 219073 | 1321354 | 0.008 |
|  |  |  |
| APPLIED SCOPES: ALP1, ALFA1 |  |  |



The results included on this report relate only to the items tested.
The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

## Final Certificate

| Benton Resources Inc. | Date Received: $10 / 05 / 2016$ |
| :--- | ---: |
| 684 Squier Street | Date Completed: $10 / 13 / 2016$ |
| Thunder Bay, ON, CA | Job \#:201642066 |
| P7B4A8 | Reference: |
| Ph\#: (807) 475-7474 | Sample \#:16 |
| Fax\#: (807) 475-7200 |  |
| Email: sstares@bentonresources.ca, cbarr@bentonresources.ca |  |



The results included on this report relate only to the items tested.
The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

## Benton Resources Corp. <br> 684 Squier Street <br> Thunder Bay ON P7B 4A8 <br> Canada

## ATTN: Clint Barr (Invoices+res)

## CERTIFICATE OF ANALYSIS

3 Rock samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

## REPORT A16-06266

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3


Emmanuel Eseme, Ph.D.
Quality Control

## Benton Resources Corp. <br> 684 Squier Street <br> Thunder Bay ON P7B 4A8 <br> Canada

## ATTN: Clint Barr (Invoices+res)

## CERTIFICATE OF ANALYSIS

40 Rock samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)
Code 1C-OES-Tbay Fire Assay ICPOES (QOP Fire Assay Tbay)
Code 1E-Ag Tbay Aqua Regia ICP(AQUAGEO)

## REPORT A16-06016

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.


| Analyte Symbol | Au | Au | Pd | Pt | Ag | Au |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unit Symbol | ppb | ppb | ppb | ppb | ppm | g/tonne |
| Lower Limit | 5 | 2 | 5 | 5 | 0.2 | 0.03 |
| Method Code | FA-AA | FA-ICP | FA-ICP | FA-ICP | AR-ICP | FA-GRA |
| 1195776 | > 5000 |  |  |  |  | 10.7 |
| 1195777 | 1170 |  |  |  |  |  |
| 1195778 | 26 |  |  |  |  |  |
| 1195779 | < 5 |  |  |  |  |  |
| 1195780 | < 5 |  |  |  |  |  |
| 1195781 | < 5 |  |  |  |  |  |
| 1195782 | 4270 |  |  |  |  |  |
| 1195783 | 3780 |  |  |  |  |  |
| 1195784 | 2760 |  |  |  |  |  |
| 1195785 | 2940 |  |  |  |  |  |
| 1195786 | > 5000 |  |  |  |  | 8.71 |
| 1195787 | > 5000 |  |  |  |  | 20.4 |
| 1195788 | 3410 |  |  |  |  |  |
| 1195789 | 683 |  |  |  |  |  |
| 1195790 | 224 |  |  |  |  |  |
| 1196701 | < 5 |  |  |  |  |  |
| 1196702 | < 5 |  |  |  |  |  |
| 1196703 | < 5 |  |  |  |  |  |
| 1196704 | < 5 |  |  |  |  |  |
| 1196705 | 17 |  |  |  |  |  |
| 1196706 | < 5 |  |  |  |  |  |
| 1196707 | 33 |  |  |  |  |  |
| 1196708 | < 5 |  |  |  |  |  |
| 1196709 | <5 |  |  |  |  |  |
| 1196710 | < 5 |  |  |  |  |  |
| 1196711 | 12 |  |  |  |  |  |
| 1196712 | 5 |  |  |  |  |  |
| 1196713 | < 5 |  |  |  |  |  |
| 1196714 | < 5 |  |  |  |  |  |
| 1196715 | <5 |  |  |  |  |  |
| 1196716 | < 5 |  |  |  |  |  |
| 1196717 | 10 |  |  |  |  |  |
| 1196718 | < 5 |  |  |  |  |  |
| 1196719 | <5 |  |  |  |  |  |
| 1196720 |  | 8 | < 5 | 8 |  |  |
| 1196721 | < |  |  |  | 18.7 |  |
| 1043901 | < 5 |  |  |  |  |  |
| 1043902 | <5 |  |  |  |  |  |
| 1195791 | 12 |  |  |  |  |  |
| 1195792 | <5 |  |  |  |  |  |


| Analyte Symbol | Au | Au | Pd | Pt | Ag | Au |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unit Symbol | ppb | ppb | ppb | ppb | ppm | g/tonne |
| Lower Limit | 5 | 2 | 5 | 5 | 0.2 | 0.03 |
| Method Code | FA-AA | FA-ICP | FA-ICP | FA-ICP | AR-ICP | FA-GRA |
| GXR-1 Meas |  |  |  |  | 28.7 |  |
| GXR-1 Cert |  |  |  |  | 31.0 |  |
| GXR-4 Meas |  |  |  |  | 3.4 |  |
| GXR-4 Cert |  |  |  |  | 4.0 |  |
| GXR-6 Meas |  |  |  |  | 0.3 |  |
| GXR-6 Cert |  |  |  |  | 1.30 |  |
| PK2 Meas |  | 4990 | 6040 | 4840 |  |  |
| PK2 Cert |  | 4785.000 | 5918.000 | 4749.000 |  |  |
| CDN-PGMS-25 Meas |  | 487 | 1930 | 408 |  |  |
| CDN-PGMS-25 Cert |  | 483 | 1830 | 400 |  |  |
| OXN117 Meas |  |  |  |  |  | 7.79 |
| OXN117 Cert |  |  |  |  |  | 7.679 |
| OxK119 Meas |  |  |  |  |  | 3.72 |
| OxK119 Cert |  |  |  |  |  | 3.604 |
| SF85 Meas | 865 |  |  |  |  |  |
| SF85 Cert | 848 |  |  |  |  |  |
| SF85 Meas | 845 |  |  |  |  |  |
| SF85 Cert | 848 |  |  |  |  |  |
| OxD128 Meas | 426 |  |  |  |  |  |
| OxD128 Cert | 424.000 |  |  |  |  |  |
| OxD128 Meas | 427 |  |  |  |  |  |
| OxD128 Cert | 424.000 |  |  |  |  |  |
| 1195776 Orig |  |  |  |  |  | 10.2 |
| 1195776 Dup |  |  |  |  |  | 11.3 |
| 1195785 Orig | 2880 |  |  |  |  |  |
| 1195785 Dup | 3010 |  |  |  |  |  |
| 1196705 Orig | 18 |  |  |  |  |  |
| 1196705 Dup | 15 |  |  |  |  |  |
| 1196715 Orig | < 5 |  |  |  |  |  |
| 1196715 Dup | <5 |  |  |  |  |  |
| 1043901 Orig | < 5 |  |  |  |  |  |
| 1043901 Dup | < 5 |  |  |  |  |  |
| Method Blank |  |  |  |  | <0.2 |  |
| Method Blank | < 5 |  |  |  |  |  |
| Method Blank | < 5 |  |  |  |  |  |
| Method Blank | <5 |  |  |  |  |  |
| Method Blank |  | <2 | < 5 | < 5 |  |  |
| Method Blank |  |  |  |  |  | <0.03 |

## Benton Resources Corp. <br> 684 Squier Street <br> Thunder Bay ON P7B 4A8 <br> Canada

## ATTN: Clint Barr (Invoices+res)

## CERTIFICATE OF ANALYSIS

## 104 Soil samples were submitted for analysis

The following analytical package(s) were requested:
Code 1A2 Au - Fire Assay AA

## REPORT A16-06662

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3


Emmanuel Eseme, Ph.D. Quality Control

## Benton Resources Corp. <br> 684 Squier Street <br> Thunder Bay ON P7B 4A8 <br> Canada

## ATTN: Clint Barr (Invoices+res)

## CERTIFICATE OF ANALYSIS

104 Soil samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

## REPORT A16-06662

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3


Emmanuel Eseme, Ph.D.
Quality Control

| Analyte Symbol | Au |
| :---: | :---: |
| Unit Symbol | ppb |
| Lower Limit | 5 |
| Method Code | FA-AA |
| 1094524 | < 5 |
| 1094525 | < 5 |
| 1094526 | <5 |
| 1094527 | < 5 |
| 1094528 | 5 |
| 1094529 | <5 |
| 1094530 | <5 |
| 1094532 | < 5 |
| 1094533 | < 5 |
| 1094534 | < 5 |
| 1094536 | < 5 |
| 1094537 | < 5 |
| 1094538 | <5 |
| 1094539 | <5 |
| 1094540 | < 5 |
| 1094541 | < 5 |
| 1094542 | < 5 |
| 1094543 | < 5 |
| 1094544 | < 5 |
| 1094545 | < 5 |
| 1094546 | < 5 |
| 1094547 | < 5 |
| 1094549 | < 5 |
| 1094550 | < 5 |
| 171051 | < 5 |
| 171052 | <5 |
| 171053 | < 5 |
| 171054 | < 5 |
| 171056 | 7 |
| 171057 | < 5 |
| 171058 | < 5 |
| 171059 | 5 |
| 171060 | 15 |
| 171061 | < 5 |
| 171062 | < 5 |
| 171063 | 5 |
| 171064 | 6 |
| 171065 | 12 |
| 171066 | 11 |
| 171067 | 11 |
| 171068 | 29 |
| 171069 | 5 |
| 171070 | 5 |
| 171071 | 6 |
| 171072 | < 5 |
| 171073 | < 5 |
| 171074 | 5 |
| 171075 | < 5 |


| Analyte Symbol | Au |
| :---: | :---: |
| Unit Symbol | ppb |
| Lower Limit | 5 |
| Method Code | FA-AA |
| 171076 | < |
| 171077 | < 5 |
| 171078 | < 5 |
| 171079 | < 5 |
| 171080 | < 5 |
| 171081 | < 5 |
| 171082 | < 5 |
| 171083 | < 5 |
| 171084 | < 5 |
| 171085 | < 5 |
| 171086 | < 5 |
| 171087 | 5 |
| 171088 | < 5 |
| 171089 | < 5 |
| 171090 | < 5 |
| 171091 | 6 |
| 171092 | 5 |
| 171093 | 5 |
| 171094 | 6 |
| 171095 | 6 |
| 171096 | 46 |
| 171097 | 5 |
| 171098 | 6 |
| 171099 | 5 |
| 171100 | < 5 |
| 1093601 | 5 |
| 1093602 | 13 |
| 1093603 | 6 |
| 1093604 | < 5 |
| 1093605 | 8 |
| 1093606 | 6 |
| 1093607 | 6 |
| 1093608 | 7 |
| 1093609 | 7 |
| 1093610 | 8 |
| 1093611 | 5 |
| 1093612 | < 5 |
| 1093613 | < 5 |
| 1093614 | 5 |
| 1093615 | < 5 |
| 1093616 | 5 |
| 1093617 | < 5 |
| 1093618 | 5 |
| 1093619 | <5 |
| 1093620 | <5 |
| 1093621 | 8 |
| 1093622 | 7 |
| 1093623 | 6 |


| Analyte Symbol | Au |
| :--- | :--- |
| Unit Symbol | ppb |
| Lower Limit | 5 |
| Method Code | FA-AA |
| 1093624 | 43 |
| 1093625 | 5 |
| 1093626 | 6 |
| 1093627 | $<5$ |
| 1094531 | 6 |
| 1094535 | $<5$ |
| 1094548 | $<5$ |
| 171055 | $<5$ |


| Analyte Symbol | Au |
| :--- | ---: |
| Unit Symbol | ppb |
| Lower Limit | 5 |
| Method Code | FA-AA |
| SF85 Meas | 841 |
| SF85 Cert | 848 |
| SF85 Meas | 836 |
| SF85 Cert | 848 |
| SF85 Meas | 864 |
| SF85 Cert | 848 |
| SF85 Meas | 840 |
| SF85 Cert | 848 |
| OxD128 Meas | 419 |
| OxD128 Cert | 424.000 |
| OxD128 Meas | 414 |
| OxD128 Cert | 424.000 |
| OxD128 Meas | 423 |
| OxD128 Cert | 424.000 |
| 1094534 Orig | $<5$ |
| 1094534 Dup | $<5$ |
| 1094545 Orig | $<5$ |
| 1094545 Dup | $<5$ |
| 171057 Orig | 37 |
| 171057 Dup | $<5$ |
| 171072 Orig | $<5$ |
| 171072 Dup | 99 |
| 171082 Orig | $<5$ |
| 171082 Dup | $<5$ |
| 171092 Orig | 55 |
| 171092 Dup | 5 |
| 1093607 Orig | 6 |
| 1093607 Dup | 66 |
| 1093617 Orig | $<5$ |
| 1093617 Dup | $<5$ |
| 1093627 Orig | 7 |
| 1093627 Dup | $<5$ |
| 171055 Orig | $<5$ |
| 171055 Dup | $<5$ |
| Method Blank | $<5$ |
|  |  |

## Benton Resources Inc. <br> 684 Squier Street <br> Thunder Bay ON P7B 4A8 <br> Canada

## ATTN: Clint Barr (Invoices+res)

## CERTIFICATE OF ANALYSIS

81 Rock samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

## REPORT A16-11499

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3


Emmanuel Eseme, Ph.D. Quality Control

| Analyte Symbol | Au | Au |
| :---: | :---: | :---: |
| Unit Symbol | ppb | g/tonne |
| Lower Limit | 5 | 0.03 |
| Method Code | FA-AA | FAGRA |
| 171201 | 40 |  |
| 171202 | 33 |  |
| 171203 | 165 |  |
| 171204 | 86 |  |
| 171205 | 97 |  |
| 171206 | 83 |  |
| 171207 | 100 |  |
| 171208 | 5 |  |
| 171209 | 5 |  |
| 171210 | 6 |  |
| 171211 | < 5 |  |
| 171212 | 21 |  |
| 171213 | < 5 |  |
| 171214 | 491 |  |
| 171215 | 643 |  |
| 171216 | 15 |  |
| 171217 | 839 |  |
| 171218 | 604 |  |
| 171219 | 57 |  |
| 171220 | 644 |  |
| 171221 | 222 |  |
| 171222 | 5 |  |
| 171223 | 52 |  |
| 171224 | 85 |  |
| 171225 | < 5 |  |
| 171226 | < 5 |  |
| 171227 | 697 |  |
| 171228 | < 5 |  |
| 171229 | 12 |  |
| 171230 | 8 |  |
| 171231 | 84 |  |
| 171232 | 870 |  |
| 171233 | > 5000 | 14.7 |
| 171234 | 2500 |  |
| 171235 | 365 |  |
| 171236 | > 5000 | 8.87 |
| 171237 | 4480 |  |
| 171238 | 53 |  |
| 171239 | 9 |  |
| 171240 | 13 |  |
| 171241 | 54 |  |
|  |  |  |


| Analyte Symbol | Au | Au |
| :---: | :---: | :---: |
| Unit Symbol | ppb | g/tonne |
| Lower Limit | 5 | 0.03 |
| Method Code | FA-AA | $\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$ |
| 171242 | 53 |  |
| 171243 | 259 |  |
| 171244 | > 5000 | 8.26 |
| 171245 | 979 |  |
| 171246 | 66 |  |
| 171247 | 1580 |  |
| 171248 | 1830 |  |
| 171249 | 2520 |  |
| 171250 | 95 |  |
| 171251 | 1820 |  |
| 171252 | 57 |  |
| 171253 | 220 |  |
| 171254 | 226 |  |
| 171255 | 450 |  |
| 171256 | 1280 |  |
| 171257 | 932 |  |
| 171258 | 524 |  |
| 171259 | 1610 |  |
| 171260 | 805 |  |
| 1195901 | 500 |  |
| 1195902 | 8 |  |
| 1195903 | 8 |  |
| 1195904 | 45 |  |
| 1195905 | 68 |  |
| 1195906 | 139 |  |
| 1195907 | 12 |  |
| 1195908 | < 5 |  |
| 1195909 | < 5 |  |
| 1195910 | < 5 |  |
| 1195911 | 8 |  |
| 1195912 | 25 |  |
| 1195913 | 169 |  |
| 1195914 | < 5 |  |
| 1195915 | $>5000$ | 38.2 |
| 1195916 | 2720 |  |
| 1195917 | $>5000$ | 64.1 |
| 1195918 | $>5000$ | 7.84 |
| 1195919 | 4130 |  |
| 1195920 | 98 |  |
| 1195921 | 2590 |  |


| Analyte Symbol | Au | Au |
| :---: | :---: | :---: |
| Unit Symbol | ppb | g/tonne |
| Lower Limit | 5 | 0.03 |
| Method Code | FA-AA | FAGRA |
| OXN117 Meas |  | 7.72 |
| OXN117 Cert |  | 7.679 |
| OxK119 Meas |  | 3.77 |
| OxK119 Cert |  | 3.604 |
| $\begin{aligned} & \text { OREAS } \\ & \text { 251(FA-Anaster) } \\ & \text { Meas } \end{aligned}$ | 508 |  |
| OREAS <br> 251(FA-Anaster) <br> Cert | 504 |  |
| $\begin{aligned} & \text { OREAS } \\ & \text { 251(FA-Anaster) } \\ & \text { Meas } \end{aligned}$ | 500 |  |
| $\begin{aligned} & \text { OREAS } \\ & \text { 251(FA-Anaster) } \\ & \text { Cert } \end{aligned}$ | 504 |  |
| 171210 Orig | 7 |  |
| 171210 Dup | 5 |  |
| 171220 Orig | 596 |  |
| 171220 Dup | 692 |  |
| 171230 Orig | 6 |  |
| 171230 Dup | 9 |  |
| 171233 Orig |  | 14.8 |
| 171233 Dup |  | 14.6 |
| 171245 Orig | 969 |  |
| 171245 Dup | 988 |  |
| 171250 Orig | 95 |  |
| $\begin{aligned} & 171250 \text { Split } \\ & \text { PREP DUP } \end{aligned}$ | 118 |  |
| 171255 Orig | 467 |  |
| 171255 Dup | 433 |  |
| 1195905 Orig | 82 |  |
| 1195905 Dup | 54 |  |
| 1195920 Orig | 100 |  |
| 1195920 Dup | 96 |  |
| Method Blank | < 5 |  |
| Method Blank |  | < 0.03 |

## Appendix II - Prospector/Contractor Logs

## Report on Iron Duke Gold Project - Mick Stares

During the weeks of June 20 through to the 25 I spent 4 days on the iron duke property. The days were spent locating and sampling the trenches that Noranda had dug back in 1992. All the trenches were located but!, a lot of them have been buried back in due ground water and debris filling the trenches over the years. Also Noranda had used a small Backhoe attached to Skidder and as a result it only had a minimum amount of depth penetration and as a result of this there were a number of areas in all the trenches that bedrock could not be reached. There was a total of 38 samples taken from the trenches and surrounding ground. It should be noted that the showing at the immediate area that was found by Adam Benderite appears to be an altered sulfide iron formation with abundant silica with fine and medium grained Arsenopyrite and pyrite as minor stringers and disseminations. For the most part the geology in the trenches is medium to fine grained mafic volcanic with some minor dykes of felsic. This is shown on the Noranda map in trench TQ-1. It should also be noted that the gold association in trench TQ-03 appears either to be an altered magnetite iron formation but is different in appearance from the Benderite showing which in my opinion is a sulfide iron formation. A line of Ronka EM-15 was run over trench TQ-1 and it was noted that the gold zones that were mapped by Noranda seems to have a direct correlation with magnetics. The magnetic zones were noted to be directly on or sub-parallel to the known gold zones therefore a ground magnetic survey is recommended.

Trench number TQ-5 was the finally located and sampled but my believe is that the gold zone of 5 grams per ton sampled by Noranda was filled in with debris and was not located. The lenses of sediments as mapped by Noranda also was note located but is believed to be covered by the extensive debris near the south end of the trench. There was no Ronka EM 15 run over this trench so the magnetic response is unknown.

## Recommendations

It is Recommended that the trenches that were dug by Noranda be reopened and mapped and channel sampled using a larger excavator.

It is also recommended that a 50 meter recognisance grid be established over the areas of know gold mineralization and a ground magnetic survey be carried out.

Detailed prospecting is also recommended in the area.

Day 1-Traveled to project set up camp, attempted to locate trenches.
Day 2 - Located and sampled several historical trenches.
Day 3 - Mapped in roads for soil sampling, prospecting/ trench locating.
Day 4 - trench sampling
Day 5 - Took 32 soil samples and mapped out sand eskers covered aprox 1.5 lines with large areas unable to sample.

Day 6 - Rain day.
Day 7-21 soils taken mapped sand eskers where samples could not be taken, could not sample wet swampy ground, day cut short due to rain.

Day 8 - Collected 24 soils mapped sand eskers where samples could not be taken. No trails in area making it difficult for walking out at end of the day.

Day 9 - Collected 20 soil samples mapped sand eskers as well as lots of swampy areas and boulder fields. Again long walk outs and distance between lines.

Day 10 - Collected 5 soils and 3 grab samples before thunder storm hit, again lots of sand eskers and swamp.

Day 11 - Collected 2 soil samples all esker and swamp again rain storms, started shutting down camp/packing.

Day 12 - Shut down camp and traveled home to Thunder Bay

## Daily Log Iron Duke Project October 1 st $^{\text {st }} \mathbf{4}^{\text {th }} 2016$ - Todd Murray

Day 1- Prospected newly staked claim checked many outcrops took two grab samples.
Day 2- Went into Ignace for supplies.
Day 3- prospected a large area checking soil samples and Mag units took four grab samples.

Day 4- Check out soil samples and Mag units took two grab samples. Packed up camp and drove to Thunder Bay.

## Rick Crocker Prospecting Log - Iron Duke

Oct ${ }^{\text {st }} 2016$
Prospected claim \#4279233 . looked at the high mag . took two samples of rusty sheared ironformation with 5\% py.

Oct $2^{\text {nd }}$
Prospected claim \# 4279233 near high soil. Lots of outcrop mafic vol and ironformation .took two samples of rusty iron formation with tr py.

## Oct 3rd

Todd and I went back to the high soils on claim number 4279233 .didn,t see much Todd took three or four samples.

Oct $4^{\text {th }}$
Checked out the high soils on claim \#4279510. Found some nice looking carb alt mafic vol qtz rich not much sulfides. And a foot wide qtz vein with no sulfides . took two samples.

## Daily $\log$ Iron Duke Trenching Oct. $\mathbf{2 3}^{\text {rd }}-$ Nov. $1^{\text {st }}$ (T.Murray)

Day 1- Packing, grocery shopping and prep at office for trenching.
Day 2- Travel to site from Thunder Bay brought excavator to site, set up camp, walked excavator to trenches started first trench.

Day 3- Continued digging trenches and monitored excavator.
Day 4- Continued digging trenches and monitored excavator, started cleaning trenches.
Day 5- Monitored excavator and cleaned trenches.
Day 6- Went to Ignace for gas propane and other supplies.
Day 7- Cut and chipped channel samples.
Day 8-Cut and chipped samples.
Day 9- Cut and chipped samples, Marked trenches and samples using GPS
Day 10- Packed up camp and traveled home.
man days

June 20, 2016 man day June 21, 2016 man day
June 22, 2016 man day June 23, 2016 man day
June 24, 2016 man day
June 25, 2016 man day
June 26, 2016 man day June 27, 2016 man day June 28, 2016 man day June 29, 2016 man day June 30, 2016 man day July 01, 2016 man day

Getting gear ready, groceries, equipment ready
Getting gear packed, travel, checked out access 1
Finding and sampling trenches
Finding access, looking for trench
Soil sampled line 1 part of 2, prospectinng 1
Rained caught up on notes and cleaned up 1
Finished off soils on line 2, did line 3, rained 1
Rained in the morning, finished off soils on line 4
Soils on lines 5, 6, and part of 7
Soils on line 9, thunder storms, started packing camp away 1
Finished off line 7 and line
Traveled home, finished off paper work

Daily
Sept. 26, 2016
Sept. 27, 2016
Sept. 28, 2016
Sept. 29, 2016
Sept. 30, 2016
Oct. 01, 2016
Oct. 02, 2016
Oct. 04, 2016
.Office, getting stuff ready
Travel and set up camp Raining 3 guys did block 4279505
Staked 11 lines on claim 4265959
Finished off staking

- Prospecting 4279232, 4265959, 4211579

Prospecting 4279232, 4265959
Paper work

1 man day

## Man days

Man Days

Oct. 27, 2016
man day
Oct. 28, 2016
man day
Oct. 29, 2016
man day
Oct. 30, 2016
man day
Oct. 31, 2016
man day
Nov. 01, 2016 man day

Cleanig trenches $1,2,3,4$, and 5
Cut trench 1, sarted cipping, set up on 2nd 1
Finished trench 1, cut trench 2, set up on 3rd 1
Cut trench 3, 4, and started trench 5 1
Finished off trenching 1
Trvel home and unload

## Appendix III - Maps






## Appendix IV- Grab, Soil and Channel Sample Tables

| Sample | Easting | Northing | Descriptio | Sulfides | Comments | Sampler | Date Taken | Au_ppb | Lab Certificate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1043901 | 673730 | 5524456 | bif Trace py, mildely magnetic, 1.5 m wide | Trace |  | TM/RD | June 2016 | 2.5 | A16-06016 |
| 1043902 | 673532 | 5524528 |  |  |  | TM/RD | June 2016 | 2.5 | A16-06016 |
| 1195776 | 669388 | 5525791 | Possible SIF sil, 5 meters wide, Str-E-W | 3\%py, aspy? | Noranda trench 6 | Ms | June 2016 | 10700 | A16-06016 |
| 1195777 | 669388 | 5525793 | sheared mafic with small bands of IF | 1\%py, aspy\% | Noranda trench 6 | ms | June 2016 | 1170 | A16-06016 |
| 1195778 | 669321 | 5525793 | Mafic Vol, slightly mag, | tr to 2\%po, aspy? | Noranda trench 4 | ms | June 2016 | 26 | A16-06016 |
| 1195779 | 669329 | 5525810 | Chl, Sch, brown alteration | tr py, | Noranda trench 4 | Ms | June 2016 | 2.5 | A16-06016 |
| 1195780 | 669396 | 5525823 | mafic vol, minor qtz carb stringers, Boulder From Trench) | 5\%py | Noranda trench 6 | Ms | June 2016 | 2.5 | A16-06016 |
| 1195781 | 669396 | 5525821 | mafic vol, fractures with carb, | $\mathrm{tr}, \mathrm{py}, \mathrm{zn}$ | Noranda trench 6 | Ms | June 2016 | 2.5 | A16-06016 |
| 1195782 | 669514 | 5525844 | sill F in mafice vol, Near rd( not in trench) | 10\% aspy | near road not in trench | ms | June 2016 | 4270 | A16-06016 |
| 1195783 | 669495 | 5525824 | sil ll in mafice vol, 10 cm wide, multiply small bands | bands of fine py, aspy | Noranda trench 1 | Ms | June 2016 | 3780 | A16-06016 |
| 1195784 | 669494 | 5525825 | sil, fractured, rusty, 1 meter wide | py, aspy dissiminated through | Noranda trench 1 | Ms | June 2016 | 2760 | A16-06016 |
| 1195785 | 669495 | 5525825 | sil, fractured, rusty, 1 meter wide | py, aspy dissiminated through | Noranda trench 1 | Ms | June 2016 | 2940 | A16-06016 |
| 1195786 | 669492 | 5525827 | sil, fractured, rusty, 20 cm wide | ppy, aspy dissiminated through | Noranda trench 1 | Ms | June 2016 | 8710 | A16-06016 |
| 1195787 | 669491 | 5525828 | sil pods,1F in sheared fractured mafics | 3\% aspy | Noranda trench 1 | Ms | June 2016 | 20400 | A16-06016 |
| 1195788 | 669490 | 5525831 | IF in sheared fractured mafics, | 10 cm wide bands of 4\% aspy, py | Noranda trench 1 | Ms | June 2016 | 3410 | A16-06016 |
| 1195789 | 669538 | 5525812 | Sil mix, mafic, apperars to be altered banded mag, IF. | dissiminated po, aspy | Noranda trench 3 ( Trench needs to be cleaned for detail look) | Ms | June 2016 | 683 | A16-06016 |
| 1195790 | 669538 | 5525812 | Sil mix, mafic, apperars to be altered banded mag, IF. | dissiminated po, aspy | Noranda trench 3 ( Trench needs to be cleaned for detail look) | MS | June 2016 | 224 | A16-06016 |
| 1196701 | 672668 | 5524524 | If on road, | no visual aspy $15 \%$ po | road and area of old blast pits | MS | June 2016 | 2.5 | A16-06016 |
| 1196702 | 672691 | 5524526 | sill lF, rusty, qtz veining | 15\%po,py | road and area of old blast pits | Ms | June 2016 | 2.5 | A16-06016 |
| 1196703 | 672694 | 5524536 | sill lF, rusty, qtz veining | 15\%po,py | road and area of old blast pits | ms | June 2016 | 2.5 | A16-06016 |
| 1196704 | 672528 | 5524522 | SII, 3 to 4 meters wide | 15\%po,py | on road | Ms | June 2016 | 2.5 | A16-06016 |
| 1196705 | 668763 | 5525536 | sheared seds rusty | 2\% fine sul, tr mag |  | Ms | June 2016 | 17 | A16-06016 |
| 1196706 | 668357 | 5525456 | sheared s, large blocky boulder | tr sul |  | MS | June 2016 | 2.5 | A16-06016 |
| 1196707 | 668880 | 5525928 | banded, seds rusty, large block of boulder in tree stump | 1\% non mag po |  | Ms | June 2016 | 33 | A16-06016 |
| 1196708 | 669113 | 5525903 | rusty seds, brown carb stringers, | tr sul |  | Ms | June 2016 | 2.5 | A16-06016 |
| 1196709 | 669262 | 5525578 | sil slighty sheraed seds, large angular boulders | tr to 1\% po,py |  | MS | June 2016 | 2.5 | A16-06016 |
| 1196710 | 669188 | 5525464 | sheared mafic vol, (boulder from trench) | tr sul | Noranda trench 5 (gold zone appears to be covered with debris at end of trench and not sampled and not sampled | MS | June 2016 | 2.5 | A16-06016 |
| 1196711 | 669197 | 5525482 | rusty amphibilized seds? Subcrop from trench? | 1\%po | gold zone appears to be covered with debris at end of trench ( not sampled) | Ms | June 2016 | 12 | A16-06016 |
| 1196712 | 669197 | 5525481 | sil mafic, seds? Float from trench? | $1 \%$ fine sulfide | same | Ms | June 2016 |  | A16-06016 |
| 1196713 | 669196 | 5525487 | sheared sil seds ( boulders along side of trench) | $1 \%$ fine sulfide | same | ms | June 2016 | 2.5 | A16-06016 |
| 1196714 | 669223 | 5525444 | Subcrop, rusty laminated seds, sil in some places | tr sul |  | Ms | June 2016 | 2.5 | A16-06016 |
| 1196715 | 669220 | 5525444 | Subcrop, rusty laminated seds, sil in some places | tr sul |  | Ms | June 2016 | 2.5 | A16-06016 |
| 1196716 | 669220 | 5525444 | Subcrop, rusty laminated seds, sil in some places | tr sul |  | MS | June 2016 | 2.5 | A16-06016 |
| 1196717 | 669227 | 5525434 | sil, breciated, carb, possille porphry,,angular boulders, possible oC | up to 20\% py stringers and masses |  | MS | June 2016 | 10 | A16-06016 |
| 1196718 | 669227 | 5525434 | sil, breciated, carb, possille porphry, ,angular boulders, possible oC | up to $20 \%$ py stringers and masses |  | Ms | June 2016 | 2.5 | A16-06016 |
| 1196719 | 669227 | 5525434 | sil, breciated, carb, possille porphry, ,,angular boulders, possible OC | up to 20\% py stringers and masses |  | Ms | June 2016 | 2.5 | A16-06016 |
| 1043905 | 674933 | 5524774 | Bif Shrared, rusty, py | Trace |  | TM/RD | 2016-07-01 | 27 | A16-06266 |
| 1195906 | 669484 | 5525801 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 139 |  |
| 1195907 | 669484 | 5525793 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 12 |  |
| 1195908 | 669486 | 5525793 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 0 |  |
| 1195910 | 669287 | 5525813 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 0 |  |
| 1195911 | 669298 | 5525804 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 8 |  |
| 1195912 | 669331 | 5525801 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 25 |  |
| 1195913 | 669327 | 5525818 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 169 |  |
| 1195914 | 669401 | 5525801 | selective grabs in and around Benton trenching |  |  | TM/RD | Nov 2016 | 0 | A16-11499 |


| 1195915 | 669386 | 5525792 | Selective grabs in and around Benton trenching |  |  | TM/RD |  | 38200 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1195916 | 669383 | 5525792 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 2720 |  |
| 1195917 | 669384 | 5525787 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 64100 |  |
| 1195918 | 669499 | 5525818 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 7840 |  |
| 1195919 | 669497 | 5525824 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 4130 |  |
| 1195920 | 669493 | 5525831 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 98 |  |
| 1195921 | 669518 | 5525846 | selective grabs in and around Benton trenching |  |  | TM/RD |  | 2590 |  |
| 1237801 | 669689 | 5525787 | rusty sheared ironformation qtz rich $5 \%$ py |  | o/c | RC |  | 469 |  |
| 1237802 | 669855 | 5525746 | rusty sheared ironformation qtz rich 5\% py |  | o/c | RC |  | 15 |  |
| 1237803 | 671150 | 5525513 | rusty ironformation atz rich tr py |  | o/c | RC |  | 6 |  |
| 1237804 | 671144 | 5525516 | rusty ironformation tr py |  | o/c | RC | Oct 1-4 | 2.5 |  |
| 1237805 | 671512 | 5524599 | rusty carbed qtz rich mafic vol tr py |  | o/c | RC |  | 2.5 |  |
| 1237806 | 671512 | 5524599 | rusty carbed qtz rich mafic vol tr py |  | o/c | RC |  | 47 |  |
| 1237807 | 671512 | 5524599 | atz vein through rusty mafic vol |  | o/c | RC |  | 2.5 | Accurassay 201642066 |
| 1321403 | 668474 | 5526609 | Iron form, qtz, trace py, trace chalco py, rusty, o/c |  |  | TM | 2016-10-05 | 2.5 |  |
| 1321404 | 668440 | 5526583 | Iron form, qtz, trace py, trace chalco py, rusty, boulder |  |  | TM | 2016-10-05 | 2.5 |  |
| 1321405 | 671112 | 5525514 | Iron form, rusty, trace py, qtz, o/c |  |  | тм | 2016-10-05 | 10 |  |
| 1321406 | 671193 | 5525519 | Iron form, rusty, trace py, o/c |  |  | тм | 2016-10-05 | 2.5 |  |
| 1321407 | 671216 | 5525500 | Iron form, rusty, atz, py, carb, o/c |  |  | тм | 2016-10-05 | 2.5 |  |
| 1321408 | 671248 | 5525479 | Iron Form, rusty, trace py, carb, o/c |  |  | TM | 2016-10-05 | 2.5 |  |


| Soil_Sample_ID | GPS_Date | Easting | Northing | Gold_FA_ppb |
| :---: | :---: | :---: | :---: | :---: |
| 171051 | 24-JUN-16 3:51:16PM | 669268 | 5525471 | 2.5 |
| 171052 | 24-JUN-16 3:55:51PM | 669256 | 5525451 | 2.5 |
| 171053 | 24-JUN-16 4:06:30PM | 669251 | 5525439 | 2.5 |
| 171054 | 24-JUN-16 4:11:45PM | 669239 | 5525401 | 2.5 |
| 171056 | 26-JUN-16 9:18:25AM | 669202 | 5525341 | 2.5 |
| 171057 | 26-JUN-16 9:21:44AM | 669197 | 5525316 | 2.5 |
| 171060 | 26-JUN-16 9:33:58AM | 669164 | 5525248 | 2.5 |
| 171061 | 26-JUN-16 9:37:43AM | 669155 | 5525221 | 2.5 |
| 171072 | 26-JUN-16 11:29:19AM | 669506 | 5526030 | 2.5 |
| 171073 | 26-JUN-16 11:32:27AM | 669514 | 5526051 | 2.5 |
| 171075 | 26-JUN-16 1:08:29PM | 670262 | 5525708 | 2.5 |
| 171076 | 26-JUN-16 1:15:38PM | 670254 | 5525687 | 2.5 |
| 171077 | 27-JUN-16 11:54:45AM | 670568 | 5524309 | 2.5 |
| 171078 | 27-JUN-16 11:58:28AM | 670581 | 5524333 | 2.5 |
| 171079 | 27-JUN-16 12:01:17PM | 670590 | 5524353 | 2.5 |
| 171080 | 27-JUN-16 12:04:54PM | 670596 | 5524380 | 2.5 |
| 171081 | 27-JUN-16 12:08:28PM | 670609 | 5524397 | 2.5 |
| 171082 | 27-JUN-16 12:14:10PM | 670623 | 5524420 | 2.5 |
| 171083 | 27-JUN-16 12:16:50PM | 670633 | 5524443 | 2.5 |
| 171084 | 27-JUN-16 12:20:21PM | 670640 | 5524466 | 2.5 |
| 171085 | 27-JUN-16 12:39:33PM | 670654 | 5524490 | 2.5 |
| 171086 | 27-JUN-16 12:42:41PM | 670663 | 5524511 | 2.5 |
| 171088 | 27-JUN-16 12:51:08PM | 670684 | 5524558 | 2.5 |
| 171089 | 27-JUN-16 12:57:07PM | 670707 | 5524606 | 2.5 |
| 171090 | 27-JUN-16 1:08:34PM | 670719 | 5524633 | 2.5 |
| 171100 | 27-JUN-16 3:31:08PM | 671157 | 5525552 | 2.5 |
| 1093604 | 28-JUN-16 10:58:42AM | 671541 | 5524634 | 2.5 |
| 1093612 | 28-JUN-16 1:57:59PM | 672550 | 5524867 | 2.5 |
| 1093613 | 28-JUN-16 2:09:30PM | 672492 | 5524728 | 2.5 |
| 1093615 | 28-JUN-16 2:29:43PM | 672437 | 5524586 | 2.5 |
| 1093617 | 28-JUN-16 3:38:55PM | 671398 | 5524399 | 2.5 |
| 1093619 | 28-JUN-16 3:55:15PM | 671356 | 5524345 | 2.5 |
| 1093620 | 28-JUN-16 4:51:11PM | 673419 | 5525291 | 2.5 |
| 1093627 | 30-JUN-16 11:38:27AM | 674148 | 5524823 | 2.5 |
| 1094524 | 24-JUN-16 11:01:34AM | 668346 | 5525420 | 2.5 |
| 1094525 | 24-JUN-16 11:20:58AM | 668336 | 5525406 | 2.5 |
| 1094526 | 24-JUN-16 11:27:02AM | 668325 | 5525380 | 2.5 |
| 1094527 | 24-JUN-16 11:36:14AM | 668349 | 5525443 | 2.5 |
| 1094529 | 24-JUN-16 11:43:51AM | 668377 | 5525488 | 2.5 |
| 1094530 | 24-JUN-16 11:48:15AM | 668383 | 5525528 | 2.5 |
| 1094532 | 24-JUN-16 11:57:07AM | 668407 | 5525559 | 2.5 |
| 1094533 | 24-JUN-16 12:01:57PM | 668415 | 5525594 | 2.5 |
| 1094534 | 24-JUN-16 12:11:15PM | 668428 | 5525606 | 2.5 |
| 1094536 | 24-JUN-16 2:24:25PM | 669432 | 5525845 | 2.5 |
| 1094537 | 24-JUN-16 2:29:29PM | 66942 | 5525833 | 2.5 |
| 1094538 | 24-JUN-16 2:33:08PM | 669404 | 5525805 | 2.5 |


| Soil_Sample_ID | GPS_Date | Easting | Northing | Gold_FA_ppb |
| :---: | :---: | :---: | :---: | :---: |
| 1094539 | 24-JUN-16 2:38:47PM | 669397 | 5525774 | 2.5 |
| 1094540 | 24-JUN-16 2:42:51PM | 669390 | 5525756 | 2.5 |
| 1094541 | 24-JUN-16 2:47:08PM | 669378 | 5525723 | 2.5 |
| 1094542 | 24-JUN-16 2:50:08PM | 669375 | 5525701 | 2.5 |
| 1094543 | 24-JUN-16 3:00:58PM | 669356 | 5525682 | 2.5 |
| 1094544 | 24-JUN-16 3:06:06PM | 669333 | 5525636 | 2.5 |
| 1094545 | 24-JUN-16 3:10:03PM | 669336 | 5525608 | 2.5 |
| 1094546 | 24-JUN-16 3:13:47PM | 669336 | 5525592 | 2.5 |
| 1094547 | 24-JUN-16 3:24:25PM | 669301 | 5525562 | 2.5 |
| 1094549 | 24-JUN-16 3:41:02PM | 669298 | 5525527 | 2.5 |
| 1094550 | 24-JUN-16 3:46:49PM | 669282 | 5525501 | 2.5 |
| 171058 | 26-JUN-16 9:26:09AM | 669185 | 5525292 | 5 |
| 171062 | 26-JUN-16 9:48:40AM | 669149 | 5525204 | 5 |
| 171068 | 26-JUN-16 11:10:04AM | 669446 | 5525891 | 5 |
| 171070 | 26-JUN-16 11:19:11AM | 669465 | 5525938 | 5 |
| 171074 | 26-JUN-16 1:04:13PM | 670273 | 5525733 | 5 |
| 171087 | 27-JUN-16 12:47:06PM | 670673 | 5524539 | 5 |
| 171092 | 27-JUN-16 1:22:15PM | 670761 | 5524715 | 5 |
| 171093 | 27-JUN-16 1:44:41PM | 670803 | 5524808 | 5 |
| 171097 | 27-JUN-16 3:19:34PM | 671128 | 5525485 | 5 |
| 171099 | 27-JUN-16 3:26:26PM | 671148 | 5525528 | 5 |
| 1093601 | 28-JUN-16 10:33:03AM | 671461 | 5524502 | 5 |
| 1093611 | 28-JUN-16 1:43:27PM | 672579 | 5524936 | - 5 |
| 1093614 | 28-JUN-16 2:21:47PM | 672480 | 5524681 | 5 |
| 1093616 | 28-JUN-16 2:32:08PM | 672427 | 5524569 | 5 |
| 1093618 | 28-JUN-16 3:50:02PM | 671364 | 5524362 | 5 |
| 1093625 | 29-JUN-16 11:42:16AM | 674944 | 5524800 | 5 |
| 1094528 | 24-JUN-16 11:40:37AM | 668361 | 5525472 | 5 |
| 171063 | 26-JUN-16 10:00:11AM | 669115 | 5525135 | 6 |
| 171071 | 26-JUN-16 11:24:43AM | 669487 | 5525985 | 6 |
| 171091 | 27-JUN-16 1:11:33PM | 670732 | 5524645 | 6 |
| 171094 | 27-JUN-16 2:07:18PM | 670913 | 5525033 | 6 |
| 171095 | 27-JUN-16 2:57:33PM | 671087 | 5525396 | 6 |
| 171098 | 27-JUN-16 3:22:57PM | 671139 | 5525504 | 6 |
| 1093603 | 28-JUN-16 10:53:59AM | 671531 | 5524616 | 6 |
| 1093606 | 28-JUN-16 11:21:46AM | 671595 | 5524722 | 6 |
| 1093607 | 28-JUN-16 11:26:14AM | 671608 | 5524745 | 6 |
| 1093626 | 30-JUN-16 11:09:22AM | 674188 | 5525100 | 6 |
| 171055 | 24-JUN-16 4:17:32PM | 669228 | 5525395 | 7 |
| 1093608 | 28-JUN-16 11:33:21AM | 671637 | 5524789 | 7 |
| 1093609 | 28-JUN-16 11:37:22AM | 671653 | 5524805 | 7 |
| 1093605 | 28-JUN-16 11:18:36AM | 671592 | 5524695 | 8 |
| 1093610 | 28-JUN-16 1:35:08PM | 672621 | 5524998 | 8 |
| 171065 | 26-JUN-16 10:09:25AM | 669096 | 5525087 | 11 |
| 171066 | 26-JUN-16 10:12:39AM | 669088 | 5525064 | 11 |
| 171064 | 26-JUN-16 10:04:48AM | 669109 | 5525114 | 12 |


| Soil_Sample_ID | GPS_Date | Easting | Northing | Gold_FA_ppb |
| :--- | :--- | :--- | :---: | ---: |
| 1093602 | 28-JUN-16 10:44:53AM | 671501 | 5524574 | 13 |
| 171059 | 26-JUN-16 9:29:31AM | 669173 | 5525275 | 15 |
| 171067 | 26-JUN-16 10:16:37AM | 669076 | 5525042 | 29 |
| 171096 | 27-JUN-16 3:16:36PM | 671110 | 5525468 | 46 |


| Sample | Au_ppb | Length |
| :---: | :---: | :---: |
| 171201 | 40 | 1 |
| 171202 | 33 | 1 |
| 171203 | 165 | 1.1 |
| 171204 | 86 | 1 |
| 171205 | 97 | 1 |
| 171206 | 83 | 1.1 |
| 171207 | 100 | 1 |
| 171208 | 5 | 1.1 |
| 171209 | 5 | 1.1 |
| 171210 | 6 | 1.1 |
| 171211 | 2.5 | 1.1 |
| 171212 | 21 | 1 |
| 171213 | 2.5 | 1 |
| 171214 | 491 | 1 |
| 171215 | 643 | 1 |
| 171216 | 15 | 1.1 |
| 171217 | 839 | 1.1 |
| 171218 | 604 | 1.2 |
| 171219 | 57 | 0.9 |
| 171220 | 644 | 1 |
| 171221 | 222 | 1 |
| 171222 | 5 | 1 |
| 171223 | 52 | 1.1 |
| 171224 | 85 | 1 |
| 171225 | 2.5 | 0.8 |
| 171226 | 2.5 | 0.8 |
| 171227 | 697 | 1 |
| 171228 | 2.5 | 1 |
| 171229 | 12 | 1 |
| 171230 | 8 | 0.4 |
| 171231 | 84 | 1 |
| 171232 | 870 | 1 |
| 171233 | 14700 | 1 |
| 171234 | 2500 | 0.8 |
| 171235 | 365 | 0.5 |
| 171236 | 8870 | 1 |
| 171237 | 4480 | 1 |
| 171238 | 53 | 1 |
| 171239 | 9 | 1.5 |
| 171240 | 13 | 0.6 |
| 171241 | 54 | 1 |
| 171242 | 53 | 1.2 |
| 171243 | 259 | 0.5 |
| 171244 | 8260 | 0.8 |
| 171245 | 979 | 0.4 |
| 171246 | 66 | 0.7 |


| Sample | Au_ppb | Length |
| :--- | ---: | ---: |
| 171247 | 1580 | 0.8 |
| 171248 | 1830 | 0.8 |
| 171249 | 2520 | 0.5 |
| 171250 | 95 | 0.7 |
| 171251 | 1820 | 1 |
| 171252 | 57 | 0.6 |
| 171253 | 220 | 1 |
| 171254 | 226 | 1 |
| 171255 | 450 | 0.8 |
| 171256 | 1280 | 1 |
| 171257 | 932 | 1.5 |
| 171258 | 524 | 1 |
| 171259 | 1610 | 1 |
| 171260 | 805 | 1 |

