

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Work Assessment Report

Prospect Lake Property

Coldwell

Thunder Bay District

Ontario

NTS 42 D/15

Assembled by: John Florek

Date: October 01, 2019

Table of Contents

Summary	.Pg.	1
Introduction	.Pg.	1
Regional Geology	Pg.	2
Property Geology	Pg.	2
Historical Work Performed	Pg.	2
Work Program	.Pg.	3
Recommendations	Pg.	4
References	. Pg.	. 4
Figure 1 (Regional Location Map)	Pg.	5
Figure 2 (Property Location Map 1:25,000)	Pg.	6
Figure 3 (Soil Location Map 1:10,000)	Pg.	7
Figure 4 (Geology Map)	Pg.	8
Appendix A – Costs and Invoices		
Appendix B – Field Notes		
Appendix C – Geochemical Results		

Summary:

A hydromorphic soil sampling and grub prospecting program was developed to continue to understand the nature of the exhalative horizon and expand on its understanding

The prospecting was two-fold: Follow up on interesting rock geochemistry and explore these anomalies by using groundwater and soil as a transport mechanism to identify areas of more rigorous follow-up. Examine rock samples along the western portion of the property that might indicate substantial mineralization.

Previous work done by the author looked at the location and geological setting of an identified exhalative unit that occurs at the boundary between sediments and mafic volcanics. This exhalative unit already demonstrated significant base metal occurrences along strike.

In addition to this prospecting, some re-establishment of trails for emergency purposes was done and referencing historical claim geophysical lines by flagging or GPS for future reference.

Introduction:

John Florek has 100% interest in the Prospect Lake Property located in Coldwell Area of the Thunder Bay District, Ontario, within the Schreiber Greenstone Belt. The Property consists of Thirty-Six (32) claims (23 Single Claims and 9 Boundary Claim Units). **Table 1** and **Figure 1 and 2** show the location of the group of claims.

Project	Twshp	Claim Type	Claim Number	Units	Hectares
Prospect Lake	Tuuri	Single	120771	1	16
	Tuuri	Single	122888	1	16
	Tuuri	Single	148210	1	16
	Tuuri	Single	165958	1	16
	Tuuri	Single	177978	1	16
	Tuuri	Single	177979	1	16
	Tuuri	Single	184757	1	16
	Tuuri	Single	198427	1	16
	Tuuri	Single	224530	1	16
	Tuuri	Single	244726	1	16
	Tuuri	Single	244727	1	16
	Tuuri	Single	245526	1	16
	Tuuri	Single	251572	1	16
	Tuuri	Single	265101	1	16
	Tuuri	Single	282771	1	16
	Tuuri	Single	282772	1	16
	Tuuri	Single	289582	1	16
	Tuuri	Single	301648	1	16
	Tuuri	Single	340452	1	16
	Tuuri	Single	536258	1	16

Tuuri	Single	536259	1	16
Tuuri	Single	536260	1	16
Tuuri	Single	536261	1	16
Tuuri	Boundary	178837	1	16
Tuuri	Boundary	244725	1	16
Tuuri	Boundary	244728	1	16
Tuuri	Boundary	280580	1	16
Tuuri	Boundary	289583	1	16
Tuuri	Boundary	299265	1	16
Tuuri	Boundary	300814	1	16
Tuuri	Boundary	301649	1	16
Tuuri	Boundary	317444	1	16

The Prospect Lake property is located 6.5 kilometres north of the TransCanada Highway, between Marathon and Terrance Bay, Ontario. The property is accessible by ATV trail, canoe, and forest trail to the southeastern area of claim 4240816. All of the claim area is very remote and most of the areas are only accessible by walking through the boreal forest.

Regional Geology

The property occurs within the Wawa Subprovince of the Superior Province. It is within the late Archean Schreiber-Hemlo greenstone belt, i.e., 2.80-2.68 Ga. It is composed of supracrustal lithotectonic assemblages of ultramafic to tholeiitic basalt ocean plateau sequences, tholeiitic to calc-alkaline volcanic arc sequences, and siliciclastic turbidites, collectively intruded by arc granitoids (Polet et.al. 1998.)

Property Geology

The property lies along the north limb of a regional antiform, which is located in the Archean Schreiber portion of the greenstone belt. Mafic and Intermediate volcanics are overlain by chert, shale, sulphide iron formation, and related sedimentary rocks. The belt consists of variably metamorphosed metavolcanic and metasedimentary units. **Figure 3 and 4** shows the property geology; taken from Walker 1967.

Historical Work Performed

Several previous companies have worked the property and the information is contained in the assessment files located at the MNDM. Brief synopses below of work performed on these properties are contained in these reports. A lot of the reports describe more regional surveys over the general area, but the list below is confined to the claims in this report.

1981: Gulf?

1983: Coronet Resources: Aerodat Ltd airborne geophysical surveys, geological survey, geochemical survey (42D15SW0082,70).

1983: Teck Exploration: Geophysics (42D15SW0090)

1986: Lionel Martin: Linecutting, Trenching, Geochemistry, Geological Mapping, Geochemistry, Geophysics, and Diamond Drilling (42D15SW0061)

1986-1987: Eldor Resources (optioned from Cunningham): Diamond Drilling, Soil Sampling, Lithogeochemistry (42D15SW0064, 56_b, 58)

1989: Cameco / Zenmac Zinc Ltd: Diamond Drilling (42D15SW0054,56)

1990: Cunningham: Whole Rock Analysis (42D15SW0051), references Gulf work?

2005: Phoenix Matachewan Mines: Lithogeochemistry, Airborne Magnetics, VTEM (42D15SW0061, 2025, 20003043)

2006-2008: Galahad Minerals: Drilling

2012: Wayne Richards: Prospecting and bedrock sampling (20010244)

2015: John Florek: Prospecting, Mapping, Line cutting

2016: John Florek: Soil Sampling (multielement), Rock Sampling(XRF), Linecutting, Prospecting.

2017: John Florek: Prospecting Claim 4240826

2019: John Florek: Soil Geochemistry, Prospecting

Work Program

The main goal was to prospect and to assess locations of possible VMS potential associated with exhalitive rocks which trend through the claims. Claim 301648 and 265101 was the focus, due to elevated gold and historical sulphide occurrences.

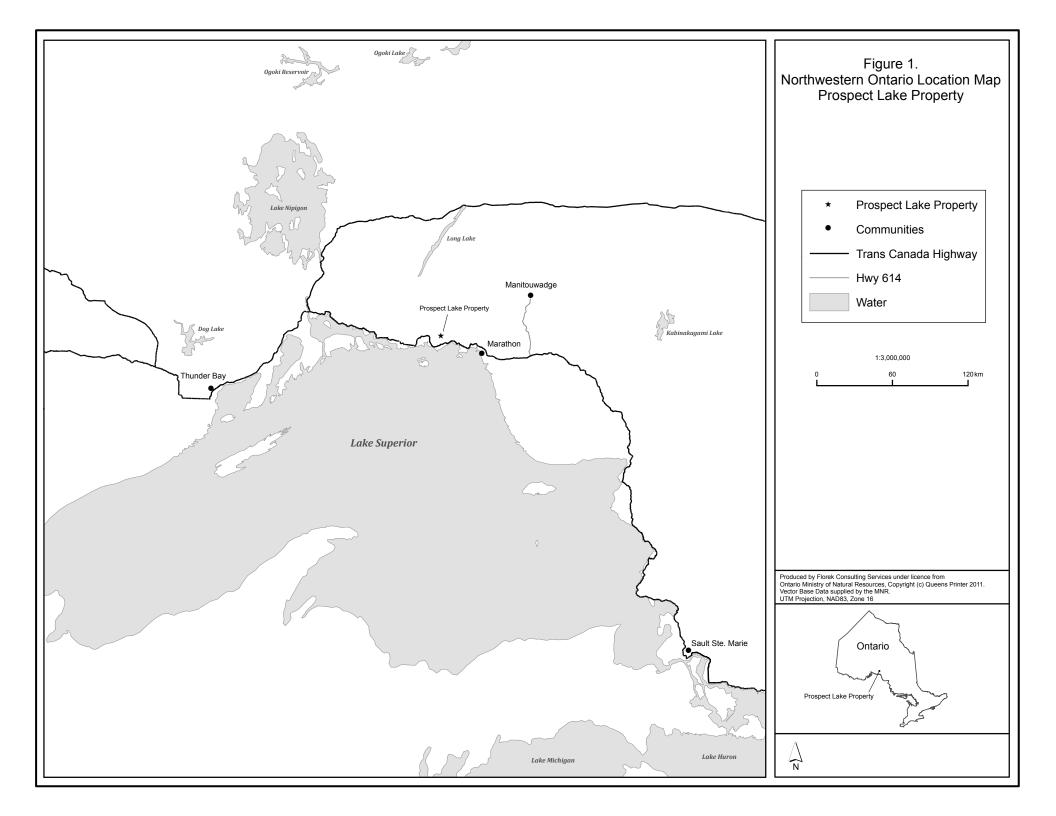
Assessment of the historical work was performed on the property prior to field work to better understand the focus for the 2019 campaign. A soil sampling program, looking for depressions in the terrain, was initiated. These depressions would be focal points for groundwater movement that would have been in contact with upslope unexposed bedrock. This would allow examination and potential of a particular segment of the known exhalative horizon that is the focus of the program.

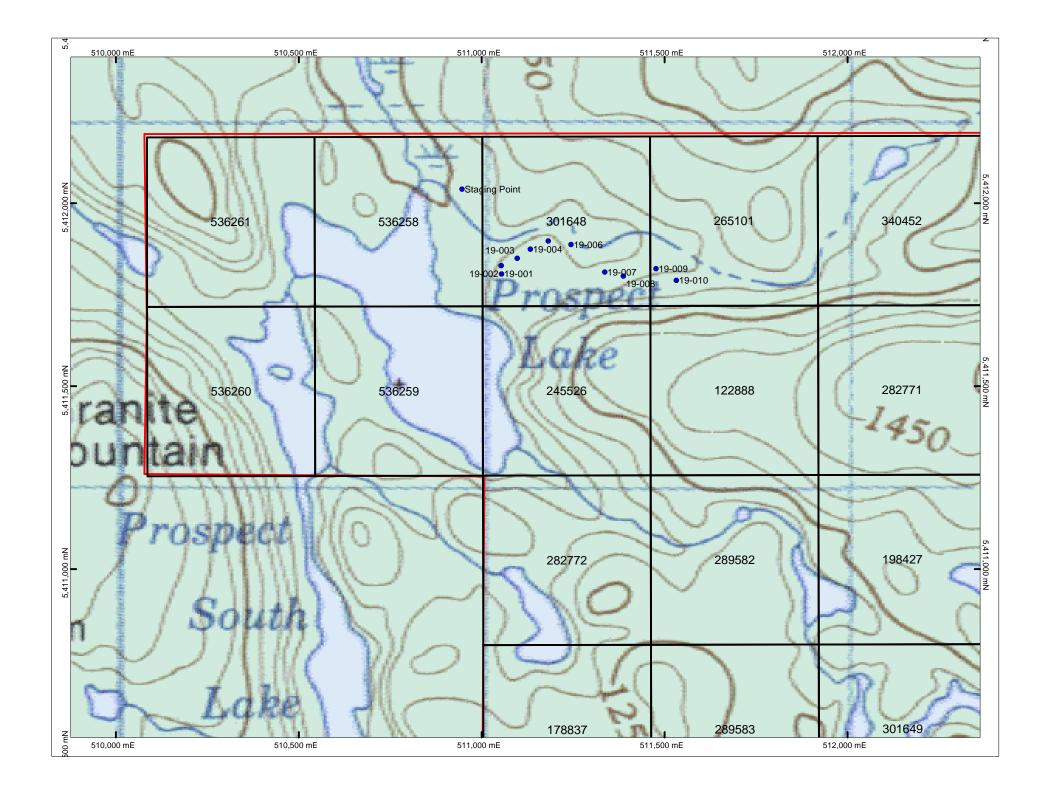
This exhalative horizon is known to be composed of chert, iron oxide and sulphide facies iron formation, and locally intercalated graphitic schists. This horizon has significant untested strike length and is one of the most continuous and thickest exhalite horizons in the greenstone belt shown on Walker's (1953) geological map. The prospecting was done between known lithogeochemistry done by Phoenix Matachewan Mines, to hopefully identify new showings or unknown rock types. Lateral to this horizon, just off the claims is a diamond drillhole intercept that contained 8.6% Zn over 10 meters.

The segment of our exploration corresponds to an area of sodium depletion, manganese enrichment, elevated zinc, and strong EM conductors in the rocks. This is typical for positive indications for massive sulfides in the vicinity.

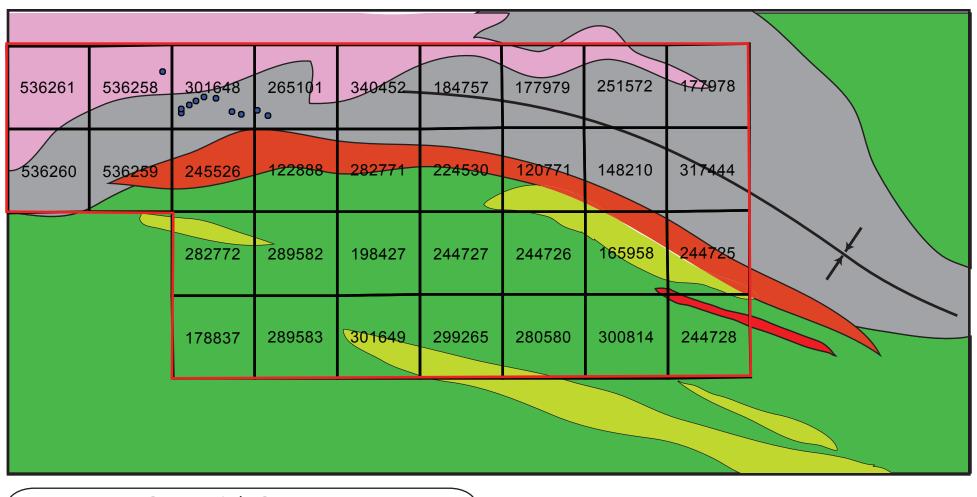
In addition to soil sampling, some trails were re-established for safety and a search was conducted to find old geophysical grids. This way they could be tied into the known GIS coordinates and provide good visuals in the field for future work when appending work to historical data.

Recommendations


Further investigations of these occurrences are warranted. It is suggest that the following be accomplished:


- Follow-up with more aggressive soil sampling and prospecting for mineralization.
- Stream sediment sampling that dissects the geology of interest.
- The reestablishment of overgrown trails to provide better access. Access is still extremely difficult.
- Drone magnetic survey, for better magnetic definition.
- Drilling campaign along this exhalative horizon.

References


Polat, R. Kerrich, and D.A. Wyman (1998). The late Archean Schreiber–Hemlo and White River–Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction–accretion complexes. Tectonophysics, v. 289, Issue 4. pp. 295-326.

Walker, J.W.R., 1967, Geology of the Jackfish Middleton Area, Ontario Department of Mines, 41p.

Prospect Lake Geology

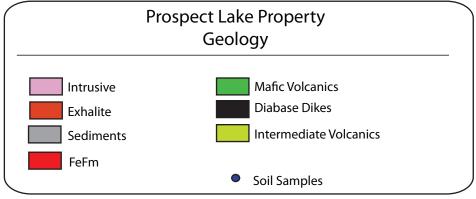
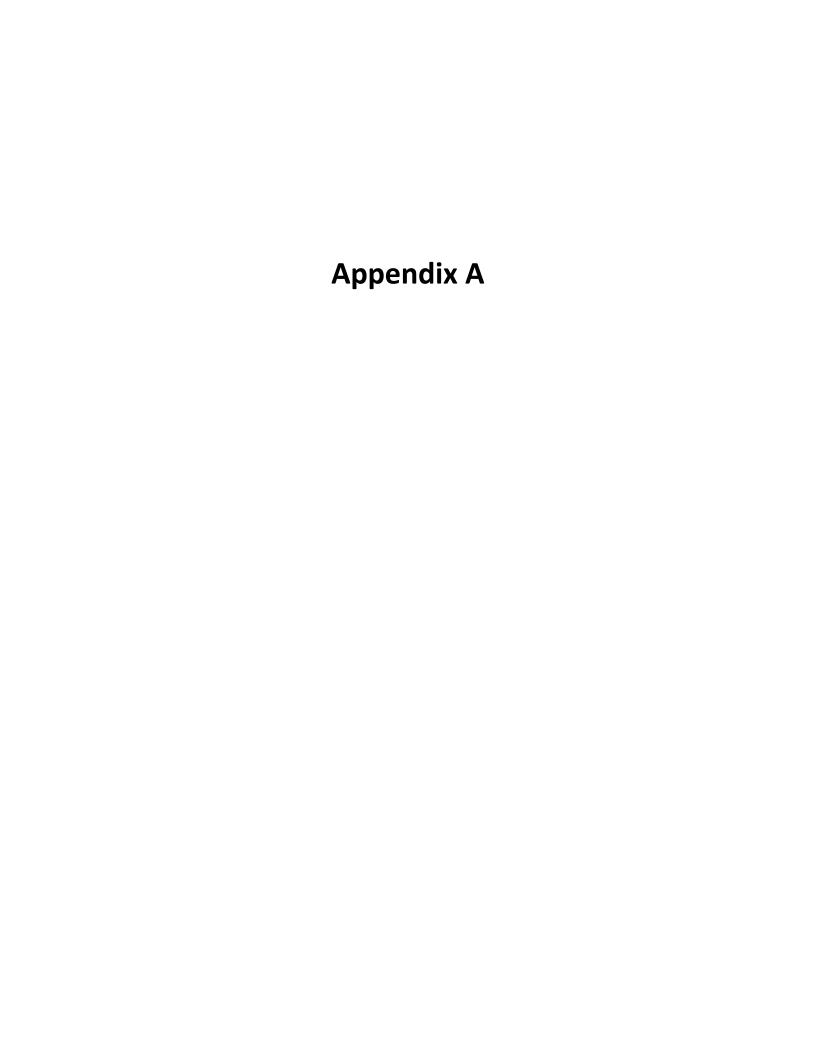
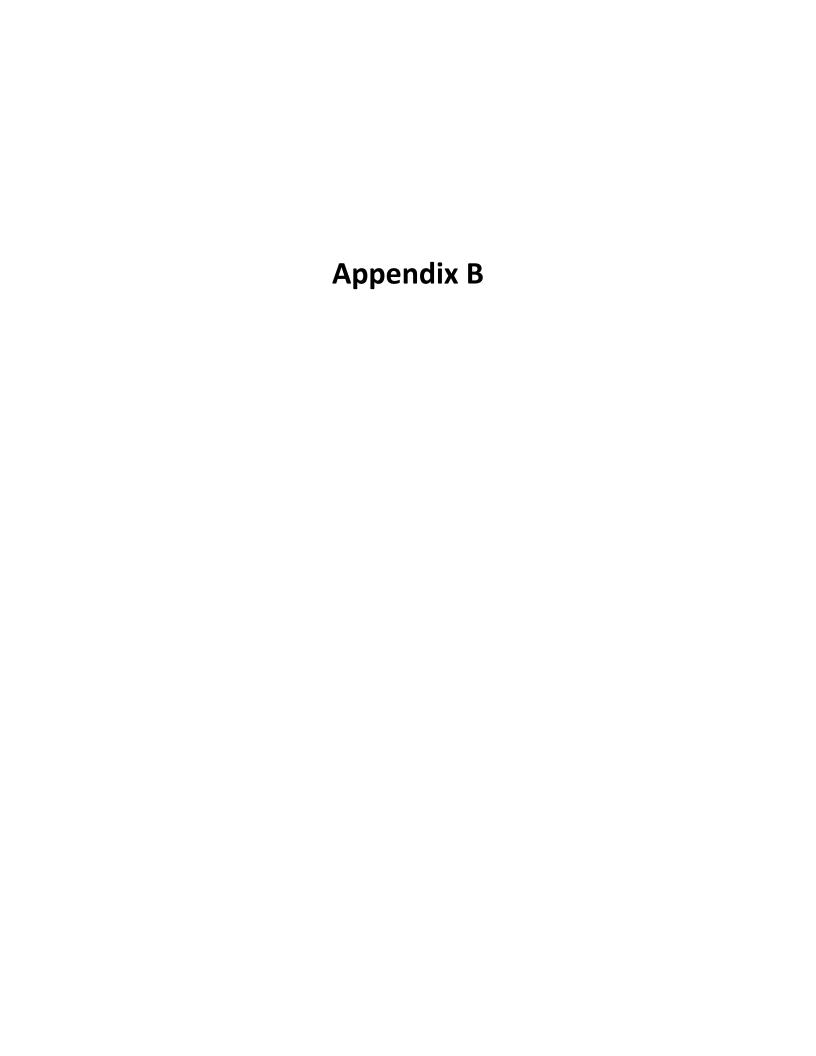



Figure 4: Geology After J.W.R. Walker 1953



Prospect Lake Claims

	MOB		DEMOB			
	September-27-17	September-28-17	September-29-17	October		
Boat and Motor	200	200	200			
Mob/Demob (Camp setup)	1000		1000			
Prospecting (2 Sr. Geologist)	1000	2000	2000			
Quad Rental (2)	400	400	400			
Truck	90		90			
Perdiem (2 Geos)	160	160	160			
Geochemistry				300		
Report Writing/Figures				3000		
	2850	2760	3850	3300		
					Total Costs	\$12,760.00
Description	Quanity	units	cost/unit	Total		
Trail Establishment, Access Route (Emergency)	0.5	day	\$2,000.00	\$1,000.00	Work Costs	
Sampling, Prospecting (P.Geo, M.Sc Geologist)	2	day	\$2,000.00	\$4,000.00	Work Costs	
Geochemistry	10	each	\$30.00	\$300.00	Work Costs	
Mob/Demob (Equipment, Emergency Shelter Setup)	2	LumpSum	\$1,000.00	\$2,000.00	Associated Costs	
Report Writing	2	day	\$1,000.00	\$2,000.00	Associated Costs	
Figures	1	day	\$1,000.00	\$1,000.00	Associated Costs	
1 1641.63	-	ady	Ψ1,000.00	Ψ1,000.00	Associated Costs	
Honda Foreman 4x4 (Red) - Mud Tires	3	day	\$200.00	\$600.00	Transportation Costs	
Honda Foreman 4x4 (Green)	3	day	\$200.00	\$600.00	Transportation Costs	
Boat and Motor	3	day	\$200.00	\$600.00	Transportation Costs	
Truck Mileage	300	km	\$0.60	\$180.00	Transportation Costs	
Perdiem	6	day	\$80.00	\$480.00	Food and Lodging	
			Total Costs	\$12,760.00		
		Electronic Assessmen	t Categories			

Work Costs \$5,300.00
Associated Costs \$5,000.00
Transportation Costs \$1,980.00
Food and Lodging \$480.00

Total Costs \$12,760.00

2019 Soil Sampling Campaign (Notice small creek in vicinity)

Looking for depressions prior to groundwater entering stream.

Prospect Lake Sept 28, 2019, 29, 30th Contour Geochemistry Possible Assert heachem already done RCK Szmple ASPY FIT. long streem. (0) 511475m, E 009 7 Brown (Dry streem) 5911 804 Ø 008Y Blown. Brown 0 007 (F/2+) Base of slope Szmples Sind Brown GRity. @ 006 0 0057 BIOUN @ 19-004Y 14. Brown LEGENS · · 0 19-003 Y Brown ØZ. BIOUR 19-601 / * see 483 Cooldinates 612/ 0/29

Appendix C

Quality Analysis ...

Innovative Technologies

Report No.: A19-13781 Report Date: 28-Oct-19

Date Submitted: 09-Oct-19

Your Reference: Prospect Lake

John Florek 6 Radisson Crescent ontario

ATTN: John Florek

CERTIFICATE OF ANALYSIS

10 Soil samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1E-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2019-10-24 10:16:13

REPORT **A19-13781**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Report: A19-13781

R	es	u	lts
ı 🔪	_ 3	u	ILi

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	S
Unit Symbol	ppm	%							
Lower Limit	0.2	0.5	1	2	2	1	2	1	0.001
Method Code	AR-ICP								
001	< 0.2	< 0.5	3	351	< 2	23	15	75	0.015
002	< 0.2	< 0.5	20	874	< 2	31	17	506	0.034
003	< 0.2	< 0.5	9	107	< 2	10	7	42	0.019
004	< 0.2	< 0.5	17	219	< 2	15	3	35	0.011
005	< 0.2	< 0.5	3	54	< 2	4	7	18	0.016
006	< 0.2	< 0.5	17	206	< 2	21	11	124	0.020
007	< 0.2	< 0.5	82	252	< 2	64	7	340	0.008
008	< 0.2	< 0.5	12	291	< 2	23	7	233	0.015
009	0.3	0.9	87	1960	5	74	20	715	0.080
010	0.2	0.7	39	1060	4	30	30	485	0.036

Report: A19-13781

\sim	•
u	L

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	s
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Lower Limit	0.2	0.5	1	2	2	1	2	1	0.001
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas	0.2	< 0.5	68	1040	< 2	24	95	130	0.014
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	0.0160
GXR-6 Meas	0.3	< 0.5	67	1040	< 2	23	97	130	0.014
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	0.0160
OREAS 922 (AQUA REGIA) Meas	1.8	< 0.5	2290	761	< 2	33	59	265	0.366
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	0.386
OREAS 922 (AQUA REGIA) Meas	0.7	< 0.5	2280	757	< 2	35	58	273	0.372
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	0.386
OREAS 923 (AQUA REGIA) Meas	3.5	< 0.5	4450	863	< 2	32	84	358	0.678
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	0.684
OREAS 923 (AQUA REGIA) Meas	1.4	< 0.5	4450	872	< 2	36	77	354	0.682
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	0.684
Oreas 96 (Aqua Regia) Meas	10.5		> 10000				88	443	3.857
Oreas 96 (Aqua Regia) Cert	11.50		39100. 00				100	448	4.38
Oreas 96 (Aqua Regia) Meas	10.8		> 10000				92	447	4.066
Oreas 96 (Aqua Regia) Cert	11.50		39100. 00				100	448	4.38
Oreas 621 (Aqua Regia) Meas	67.8	286	3620	539	14	27		> 10000	4.488
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	4.50
Oreas 621 (Aqua Regia) Meas	69.4	286	3700	545	14	26		> 10000	4.623
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	4.50
Method Blank	< 0.2	< 0.5	< 1	< 2	< 2	< 1	< 2	< 1	< 0.001
Method Blank	< 0.2	< 0.5	< 1	< 2	< 2	< 1	< 2	< 1	< 0.001
Method Blank	< 0.2	< 0.5	< 1	< 2	< 2	< 1	< 2	< 1	< 0.001