

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. ASSESSMENT REPORT: 2017 1000T bulk sample; Clement and Pardo Township, Ontario.

INVENTUS

By: Winston Whymark *Operations Manager/ Agent*

Cell: 1 (705) 626-9530 winston.whymark@gmail.com www.inventusmining.com

1785 Frobisher St. Unit #1 Sudbury, Ontario, Canada P3A 6C8

Inventus Mining Corp.. 82 Richmond St. East Floor 1 Toronto, ON, M5C 1P1

Jan 2019

Table of Contents

INTRODUCTION	3
LOCATIONS, ACCESS AND PHYSIOGRAPHY	3
CLAIM SUMMARY OF APPLIED WORK	4
GENERAL GEOLOGICAL SETTING	5
PROPERTY GEOLOGY	6
PREVIOUS WORK	7
2017 - 1000 TONNE BULK SAMPLE	14
COSTS STATEMENT	29
REFERENCES	30
CERTIFICATE OF AUTHOR	32
APPENDICES	33

Introduction

During the months of September to December 2017, Mount Logan Resources Ltd., a whole-owned subsidiary of Inventus Mining Corp. (TSX-V: IVS), initiated a bulk sample program. The program was designed to test the mineral content of the mineralized conglomerate in the Trench 1 area. The reason for this test was to demonstrate the variation of gold grade between diamond drilling and bulk sampling. The results of the bulk sample were favorable demonstrating an increase in the gold grade comparted to diamond drilling. These results have warranted a closure plan for advanced exploration activities. The planned advanced exploration activities will further test the gold content of the mineralized conglomerate by bulk sampling 4 additional sites for a total of 50,000 tonnes.

Locations, Access and Physiography

The Pardo project is located approximately 65 kilometers northeast of Sudbury, in the Sudbury Mining Division, east-central Ontario (Figure 1). The property is primarily located in the center west of Pardo Township. Access to the property from Sudbury is achieved by taking the Trans-Canada Highway 17 east to the town of Warren, then by turning north onto the paved Highway 539 to the small community of River Valley. From there you take the paved Highway 539A which then turns into the all-weather gravel Highway 805. Head north approximately 32 kilometers, which crosses the western portion of the claim block. A Network of logging roads run east from Highway 805 providing additional access to the property. Approximately 10% of the claim block contains outcrop, with the remainder a mixture of thin soil to thick fluvial sand plains and in places boulder till dumps of significant thickness. Vegetation is comprised of, in places, stands of virgin red and white pine, to second growth mixed forests of pine, spruce, and poplar. Road access surrounding the project area is excellent. Water is also plentiful, with numerous wetlands and a few lakes on the property.

Figure 1. Project location

Claim Summary of applied work

The work was completed in claim lease LEA-109722, see table 1 for claim details and location of the claim in figure 2.

Township/ Area	Claim Number	Recording Date	No of Hectares	Recorder Holder	Percent Held
Clement	LEA-109722	2006-Sep- 07	373.941	Mount Logan Resources Ltd.	100%

Table 1. Claims descriptions

Figure 2. Location of the claims where work was performed.

General geological setting

The regional geological setting is described by Dressler (1979) as follows;

The area is underlain by Precambrian rocks, which are locally covered by Pleistocene and Recent unconsolidated sediments. Early Precambrian metavolcanics, metasediments, granitic rocks, and mafic intrusive rocks are the oldest in the area. The metavolcanics and metasediments were intruded by granitic rocks, emplaced approximately 2500 m.y. ago (Van Schmus 1965, Fairburn et al 1960). Early Precambrian mafic dykes also intruded the metasediments and metavolcanics and are believed to be younger than the granitic intrusions.

Middle Precambrian rocks of the Huronian Supergroup unconformably overlie the older rocks. They were deposited between 2150 to 2400 m.y. ago (Van Schmus, 1976), an age bracket which corresponds to the Aphebian of C. H. Stockwell (1964). Rocks of the Mississagi Formation, the Gowganda Formation, and the Lorrain Formation occur in the area. The Mississagi Formation consists of conglomerate, sandstone, greywacke and argillite. The Gowganda Formation is comprised of greywacke, conglomerate, arkosic wacke, and subarkose. The Lorrain Formation is primarily comprised of quartzite, sandstone, and minor wacke. Nipissing intrusive rocks (approximately 2150 M.a. old), mostly gabbros, intrude all other older formations. A late Precambrian olivine diabase dyke outcrops in northwestern Janes Township, immediately south of Pardo Township. All of the above lithologies occur north of the Grenville Front Boundary Fault, in the Southern Structural Province of the Canadian Shield.

South of the Grenville Front Boundary Fault, in the Grenville Structural Province, rocks consist of biotite-plagioclase gneiss, biotite-hornblende-plagioclase gneiss, feldspathic gneiss, amphibolite, gabbro, anorthosite, migmatite, olivine diabase, and ultramafic rocks.

Property Geology

The Pardo property is predominantly underlain by rocks of the Huronian Supergroup, and specifically by conglomerates, sandstones, siltstones and greywackes of the Mississagi Formation up through the Gowganda and Lorrain Formations (Long, 1986; Clark, 1998). The Nipissing diabase and/or gabbro occur in northwest and west of the property in Clement, Macbeth, and McNish townships, and in the northeast of property in Vogt Township.

The northern two thirds of the property show a series of roughly north-south trending units of conglomerate and siltstone-sandstone. MacVeigh (1956) concluded the formations form a syncline trending north 20 degrees east and plunging 5 degrees to the southwest. While very few field observations of strikes and dips have been made, those few that have been observed confirm that the sediments do form narrow, north south trending localized basins, perhaps filling paleo scours in the Archean basement. The overall thickness of the Proterozoic sequence ranges from nil, where Archean greywackes are observed in outcrop on surface, to in excess of 377 meters, as documented by the 1956 diamond drilling completed by Pickle Crow Gold Mines in the area south of Silver Lake.

Where observed on outcrops, the basal conglomerate is generally matrix supported, with a highly variable clast size ranging from a few centimeters to in excess of 1 meter. Sorting in the conglomerate is generally very poor, suggesting the basal conglomerate may have a glacial origin as opposed to a fluvial genesis. Clast lithologies are also highly variable, but in decreasing abundance are quartz, siltstone/shale, chert, metavolcanics, banded iron formation, granite, diorite, and lesser-varied rock types.

Gold mineralization defined to date on the property occurs in pyrite-bearing clast supported polymictic boulder conglomerate of the Mississagi Formation and pyritic clast supported quartz pebble conglomerate of the Matinenda Formation. Typically, both units are found within 30 metres above the Archean metasediments unconformity.

Previous Work

The first recorded work in the area is from 1932 (Bruce, 1932) when a small quartz vein was located immediately south of the current property boundary. The vein was stripped and sampled but yielded very low gold values.

Between 1932 and 1956, there is no recorded work in the area. Between 1956 and 1957, much of the current property was held by Pickle Crow Gold Mines Limited, who were investigating the basal conglomerates for their uranium potential. That company completed two rounds of diamond drilling totaling 16 holes and 7,489 feet. Figure 4 illustrates the location of the Pickle Crow drill holes, as reported by MacVeigh (1956) and Thompson (1960). While the holes were routinely assayed for uranium, yielding only low and uneconomic values, only sporadic gold assays were reported, to a high of 0.055 opt over 10 feet.

From the 1974 to 1996, the area comprising the property was withdrawn from staking, as part of the Bear Island Indian Caution. No exploration activity was allowed or reported during that period, though a limited Cobalt Embayment wide sampling program by the Ontario Geological Survey in 1980 sampled quartz pebble conglomerates located on the south shore of Tee Lake and returned anomalous gold values to 165 ppb Au.

In 1996, the property was staked by Vancouver based junior Tenajon Resources Corporation. In 1997, the company completed a two-phase exploration program on the property, comprised of an initial 1:20,000 reconnaissance scale mapping and sampling program, followed by a mechanized stripping and channel sampling program on the property. That work resulted in the discovery of two significant gold showings known as the "Northern" and Southern" Occurrences.

At the Northern Occurrence, stripping revealed a thin veneer of basal conglomerate resting unconformably on basement Archean greywackes. The basement rocks trend approximately east-west and are vertical, while the basal conglomerate is flat lying and "pancaked" onto the basement. In several locations, the conglomerate is strongly iron-oxide stained, and carries up to 3-5% fine disseminated pyrite in the matrix. Grab values to 9.94 g/t gold were returned from the area, while channel samples returned a contiguous 12-meter interval grading 0.966 g/t gold.

At the Southern Occurrence, only the basal conglomerate is exposed, and again, pyritic portions returned grab samples to 2.47 g/t gold, and channel samples to 1.75 g/t gold over 3 meters.

During the same year, Tenajon also completed orientation humus sampling and scintillometer surveys over the North Showing, to determine the applicability of those two exploration techniques to identify additional gold occurrences. The scintillometer survey failed to detect any anomalous radioactivity associated with the gold occurrence. The humus sampling detected several anomalies immediately over the showing area, and 100 meters north and south of the showing, with individual sample tenures to 0.06 g/t gold.

In 1998, the property was optioned to Triex Resources Inc., who earned a 60% interest in the project by completing \$125,000 of exploration work during the 1998-1999 field seasons. That work included completion of a 40 kilometer cut-line grid over the area

surrounding the "Northern Occurrence, followed by humus geochemistry and ground magnetic/VLF-EM and pole-dipole Induced Polarization surveys over the grid. Both the humus geochemical survey and the IP survey identified multiple anomalies warranting follow-up.

In July, 1999, Triex completed a program of power stripping and channel sampling over selected targets based on both IP and humus geochemistry responses. Of eight targets identified and sampled during the program, six returned anomalous gold mineralization over substantial widths. The IP survey appeared to have been extremely effective in defining high pyrite content portions of the conglomerate. Best results included an average grade of 0.45 g/t gold from twelve samples collected over a fifty-meter exposure of the conglomerate, with high values to 2.2 g/t gold, and seven meters averaging 1.422 g/t gold, with a high individual meter channel carrying 7.03 g/t gold.

During 2000, Tenajon briefly re-assumed operatorship, and planned to assess the southern portions of the property for PGE potential. That work was never carried out. Due to depressed metal prices, the property was allowed to lapse in 2004, and was acquired by staking by the current property owners.

In July 2006, Endurance Gold Corporation completed a single 18-meter diamond drill hole on Claim 3011983. The hole was designed to approximately duplicate a 1956 drill hole by Pickle Crow Gold Mines, which was exploring the area for uranium. That hole indicated that the basal conglomerate was in excess of 100 meters thick, and Endurance had planned a 150-meter diamond drill hole to provide a complete stratigraphic cut through the basal conglomerate, with corresponding continuous geochemistry. Unfortunately, due to extremely difficult overburden conditions, the hole failed to reach bedrock, and was abandoned after six days of drilling.

Also, in July 2006, Endurance Gold Corporation completed a 2500 meter mechanical stripping, washing, and channel sampling program at three locations, to evaluate IP anomalies generated as a result of the 1998 Triex work. That program was of a reconnaissance nature and took place immediately off of the then property boundary. On receipt of results, Endurance staked 8 additional claims to cover the prospective stratigraphy. Results from the July 2006 program included a channel sample returning 3.52 g/t gold over 13 meters, with widespread anomalous gold values from the exposed basal conglomerate. In October 2006, Endurance completed an additional 900 square meter stripping, washing and channel sampling program, as an extension to the July 2006 program. That work has been filed for assessment (McIvor, 2006).

Also, in 2006, Katrine Exploration and Development was contracted to cut a 20.96 kilometer grid on the property. In late October, Larder geophysics Ltd. completed a detailed ground magnetometer and VLF-EM survey over that grid, and that work was subsequently filed for assessment (Ploeger, 2006).

In April 2007, Endurance Gold Corporation completed a 17.5 line-kilometer Induced Polarization Survey over portions of the property (McIvor, 2007). That work successfully identified numerous strong I.P. chargeability highs, believed to coincide with significant pyrite concentrations within the basal conglomerate horizon, and with gold mineralization related spatially with the pyrite.

During the period May 15 through June 22, 2007, a 23.0 line-kilometer geological mapping and prospecting program was carried out on portions of the Pardo Property. (Cullen and McIvor, 2008). Mapping consisted of walking cut-grid lines, and noting all outcrop locations and lithologies, as well as relevant sulphide content. Systematic grab sampling was completed on outcrops containing any appreciable sulphide content. A total of 121 samples were collected during the program. The mapping program primarily encountered three basic lithological types. Most prevalent was a poorly sorted, matrix supported basal conglomerate believed to be a member of the Mississagi Formation. This lithology, the host to previously defined gold anomalies on the property, contained variable sulphide content, from nil to in excess of 5% in places. Typically, a higher sulphide content, and increase in the percentage of quartz clasts in the conglomerate, are empirically related to significantly anomalous gold values, and these parameters were noted during mapping. Also encountered during the program were stratigraphically higher sequences of sandstone/quartzite, which typically were unmineralized. The third lithological type encountered during mapping was a siltstone-argillite, believed to be Archean in age and typically located immediately beneath the basal conglomerates. In numerous instances, the stratigraphic relationships between the three units were unclear in the field, due to insufficient vertical outcrop exposure. The overlying sandstone/quartzite unit was often similar in appearance to the underlying siltstone/argillite unit and differentiating the two was difficult. As such, at many locations on the enclosed map, the two units are described but undifferentiated as to stratigraphic position and age.

For the most part, the encountered sedimentary strata were flat lying to very gently dipping in both east and west directions, suggesting a gently undulating paleotopography.

Of the 121 samples collected during the program, 28 returned significantly anomalous gold values in excess of 0.1 g/t. Of those 28 samples, 6 returned gold values of between 0.1 and 0.5 g/t, and 1 sample returned a value in excess of 1 g/t (Sample 343555, with 1.88 g/t gold). Most all the significantly anomalous gold values were from pyritic conglomerate, though one sample of quartzite (Sample 343732) in the Tee Lake area returned a gold assay of 0.53 g/t gold.

During the period July 15 through August 15, 2007, a 56-hole, 653-meter diamond drilling program was carried out on portions of the Pardo Property. All 56 holes were drilled on Claim 4202512, to test strong Induced Polarization chargeability anomalies in the immediate vicinity of surface channel sample results of 3.52 g/t gold over 13 metres, in the Trench 2 area of the property. All holes were vertical and designed to drill through the basal conglomerate horizon into Archean basement metasediments. The close spacing of the holes was designed to provide detailed information regarding the distribution of gold mineralization within the conglomerate in the third (vertical) dimension and allow correlation between surface channel sample results and grade in drill core.

Most all holes drilled in the Trench 2 area encountered variable thicknesses of the targeted pyritic quartz pebble dominant basal conglomerate, before penetrating the underlying Archean metasedimentary stratigraphy (argillites-siltstones). In certain lower lying areas (Holes 15, 43 and 56) the drill holes collared into basement rocks, with no conglomerate horizon present.

During the period May 25 through July 07, 2008, a 41 hole, 979.5 metre diamond drilling program was carried out on portions of the Pardo Property, located 65 kilometers

northeast of Sudbury, in Pardo and Clement Townships, Sudbury Mining Division. The holes were drilled on claims numbered 3009440 (Holes 70, 72 through 78, 80 through 83), 4202512 (Holes 11 through 29), 4202513 (Holes 09,10) and 4202514 (Holes 01 through 08), and were designed to test a series of strong IP chargeability anomalies and/or strong surface gold values in the target conglomerate horizon over a large portion of the property, as a follow up to the 2007 diamond drilling program.

In 2009, Mount Logan Resources Ltd., a subsidiary of Ginguro Exploration Inc., carried out a reconnaissance mapping and prospecting program collecting 370 grab samples that contain up to 72.2 g/t gold. This program generally identified the distribution of major rock types exposed in the property and confirmed that basal pyrite quartz pebble conglomerates of the Mississagi Formation locally contain appreciable gold mineralization. In addition, five 500-pound bulk samples were collected using controlled explosives. These samples were tested at a metallurgical facility, indicating an average head grade of 2.0 g/t and 94% gold could be recovered (Ginguro Exploration Inc. April 11, 2010 press release). The result of this test is positive.

A 51 km grid was also made by Mount Logan in 2009, which was investigated by a ground magnetometer survey. Magnetic highs were noted in the northwestern portion of the surveyed grid, which is interpreted to be resulted from the Nipissing diabase and/or gabbro dykes. However, no magnetic anomalies related to basal conglomerates were picked up. An IP survey on the same grid was carried out and identified 35 anomalies. Some of these IP targets were drilled by a diamond drilling program during July 29 through August 20, 2009, which consisted of 17 holes totaling 742 meters. Significant gold mineralization intervals were intersected in 14 holes, and a large gold nugget was recovered at the depth of 41.46 meters from borehole PD-09-09. The drilling program led to realizing that some of the IP anomalies reflect structures or diabase dykes.

In 2010 from May 10th to October 7th, Mount Logan Resources Ltd., a subsidiary of Ginguro Exploration Inc., carried out a detailed geological mapping program supported by an extensive reconnaissance geological mapping and prospecting to better understand the stratigraphy, sedimentology and structures of the Huronian Supergroup that exposes within the Pardo property with an objective of definition of drilling targets. The mapping program covered all existing grid lines, and a new 77.33 km grid, to help provide a series of geological maps. A drilling program consisting of 139 diamond drill holes totaling 4772.67 meters was also completed.

In 2011 Mount Logan Resources Ltd., a subsidiary of Ginguro Exploration Inc. carried out a detailed geological mapping program supported by an extensive reconnaissance geological mapping and prospecting to better understand the stratigraphy, sedimentology and structures of the Huronian Supergroup that exposes within the Pardo property with an objective of definition of future drilling targets. During the same time a drilling program of 24 diamond drill holes totaling 4918.92m, was on going to help accompany the mapping. Late November the first silver lake showing was

discovered using a scintilometer. This discovery initiated a diamond drill hole on the west side of silver lake (PD-11-24).

In April 2012 Mount Logan Resources made an agreement with Endurance Gold were the claims (4201291, 4201292, 4202511, 4202512, 4202513, 4211782, 1234841, 1234842, 3009440, 3009441, 3011982, 3011983, 3011984, 3011999, 4202510, and 4202514) now are 100% Mount Logan.

Between the months of May to November 2012, Mount Logan began a surface sampling program using a RS-230 BGO Super-SPEC Handheld Gamma-Ray Spectrometer which helped discover what's known as the silver lake zone. A total of 226 grab samples from the Pardo Project were collected.

During the spring of 2012 Weatherford International was contracted to survey a selection of diamond drill holes utilizing particular geophysical techniques to determine various geological parameters. This examination was carried out to verify the presence of cross-bedded strata, the nature of uraniferous locations, and the lithological correlation between diamond drill hole intersections. The diamond drill holes selected for such geophysical investigations were: PD10-01, PD10-08, PD10-09, PD11-04, PD11-06 and PD11-10.

On September 5th, 2012 a diamond drilling campaign began which was completed on October 31st, 2012. A total of 67 diamond drill holes totaling 1507.32m was carried out over three key area; the mid-fan zone, the western reef zone, as well the expansion of the trench 2 area.

After the drill program was complete, the stripping and trenching of the silver lake zone began. A total of 21 channel samples were collected and had very positive results which concluded the 2012 season.

During the months of January – May 2013 an analytical and selected detailed logging program of 2007-2010 drill core occurred in Sudbury at Mount Logan's core shack. A total of 236 samples were collected from previously logged 2007-2010 core.

As well 59 drill holes were logged in detailed by Peter Van Walraven of Sudbury Ontario, under the supervision of Dr. Lawrence Minter of Cape Town South Africa. Detailed logging of the lower 20-meter portions of the Mississagi formation was completed to accompany the start of basin analysis.

Later in May 2013 – October 2013, prospecting and detailed mapping began in the southern portion of the Pardo Project, which then lead to the historic discoveries of Eastern Reef and the "007" zone. A total of 728 samples were collected from the channel cut using a diamond saw.

During the Months between May – October 2014, Mount Logan Resources completed a Stripping and Channeling Sampling program which in included detailed

geological mapping of 7 Main Zones/Area. (Trench 2 area, Eastern Reef mid-block, Western Reef South zone, 007 zone extension, Godzilla Zone, Northern zone, and Line 34 area.)

A total of 209 Grab samples were collected over the property, and 1744 channel samples were collected from the 7 main stripped zones/areas. See table below for more detailed information on the stripped sites.

Act contracting and landscaping was contracted to mechanically strip the 7 zones to explore for favorable gold bearing mineralization within the Mississagi boulder conglomerates. Overburden was stripped to bedrock; the cleared areas were mapped, and channel sampled accordingly.

These samples were cut with a Stihl TS 420, 14-inch diamond blade cut off saw. Each sample was measured to approximately 50cim in length and 2-3cm in width with a total cut channel length of 852m.

On May 4th, 2014 Geophysics GPR International of Mississauga, was contracted to conduct two Ground Penetrating Radar (GPR) surveys. Test lines were completed on the Property, with the notion that the survey would delineate the different stratigraphic units, the Archean basement contact, and potential area of higher sulphide content. Each line was surveyed twice using three different antenna, 50 MHz, 100 MHz, and 270 MHz. The lower frequency will penetrate deeper, yet lose resolution, while the higher frequency will not penetrate deep, yet will have a better resolution. L7+00N was surveyed over 600m in a west-east orientation and covered an area with strong geological control from a fence line of 23 diamond drill holes. L0+00E was surveyed over 100 m in a north-south orientation and had poor geological control with only two diamond drill holes. (Todd McCracken 2015). After review, the GPR Method was not considered for any further work.

On June 15th, 2014, Mount Logan Resources completed a 318-meter diamond drilling program to test its discovery zones (007, Eastern Reef), as well other areas, were tested to understand thickness and stratigraphy of the Mississagi sediments. The first 11 holes were designed to help understand each zones thickness, which also helped with the gold study on gold particle distribution. The other 10 holes were used for exploration and to test the underlying stratigraphy from where strong surface gold values were obtained. A total of 789 samples were collected for the 318m drilled.

The diamond drilling was completed by Summit Drilling services of Val Carron, Ontario, employing a custom hydro core drill rig. Pads and drill access trails were cleared in advance by Summit Drilling, using a bull dozer. Core size was BQTK. Core recoveries were 100%, with the target conglomerate horizon a hard and competent unit. During drilling, recovered core was placed in core boxes, tagged and sealed via wire or rubber strap, and delivered to the Mount Logan core logging area at the end of each shift. All drill core is stored at Inventus Mining Corp. warehouse facilities in Sudbury.

Due to the nature of this deposit, gold grains occur as clusters and are subject to highly variable distribution within the rock. Pervious sample methodology has resulted to

highly variable gold grades. The aim of the study was to determine the distribution, variability and appropriate sample size and method for gold bearing rock at the Pardo project.

The sampling study was conducted on the 007 and Eastern Reef locations. The study consisted of panel sampling and Hammer drill holes to collect sufficient rock material for analysis. Once the material was collected it was then sent to Act Laboratories where it was crushed and assayed. The contractor James E. Tilsley & associates Ltd., then examined the assay data and provided us with a comprehensive report with conclusion and recommendations (see attached report). It was concluded from the work that the following should be undertaken:

- Each gold bearing sedimentary unit should be sampling individually
- The rock at Pardo does not appear to have a coarse gold component
- Further prospecting assays should be completed by crushing to 2mm then pulverizing 1 kg to 150 mesh followed by two 30g aliquot fire assays

Proper grade determination will require a "industrial scale" operation to provided very large quantity samples.

During the month of November of 2014, Mount Logan Resources completed a 503.3-meter drill program on the Pardo project. The program was designed to deepen Holes PD-11-03, PD-11-04, PD-11-06, and PD-11-24 as well drill a new hole PD-14-22. The purpose of deepening the holes was to test the basal quartz pebble conglomerate of the Matinenda Formation, which the holes did not intersect when first drilled. It was originally thought that only the Mississagi conglomerates were of economic interest. However recent geological investigation has revealed the Matinenda Fm. conglomerates to also have economic interests.

During the months of March to May of 2015, Mount Logan Resources completed a 422.09m drill program. The program was designed for 3 reasons. First test the "mid fan" area. Second to grid drill the Godzilla zone a high-grade surface exposure and third test the extent of gold bearing conglomerate around the 007 zone another high grade surface exposure. All drilling was done using HTW size core. The reason for using the larger size diameter core was to test our nugget theory and see if more material collected produced a more consistent true grade of the mineralized zones.

During the months of June-July of 2016 Trench 1 was recognized to have outcropping boulder conglomerate. The excavator exposed the vertical face of the outcrop. Once the boulder conglomerate was exposed, it was then washed off and channel sampled. The channels were designed to evaluate the grade of the true thickness of the boulder conglomerate. This was done by taking two cuts side by side spaced 4 metres apart across the outcrop from the top to the bottom of the boulder conglomerate. A total of 11 channels (2 cuts per channel) were cut from the face of the outcrop for a total of 212 samples. One of the cuts was sampled at 0.25 metre intervals while the other was sampled in 0.5 metre intervals. This sampling strategy was conducted to determine the variability of gold values in the conglomerate when sample sizes were reduced (0.25 metre intervals).

Diamond Drilling commenced in January and ended in May of 2017. The drill program's focus was to expand and fill in between the 3 surface showings in Pardo and Clement Township. 1407 meters of HTW drill core was drilled at -90 degrees. A total of 65 holes were drilled. Due to poor pad conditions hole 22 was abandoned, no core was obtained no log exists for this hole. Holes where spaced at 50m along old East/West grid lines. Drill roads were pushed in with the use of a Link belt 210 excavator and 850 John Deere as well pads were built at each collar location for the drill to set up on. Core was transported to the core shack facility in Sudbury at 1785 Frobisher st. where it was logged and sampled. Core is stored at the core yard at McDowell equipment 2018 Kingsway. Samples were photographed and the full core was sampled at 50cm intervals, this was a new technique used during the program to help eliminate the coarse/cluster gold issue. Samples were bag and transported to SGS labs in Garson

2017 - 1000 tonne Bulk Sample

The Trench 1 bulk sample site is located at Clement township on Claim LEA-109722 at UTM 556400E, 5183346N. Preparation for drilling took place in early September 2017. Asabanaka Drilling services was contracted to drill 11 HTW vertical drill holes at 5 m centers to a depth of 10 m for a total of 110m (figure 3). This grid pattern of holes was used to design the blasting pattern for the pit and determine the expected gold grade. The drill core was logged and processed at the Inventus core shack in Sudbury by chief geologist Wesley Whymark. The drill core was sampled using a whole core sampling methodology and sent to the SGS Prep lab in Garson, Ontario. Assays of the drilling can be seen in Table 2 and 3. Drill hole sections can be seen in figures 4, 5 and 6.

Rhude Drilling and Blasting was contracted to drill and blast the site according to the pit design by Inventus Mining staff. The bulk sample site was measured at 15×16 metres for a total surface area of 240 m^2 . A picture of the bulk sample pit can be seen in figure 7. Once blasting was complete, 1000 tonnes of material was prepared for trucking. The bulk sample material was hauled using dump truck and trailer (figure 8), each load was between 25-38 tonnes. E. Corbiere and Sons was contracted to excavate and haul the bulk sample material. A total of 31 loads were hauled off site to the Black Fox Mill in Matheson, Ontario for the total of approximately 1000 tonnes. Pictures of the bulk sample material and Black Fox Mill can be seen in figures 9 and 10.

The milling was contracted to McEwen Mining's Black Fox mill. The milling process of the Black fox mill is a conventional three stage comminution circuit, cyanide leach, and carbon in-leach (CIL) gold recovery, see figure 11 for the mills process flow sheet. Material was crushed and milled to 75 microns and leached for 30 hours. A total of 985 dry tonnes of mill feed was processed and it was determined by mill circuit inventory to contained 3.72 kg (119.5 Troy ounces) of gold. The tailings were estimated

to contain an additional 0.44kg (14.2 Troy ounces) of gold, indicating a grade of 4.22 g/t and a total gold recovery of 89%. Results of the mill circuit inventory can be seen in figure 12 and indicate a bulk sample grade of 4.22 g/t gold. Assays of the mill muck for both the solids and solution can be seen in figure 13 and indicate a head grade of 4.11 g/t gold which is in agreement with the mill circuit inventory.

The milling agreement between Inventus and McEwen Mining was on terms believed to be commercially reasonable. The milling agreement specified a base processing fee of \$42.00 per tonne, and a provision for cost recovery of assaying and other miscellaneous expenses. It is expected that Inventus will pay McEwen Mining approximately \$50,000 in connection with the services it provided in processing the bulk sample. McEwen Mining will remit the net proceeds from the sale of the gold produced to Inventus. The sale of the gold net was \$196,483.

The site has been fenced off and both access points have been blocked with large boulders. Two warning signs one at each entrance indicating potential mine hazards were installed. Fill was then placed in the bulk sample pit at the slope wall which exceeded 3 metres in height. Overburden material has been laid over the area as part of the rehabilitation process. A plan and section of the bulk sample site can be seen in figures 14 and 15.

The Pardo project has been moved to an advanced exploration program. As part of that program the Trench 1 site is one of four areas involved in advanced exploration bulk sampling. The trench 1 site is planned to have an additional 10,000 tonnes extracted for bulk sampling and rehabilitation of the entire site is included in the Pardo Advanced exploration closure plan.

Figure 3. Drill hole locations

Figure 4. Section 556405E

Figure 5. Section 556400E

Figure 6. Section 556395E

DDH_ID	Easting	Northing	Elevation	EOH
TR1-17-01	556392.668	5183337.12	314.3	9.3
TR1-17-02	556392.668	5183342.12	314.3	8.13
TR1-17-03	556392.668	5183347.12	314.3	8.32
TR1-17-04	556392.668	5183352.12	314.3	7.52
TR1-17-05	556397.668	5183337.12	314.3	9.5
TR1-17-06	556397.668	5183342.12	314.3	9.35
TR1-17-07	556397.668	5183347.12	314.3	8.44
TR1-17-08	556397.668	5183352.12	314.3	8.68
TR1-17-09	556402.668	5183337.12	314.3	9.38
TR1-17-10	556402.668	5183342.12	314.3	8.5
TR1-17-11	556402.668	5183347.12	314.3	8.5

Table 2. Drill hole locations and elevations

DDH ID	From	То	Interval	Sample ID	Au g/t			
TR1-17-01	2.5	3.14	0.64	168177	0.024			
TR1-17-01	3.14	3.72	0.58	168081	0.1785			
TR1-17-01	3.72	4.3	0.58	168082	0.2605			
TR1-17-01	4.3	4.8	0.5	168083	0.984			
TR1-17-01	4.8	5.62	0.82	168084	0.01			
TR1-17-01	5.62	6.45	0.83	168085	0.067			
TR1-17-01	6.45	7.1	0.65	168086	0.054			
TR1-17-01	7.1	7.6	0.5	168087	0.2315			
TR1-17-01	7.6	8.27	0.67	168088	0.024			
TR1-17-02	2.48	2.98	0.5	168178	0.09			
TR1-17-02	2.98	3.82	0.84	168089	2.12			
TR1-17-02	3.82	4.42	0.6	168091	0.00			
TR1-17-02	4.42	4.92	0.5	168092	0.01			
TR1-17-02	4.92	5.5	0.58	168093	0.01			
TR1-17-02	5.5	6.02	0.52	168094	0.07			
TR1-17-02	6.02	6.7	0.68	168095	0.02			
TR1-17-02	6.7	7.25	0.55	168096	0.08			
TR1-17-02	7.25	7.8	0.55	168097	0.17			
TR1-17-03	1.4	2	0.6	168179	0.05			
TR1-17-03	2	2.6	0.6	168098	0.00			
TR1-17-03	2.6	3.18	0.58	168099	3.34			
TR1-17-03	3.18	3.72	0.54	168100	1.14			
TR1-17-03	3.72	4.22	0.5	168101	0.81			
TR1-17-03	4.22	4.85	0.63	168102	0.11			
TR1-17-03	4.85	5.75	0.9	168103	0.04			
TR1-17-03	5.75	6.35	0.6	168104	0.06			
TR1-17-03	6.35	6.8	0.45	168105	0.22			
TR1-17-03	6.8	7.5	0.7	168106	0.09			
TR1-17-03	7.5	8.32	0.82	168107	0.26			
TR1-17-04	1.15	1.88	0.73	168180	0.08			
TR1-17-04	1.88	2.7	0.82	168108	0.49			
TR1-17-04	2.7	3.3	0.6	168109	0.03			
TR1-17-04 3.3		4	0.7	168111	4.88			
TR1-17-04	4	4.77	0.77	168112	0.25			
TR1-17-04	4.77	5.73	0.96	168113	0.02			
TR1-17-04	5.73	6.4	0.67	168114	0.50			
TR1-17-04	6.4	7.24	0.84	168115	0.19			

TR1-17-05	2.11	2.79	0.68	168181	0.0075
TR1-17-05	2.79	3.59	0.8	168116	0.091
TR1-17-05	3.59	4.18	0.59	168117	0.472
TR1-17-05	4.18	4.7	0.52	168118	0.095
TR1-17-05	4.7	5.23	0.53	168119	0.045
TR1-17-05	5.23	5.8	0.57	168120	0.0385
TR1-17-05	5.8	6.6	0.8	168121	0.014
TR1-17-05	6.6	7.3	0.7	168122	0.2235
TR1-17-05	7.3	7.85	0.55	168123	0.1805
TR1-17-06	1.45	2.05	0.6	168182	0.0185
TR1-17-06	2.05	2.7	0.65	168124	14.20
TR1-17-06	2.7	3.35	0.65	168125	1.2405
TR1-17-06	3.35	3.95	0.6	168126	0.1815
TR1-17-06	3.95	4.8	0.85	168127	0.3295
TR1-17-06	4.8	5.4	0.6	168128	0.072
TR1-17-06	5.4	6	0.6	168129	0.0215
TR1-17-06	6	6.6	0.6	168131	0.108
TR1-17-06	6.6	7.2	0.6	168132	0.0405
TR1-17-06	7.2	7.8	0.6	168133	0.27
TR1-17-07	1.55	2.05	0.5	168183	0.022
TR1-17-07	2.05	2.85	0.8	168134	2.681
TR1-17-07	2.85	3.6	0.75	168135	0.01
TR1-17-07	3.6	4.15	0.55	168136	3.576
TR1-17-07	4.15	4.67	0.52	168137	0.2415
TR1-17-07	4.67	5.2	0.53	168138	0.3015
TR1-17-07	5.2	5.7	0.5	168139	0.164
TR1-17-07	5.7	6.3	0.6	168140	0.1115
TR1-17-07	6.3	7.05	0.75	168141	0.5455
TR1-17-07	7.05	7.65	0.6	168142	0.252
TR1-17-08	1.1	1.64	0.54	168184	0.1725
TR1-17-08	1.64	2.2	0.56	168143	1.637
TR1-17-08	2.2	2.85	0.65	168144	0.875
TR1-17-08	2.85	3.52	0.67	168145	0.3995
TR1-17-08	3.52	4.3	0.78	168146	0.107
TR1-17-08	4.3	5	0.7	168147	0.062
TR1-17-08	5	5.6	0.6	168148	0.249
TR1-17-08	5.6	6.2	0.6	168149	0.2915
TR1-17-08	6.2	6.87	0.67	168151	0.3645
TR1-17-09	1.8	2.38	0.58	168185	0.0595

TR1-17-09	2.38	2.95	0.57	168152	0.251
TR1-17-09	2.95	3.6	0.65	168153	0.651
TR1-17-09	3.6	4.1	0.5	168154	0.273
TR1-17-09	4.1	4.72	0.62	168155	0.0915
TR1-17-09	4.72	5.3	0.58	168156	0.206
TR1-17-09	5.3	6	0.7	168157	0.021
TR1-17-09	6	6.75	0.75	168158	0.5565
TR1-17-09	6.75	7.44	0.69	168159	0.207
TR1-17-10	1.98	2.48	0.5	168186	0.1295
TR1-17-10	2.48	3.18	0.7	168160	0.1225
TR1-17-10	3.18	3.8	0.62	168161	0.3805
TR1-17-10	3.8	4.4	0.6	168162	0.99
TR1-17-10	4.4	4.9	0.5	168163	0.0705
TR1-17-10	4.9	5.6	0.7	168164	0.047
TR1-17-10	5.6	6.3	0.7	168165	0.078
TR1-17-10	6.3	6.8	0.5	168166	0.65
TR1-17-10	6.8	7.36	0.56	168167	0.138
TR1-17-11	1.1	1.63	0.53	168187	0.196
TR1-17-11	1.63	2.2	0.57	168168	0.3225
TR1-17-11	2.2	2.75	0.55	168169	15.01
TR1-17-11	2.75	3.3	0.55	168171	0.685
TR1-17-11	3.3	3.8	0.5	168172	0.043
TR1-17-11	3.8	4.55	0.75	168173	0.065
TR1-17-11	4.55	5.35	0.8	168174	0.031
TR1-17-11	5.35	6.1	0.75	168175	0.1315
TR1-17-11	6.1	6.8	0.7	168176	0.0875

Table 3. Drill core samples

Figure 7. Bulk sample site

Figure 8. Bulk sample trucking

Figure 9. Bulk sample material

Figure 10. Outside Mill

Figure 11. Black fox Mill process flow sheet

Date:	15-Dec-2017	Shift:	DS	Assaver:	Cand	ace L.							Candace I			acel	
Sample Description:	Inventus	Tail			Tray # :												
Sample ID	Date of Samples	Weight	-150[Au] mg~ppm	Dilution x1-x10	Gold Assay g/t	Comments											
Leach #1 + 30 Hrs	14-Dec-2017	30.00	1.35	1	0.45	Solid											
Leach #1 + 30 Hrs ck		30.00	1.44	1	0.48												
		30.00		1													
Leach #1 2 PM	14-Dec-2017	30.00	11.02	1	3.67	Solution											
Leach #1 2 PM		30.00	10.88	1	3.63												
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1	L												
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
		30.00		1													
0.417		30.00	1.29	1	0.43												
Blk		30.00	0.00	1	0.00												

Figure 12. Trench 1 bulk sample mill muck results

MONTHLY GOLD 13-De Units on this pa	METALLURGIC ac-17 age are grams	AL BALANC	E
0			
	Previous	This	Variance
VICEWEN SONTAR	2/0 Month	Month	
Total mill feed	129 842	3.940	-125 902
Total tails	4155	443	-3 712
	4100	110	-0,112
MILL CIRCUIT INVENTORY			
Collected on Cathode	52557.00	68904.00	16347.00
Carbon in CIL ***	56951.36	61424.73	4473.36
Carbon in CC	0.00	0.00	0.00
Thickener	663.29	11.12	-652.17
Leach Tanks	12171.87	10572.23	-1599.64
Loaded Carbon Tank	16356.00	0.00	-16356.00
Acid Wash Vessel	0.00	3000.00	3000.00
Strip Vessel	3000.00	1500.00	-1500.00
Carbon Conditioning Tank	0.00	0.00	0.00
React. Holding Tank	150.00	150.00	0.00
Carbon Fines	2000.00	2000.00	0.00
Mill Solution Tank	0.84	5.01	4.18
Head Tank	0.14	0.85	0.71
Barren Tank	247.50	247.50	0.00
Refinery, Laboratory Holds	120.00	120.00	0.00
Adjustments*			0.00
TOTAL IN MILL CIRCUIT	144218.01	147935.45	3717.44
Refined Gold	() **	
Variance from last month	3717.4	1	
Total true mill Feed	4160.4	1	
Variance between TMF & TI	TMF 220.4	1	
Actual Head Grade for the N	Nonth 4.224	1	

Adjustment represents:
Production attributable to Sage Gold this month
**2. Refined Gold (bullion shipment) pending settlement of two lots

Author:

Juin Montaque Dec 19/2017

Figure 13. Trench 1 bulk sample mill circuit inventory

Figure 14. Trench 1 bulk sample pit plan

Figure 15. Trench 1 bulk sample section

Costs Statement

The Bulk Sample program had a total cost of \$300,660.00 incurred from September to December of 2017. The costs are broken down in (Table 4).

Work Type	Total Costs
Employees	\$52,000.00
Diamond Drilling	\$13,560.00
Mining and Trucking	\$112,713.15
Drilling and Blasting	\$34,128.83
Milling	\$50,703.10
Analytical	\$7,392.71
Fuel	\$1,474.52
Food	463.35
Supplies	\$3,018.29
Equipment Rental	\$237.24
Truck Rental	\$6,874.92

Accommodations	\$3,760.57
Core shack rental	\$10,833.32
Core yard rental	\$3,500.00

Total Expenditures

\$300,660.00

Table 4. Cost breakdown

References

Bruce, E.L. 1932: Geology of the Townships of Janes, McNish, Pardo and Dana; Ontario Department of Mines Volume 41, Part 4, p.1-28, Accompanied by map 41f, scale 1 inch to ½ mile.

Clark, J.G. 1998: Report on 1998 Geophysics and Humus Sampling, Pardo Property; Triex Resources Inc. Internal Report.

Cullen, D. 1997: Report on 1997 Prospecting, Geological Mapping, Stripping and Channel Sampling on the Pardo Property; Tenajon Resources Corporation Internal Report.

Cullen, D. and McIvor, D.F. 2008: Report on the Summer 2007 Mapping and Prospecting Program on the Pardo Property, Pardo and Clement Townships, Sudbury Mining Division, Ontario; Endurance Gold Corporation Assessment Report (Number and Acceptance Pending).

Dressler, Burkhart O. 1979: Geology of McNish and Janes Townships, District of Sudbury; Ontario Geological Survey Report 191, 91 p., Accompanied by Map 2425, scale 1:31,680.

Fairbairn, H.W. et al. 1960: Mineral and Rock Ages at Sudbury-Blind River, Ontario; Proceedings of the Geological Association of Canada, Volume 12, p. 41-66.

Long, D.G.F. 1981: The Sedimentary Framework of Placer Gold Concentrations in Basal Huronian Strata of the Cobalt Embayment; in Summary of Field Work, 1981, by the Ontario Geological Survey, OGS Miscellaneous Paper 100, ed. by John Wood et al.

MacVeigh, E.A. 1956: Report on the Geology of the Pickle Crow Gold Mines Property, Pardo Township, Temagami Area, Ontario; Pickle Crow Gold Mines Internal Report.

McIvor, D.F. 2006: The Results of a July, 2006 Diamond Drilling Program in Pardo Township, Sudbury Mining Division, Ontario; Endurance Gold Corporation Assessment Report 2.33271.

McIvor, D.F. 2006: The Results of an October, 2006 Mechanized Stripping, Washing and Channel Sampling Program on Claim 4202512 in Clement Township, Pardo Property,

Sudbury Mining Division, Ontario; Endurance Gold Corporation Assessment Report W0670.01904.

McIvor, D.F. 2007: The Results of an April 2007 Induced Polarization Geophysical Survey on the Pardo Property, Pardo and Clement Townships, Sudbury Mining Division, Ontario; Endurance Gold Corporation Assessment Report (Pending Acceptance) W0770.02268.

McIvor, D. F. 2008: Report on the October-November 2007 Prospecting and Sampling Program on the Pardo Property, Pardo and Clement Townships, Sudbury Mining Division, Ontario; Endurance Gold Corporation Assessment Report W0870.00796.

Ontario Geological Survey 1975: Map 2361, Sudbury-Cobalt Geological Compilation 27.

Ploeger, C.J. 2006: Magnetometer and VLF Surveys Over the Pardo Gold Project, Pardo and Clement Townships, Ontario; Larder Geophysics Ltd. Assessment Report Q0670.01901.

Stockwell, C.H. 1964: Fourth Report on Structural Provinces, Orogenies and Time Classification of the Canadian Precambrian Shield; p.1-21, in Age Determinations and Geological Studies, Part II, Geological Studies, Geological Survey of Canada, Paper 64-17, 29 p.

Thomson, J.E. 1960: Uranium and Thorium Deposits at the Base of the Huronian System in the District of Sudbury; Ontario Department of Mines Geological Report No.

Van Schmus, W.R. 1965: The Geochronology of the Blind River-Bruce Mines Area, Ontario, Canada; Journal of Geology, Volume 73, Number 5, p. 755-780.

Certificate of Author

1) I am currently hired as Operations Manager for Inventus Mining Corp.

2) I graduated from Cambrian College with a Diploma in Mining/Geological Engineering Technology.

3) I have worked for Inventus Mining Corp. (Mount Logan Resources) since 2009.

4) I am not aware of any material fact or material change with respect to the subject matter of this report, the omission to disclose which makes this report misleading.

5) I am not independent of Inventus Mining Corp., applying all tests in section 1.5 of NI43-101. I am under salary as a Operations Manager to the company.

6) As of the date of this certificate, and to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information related to the program here in described.

Dated Signed:

Winston Whymark

Appendices

- Cost Breakdown
- Drill hole logs
- Assay certificates
- Invoices

		Project: Inventus N									Minin	g - Pardo p	roject															
Drill hole ID Dri	Drill Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	Cla	laim#		Comments / Interpretation						Lith	Desciption
TR-17-01 0	Core		556393		5183337		314	no	-90	0	нTI	w	9.3m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Driling	LEA-1	-109722				Sample				SS	SandStone
Graphic	ic .	Dep	pth		cm g/t Scale	e		Lithology	code	Parti	cle/clast size	0	Clast	composition	P	yrite/sulphide		Beddir	ting/Cont acts	.							HW	Matrix supported conglomerate
f sf sm sc gt	gf gm gc	From	То	cm g/t	>5 10-50 50-10	10 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Туре	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
		0.00	3.14					HW														168177	2.50	3.14	0.64	0.02	Ma	Matinenda conglomerate
		3.14	5.62					MBC							yes							168081	3.14	3.72	0.58	0.18	Abs	Meta-seds basement
		5.62	8.27					Ma							yes							168082	3.72	4.30	0.58	0.26		
		8.27	9.30					Abs							-							168083	4.30	4.80	0.50	0.98		
																						168084	4.80	5.62	0.82	0.01		
																						168085	5.62	6.45	0.83	0.07		
				1	1		1											1				168086	6.45	7.1	0.65	0.05		
																						168087	7,7.10	7.60 8.27	0.50	0.22		

			Project: In								ventus	i Minin	g - Pardo p	roject									_		_				
Drill hole I	ID	Dril Type		Easting		Northing	Ele	zvation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-02	2	Core		556393		5183332		314	no	-90	0	нт	w	8.13m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Drilling	LEA	A-109722				5	Sample			SS	SandStone
	Grap	hic	Di	epth		cm g/t Scale			Lithology	code	Parti	cle/clast size	0	Clast	composition	P	yrite/sulphide		Bedd	Iding/Cont acts	.							HW	Matrix supported conglomerate
t st sr	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-100	J >100) Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	s Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/	MiBC	Mississugi Boulder conglomerate
			0.00	2.98					HW														168178	2.48	2.98	0.50	0.0	9 Ma	Matinenda conglomerate
			2.98	5.50					MBC							yes							168089	2.98	3.82	0.84	2.1	2 Abs	Meta-seds basement
			5.50	7.80					Ma							yes							168091	3.82	4.42	0.60	0.0	o	
			7.80	8.13					Abs							-							168092	4.42	4.92	0.50	0.0	1	
																							168093	4.92	5.50	0.58	0.0	1	
																							168094	5.50	6.02	0.52	0.0	7	
					1	1					1							1	1	1			168095	6.02	6.7	0.68	0.0	2	
																							168096	6.70	7.26 7.80	0.55	0.0	N b	

											Pro	oject: In	ventus	s Minin	g - Pardo p	roject													
Drill ho	le ID	Dril Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-1	-03	Core		556393		5183347		314	no	-90	0	HT	w	8.32m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Drilling	LEA	4-109722				5	Sample			SS	SandStone
	Gra	phic	De	pth		cm g/t Scale			Lithology of	code	Parti	cle/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts	.							HW	Matrix supported conglomerate
f sf	sm s	ic gf gm gc	From	То	cm g/t	>5 10-50 50-100	>100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Туре	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
			0.00	2.00					HW														168179	1.40	2.00	0.60	0.05	Ma	Matinenda conglomerate
			2.00	4.85					MBC							yes							168098	2.00	2.60	0.60	0.00	Abs	Meta-seds basement
			4.85	8.32					Ma							yes							168099	2.60	3.18	0.58	3.34		
																							168100	3.18	3.72	0.54	1.14		
																							168101	3.72	4.22	0.50	0.81		
																							168102	4.22	4.85	0.63	0.11		
																							168103	4.85	5.75	0.9	0.04		
																							168104	5.75	6.35	0.60	0.06		
																							168105	6.35	6.80	0.45	0.22		
																							168106	6.80	7.50	0.70	0.09		
																							168107	7.50	8.32	0.82	0.26		
					1	1		1			1		1		1				1	1					1	1			
					1	1		1			1		1		1				1	1					1	1			
					1	1		1			1		1		1				1	1					1	1			
					1	1		1			1		1		1				1	1					1	1			
					1	1		1			1		1		1				1	1					1	1			
					1	1		1			1		1		1				1	1					1	1			
-																													

											Pro	oject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole	ID	Drill Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-0	14	Core		556393		5183352		314	no	-90	0	HT	w	7.52m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Drilling	LEA	4-109722				5	iample			SS	SandStone
	Grapi	hic	De	pth		cm g/t Scale			Lithology of	code	Parti	cle/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
t st s	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Туре	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/	MiBC	Mississugi Boulder conglomerate
			0.00	1.88					HW														168180	1.15	1.88	0.73	0.08	Ma	Matinenda conglomerate
			1.88	4.77					MBC							yes							168108	1.88	2.70	0.82	0.49	Abs	Meta-seds basement
			4.77	7.24					Ma							yes							168109	2.70	3.30	0.60	0.03		
			7.24	7.52					Abs							-							168111	3.30	4.00	0.70	4.88		
																							168112	4.00	4.77	0.77	0.25		
																							168113	4.77	5.73	0.96	0.02		
																							168114	5.73	6.4	0.67	0.50		
																							168115	6.40	7.24	0.84	0.19		

											Pro	oject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole	ID	Drill Type		Easting		Northing	Ele	avation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-0	15	Core		556398		5183337		314	no	-90	0	HT	w	9.5m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Drilling	LEA	4-109722				5	iample			SS	SandStone
	Grap	hic	De	pth		cm g/t Scale			Lithology of	code	Parti	cle/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
f sf s	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/	MiBC	Mississugi Boulder conglomerate
			0.00	2.79					HW														168181	2.11	2.79	0.68	0.01	Ma	Matinenda conglomerate
			2.79	5.23					MBC							yes							168116	2.79	3.59	0.80	0.09	Abs	Meta-seds basement
			5.23	7.85					Ma							yes							168117	3.59	4.18	0.59	0.47		
			7.85	9.30					Abs														168118	4.18	4.70	0.52	0.10		
																							168119	4.70	5.23	0.53	0.05		
																							168120	5.23	5.80	0.57	0.04		
																							168121	5.8	6.6	0.8	0.01		
																							168122	6.60	7.30	0.70	0.22		
																							168123	7.30	7.85	0.55	0.18		

											Pro	ject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole	ID D	II Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-08	6	Core		556398		5183342		314	no	-90	0	HT	w	9.35m	Sept/20/2017	Oct/1st-2017	W.Whymark	Asabanka Drilling	LEA	4-109722				s	iample			SS	SandStone
	Graph	ic .	De	pth		cm g/t Scale			Lithology of	code	Parti	de/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
f sf s	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Туре	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
		l	0.00	2.05					HW														168182	1.45	2.05	0.60	0.02	Ma	Matinenda conglomerate
			2.05	4.80					MBC							yes							168124	2.05	2.70	0.65	14.20	Abs	Meta-seds basement
			4.80	7.80					Ma							yes							168125	2.70	3.35	0.65	1.24		
			7.80	9.35					Abs														168126	3.35	3.95	0.60	0.18		
																							168127	3.95	4.80	0.85	0.33		
																							168128	4.80	5.40	0.60	0.07		
																							168129	5.4	6	0.6	0.02		
																							168131	6.00	6.60	0.60	0.11		
																							168132	6.60	7.20	0.60	0.04		
																							168133	7.20	7.80	0.60	0.27		
					1	1					1		1						1	1						1	1		
					1	1				1	1		1	1					1	1	1		1	1		1	1	1	
					1	1					1		1						1	1						1	1		
					1	1				1	1		1	1					1	1	1		1	1		1	1	1	
					1	1					1		1						1	1						1	1		
					1	1					1		1						1	1						1	1		
					1	1					1		1						1	1						1	1		
L					1	1		1		1			1	1					1	1	1			1	1	1	1		

											Pro	ject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole I	ID D	Drill Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	C	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-07	7	Core		556398		5183347		314	no	-90	0	HT	w	8.44m	Sept/20/2017	Oct/1st/2017	W.Whymark	Asabanka Drilling	LEA	-109722				s	iample			SS	SandStone
	Graphi	ic	De	pth		cm g/t Scale			Lithology of	code	Parti	de/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
t st sr	an sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
			0.00	2.05					HW														168183	1.55	2.05	0.50	0.02	Ma	Matinenda conglomerate
			2.05	4.67					MBC							yes							168134	2.05	2.85	0.80	2.68	Abs	Meta-seds basement
			4.67	7.65					Ma							yes							168135	2.85	3.60	0.75	0.01		
			7.65	8.44					Abs							-							168136	3.60	4.15	0.55	3.58		
																							168137	4.15	4.67	0.52	0.24		
																							168138	4.67	5.20	0.53	0.30		
																							168139	5.2	5.7	0.5	0.16		
																							168140	5.70	6.30	0.60	0.11		
																							168141	6.30	7.05	0.75	0.55		
																							168142	7.05	7.65	0.60	0.25		
1					1	1		1		1			1	1	1				1	1	1		1	1		1	1	1	
					1			1					1		1				1	1						1	1		
1					1	1		1		1			1	1	1				1	1	1		1	1		1	1	1	
					1			1					1		1				1	1						1	1		
					1			1					1		1				1	1						1	1		
1					1	1		1		1			1	1	1				1	1	1		1	1		1	1	1	
					1			1					1		1				1	1						1	1		
					1			1					1		1				1	1						1	1		

											Pro	ject: In	ventus	Minin	g - Pardo p	roject													
Drill hole	ID	Drill Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	C	laim#		Comments / Interpretation						Lith	Desciption
TR-17-08	18	Core		556398		5183352		314	no	-90	0	HT	w	8.68m	Sept/20/2017	Oct/1st/2017	W.Whymark	Asabanka Drilling	LEA	-109722				5	Sample			SS	SandStone
	Grapi	hic	De	pth		cm g/t Scale	2	Manhar	Lithology	code	Parti	de/clast size	0	Clast	composition	P	yrite/sulphide		Bedd	ling/Cont acts	Charl							HW	Matrix supported conglomerate
f sf s	sm sc	gf gm gc	From	То	anga	>5 10-50 50-10	0 >100) Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Туре	onat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
			0.00	1.64					HW														168184	1.10	1.64	0.54	0.17	Ma	Matinenda conglomerate
			1.64	3.52					MBC							yes							168143	1.64	2.20	0.56	1.64	Abs	Meta-seds basement
			3.52	6.87					Ma							yes							168144	2.20	2.85	0.65	0.88		
			6.87	8.68					Abs														168145	2.85	3.52	0.67	0.40		
																							168146	3.52	4.30	0.78	0.11		
																							168147	4.30	5.00	0.70	0.06		
																							168148	5	5.6	0.6	0.25		
																							168149	5.60	6.20	0.60	0.29		
																							168151	. 6.20	6.87	0.67	0.36		

			Pro	oject: Inventus	Mining - Pa	do project											
Drill hole ID Drill Type Easting	Northing Elevation (m) Surveyed? Dip	Azimith	Core size	EOH Date	Start Date Complet	e Logged by	Contractor	Claim#		Comments / Interpretation					Lith	Desciption
TR-17-09 Core 556403	5183337 314	no -90	0	HTW	9.38m Sept/20	2017 Oct/1st/2017	W.Whymark	Asabanka Drilling	LEA-109722			Sa	ample			SS	SandStone
Graphic Depth	cm g/t Scale	Lithology code	Part	de/dast size	Clast composi	ion	Pyrite/sulphide		Bedding/Con acts	t.						HW	Matrix supported conglomerate
f sf sm sc gf gm gc From To	>5 10-50 50-100 >100	Rock Type #	Mean Pebble Size	Packing (%) Sorting	Qtz typ	Detrital Py	(%)	Size (mm)	Dips Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID From	to	Int	Au_g/t	MiBC	Mississugi Boulder conglomerate
0.00 2.38		HW										168185 1.80	2.38	0.58	0.06	Ma	Matinenda conglomerate
2.38 5.30		MBC				yes						168152 2.38	2.95	0.57	0.25	Abs	Meta-seds basement
5.30 7.44		Ma				yes						168153 2.95	3.60	0.65	0.65		
7.44 9.38		Abs										168154 3.60	4.10	0.50	0.27		
												168155 4.10	4.72	0.62	0.09		
												168156 4.72	5.30	0.58	0.21		
												168157 5.3	6	0.7	0.02		
												168158 6.00	6.75	0.75	0.56		
												168159 6.75	7.44	0.69	0.21		

											Pro	oject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole	ID	Drill Type		Easting		Northing	Ele	vation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-10	0	Core		556403		5183342		314	no	-90	0	HT	w	8.5m	Sept/20/2017	Oct/1st/2017	W.Whymark	Asabanka Drilling	LEA	4-109722				5	Sample			SS	SandStone
	Grap	hic	Di	apth		cm g/t Scale			Lithology of	code	Parti	cle/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
f sf s	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/	MiBC	Mississugi Boulder conglomerate
			0.00	2.48					HW														168186	1.98	2.48	0.50	0.13	Ma	Matinenda conglomerate
			2.38	4.90					MBC							yes							168160	2.48	3.18	0.70	0.12	Abs	Meta-seds basement
			5.30	7.36					Ma							yes							168161	3.18	3.80	0.62	0.38		
			7.36	8.50					Abs														168162	3.80	4.40	0.60	0.99		
																							168163	4.40	4.90	0.50	0.07		
																							168164	4.90	5.60	0.70	0.05		
																							168165	5.6	6.3	0.7	0.08		
																							168166	6.30	6.80	0.50	0.65		
																							168167	1 6.80	7.36	0.56	0.14		

											Pro	oject: In	ventus	s Minin	g - Pardo p	roject													
Drill hole	ID	Dril Type		Easting		Northing	Ele	avation (m)	Surveyed?	Dip	Azimith	Core	size	EOH	Date Start	Date Complete	Logged by	Contractor	c	Claim#		Comments / Interpretation						Lith	Desciption
TR-17-1	1	Core		556403		5183347		314	no	-90	0	HT	w	8.5m	Sept/20/2017	Oct/1st/2017	W.Whymark	Asabanka Drilling	LEA	4-109722				5	iample			SS	SandStone
	Grap	ahic	De	pth		cm g/t Scale			Lithology of	code	Parti	cle/clast siz	e	Clast	composition	P	yrite/sulphide		Bedd	ding/Cont acts								HW	Matrix supported conglomerate
f sf s	am sc	gf gm gc	From	То	cm g/t	>5 10-50 50-10	0 >100	Member	Rock Type	A facies #	Mean Pebble Size	Packing (%)	Sorting	Qtz	type	Detrital Py	(%)	Size (mm)	Dips	Type	Strat	Core stored at McDowell's in Sudbury, Ontario	Sample ID	From	to	Int	Au_g/	MiBC	Mississugi Boulder conglomerate
			0.00	1.63					HW														168187	1.10	1.63	0.53	0.20	Ma	Matinenda conglomerate
			1.63	3.80					MBC							yes							168168	1.63	2.20	0.57	0.32	Abs	Meta-seds basement
			3.80	6.80					Ma							yes							168169	2.20	2.75	0.55	15.01		
			6.80	8.50					Abs														168171	2.75	3.30	0.55	0.69		
																							168172	3.30	3.80	0.50	0.04		
																							168173	3.80	4.55	0.75	0.07		
																							168174	4.55	5.35	0.8	0.03		
																							168175	5.35	6.10	0.75	0.13		
																							168176	6.10	6.80	0.70	0.09		

Certificate of Analysis Work Order : SU1700989 [Report File No.: 0000012364]

Date: October 27, 2017

To: Wesley Whymark INVENTUS MINING CORP 82 RICHMOND STREET EAST 1ST FLOOR TORONTO ON M5C 1P1 P.O. No.: Pardo Project Project No.: -Samples: 50 Received: Oct 12, 2017 Pages: Page 1 to 4 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description
50	SHIP	Shipping
50	G WGH79	Weighing of samples and reporting of weights
49	G_CRU24	Crush >3kg, various mm, 75% passing, per kg rate
49	G_CRU21	Crush to 3kg, 2mm, 75% passing
49	G_PUL47	Pulverize 1000-1500g, Cr steel, 75 microns, 85% passing
50	GE FAA515	@Au, FAS, AAS, 50g-5ml
1	GO_FAG505	@Au 1 ppm 50g, Fire assay, gravimetric finish
	• •	

Storage: Pulp & Reject

PULP STORAGE	
REJECT STORAGE	

Comments:

G_CRU24 as Coarse crushed to 6.3mm charged per Kg.

85% passing 2mm. 1kg subsample pulverized to 85% passing 75um.

Assays not suitable for commercial exchange.

Preparation of samples was performed at the SGS Sudbury site

Replicate/Duplicate results outside acceptance criteria due to high probability of coarse gold

Certified By

Brett Pipher Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer:	L.N.R.	= Listed not received	I.S.	= Insufficient Sample
	n.a.	= Not applicable		= No result
	*INF	= Composition of this sample makes detection impossible	e by this	method
	<i>M</i> after	r a result denotes ppb to ppm conversion, % denotes ppm t	o % con	iversion
	Method Elemen	s marked with an asterisk (e.g. *NAA08V) were subcontrac ts marked with the @ symbol (e.g. @Cu) denote assays pe	ted rformed	l using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Final : SU1700989 Order: Pardo Project

Report File No.: 0000012364

	Element Method	WtKg	WTCRU	@Au	@AuR	@Au
		G_WGH79	G_CRU24	GE_FAA515	GE_FAA515	GO_FAG505
	Det.Lim.	0.001	0	5	5	0.5
	Units	kg	kg	ppb	ppb	ppm
B00168081		6.337	6.336500	256	101	N.A.
B00168082		6.341	6.341100	303	218	N.A.
B00168083		5.921	5.921300	1327	641	N.A.
B00168084		8.931	8.931400	11	9	N.A.
B00168085		8.992	8.992100	63	71	N.A.
B00168086		6.574	6.573900	92	16	N.A.
B00168087		5.523	5.523100	230	233	N.A.
B00168088		7.104	7.104200	19	29	N.A.
B00168089		9.090	9.090200	2124	2117	N.A.
B00168090		1.498	1.497600	<5	<5	N.A.
B00168091		6.319	6.318600	<5	<5	N.A.
B00168092		5.684	5.683700	7	8	N.A.
B00168093		6.193	6.192700	13	14	N.A.
B00168094		5.609	5.608600	76	58	N.A.
B00168095		6.680	6.679500	17	16	N.A.
B00168096		5.867	5.867000	86	67	N.A.
B00168097		6.066	6.066100	216	132	N.A.
B00168098		6.391	6.391100	<5	<5	N.A.
B00168099		6.438	6.438100	3244	3444	N.A.
B00168100		5.643	5.643300	1222	1054	N.A.
B00168101		6.070	6.069700	763	847	N.A.
B00168102		6.505	6.504600	88	130	N.A.
B00168103		8.876	8.876100	20	50	N.A.
B00168104		6.414	6.413700	46	67	N.A.
B00168105		5.456	5.456200	235	196	N.A.
B00168106		7.339	7.339200	93	88	N.A.
B00168107		8.080	8.080200	307	204	N.A.
B00168108		8.595	8.595300	372	609	N.A.
B00168109		6.981	6.981200	20	46	N.A.
B00168110		0.259	N.A.	2293	2388	N.A.
B00168111		7.227	7.227300	5756	3994	N.A.
B00168112		8.499	8.498600	192	303	N.A.
B00168113		10.526	10.52600	24	21	N.A.
B00168114		7.474	7.474400	508	492	N.A.
*Dup B00168114		<0.001	N.A.	548	N.A.	N.A.
B00168115		9.019	9.018500	186	196	N.A.
B00168116		8.943	8.943200	87	95	N.A.
B00168117		6.497	6.496600	307	637	N.A.
B00168118		5.999	5.998900	61	129	N.A.
B00168119		5.532	5.531900	46	44	N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 2 of 4

Final : SU1700989 Order: Pardo Project

Report File No.: 0000012364

Element	WtKg	WTCRU	@Au	@AuR	@Au
Method	G_WGH79	G_CRU24	GE_FAA515	GE_FAA515	GO_FAG505
Det.Lim.	0.001	0	5	5	0.5
Units	kg	kg	ppb	ppb	ppm
B00168120	5.989	5.988600	46	31	N.A.
B00168121	9.180	9.179800	12	16	N.A.
B00168122	7.519	7.519100	243	204	N.A.
B00168123	6.261	6.261000	178	183	N.A.
B00168124	7.428	7.428400	>10000	>10000	14.20
B00168125	6.808	6.807600	1180	1301	N.A.
B00168126	6.585	6.584800	246	117	N.A.
B00168127	8.762	8.762400	391	268	N.A.
B00168128	6.659	6.659400	82	62	N.A.
B00168129	6.212	6.212200	25	18	N.A.
B00168130	1.028	1.027800	<5	<5	N.A.
*Rep B00168081			101	N.A.	
*Rep B00168082			218	N.A.	
*Rep B00168083			641	N.A.	
*Rep B00168084			9	N.A.	
*Rep B00168085			71	N.A.	
*Rep B00168086			16	N.A.	
*Rep B00168087			233	N.A.	
*Rep B00168088			29	N.A.	
*Rep B00168089			2117	N.A.	
*Rep B00168090			<5	N.A.	
*Rep B00168091			<5	N.A.	
*Rep B00168092			8	N.A.	
*Rep B00168093			14	N.A.	
*Rep B00168094			58	N.A.	
*Rep B00168095			16	N.A.	
*Rep B00168096			67	N.A.	
*Rep B00168097			132	N.A.	
*Rep B00168098			<5	N.A.	
*Rep B00168099			3444	N.A.	
*Rep B00168100			1054	N.A.	
*Rep B00168101			847	N.A.	
*Rep B00168102			130	N.A.	
*Rep B00168103			50	N.A.	
*Rep B00168104			67	N.A.	
*Rep B00168105			196	N.A.	
*Rep B00168106			88	N.A.	
*Rep B00168107			204	N.A.	
*Rep B00168108			609	N.A.	
*Rep B00168109			46	N.A.	

Page 3 of 4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Final : SU1700989 Order: Pardo Project Report File No.: 0000012364

	Element	@Au	@AuR	@Au
	Method	GE_FAA515	GE_FAA515	GO_FAG505
	Det.Lim.	5	5	0.5
	Units	ppb	ppb	ppm
*Rep B00168110		2388	N.A.	
*Rep B00168111		3994	N.A.	
*Rep B00168112		303	N.A.	
*Rep B00168113		21	N.A.	
*Rep B00168114		492	N.A.	
*Rep B00168114		482	N.A.	
*Rep B00168115		196	N.A.	
*Rep B00168116		95	N.A.	
*Rep B00168117		637	N.A.	
*Rep B00168118		129	N.A.	
*Rep B00168119		44	N.A.	
*Rep B00168120		31	N.A.	
*Rep B00168121		16	N.A.	
*Rep B00168122		204	N.A.	
*Rep B00168123		183	N.A.	
*Rep B00168124		>10000	N.A.	
*Rep B00168125		1301	N.A.	
*Rep B00168126		117	N.A.	
*Rep B00168127		268	N.A.	
*Rep B00168128		62	N.A.	
*Rep B00168129		18	N.A.	
*Rep B00168130		<5	N.A.	
*Rep B00168124				13.75

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Page 4 of 4

Certificate of Analysis Work Order : SU1700990 [Report File No.: 0000012367]

Date: October 27, 2017

To: Wesley Whymark INVENTUS MINING CORP 82 RICHMOND STREET EAST 1ST FLOOR

TORONTO ON M5C 1P1

P.O. No.: Pardo Project Project No.: -Samples: 57 Received: Oct 12, 2017 Pages: Page 1 to 4 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description
57	SHIP	Shipping
57	G WGH79	Weighing of samples and reporting of weights
56	G CRU24	Crush >3kg, various mm, 75% passing, per kg rate
56	G CRU21	Crush to 3kg, 2mm, 75% passing
56	G PUL47	Pulverize 1000-1500g, Cr steel, 75 microns, 85% passing
57	GE FAA515	@Au, FAS, AAS, 50g-5ml
1	GO_FAG505	@Au 1 ppm 50g, Fire assay, gravimetric finish
Charana, Dula 9 D	ale of	

Storage: Pulp & Reject

PULP STORAGE	:	RETURN
REJECT STORAGE	:	RETURN

Comments:

G_CRU24 as Coarse crushed to 6.3mm charged per Kg.

85% passing 2mm. 1kg subsample pulverized to 85% passing 75um.

Assays not suitable for commercial exchange.

Preparation of samples was performed at the SGS Sudbury site

Replicate/Duplicate results outside acceptance criteria due to high probability of coarse gold

Certified By

Brett Pipher Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer:	L.N.R. = Listed not received n.a. = Not applicable	I.S. = Insufficient Sample = No result			
	*INF = Composition of this sample makes detection impossible by this method <i>M</i> after a result denotes ppb to ppm conversion, % denotes ppm to % conversion				
	Methods marked with an asterisk (e.g. *NAA08V) wer Elements marked with the @ symbol (e.g. @Cu) deno	re subcontracted lote assays performed using accredited test methods			

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Final : SU1700990 Order: Pardo Project

Report File No.: 0000012367

Element	WtKg	WTCRU	@Au	@AuR	@Au
Method	G_WGH79	G_CRU24	GE_FAA515	GE_FAA515	GO_FAG505
Det.Lim.	0.001	0	5	5	0.5
Units	kg	kg	ppb	ppb	ppm
B00168131	7.370	7.369600	98	118	N.A.
B00168132	5.957	5.957400	43	38	N.A.
B00168133	7.192	7.191600	281	259	N.A.
B00168134	8.505	8.505300	2633	2729	N.A.
B00168135	8.193	8.193100	10	10	N.A.
B00168136	6.441	6.441100	2706	4446	N.A.
B00168137	5.620	5.619800	154	329	N.A.
B00168138	6.126	6.125800	63	54	N.A.
B00168139	4.648	4.648300	158	170	N.A.
B00168140	6.732	6.732300	104	119	N.A.
B00168141	8.414	8.414100	541	550	N.A.
B00168142	6.732	6.732400	265	239	N.A.
B00168143	5.766	5.766200	1546	1728	N.A.
B00168144	7.289	7.289100	794	956	N.A.
B00168145	7.352	7.351900	533	266	N.A.
B00168146	8.910	8.909600	63	151	N.A.
B00168147	7.344	7.344000	55	69	N.A.
B00168148	6.759	6.758600	227	271	N.A.
B00168149	6.761	6.760500	338	245	N.A.
B00168150	0.220	N.A.	528	518	N.A.
B00168151	6.901	6.900900	411	318	N.A.
B00168152	6.976	6.975500	208	294	N.A.
B00168153	6.750	6.749500	606	696	N.A.
B00168154	5.624	5.623700	264	282	N.A.
B00168155	6.822	6.822100	102	81	N.A.
B00168156	6.198	6.197800	168	244	N.A.
B00168157	7.669	7.668700	23	19	N.A.
B00168158	8.264	8.264400	465	648	N.A.
B00168159	8.484	8.483700	203	211	N.A.
B00168160	7.980	7.980000	116	129	N.A.
B00168161	6.633	6.633200	425	336	N.A.
B00168162	7.080	7.079900	960	1020	N.A.
B00168163	5.442	5.441800	68	73	N.A.
B00168164	7.268	7.267800	48	46	N.A.
*Dup B00168164	< 0.001	N.A.	60	N.A.	N.A.
B00168165	7.332	7.332300	55	101	N.A.
B00168166	6.144	6.144100	680	620	N.A.
B00168167	6.136	6.136400	142	134	N.A.
B00168168	6.245	6.245000	391	254	N.A.
B00168169	5.909	5.909000	>10000	>10000	15.01

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 2 of 4

Final : SU1700990 Order: Pardo Project

Report File No.: 0000012367

Element	WtKg	WTCRU	@Au	@AuR	@Au
Method	G_WGH79	G_CRU24	GE_FAA515	GE_FAA515	GO_FAG505
Det.Lim.	0.001	0	5	5	0.5
Units	kg	kg	ppb	ppb	ppm
B00168170	1.003	1.003000	31	12	N.A.
B00168171	6.078	6.078000	603	767	N.A.
B00168172	5.165	5.164800	40	46	N.A.
B00168173	8.325	8.325200	71	59	N.A.
B00168174	8.773	8.772700	32	30	N.A.
B00168175	8.140	8.140300	134	129	N.A.
B00168176	7.644	7.643500	85	90	N.A.
B00168177	6.560	6.560000	27	21	N.A.
B00168178	5.372	5.371900	95	84	N.A.
B00168179	6.701	6.701100	37	69	N.A.
B00168180	7.646	7.645700	107	53	N.A.
B00168181	7.365	7.365300	6	9	N.A.
B00168182	6.736	6.736400	25	12	N.A.
B00168183	5.752	5.752000	20	24	N.A.
B00168184	5.677	5.677200	137	208	N.A.
B00168185	5.439	5.438700	89	30	N.A.
B00168186	4.950	4.949900	141	118	N.A.
B00168187	5.671	5.671100	196	196	N.A.
*Rep B00168131			118	N.A.	
*Rep B00168132			38	N.A.	
*Rep B00168133			259	N.A.	
*Rep B00168134			2729	N.A.	
*Rep B00168135			10	N.A.	
*Rep B00168136			4446	N.A.	
*Rep B00168137			329	N.A.	
*Rep B00168138			54	N.A.	
*Rep B00168139			170	N.A.	
*Rep B00168140			119	N.A.	
*Rep B00168141			550	N.A.	
*Rep B00168142			239	N.A.	
*Rep B00168143			1728	N.A.	
*Rep B00168144			956	N.A.	
*Rep B00168145			266	N.A.	
*Rep B00168146			151	N.A.	
*Rep B00168147			69	N.A.	
*Rep B00168148			271	N.A.	
*Rep B00168149			245	N.A.	
*Rep B00168150			518	N.A.	
*Rep B00168151			318	N.A.	
*Rep B00168152			294	N.A.	

80 20 NA

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Page 3 of 4

Final : SU1700990 Order: Pardo Project Report File No.: 0000012367

	Element Method Det.Lim. Units	@Au GE_FAA515 5 ppb	@AuR GE_FAA515 5 ppb	@Au GO_FAG505 0.5 ppm
*Rep B00168153		696	N.A.	
*Rep B00168154		282	N.A.	
*Rep B00168155		81	N.A.	
*Rep B00168156		244	N.A.	
*Rep B00168157		19	N.A.	
*Rep B00168158		648	N.A.	
*Rep B00168159		211	N.A.	
*Rep B00168160		129	N.A.	
*Rep B00168161		336	N.A.	
*Rep B00168162		1020	N.A.	
*Rep B00168163		73	N.A.	
*Rep B00168164		46	N.A.	
*Rep B00168164		63	N.A.	
*Rep B00168165		101	N.A.	
*Rep B00168166		620	N.A.	
*Rep B00168167		134	N.A.	
*Rep B00168168		254	N.A.	
*Rep B00168169		>10000	N.A.	
*Rep B00168170		12	N.A.	
*Rep B00168171		767	N.A.	
*Rep B00168172		46	N.A.	
*Rep B00168173		59	N.A.	
*Rep B00168174		30	N.A.	
*Rep B00168175		129	N.A.	
*Rep B00168176		90	N.A.	
*Rep B00168177		21	N.A.	
*Rep B00168178		84	N.A.	
*Rep B00168179		69	N.A.	
*Rep B00168180		53	N.A.	
*Rep B00168181		9	N.A.	
*Rep B00168182		12	N.A.	
*Rep B00168183		24	N.A.	
*Rep B00168184		208	N.A.	
*Rep B00168185		30	N.A.	
*Rep B00168186		118	N.A.	
*Rep B00168187		196	N.A.	
*Rep B00168169				16.72

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 4 of 4

