

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

TECHNICAL REPORT DIAMOND DRILLING RICHARDSON LAKE, 2014 DRILL PROGRAM

Casummit Lake Area, Red Lake Mining Division

AurCrest Gold Inc.

Chris C.J. Angeconeb President and CEO AurCrest Gold Inc. Oct 23, 2019

Table of Contents

Summary	3
Location, Access and Ownership	4
Property History and Previous Work	6
Geological Setting	7
Drilling Details	11
Rock Descriptions	12
Sampling and Assay Protocols	15
Discussion of Results	15
Recommendations	20
References	21
APPENDIX A – CLAIM LISTS	
APPENDIX B – DRILL LOGS	
APPENDIX C - ASSAY CERTIFICATES	

Figure 1. Location of the Richardson Lake Property	. 5
Figure 2. Active claims, eastern portion of cell block held by AurCrest Gold Inc. showing detail of cells	
under agreement from Perry V. English and showing original legacy mining claim boundaries (now	
obsolete)	. 9
Figure 3. Claim map of AurCrest Richardson Lake property	10
Figure 4. Diamond drill hole collar locations and traces, showing cells and legacy claims	14
Figure 5. Diamond drill plan showing magnetic trends and gold intercepts (in westernmost drilling) $$	18
Figure 6. Drill hole plan on ODM geology base	19

Table 1. Summary of property history and previous work	.6
Table 2. Summary of Diamond Drill Hole Locations	15
Table 3. Summary of significant gold values intersected in drill core	16

Summary

This report was prepared and submitted by Chris Angeconeb as President and CEO of AurCrest Gold Inc. who hold the mining claim rights where diamond drilling was conducted.

Diamond drilling was conducted at the Richardson Lake Property from August 17, 2014, to Dec 5, 2014. A total of four diamond drill holes were completed, logged, sampled, split or cut, and geochemically analyzed for gold. In total, 1957.5m of core was drilled. The objective of the drilling program was to follow-up on the 2012 drilling results. Drilling was supervised by AurCrest geologist Trevor Boyd and conducted by Cyr International Drilling, based in Winnipeg Manitoba.

The main access to the area is by float plane from Sioux Lookout.

All spatial data contained in this report reflect a Universal Trans Mercator system using North American Datum83 Zone 15. Collar co-ordinates were measured post drilling using a handheld GPS unit.

Drill logs are provided in the Appendix along with geochemical assay results from samples submitted to AGAT Laboratories, Mississauga Ontario.

Drilling confirmed the mineralization intersected in 2102 by hole RL-12-07 along an east-west strongly magnetic trend. Hole RL-14-08 intersected 1.63 g/t Au over 13 metres, including 15.48 g/t over 1 metre along this same magnetic trend.

Detailed magnetic surveys, televiewer downhole surveying and follow-up drilling of the strong magnetic trend is recommended.

Location, Access and Ownership

The Richardson Lake property is located within Brownstone Lake and Casummit Lake areas in the Red Lake Mining Division, approximately 150 km north by aircraft from the town of Sioux Lookout. The property cell numbers are listed under both AurCrest Gold Inc. and Perry V. English (See Appendix A), which are under the Perry English option agreement. See Figure 2 for a detailed map of the eastern portion of the claim block outlining the cells involved with the AurCrest Gold option agreement with Perry English. Figure 3 shows and claim map and outline of the overall property.

Access to the property is via float plane from Sioux Lookout Ontario.

Figure 1 shows the location of the property relative to Red Lake and Pickle Lake.

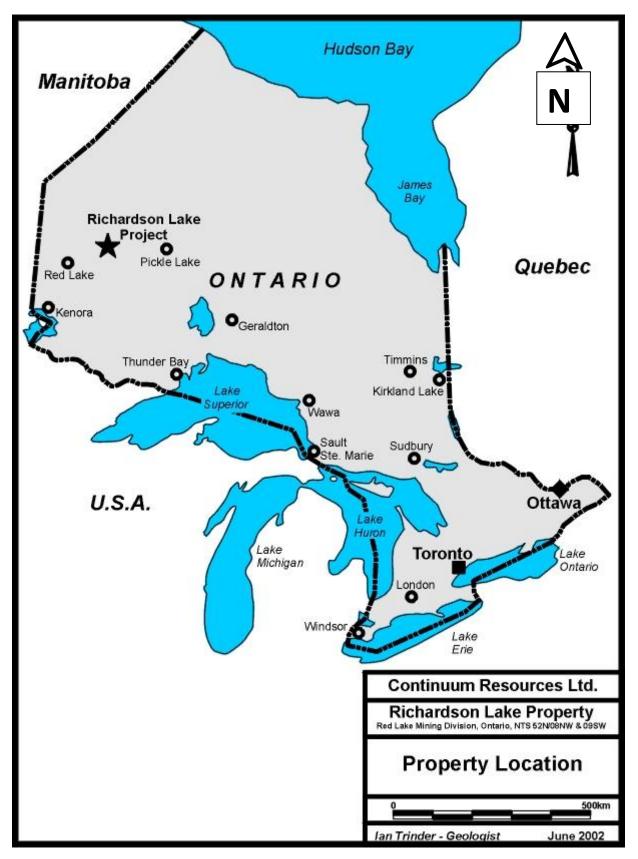


Figure 1. Location of the Richardson Lake Property

Property History and Previous Work

The exploration history of the Richardson Lake property is summarized below (Table 1) based on online Government of Ontario assessment files, MDI files, historical Ontario Resident Geologist notes on file at the District Geologist's office in Red Lake, and OGS publications.

Year	Assessment File Reference	Operator	Description
1958		Kostynuk Brothers	Staked claims on the north shore of Richardson Lake; discovered gold mineralization on claim KRL 43655
1959		Dome Exploration	Ground EM and 687m of drilling; outlined small tonnage grading .31 ounces per ton (Discovery Zone) near the present Kostynuk shaft
1962		Cochenour Willans	Grab sampling at and north of Discovery Zone returned gold values up to 1.12 ounces per ton
1963- 1966		Kostynuk Brothers	Operated small scale mining operation on Discovery Zone. A 12m deep shaft is now 20m east of current Richardson Lake property; 636 tons of ore were milled with 1126 ounces of gold and 102 ounces of silver recovered
1981		Noranda Exploration	Fixed-wing magnetic and EM surveys over Richardson and Casummit Lakes; Geological mapping and ground magnetic and I.P. surveys over and west of Kostynuk Mine shaft.
1985	52N09SW0006	Golden Maverick Resources	Optioned 33 claims from Kostynuk brothers and completed heli-mag/EM surveys
1986- 1988	52N09SW0012 and 5208NW0088	Golden Terrace	Golden Terrace stakes an additional 144 claims; geological mapping, geochemical and geophysical surveys; Golden Terrace drilled 7 holes adjacent to the Kostynuk brothers shaft, 20m east of the property, followed by a 51 hole program (Discovery Zone)' a non compliant 43-101 resource of 700,000 tons of 0.2 ounces per ton gold was estimated
1999	52N09SW2001	1349563 Ontario Limited	15 grab samples were taken from the Arseno zone and Kostynuk Mine Dump
2000- 2001	52N09SW2003	Tribute Minerals	Tribute options the Richardson Lake property from Perry English and completes a DIGHEM (V) heli- magnetic/EM survey
2002- 2004	52N09SW2004 and 2005	Continuum Resources	Continuum options property and completes a digital compilation and reinterpretation of historic drilling including relogging/resampling of 3 Golden Terrace holes; soil and rock geochemistry

Table 4. Summary of property history and previous work.

Year	Assessment File Reference	Operator	Description
2010- 2011		AurCrest Gold Inc.	Tribute Minerals changes its name to AurCrest Gold and performed geological field work and an I.P. survey in the area of the Discovery Zone
2011- 2012	20000008934 and 20000007047	AurCrest Gold Inc.	Eight drill holes totalling 1636 metres; oriented core and geological mapping
2014		AurCrest Gold Inc	Aeroquest heli-mag survey; 511 line- kilometres

Geological Setting

The Richardson Lake Property is located within the Birch-Uchi greenstone belt within the Superior Province.

Parker and Atkinson (1992) describe the regional geology as follows:

"The belt is composed of mafic, intermediate and felsic metavolcanics flows and pyroclastic rocks with subordinate metasedimentary rocks. The south and southeastern margin of the belt consists dominantly of linear units of metavolcanics rocks alternating with thick sequences of clastic metasediments. An alkalic metavolcanics complex with an associated carbonatite intrusion is centered on the north shore of Springpole Lake on the east side of the belt. (Barron et al. 1989)

This assemblage has been intruded by large composite granitoid batholiths such as the Mainprize lake, Trout Lake and the Keigat Lake and Jeanette Lake granitoid complexes (Beakhouse 1989). Various late, felsic, intermediate and mafic batholiths, plutons, stocks, plugs, dykes and sills intrude the metavolcanics and metasedimentary rocks. All of the rocks in the belt are inferred to be of Archean age.

Supracrustal rocks are commonly metamorphosed to greenschist facies over wide areas, while amphibolite facies rocks are more locally concentrated within the contact aureoles of the large granitic batholiths and smaller intrusions. Varying degrees and types of alteration such as carbonatization, sericitization and chloritization are common in the rocks throughout the belt. Widespread iron carbonate alteration and veining is commo

Beakhouse (1990) describes the local geology of the Casummit/Richardson Lake area and

has been summarized by Boyd (2012) as follows:

"Mafic metavolcanics rocks are a major component of the bedrock and comprise massive and pillowed flows. Fragmental intermediate metavolcanics rocks are abundant in the south-central part of the map area. Felsic metavolcanics rocks are not abundant, occurring south and east of Casummit Lake. Golden Terrace recognized narrow bands of sericite schist, often sulphide rich, in areas of significant gold mineralization (Smith, 1986). Golden Terrace also noted outcrops of quartz-feldspar porphyry along the south shore of the large peninsula in Richardson Lake.

Clastic metasedimentary rocks are not well exposed on the property. Beakhouse (1994) mapped only one significant occurrence of clastic metasedimentary rocks on the north shore of Casummit Lake. The rocks comprised highly deformed wacke-siltstone locally interbedded with magnetite ironstone. Golden Terrace identified a band of greywacke, slate and conglomerate intercalated with volcanic flows along the northwest shore of Casummit Lake and along the west and northwest shore of Richardson Lake. The slates, argillites and wackes are described as dull grey to black often graphitic, weakly magnetic, often displaying a high degree of soft sediment deformation. The conglomerates are described as often being sheared such that the quartz and chert pebbles are altered to quartz-sericite schist. Beakhouse (1990, 1994) mapped chemical metasedimentary rocks including magnetite ironstone associated with wacke-siltstone, plus numerous widespread, thin units of chert, ferruginous chert and magnetite ironstone.

Mafic igneous rocks are primarily associated with mafic metavolcanics rocks and are likely closely related (thick or ponded flows or related sills). Immediately northwest of Richardson Lake, gabbroic to dioritic rocks may be a discrete pluton, possibly related to the Retter Lake Granitoid Complex.

Beakhouse (1990) noted that the rocks are characterized by a moderate well to intensely developed planar tectonic fabric that in most cases is parallel or subparallel to bedding. Bedding and the subparallel planar fabric have a more variable but generally easterly strike except near the contacts with the external granitoid complexes where the fabric is oriented parallel to the boundaries of the greenstone belt."

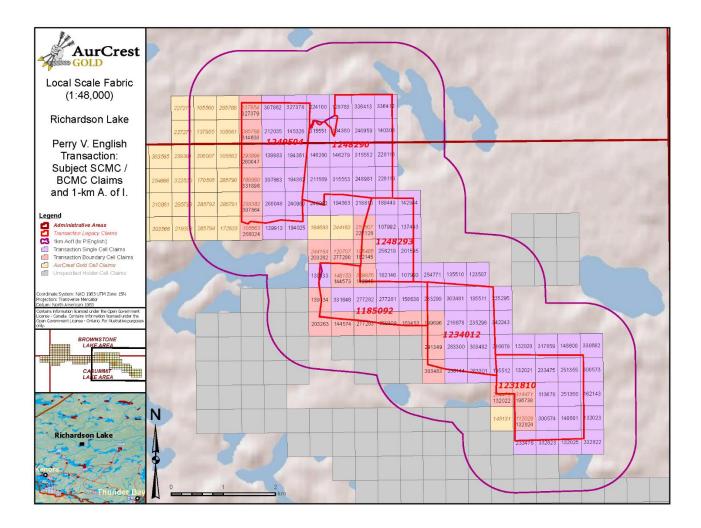


Figure 2. Active claims, eastern portion of cell block held by AurCrest Gold Inc. showing detail of cells under agreement from Perry V. English and showing original legacy mining claim boundaries (now obsolete).

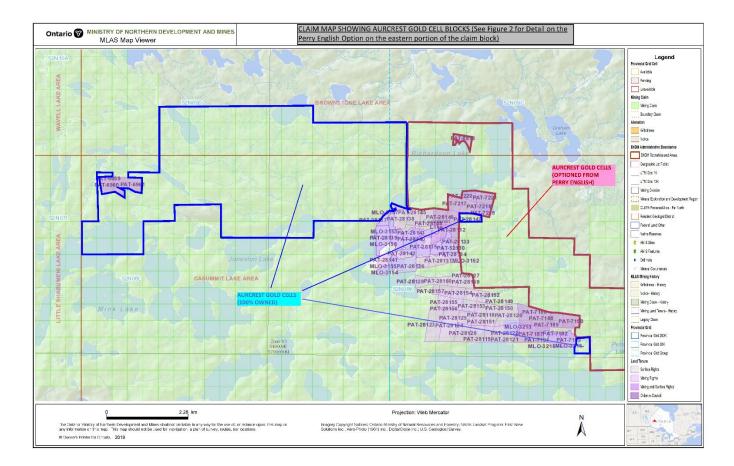


Figure 3. Claim map of AurCrest Richardson Lake property

Drilling Details

An application to perform diamond drilling operations was submitted to MNDM and permit PR-13-10091 was issued to AurCrest Gold Inc. Under this permit, four diamond drill holes tested the geophysical anomaly (magnetic high) previously tested by RL-12-07. Only two drill set-ups were required as three holes were fanned from one set-up. The drill holes were all collared on cell 212035 and trended onto cells 139883, 145326, and 194361. Drilling began on August 17, 2014 and was temporarily suspended on Sept. 3, 2014 to wait for assays after initial drilling of RL-14-08 and 09. Drilling was resumed on October 23, 2014 at which time RL-14-08 was extended to complete the intersection of mineralization at 382 metres downhole. Drill holes RL-14-10 and 11 were also completed at this time with drilling finishing in early December. See Figure 4 for a map of drill hole collar locations. Collar locations were mapped in using a hand-held GPS using UTM nad 83, Zone 15.

The drilling was completed by Cyr Diamond Drilling with the diamond drill that was left on site from the 2012 drilling program. Crews were mobilized to the Richardson Lake Property in August of 2014 and demobilized on Sept 3, remobilized on Oct 23 with final demobilization on completion of the drill program, consisting of four holes totalling1957.5 metres of NQ core, in early December. The drill was not demobilized at that time and remains on the property. Table 1 summarizes the diamond drill hole detail. Geological drill logs, drill sections, and analytical/assay certificates are appended to this report (Appendices B, C, and D, respectively).

RL-14-08 was set-up 300 metres west of RL-12-07 to test the extension along strike of gold mineralization intersected in that hole. RL-14-08 intersected two sections of hydrothermally altered iron formation cut by quartz-carbonate-pyrite veining. The lower zone returned 1.63 g/t Au over 13 metres from 369 to 382 meters, including 15.48 g/t over 1 metre at the end of the hole.

RL-14-09 was drilled from the same set-up as RL-14-08 but oriented to intersect the iron formation units slightly further west. Quartz-carbonate-pyrite veining in iron formation was intersected in several locations in the hole, however, generally low gold values were returned on assay.

Drilling was shut-down after RL-14-09 was completed, with the drill left on the setup. Once assays confirmed strong gold mineralization at the end of the hole, RL- 14-08 was re-entered on Oct 23, 2014, with drilling resuming from 382 metres and being completed at 448.5 metres on Oct 24, 2014.

Drill hole RL-14-10 was drilled from the same set-up as RL-14-08 and 09, starting on October 25, 2014, to test the mineralized zones further east toward RL-12-07. Anomalous gold values hosted by altered greywacke were intersected at a depth of 450 metres downhole.

Drill hole RL-14-11 was set-up due east of RL-12-07 to test the same magnetic trend targeted by the 2014 drilling program, but 200 metres further east. Weakly anomalous gold values were intersected in a greywacke unit adjacent to banded iron formation at 290 metres downhole.

The diamond drilling program was completed by the end of November and demobilization of crews completed in early December. The drill remains on the property.

Rock Descriptions

Mafic Volcanics

Dark green to grey green, generally chloritic, locally silicified and sericitized, fine-grained often intercalated with argillaceous to cherty sediment or lean iron formation. Maybe thin flows and/or sills and/or volcaniclastic sediment.

Greywacke

Common rock unit, blue-grey to black with sub millimeter white plagioclase crystal and fragments. Where amphibole and euhedral grains and fragments become significant, an Amphibole Greywacke unit can be broken out. Where coarse plagioclase is approximately 50% by volume the rock can be broken out as a Plagioclase Greywacke. In cases where this unit becomes, chloritized, sericitized, locally silicified and pyritic the rock unit is identified as an Altered Greywacke.

Conglomerate

This unit can be dominated by stretched white and brown chert or lean iron formation pebbles and cobbles, large plagioclase-rich wacke cobbles; rare jasper fragments; generally clast supported; matrix is blue-grey, fine to medium grained plagioclase rich (greywacke?). Replacement style pyrite and arsenopyrite (replacing magnetite) locally. Variations in size of clasts from pebble dominated to cobble dominated

Banded Iron Formation

Finely bedded dark grey to greenish grey and light grey bands of cherty, magnetite or chlorite. Silica, carbonate and sericite alteration often confined to bedding planes; bedding is often variable in orientation, showing brecciation and deformation locally; often mixed with mafic volcanic sediment.

Argillite

Very fine-grained, layered, locally cherty, locally graphitic banded mudstone; grain size of some layers can increase locally and can be broken out as a Siltstone unit; possibly part of a greywacke-siltstone-argillite turbidite sequence.

Intermediate Intrusive

Light grey, fine-medium grained, locally blocky, massive, non-magnetic; not a common rock type; generally unaltered but locally chloritized.

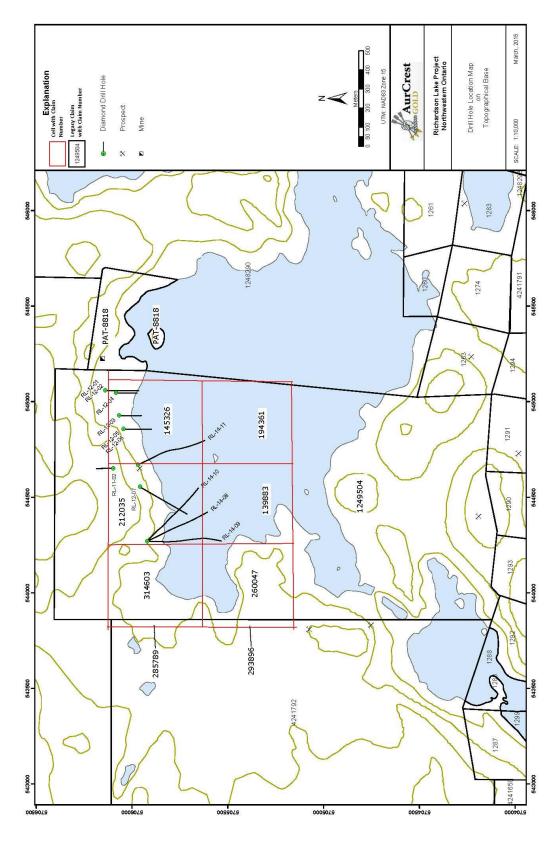


Figure 4. Diamond drill hole collar locations and traces, showing cells and legacy claims.

Drill Hole ID	Easting	Northing	Elevation (metres above sea level)	Azimuth (deg)	Dip (deg)	Final Length (m)	Start Date	End Date
RL-14-08	544270	5705920	408	155	-45	448.5	Aug 17, 2014	Oct 24, 2014
RL-14-09	544270	5705920	408	180	-45	503	Aug 25, 2014	Sept 3, 2014
RL-14-10	544270	5705920	408	132	-45	506	Oct 25, 2014	Nov 1, 2014
RL-14-11	544670	5705969	408	155	-45	500	2014, Nov 28	Dec, 2014

**Coordinates are recorded in UTM NAD83, Zone 15 North.* Note that RL-14-08 was stopped on Aug 24, the drill rotated to drill RL-14-09, at which point drilling was suspended from Sept 3 to Oct 23. On Oct 23 RL-14-08 was re-entered and extended from 382 metres to 448.5 metres.

Sampling and Assay Protocols

Core samples between 0.5 and 1.0 metres were selected for assaying during core logging. The NQ core was cut in half using a diamond saw, sealed in secure packages and shipped by bonded carrier for preparation at AGAT facilities done in Thunder Bay, Ontario, Canada. Note that some core had to be hand split due to hardness issues. Sample pulps from the prep lab were shipped to AGAT Laboratories in Mississauga Ontario, Canada. Samples were analysed for gold using code 202-052 Au by Fire Assay with an ICP-OES finish of a 30g sample. Higher grade samples (>10g/t) were redone with a gravimetric finish. AGAT is a fully accredited laboratory and conforms with the requirements of CANP4E (ISO/IEC 17025:2005) and CANP1579 by the Standards Council of Canada. A duplicate unknown to the laboratory was submitted per batch of ten samples and a gold standard and blank, also unknown to the laboratory were included with each batch of samples (AurCrest press release, Nov 4, 2014).

Discussion of Results

A summary of anomalous gold results intersected is listed below (Table 4), and complete analytical results can be found in Appendix B- Drill Logs and Appendix C-Assay Certificates.

Hole-ID	From	То	Length (m)	Sample ID	Au ppm	Au gpt	Au check ppm
RL-14-08	377	378	1.0	304376	1.68		
RL-14-08	378	379	1.0	304377	0.07		
RL-14-08	379	380	1.0	304378	0.186		
RL-14-08	380	381	1.0	304379	0.50		
RL-14-08	381	382	1.0	304380	>10	15.48	
RL-14-08	382	383	1.0	476676	7.56		7.79
RL-14-08	383	383.5	0.5	476677	5.94		5.76
RL-14-08	383.5	384.5	1.0	476678	0.439		
RL-14-08	384.5	385.5	1.0	476679	0.489		
RL-14-08	385.5	386	0.5	476680	0.081		
RL-14-08	386	387	1.0	476681	0.539		
RL-14-10	453	454	1.0	476726	0.264		
RL-14-10	454	455	1.0	476727	0.421		
RL-14-10	455	456	1.0	476728	0.121		
RL-14-11	291	292	1.0	1058010	0.318		
RL-14-11	292	293	1.0	1058011	0.163		

Table 6. Summary of significant gold values intersected in drill core.

Overall, the assay results reflect the potential for gold mineralization along a geophysically defined magnetic high trend (See Figure 5). This trend was initially tested by RL-12-07. This hole explained the magnetic trend as bands of strongly magnetic greywacke, within which occurred gold mineralization associated with quartz-carbonate-pyrite-arsenopyrite veining. The current drilling indicates that the magnetic greywacke is likely a phase of a complex iron formation unit(s) that appears to be locally impacted by moderate to high strain. It is not clear at this point what controls gold mineralization, however it does appear to be associated quartz veining and sulphides related to deformation and brecciation of iron formation and magnetite-rich greywacke units.

Continuity of mineralization between drillholes is marginal, as two (12-07, and 14-08) of five holes (12-07, 14-08, 09, 10, 11) intersected significant mineralization. It is not clear whether this is due to later offsets and complex geometry of the mineralized zone, or a problem the orientation of the drill pattern. The geological complexity was indicated by early ODM mapping (See Figure 6) in which iron formation (marked as Fe) is striking more or less north-south with a shallow dip to the west while the general geological trend appears to be more east-west, at least in this part of the Richardson Lake property. The complex magnetic pattern in figure 5, just west of the drilled area would appear to confirm this idea.

Gold does appear to be associated with large milky quartz veins and sulphide mineralization (pyrite-arsenopyrite), however there appear to be other ages of veining and sulphide mineralization which have little association with gold values. Additional detailed logging and structural work is needed to begin to understand the controls on gold mineralization.

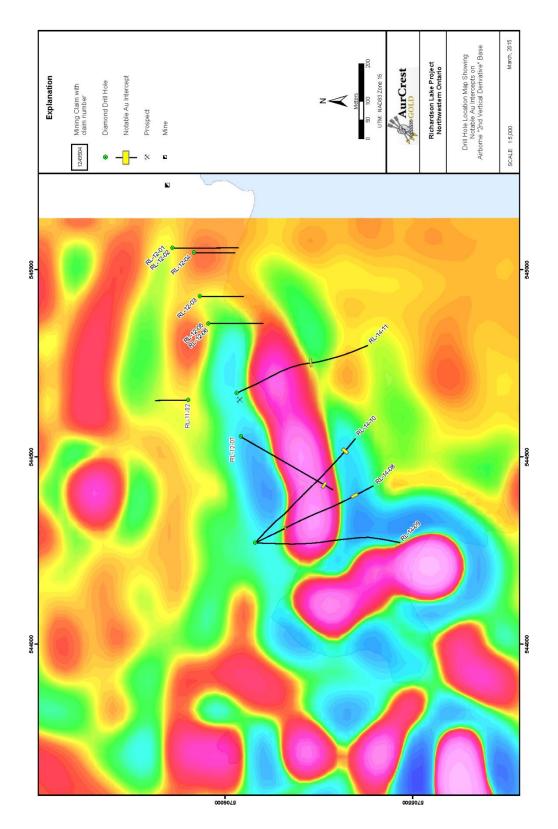


Figure 5. Diamond drill plan showing magnetic trends and gold intercepts (in westernmost drilling)

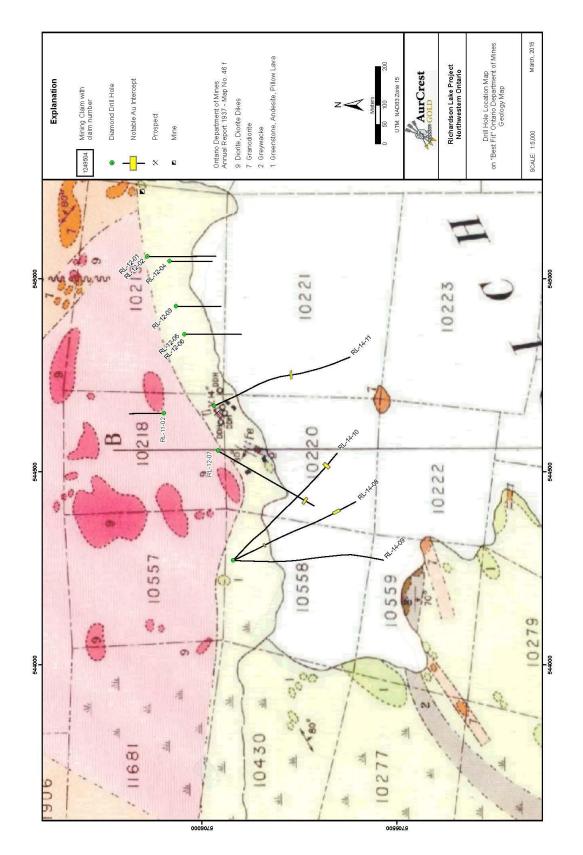


Figure 6. Drill hole plan on ODM geology base.

Recommendations

Additional detailed magnetic surveys to further define and extend the magnetic trends is highly recommended in the Richardson Lake area. A borehole televiewer survey of drill holes RL-12-07, RL-14-08, 08, 10 and 11 is recommended to acquire additional structural detail of the gold mineralized zone.

A high priority drill target is the follow-up of hole RL-14-08 drilled on the northwest portion of Richardson Lake. Previous compilation work indicates a series of north to north northwest trending structures may be present in the Richardson Lake area. A folded magnetic unit (magnetite-bearing clastic and exhalative sediments) has been outlined and is likely to be cut by the structures.

Initial interpretation of the AurCrest drilling and airborne magnetics show that the limbs of the synformal fold may dip south to southwest. Magnetics also indicates the presence of a north-northwest trending lineament along the fold axis. The same lineament can be seen in the magnetic data trending through the Argosy/Jason mine to the south. This results in a very closely analogous situation between Richardson Lake and Argosy/Jason properties to the south. To test the idea, drill holes should be collared on the west shore of Richardson lake and drilled from southwest to northeast to cross both limbs (and thus the fold axis/fault lineament) of the magnetic unit. Drilling from the north shore of Richardson Lake will require longer holes as they would be drilling down dip based on the current interpretation.

References

Beakhouse, G.P. 1989. Geology of the Western Birch Lake area, District of Kenora, Patricia Portion; Ontario Geological Survey, Open File Report 5700, 106p.

Beakhouse, G.P. 1990. Geology of the Casummit Lake area, District of Kenora, Patrician Portion; Ontario Geological Survey, Miscellaneous Paper 151, p.18-21.

Beakhouse, G.P., Mainville, M.C. and Wilson M.E. 1994. Geology of the Casummit Lake area, District of Kenora (Patricia Portion); Ontario Geological Survey, Preliminary Map P.3245, scale 1:15,840.

Boyd, T.B. 2013. Report on Diamond Drilling, Richardson Lake Property NTS52N/8,9, Casummit Lake area; prepared for AurCrest Gold Inc., Toronto, Ontario.

Parker, J.R. and Atkinson, B.T., 1992. Gold Occurrences, Prospects and Past-Producing Mines of the Birch-Confederation Lakes Area; Ontario Geological Survey, Open File Report 5835, 332 p.

Smith, G.K. 1986a Geology, Geochemistry, Geophysics, Trenching Diamond Drilling Report of Golden Terraces' Richardson Lake property by 4DX Limited; in Red Lake Assessment Files.

Smith,G.K. 1986b Geology, Geochemistry of Golden Terraces' Richardson Lake Property by 4DX Limited; in Red Lake Assessment Files. APPENDIX A – CLAIM LISTS

Tenure Number	Issue Date	Status	Anniversary Date	Owner Client Number
104172	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
105560	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
105561	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
105562	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
105563	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
105955	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
106485	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
112029	April 10, 2018	Active	January 17, 2020	(404481) AURCREST GOLD INC.
114167	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
119980	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
120707	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
130517	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
137954	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
137955	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
145131	April 10, 2018 April 10, 2018	Active	January 17, 2020	(404481) AURCREST GOLD INC.
146917	-	Active		(404481) AURCREST GOLD INC.
146917	April 10, 2018		February 23, 2019 February 23, 2019	(404481) AURCREST GOLD INC.
	April 10, 2018	Active	• •	
146919	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
147453	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
148153	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
160303	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
160304	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
160305	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
160793	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
161200	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
165164	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
165165	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
165166	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
166116	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
170505	April 10, 2018		January 18, 2020	(404481) AURCREST GOLD INC.
172633	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
175492	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
179805	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
179806	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
179807	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
184693	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
185329	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
185330	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
185331	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
185332	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
185333	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
185334	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
189980	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
193775	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
200291	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
204479	April 10, 2018	Active	January 17, 2020	(404481) AURCREST GOLD INC.
215135	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
215455	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
216788	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
216789	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
219303	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
223272	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
				(= ,

Tenure Number	Issue Date	Status	Anniversary Date	Owner Client Number
226225	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
227271	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
227272	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
232136	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
232137	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
233153	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
239381	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
239382	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
242384	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
243435	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
244163	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
244164	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
245866	April 10, 2018 April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
249599				(404481) AURCREST GOLD INC.
	April 10, 2018	Active	February 23, 2019	
250669	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
250771	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
250772	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
251507	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
251974	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
254866	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
261920	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
265425	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
265426	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
269358	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
271059	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
271074	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
279304	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
285788	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
285789	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
285790	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
285791	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
285792	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
285793	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
285794	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
291450	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
293896	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
303565	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
303566	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
303567	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
306007	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
308945	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
309288	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
310860	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
310861	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
314471	April 10, 2018	Active	January 17, 2020	(404481) AURCREST GOLD INC.
316424	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
322520	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
328393	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
328394	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
329130	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
329306	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
337073	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
	, 1911 10, 2010	Active	· Cordary 20, 2010	(101101/MORCHEST GOLD INC.

Tenure Number	Issue Date	Status	Anniversary Date	Owner Client Number
338261	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
338976	April 10, 2018	Active	January 18, 2020	(404481) AURCREST GOLD INC.
340804	April 10, 2018	Active	February 23, 2019	(404481) AURCREST GOLD INC.
546870	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546871	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546872	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546873	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546874	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546875	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546876	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546877	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546878	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546879	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546880	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546881	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546882	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546883	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546884	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546885	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546886	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546887	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546888	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546889	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546890	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546891	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546892	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546893	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546894	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546895	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546902	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546903	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546904	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546905	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546906	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546907	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546908	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546909	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546910	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546911	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546912	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546913	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.
546914	March 31, 2019	Active	2021-03-31	(404481) AURCREST GOLD INC.

AurCrest under option from Perry V. English

Tenure Number	Issue Date	Tenure Status	Anniversary Date	Owner Client Number
107992	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
128783	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
137443	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
139883	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
139913	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
140308	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
142944	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
145326	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
146279	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
146280	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
182145	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
189443	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
194025	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
194360	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
194361	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
194362	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
194363	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
201595	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
211569	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
212035	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
212033	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
224100	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
226128	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
228118	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
228118	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
240959	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
240959	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
248981	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
248982	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
256219	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
260047	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
260047	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
268024	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
307862	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
307863	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
307864	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
314603	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
315551	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
315552	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
315553	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
327378	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
327379	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
331896	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
336412	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
336413	April 10, 2018	Active	January 24, 2020	(129617) PERRY ENGLISH
107993	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
113670	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
132020	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
132020	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
132022	April 10, 2018		March 5, 2020	(129617) PERRY ENGLISH
132022	April 10, 2018 April 10, 2018	Active Active	March 5, 2020 March 5, 2020	(129617) PERRY ENGLISH (129617) PERRY ENGLISH
	•			
132024	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH

AurCrest under option from Perry V. English

Tenure Number	Issue Date	Tenure Status	Anniversary Date	Owner Client Number
132025	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
139133	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
139134	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
142945	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
144573	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
144574	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
148600	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
148601	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
158638	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
162143	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
163453	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
182146	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
196738	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
203262	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
203263	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
233475	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
233476	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
251355	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
251356	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
259308	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
277280	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
277281	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
277282	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
277283	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
300573	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
300574	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
317859	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
330682	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
331646	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
332822	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
332823	April 10, 2018	Active	March 5, 2020	(129617) PERRY ENGLISH
123507	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
135510	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
135511	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
135512	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
199696	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
216678	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
216679	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
235295	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
235296	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
236144	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
254771	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
283299	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
283300	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
283301	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
291349	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
303481	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
303482	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
303483	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
342243	April 10, 2018	Active	June 10, 2020	(129617) PERRY ENGLISH
342243	Ahiii 10, 2019	ACLIVE	Julie 10, 2020	(12901/) PEKKI ENGLISH

APPENDIX B – DRILL LOGS

	1					DL 44.00	1					
Project:	tion		DDH N			RL-14-08	14					
Collar Loca		NAD83 ZONE15 5705920N 0544270E	Start D			Aug-17-20						┼───
Length of H		382m (extended to 448.5m Oct. 24)	· · ·	tion Dat	:e:	Aug-24-20	014					
Dip at Colla		-45°		lumber:		1249504						
Azimuth at		155°	Logged				ndziuk/Trev	or Boyd	1		r	
Core Diam		NQ	Logging			Aug-24-20						
Drill Contra	actor:	Cyr Drilling	Storage	e:		Richardso	n Lake	(202-052)				
									Trace Au, I	CP-OES fin	ish (ppm)	
										Sample		
										Login		
			Samp	le					Analyte:	Weight	Au	Au-Grav
DEPT	H (m)		No.		DEPT	H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc	.) Fr	rom	То	Length	ID	RDL:	0.01	0.001	0.05
0.00	9.00	CASING		,								
9.00	20.40	META-GREYWACKE										
9.00	20.40	Medium grey-green, medium grained, vari-textured,										
		moderately to weakly foliated ~15-20° TCA, strong										
		carbonate alteration as pervasive white calcite stringers,		_								
		small veins, gashes, and patchy disseminations <1-3mm, 1-										-
		2% white calcite +/- qtz veins 0.2-1cm wide generally >40°	<u> </u>									
		TCA. Overlies Coarse Plagioclase Wacke with sharp contact		_								
		@ 33° TCA. Interlayers of Amphibolitc Wacke; minor blebby										
		& disseminated pyrite <1% associated with sub-cm scale	\square				<u> </u>					
		grey-white qtz veining, weakly to moderately magnetic.	H				ļ	1				
20.40	59.90	COARSE PLAGIOCLASE WACKE										
		Medium grey-green, moderately sorted <1-3m subhedral	3043	326 4	7.0	48.0	1.00	5769706		2.28	0.005	
		white to grey plagioclase grains 10-20% in fine grained dark	3043	327 4	8.0	49.0	1.00	5769708		2.32	0.103	
		grey chloritic matrix, weakly to moderately foliated e.g. 22°	3043	828 4	9.0	50.0	1.00	5769709		2.04	0.077	
		TCA @27.5m, random clots of subhedral pyrite, moderate	3043		0.0	51.0	1.00			2.30	0.064	Γ
		carbonate alteration increasing d.h. to zone of pervasive <1-	3043		1.0	52.0	1.00			2.56	0.050	
		5mm white calcite stringers ~5% at 41.7-47.5m; solution	3043		2.0	53.0	1.00			2.18	0.002	
		cavities at 30.9-32.2m; brecciated shear ~10° TCA @ 25.0-			-					-		1
		25.6m; variable MA; 48.5-52.0m: Increase silica + chlorite;										
		sericite alteration of plagioclase; disrupted fabric & irregular										
		quartz veining with up to 5% py localized over up to 1m										
		(e,.g. 51.0 - 52.0 m); competent, variable foliation intensity										-
		and angles										┼────
		-		_								
50.00	00.00											
59.90	89.80	META-GREYWACKE										───
		Medium grey-green, similar to 9.0-20.4m, moderate-strong	<u> </u>									
		carbonate alteration with pervasive mm-scale white calcite										
		stringers, variable moderate MA; generally weakly foliated										
		with short intervals of moderate to strong foliation eg.										
		74./m 18° TCA; 78.0m-33° TCA; occasional medium -grey										
		quartz veins off-set by transverse white calcite within										
		quartz; 76.0-80.0m: Interlayers of Amphibolitic Greywacke										
		with 3-5% mm-scale sub-rounded black amphibole; pyrite										
		<=1%, competent silicified lithology; 72.5-73.0m: Broken										
		core.										
											T T	Γ
		Based on oriented core weak and faint foliation subvertical										
		and dipping steeply to the south										
89.85	124.95	Same as plagioclase wacke 20.4-59.9m above contact	l i									1
		defined as increased interlayers of unit until dominant, but						1			İ	1
		boundaries trend ~=30° CA. Foliation subvertical dipping										
		steeply to SE, based upon core orientation, aligned 30-35°										1
		CA, variably magnetic 3-5% qtz-carb veinless variably										1
		oriented throughout with only TY PY unless otherwise										
		с ,	\vdash					1				1
		noted. Graphite as well as ChL in matrix. Core very										1
		competent.										+
		- 114.9-115.6m: broken core, talc-chloritic rock with										
		intermittent py'clasts - FAULT ZONE					+					+
		- 121.5-122.8m: 20% qtz.carb variably jagged veins and clots	3043	122 17	21.5	122.8	1.30	5769714		2.98	0.282	+
			504	,52 12	-1.3	122.0	1.30	5/09/14		2.30	0.282	<u> </u>
		most oriented 10-20° CA, more shallowly south dipping 30-	\vdash				+	+				+
		50° & subparallel to hole orientation in comparison to	\vdash									+
		foliation, 1-2% {equant & hiss py}	\vdash					1				+
10.1-	470.15		┝				-	-				┨─────
124.95	178.40	META-GREYWACKE	<u> </u>				<u> </u>					
		Same as 59.9-89.85m, gradual change downhole, contacts	\square									
		not clearly defined, highly magnetic chloritized and graphitic	<u> </u>				L					<u> </u>
		but no sig. sulfides, intermittent interlayers of plagioclase	1 1				1		1		1	1

	() ()		Sample		 ()	C	Con 1	Analyte:	Weight	Au	Au-Gra
	'H (m)		No.		'H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		wacke throughout. No sig sulphides weak foliation 30° CA.									
		- 151.9-152.70m: Broken core with chloritic-talc fault zone,									
		no sig. sulphides, fault trends parallel to bedding?, south									
		dipping 40-50°, (10-15° oblique to CA).									
		[Edit note: new unit starts at 178.4m]									
178.40	234.20	ALTERED METAGREYWACKE (new unit) dark grey green					1				
170.40	234.20										
		Similar to metagreywacke 124.95-178.4m but defined by									
		increased chloritization and intermittent shearing and									
		interlayering of increased pyritization (3-5% as euhedral									
		dissenminations and coatings on fracture faces).	_								
			204222	470.4	470.4	4.00	5700745		2.24	0.004	
		- 178.4-234.7m: increased chloritization and shearing 10-	304333	178.4	179.4	1.00	5769715		2.24	.0.004	
		15% CA down dip 40-50° 10-15% fine qtz-carb veining with	304334	179.4	180.4	1.00	5769716		2.18	0.105	
		intermittent auto-brecciation. Plus 2-5% variable diss	304335	180.4	181.4.	1.40	5769717		2.04	0.011	
		euhedral 1-2mm py, magnetism lessens considerably in									
		comparison to host unit but still intermittent magnetism.									
		- 179.6-180.3m: py content increases T 5-10% patches and									
		blebs									
		- 193-193.7m: increase py to 5- 8% orientation of shearing	304336	192.0	193.0	1.00	5769719		2.18	0.008	
		oblique (~20°) to CA and shows moderate dip slightly	304337	193.0	194.0	1.00	5769720		2.36	0.004	
		steeper than core dip (45-50°) otherwise near massive or									
		very weakly foliated 20-30° CA if not sheared									
		- , - ,									
		- 213-220m: increased py to 5-8%									
		- 229.2-229.8m: bleached and epidotized									
234.20	275.50	ALTERED PLAGIOCLASE WACKE grey green									
		Similar to plagioclase wacke but greater chloritization in									
		matrix and partially plagioclase laths alterer to sericite.									
		Likely sericite as well as chlorite. Mostly massive to weakly									
		oriented rock fabric 30-35° CA, except where intermittently									
		sheared then fabric trends 10-15° diss mag specks defining									
		rock fabric with (I think much of the "graphitic" flakes are									
		magnetic)									
			_								
	200.45										
275.50	290.45	ALTERED METAGREYWACKE dark grey green	_								
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3%									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA.									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3%									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA.									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA.									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA.									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and									
275.50	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich									
	290.45	More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich	304338	287.0	288.0	1.00	5769721		1.22	0.002	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA.	304338 304339	287.0 288.0	288.0 289.0	1.00	5769722		1.22 2.12	0.002	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish									
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands	304339	288.0	289.0	1.00	5769722		2.12	<0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10°	304339 304340 304341	288.0 289.0 290.0	289.0 290.0 290.45	1.00 1.00 0.45	5769722 5769723 5769724		2.12 2.16 0.98	<0.001 <0.001 0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1-	304339 304340 304341 304342	288.0 289.0 290.0 290.45	289.0 290.0 290.45 291.0	1.00 1.00 0.45 0.55	5769722 5769723 5769724 5769725		2.12 2.16 0.98 1.22	<0.001 <0.001 0.001 <0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small	304339 304340 304341 304342 304343	288.0 289.0 290.0 290.45 291.0	289.0 290.0 290.45 291.0 292.0	1.00 1.00 0.45 0.55 1.00	5769722 5769723 5769724 5769725 5769726		2.12 2.16 0.98 1.22 2.72	<0.001 <0.001 0.001 <0.001 0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as	304339 304340 304341 304342 304343 304344	288.0 289.0 290.0 290.45 291.0 292.0	289.0 290.0 290.45 291.0 292.0 293.0	1.00 1.00 0.45 0.55 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727		2.12 2.16 0.98 1.22 2.72 2.52	<0.001 <0.001 0.001 <0.001 0.001 0.005	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue	304339 304340 304341 304342 304343 304344 304344 304345	288.0 289.0 290.0 290.45 291.0 292.0 293.0	289.0 290.0 290.45 291.0 292.0 293.0 294.0	1.00 1.00 0.45 0.55 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727 5769728		2.12 2.16 0.98 1.22 2.72 2.52 2.60	<0.001 <0.001 <0.001 <0.001 0.005 0.007	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between	304339 304340 304341 304342 304343 304344 304344 304345 304346	288.0 289.0 290.0 290.45 291.0 292.0 293.0 293.0 294.0	289.0 290.0 290.45 291.0 292.0 293.0 294.0 295.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769729		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16	<0.001 <0.001 0.001 <0.001 0.005 0.007 0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core	304339 304340 304341 304342 304343 304344 304345 304346 304347	288.0 289.0 290.0 290.45 291.0 292.0 293.0 294.0 295.0	289.0 290.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769729 5769730		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80	<0.001 <0.001 <0.001 0.001 0.005 0.007 0.001 0.003	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower	304339 304340 304341 304342 304343 304344 304345 304346 304347 304348	288.0 289.0 290.0 290.45 291.0 292.0 293.0 293.0 294.0 295.0 296.0	289.0 290.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769729 5769730 5769731		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80 3.20	<0.001 <0.001 <0.001 0.001 0.005 0.007 0.001 0.003 0.007	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core	304339 304340 304341 304342 304343 304344 304345 304345 304346 304347 304348 304347	288.0 289.0 290.0 291.0 292.0 293.0 293.0 294.0 295.0 296.0 297.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769729 5769730 5769731 5769732		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80 3.20 2.38	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.006	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower	304339 304340 304341 304342 304343 304345 304345 304346 304347 304348 304349 304350	288.0 289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5769722 5769723 5769724 5769725 5769727 5769727 5769728 5769729 5769730 5769731 5769732 5769733		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80 3.20 2.38 4.04	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.006 <0.001	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower	304339 304340 304341 304342 304343 304345 304345 304346 304347 304348 304348 304349 304350	288.0 289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 296.0 297.0 298.0 299.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 296.0 297.0 298.0 299.0 300.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769729 5769730 5769731 5769731 5769732 5769733		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80 3.20 2.38 4.04 2.60	<0.001 <0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.006 <0.001 0.004	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower contacts sharp and undulating ~=20° CA.	304339 304340 304341 304342 304343 304344 304345 304346 304347 304348 304349 304349 304350 304351	288.0 289.0 290.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 300.0	289.0 290.45 291.0 293.0 294.0 295.0 296.0 296.0 297.0 298.0 299.0 300.0 301.0	1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5769722 5769723 5769724 5769725 5769726 5769727 5769728 5769730 5769731 5769732 5769733 5769733 5769734		2.12 2.16 0.98 1.22 2.72 2.52 2.60 3.16 2.80 3.20 2.38 4.04 2.60 2.62	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.006 <0.001 0.004 0.005	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower contacts sharp and undulating ~=20° CA.	304339 304340 304341 304342 304343 304345 304345 304346 304347 304348 304349 304350 304351 304352 304351	288.0 289.0 290.0 291.0 292.0 293.0 293.0 294.0 295.0 296.0 296.0 297.0 298.0 300.0 301.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 300.0 301.0 302.0	1.00 1.00 0.45 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769727 5769728 5769729 5769730 5769731 5769732 5769733 5769734 5769735		2.12 2.16 0.98 1.22 2.52 2.52 2.60 3.16 2.80 3.20 2.38 4.04 2.60 2.62 3.02	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.000 0.007 0.006 <0.001 0.004 0.004 0.005 0.008	
		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower contacts sharp and undulating ~=20° CA.	304339 304340 304341 304342 304343 304345 304346 304345 304346 304347 304348 304349 304350 304351 304352 304353	288.0 289.0 290.45 291.0 292.0 293.0 293.0 294.0 295.0 295.0 296.0 297.0 298.0 299.0 300.0 301.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 300.0 301.0 302.0	1.00 1.00 0.45 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5769722 5769723 5769724 5769725 5769727 5769728 5769729 5769730 5769731 5769733 5769733 5769733 5769735 5769735		2.12 2.16 0.98 1.22 2.52 2.60 3.16 2.80 3.20 2.38 4.04 2.60 2.62 3.02 3.42	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.006 <0.001 0.004 0.005 0.008 0.002	
290.45		More altered that altered metagreywacke at 178.4-234.2m with sericitization with chlorite, magnetite and at least 2-3% diss fine to evident py, massive to sheared oblique to CA. Highly magnetic. Highly carbonatized but <5% carb-qtz. Fine veinlets & fracture fillings. Massive to weak rock fabric 30- 40° CA. - 287.65-290.45m: diss py content increases to 3-5% mostly on fracture faces and assoc. with 5-10% qtz-carb veins and injections variable orientations and <10% silica rich interlayers at 40° CA and increased shearing 10-15° CA. BANDED CHERTY IRON FORMATION dark grey - greenish light grey bands 0.2-3cm wide. Highly silicious and silified sericitized and carbonatized, bedding defined by bands mostly vary 15-25° CA varying in places up to 35° and 10° CA. intermittent chaotic textures, crosscut by 10% fine 1- 2mm qtz-carb veinlets assoc. with 3-5% blebbs and small clots of py (+/- po) plus intermittent 1-2% aspy blebs or as fine "dusty" disseminations. Po in places has reddish hue and could be sphalerite or tetrahedrite expecially between 295-296m. Bedding dipping 45-60° based upon core orientation and trending E-W to ENE, under & lower contacts sharp and undulating ~=20° CA.	304339 304340 304341 304342 304343 304345 304345 304346 304347 304348 304349 304350 304351 304352 304351	288.0 289.0 290.0 291.0 292.0 293.0 293.0 294.0 295.0 296.0 296.0 297.0 298.0 300.0 301.0	289.0 290.45 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 300.0 301.0 302.0	1.00 1.00 0.45 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5769722 5769723 5769724 5769725 5769727 5769728 5769729 5769730 5769731 5769732 5769733 5769734 5769735		2.12 2.16 0.98 1.22 2.52 2.52 2.60 3.16 2.80 3.20 2.38 4.04 2.60 2.62 3.02	<0.001 <0.001 0.001 0.001 0.005 0.007 0.001 0.003 0.007 0.000 0.007 0.006 <0.001 0.004 0.004 0.005 0.008	

			Sample					Analyte:	Weight	Au	Au-Gra
	'H (m)		No.		'H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		mostly on fracture faces, very sparse 3-5% fine x-cutting qtz-	304358	305.0	306.0	1.00	5769741		1.54	< 0.001	I
		carb veinlets and injections. Silica "contamination" top 2	304359	305.0	306.0	1.00	5769742		1.44	< 0.001	H
		metres to upper contact. Rock fabric trends 25-30° CA.	304360	gold stand	ard 2.197 g	/t	5769743		0.10	2.320	I
		Sharp lower contact 25-30° CA	304361	287.0	288.0	1.00	5769744		0.94	< 0.001	I
											1
		- 319.8-320m: broken ground up core									I
338.75	357.60	MIXED MAFIC VOLCANIC SEDIMENT AND BANDED I.F.									
		Banded dark grey & black, mixed interlayers of graphitic									
		mudstone and magnetite rich layers 2-10mm thick									
		interspersed with massive mafic volcanic all fine grained,									1
		T.V. euhedral py only, very spares qtz-carb veining (<2%),									1
		chloritized, layers oriented 40-45° CA with orientation tool									1
		> vertically dipping									I
											I
357.60	365.40	MAFIC VOLCANIC, dark grey fine grained same as MV									1
		above, massive to weakly fabric trending 45° CA									1
		(subvertical), TV euhedral to framboidal py on fracture									1
		faces, strongly chloritized 5% fine qtz-carb veinlets									1
											1
365.40	382.00	MIXED ALTERED MAFIC VOLCANIC SEDIMENT AND CHERTY	304362	365.0	366.0	1.00					
		BANDED I.F., more magnetite and cherty and silicified than	304363	366.0	367.0	1.00					
		338.75-356.6m. Mixed interlayers of cherty magnetite	304364	367.0	368.0	1.00					
		layers and mafic volcanic sections 5% qtz-carb veinlets	304365	368.0	369.0	1.00					
		commonly aligned with bedding. 3-5% blebs and clots of py	304366	369.0	370.0	1.00					_
		rr & py throughout increasing in sericite silification, and	304367	370.0	371.0	1.00					
		sulphide content downhole from 379.8m. Bands vary in	304368	371.0	372.0	1.00					
		thickness from 0.5-3cm trending 35-45° CA (~=vertical	304369	372.0	372.5	0.50					I
		dipping)	304370	372.5	373.0	0.50					1
			304371	373.0	373.7	0.70					I
		Note sections of sulphides >5%:	304372	373.7	374.2	0.50	5769745		1.12	0.354	1
		-370.5-371m - 5-8% clots & strings with euhedral py & pyrr	304373	374.2	375.0	0.80	5769746		2.66	0.034	I
			304374	375.0	376.0	1.00	5769747		3.12	0.040	I
		-372.4-372.9m - 8-10% clots & stringers, py > pyrr with	304375	376.0	377.0	1.00	5769748		2.78	0.170	1
		increased silica	304376	377.0	377.6	0.60	5769749		2.28	1.680	1
		-373.8-374.2m - 5-8% clustered euhedral py with lessor pyrr	304377	377.6	379.0	1.40	5769750		1.90	0.070	1
		plus TV aspy	304378	379.0	380.0	1.00	5769751		2.86	0.186	
		-377.1-377.6m - 8-10% clots and stringers pyrr and py with	304379	380.0	381.0	1.00	5769752		2.52	0.500	
		qtz-ser veining aligned with banding plus aspy specks	304380	381.0	382.0	1.00	5769753		2.24	>10	15.48
			304381	Dupl.	304365						
		-376.4-376.5m - 5-8% clots of pyrr & py with TV aspy	304382	Duln	304377		5773460		1.64	0.118	
		-381.0-382m - 10-15% clots, stringers and clusters of pyrr	304383	Bla	ank		5773461		0.12	<0.001	
		with aspy specks plus lesser py, pyrr browner appearance,									
EOH		could be sph?									
		Py and aspy occurs as coarse and fine bands respectfully									
		plus cross-cuting pyrr clots & silica (quartz veining) clots,									I
		aligned with begging with magnetite band									
		[RESTARTED 382m OCT23/14]									-
382.00	384.00	MIXED MAFIC VOLCANIC SEDIMENT AND BANDED IRON	476676	382.0	383.0	1.00	6014748		2.53	7.560	7.79
		FORMATION cont'd	476677	383.0	383.5	0.50	6014749		1.26	5.940	5.76
		Same unit as 365.4-382m	476678	383.5	384.5	1.00	6014750		2.27	0.439	
		Highly magnetic, CA 30-35° fabric									
		-382-384.0m - 10-15% clots, stringers and net textured in									
		places. Py, po and aspy with narrow magnetite bands and	-								
		mafic sediment interlayers, silica injections and clots with									
		carbonate selveges.									
		-384.0-386.75m - 5-10% fine diss and stringer py plus lesser									-
		pyrr blebs insterspersed with highly silicified and seriticized									
		interlayers alternating with magnetite and mafic sediment									
		bands, lesser carbonate									
384.00	401.50	ALTERED MAFIC VOLCANIC/SEDIMENT	476679	384.5	385.5	1.00	6014751		2.65	0.489	
		Black, silicified and chloritized, very fine grained, fabric	476680	385.5	386.0	0.50	6014752		1.06	0.081	
		trends 030-035° CA, not magnetitic, <5% fine qtz-carbx-	476681	386.0	387.0	1.00	6014753		2.24	0.539	
		cutting stringers, 2-5% fine diss and blebby py unless	476682	387.0	388.0	1.00	6029360		2.48	0.094	
		otherwise noted. Gradual lower contact defined by increase	476683	388.0	389.0	1.00	6029362		2.28	0.059	
		in lighter mafic volcanic interlayers with graphitic mafic	476684	389.0	390.0	1.00	6029363		2.52	0.092	
		sediments and decrease in alteration. Intermittently	476685	390.0	391.0	1.00	6029364		2.38	0.230	
		magnetic with minor iron fm narrow bands.	476686	391.0	392.0	1.00	6029365		2.36	0.062	
	1		476687	392.0	393.0	1.00	6029366		2.34	0.007	
	1	1 -	476688	393.0	394.0	1.00	6029367		2.26	0.005	

			Sample					Analyte:	Weight	Au	Au-Grav
DEPT	H (m)		No.	DEPT	H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		Dextral hairline py filled fractures cut rock fabric and bands	476689	394.0	395.0	1.00	6029368		2.06	0.006	
		at high angles to CA	476690	395.0	396.0	1.00	6029369		2.08	0.007	
			476691	396.0	397.0	1.00	6029370		2.24	0.005	
			476692	397.0	398.0	1.00	6029371		1.14	0.005	
			476693	Blank			6029372		0.14	<0.001	
			476694	Gold st	tandard		6029373		0.10	2.240	
			476695	Dupl.	476692		6029374		1.08	0.006	
401.50	448.50	MAFIC VOLCANIC									
		Dark to med grey, fine grained massive to weakly banded									
		rock fabric, lesser silicification downhole until essentially									
		fresh, no sig sulfides, non magnetic, minor interspersed									
		graphitic mafic sediment appearing as bands trending 30-									
		35° CA, graphitic interlayers interspersed aligned with fabric									
		_									
											-
		-437.5-440.5m - increase in magnetitic susceptibility assoc									
		with minor narrow interspersed magnetite bands, local									
		kaotic textures and 1-2% blebby py									
		-444.9-445.5m - broken core									
		-446-446.6m - broken core									
		-446.5-446.6 - fault? Fracture 30° CA trending with chlorite									
		gouge fill									
EOH		8**8*									
			Depth	Azimuth	Dip						
			23m	152.9°	-43.8°						
			74m	154.8°	-43.0°						
			125m	151.7°	-41.0°						
			176m	154.9°	-39.6°						
			227m	156.0°	-38.4°						
			278m	158.0°	-37.6°						
			329m	154.0°	-35.5°						
		(Based on core orientation qtz-carb veinlets oriented	382m	152.0°	-34.9°						
		subvertical trending 060-070 az., shears variable but									
		subvertical & trending W-WNW)	Oriented c	ore starts a	t 47m						

Project: Collar Loca Length of F Dip at Colla Azimuth at Core Diam Drill Contra	Hole: ar:	RICHARDSON LAKE NAD83 ZONE15 5705920N 0544270E 503m		DDH No.: Start Date:		RL-14-09						
Length of H Dip at Colla Azimuth at Core Diam	Hole: ar:		+	istart Date:								
Dip at Colla Azimuth at Core Diam	ar:	1.30.3111		Completion		Aug-25-14 Sep-3-14						
Azimuth at Core Diam		-45°	+	Claim Num		Sep-3-14 1249504						
Core Diam		-45 180°				Z. Mandziu	uk.					
		NQ	+	Logged By:		Sep-3-14						
			-	Logging Da	te:	Richardsor	Laka	(202.052)				
		Cyr Drilling		Storage:		Richardson	Lake	(202-052)	Fire Assay	CD OES fin	ich (nnm)	
			-						Trace Au, I		isn (ppm)	
]			_							Sample		
			+							Login		
	L		-	Sample					Analyte:	Weight	Au	Au-Grav
	[H (m)			No.		TH (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION		(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
0.00	9.10	CASING										
9.10	18.80	META-GREYWACKE										
		Grey-green, massive to weakly foliated with locally										
		disrupted fabrics, pervasive qtz-carb veinlets, stringers,										
		gashes. Fine to medium varitextures, hard, no significant										
		sulfides, gradational contact, moderately chloritized.										
18.80	55.80	COARSE PLAGIOCLASE WACKE										
		Medium grey-green, 10-15% subhedral equant to locally										
		aligned elongated light grey plagioclase grains <1-4mm in										
		fine grained dark chloritic matrix, variable magnetite										
		content, rare qtz-py veining (e.g. 24.6m), qtz-carbonate										
		veinlets oriented E-W and dip steeply south; zone of										
		increased 1-2% qtz-carb veinlets 1-3mm @ 40.8-46.9m;	L									
		localized weak shearing ~20° TCA over tens of cm	L						ļ			
		accompanied by increased chloritization, qtz-carb and	L									
		intermittent py stringers and disseminations along vein										
		margins (e.g. 48.6m), broken core 35.5-35.7m; 51-51.5m	L									
			Ľ									
55.80	82.60	META-GREYWACKE										
		Medium grey-green, fine grained, massive to moderately	L									
		foliated over intervals of up to 1m; pervasive white										
		carbonate veinlets; similar to 9.1-18.8m; no significant										
		sulfides; broken core: 67.3-68m, 76.2-76.8m, variable M.A.										
82.60	95.10	PLAGIOCLASE WACKE										
		Medium grey-green, generally finer grained plagioclase										
		grains than 18.8-55.8m and more sorted textures, massive										
		to moderately foliated (e.g. 85.7m west striking foliation 20°	·									
		TCA with oriented south dip), moderate M.A.										
]										
95.10	104.70	META-GREYWACKE										
		Medium grey, fine grained, brecciated in places with lighter										
		coloured sericitic alteration, narrow interlayers of stretched										
-		plagioclase wacke, pervasive irregular white carbonate										
		veinlets; lower sheared contact with plagioclase wacke, no										
		significant sulfides, moderate M.A.										
104.70	130.50	PLAGIOCLASE WACKE	1					İ	1			
		Similar to 82.6-95.1m; moderately foliated in places; upper	1									
		2m sheared, chloritized 30° TCA with spotty pyrite stringers	F									
		and disseminations along gtz-carb veinlets, 105.5-106.4m:	F									
		broken core; narrow interlayers of fine grained meta-	F									
		greywacke with conspicuous pervasive white carbonate	F									
		veinlets; variable M.A., no significant sulfides; 112.5m:	F									
		foliation 24° TCA, oriented south dip	F									
			F									
		1	F									
1305	163.70	PLAGIOCLASE WACKE INTERLAYERED WITH META-	\uparrow									
		GREYWACKE	F					11			1	
		Medium grey-green, fine to medium grained massive to	1									
		moderately foliated plagioclase wacke interlayered with	F									
		subordinate lighter greyish-green fine grained meta-	F									
		greywacke with some lighter coloured of stretched	F									
		cataclastic brecciation over short intervals, minor random										
		clusters and disseminations of subhedral mm-scale pyrite,	F									
		less intense carbonate veining than typical of meta-gwk.	F			1						
		e e	\vdash			1						
		149.0-150.8m: Broken core; 152.3-153.0m: Silicified shear,	⊢									
		stretched pseudo-breccia @ 15° TCA, spotty fine pyrite,	⊢									
		dark green chlorite along foliation layers; variable M.A.; 158-				-						
		163.7m: Sheared plagioclase wacke displaying faint banding,				+						

			Sam	· •			6-	<u> </u>	Analyte:	Weight	Au	Au-Grav
	'H (m)	DESCRIPTION		-		[H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(De	sc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		along core axis, also intermittent pink calcite veins										
		continuing to 168.4m.										<u> </u>
		Ŭ										
												_
163.70	194.80	PLAGIOCLASE WACKE										
		Medium grey-green, massive to weakly foliated, silicified										-
		mm-scale light grey subhedral plagioclase grains, variable										
		M.A., fairly homogeneous fabric & lithology with <1% qtz-										
		carb veins; occasional pink calcite veining; no significant										
		sulfides; 166-182.2m: 2-3% mm-scale amphibole + chlorite										
		as conspicuous dark green unifrom speckling; 193.8m:										
		foliation 40° TCA oriented at shallow southerly dip										
194.80	241.50	ALTERED PLAGIOCLASE WACKE										
		Deformed, sheared and altered coarse to med. grained										
		plagioclase wacke, moderate to strong silicification,										
		irregular qtz-carb veining, variable to non-magnetic,										
		intermittent bleby pyrite and disseminated py <1%,										
		moderately to strongly foliated with relief fabrics locally										
		obliterated. 215.4m: pyrrhotite + sphalerite clot ~1cm										
		reddish brown; 215.0m: Foliation 26° TCA with oriented										
		shallow southerly dip; moderate to strong chloritization;										1
		234.9-237.5m: Relief banding with alternating cm-scale light				1		1			l	1
		coloured f.g.wacke & dark grey argillite ~28° TCA, non-				1		1				1
						1						1
		magnetic, minor diss py.										1
241.50	246.30	BANDED CHERTY IRON FORMATION	30	4384	241.5	242.0	0.50	5796486		1.24	0.003	
241.50	240.30	Alternating 0.1-2cm bands of fine gr black magentite and		4385	242.0	243.0	1.00	5796487		2.68	0.009	+
				4386	242.0	243.0	1.00	5796488			0.003	
		light grey-green chert; layering 35-55° TCA with localized			243.0	244.0	1.00	5796488		3.24	0.127	+
		offsets, crenulations and small-scale boudinage; similar to		4387				-		2.72		
		290.45-303.55m in hole RL-14-08; 243.0-243.8m:		4388	245.0	246.0	1.00	5796491		2.62	0.008	
		MINERALIZED ZONE pyrite stringers + semi-invasive	30	4389	246.0	247.0	1.00	5796492		2.90	0.003	
		meshwork of 30% po + sph + py concentrated @ 243.1-	<u> </u>									
		243.7m; secondary mineralized zone @ 245.5-246.3m: 15%										
-		po + sph + py as conformable layers and lenses; core	<u> </u>									
		recovery 100% RQD 99%										
246.30	252.10	GRAPHITIC ARGILLITE										
		Dark grey to black, thinly laminated, very fine grained to										
		amportphous with greasy graphitic slips along layering,										
		random cm-scale bands of light grey f.gr. greywacke, up to										
		2% mm-scale intrafolial white qtz-carb veinlets ~ 26-33° TCA										
		with occasional fine gr. py and some possible wispy aspy;	\square									
		non-magnetic; sulfides <1%, sharp lower contact 20° TCA										<u> </u>
		with some associated sub-mm py stringers & blebs; C.R.										
		99% RQD 97%	\square									<u> </u>
			\square									<u> </u>
252.10	264.50	META-GREYWACKE	\square		1							<u> </u>
		Medium grained, medium grey, massive, recrystallized,	\square									<u> </u>
		variable content of mm-scale light grey to white plagioclase	\square									L
		grains; random flaggy inclusions of dark graphitic argillite	\square									
		clasts, non-magnetic, no significant sulfides, increasing qtz-										
		carb veinlets d.h. C.R. 97% RQD 96%	\square									
264.50	279.50	GRAPHITIC ARGILLITE INTERLAYERED WITH META-	30	4390	270.3	271.0	0.70	5796493		1.68	0.004	
		GREYWACKE	30	4391	271.0	272.0	1.00	5796494		2.88	0.005	
		Banded to massive, black to medium grey, non-magnetic,	30	4392	272.0	273.0	1.00	5796495		2.16	0.005	
		massive to foliated, variable plagioclase in meta-greywacke	30	4393	273.0	274.0	1.00	5796497		1.24	0.005	
		layers; pervasive mm-scale qtz-carb stringers ~12-% with	30	4394	Dupl. of 30	04393		5796498		1.26	0.004	
		occasional blebby to very fine gr py <1-2%; C.R. 98% RQD	30	4395	274.0	275.0	1.00	5796499		2.02	0.005	
		93%		4396	275.0	276.0	1.00	5796500		2.54	0.007	
				4397	276.0	277.0	1.00	5796501		2.32	0.003	1
				4398	277.0	278.0	1.00	5796502		2.18	0.003	1
												+
270 50	207.50		H 30	4399	278.0	279.5	1.50	5796504		3.56	0.005	+
279.50	307.50	META-GREYWACKE INTERLAYERED WITH GRAPHITIC	\vdash			1		+				
		ARGILLITE	$\left \right $									
		Medium grained, recrystallized, massive to weakly foliated,	⊢⊢—					<u> </u>				──
-		qtzose, similar to 252.1-264.5m, medium grey with	\vdash									───
		interlayers and flaggy inclusions of dark grey to black	⊢┼──									<u> </u>
	1	banded argillite-mudstone, non-magnetic, qtz-carb veining				1					1	1

1			Sample					Analyte:	Weight	Au	Au-Gra
DEPT	H (m)		No.	DEPT	ʻH (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		concentrated in argillaceous layers; foliation ~25° TCA;									
		graphitic argillite comprises ~25% of unit. CR 98% RQD 98%									
		-									
207.50	222.20										
307.50	332.30	META-GREYWACKE Medium grey-green, fine grained, variably foliated, narrow									
		interlayers of coarse plagioclase wacke; silicified,									
		chloritized, greater than typical gtz-carb veining,									
		intermittent minor blebs and disseminations of py, po;									
		sulfides <1%; foliation ranges from <15° to 30° TCA;									
		pervasive shear fabrics; C.R. 100%, RQD 99%; intermittent									
		bands of dark argillite									
332.30	335.30	ALTERED META-GREYWACKE INTERLAYERED WITH	304400	335.0	336.0	1.00	5796505		2.16	0.003	
		GRAPHITIC ARGILLITE									
		Sheared, chloritized, with locally sericitized cherty beige									
		interlayers up to 80cm; strained, sheared brecciated cherty									
		layers, pervasive qtz-carb veining, foliation 15-35° TCA, 1-									
		2% blebby, disseminated & stringer py associated with qtz-									
		carb veinlets & stringers @ 348-354m; C.R. 100% RQD 99%	-								
		4									
335.30	376.00	MAFIC METAVOLCANIC	476626	336.0	337.0	1.00	5796506		2.50	0.005	
	370.00	Dark grey-green, fine grained, massive, brecciated beige	476627	337.0	338.0	1.00	5796507		2.30	0.003	
		sericitic chert layers near upper contact, non magnetic to	476628	338.0	339.0	1.00	5796509		2.44	0.001	
		weak M.A., foliation 24-43° TCA, pervasive qtz-carb veining	476629	339.0	340.0	1.00	5796510		1.28	0.003	
		~2-5%; intermittent finely diss py; chloritized; veining		Dupl. of 47			5796511		1.10	0.003	
		orientations ~15-25° TCA southerly dips; 369-379m:	476631	347.0	348.0	1.00	5796512		2.32	0.001	
		Increased intensity of shearing, chloritization, qtz-carb	476632	348.0	349.0	1.00	5796514		2.54	0.002	
		veining with 2-5% py locally @ 372.6-375.5m in random	476633	349.0	350.0	1.00	5796515		2.46	0.001	
		clusters of fine disseminations; C.R. 100% RQD 97%.	476634	350.0	351.0	1.00	5796516		2.34	0.002	
		-	476635	351.0	352.0	1.00	5796517		2.70	0.003	
			476636	352.0	353.0	1.00	5796519		2.08	0.002	
			476637	353.0	354.0	1.00	5796520		2.30	0.004	
			476638	354.0	355.0	1.00	5796521		2.58	0.001	
			476639	355.0 372.0	356.0 373.0	1.00 1.00	5796522 5796523		2.40	0.002	
				572.0 Dupl. of 47	1	1.00	5796525		1.06	0.002	
			476642	373.0	374.0	1.00	5796526		2.12	<0.001	
			476643	374.0	375.0	1.00	5796527		2.20	0.001	
			476644	375.0	376.0	1.00	5796528		2.68	< 0.001	
376.00	401.70	MIXED MAFIC METAVOLCANIC AND BANDED CHERTY IRON	476645	376.0	377.0	1.00	5796529		2.22	0.001	
		FORMATION	476646	Gold stand			5796530		0.10	2.210	
		Alternating light grey & medium grey-green, cm-scale bands									
		with intermittent dark green metavolcanic layers, strong									
		M.A.; sheared disrupted & brecciated fabrics; thin graphitic									
		interlayers; strongly chloritized; unevenly dispersed fine									
		disseminations ofembedded pyrite 1-2%; banding									
		orientations 25-35° TCA with southerly dips; 386.3-393.5m:									
		strong qtz-carb veining 5-10%; C.R. 100% RQD 100%	_								
1		4	_								
					1					1	
401 70	442.20		176617	442 5	442.0	0.50	E700F24			0.027	
401.70	443.20	MAFIC METAVOLCANIC	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR	476647	442.5	443.0	0.50	5796531		1.28	0.027	
401.70	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR	476647	442.5	443.0	0.50			1.28	0.027	
	443.20	Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON	476648	443.0	444.0	1.00	5796532		2.80	0.005	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION				1.00	5796532 5796533			0.005	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON	476648 476649 476650	443.0 444.0 445.0	444.0 445.0 446.0	1.00 1.00 1.00	5796532 5796533 5796534		2.80 2.52 2.32	0.005 <0.001 <0.001	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION Dark grey m.v. interlayered with strongly magnetic medium grey and black iron formation and subordinate narrow	476648 476649 476650 476651	443.0 444.0 445.0 446.0	444.0 445.0 446.0 447.0	1.00 1.00 1.00 1.00	5796532 5796533 5796534 5796535		2.80 2.52 2.32 2.50	0.005 <0.001 <0.001	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION Dark grey m.v. interlayered with strongly magnetic medium grey and black iron formation and subordinate narrow graphitic layers; pervasive sub-mm wispy irregular qtz-carb	476648 476649 476650 476651 476652	443.0 444.0 445.0 446.0 447.0	444.0 445.0 446.0 447.0 448.0	1.00 1.00 1.00 1.00 1.00	5796532 5796533 5796534 5796535 5796535		2.80 2.52 2.32 2.50 2.48	0.005 <0.001 <0.001 0.001 0.002	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION Dark grey m.v. interlayered with strongly magnetic medium grey and black iron formation and subordinate narrow graphitic layers; pervasive sub-mm wispy irregular qtz-carb veining ranging to larger contorted pods and veinlets	476648 476649 476650 476651 476652 476653	443.0 444.0 445.0 446.0 446.0 446.0	444.0 445.0 446.0 447.0 448.0 449.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5796532 5796533 5796534 5796535 5796535 5796535 5796535		2.80 2.52 2.32 2.50 2.48 2.52	0.005 <0.001 <0.001 0.001 0.002 0.001	
401.70		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION Dark grey m.v. interlayered with strongly magnetic medium grey and black iron formation and subordinate narrow graphitic layers; pervasive sub-mm wispy irregular qtz-carb veining ranging to larger contorted pods and veinlets comprise up to 5%; 2-3% fine grained euhedral pyrite	476648 476649 476650 476651 476652 476653	443.0 444.0 445.0 446.0 446.0 447.0 448.0 447.0	444.0 445.0 446.0 447.0 448.0 449.0 450.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5796532 5796533 5796533 5796535 5796535 5796536 5796537 5796539		2.80 2.52 2.32 2.50 2.48 2.52 2.84	0.005 <0.001 <0.001 0.001 0.002 0.001 <0.001	
		Dark grey-green, strongly silicified with lighter coloured medium to light grey silicious & cherty intervals; foliated @ 25-35° TCA; intermittent blebby & fine disseminated sub mm-scale py up to 2%; ~5% pervasive white qtz-carb veining <1-10mm predominantly along foliation planes, banded in places with interlayered chert-magnetite; unit becomes more massive and homogenous d.h., non-magnetic; CR 100% RQD 99% MIXED MAFIC METAVOLCANIC AND BANDED IRON FORMATION Dark grey m.v. interlayered with strongly magnetic medium grey and black iron formation and subordinate narrow graphitic layers; pervasive sub-mm wispy irregular qtz-carb veining ranging to larger contorted pods and veinlets	476648 476649 476650 476651 476652 476653	443.0 444.0 445.0 446.0 446.0 446.0	444.0 445.0 446.0 447.0 448.0 449.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5796532 5796533 5796534 5796535 5796535 5796535 5796535		2.80 2.52 2.32 2.50 2.48 2.52	0.005 <0.001 <0.001 0.001 0.002 0.001	

2014 DDR w assays - RL-14-09

			Sample					Analyte:	Weight	Au	Au-Grav
DEPT	'H (m)		No.	DEPT	H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
			476658	Dupl. of 47	6657		5796544		1.44	<0.001	
			476659	Blank			5796545		0.12	< 0.001	
456.50	503.00	MAFIC METAVOLCANIC	476660	456.5	457.0	0.50	5796546		1.30	<0.001	
		Dark grey-black; f.gr. to aphanitic, massive to locally well	476661	457.0	458.0	1.00	5796548		2.38	0.001	
		foliated, up to 22% disseminated py in upper 5m of unit,	476662	458.0	459.0	1.00	5796549		2.18	< 0.001	
		non-magnetic, chloritized, pervasive qtz-carb veinlets up to	476663	459.0	460.0	1.00	5796550		2.22	<0.001	
		10% over tens of cm, unit is intruded by assimilative weakly	476664	460.0	460.7	0.70	5796551		1.40	<0.001	
		porphyritic intermediate dykes (e.g. 460.7-462.1m, 470.8-									
		472.7m, 474.5-475.8m, 476.7-479.0m, 496.5m-497.3m);									
		foliation 36° @ 472, 498.6m; 498-503m: Disrupted sheared									
		interlayers of banded meta-greywacke, plagioclase wacke,									
		argillite.									
		-									
	503.00	E.O.H.									
			Depth	Azimuth	Dip						
			17m	183.2°	-44.6°						
			68m	181.2°	-43.7°						
			119m	181.6°	-42.6°						
			170m	177.7°	-41.9°						
			221m	174.3°	-41.3°						
L			272m	171.8°	-40.1°						
			323m	173.9°	-37.3°						
			374m	174.3°	-36.7°						
			425m	189.9°	-34.3°						
			503m	191.3°	-32.7°	?					

Due! /			Г			DI 44.10						Т
Project:	tion		-	DDH No.:		RL-14-10	14					+
Collar Loca		NAD83 ZONE15 5705920N 0544270E	$\left \right $	Start Date:		Oct-25-201						+
Length of F		506m -45°	+	Completion		Nov-1-201	4					+
Dip at Colla Azimuth at		-45° 132°	+	Claim Num Logged By:		1249504 Trevor Boy	ud l	1			1	+
Core Diame		NQ	+	Logging Da		Nov-3-201	1					+
Drill Contra		Cyr Drilling		Storage:	ic.	Richardsor		(202-052)	Fire Assav			
				Storage.		Nicharusoi	Lake	(202-032)	Trace Au, I	CP-OFS fin	ish (nnm)	
			+						Hace Au, I	Sample		
										Login		
				Sample					Analyte:	Weight	Au	Au-Grav
DEPT	'H (m)			No.	DEDI	ГН (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	+	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
0.00	9.00	OB		(BC3C)	TIOIII	10	Lengen		NDL.	0.01	0.001	0.05
9.00	20.80	META-GREYWACKE, medium grey fine to med grained,										
5.00	20.00	massive to moderate foliation/fabric at 15-20° CA.	H									-
		Carbonate alteration with carbonate fracture hairline fillings	H									
		(<5%), variably magnetic, TV diss py	H									
			H									
		- 14.0-14.1m: chloritic broken core										
20.80	62.20	COARSE PLAGIOCLASE META-WACKE, medium grey green										
		medium grained 1-2mm plagioclase grains with chloritic										
		matrix, carbonate alteration with <5% carbonate stringers										
		and fracture fillings, massive to weakly foliated fabric 20-25°										
		CA, TV py blebs, weakly to moderately magnetic										
		- 39.6-42.2m: intermittent broken core in highly chloritic	П									
		degraded rock with carbonate dissolution vuggy texture,	Ц									
		weathered rusty fracture faces, residual qtz clots with vugs	Ц									
62.20	103.90	MIXED META GREYWACKE / PLAGIOCLASE WACKE, speckled	Ш									
		green grey alternating sections of coarse and fine grained										
		rock, carbonate-qtz stringers and clots 2-5% &	Ш									
		chloritization, fine to medium grained, variably magnetic, TV	Ш									
		py blebs & disseminations, increasing chloritization & some										
		seritization & carbonatization of plagioclase laths	\square									
		downhole. Variable but moderate to high magnetic	\square									
		susceptibility. Mostly fine grained with plagioclase laths <1-	\vdash									
		2mm in size massive to weakly foliated at 25-30° CA, based	\vdash									
		upon core angle, tool foliation near vertical dipping &	\vdash									
		trending east-west	\vdash									-
		-	\square									-
103.90	201 50	META-GREYWACKE, green grey fine grained, massive to	+									
103.90	201.50	weakly foliated fabric at 25-30° CA, variably moderate to	\vdash									
		strongly magnetic with TV - 2% diss magnetite specks in	H									-
		rock, chloritized throughout with lesser sericitization,	H									-
		stronger than above unit. <5% carbonate-qtz stringers and	H									
		carbonatized throughout TV diss py. Alteration intensity	\square									
		varies throughout such that primary textures locally	H									
		obliterated.	H									
			H			1					ĺ	1
		- 118.8-199.0m: highly carbonatized patch										1
		- 150.7-150.8m: highly carbonatized patch	Π									
		- 164.7-165.1m: highly chloritized degraded fault? zone,										
		broken core										
		- 170-170.9m: 30% qtz-carb veins and injections trending										
		chaotically oblique to CA	\prod									
		- 171.8-172.0m: broken core	Ц]								
		- 180.1-180.2m: qtz-carb injection or patch										
		Gradual lower contact defined by increase in chloritization	Щ									ļ
		and sericitization until primary textures obliterated	Щ									<u> </u>
201.5-	207		$\left \right $									<u> </u>
201.50	285.30	ALTERED META-GREYWACKE, dark green grey, prevasively	\mid									
		chloritized & sericitization plus hard with "flinty" slicification	H									
		noted, more intense downhole. <5% qtz-carb veinlets &	H									+
		stringers TV-1% diss blebs py, variably moderate to strongly	H									+
		magnetic, speckled magnetite fine grained and mostly	H			+						+
		massive, based upon core orientation unit ~= vertical	H									+
		dipping trending E-W & weak rock fabric where viewed 25-	H									+
		30° CA. (Silicate facies iron formation?)	H									+
1	1	4	\square					+				+
			1 1									
		Diffuse wisny light groups cale carbonate lances with	$\left \right $									
		Diffuse wispy light grey sm-scale carbonate lenses with irregular ragged outlines, CR 98 RQD 98										

2014 DDR w assays - RL-14-10

			Sample					Analyte:	Weight	Au	Au-Grav
DEPT	H (m)		No.	DEP	TH (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
285.30	294.50	MINERALIZED MIXED CHERTY BRECCIA/COBBLE	476701	284.5	285.3	0.80	6064008		2.10	< 0.001	
		CONGLOMERATE	476702	285.3	286.0	0.70	6064009		1.50	0.002	
		Variegated white to medium grey, chaotic fractured brittle	476703	286.0	287.0	1.00	6064010		2.30	0.002	
		to strained ductile fabrics, strongly chloritized and slicified	476704	287.0	288.0	1.00	6064011		2.28	0.005	
		with intermittent hairline crack quartz-carbonate networks,	476705	288.0	289.0	1.00	6064012		2.66	0.009	
		intermittent stringers and irregular lenses of semi-massive	476706	289.0	290.0	1.00	6064013		2.34	0.038	
		to massive pyrite up to 2cm along with fine to coarse	476707	290.0	291.0	1.00	6064014		2.54	0.003	
		disseminations of euhedral pyrite 1-5% over tens of cm,	476708	291.0	292.0	1.00	6064015		2.68	0.053	
		localized clusters of fine to med gr subhedral arsenopyrite &	476709	292.0	293.0	1.00	6064016		2.58	0.034	
		random f. gr. disseminations associated with pyrite &	476710		294.0	1.00	6064017		1.32	0.005	
		alteration	476711	Dupl. c	of 476710		6064018		1.18	0.003	
			476712	294.0	295.0	1.00	6064019		2.66	<0.001	
		 290-294.5m: strongly sheared ~15° TCA, non-magnetic, 									
		weakly carbonated, C.R. 100 RQD 98									
294.50	298.40	ALTERED METAGREYWACKE									
		Similar to 201.5-285.3m; dark grey green, fine grained, non-									
		magnetic, moderately carbonatized with wervasive mm-									
		scale and hairline white clacite stringers, localized blebby									
		and disseminated pyrite, strongly chloritized, variably									
		foliated, fairly sharp transition to underlying coarse									
		plagioclase wacke; CR 100 RQD 99; hard, competent unit			+						
202.12	205 12										
298.40	305.40	PLAGIOCLASE PEBBLE CONGLOMERATE									
		Medium grey, weakly to moderately foliated, variably									
		sorted subhedral, subrounded and stretched elongated light									
		grey plagioclase grains ~0.2-1.0cm comprise ~40-70%;									
		strongly chloritized fine grained matrix, no significant									
		sulfides, hard, silicified. CR 100 RQD 97									
305.40	325.00	ALTERED METAGREYWACKE	476713	305.4	306.0	0.60	6064020		1.32	0.027	
303.40	323.00	Similar to 294.5-298.4m; dark grey gree; variably foliated	476714		307.0	1.00	6064021		2.54	0.027	
		fine grained, non-magnetic, strongly chloritized; 3-10% fine	476715	307.0	308.0	1.00	6064022		2.14	0.010	
		to medium grained pyrite clusters & disseminations in	4/0/15	307.0	500.0	1.00	0004022		2.14	0.037	
		upper 2m of unit; sharp transition from overlying unit;									
		increasing carbonate alterations & quartz veining d.h.;									
		gradational contact with underlying plagioclase wacke;									
		strongly silicified; primary textures and structures mostly									
		obliterated; CR 99 RQD 98									
325.00	354.80	COARSE PLAGIOCLASE WACKE									
		Medium grey-green, massive to weakly foliated,									
		interlayered altered metagreywacke in upper 3m with grey									
		cm-scale quartz veining at low angles TCA associated with									
		chloritic selvages and blebby pyrite up to 5% locally; below									
		330.5m unit becomes more uniform & lacks sulfides, non-									ļ
		magnetic, chloritized, <1% quartz veining, less carbonate									ļ
		content, gradational transition d.h. to plagioclase pebble									
		conglomerate, CR 99 RQD 99					-				
254.00	267.55		+		+						┢───┤
354.80	367.60	PLAGIOCLASE PEBBLE CONGLOMERATE			+		-				
		Similar to 298.4-305.4m; grey-green, moderately to poorly									
		sorted, massive to weakly foliated, random minor blebby									
		pyrite, weakly carbonatized, very minor quartz veining, hard	-								
		competent unit, CR 100 RQD 100			+						
367.60	409.00	INTERLAYERED METAGREYWACKE AND ALTERED	476716	397.0	398.0	1.00	6064023		2.52	0.002	
307.00	-55.00	METAGREYWACKE	476710	397.0	398.0	1.00	6064023		2.32	0.002	
		Grey-green, fine grained, predominantly massive to weakly	476718		400.0	1.00	6064024		2.22	< 0.002	
		foliated, mostly weakly magnetic; altered interlayers are	476719		400.0	1.00	6064026		2.00	< 0.001	
		strongly carbonatized with wispy irregular lenses and low	476720		402.0	1.00	6064027		2.28	<0.001	
		angle calcite veining and meshworks, intermittent blebby				1.00			0		
		and clustered disseminations of pyrite, no significant quartz									
		veining; gradational transition to underlying plagioclase									
		wacke, CR 99 RQD 98									
409.00	445.50	PLAGIOCLASE WACKE INTERLAYERED WITH ALTERED									
		METAGREYWACKE									
		Grey-green, massive to weakly foliated, non-magnetic to									
		variably magnetic, moderate to strong carbonate alteration;									
		intermittent intervals of disseminated pyrite up to 2% over			<u> </u>						
		tens of cm, variable content & sorting of subrounded									

			San	nple					Analyte:	Weight	Au	Au-Grav
DEPT	H (m)		N	lo.	DEPT	H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(De	esc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		plagioclase grains <1mm-1cm, guartz-carbonate and										
		chlorite alteration increase d.h., CR 99 RQD 98										
445.50	456.00	ALTERED METAGREYWACKE	47	76721	449.0	450.0	1.00	6064028		1.08	0.011	
		Grey-green, strongly chloritized, chaotic disrupted fabrics,	47	76722	Dupl. of 47	6721		6064029		1.24	0.012	
		moderately carbonatized, low angle t.ca, quartz-chlorite-	47	76723	450.0	451.0	1.00	6064030		2.73	0.184	
		carbonate veining near upper contact, prevasive blebby and	47	76724	451.0	452.0	1.00	6064031		2.30	0.010	
		disseminated pyrite +/- arsenopyrite along with intermittent	47	76725	452.0	453.0	1.00	6064032		2.62	0.013	
		cm-scale semi-massive pyrite lenses ~45° t.c.a.;	47	76726	453.0	454.0	1.00	6064033		2.36	0.264	
		conspicously increased quartz veining compared to	47	76727	454.0	455.0	1.00	6064034		2.32	0.421	
		overlying unit; brecciated; 5-8% pyrite content, primary		76728	455.0	456.0	1.00	6064035		2.30	0.121	
		textures & structures obliterated; C.R. 99 RQD 98, weakly	47	76729	Ore as star	ndard (26)		6064036		0.10	2.210	
		magnetic	47	76730	Blank SiO2	1		6064037		0.14	<0.001	
456.00	461.50	PLAGIOCLASE PEBBLE CONGLOMERATE										
		Similar to 354.8-367.6m, grey-green, poorly sorted,										
		silicified, non-magnetic, massive homogeneous texture,										
		strongly chlooritized, grain sizes 4mm-1cm, CR 100 RQD 100										
461.50	475.60	ALTERED METAGREYWACKE	1	76731	460.0	461.0	1.00	6064038		2.24	0.024	
401.50	475.00	Similar to 445.5-456.0m, strongly chloritized and		76732	461.0	461.5	0.50	6064039		1.26	0.024	
		carbonatized with pervasive white calcite veinlets and		76733	461.5	462.0	0.50	6064040		1.10	0.044	
		gashes, non magnetic, finely disseminated pyrite and blebby		76734	462.0	463.0	1.00	6064041		2.36	0.065	
		pyrite associated with intermittent quartz veins at low angle		76735	463.0	464.0	1.00	6064042		0.98	0.086	
		tca in upper 3m, CR 97 RQD 97			Dupl. of 47			6064043		1.38	0.076	
475.60	506.00	PLAGIOCLASE PEBBLE CONGLOMERATE/DIORITE										
		Similar to 456.0-461.5m; grey-green, texture becomes more										
		homogeneous d.h. and dioritic in appearance, non-										
		magnetic, silicified, no significant sulfides, CR 100 RQD 99										
E.O.H.												
			Dept		Azimuth	Dip						<u> </u>
		RL-14-T1: 476701> 476712 upper zone	23m		123.1°	-43.6°						
		RL-14-T2: 476721> 476730	74m		133.0°	-42.6°						
			125r		141.3°	-42.1°						<u> </u>
			176r		132.1°	-41.4°						
			227r 278r		135.2°	-40.2° -39.5°						+
			278r 329r		136.0° 134.0°	-39.5°						
			329r 380r		134.0 133.7°	-38.8 -38.3°						<u> </u>
			431r		133.7 131.8°	-38.3 -37.9°						
			4511 461r		131.8 130.1°	-37.9°						
			506r		130.1 129.7°	-37.0 -36.2°						<u> </u>
			5001		123.7	50.2						<u> </u>

2014 DDR w assays - RL-14-11

			1			DI 4444	1				1	
Project: Collar Loca	tion		-	DDH No.: Start Date:		RL-14-11 Nov-28-20	14					
Length of F		NAD83 ZONE15 5705969N 0544670E 506m	-	Completion		100-28-20	J14					
		-45°		Claim Num		1249504						
Dip at Colla Azimuth at		-45 155°				Trevor Bo	vel				1	
Core Diame		NQ	-	Logged By:		Nov-30-20	,				T	
				Logging Da	le:	Richardso		(202.052)				
Drill Contra	actor:	Cyr Drilling	-	Storage:		Richardso	п Lake	(202-052)				
									Trace Au, I		isn (ppm)	
										Sample		
										Login		
				Sample					Analyte:	Weight	Au	Au-Grav
DEPT	'H (m)			No.	DEPT	'H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION		(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
0.00	7.50	OVER BURDEN										
7.50	20.80	META-GREYWACKE										
		Medium grey, fine to med grained, massive to weakly										
		foliated/fabric at 10-15° CA, carbonate alteration and										
		carbonate-quartz veinlets and stringers (5%), magnetic 1-2%										
		fine diss py, carb-qtz veining variable orientations including	F									
		parallel to CA.	F									-
			-								-	
		- 16.0-16.4m: local contact with different greywacke beds	-									
			\vdash				+				+	+
		undulating 40-50° CA with 2-5% clots of py	\vdash								+	+
			\vdash				-				+	───
		- 17.2-18.3m: rusty gouge fault ~= to CA	\vdash								+	
		- 31.2-31.5m: qtz vein injection undulating high angle										
		contact CA and 2-3% euhedral py									<u> </u>	───
20.80	76.70	METACONGLOMERATE		1058021	45.3	46.3	1.00	6159958		1.40	0.015	
		Light to med grey mostly massive with lesser weak fabric		1058001	46.3	47.3	1.00			2.40	0.032	<u> </u>
		trending 5-10% CA, bedding appears to trend higher angle		1058002	47.3	48.3	1.00	6159939		2.74	0.016	
		to CA than foliation> 30-35°, medium to coarse grained		1058003	48.3	49.3	1.00	6159940		2.58	0.013	
		with stretched & rounded qtz pebbles noted in places, non										
		magnetic, 2-5% diss euhedral py & blebs py, 5-10% qtz										
		veining commonly subparallel to 10° to CA as noted.										
		- 39.9-40.6m: 10cm wide gtz vein subparallel to CA, 5-7%										
		euhedral diss py	F									
		- 47.4-49.8m: 30% gtz injections with 5-7% blebs euhedral										
			-									
		py - 56.9-58.2m: narrow <5mm wide qtz veining 30% of rock ~=					-					
			-									-
		to CA, 5-7% euhedral py, chaotic and interspersed with finer	-									
		grained interlayers wrap around qtz									-	
											L	ļ
		- 70.3-73.1m: same as above again										
		Lower contact undulating at 30-35° CA but sharp										
		Samples - 3 samples 46.3-49.3m										
76.70	144.40	PLAGIOCLASE META GREYWACKE		1058004	86.0	87.0	1.00	6159941		2.10	0.098	
		Medium green grey, weakly to moderately foliated,										
		trending subparallel to CA, ragged plagioclase grains, 3-5%										
		fine diss py throughout - lesser qtz veining than										
		congolmerate with carb clots but not increase in										
	İ	pyritization, magnetic, (in places massive and argiclitic				1	1				1	1
		texture), moderately carbonatized & chloritized throughout									1	1
			F				1				1	1
		- 86.2-86.9m: gtz-carb injection with 5-8% py clots & blebs	t				1				1	1
			F								1	1
		1 sample 86-87m	1				1				1	t
144.40	263.00	MAFIC META GREYWACKE	\vdash	1058027	177.0	178.0	1.00	6159964		1.52	0.006	+
174.40	203.00	Marie Meia GRETWACKE Medium to dark green grey, gradual change from above,	+	1058027	177.0	178.0	1.00			2.96	0.008	+
		massive to foliated fabric trending subparallel to CA, more	\vdash	1058028	178.0	179.0	1.00			2.96	0.004	+
			⊢									+
		mafic in composition than above with visible amphibole	\vdash	1058006	180.0	181.0	1.00			2.32	0.011	
		crystals 2-4mm size dominant, variably magnetic,	⊢	1058007	181.0	182.0	1.00	6159944		3.14	0.002	
		moderately chloritized & carbonatized from the mafic	F	1058008	182.0	183.0	1.00	6159945		2.62	0.001	
		minerals, micaceous, in places, <1-2% fine diss py	L				-				──	4
]		4	L				+				 	
											<u> </u>	<u> </u>
		Minor qtz veining & injections <5%, significant veins with	L									
		pyrite halos noted below	Γ									
		- 174.9-175.1m: x-cutting qtz-carb vein with 2-3% diss py in	1									
		vein & wall rock	F								1	1
' I	1	- 180.0-181.8m: 15-20% x-cutting qtz-carb veins & injections	t								1	1
												+
		with 3-5% ny diss & hlehs in yein and as halos in wall rock										
 		with 3-5% py diss & blebs in vein and as halos in wall rock	_									
		with 3-5% py diss & blebs in vein and as halos in wall rock - 229.95-230.15m: x-cutting qtz carb vein with 2-3% diss py										

D.C.D.T	11 (ma)		H	Sample	000	LL (ma)	Comula	Comula	Analyte:	Weight	Au	Au-Gr
	'H (m)		\square	No.		H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION		(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
		Samples 179-180, 180-181,181-182,182-183										
263.00	295.80	GREYWACKE		1058009	290.0	291.0	1.00	6159946		1.90	0.039	
		Light-medium grey same as above except lesser only weakly		1058010	291.0	292.0	1.00	6159947		2.40	0.318	
		magnetic and more siliceous, "flinty" in character, gradual		1058011	292.0	293.0	1.00	6159948		2.80	0.163	
		contact with above.		1058012	293.0	294.0	1.00	6159949		2.90	0.015	
		Fine-medium grained, massive to weak fabric trending 10-		1058013	294.0	295.0	1.00	6159950		2.56	0.065	
		15° CA, gritty in places, non magnetic, <5% intermittent		1058014	295.0	296.0	1.00	6159951		2.60	0.002	
		quartz-carb stringers x-cutting at all angles, rare diss py,		1000011	20010	25010	2.00	0100001		2.00	0.002	
		weakly chloritized & moderately carbonatized	H									
		weakly chloritized & moderately carbonatized	\vdash									
		1										
		1m samples 290-297m	\square				1.00					
295.80	321.30	BANDED IRON FORMATION		1058015	296.0	297.0	1.00	6159952		2.96	0.026	
		Light grey & black with alternating layers 1-3cm wide of										-
		magnetite & chert, very hard rock, bands trend 15-20° and		1058016	307.0	308.0	1.00	6159953		3.36	0.003	
		based up core orientation dipping 50-60° to the south, and		1058017	308.0	309.0	1.00	6159954		3.44	0.003	
		trending east-west, strongly highly magnetic but only										
		weakly chloritized, rare py and <1% of qtz-carb veining,										
		upper ragged undulating contact 20° CA										
		- 295.8-297.5m: chloritic broken up BIF, with TV py blebs										
		Lot in the stoken up bit, with tv py biebs	\vdash									
		Samples 20,210m	++									
21.20	202.50	Samples 30-310m	\vdash	1050010	220.0	220.0	0.00	6150055		1 74	10.001	
21.30	392.50	QUARTZ GREYWACKE / SILTSTONE		1058018	328.0	328.8	0.80	6159955		1.74	<0.001	
		Light to medium grey, fine to medium grained, flinty &		1058019	328.8	330.0	1.20	6159956		2.68	0.014	
		argiclitic and banded in places, massive to moderately		1058020	330.0	330.9	0.90	6159957		3.10	0.003	
		foliated, trending 10-20° CA, undulating and variable rock										
		fabric where not massive, weakly & variably magnetic,										
		variably chloritic but likely not alteration, <2% qtz veins &										
		stringers, TV diss py, intermittent narrow magnetitic seams,										
		harder and more silicious than upper greywacke but not										
			\vdash									
		silicified	\vdash									
		222.0.224m; plagioglass /1m; vetale/21), and the set	+									
		- 332.9-334m: plagioclase (1m xstals(?)), porphyric py dyke,	\vdash									
		contacts sharp 20° to CA										
		- 332.7-344m: same as above										
		- 328.8-330m: brecciated with chloritic seams and 2-3%										
		narrow seams & blebs of pyrr & py										
		Samples 328-328.8, 328.8-330, 330-331										
		- 382.5-385.5m: broken shard-like core										
392.30	422.20	INTERMEDIATE DYKE / SILL						1				
		Light grey, fine to medium grained, blocky in places,										
		massive, non magnetitic, with (intermittent minor quartz										
			\vdash									
		greywacke sections like above unit trending 15-20° CA in	\vdash									
		rock fabric and contacts with dyke which is slightly										
		magnetic), largely unaltered with minor chloritization &										
		carbonatization in greywacke section, <2% intermittent qtz-										
		carb veins, rare diss py noted on fracture faces, no contact	\square									
		aurole with seds?, dyke plagioclase phyric with <1mm xstals	LТ									
		noted	\square									
		1	\square									
		1	\square					1				
		- 393.4-393.9m: broken core										
		- 395.7-395.9m: broken core	++									
		- 411.5-416.0m: banded greywacke/siltstone interlayer	+									
		<i>, , , , , , , , , , , , , , , , , , , </i>	\vdash									
122.22	442.22	contacts = to fabric 15° CA	$\left \right $	1050005	426.2	407.0	0.00	6450050		2.42	0.000	
22.20	443.90	BANDED SILTSTONE	$\left \right $	1058022	426.2	427.0	0.80	6159959		2.12	0.003	
		Medium to dark grey, graphitic bands 2-5cm wide, trending	\vdash	1058023	427.0	428.0	1.00	6159960		2.56	0.005	
		15-20° CA, fine grained, slightly magnetic on darker	Щ	1058024	428.0	429.0	1.00	6159961		3.14	0.003	
		graphitic bands, chlorite on skarns but not strong alteration,	Щ	1058025	429.0	430.0	1.00	6159962		2.44	0.003	
		<2% py on fracture faces only, <2% intermittent qtz-carb	Γſ	1058026	430.0	430.5	0.50	6159963		1.88	0.003	
		stringers x-cutting	\square									
		Weakly rusty siltstone										
43.90	500.00	MOSTLY GREYWACKE										
13.30	330.00	Light to med grey fined grained, massive in greywacke to										
			\vdash									
		moderately foliated in minor intermittent banded silstone,	\vdash									
		intervals trending 20-25° CA, no sig sulphides, <2% qtz carb	\vdash									
		veinlets x-cutting, not magnetic (greywacke has	Щ									
		equigranular gritstone appearance), no sig alteration except	LΓ									
		some chlis siltstone sections, contacts between greywacke	\square									
		& siltstone = fabric ~= 20° CA sharp	Π									
		a shatone - rushe - 20 ch sharp	Ħ									
		4	\vdash									
			\vdash	1077	Dupl. of 10		<u>├</u>	6159966		1.38	0.005	

			Sample					Analyte:	Weight	Au	Au-Grav
DEPT	H (m)		No.	DEPT	H (m)	Sample	Sample	Unit:	kg	ppm	g/t
From	То	DESCRIPTION	(Desc.)	From	То	Length	ID	RDL:	0.01	0.001	0.05
			1058030	Blank			6159967		0.14	< 0.001	
			1058031	Dupl. of 10	58021		6159968		1.32	0.012	
			1058032	Oreas stan	dard 206		6159969		0.10	2.280	
			Depth	Azimuth	Dip						
			29m	155.0°	-44.0°						
			80m	155.4°	-43.4°						
			131m	150.6°	-42.7°						
			182m	155.7°	-42.3°						
			233m	161.5°	-41.9°						
			284m	173.9°	-41.7°						
			335m	117.3°	-40.4°						
			386m	162.3°	-40.5°						
			437m	160.4°	-39.9°						
			500m	154.3°	-35.9°						

APPENDIX C - ASSAY CERTIFICATES

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

PROJECT:

AGAT WORK ORDER: 14T884236

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Sep 12, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u> VERSION 1:Version 2. Supercedes Version 1.

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14T884236 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

				(202-052) Fire Assay - Tra	ace Au, ICP-OES finish (ppm)	
DATE SAMPLED: Se	p 04, 2014			DATE RECEIVED: Aug 28, 2014	DATE REPORTED: Sep 12, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au	Au-Grav		
	Unit:	kg	ppm	g/t		
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.05		
304326 (5769706)		2.28	0.005			
304327 (5769708)		2.32	0.103			
304328 (5769709)		2.04	0.077			
304329 (5769710)		2.30	0.064			
304330 (5769711)		2.56	0.050			
304331 (5769712)		2.18	0.002			
304332 (5769714)		2.98	0.282			
304333 (5769715)		2.24	0.004			
304334 (5769716)		2.18	0.105			
304335 (5769717)		2.04	0.011			
304336 (5769719)		2.18	0.008			
304337 (5769720)		2.36	0.004			
304338 (5769721)		1.22	0.002			
304339 (5769722)		2.12	<0.001			
304340 (5769723)		2.16	<0.001			
304341 (5769724)		0.98	0.001			
304342 (5769725)		1.22	<0.001			
304343 (5769726)		2.72	0.001			
304344 (5769727)		2.52	0.005			
304345 (5769728)		2.60	0.007			
304346 (5769729)		3.16	0.001			
304347 (5769730)		2.80	0.003			
304348 (5769731)		3.20	0.007			
304349 (5769732)		2.38	0.006			
304350 (5769733)		4.04	<0.001			
304351 (5769734)		2.60	0.004			
304352 (5769735)		2.62	0.005			
304353 (5769736)		3.02	0.008			
304354 (5769737)		3.42	0.002			
304355 (5769738)		1.54	0.001			
304356 (5769739)		1.24	0.002			

Certified By:

Roy Cardinall

Certificate of Analysis

AGAT WORK ORDER: 14T884236 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)											
04, 2014			DATE RECEIVED: Aug 28, 2014	DATE REPORTED: Sep 12, 2014	SAMPLE TYPE: Drill Core						
Analyte:	Sample Login Weight	Au	Au-Grav								
Unit:	kg	ppm	g/t								
RDL:	0.01	0.001	0.05								
	3.06	<0.001									
	1.54	<0.001									
	1.44	<0.001									
	0.10	2.32									
	0.94	<0.001									
	1.12	0.354									
	2.66	0.034									
	3.12	0.040									
	2.78	0.170									
	2.28	1.68									
	1.90	0.070									
	2.86	0.186									
	2.52	0.500									
	2.24	>10	15.48								
	1.64	0.118									
	0.12	<0.001									
	Analyte: Unit:	Sample Login Weight Unit: kg RDL: 0.01 3.06 1.54 1.54 1.44 0.10 0.94 1.12 2.66 3.12 2.78 2.28 1.90 2.86 2.52 2.24 1.64	Sample Login Weight Au Unit: kg ppm RDL: 0.01 0.001 1.54 <0.001	O4, 2014 DATE RECEIVED: Aug 28, 2014 Analyte: Login Weight Au Au-Grav Unit: kg ppm g/t RDL: 0.01 0.001 0.05 3.06 <0.001	DATE RECEIVED: Aug 28, 2014 DATE REPORTED: Sep 12, 2014 Analyte: Login Login Weight Au Au-Grav Unit: kg ppm g/t RDL: 0.01 0.001 0.05 3.06 <0.001						

Comments: RDL - Reported Detection Limit Version 2. Supercedes Version 1.

Certified By:

Roy Cardinall

Quality Assurance - Replicate AGAT WORK ORDER: 14T884236 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

Parameter								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14T884236 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

Parameter								

Au

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: AURCREST GOLD INC AGAT WORK ORDER: 14T884236 PROJECT: ATTENTION TO: TREVOR BOYD; IAN BRODIE SAMPLING SITE: SAMPLED BY: PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Solid Analysis Sample Login Weight MIN-12009 BALANCE BUGBEE, E: A Textbook of Fire ICP-OES MIN-200-12006 Assaying Au-Grav GRAVIMETRIC

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD

PROJECT:

AGAT WORK ORDER: 14B925638

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Dec 17, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT	Laboratories
------	--------------

Certificate of Analysis

AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)									
DATE SAMPLED: De	c 08, 2014			DATE RECEIVED: Dec 08, 2014	DATE REPORTED: Dec 17, 2014	SAMPLE TYPE: Drill Core				
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample ID (AGAT ID)	RDL:	0.01	0.001							
1058001 (6159938)		2.40	0.032							
1058002 (6159939)		2.74	0.016							
1058003 (6159940)		2.58	0.013							
1058004 (6159941)		2.10	0.098							
1058005 (6159942)		2.66	0.002							
1058006 (6159943)		2.32	0.011							
1058007 (6159944)		3.14	0.002							
1058008 (6159945)		2.62	0.001							
1058009 (6159946)		1.90	0.039							
1058010 (6159947)		2.40	0.318							
1058011 (6159948)		2.80	0.163							
1058012 (6159949)		2.90	0.015							
1058013 (6159950)		2.56	0.065							
1058014 (6159951)		2.60	0.002							
1058015 (6159952)		2.96	0.026							
1058016 (6159953)		3.36	0.003							
1058017 (6159954)		3.44	0.003							
1058018 (6159955)		1.74	<0.001							
1058019 (6159956)		2.68	0.014							
1058020 (6159957)		3.10	0.003							
1058021 (6159958)		1.40	0.015							
1058022 (6159959)		2.12	0.003							
1058023 (6159960)		2.56	0.005							
1058024 (6159961)		3.14	0.003							
1058025 (6159962)		2.44	0.003							
1058026 (6159963)		1.88	0.003							
1058027 (6159964)		1.52	0.006							
1058028 (6159965)		2.96	0.004							
1058029 (6159966)		1.38	0.005							
1058030 (6159967)		0.14	<0.001							
1058031 (6159968)		1.32	0.012							

Certified By:

y. che

G			Labor	ratories		te of Analysis DRDER: 14B925638	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com
CLIENT NAME: AUF	RCREST GO	LD INC				ATTENTION TO: TREV	· -
				(202-052) Fir	e Assay - Trace A	u, ICP-OES finish (ppm)	
DATE SAMPLED: Dec 08, 2014 DATE RECEIVED: D			: Dec 08, 2014	DATE REPORTED: Dec 17, 2014	SAMPLE TYPE: Drill Core		
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample ID (AGAT ID)	RDL:	0.01	0.001				
1058032 (6159969)		0.10	2.28				

Comments: RDL - Reported Detection Limit

Certified By:

y. cha.

Quality Assurance - Replicate AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)														
	REPLICATE #1 REPLICATE #2														
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD							
Au	6159938	0.032	0.026	20.7%	6159957	0.003	0.004	28.6%							

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)														
	CRM #1 (ref.ME1303) CRM #2 (ref.1P5K)							CRM #3 (ref.GS6D)							
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
Au	0.924	0.832	90%	90% - 110%	1.44	1.53	107%	90% - 110%	6.09	6.15	101%	90% - 110%			

CLIENT NAME: AURCREST GOLD INC

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 14B925638

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		•	•
Sample Login Weight	Sample Login Weight MIN-12009		BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

PROJECT:

AGAT WORK ORDER: 14B887263

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Sep 23, 2014

PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14B887263 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)											
DATE SAMPLED: Sep	0 11, 2014			DATE RECEIVED: Sep 11, 2014	DATE REPORTED: Sep 23, 2014	SAMPLE TYPE: Drill Core						
	Analyte:	Sample Login Weight	Au									
	Unit:	kg	ppm									
Sample ID (AGAT ID)	RDL:	0.01	0.001									
304384 (5796486)		1.24	0.003									
304385 (5796487)		2.68	0.009									
304386 (5796488)		3.24	0.127									
304387 (5796490)		2.72	0.003									
304388 (5796491)		2.62	0.008									
304389 (5796492)		2.90	0.003									
304390 (5796493)		1.68	0.004									
304391 (5796494)		2.88	0.005									
304392 (5796495)		2.16	0.005									
304393 (5796497)		1.24	0.005									
304394 (5796498)		1.26	0.004									
304395 (5796499)		2.02	0.005									
304396 (5796500)		2.54	0.007									
304397 (5796501)		2.32	0.003									
304398 (5796502)		2.18	0.003									
304399 (5796504)		3.56	0.005									
304400 (5796505)		2.16	0.003									
476626 (5796506)		2.50	0.005									
476627 (5796507)		2.22	0.004									
476628 (5796509)		2.44	0.001									
476629 (5796510)		1.28	0.003									
476630 (5796511)		1.10	0.003									
476631 (5796512)		2.32	0.001									
476632 (5796514)		2.54	0.002									
476633 (5796515)		2.46	0.001									
476634 (5796516)		2.34	0.002									
476635 (5796517)		2.70	0.003									
476636 (5796519)		2.08	0.002									
476637 (5796520)		2.30	0.004									
476638 (5796521)		2.58	0.001									
476639 (5796522)		2.40	0.002									

Certified By:

Roy Cardinall

AGAT	Laboratories
------	--------------

Certificate of Analysis

AGAT WORK ORDER: 14B887263 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

				(202-052) Fire Assay - Trace A	u, ICP-OES finish (ppm)	
DATE SAMPLED: Se	o 11, 2014			DATE RECEIVED: Sep 11, 2014	DATE REPORTED: Sep 23, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample ID (AGAT ID)	RDL:	0.01	0.001			
476640 (5796523)		1.06	0.002			
476641 (5796525)		1.24	0.001			
476642 (5796526)		2.12	<0.001			
476643 (5796527)		2.20	0.001			
476644 (5796528)		2.68	< 0.001			
476645 (5796529)		2.22	0.001			
476646 (5796530)		0.10	2.21			
476647 (5796531)		1.28	0.027			
476648 (5796532)		2.80	0.005			
476649 (5796533)		2.52	<0.001			
476650 (5796534)		2.32	<0.001			
476651 (5796535)		2.50	0.001			
476652 (5796536)		2.48	0.002			
476653 (5796537)		2.52	0.001			
476654 (5796539)		2.84	<0.001			
476655 (5796540)		2.76	0.001			
476656 (5796541)		2.86	0.001			
476657 (5796542)		1.48	0.002			
476658 (5796544)		1.44	<0.001			
476659 (5796545)		0.12	<0.001			
476660 (5796546)		1.30	<0.001			
476661 (5796548)		2.38	0.001			
476662 (5796549)		2.18	<0.001			
476663 (5796550)		2.22	<0.001			
476664 (5796551)		1.40	<0.001			
304362 (5796552)		2.08	0.011			
304363 (5796554)		1.46	0.015			
304364 (5796555)		2.16	0.004			
304365 (5796556)		1.12	0.056			
304366 (5796557)		2.58	1.13			
304367 (5796559)		2.22	0.166			

Certified By:

Roy Cardinall

agat	Laboratories	- (A

Certificate of Analysis

AGAT WORK ORDER: 14B887263 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)										
DATE SAMPLED: Sep 11, 2014				DATE RECEIVED: Sep 11, 2014	DATE REPORTED: Sep 23, 2014	SAMPLE TYPE: Drill Core				
	Analyte:	Sample Login Weight	Au							
	Unit:	kg	ppm							
Sample ID (AGAT ID)	RDL:	0.01	0.001							
304368 (5796560)		2.50	0.465							
304369 (5796561)		0.98	0.025							
304370 (5796562)		1.68	3.34							
304371 (5796563)		1.72	0.036							
304381 (5796565)		1.10	0.029							
304382 (5796566)		1.16	0.023							

Comments: RDL - Reported Detection Limit

Certified By:

Roy Cardinall

Quality Assurance - Replicate AGAT WORK ORDER: 14B887263 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm	i)
--	----

	REPLICATE #1				REPLICATE #2			REPLICATE #3				REPLICATE #4				
Parameter	rameter Sample ID Original Replicate RPD				Sample ID	Original	Replicate	RPD Sample ID Original Replicate RPD Sample ID				Sample ID	Original	Replicate	RPD	
Au	5796486	0.003	0.001		5796506	0.005	0.005	0.0%	5796527	0.001	0.002		5796546	< 0.001	0.001	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14B887263 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD, IAN BRODIE BROWN

				(20)2-052)	Fire As	say - ٦	Frace Au,	ICP-O	ES finis	sh (ppn	n)		
		CRM #1	(ref.1P5K)			CRM #2 (ref.GSP7J)			CRM #3	(ref.GS6D)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	1.44	1.55	107%	90% - 110%	0.722	0.709	98%	90% - 110%	6.09	6.02	99%	90% - 110%		

CLIENT NAME: AURCREST GOLD INC

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 14B887263

PROJECT:		ATTENTION TO:	TREVOR BOYD, IAN BRODIE
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	L		
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD

PROJECT:

AGAT WORK ORDER: 14B910885

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Nov 19, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

			Labo	oratories		ate of Analysis ORDER: 14B910885	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com
CLIENT NAME: AU	RCREST GC	DLD INC				ATTENTION TO: TREVO	
				(202-052) Fir	e Assay - Trace /	Au, ICP-OES finish (ppm)	
DATE SAMPLED: No	v 03, 2014			DATE RECEIVED	: Oct 31, 2014	DATE REPORTED: Nov 19, 2014	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample ID (AGAT ID)	RDL:	0.01	0.001				
476665 (6029349)		1.00	0.011				
476666 (6029350)		1.22	0.023				
476667 (6029351)		1.14	0.037				
476668 (6029352)		1.02	0.054				
476669 (6029353)		0.76	3.08				
476670 (6029354)		1.08	0.108				
476671 (6029355)		0.70	0.010				
476672 (6029356)		0.12	1.33				
476673 (6029357)		1.32	0.053				
476674 (6029358)		0.68	0.067				
476675 (6029359)		0.60	0.039				
476682 (6029360)		2.48	0.094				
476683 (6029362)		2.28	0.059				
476684 (6029363)		2.52	0.092				
476685 (6029364)		2.38	0.230				
476686 (6029365)		2.36	0.062				
476687 (6029366)		2.34	0.007				
476688 (6029367)		2.26	0.005				
476689 (6029368)		2.06	0.006				
476690 (6029369)		2.08	0.007				
476691 (6029370)		2.24	0.005				
476692 (6029371)		1.14	0.005				
476693 (6029372)		0.14	<0.001				
476694 (6029373)		0.10	2.24				
476695 (6029374)		1.08	0.006				
476696 (6029375)		0.62	0.002				
476697 (6029376)		1.42	0.005				
476698 (6029377)		2.04	0.006				
476699 (6029378)		1.44	0.122				
476700 (6029379)		1.62	0.061				

Certificate of Analysis

J. che

5623 McADAM ROAD

	Ties AGAT WORK ORDER: 14B910885 PROJECT:	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com
CLIENT NAME: AURCREST GOLD INC	ATTENTION T	O: TREVOR BOYD
(202-0	052) Fire Assay - Trace Au, ICP-OES finish (ppm)	
· · · · · · · · · · · · · · · · · · ·	ECEIVED: Oct 31, 2014 DATE REPORTED: Nov 19	9, 2014 SAMPLE TYPE: Rock
Comments: RDL - Reported Detection Limit		

Certified By:

y. che.

Quality Assurance - Replicate AGAT WORK ORDER: 14B910885 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)														
REPLICATE #1 REPLICATE #2															
Parameter	Parameter Sample ID Original Replicate RPD				Sample ID	Original	Replicate	RPD							
Au	Au 6029349 0.0109 0.0091 18.0% 6029377						0.006	0.0%							

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14B910885 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

				(20)2-052)	Fire As	say - ⊺	Frace Au,	ICP-O	ES finis	h (ppn	n)			
	CRM #1 (ref.1P5K) CRM #2 (ref.GSP7J)														
Parameter	Parameter Expect Actual Recovery Limits				Expect	Actual	Recovery	Limits							
Au	Au 1.44 1.47 102% 90% - 110%					0.801	110%	90% - 110%							

CLIENT NAME: AURCREST GOLD INC

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 14B910885

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis	1		
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD

PROJECT:

AGAT WORK ORDER: 14B914723

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Dec 01, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

			Labo	oratories		te of Analysis ORDER: 14B914723	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatiabs.com
CLIENT NAME: AUF	RCREST GC	LD INC				ATTENTION TO: TREVO	
				(202-052) Fire	e Assay - Trace A	Au, ICP-OES finish (ppm)	
DATE SAMPLED: Nov	/ 11, 2014			DATE RECEIVED	: Nov 11, 2014	DATE REPORTED: Dec 01, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample ID (AGAT ID)	RDL:	0.01	0.001				
476701 (6064008)		2.10	<0.001				
476702 (6064009)		1.50	0.002				
476703 (6064010)		2.30	0.002				
476704 (6064011)		2.28	0.005				
476705 (6064012) 476706 (6064013)		2.66	0.009 0.038				
		2.34 2.54					
476707 (6064014)			0.003 0.053				
476708 (6064015)		2.68 2.58	0.053				
476709 (6064016)							
476710 (6064017) 476711 (6064018)		1.32 1.18	0.005				
476712 (6064019)		2.66	<0.003				
		1.32	<0.001				
476713 (6064020) 476714 (6064021)		2.54	0.027				
476715 (6064022)		2.54	0.010				
476716 (6064022)		2.14	0.057				
476717 (6064023)		2.32	0.002				
476718 (6064024)		2.22	<0.002				
476719 (6064025)		2.00	<0.001				
476720 (6064027)		2.42	<0.001				
476721 (6064028)		1.08	0.011				
476722 (6064029)		1.00	0.011				
476723 (6064030)		2.76	0.012				
476724 (6064031)		2.70	0.104				
476725 (6064032)		2.50	0.010				
476726 (6064032)		2.36	0.264				
476727 (6064034)		2.32	0.421				
476728 (6064035)		2.32	0.121				
476729 (6064036)		0.10	2.21				
476730 (6064037)		0.10	<0.001				
476731 (6064038)		2.24	0.024				

Certified By:

J. che -.

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD

				(202-052) Fire Assay - Trace /	Au, ICP-OES finish (ppm)	
DATE SAMPLED: No	v 11, 2014			DATE RECEIVED: Nov 11, 2014	DATE REPORTED: Dec 01, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample ID (AGAT ID)	RDL:	0.01	0.001			
476732 (6064039)		1.26	0.041			
476733 (6064040)		1.10	0.044			
476734 (6064041)		2.36	0.065			
476735 (6064042)		0.98	0.086			
476736 (6064043)		1.38	0.076			

Comments: **RDL** - Reported Detection Limit

Certified By:

J. che

Quality Assurance - Replicate AGAT WORK ORDER: 14B914723 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)															
	REPLICATE #1 REPLICATE #2															
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	6064008	< 0.001	< 0.001	0.0%	6064028	0.0106										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14B914723 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)															
	CRM #1 (ref.GS6D) CRM #2 (ref.1P5K)									CRM #3 (ref.GS6D)						
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits				
Au	Nu 6.09 5.71 94% 90% - 110% 1.44 1.41 98% 90% - 110% 6.09 6.03 99% 90% - 110% Image: Control of the second secon															

CLIENT NAME: AURCREST GOLD INC

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 14B914723

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Solid Analysis	I	-			
Sample Login Weight	MIN-12009		BALANCE		
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES		

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD

PROJECT:

AGAT WORK ORDER: 14B925638

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Dec 17, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT	Laboratories
------	--------------

Certificate of Analysis

AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

				(202-052) Fire Assay - Trace A	u, ICP-OES finish (ppm)	
DATE SAMPLED: De	c 08, 2014			DATE RECEIVED: Dec 08, 2014	DATE REPORTED: Dec 17, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au			
	Unit:	kg	ppm			
Sample ID (AGAT ID)	RDL:	0.01	0.001			
1058001 (6159938)		2.40	0.032			
1058002 (6159939)		2.74	0.016			
1058003 (6159940)		2.58	0.013			
1058004 (6159941)		2.10	0.098			
1058005 (6159942)		2.66	0.002			
1058006 (6159943)		2.32	0.011			
1058007 (6159944)		3.14	0.002			
1058008 (6159945)		2.62	0.001			
1058009 (6159946)		1.90	0.039			
1058010 (6159947)		2.40	0.318			
1058011 (6159948)		2.80	0.163			
1058012 (6159949)		2.90	0.015			
1058013 (6159950)		2.56	0.065			
1058014 (6159951)		2.60	0.002			
1058015 (6159952)		2.96	0.026			
1058016 (6159953)		3.36	0.003			
1058017 (6159954)		3.44	0.003			
1058018 (6159955)		1.74	<0.001			
1058019 (6159956)		2.68	0.014			
1058020 (6159957)		3.10	0.003			
1058021 (6159958)		1.40	0.015			
1058022 (6159959)		2.12	0.003			
1058023 (6159960)		2.56	0.005			
1058024 (6159961)		3.14	0.003			
1058025 (6159962)		2.44	0.003			
1058026 (6159963)		1.88	0.003			
1058027 (6159964)		1.52	0.006			
1058028 (6159965)		2.96	0.004			
1058029 (6159966)		1.38	0.005			
1058030 (6159967)		0.14	<0.001			
1058031 (6159968)		1.32	0.012			

Certified By:

y. che

G			Labor	ratories		te of Analysis DRDER: 14B925638	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com
CLIENT NAME: AUF	RCREST GO	LD INC				ATTENTION TO: TREV	· -
				(202-052) Fir	e Assay - Trace A	u, ICP-OES finish (ppm)	
DATE SAMPLED: Dec	c 08, 2014			DATE RECEIVED	: Dec 08, 2014	DATE REPORTED: Dec 17, 2014	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au				
	Unit:	kg	ppm				
Sample ID (AGAT ID)	RDL:	0.01	0.001				
1058032 (6159969)		0.10	2.28				

Comments: RDL - Reported Detection Limit

Certified By:

y. cha.

Quality Assurance - Replicate AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)															
		REPLICATE #1 REPLICATE #2														
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
Au	Au 6159938 0.032 0.026 20.7% 6159957 0.003 0.004 28.															

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14B925638 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)															
	CRM #1 (ref.ME1303) CRM #2 (ref.1P5K)									CRM #3 (ref.GS6D)						
Parameter	Expect Actual Recovery Limits				Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits				
Au	Au 0.924 0.832 90% 90% - 110% 1.44 1.53 107% 90% - 110% 6.09 6.15 101% 90% - 110% Image: Control of the second seco															

CLIENT NAME: AURCREST GOLD INC

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 14B925638

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Solid Analysis		•	•		
Sample Login Weight	MIN-12009		BALANCE		
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES		

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

PROJECT:

AGAT WORK ORDER: 14T884236

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Sep 12, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u> VERSION 1:Version 2. Supercedes Version 1.

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14T884236 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

				(202-052) Fire Assay - Tra	ace Au, ICP-OES finish (ppm)				
DATE SAMPLED: Se	p 04, 2014			DATE RECEIVED: Aug 28, 2014	DATE REPORTED: Sep 12, 2014	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.05					
304326 (5769706)		2.28	0.005						
304327 (5769708)		2.32	0.103						
304328 (5769709)		2.04	0.077						
304329 (5769710)		2.30	0.064						
304330 (5769711)		2.56	0.050						
304331 (5769712)		2.18	0.002						
304332 (5769714)		2.98	0.282						
304333 (5769715)		2.24	0.004						
304334 (5769716)		2.18	0.105						
304335 (5769717)		2.04	0.011						
304336 (5769719)		2.18	0.008						
304337 (5769720)		2.36	0.004						
304338 (5769721)		1.22	0.002						
304339 (5769722)		2.12	<0.001						
304340 (5769723)		2.16	<0.001						
304341 (5769724)		0.98	0.001						
304342 (5769725)		1.22	<0.001						
304343 (5769726)		2.72	0.001						
304344 (5769727)		2.52	0.005						
304345 (5769728)		2.60	0.007						
304346 (5769729)		3.16	0.001						
304347 (5769730)		2.80	0.003						
304348 (5769731)		3.20	0.007						
304349 (5769732)		2.38	0.006						
304350 (5769733)		4.04	<0.001						
304351 (5769734)		2.60	0.004						
304352 (5769735)		2.62	0.005						
304353 (5769736)		3.02	0.008						
304354 (5769737)		3.42	0.002						
304355 (5769738)		1.54	0.001						
304356 (5769739)		1.24	0.002						

Certified By:

Roy Cardinall

Certificate of Analysis

AGAT WORK ORDER: 14T884236 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)													
DATE SAMPLED: Se	p 04, 2014			DATE RECEIVED: Aug 28, 2014	DATE REPORTED: Sep 12, 2014	SAMPLE TYPE: Drill Core								
	Analyte:	Sample Login Weight	Au	Au-Grav										
	Unit:	kg	ppm	g/t										
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.05										
304357 (5769740)		3.06	<0.001											
304358 (5769741)		1.54	<0.001											
304359 (5769742)		1.44	<0.001											
304360 (5769743)		0.10	2.32											
304361 (5769744)		0.94	<0.001											
304372 (5769745)		1.12	0.354											
304373 (5769746)		2.66	0.034											
304374 (5769747)		3.12	0.040											
304375 (5769748)		2.78	0.170											
304376 (5769749)		2.28	1.68											
304377 (5769750)		1.90	0.070											
304378 (5769751)		2.86	0.186											
304379 (5769752)		2.52	0.500											
304380 (5769753)		2.24	>10	15.48										
304382 (5773460)		1.64	0.118											
304383 (5773461)		0.12	<0.001											

Comments: RDL - Reported Detection Limit Version 2 Supercedes Version

Version 2. Supercedes Version 1.

Certified By:

Roy Cardinall

Quality Assurance - Replicate AGAT WORK ORDER: 14T884236 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

Parameter												

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14T884236 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD; IAN BRODIE BROWN

Parameter																

Au

Au-Grav

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

GRAVIMETRIC

Method Summary

CLIENT NAME: AURCREST GOLD INC AGAT WORK ORDER: 14T884236 PROJECT: ATTENTION TO: TREVOR BOYD; IAN BRODIE SAMPLING SITE: SAMPLED BY: PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Solid Analysis Sample Login Weight MIN-12009 BALANCE BUGBEE, E: A Textbook of Fire ICP-OES MIN-200-12006 Assaying

CLIENT NAME: AURCREST GOLD INC 67 YONGE STREET, SUITE 808 TORONTO, ON M5E1J8 (416) 368-2929

ATTENTION TO: TREVOR BOYD

PROJECT:

AGAT WORK ORDER: 14T909274

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Nov 03, 2014

PAGES (INCLUDING COVER): 5

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14T909274 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

ATTENTION TO: TREVOR BOYD

				(202-052)	Fire Assay - Trace	Au, ICP-OES finish (ppm)			
DATE SAMPLED: Oc	et 30, 2014			DATE RECE	IVED: Oct 30, 2014	DATE REPORTED: Nov 03, 2014	SAMPLE TYPE: Rock		
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.05					
476676 (6014748)		2.53	7.56	7.79					
476677 (6014749)		1.26	5.94	5.76					
476678 (6014750)		2.27	0.439						
476679 (6014751)		2.65	0.489						
476680 (6014752)		1.06	0.081						
476681 (6014753)		2.24	0.539						

RDL - Reported Detection Limit Comments:

Certified By:

J. che

Quality Assurance - Replicate AGAT WORK ORDER: 14T909274 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: AURCREST GOLD INC

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)														
	REPLICATE #1														
Parameter	Sample ID	Original	Replicate	RPD											
Au	6014748	7.56	7.91	4.5%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14T909274 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

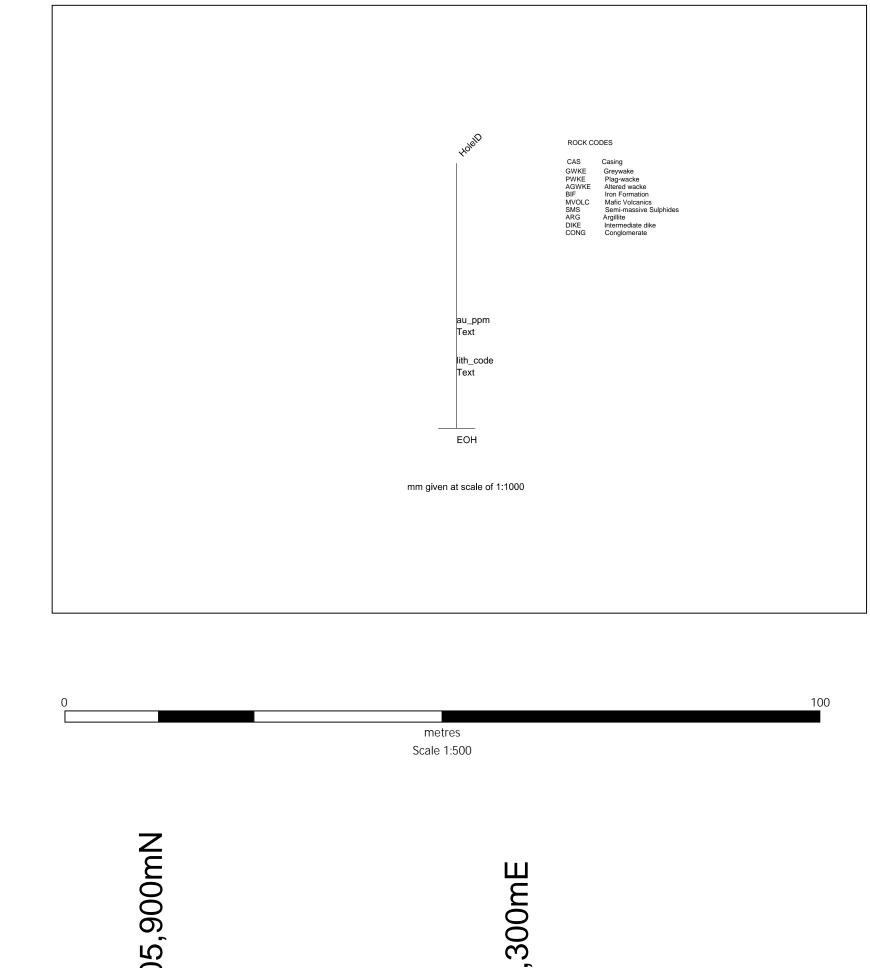
CLIENT NAME: AURCREST GOLD INC

(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)	
---	---	--

	CRM #1															
Parameter	Expect	Actual	Recovery	Limits												
Au	1.44	1.37	95%	90% - 110%												

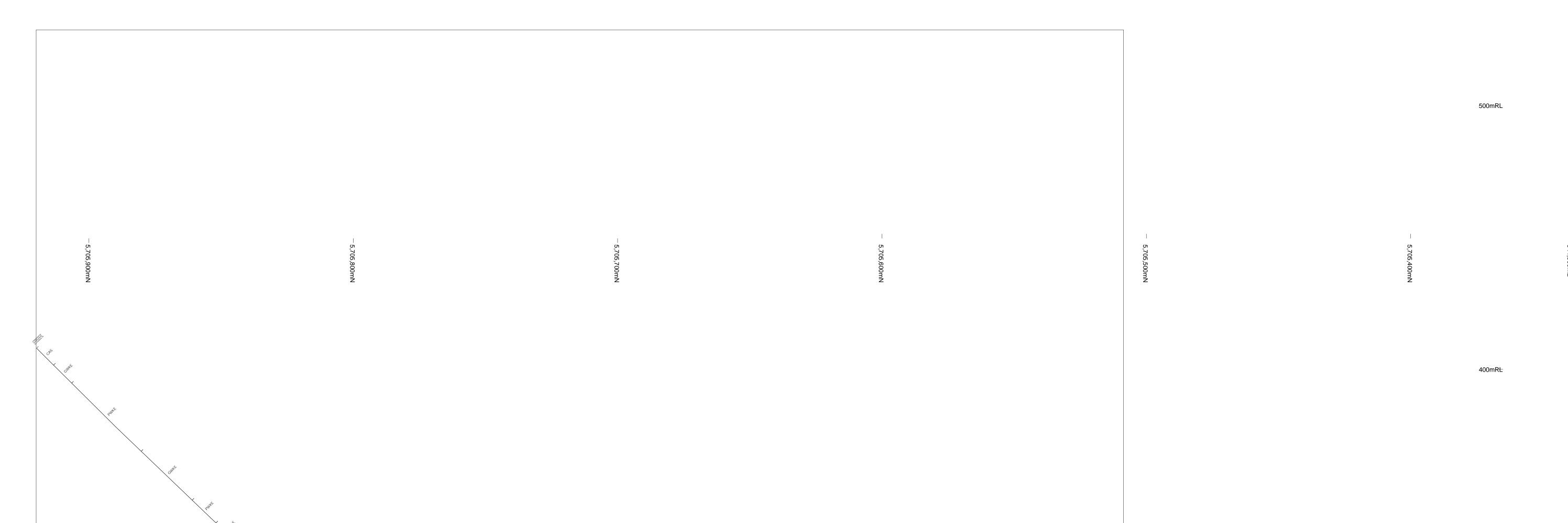
CLIENT NAME: AURCREST GOLD INC

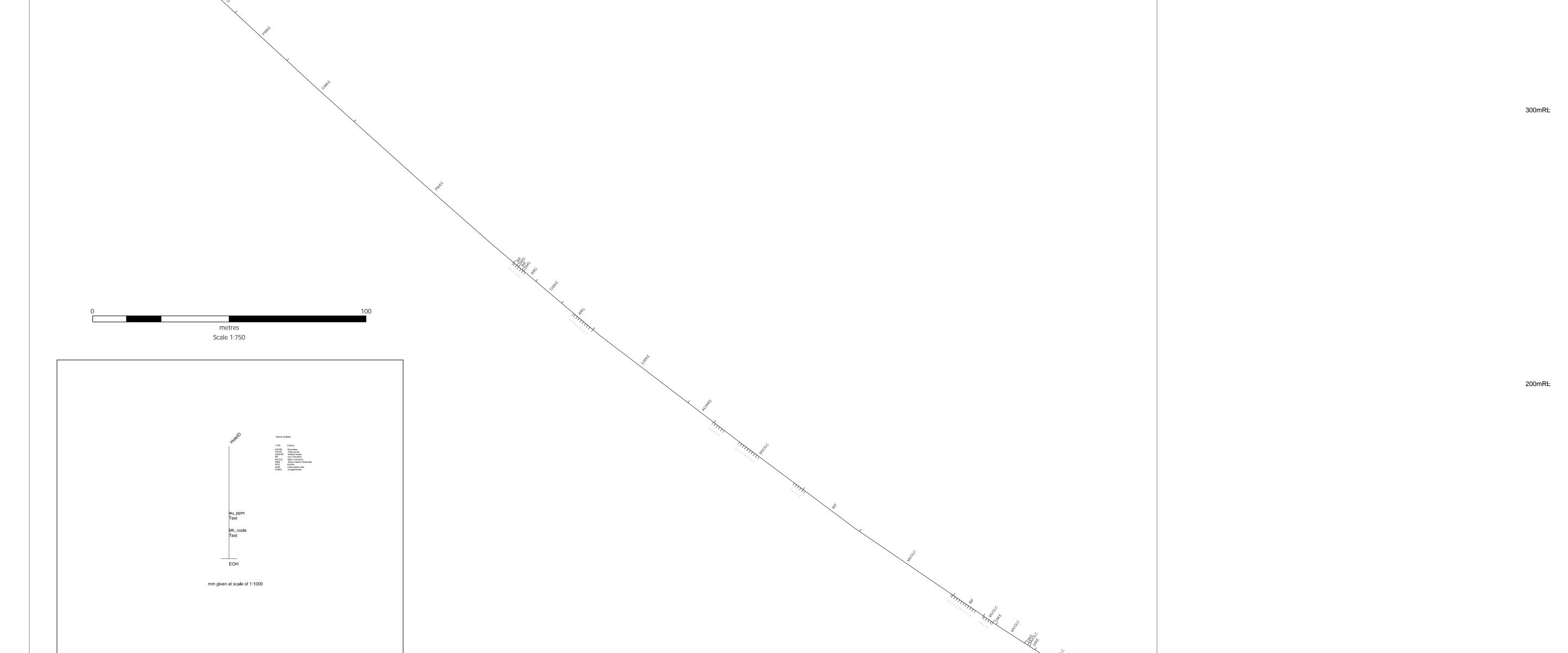

PROJECT:


5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

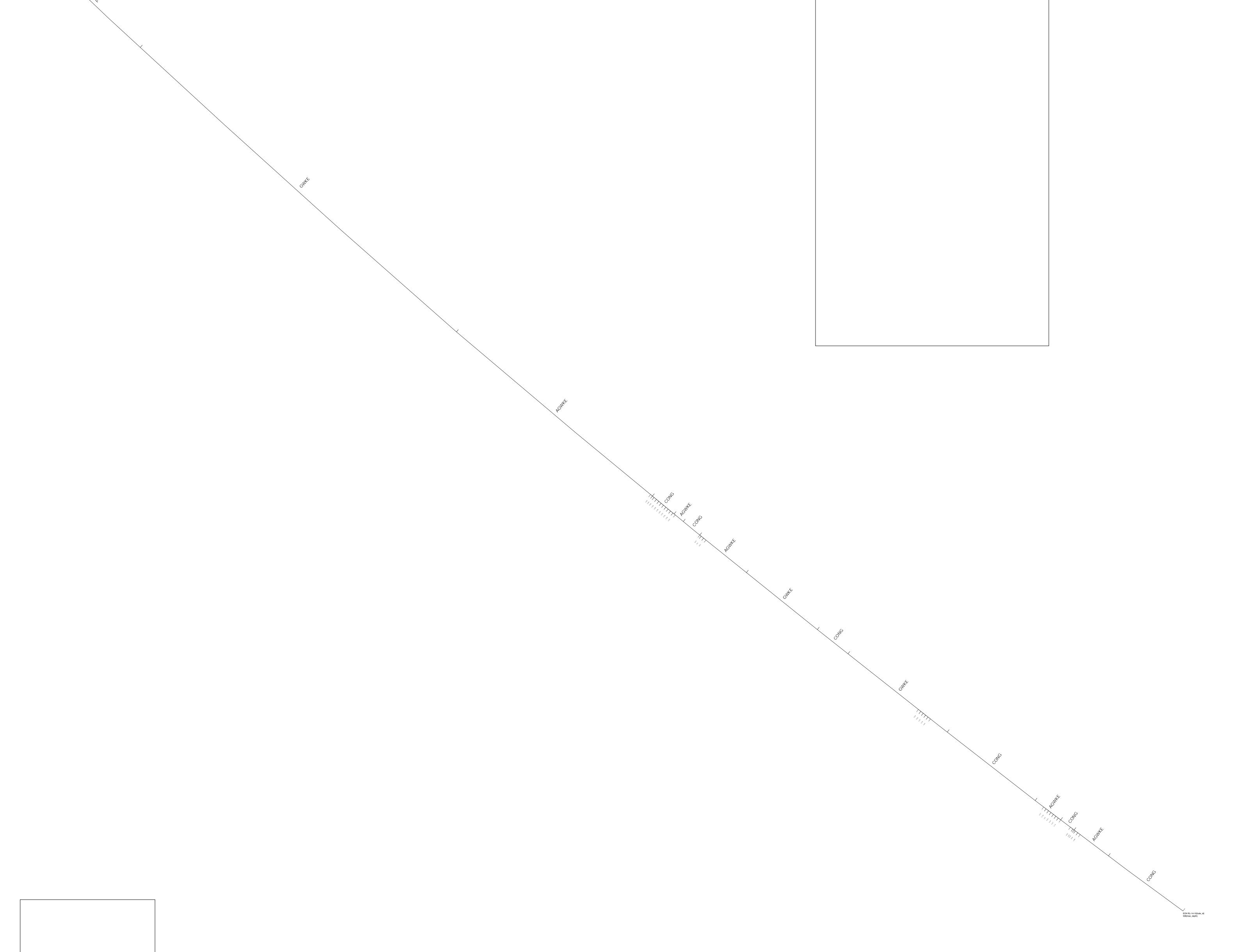
AGAT WORK ORDER: 14T909274


SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Solid Analysis								
Sample Login Weight	MIN-12009		BALANCE					
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES					
Au-Grav	MIN-200-12006		GRAVIMETRIC					

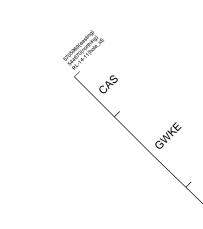


05,600mN 05,900mN 05,700mN 05,800mN 1,300mE ,400mE

EOH RL-14-08(hole_id) 448.5(max_depth)



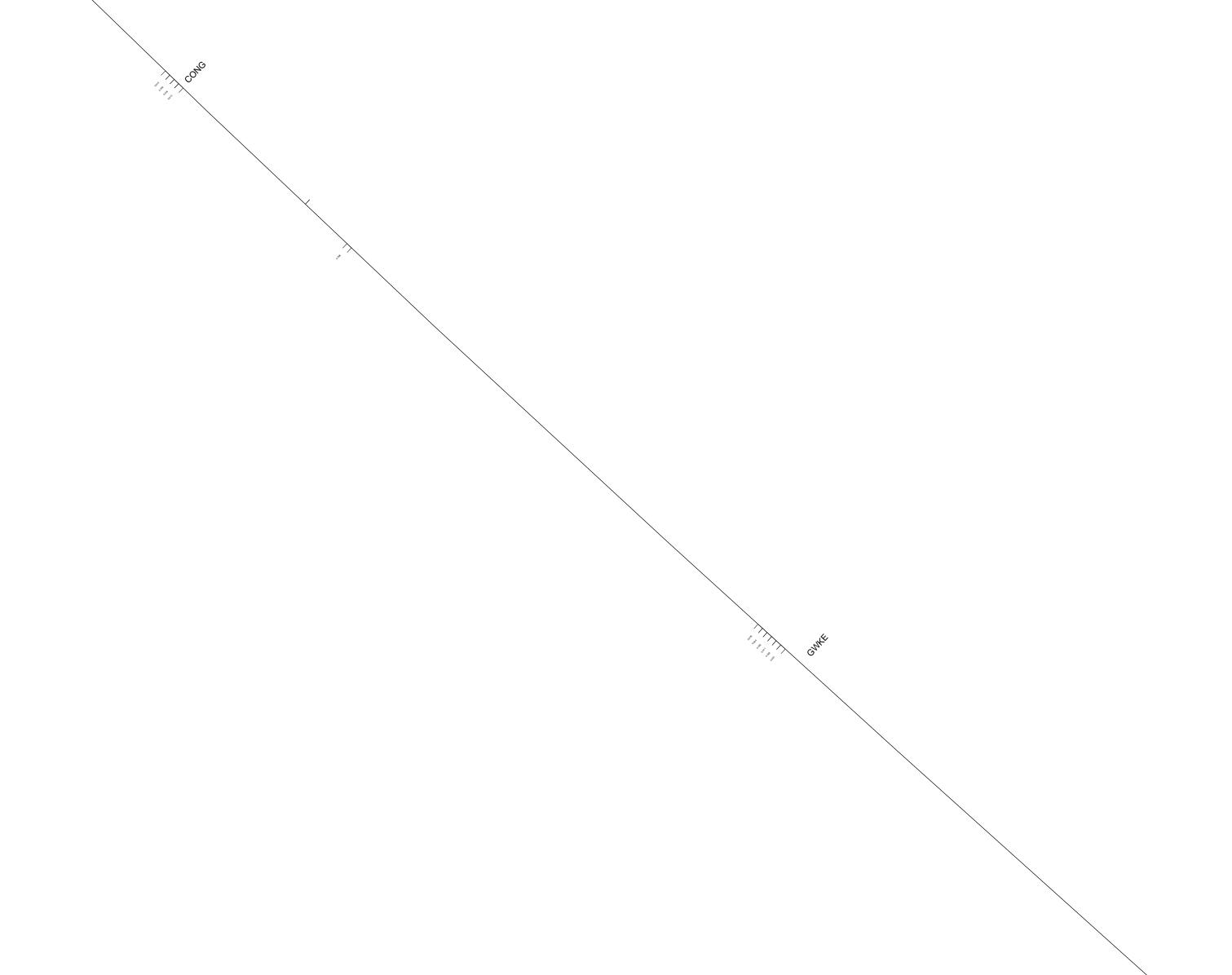
100mRL

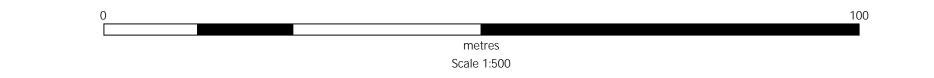

NONDARY.

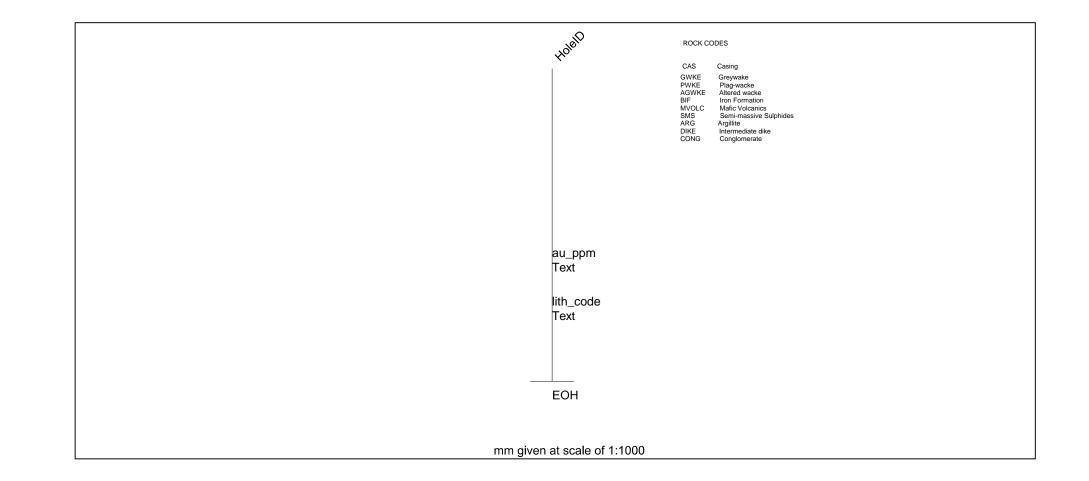
----- N5705934A

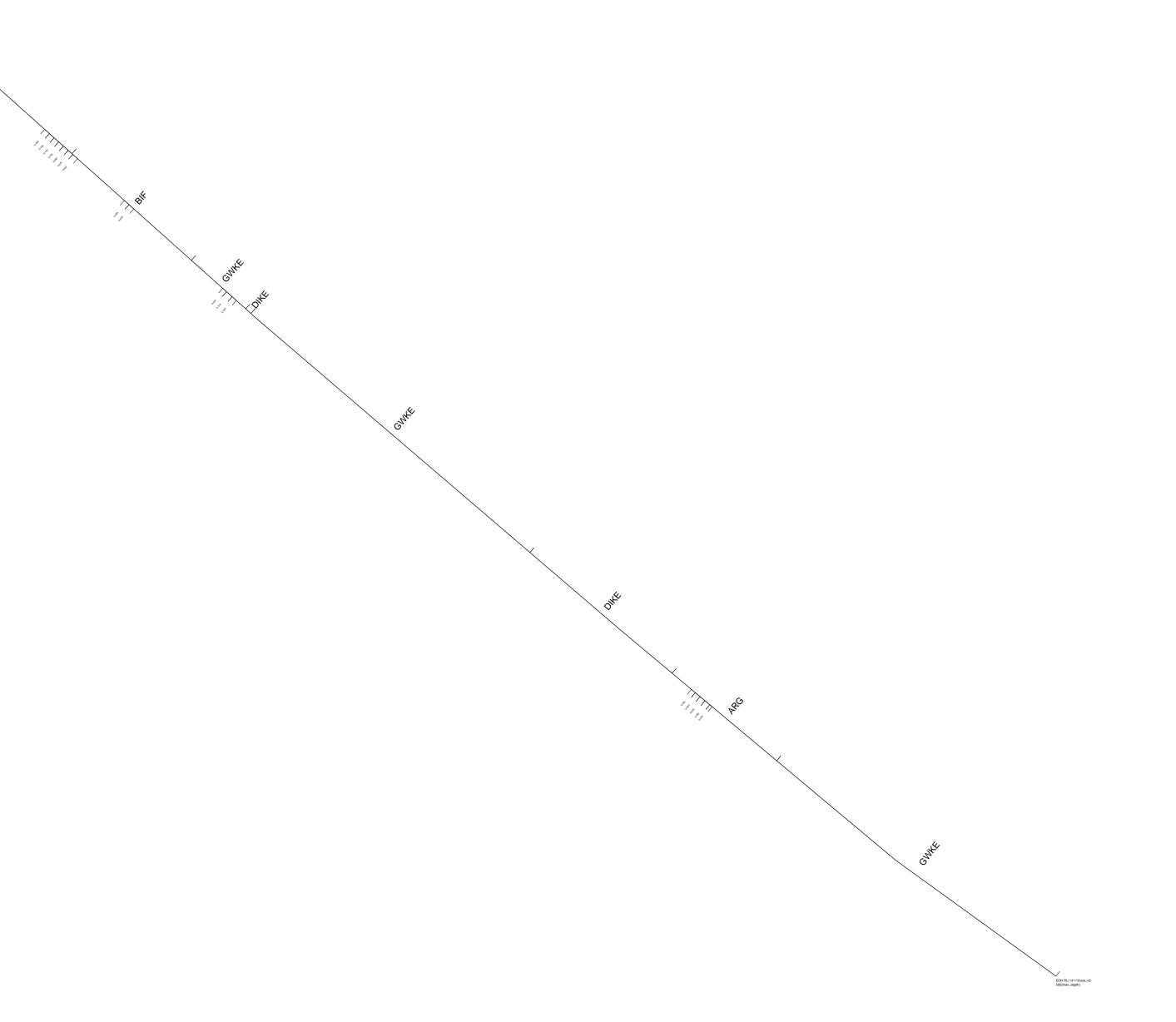
mm given at scale of 1:1000

105-2010-stroke


5,463,900FnN


⁻⁻⁻ 5,705,800mN


544,800mE


5,705,600mN

- 5,705,700mN

