

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. **ASSESSMENT REPORT** 

# **DIAMOND DRILLING**

## **ON THE**

# **OGDEN PROPERTY, TIMMINS**

# PORCUPINE MINING DISTRICT

NTS 42A/06



Submitted by:

Don Heerema P.Geo. (ON) Metals Creek Resources 945 Cobalt Cres. Thunder Bay, ON P7B 5Z4

January 2019

### TABLE OF CONTENTS

| Summary                                      | 1  |
|----------------------------------------------|----|
| Terms of Reference                           | 1  |
| Land Title/Tenure                            | 1  |
| Property Access and Location                 | 6  |
| Geology                                      |    |
| Summary of Previous Work                     |    |
| Work Program 2018                            |    |
| MEK Sampling, Analytical Techniques and QAQC | 25 |
| Conclusions and Recommendations              |    |
| Expenditures                                 |    |
| References                                   |    |
| Statement of Qualifications                  |    |
|                                              |    |

# List of Figures

| Figure 1: Claim Map                             | 5  |
|-------------------------------------------------|----|
| Figure 2: Property Location Map                 | 6  |
| Figure 3: Timmins West Gold Trend               | 7  |
| Figure 4: Ogden Property Highlights             | 7  |
| Figure 5: Ogden Property Geology                | 9  |
| Figure 6: Thomas Ogden Schematic Cross Section. | 10 |
| Figure 7: MEK 2009-2017 Ogden Work              | 17 |
| Figure 8: MEK Drill Plan                        | 22 |
| Figure 9: Thomas Ogden Schematic Longsection    | 22 |
| Figure 10: South Zone Schematic Longsection     | 23 |
| Figure 11: Porphyry Hill Drill Plan             | 23 |
| Figure 12: North Zone Schematic Longsection     | 24 |
|                                                 |    |

### List of Tables

| Table 1: 2018 Diamond Drill Collar Data | 20 |
|-----------------------------------------|----|
| Table 2: 2018 Drill Intercepts          | 21 |

# List of Appendices

| Appendix I:   | Plan Map and Drill Cross-Sections |
|---------------|-----------------------------------|
| Appendix II:  | Maps in the Report                |
| Appendix III: | Drill Logs                        |
| Appendix IV:  | Assay Certificates                |
| Appendix V:   | Proof of Expenditures             |
|               |                                   |

#### Summary

This report summarizes the drilling of ten diamond drill holes on the Ogden Property in Timmins Ontario. The drilling program was awarded to Norex Drilling out of Porcupine Ontario taking place between February 21st and March 26, 2018 totaling 2,382 meters. The program were carried out under supervision of geologist D.Heerema, an employee of Metals Creek Resources totaling 39 field days. The holes were designed to test or expand gold mineralization of four separate gold zones on the property; Thomas Ogden West, South Zone, North Zone and Porphyry Hill resulting in a best intercept of 2.31g/t Au over 4.80m from hole PH18-001. Five hundred and nineteen (519) core samples plus 23 additional blanks and 15 standards were sent to AGAT Laboratories and Activation Labs in Thunder Bay for gold analysis.

### **Terms of Reference**

Map projections are in UTM, North American Datum 83, Zone 17 unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/t" is grams per metric tonne, "ddh" = diamond drill hole, "TOZ" = Thomas Ogden Zone, "SZ" = South Zone, "NZ" = North Zone, "PH" = Porphyry Hill, "PDB" = Porcupine Destor Break and "MEK" = Metals Creek Resources.

### Land Title/Tenure

The property consists of 36 patent parcels, 13 leases and 53 unpatented mining cells (post conversion) that lie within the central portion of Ogden Twp. and the west Deloro Twp., registered in the Porcupine Mining Division. The said patents, leases and unpatented mining cells are part of an option joint venture agreement between Metals Creek Resources Corp. and Goldcorp Canada Inc. and Goldcorp Inc. with MEK having earned a 50% interest in the project and acts as project operator. All exploration activities discussed occurred within patents thus not requiring an exploration permit.

#### Patents

HR937 now PAT-29049 (partially in Deloro Tp) HR938 HR939

PIN 65441-0370(LT), PIN 65441-0204(LT), PIN 65441-0369(LT) Parcel 14423SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49%

HR1007 now PAT-29055 and PAT-29053 (partially in Deloro Tp) P8555 (Deloro Tp) P8594 P8595

PIN 65441-0229(LT) - Parcel 14424SEC - Registered owners are Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%

PIN 65441-0238(LT) - Parcel 8441 SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49%

#### HR1008 now PAT-29052

PIN 65441-0205(LT) - Parcel 4200SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8060 now PAT-29056

PIN 65441-0206(LT) - Parcel 4401 SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8061 now PAT-29057

PIN 65441-0203(LT) - Parcel 4402SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49%

P9852 now PAT-29059

PIN 65441-0190(LT) - Parcel 4114SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8948 now PAT-29059

PIN 65441-0189(LT) - Parcel 4115SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8949 now PAT-29060

PIN 65441-0187(LT) - Parcel 4116SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8044 now PAT-29

PIN 65441-0188(LT) - Parcel 4117SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P11344 now PAT-29063

PIN 65441-0183(LT) - Parcel 4118SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P11483 now PAT-29064

PIN 65441-0184(LT) - Parcel 4864SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P16063 now PAT-28700

PIN 65441-0185(LT) - Parcel 3851SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8459 now PAT-28698

PIN 65441-0186(LT) - Parcel 4863SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P16062 now PAT-28699

PIN 65441-0237(LT) - Parcel 3895SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P6465 now PAT-28697

| Claim #  | Parcel #  | Pin#           | Previous<br>Parcel # | Patent #                  | Recorded Holder                                   |
|----------|-----------|----------------|----------------------|---------------------------|---------------------------------------------------|
| TRP 1995 | 221 SEC   | 65441-0172(LT) |                      | 6059 TEM now<br>PAT-3682  | Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%    |
| TRP 1407 | 222 SEC   | 65441-0173(LT) |                      | 6060 TEM now<br>PAT-3681  | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49% |
| P 8795   | 41 23 SEC | 65441-0177(LT) |                      | 923 Coch now<br>PAT-3680  | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49% |
| P 8381   | 4951 SEC  | 65441-0181(LT) |                      | 2011 Coch now<br>PAT-3677 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49% |
| P 8383   | 4952 SEC  | 65441-0180(LT) |                      | 2012 Coch now<br>PAT-3678 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49% |

| P 8384         | 4953 SEC        | 65441-0179(LT) |          | 2013 Coch now<br>PAT-3679 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49%                          |
|----------------|-----------------|----------------|----------|---------------------------|----------------------------------------------------------------------------|
| ME 47/P 18122  | 5680 SEC<br>SRO | 65441-0182(LT) |          | 2288 Coch now<br>PAT-3676 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49%                          |
| HR 1135        | 5681 SEC        | 65441-0178(LT) |          | 2289 Coch now<br>PAT-3675 | Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%                             |
| HR 1136        | 5681 SEC        | 65441-0178(LT) |          | 2289 Coch now<br>PAT-3675 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49%                          |
| P 8381/P 16751 | 6199 SEC<br>MRO | 65441-0335(LT) | 4951 SEC | 2011 Coch now<br>PAT-3677 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49%                          |
| ME 47/P 18122  | 6199 SEC<br>MRO | 65441-0335(LT) | 5680 SEC | 2288 Coch now<br>PAT-3676 | Goldcorp Canada Ltd. 51%<br>and Goldcorp Inc. 49%                          |
| P 19143        | 9871 SEC        | 65441-0166(LT) |          | 4738 Coch now<br>PAT-3418 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamilton 10% |
| P 20073        | 9872 SEC        | 65441-0164(LT) |          | 4739 Coch now<br>PAT-3422 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamilton 10% |
| P 26257        | 9873 SEC        | 65441-0165(LT) |          | 4740 Coch now<br>PAT-3424 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 26258        | 9874 SEC        | 65441-0161(LT) |          | 4741 Coch now<br>PAT-3425 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 26408        | 9875 SEC        | 65441-0170(LT) |          | 4742 Coch now<br>PAT-3427 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 19144        | 9877 SEC        | 65441-0167(LT) |          | 4747 Coch now<br>PAT-3419 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 19145        | 9878 SEC        | 65441-0171(LT) |          | 4748 Coch now<br>PAT-3420 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 19147        | 9879 SEC        | 65441-0168(LT) |          | 4749 Coch now<br>PAT-3421 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 20074        | 9880 SEC        | 65441-0159(LT) |          | 4750 Coch now<br>PAT-3423 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |
| P 26259        | 9881 SEC        | 65441-0160(LT) |          | 4751 Coch now<br>PAT-3426 | Goldcorp Canada Ltd. 46%<br>and Goldcorp Inc. 44%, Shirley<br>Hamiton 10%  |

| Claim #          | Parcel #             | Pin #          | MRO Previous<br>Parcel # | Patent #                | Recorded Holder                                        |
|------------------|----------------------|----------------|--------------------------|-------------------------|--------------------------------------------------------|
| PP 22 (TRP 1782) | 5496 SEC Firstly     | 65441-0345(LT) | 1804 SND                 | 730 SND nov<br>PAT-2684 | Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%         |
| PP 21 (TRP 1784) | 5496 SEC<br>Secondly | 65441-0345(LT) | 1826 SND                 | 752 SND nov<br>PAT-2685 | Goldcorp Canada Ltd.<br>51% and Goldcorp Inc.<br>49%   |
| PP 23 (TRP 1783) | 5496 SEC Thirdly     | 65441-0345(LT) | 1827 SND                 | 753 SND nov<br>PAT-2683 | Goldcorp Canada Ltd.<br>51% and Goldcorp Inc.<br>49%   |
| PP 24 (TRP 1785) | 5496 SEC<br>Fourthly | 65441-0345(LT) | 1828 SND                 | 754 SND nov<br>PAT-2682 | W Goldcorp Canada Ltd.<br>51% and Goldcorp Inc.<br>49% |
| PP 25 (TRP 1786) | 5496 SEC Fifthly     | 65441-0345(LT) | 1829 SND                 | 755 SND nov<br>PAT-2681 | Goldcorp Canada Ltd.<br>51% and Goldcorp Inc.<br>49%   |
| PP 26 (TRP 1787) | 5496 SEC Sixthly     | 65441-0345(LT) | 1830 SND                 | 756 SND no<br>PAT-2680  | M Goldcorp Canada Ltd.<br>51% and Goldcorp Inc.<br>49% |

#### Leases

PIN 65441-0373(LT) - Parcel 1615LC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% now LEA-108841 P528812, P528813, P528814, P528815, P528816, P528817, P528915, P528916, P528917, P528918, P528919, P528920, P528921

PIN 65442-0686 (LT) - Parcel 58LC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. P37705 now LEA-19618

| Cell # | Туре     | Anniversary Date   | \$ Work Due | Cell ID   |
|--------|----------|--------------------|-------------|-----------|
| 339968 | Single   | September 26, 2021 | 400         | 42A06E011 |
| 160138 | Single   | September 26, 2021 | 400         | 42A06E031 |
| 116694 | Single   | September 26, 2021 | 400         | 42A06E032 |
| 232858 | Boundary | September 26, 2021 | 200         | 42A06E050 |
| 120981 | Single   | September 26, 2021 | 200         | 42A06E030 |
| 213523 | Single   | September 26, 2021 | 200         | 42A06E010 |
| 281033 | Boundary | September 26, 2021 | 200         | 42A06L390 |
| 162155 | Boundary | September 26, 2021 | 200         | 42A06L391 |
| 126327 | Single   | September 26, 2021 | 200         | 42A06L392 |
| 221579 | Boundary | September 26, 2021 | 200         | 42A06L371 |
| 144032 | Boundary | September 26, 2021 | 200         | 42A06L351 |
| 257540 | Single   | September 26, 2021 | 400         | 42A06L372 |
| 162154 | Single   | September 26, 2021 | 400         | 42A06L373 |
| 162153 | Boundary | September 26, 2021 | 200         | 42A06L352 |
| 144031 | Boundary | September 26, 2021 | 200         | 42A06L353 |
| 126326 | Boundary | September 26, 2021 | 200         | 42A06L354 |
| 201446 | Boundary | September 26, 2021 | 200         | 42A06L374 |
| 100724 | Boundary | September 26, 2021 | 200         | 42A06L394 |
| 288148 | Single   | September 26, 2021 | 200         | 42A06L393 |
| 225533 | Single   | September 26, 2021 | 200         | 42A06E012 |
| 213559 | Single   | September 26, 2021 | 200         | 42A06E013 |
| 160137 | Single   | September 26, 2021 | 200         | 42A06E033 |
| 160139 | Boundary | September 26, 2021 | 200         | 42A06E051 |
| 225556 | Boundary | September 26, 2021 | 200         | 42A06E052 |
| 281580 | Boundary | September 26, 2021 | 200         | 42A06E053 |
| 194304 | Single   | June 26, 2021      | 200         | 42A06L398 |
| 165533 | Single   | June 26, 2021      | 200         | 42A06L399 |
| 340015 | Single   | April 28, 2021     | 200         | 42A06L340 |
| 225595 | Single   | April 28, 2021     | 200         | 42A06L360 |
| 120985 | Boundary | April 28, 2021     | 200         | 42A06K301 |
| 160144 | Boundary | April 28, 2021     | 200         | 42A06K321 |
| 261541 | Boundary | April 28, 2021     | 200         | 42A06K341 |

#### **Unpatented Mining Cells**

| 287913 | Boundary | October 23, 2021  | 200 | 42A06K361 |
|--------|----------|-------------------|-----|-----------|
| 128588 | Boundary | October 23, 2021  | 200 | 42A06K362 |
| 323801 | Boundary | October 23, 2021  | 200 | 42A06K363 |
| 324226 | Boundary | December 10, 2021 | 200 | 42A06K364 |
| 324225 | Boundary | December 10, 2021 | 200 | 42A06K344 |
| 221603 | Single   | March 25, 2021    | 200 | 42A06K345 |
| 209520 | Single   | October 23, 2021  | 200 | 42A06K365 |
| 281023 | Single   | June 23, 2021     | 200 | 42A06E020 |
| 276074 | Single   | June 23, 2021     | 200 | 42A06E040 |
| 232349 | Boundary | June 23, 2021     | 200 | 42A06F001 |
| 101375 | Boundary | June 23, 2021     | 200 | 42A06F021 |
| 217849 | Boundary | June 23, 2021     | 200 | 42A06F022 |
| 144062 | Single   | June 23, 2021     | 200 | 42A06E059 |
| 114912 | Single   | June 23, 2021     | 200 | 42A06E060 |
| 237936 | Single   | June 23, 2021     | 200 | 42A06F041 |
| 181987 | Boundary | June 23, 2021     | 200 | 42A06F042 |
| 265977 | Boundary | June 23, 2021     | 200 | 42A06F043 |
| 265976 | Boundary | June 23, 2021     | 200 | 42A06F044 |
| 112817 | Boundary | June 23, 2021     | 200 | 42A06F062 |
| 322604 | Boundary | June 23, 2021     | 200 | 42A06F063 |
| 253913 | Boundary | June 23, 2021     | 200 | 42A06F064 |



Metals Creek Resources, Thunder Bay, ON.

#### **Property Location and Access**

The Ogden Property is located only 5 km south of the downtown core of the City of Timmins and is centered on UTM coordinates 471,600mE / 5,362,600mN (NAD83 Zone 17) on NTS 42A/6. The property lies between Goldcorp's Dome Mine and Mine Complex and Lake Shore Gold's West Timmins Mine. See figures 2 and 3.

Access to the property can be done from both the east and west extents of the property. Pine Street South transects the east end of the property and Dalton Road transects the west end of the property. From these major all-season roads, secondary roads and trails are utilized to enter the central portions of the property. Most of the work has been focused on South Zone and Thomas Ogden Zones that are accessed from Pine Street South. To access the main drilling area on Thomas Ogden, one must travel 2.4 kilometers south past the Timmins landfill site to an unmarked gravel road on the right well traveled road for approximately 6 kilometers to the powerline and turn left and follow the powerline for 300m. See figures 5 or 7.



Figure 2: Property Location



Figure 3: Timmins West Gold Trend



Figure 4: Ogden Historic Property Highlights

### Geology

The Ogden Property is located within the Abitibi Sub-province that has to date produced over 150 Million oz of gold. The Timmins area is underlain by late Archean ultramafic to mafic supracrustal rocks which comprise four major assemblages. These are transected by a major regional fault system, the east-west trending Destor-Porcupine fault. Oldest rocks in the camp are mafic, intermediate and felsic volcanic rocks and chemical sediments of the Deloro Assemblage (2730-2725 Ma), which occur to the south of the Destor-Porcupine fault system. These are overlain by dominantly tholeiitic mafic volcanic rocks of the Tisdale Assemblage (2708-2700 Ma) that are present on both sides of the fault. The Tisdale rocks in the central Timmins camp are divided into four formations, which include the Hersey Lake Formation, the Central Formation, and the Gold Center Formation. The Tisdale assemblage is unconformably overlain by a felsic tuff sequence of the Krist Formation, which is developed in western portions of the camp. The Krist tuff unit appears associated with a suite of quartz-plagioclase porphyry (2691-2688 Ma) intrusions that form probable sub-volcanic feeders to the tuffs. Overlying the Krist is the Porcupine Assemblage, a thick sequence of turbiditic greywacke, siltstone and mudstone. Timiskaming Group clastic sediments (2673-2668 Ma, based on detrital zircons) unconformably overlie the Krist and Porcupine sequences and earlier volcanic sequences where the Krist and Porcupine sequences are not present.

The property straddles 8 km of the Porcupine Destor Fault corridor. The Porcupine Destor fault corridor separates the Deloro Group from the Tisdale Group; the latter of which hosts the gold mineralization of the Naybob Mine and Thomas Ogden Zones and the mainly prolific deposits of the Timmins camp. North of the Porcupine-Destor fault, the Tisdale volcanics vary from intermediate to carbonatized ultramafic flows. Sediment packages composed of argillites, greywackes and conglomerates are present as well of Timiskaming age. Tisdale rocks have been intruded by altered felsic to porphyritic dykes, sills and small stocks. The rocks dip steeply to the north and young south in the North Zone area of Naybob, but generally dip south and young north in the South and Thomas Ogden Zones. It is possible that a large property scale syncline exists with an east-west fold hinge. Deformation zones on the property are associated and in close proximity to the Porcupine-Destor Fault. Alteration and sulphide mineralization are commonly associated with the structures and associated gold mineralization.

8



Figure 5: Ogden Property Geology

Below is an interpretation of the Thomas Ogden stratigraphy for which the Thomas Ogden Zone is located in. A transect from south to north can be seen from figure 6; a cross section illustration the stratigraphy.

### Thomas Ogden Stratigraphy

A felsic to intermediate fragmental/tuffacous unit represents the top of the older Deloro Assemblage. An extremely strained chlorite schist presents the ductile Porcupine-Destor fault with local areas of strong pyritization. Capping the chlorite schist are highly deformed talc/serpentine/carbonate altered ultramafic volcanics that exhibit tremendous strain and millimeter-scale off-setting structures. Sandwiched between ultramafic volcanics are north younging sediments; an assemblage of conglomerate, greywacke and argillites with highly variable degrees of alteration. A younger and less strained package of ultramafics top the sediment package with strong talc alteration and slightly stronger magnetism. Late folding of the stratigraphy is evident and important in the deposition of the gold mineralization. Located in very close proximity to the Porcupine Destor Break like many of the deposits in the Timmins Camp, the host sediments and felsites exhibit folds that tighten and narrow westward. The folds appear to be plunging eastward at approx. 30 degrees with mineralization and diking with higher grade gold mineralization found within the fold noses. All lithologies are folded in this manner.



Figure 6: Thomas Ogden Schematic Cross Section

Metals Creek Resources, Thunder Bay, ON.

Gold within the Thomas Ogden Zone is commonly encountered in felsic dikes and altered pebble conglomerates but can certainly be located in altered wackes and argillites. The felsic dikes are extremely silicous with very little mafic content (<5%) and patchy albite alteration as well as local ankerite resulting in rusty patches and fractures. Alteration observed within the area of Thomas Ogden consists of variable amounts of silicification, albitization, sericitization as well as minor carbonate and fuchsite. The felsic dikes of TOZ are generally extremely silicous with clotty beige/peach colored albitization. Late quartz stringers and veinlets are often associated with the alteration. The gold bearing sediments appear to be Timiskaming in age, containing occasional cherty jasperitic fragments. The gold bearing sediments are commonly well deformed and compressed with associated fuchsite, silicification, albitization and sulphides. Pyrite is the dominant sulphide with occasional arsenopyrite. Visible gold is not uncommon.



Visible gold in hole TOG-13-25 sample TOG-13-25-018 (2732.64g/t Au)



Visible gold in hole TOG-13-27 sample TOG-13-27-054 (434.77g/t Au)



Visible gold in hole TOG-12-07 sample TOG-12-07-029 (111.25g/t Au)



Albite-sericite-carbonate alteration typical of Thomas Ogden Zone



Albite-sericite-carbonate alteration typical of Thomas Ogden Zone with strong pyritization

Metals Creek Resources, Thunder Bay, ON.

#### South Zone

South Zone is the southern of two gold zones that saw limited historic mining and development. The South Zone lies north of and in close proximity to the PDB in weakly to moderately strained deictic-andesitic pillow lavas and thin interbedded argillites. Numerous hang-wall alteration/mineralized zones to the main zone exist ranging from 0.2 to 4m in width, consisting of albite alteration with diffuse to moderate contacts. Associated with the albitization is localized brecciation by late quartz stringers and arsenopyrite + pyrite mineralization and some free visible gold. The main targeted zone butts up against porphyry and ultramafics to the north and commonly contains minor fuchsite alteration as well. The gold bearing zones strike approximately 90° and dip steeply south.



Albite alteration cut by quartz typical of South Zone with pyritization



Albite alteration cut by quartz typical of South Zone with strong arsenopyrite

#### North Zone

The North Zone is located in highly strained ultramafic volcanic rocks north of the Naybob Porphyry body that formed a dilation zone and a trap for gold deposition. The host rocks of NZ consist of strong green fuchsite and ankerite alteration with lesser albite and silicification. The style of mineralization is disseminated pyrite and free gold, within a quartz vein/stock-work and porphyry dikes, within or adjacent to the heavily deformed carbonate zone. Outside of the carbonate alteration zone, are intensely altered serpentinized/chloritized ultramafics.

### Porphyry Hill

This is a feldspar porphyry stock located approximately 1km west of Naybob North that is rather massive and equigranular bound north and south by extremely strained and blocky ultramafic volcanics. A series of loosely spaced gold bearing quartz veins to 0.5m wide cut the intrusion with an east-west strike orientation. Grabs on surface to 64g/t have been attained with disseminated pyrite with trace chalcopyrite. The orientation of the stock is unclear at this time, but it is postulated that it may have an easterly plunge like that of the Naybob stock <1km east. Drilling to the east of the large outcropping has returned gold historically as well as within the 2018 diamond drill hole.

## **Summary of Previous Work**

The Ogden Property has seen work since 1910.

- 1910: William Hayden discovered gold on surface in what is known as the South Zone.
- 1912 1917: Hayden Gold Mines- Exploration shaft on the North Zone to 97 meters. Property closed in 1917 due to WW1.
- 1922 1933: Hayden Gold Mines- Deepened shaft to 219 meters, conducted underground development. Constructed a small mill in 1932 and mined 30 tonnes prior to bankruptcy.
- 1933 1942: Naybob Gold Mines Deepened shaft to 410 meters. Started milling ore at the rate of 30 tonnes/day. By 1942 a total of 194,000 tones @ a grade of 7.33 g/t were produced.
- 1938 1939: Diamond Drilling of Thomas Ogden Zone
- 1939 Mapping by the Province of Ontario Department of Mines Map No.47a of the Porcupine Area
- 1945 1948: Naybob Mines Produced 5,450 tonnes @ a grade of 1.95 g/t in 1948.
- 1962 1964: Kenilworth Mines Ltd. Bought Coniaurum mill in 1963 and leased DeSantis Mine. Planned to re-process tailings with a reported grade of 4.37 g/t. In-addition mined approximately 45,000 tonnes of unknown grade.
- 1984: Black River Resources Optioned property and dewatered shaft. Conducted underground remapping and sampling. No further work completed by Black River Resources.
- 1985 1989: Victoria Porcupine Resources Dewatered and repaired shaft to 220 meters. Conducted ground geophysical surveys. Drilled 48 holes totaling 7,359 meters, principally on the South Zone.
- 1990: Tore the plant down and other buildings burnt.
- 2004: Porcupine Joint Venture acquired property and conducted ground geophysical surveys. Drilled 3,176 meters in 13 holes.

2009 – 2017: Metals Creek Resources conducted 78.85 line kilometers of line-cutting, utilized for ground magnetics and induced polarization surveys. MEK had drilled a total of 33,448 meters in 127 holes on the property; 5 holes on North Zone, 30 holes on South Zone, 8 holes on Porphyry Hill, 76 holes on the Thomas Ogden zone and 8 holes testing other targets. See figure 7 to illustrate the magnetics with overlain induced polarization surveys and diamond drill holes drilled by MEK to date.



Figure 7: MEK 2009-2017 Ogden Work

## Work Program 2018

This report summarizes the completion of ten (10) diamond drill holes totaling 2,382 meters of NQ diameter core that were drilled between February 21st and March 26th, 2018. Norex Drilling of Porcupine Ontario was awarded the drilling contract totaling 29 days on site. All drilling was overseen by geologist D.Heerema, an employee of MEK. Of the ten holes, two were carried out on the Thomas Ogden West Zone, five were drilled on South Zone, two drilled on North Zone, leaving one remaining hole that tested the Porphyry Hill area. The purpose of the drilling the variety of zones was to test for gold in different environments and host rocks; testing theories and to see where to focus efforts moving forward. All the drilling described in this report took place on patented ground. See sections and plan maps in Appendix I.

A bulk of MEK's drilling since 2011 has been on the **Thomas Ogden Zone**, leading to the discovery of what is now called the Thomas Ogden West Zone; a parallel shoot of higher-grade mineralization associated with sulphidization within strongly altered sediments bound by ultramafics. Two holes were drilled on the Thomas Ogden West Zone in an attempt to try and delineate the orientation and size of the plunging mineralization as a follow-up to hole TOG-17-60 that returned 8.37g/t Au over 2.00m.

**TOG-18-62:** This hole was drilled on section TZ\_2100W which is 100 meters east of hole TOG-17-60 designed to pierce the target stratigraphy down plunge. The sedimentary horizon was cut showing well altered conglomerates fining northward to argillites all cut by silicous felsite. Numerous anomalous zones were attained; 0.72g/t Au over 6.78m, 1.42g/t Au over 6.00m and 1.12g/t Au over 10.14m including 2.72g/t Au over 2.00m.

**TOG-18-63:** This 436m hole was designed to undercut hole TOG-17-60 mineralization approximately 100m vertically below. The targeted stratigraphy was pierced slightly further down hole than anticipated; showing evidence of folding. The hole cut moderate to strongly altered conglomerates as well as well mineralized felsite returning 1.16g/t Au over 9.50m including 1.47g/t Au over 4.78m.

MEK had conducted shallow drilling in 2009 and 2010 on the central and eastern portions of the *Naybob South Zone* which had seen limited mining in the early years of the mines existence. Three levels of development were completed with limited stoping. The drilling conducted in this round of exploration was concentrated on the western end of the shallow mineralization as well as slightly deeper in the central portion of the zone to test for plunges in higher-grade mineralization. Little drilling has been done on the western extents of the known mineralization and three of these holes were not only testing the main horizon of mineralization. Holes OG18-042 and OG18-043 were

drilled to test higher-grade hanging-wall mineralization drilled from underground as well as the main horizon that saw limited mining. A total of 1,085 meters were completed on South Zone.

**OG18-042:** This 192m hole was designed to test hanging-wall mineralization as well as the main gold horizon that was drifted on. The hole was drilled to test mineralization between the 400 and 700 levels. Eleven separate zones of albitization and sulphide mineralization ranging between 0.21m and 4.03m were cut with intercepts of 1.69g/t Au over 2.17m, 5.54g/t Au over 0.4m, 0.85g/t Au over 4.03m and 0.85g/t Au over 2.90m were attained.

**OG18-043:** This 225m hole was designed to test hanging-wall mineralization as well as the main gold horizon that was drifted on. The hole was drilled to test mineralization between the 400 and 700 levels approximately 90m west of OG18-042. Eight separate zones of albitization and sulphide mineralization ranging between 0.20m and 3.75m with intercepts of 2.64g/t Au over 1.20m, 7.12g/t Au over 0.77m, 3.25g/t Au over 1.95m, 1.90g/t Au over 0.90m, 3.19g/t Au over 3.00m and 2.14g/t Au over 2.33m were attained.

**OG18-044:** This 387m hole was designed to test hanging-wall mineralization as well as the main gold horizon beneath MEK hole OG17-041 that had returned 4.16g/t Au over 3.29m. A thick package of conglomerate fining north to graphitc argillites hosting significant pyrite mineralization were cut before intersecting four separate zones of albitization and sulphide mineralization ranging between 0.38m and 1.90m. Intercepts of 2.90g/t Au over 1.7m and 3.01g/t Au over 1.30m were attained.

**OG18-045:** This hole was designed to test hanging-wall mineralization as well as the main gold horizon approximately 30m west of hole OG17-041 at approximately the same elevation. This hole cut extremely bad ground and three mineralized zones ranging from 0.24m to 0.72m before the hole was lost to jammed rods. The main horizon was not intercepted but a hanging-wall zone returned 3.35g/t Au over 0.72m.

**OG18-045A:** This hole was stepped back from OG18-045 and re-drilled with success. Again the hole cut extremely bad ground and three mineralized zones ranging from 0.23m to 1.17m with cuts of 1.71g/t Au over 0.96m, 2.03g/t Au over 0.23m and 0.95g/t Au over 1.17m.

Since MEK has started working the property in 2009, little work by MEK has taken place on the **Naybob North Zone**. The historic MEK work consisted of two shallow holes and three deep holes beneath the mine workings. The rocks of the North Zone are heavily carbonate altered ultramafics cut by quartz veining with weak sulphidization and it quite different than South Zone. Two holes were designed to test between the 200 and 300 levels of development to get a better handle on geology and alteration as well as test for gold east of historic stoping. Much work is needed to adequately drill test the mine to outline what was not mined out historically. These two holes total 282m.

**NZ18-001:** This hole was drilled north between the 200 and 300 levels of the Naybob North Mine development. This hole was drilled approximately 30m east of OG09-014 that returned 2.74g/t Au over 4.00m but fully reaching what is now interpreted to be the main mineralization. Extremely strained and carbonate altered ultramafics with fuchsite zones, quartz veining and weak pyritization were encountered over a drilled width of 81.15m. Feldspar porphyry dikes were found straddling both sides of the alteration corridor. Only two narrow anomalous zones of 1.31g/t Au over 2.00m and 0.90g/t Au over 3.64m were returned, the latter from an intermediate dike.

**NZ18-002:** This hole was drilled north between the 200 and 300 levels of the Naybob North Mine development 30 meters east of NZ18-002. Extremely strained and carbonate altered ultramafics with fuchsite zones, quartz veining and weak pyritization were encountered over a narrower drilled width of 26.70m. Another narrow zone of anomalous gold was cut at 95m downhole for 0.94g/t Au over 3.00m.

Porphyry Hill is an area where prospecting grabs have returned to 64g/t. Drilling historically but MEK and others have hit sporadic gold values. **PH18-001** was designed to test 100m east of a historic hole from the 1960's that returned 3.09g/t Au over 1.52m as well as other anomalous gold values in porphyry. Intercepted was 11.30m of weakly mineralized porphyry returning a gold bearing center portion of 2.31g/t Au over 4.80m from 92.00 to 96.80m.

| <u>Hole-ID</u> | <u>Easting (m)</u> | <u>Northing (m)</u> | <u>Elevation</u> | <u>Length (m)</u> | <u>Azimuth</u> | <u>Dip</u> |
|----------------|--------------------|---------------------|------------------|-------------------|----------------|------------|
| TOG-18-62      | 471096             | 5362155             | 282              | 381               | 320            | -45        |
| TOG-18-63      | 471002             | 5362073             | 280              | 436               | 330            | -45        |
| OG18-042       | 474796             | 5363023             | 300              | 192               | 0              | -50        |
| OG18-043       | 474736             | 5363064             | 300              | 225               | 359            | -59        |
| OG18-044       | 474676             | 5362914             | 299              | 387               | 358            | -59        |
| OG18-045       | 474646             | 5363011             | 299              | 98                | 0              | -47        |
| OG18-045A      | 474646             | 5363007.5           | 299              | 183               | 0              | -49        |
| NZ18-001       | 474760             | 5363278             | 308              | 144               | 0              | -45        |
| NZ18-002       | 474794             | 5363278             | 309              | 138               | 0              | -47        |
| PH18-001       | 474029             | 5363365             | 290              | 198               | 180            | -59        |

#### Table 1: 2018 Diamond Drill Collar Data

Table 2: 2018 Drill hole Intercepts

| Hole-ID   | From(m) | <u>To(m)</u> | <u>Au (g/t)</u> | Length(m) |
|-----------|---------|--------------|-----------------|-----------|
| TOG-18-62 | 286.77  | 293.55       | 0.719           | 6.78      |
| and       | 298.00  | 304.00       | 1.423           | 6.00      |
| and       | 314.00  | 324.14       | 1.124           | 10.14     |
| incl.     | 314.00  | 316.00       | 2.72            | 2.00      |
| TOG-18-63 | 383.00  | 392.50       | 1.163           | 9.50      |
| incl.     | 387.00  | 391.78       | 1.468           | 4.78      |
| OG18-042  | 106.35  | 106.56       | 1.49            | 0.21      |
| and       | 110.90  | 111.20       | 2.38            | 0.30      |
| and       | 114.33  | 116.50       | 1.690           | 2.17      |
| and       | 124.00  | 124.40       | 5.54            | 0.40      |
| and       | 134.05  | 138.08       | 0.851           | 4.03      |
| and       | 180.35  | 183.25       | 0.845           | 2.90      |
| OG18-043  | 83.63   | 84.83        | 2.64            | 1.20      |
| and       | 105.68  | 106.45       | 7.12            | 0.77      |
| and       | 114.25  | 116.20       | 3.250           | 1.95      |
| and       | 139.20  | 140.10       | 1.90            | 0.90      |
| and       | 144.55  | 147.55       | 3.186           | 3.00      |
| and       | 175.82  | 178.15       | 2.138           | 2.33      |
| OG18-044  | 282.53  | 284.25       | 2.903           | 1.72      |
| and       | 313.60  | 314.90       | 3.01            | 1.30      |
| OG18-045  | 55.05   | 55.77        | 3.35            | 0.72      |
| OG18-045A | 120.73  | 121.69       | 1.71            | 0.96      |
| and       | 145.22  | 145.45       | 2.03            | 0.23      |
| and       | 171.10  | 172.27       | 0.95            | 1.17      |
| NZ18-001  | 48.00   | 50.00        | 1.305           | 2.00      |
| and       | 111.50  | 115.14       | 0.906           | 3.64      |
| NZ18-002  | 95.00   | 98.00        | 0.936           | 3.00      |
| PH18-001  | 92.00   | 96.80        | 2.307           | 4.80      |



Figure 8: Drill Plan



Figure 9: Thomas Ogden Schematic Longsection



Figure 10: South Zone Schematic Longsection



Figure 11: Porphyry Hill Area Drilling Plan



Figure 12: North Zone Schematic Longsection

Metals Creek Resources, Thunder Bay, ON.

## MEK Sampling, Analytical Techniques and QAQC

A consistent sampling method was used throughout both drill programs. Samples were collected in all areas of interesting geology, alteration and mineralization. Sampling lengths were generally limited to 1 meter in length unless sampling specific mineralization or the beginning or end of a specific lithological unit. The sampled core was cut using an electric Vancon core saw at a rented core shack facility. Half of the core for each individual sample was bagged and stapled closed for assay and the other half retained in proper location in the core box.

As a means of sample quality control, blank and standard samples were randomly inserted into the sampling series. Blank samples were inserted into the continuous sampling series and random positions were chosen within each set of 20 samples (e.g. 1 blank sample within samples 1 to 20, another blank sample within samples 21 to 40, etc). The blanks used were purchased pre-packaged silica flour packets. Similar to the blanks, standards were inserted into the continuous sampling series, but within each set of 30 samples. Three different standards were used: HGS1, CDM-CN-2 and CDN-GS-3H. Five hundred and nineteen (519) core samples plus 23 additional blanks and 15 standards were sent to AGAT Laboratories and Activation Labs in Thunder Bay for gold analysis.

All of the samples were brought by MEK personnel to AGAT Laboratories Ltd. or Activation Labs in Thunder Bay, Ontario where they were analyzed for Au using a standard fire assay with atomic absorption finish. Check samples on every 10<sup>th</sup> sample were sent to Actlabs or ALS Chemex in Thunder Bay for comparisons to original fire assay results.

The re-assay protocol for drill core was as follows; any sample that assayed over 1g/t Au was to be re-run using gravimetrics and samples greater than 5.0g/t Au were re-assayed using coarse metallics. This re-run policy was put in place to ensure that checks were run on all anomalous samples as a check to see if any coarse gold grains were not making it through to the fire assay portion and getting caught up in the screens. MEK on special request has added additional samples for gravimetrics or metallics that were in close proximity or adjacent to samples with visible gold. All re-run samples were done using reject material.

Tracking of standard assay results is undertaken to ensure the quality of the assays is within the measureable limits set forth by the accredited lab producing the standards. The upper and lower limits of the standards are set at 2 standard deviations. Below are graphs for each standard used depicting results against where the values should be. One problematic result for sample TOG-18-62-048 can be seen on graph 2 that lies outside the 2 standard deviations. (Graphs 1,2 and 3)











Pre-packaged silica fluor was purchased from an accredited laboratory and used as blanks with the assumption that the assays returned would be below 5ppb or 0.005g/t. As can see on the graph below, two samples returned assays above 0.005g/t, both from hole TOG-18-62. A problem appears to exist with hole TOG-18-62 assays, with one low standard and two high blanks coming from the same hole. (Graph 4)



Graph4



Approximately 10% or 57 of original samples were split as a reject and sent to a second lab for check assays to compare to the original assays to verify the accuracy of the fire assays. Statistics show that overall the results are very good with an R<sup>2</sup> value of 0.9853. The primary samples averaged 0.2548g/t versus 0.2586g/t for the check assays including 2 outlying samples that deviate away from the red line. (Graph 5)



Graph 5

Graphing was done to chart primary Actlab assays versus check fire assays by ALS and found that consistently the ALS assays are higher in gold grade but certainly within reason. The Actlabs results average 0.1406g/t against 0.1630g/t for ALS resulting in an  $R^2$  value of 0.8625 including the outlier, but by omitting the outlier, the averages are 0.0628g/t for Actlabs and 0.0690g/t for ALS resulting in an  $R^2$  value of 0.9101. (Graph 6)

Graphing was also done to chart primary AGAT assays versus check fire assays by ACT (Graph 7) and found that the assays are essentially identical and average the same excluding one outlier sample (TOG-18-62-025). The AGAT results average 0.412g/t against 0.39g/t for Actlabs resulting in an R<sup>2</sup> value of 0.9466 including the outlier.

Since the outlier samples are generally higher in gold grade and samples are from reject split, it might be concluded that a slight nugget effect and inhomogeneity in the reject is present.









Below are AGAT Laboratories descriptions of analytical procedures...

Metals Creek Resources, Thunder Bay, ON.

#### Sample Preparation

The rock samples are first entered into AGAT Laboratories' Local Information Management System (LIMS). The samples are dried, if necessary, and then jaw crushed to 85% <10 mesh and a 250 to 500 gram sub-sample is normally taken for analysis. For pulp metallic analysis, a 1000 gram sub-sample, or the entire sample in cases where less than 1000 grams is available, is taken. The sub-sample is pulverized to 85% <200 mesh and then matted to ensure homogeneity. The homogeneous sample is then sent to the fire assay laboratory or the wet chemistry laboratory depending on the analysis required. For pulp metallic analysis, the sample is pulverized and screened with the >150 mesh material being re-pulverized and re-screened until approximately 50 grams remains. Samples of the <150 mesh pulp and all of the >150 mesh metallics portion are sent for fire assay (or acid digestion). Non-silica based sand is used to clean out the pulverizing dishes between each sample to prevent cross contamination.

#### Precious Metal Analysis

For the analysis of precious metals (gold, platinum, palladium and/or rhodium), each sample is mixed with a lead based flux and fused for one hour and fifteen minutes. Each sample has a silver solution added to it prior to fusion which allows each sample to produce a precious metal bead after cupellation. The fusing process results in lead buttons that contains all of the precious metals from the samples as well as the silver that is added. The buttons are then placed in a cupelling furnace where all of the lead is absorbed by the cupels and a silver bead, which contains any gold, platinum, palladium and rhodium, is left in each cupel. The cupels are removed from the furnace and allowed to cool. Once the cupels have cooled sufficiently, the silver bead from each is placed in an appropriately labeled test tube and digested using aqua regia. The samples are allowed to cool and are bulked up to 5 ml with distilled de-ionized water (a 1% digested lanthanum solution is used when precious metals other than gold are being determined). They are then mixed to ensure proper homogeneity of the solutions. Once the samples have settled, they are analyzed for gold (as well as platinum, palladium and rhodium as the case may be) using atomic absorption (air-acetylene flame) or ICP spectroscopy. The atomic absorption or ICP instrument is calibrated for each element using the appropriate ISO 9002 certified standards. The results for the instrumental analysis are checked by the technician and then forwarded to data entry by means of electronic transfer and a certificate is produced. The Laboratory Manager checks the data and validates the certificates and issues the results in the client requested format.

#### Gravimetric Analysis

For the gravimetric analysis of gold, each pulp sample (after processing in sample preparation, if required) is mixed with a lead based flux. An inquart of silver solution is added prior to fusion for one hour and fifteen minutes at 1050 C.

The lead buttons which result from the fusion process contain all of the gold from the samples as well as the silver that was added. The buttons are placed in a cupeling furnace at 950 C where all of the lead is either volatilized or absorbed by the cupels. This generates a prill or dore bead for each sample consisting of the silver plus any gold present.

Once the cupels have cooled sufficiently, the bead from each is placed in an appropriately labeled test tube. The dore bead is then transferred to a porcelain crucible and the silver is dissolved with dilute nitric acid, at around 90 C. The remaining gold is washed, removing the silver solution from the crucible. The residual wash material is then removed using both decanting and evaporation. The resulting gold flakes are annealed into a gold bead and weighed using a micro balance. A simple weight comparison is used to mathematically calculate the amount of gold in the sample. Note: This method is restricted to samples which contain sufficient gold to allow an accurate weight to be determined, generally samples above 1 g/t.

#### **Quality Control**

AGAT Laboratories employs an internal quality control system that tracks certified reference materials and in-house quality assurance standards. AGAT Laboratories uses reference materials purchased from other suppliers. Should any of the standards fall outside the warning limits (+/- 2SD); reassays will be performed on 10% of the samples analyzed in the same batch and the reassay values are compared with the original values. If the values from the reassays match original assays the data is certified, if they do not match the entire batch is reassayed. Should any of the standards fall outside the control limit (+/- 3SD) all assay values are rejected and all of the samples in that batch will be re-assayed.



### Graph 8

When comparing the results of 49 samples for fire assay versus gravimetics as in graph 8, the results are very comparable on average and the difference for the most part is fairly insignificant. Of the 49 samples run with gravimetircs, 29 samples decreased in grade by an average of 0.27g/t Au, 19 samples increased by an average of 0.28g/t Au excluding anomalous sample PH18-001-007 that increased from 1.17g/t to 5.0g/t. One sample yielded an identical assay from both methods. An overall average grade for all 49 fire assays returned 2.08g/t and an average grade of 2.10g/t including the said anomalous sample. Excluding sample PH18-001-007 drops the gravimetric average to 2.04g/t Au. Interesting to note is the gravimetric results of the South Zone and North Zone holes generally decrease with increased sulphides and less visible gold in the core. Thomas Ogden and Porphyry Hill that are more silicous with generally less sulphides tend to have gravimetric assays increase.

## **Conclusions and Recommendations**

Although the grades were not of economic values in all of the holes, theories were tested and the geological information gained was invaluable. The TOZ holes to the west show the alteration and sulphidization within the sediments to continue. As a result of hole TOG-18-63, it is evident that the folding within the Thomas Ogden West is more complex than first thought. The plunge of the higher-grade gold shoot(s) in Thomas Ogden West are likely steeper than the anticipated 20-25°. Oriented core is highly recommended to get a feel for orientation of structures; in particular late quartz structures that often carry free visible gold. A detailed three-dimensional model of stratigraphy should continue to take place before further drilling is conducted.

The South Zone drilling has shown numerous hanging-wall zones of mineralization in addition to the main zone that was the original focus of mining. These features are narrow shear zones of weak to strong pervasive albitization/arsenopyritization dipping steeply south like the main zone. The hanging-wall zones are fairly extensive and can be traced section to section but pinch and swell considerably with inconsistent gold grades.

Little work has taken place on North Zone by MEK and as a result it still remains unclear what the ore-grade material in this zone looks like definitively. The two shallow holes drilled in 2018 cut both green and fe-carbonates with quartz veining but failed to produce economic grades close to historic workings; perhaps all economic material has been mined out near surface. It is recommended that future work on this zone consist of deeper drilling beneath historic mining.

Previous prospecting of the large outcropping of porphyry at Porphyry Hill has produced high-grade grab samples to 64.34g/t Au from narrow shears of alteration but drilling has not been successful in returning any significant intercepts for grade or width there. MEK drilled hole PH18-001 east of the large hill stepping out 100m east of historic intercept 3.09g/t Au over 1.52m and returned 2.31g/t Au over 4.80m from silicous and fractured porphyry bound by immensely strained ultramafics. Although not of significant width near surface, the gold grades make this area an interesting target. Magnetic inversions are recommended for this area to perhaps determine orientations to the porphyry body and if the porphyry increases in width at depth.
## Expenditures

#### Expenditures incurred for the 2018 diamond drilling program

#### Applicant: Metals Creek Resources

Project: OGDEN

| Category         | Invoice # | Invoice Date<br>(mm/dd/yyyy) | Supplier                    | Description                  | Tota | al Expenditures |
|------------------|-----------|------------------------------|-----------------------------|------------------------------|------|-----------------|
| Drill Contractor | 5716-22   | February 28, 2018            | Norex Drilling Ltd.         | Diamond Drilling             | \$   | 61,593.99       |
|                  | 5746-22   | March 15, 2018               | Norex Drilling Ltd.         | Diamond Drilling             | \$   | 64,918.07       |
|                  | 5765-22   | March 31, 2018               | Norex Drilling Ltd.         | Diamond Drilling             | \$   | 82,640.41       |
|                  | 5766      | March 31, 2018               | Norex Drilling Ltd.         | Downnhole survey tool rental | \$   | 2,204.00        |
|                  |           |                              |                             | Subtotal                     | \$   | 211,356.47      |
| Assays           | 18465036M | March 29, 2018               | AGAT Laboratories           | 75 Au fire assays            | \$   | 1,949.25        |
| -                | 18471054M | April 24, 2018               | AGAT Laboratories           | 42 Au fire assays + 4 grav   | \$   | 1,141.30        |
|                  | 18471057M | April 24, 2018               | AGAT Laboratories           | 53 Au fire assays + 5 grav   | \$   | 1,437.46        |
|                  | 18471059M | April 24, 2018               | AGAT Laboratories           | 55 Au fire assays + 11 grav  | \$   | 1,604.60        |
|                  | A18-03888 | April 19, 2018               | Actlabs                     | 332 Au fire assay + 20 grav  | \$   | 6,391.28        |
|                  | A18-02798 | March 16, 2018               | Actlabs                     | 8 check Au fire assays       | \$   | 144.64          |
|                  | A18-04273 | April 19, 2018               | Actlabs                     | 16 check Au fire assays      | \$   | 293.80          |
|                  | 4255752   | April 23, 2018               | ALS                         | 33 check Au fire assays      | \$   | 846.67          |
|                  |           |                              |                             | Subtotal                     | \$   | 13,809.00       |
| Core Shack       | 2018-425  | March 25, 2018               | Polk Geological<br>Services | Core Shack rental            | \$   | 4,135.44        |
|                  |           |                              |                             | Subtotal                     | \$   | 4,135.44        |
| Labour           | N/A       | Feb 19-Mar 27, 2018          | Don Heerema                 | drilling supervision/logging | \$   | 11,165.00       |
|                  | N/A       | Feb 24-Mar 2, 2018           | Sandy Stares                | core cutting/management      | \$   | 4,305.00        |
|                  | N/A       | Mar 06-Mar 27,2018           | Mike MacIsaac               | core cutting/management      | \$   | 5,380.00        |
|                  |           |                              |                             | Subtotal                     | \$   | 20,850.00       |
| Accommodations   | 73882     | March 2, 2018                | Travelodge Timmins          | 11 night stay                | \$   | 1,515.58        |
|                  | 73883     | March 2, 2018                | Travelodge Timmins          | 6 night stay                 | \$   | 826.68          |
|                  | 74161     | March 15, 2018               | Travelodge Timmins          | 7 night stay                 | \$   | 741.02          |
|                  | 74370     | March 27,2018                | Travelodge Timmins          | 16 night stay                | \$   | 1,701.76        |
|                  | 74371     | March 27, 2018               | Travelodge Timmins          | 3 night stay                 | \$   | 319.50          |
|                  |           |                              |                             | Subtotal                     | \$   | 5,104.54        |
|                  |           |                              |                             | Total                        | \$   | 255,255.45      |

#### References

#### Brown, P.

**2005**: Porcupine Joint Venture Report on the 2005 Exploration Program Timmins West Project Ogden and Thorneloe Twps. Timmins, Ont.

Heerema, D. 2017: Ogden 2016 JEAP Final Report

Heerema, D. 2018: Ogden 2017 JEAP Final Report

**Kirwin, L, J. 1999:** Geological Report – The Ogden and Deloro Townships Property, Ontario.

Rhys, D.

**2004:** Memo to Porcupine Joint Venture on the Timmins West structure.

Rhys, D.

**2017:** Geological Observations from Site Visits to the Ogden Project, Porcupine Mining District

### **Statement of Qualifications**

I, Don Heerema Jr., hereby certify that:

- 1. I am a practicing geologist in Thunder Bay, Ontario and reside at 26 Burriss Street, Thunder Bay, Ontario, P7A 3C9.
- 2. I am a graduate of Lakehead University with a HBSc. in Geology.
- 3. I am a Canadian Citizen.
- 4. I have practiced my profession full time since graduation in 2002.
- 5. I am a practicing member of the Association of Professional Geoscientists of Ontario, registration #1528.
- 6.
- 7. I do not have, nor do I expect to receive directly or indirectly, any interest in the properties of Metals Creek Resources.

Signature:

Date: January 22, 2019

#### **APPENDIX I**

PLAN MAP AND DRILL SECTIONS





| 0.0 Y    | 4       | 123 SEC 5681 SEC | TOG-18-62<br>471096mE, 5362155mN<br>Azi = 320°, Dip -45°<br>Length = $381m$ | 0.0 \    |
|----------|---------|------------------|-----------------------------------------------------------------------------|----------|
|          |         |                  | Length = 381m                                                               |          |
|          |         |                  |                                                                             |          |
|          |         |                  |                                                                             |          |
| -100.0 Y |         |                  |                                                                             | -100.0 Y |
|          |         |                  |                                                                             |          |
|          |         |                  |                                                                             |          |
|          |         |                  |                                                                             |          |
| -200.0 Y |         |                  |                                                                             | -200.0 \ |
|          |         |                  |                                                                             |          |
|          |         |                  |                                                                             |          |
|          |         |                  |                                                                             |          |
|          | THOMAS  | OGDEN ZONE       |                                                                             |          |
|          | Section | T7 2100W         |                                                                             |          |







|          | 200.0 ×                                                                                                 | 600.0 ×                     | X 0.007                                                     | 800.08       | 0.006    |
|----------|---------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|--------------|----------|
| s        |                                                                                                         |                             |                                                             |              | N        |
|          |                                                                                                         | patent parcel #<br>4200 SFC |                                                             |              |          |
| 300.0 Y  |                                                                                                         |                             |                                                             |              | 300.0 \  |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             | tan<br>Peca                                                 |              |          |
|          |                                                                                                         |                             | ri<br>Vir                                                   |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
| _200.0 Y |                                                                                                         |                             | 2.31g/t A                                                   | Au over 4.8m | 200.0 \  |
|          |                                                                                                         |                             | 141<br>T2                                                   |              |          |
|          | Geological Legend                                                                                       |                             | ~                                                           |              |          |
|          | F.DK = silicous felsic dikes<br>FP12 = feldspar porphyry<br>FP10 = massive and porphyritic felsite      |                             | с.,                                                         |              |          |
|          | ST8 = argillites<br>ST6 = interbeded greywackes and argillites<br>ST7 = greywackes                      |                             |                                                             |              |          |
|          | ST2 = pebble conglomerates<br>SS = silicous metasediments<br>UM = ultramafic flows (extremely strained) | PHITEROOT P                 | H18-001                                                     |              |          |
| _100.0 Y | VM = chlorite schist (extremely<br>strained)<br>VI1 = fragmentals and tuffs (Deloro)                    | 4<br>A<br>L                 | 74029mE, 5363365mN<br>zi = 180°, Dip = -59°<br>ength = 198m |              | 100.0 \  |
|          | FZ = fault zone                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
| 0.0 Y    |                                                                                                         |                             |                                                             |              | 0.0 \    |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
| 100.0 X  |                                                                                                         |                             |                                                             |              | 100.0    |
| -100.0 1 |                                                                                                         |                             |                                                             |              | -100.0   |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
| 200.0 Y  |                                                                                                         |                             |                                                             |              | -200.0 \ |
|          |                                                                                                         |                             |                                                             |              |          |
|          |                                                                                                         |                             |                                                             |              |          |
|          | PORPHYRY HILL Z                                                                                         | ONE                         |                                                             |              |          |
|          | Section PH_125E                                                                                         |                             |                                                             |              |          |



-300.0 Y



| 0.0 Y    |                 | 0.0 \    |
|----------|-----------------|----------|
|          |                 |          |
|          |                 |          |
|          |                 |          |
|          |                 |          |
| -100.0 Y |                 | -100.0 Y |
|          |                 |          |
|          |                 |          |
|          |                 |          |
|          |                 |          |
| -200.0 Y |                 | -200.0 Y |
|          | SOUTH ZONE      |          |
|          | Section SZ_810W |          |







|          |                 | Length = 225m |          |
|----------|-----------------|---------------|----------|
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
| 0.0 Y    |                 |               | 0.0 ነ    |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
| -100.0 Y |                 |               | -100.0 Y |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
|          |                 |               |          |
| -200.0 Y |                 |               | -200.0 Y |
|          | SOUTH ZONE      |               |          |
|          |                 |               |          |
|          | Section SZ_720W |               |          |



-300.0 Y



|          | SOUTH ZONE<br>Section SZ_660W |  |          |
|----------|-------------------------------|--|----------|
| -200.0 Y |                               |  | -200.0 Y |
|          |                               |  |          |
|          |                               |  |          |
|          |                               |  |          |
|          |                               |  |          |
| -100.0 Y |                               |  | -100.0 ነ |
|          |                               |  |          |
|          |                               |  |          |
|          |                               |  |          |
|          |                               |  |          |
| 0.0 Y    |                               |  | 0.0 \    |
|          |                               |  |          |
|          |                               |  |          |
|          |                               |  |          |







362200.0







#### **APPENDIX II**

MAPS















# Metals Creek

THOMAS OGDEN ZONE

PORPHYRY HILL

ó

0100

0

0

PORCUPINE-DESTOR BREAK

Ó

THOMAS OGDEN WEST



Service Service

No. P. C. A. C.





PORPHYRY HILL







APPENDIX III DRILL LOGS

| PROPERTY: Og     | gden               | CLAIM NO.:     | 4123 SEC          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Original casing snapped so moved drill back 1m and    |
|------------------|--------------------|----------------|-------------------|----------------|----------------|---------------------------------------------|----------------------------------------------------------------|
| HOLE NO .: TO    | OG-18-62           | LENGTH (m):    | 381.0             | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | restarted. Lost water return around 63m. Started drilling with |
| COORD SYSTEM: UT | TM Nad 83          | NORTHING:      | 5362155.000       | EASTING:       | 471096.000     | COLLAR SURVEY BY: Don (GPS)                 | 2 nex core barrels then went to one round around 296m.         |
| SECTION: TZ      | Z_2100W            | ZONE:          | Thomas Ogden      | ELEVATION (m): | 282.000        | DRILLING COMPANY: Norex                     |                                                                |
| COLLAR ORIENTA   | TION (AZIMUTH/DIP) | PLANNED:       | 320. / -45.0      | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Feb. 23, 2018 TO Feb. 27, 2018 | Core Storage: Norex compound                                   |
| HOLE STARTED: F  | February 21, 2018  | HOLE FINISHED: | February 26, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 11                                                   |

| MET   | ERAGE |                                                                                                                                                                                                                                                                         | ROCK |      | Alt'n | Index |     |     |      | S | AMP | LES    |     |      |          |               | ASS        | AYS    |        |                 |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|-----|-----|------|---|-----|--------|-----|------|----------|---------------|------------|--------|--------|-----------------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                             | CODE | Carb | Alb   | %Qtz  | Ser | No. | FROM |   | то  | LENGTH | %Py | %Ars | Pd (g/t) | Pt (g/t) Au ( | /t) Cu (%) | Ni (%) | Co (%) | Zn (%) Ag (ppm) |
| 0.00  | 36.00 | OVERBURDEN                                                                                                                                                                                                                                                              |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | Downhole surveys                                                                                                                                                                                                                                                        |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | 45m 321.1 azi, -44.3 dip                                                                                                                                                                                                                                                |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | 96m 321.5 azi, -43.1 dip                                                                                                                                                                                                                                                |      |      |       |       | /   | 7   | /    |   |     | -      |     |      |          |               |            |        |        |                 |
|       |       | 147m 322.7 azi, -43.2 dip                                                                                                                                                                                                                                               |      |      |       |       | /   | 1/  | ·    | / |     | >      |     |      |          |               |            |        |        |                 |
|       |       | 198m 322.6 azi, -41.8 dip                                                                                                                                                                                                                                               |      |      |       |       | //  | 1   | /    |   | /   |        |     |      |          |               |            |        |        |                 |
|       |       | 249m 323.0 azi, -41.5 dip                                                                                                                                                                                                                                               |      |      |       | 11    | 1   | X   |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | 351m 328.7 azi -40.8 dip                                                                                                                                                                                                                                                |      |      |       | A     | 10  |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | 381m 328.8 azi, 40.5 dip                                                                                                                                                                                                                                                |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       |                                                                                                                                                                                                                                                                         |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
| 36.00 | 69.28 | TUFF                                                                                                                                                                                                                                                                    |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | Upper section to 47.70m is extremely blocky and pitted with<br>strong evidence of groundwater and dissolved minerals. Deep<br>green colouration of pervasive chlorite alteration. Lower 1.5m<br>of this broken section has what might be remnant coarse fault<br>gouge. |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | From 47.70 to 57.20m is a massive and undissolved section with a moderate to strong fabric at 50 degrees tca                                                                                                                                                            |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |
|       |       | From 57.20 to 65.55m is a section of increased fracturing and<br>strong pitting from dissolved minerals; pervasive green chlorite<br>alt with pitting most prevalent in what might be more felsic<br>fragments; narrow sections of possible brittle faulting            |      |      |       |       |     |     |      |   |     |        |     |      |          |               |            |        |        |                 |

| LOGGED | BY: D.H | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | PRO  | PERT  | ry: Og | gden |     |      | ZON | E: Thoma | is Ogc | en   | HOLE NO.: TOG-18-62               | Page 2 of 11         |          |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|--------|------|-----|------|-----|----------|--------|------|-----------------------------------|----------------------|----------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROCK |      | Alt'n | Index  |      |     |      | SAM | PLES     |        |      | ASSA                              | YS                   |          |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CODE | Carb | Alb   | %Qtz   | Ser  | No. | FROM | то  | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) | Ni (%) Co (%) Zn (%) | Ag (ppm) |
|        |         | 68.31 to 69.28m: purple hematization of core as a halo<br>surrounding qtz/carb stringers; the stringers are hairline to 1cm<br>in width cross-cutting the foliation; deep purple hematite halos<br>from 0.5mm to 4mm along stringer contacts that bleed out into<br>surrounding core; unmineralized                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |       |        |      |     |      |     |          |        |      |                                   |                      |          |
| 69.28  | 157.20  | FRAGMENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |       |        |      |     |      |     |          |        |      |                                   |                      |          |
|        |         | <ul> <li>pervasively chloritized groundmass with a moderate speckled texture hosting cream to orange coloured felsic fragments; frags range from 1cm to 8cm in diameter and often have an elongate but irregular shape (not rounded). Occasional qtz/pink calcite veinlet with weak hematization halo associated; also not uncommon are irregular yellow/green epidote stringers. Well foliated unit from 55-75 degrees to ca that varies throughout the unit. Hematitic fractures over local sections.</li> <li>39.20m: 3cm quartz veinlet at 20 deg tca</li> <li>105.45 to 110.95m is a section with 6 narrow semi-transparent quartz veinlets from 0.7 to 3,5cm in true width; barren; slight increase in fracturing here also</li> </ul> |      |      |       |        |      |     |      |     |          |        |      |                                   |                      |          |
| 157.20 | 204.40  | ALTERED TUFF/SCHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |       |        |      |     |      |     |          |        |      |                                   |                      |          |
|        |         | This unit has undergone much stronger deformation and<br>alteration. Very strong foliation with banding and evidence of<br>boudinaging as well as weak mylonitic texture. White<br>felsic/carb veinlets <1cm showing discontinuous folds,<br>crenulations and knots. Banding consists of ribbons of chlorite,<br>sericite and pinkish k-spar? Causing a soft pinkish hue to the<br>rock. Local breaks with a very rusty fe-carb alteration halos as<br>much as 1m in core length. Foliation angle of 43 deg tca<br>steepening downhole. End of unit based upon the loss of                                                                                                                                                                   |      |      |       |        |      |     |      |     |          |        |      |                                   |                      |          |

| LOGGE  | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | PRO  | PERT  | ΓY: Οg | gden |     |      | ZON | IE: Thoma | s Ogd | en   | HOL    | E NO.:      | TOG-18      | -62    | Pa     | ge 3 of 1 | 1               |
|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|--------|------|-----|------|-----|-----------|-------|------|--------|-------------|-------------|--------|--------|-----------|-----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ROCK |      | Alt'n | Index  |      |     |      | SAM | PLES      |       |      |        |             |             | ASSA   | YS     |           |                 |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CODE | Carb | Alb   | %Qtz   | Ser  | No. | FROM | то  | LENGTH    | %Py   | %Ars | Pd (g/ | /t) Pt (g/t | :) Au (g/t) | Cu (%) | Ni (%) | Co (%)    | Zn (%) Ag (ppm) |
|        |         | schistocity and emergence of clasts.<br>Brittle break at 187.50 to 187.85m with tremendous fe-carb alt<br>as a hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |       |        |      |     |      |     |           |       |      |        |             |             |        |        |           |                 |
| 204.40 | 258.75  | FRAGMENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |       |        |      |     |      |     |           |       |      |        |             |             |        |        |           | _               |
|        |         | Upper section of the unit to 210m is a deep green colour with<br>tiny white carb specks at approx 20% and purple hematized<br>fragments. Below 210m the fragments become a cream colour<br>to light green colour set in the dark chloritic groundmass. Well<br>foliated. Clasts are felsic with green chlorite grains causing a<br>speckled appearance.<br>241.80 - 246.00m is a section containing section of immense<br>sericitization as pervasive patches and prolific banding with a<br>brilliant yellow/green colouration. Banding at 75-80 degrees tca<br>246.50 to 258.75m is a section of the unit that appears as a<br>separate flow with a green fine-grained groundmass hosting<br>approximately 25-30% subrounded and elongate clasts greyish<br>in colour with moderate to sharp boundaries |      |      |       |        |      |     |      |     |           |       |      |        |             |             |        |        |           |                 |
| 258.75 | 267.80  | CHLORITE SCHIST<br>Deep green chlorite-rich unit with a strong fabric and<br>discontinuous and sub-rounded felsic/carb stringers. Appears<br>to be ultramafic protolith or perhaps a flow top breccia.<br>Foliation consistent at 70 deg tca. Occasional semi-massive to<br>massive pyrite stringers with the most prominent section from<br>264.60 - 264.64m within a smokey quartz vein with trace<br>hematite; 50% pyrite                                                                                                                                                                                                                                                                                                                                                                              |      |      |       |        |      |     |      |     |           |       |      |        |             |             |        |        |           | _               |

| LOGGED | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | PRO  | OPER  | TY: Og | gden |     |        | ZONE   | E: Thoma | s Ogde | ən   | HOLE NO.: TOG-18-6         | 2            | Page 4 of 11 |                |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|--------|------|-----|--------|--------|----------|--------|------|----------------------------|--------------|--------------|----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK     |      | Alt'n | Index  |      |     |        | SAMP   | LES      |        |      |                            | ASSAYS       |              |                |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE     | Carb | o Alb | %Qtz   | Ser  | No. | FROM   | то     | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | .) Co (%) Z  | n (%) Ag (ppm) |
| 267.80 | 285.77  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um       | 2    | 0     | 1      | 0    | 001 | 279.77 | 280.77 | 1.00     | -      | -    | 0.010                      |              | <u> </u>     |                |
|        |         | From 267 80 to 270 50m are the typical tectorically deformed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | um       | 2    | 0     | 1      | 0    | 002 | 280.77 | 281.77 | 1.00     | -      | -    | 0.003                      |              |              |                |
|        |         | 'zebra looking' ultramatics. The unit is soft and very dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um       | 2.5  | 0     | 1      | 0    | 003 | 281.77 | 282.77 | 1.00     | tr     | -    | 0.004                      |              |              |                |
|        |         | areen/black with 40-65% off-white carb/felds wisps to hands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um       | 1    | 0     | 2      | 0    | 004 | 282.77 | 283.77 | 1.00     | tr     | -    | 0.002                      |              |              |                |
|        |         | Immense strain with evidence of sern slins that show mm-scale –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um       | 1    | 0     | 2      | 0    | 005 | 283.77 | 284.77 | 1.00     | tr     | -    | 0.007                      |              |              |                |
|        |         | offsets. Crenulations and folding evident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | um       | 1    | 0.5   | 1      | 0    | 006 | 284.77 | 285.77 | 1.00     | tr     | -    | 0.217                      |              |              |                |
|        |         | Below 279.50m are gradational patches of pervasive grey and green carbonate alteration with occasional semi-transparent quartz veinlets. Weak silicification near bottom contact with trace disseminated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |       |        |      |     |        |        |          |        |      |                            |              |              |                |
| 285.77 | 288.80  | SILICIFIED CONGLOMERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sil cong | 0    | 3     | 0      | 1    | 007 | 285.77 | 286.77 | 1.00     | 0.5    | -    | 0.354                      |              |              |                |
|        |         | Extremely foliated and altered assemblage with only a few                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sil cong | 0    | 3     | 0.5    | 2    | 800 | 286.77 | 287.77 | 1.00     | 2      | -    | 0.765                      |              |              |                |
|        |         | discernible pebbles. The rock is a white/cream to beige/brown;<br>immense albitization and silicification. The unit has undergone<br>deformation resulting in stretched clasts and fine banding. Very<br>fine pervasive albitization has basically overprinted any original<br>textures of the silty/sand groundmass. Associated with the<br>alteration is disseminated pyrite mineralization throughout from<br>trace to 4% locally. The unit has been intruded by minor late<br>semi-transparent quartz stringer and veinlets that show small-<br>scale folds and barren of sulphides. Thin hairline white carb<br>and dark chlorite stringers cross-cut the foliation and said quartz<br>features. | sil cong | 0    | 3     | 1      | 1    | 009 | 287.77 | 288.80 | 1.03     | 1      | -    | 0.691                      |              |              |                |
|        |         | The youngest tectonic event appears to be a healed brittle fault<br>at 287.90m @ 15-20 deg tca with a wavy nature (true width of<br>6cm); the host conglomerate material has been broken up and<br>shards are now sub-rounded and within a black chlorite/silicous<br>matrix. Local vugginess with transparent quartz crystal growth.<br>Narrow healed breccia seams of approx 1cm evident elsewhere                                                                                                                                                                                                                                                                                                  |          |      |       |        |      |     |        |        |          |        |      |                            |              |              |                |

| LOGGE  | DBY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | PR  | OPE | RTY: C    | )gden |     |        | ZON    | E: Thoma | is Ogd | en   | HOLE NO .:      | TOG-18-     | 62     | Pa     | ge 5 of 11 | i              |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-----------|-------|-----|--------|--------|----------|--------|------|-----------------|-------------|--------|--------|------------|----------------|
| MET    | ERAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROCK  |     | Al  | t'n Index |       |     |        | SAMF   | PLES     |        |      |                 |             | ASSA   | YS     |            |                |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CODE  | Car | b A | lb %Qtz   | ser   | No. | FROM   | то     | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/ | t) Au (g/t) | Cu (%) | Ni (%) | Co (%) Z   | 'n (%) Ag (ppm |
|        |         | in unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | -   |     |           |       |     |        | _      |          |        | -    |                 |             |        |        |            |                |
|        |         | 287.73 - 287.79m: felsic dike @ 65 deg tca<br>-violet colouration; vf-grained<br>-sharp contacts<br>-thin white quartz stringers off-set along slip planes<br>-very fine disseminated pyrite 6% pyrite                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |     |           |       |     |        |        |          |        |      |                 |             |        |        |            |                |
| 288.80 | 291.85  | FELSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fel   | 0   | 1   | 0         | 0     | 010 | 288.80 | 289.80 | 1.00     | 2      | -    |                 | 1.130       |        |        |            |                |
|        |         | Turical fine grained and avtramaly alliague dikey tayturalage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fel   | 0   | 1   | 0         | 0     | 011 | 289.80 | 290.80 | 1.00     | 2      | -    |                 | 0.124       |        |        |            |                |
|        |         | rev with a locally marbled appearance: cross-cut by bairline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fel   | 0   | 1   | 0         | 0     | 013 | 290.80 | 291.85 | 1.05     | 3      | -    |                 | 0.328       |        |        |            |                |
|        |         | carb; disseminated pyrite throughout at approx 3% and<br>strongest over last 30cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blank |     |     |           |       | 012 | 291.85 | 291.85 | 0.00     |        |      |                 | 0.002       |        |        |            |                |
|        |         | 289.00 - 289.25m fault with black chlorite and quartz crystal growth along open fractures; carb filled fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |     |     |           |       |     |        |        |          |        |      |                 |             |        |        |            |                |
|        |         | 289.90 - 290.45m: altered conglomerate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |     |           |       |     |        |        |          |        |      |                 |             |        |        |            |                |
|        |         | 291.56m is a 0.8cm pyrite seam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |           |       |     |        |        |          |        |      |                 |             |        |        |            |                |
| 291.85 | 293.55  | ARGILITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arg   | 1   | 2   | 1         | 0     | 014 | 291.85 | 292.70 | 0.85     | 2      | -    |                 | 0.516       |        |        |            |                |
|        |         | Deep green finely laminated unit with core angles ranging from<br>15 to 30 deg tca. Deeper brown albite wisps and weak bands<br>within the chlorite alteration. Minor silicification locally as well<br>as quartz/carb flooding is irregular stringers in a weak mylonitic<br>texture. Occasional hairline carb stringer cutting unit. A white<br>2cm quartz veinlet @ 55 deg tca cuts obliquely across<br>bedding/foliation located at 293.17m hosting coarse pyrite;<br>veinlet has been cut by a thin chlorite slip exhibiting mm-scale<br>offset in a dextral fashion. Minor graphite present around<br>293.20m | arg   | 1   | 2   | 3         | 0     | 015 | 292.70 | 293.55 | 0.85     | 1.5    | -    |                 | 1.600       |        |        |            |                |

#### METALS CREEK RESOURCES

| LOGGED BY: D.Heerem |        | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                  | PROPERTY: Ogden |      |       |         |     |     |        | ZONE    | E: Thoma | is Ogd | en   | HOLE NO.: TOG-18-          | Page ( | Page 6 of 11 |                    |
|---------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|---------|-----|-----|--------|---------|----------|--------|------|----------------------------|--------|--------------|--------------------|
| METERAGE            |        |                                                                                                                                                                                                                                                                                                                     | ROCK            |      | Alt'ı | n Index |     |     |        | SAMPLES |          |        |      |                            |        |              |                    |
| FROM                | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                         | CODE            | Cart | o Alb | %Qtz    | Ser | No. | FROM   | то      | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) | Ni (%) Co    | (%) Zn (%) Ag (ppr |
|                     |        | Pyritization throughout as fine disseminations but mainly as large irregular blebs showing elongation parallel to bedding/foliation. Averaging approx 2% associated with quartz/carb flooding.                                                                                                                      |                 |      |       |         |     |     |        |         |          |        |      |                            |        |              |                    |
| 293.55              | 313.00 | FELSITE                                                                                                                                                                                                                                                                                                             | fel             | 1    | 1     | 1       | 0   | 016 | 293.55 | 294.30  | 0.75     | 1      | tr   | 0.028                      |        |              |                    |
|                     |        | This unit is computed homogonous but not entirely. Storts off                                                                                                                                                                                                                                                       | fel             | 1    | 1     | 0       | 0   | 017 | 294.30 | 295.00  | 0.70     | 1      | tr   | 0.029                      |        |              |                    |
|                     |        | as a grow well foliated and gritty toytures with what appear as                                                                                                                                                                                                                                                     | fel             | 1    | 2     | 0       | 0   | 018 | 295.00 | 296.00  | 1.00     | 1.25   | tr   | 0.013                      |        |              |                    |
|                     |        | the accessional elements people: foliotion very strong and perallel                                                                                                                                                                                                                                                 | fel             | 1    | 2     | 2       | 0   | 019 | 296.00 | 297.00  | 1.00     | 2.5    | tr   | 0.134                      |        |              |                    |
|                     |        | the occasional elongate people, ionation very strong and parallel                                                                                                                                                                                                                                                   | fel             | 1    | 2     | 4       | 0   | 020 | 297.00 | 298.00  | 1.00     | 1      | 1    | 0.214                      |        |              |                    |
|                     |        | tea by 29411. Statting at 295.511 the fock increases in                                                                                                                                                                                                                                                             | fel             | 2    | 2     | 1       | 0   | 021 | 298.00 | 299.00  | 1.00     | 3      | tr   | 1.840                      |        |              |                    |
|                     |        | pervasive with colouration to groundmass with an increase in                                                                                                                                                                                                                                                        | fel             | 1    | 2     | 0       | 0   | 022 | 299.00 | 300.00  | 1.00     | 1      | tr   | 2.100                      |        |              |                    |
|                     |        | brown wight Local analysis of dull gold calcured early. The                                                                                                                                                                                                                                                         | fel             | 0    | 1     | 0       | 0   | 023 | 300.00 | 301.00  | 1.00     | 1      | tr   | 0.991                      |        |              |                    |
|                     |        | foliotion decreases alightly becoming more irregular. The unit is                                                                                                                                                                                                                                                   | Standard        |      |       |         |     | 024 | 301.00 | 301.00  | 0.00     |        |      | 2.800                      |        |              |                    |
|                     |        | out by this dark chlorite stringers that are out again by younger                                                                                                                                                                                                                                                   | fel             | 0    | 1     | 0       | 0   | 025 | 301.00 | 302.00  | 1.00     | 0.75   | tr   | 1.890                      |        |              |                    |
|                     |        | cut by thin dark chionie stringers that are cut again by younger                                                                                                                                                                                                                                                    | fel             | 0    | 1     | 0       | 0   | 026 | 302.00 | 303.00  | 1.00     | 0.5    | tr   | 1.100                      |        |              |                    |
|                     |        | extensional quartz veinlets to 1cm. Disseminated pyrite -<br>throughout with needles of arsenopyrite as well. Occasional -<br>pyrrhotite                                                                                                                                                                            | fel             | 0    | 1     | 1       | 0   | 027 | 303.00 | 304.00  | 1.00     | 2      | 0.25 | 0.616                      |        |              |                    |
|                     |        |                                                                                                                                                                                                                                                                                                                     | fel             | 0    | 0     | 0       | 0   | 028 | 304.00 | 305.00  | 1.00     | 2      | 0.25 | 0.394                      |        |              |                    |
|                     |        |                                                                                                                                                                                                                                                                                                                     | fel             | 0    | 0     | 3       | 0   | 029 | 305.00 | 306.00  | 1.00     | 3      | 0.25 | 0.212                      |        |              |                    |
|                     |        | 297.20m: a deep green chloritic clot; irregular in shape; approx -<br>3cm x 6cm with immense arsenopyrite at 15% -                                                                                                                                                                                                  | fel             | 0    | 0     | 0       | 0   | 030 | 306.00 | 307.00  | 1.00     | 4      | tr   | 0.159                      |        |              |                    |
|                     |        |                                                                                                                                                                                                                                                                                                                     | fel             | 0    | 0     | 12      | 0   | 031 | 307.00 | 308.00  | 1.00     | 4      | tr   | 0.172                      |        |              |                    |
|                     |        |                                                                                                                                                                                                                                                                                                                     | fel             | 0    | 0     | 2       | 0   | 032 | 308.00 | 309.00  | 1.00     | 2      | tr   | 0.071                      |        |              |                    |
|                     |        | 207 40 to 200 10m is a postion of disrupted argillite sub parallel                                                                                                                                                                                                                                                  | fel             | 0    | 0     | 2       | 0   | 033 | 309.00 | 310.00  | 1.00     | 2      | tr   | 0.062                      |        |              |                    |
|                     |        | 297.40 to 299.10m is a section of disrupted arginite sub-parallel                                                                                                                                                                                                                                                   | Blank           |      |       |         |     | 034 | 310.00 | 310.00  | 0.00     |        |      | 0.024                      |        |              |                    |
|                     |        | tca with a waviness of undulations to bedding. The arginite                                                                                                                                                                                                                                                         | fel             | 0    | 0     | 5       | 0   | 035 | 310.00 | 311.00  | 1.00     | 1.5    | tr   | 0.081                      |        |              |                    |
|                     |        | nonzon has been clipped as sections of the core contain half                                                                                                                                                                                                                                                        | fel             | 0    | 1     | 1       | 0   | 036 | 311.00 | 312.00  | 1.00     | 1      | tr   | 0.054                      |        |              |                    |
|                     |        | arginite and nail wacke with core angles parallel ica. Well                                                                                                                                                                                                                                                         | fel             | 0    | 2     | 1       | 0   | 037 | 312.00 | 313.00  | 1.00     | 4      | tr   | 0.123                      |        |              |                    |
|                     |        | mineralized with coarser blebby pyrite like drift above. A well<br>mineralized section exists from 298.30 to 298.70m with pyrite<br>and wispy dark brown carbonate at approx 5%. Within is a<br>super silicous knot from 295.72 to 295.90m containing<br>disseminated pyrite, patches of subhedral arsenopyrite and |                 |      |       |         |     |     |        |         |          |        |      |                            |        |              |                    |

hairline stringers of sphalerite?

| LOGGED BY: D.Heerema SIGNATURE: |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROPERTY: Ogden |      |             |      |     |     |        | : Thoma | as Ogd | en  | HOLE NO.: TOG-18-62 Page 7 of |          |                   |        | age 7 of 11 |                      |
|---------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------------|------|-----|-----|--------|---------|--------|-----|-------------------------------|----------|-------------------|--------|-------------|----------------------|
| METERAGE                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |      | Alt'n Index |      |     |     |        | SAMPLES |        |     |                               | ASSAYS   |                   |        |             |                      |
| FROM                            | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CODE            | Carb | Alb         | %Qtz | Ser | No. | FROM   | то      | LENGTH | %Py | %Ars                          | Pd (g/t) | Pt (g/t) Au (g/t) | Cu (%) | Ni (%)      | Co (%) Zn (%) Ag (pp |
|                                 |        | Standard 024 used HGS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |      |             |      |     |     |        |         |        |     |                               |          |                   |        |             |                      |
|                                 |        | Below 299.10m the unit is a more massive with an intrusive texture. Rock is a mottled white feldspar groundmass of 40% with approx 40% anhedral to subhedral grey quartz, 10% black chlorite and 10% sulphides + local fuchsite + local epidotization. Dark grey/black chlorite stringers and thin hairline carb stringers common throughout. Unit increases in silicousness downhole. Pyrite throughout averaging approx 3-4% as fine to 2mm rounded disseminations. Arsenopyrite present but found mainly in clusters associated with grey chlorite clots. The arseno grains are more cubic than needle form. |                 |      |             |      |     |     |        |         |        |     |                               |          |                   |        |             |                      |
|                                 |        | 307.00 - 309.10m is a section containing semi-transparent<br>extensional quartz veinlets from 1cm to 15cm that contain<br>coarse calcite, irregular blebs of pyrite as well as red clots of<br>sphalerite; random orientations                                                                                                                                                                                                                                                                                                                                                                                  |                 |      |             |      |     |     |        |         |        |     |                               |          |                   |        |             |                      |
|                                 |        | Last 1.10m of the unit contains some darker brown wispy albite alteration. Moderate to sharp lower contact at 20 deg tca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |      |             |      |     |     |        |         |        |     |                               |          |                   |        |             |                      |
| 313.00                          | 323.30 | CONGLOMERATE Unit starts off as a dark well foliated unit with well stretched felsic clasts at 20 deg tca; by 313.35m the unit is increasing in more pervasive beige to brown albitization and silicification to                                                                                                                                                                                                                                                                                                                                                                                                | congl           | 1    | 2           | 2    | 0   | 038 | 313.00 | 314.00  | 1.00   | 1.5 | tr                            |          | 0.171             |        |             |                      |
|                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | congl           | 1    | 2           | 0    | 2   | 039 | 314.00 | 315.00  | 1.00   | 0.5 | tr                            |          | 1.170             |        |             |                      |
|                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | congl           | 1    | 2           | 2    | 2   | 040 | 315.00 | 316.00  | 1.00   | 2.5 | 0.5                           |          | 4.270             |        |             |                      |
|                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | congl           | 1    | 0           | 0    | 3   | 041 | 316.00 | 317.00  | 1.00   | 0.5 | tr                            |          | 0.456             |        |             |                      |
|                                 |        | approx 314 50m where the unit becomes intensely sericite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | congl           | 1    | 0           | 0    | 3   | 042 | 317.00 | 317.50  | 0.50   | 0.5 | tr                            |          | 0.057             |        |             |                      |
|                                 |        | altered to a soft vellow colour. From 314 50 to 323 30m the unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | congl           | 1    | 2           | 10   | 1   | 043 | 317.50 | 318.00  | 0.50   | 3.5 | 0.5                           |          | 0.684             |        |             |                      |
|                                 |        | is so overprinted by sericitization that most original textures are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | congl           | 1    | 0           | 0    | 3   | 044 | 318.00 | 319.00  | 1.00   | 0.5 | tr                            |          | 0.120             |        |             |                      |
|                                 |        | overprinted leaving ribbons and thin clots of fuchsite and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | congl           | 1    | 0           | 0    | 3   | 045 | 319.00 | 320.00  | 1.00   | 0.5 | tr                            |          | 0.105             |        |             |                      |
|                                 |        | occasional stretched pebble. Occasional areas of minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | congl           | 1    | 0           | 0    | 3   | 046 | 320.00 | 321.00  | 1.00   | 0.5 | tr                            |          | 1.180             |        |             |                      |
|                                 |        | chlorite stringers. Approximately 5-6% clear to smokey quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | congl           | 1    | 0           | 0    | 3   | 047 | 321.00 | 322.15  | 1.15   | 0.5 | <0.25                         |          | 0.774             |        |             |                      |
| LOGGED | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                   |          | PRC  | PER   | TY: Og | gden |     |        | ZON    | E: Thoma | s Ogd | en    | HOLE NO.: TOG-18-6         | Page 8 of            | 11              |
|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|--------|------|-----|--------|--------|----------|-------|-------|----------------------------|----------------------|-----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROCK     |      | Alt'n | Index  |      |     |        | SAMF   | PLES     |       |       |                            | ASSAYS               |                 |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                          | CODE     | Carb | Alb   | %Qtz   | Ser  | No. | FROM   | то     | LENGTH   | %Py   | %Ars  | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) Co (%) | Zn (%) Ag (ppm) |
|        |         | porphyroblasts.                                                                                                                                                                                                                                                                                                                                                                                                                      | Standard |      |       |        |      | 048 | 322.15 | 322.15 | 0.00     |       |       | 2.100                      | <u> </u>             | <u>.</u> .      |
|        |         | Disseminated anhedral pyrite from trace to 2.0% with minor arsenopyrite with arseno found mainly along chloritic fractures.                                                                                                                                                                                                                                                                                                          | congl    | 1    | 0     | 0      | 3    | 049 | 322.15 | 323.30 | 1.15     | 0.5   | <0.25 | 0.859                      |                      |                 |
|        |         | VG as a cluster of greater than 10 individual flakes over an area of 2mm x 2mm found at 315.17m within albite/silica flooding @ 24 degrees tca                                                                                                                                                                                                                                                                                       |          |      |       |        |      |     |        |        |          |       |       |                            |                      |                 |
|        |         | 317.50 - 318.00m is a section of stronger silicification and albitization associated with quartz flooding; stronger pyrite and arsenopyrite at approx 3:1 and 5% over this interval                                                                                                                                                                                                                                                  |          |      |       |        |      |     |        |        |          |       |       |                            |                      |                 |
|        |         | Standard 048 used CDN-GS-3H                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |       |        |      |     |        |        |          |       |       |                            |                      |                 |
| 323.30 | 324.14  | WACKE                                                                                                                                                                                                                                                                                                                                                                                                                                | wacke    | 1    | 2     | 9      | 1    | 050 | 323.30 | 324.14 | 0.84     | 6     | tr    | 2.200                      |                      |                 |
|        |         | A finer unit with no evident clasts that starts as pale sericite<br>altered that quickly becomes silicified and albitized to a dark<br>grey/brown colouration with minor green chlorite by 323.55m.<br>Bedding/foliation ranges from sub-parallel to 25 deg tca. Some<br>late irregular quartz/carb veinlets present between 323.58 and<br>323.82m parallel to fol/bedding. Strong pyrite at approx 6-7%<br>with trace arsenopyrite. |          |      |       |        |      |     |        |        |          |       |       |                            |                      |                 |
| 324.14 | 333.00  | FELSITE                                                                                                                                                                                                                                                                                                                                                                                                                              | fel      | 0    | 0     | 2      | 0    | 051 | 324.14 | 325.00 | 0.86     | 4     | -     | 0.173                      |                      |                 |
|        |         | Extremely hard compotent and non-magnetic. Cray and                                                                                                                                                                                                                                                                                                                                                                                  | fel      | 0    | 0     | 0      | 0    | 052 | 325.00 | 326.00 | 1.00     | 4     | tr    | 0.136                      |                      |                 |
|        |         | cilicous at approx 75% quartz. Typical marbled appearance                                                                                                                                                                                                                                                                                                                                                                            | fel      | 0    | 0     | 0      | 0    | 053 | 326.00 | 327.00 | 1.00     | 4     | tr    | 0.139                      |                      |                 |
|        |         | with local areas of slight beige/brown albitization. Localized                                                                                                                                                                                                                                                                                                                                                                       | fel      | 0    | 0     | 3      | 0    | 054 | 327.00 | 328.00 | 1.00     | 4     | tr    | 0.197                      |                      |                 |
|        |         | quartz flooding/veinlets of semi-transparent quartz often                                                                                                                                                                                                                                                                                                                                                                            | fel      | 0    | 0     | 12     | 0    | 055 | 328.00 | 329.00 | 1.00     | 2.5   | tr    | 0.099                      |                      |                 |
|        |         | associated with coarse calcite growth Well mineralized with                                                                                                                                                                                                                                                                                                                                                                          | Blank    |      |       |        |      | 056 | 329.00 | 329.00 | 0.00     |       |       | 0.009                      |                      |                 |
|        |         | disseminated pyrite at approximately 4% average 1 ower                                                                                                                                                                                                                                                                                                                                                                               | fel      | 0    | 0     | 3      | 0    | 057 | 329.00 | 330.00 | 1.00     | 1.5   | -     | 0.192                      |                      |                 |
|        |         | contact discernable against adjacent silicous condomerate at                                                                                                                                                                                                                                                                                                                                                                         | fel      | 0    | 0     | 2      | 0    | 058 | 330.00 | 331.00 | 1.00     | 4     | tr    | 0.266                      |                      |                 |
|        |         | 18 degrees tca.                                                                                                                                                                                                                                                                                                                                                                                                                      | fel      | 0    | 0.5   | 0      | 0    | 059 | 331.00 | 332.00 | 1.00     | 5     | tr    | 0.272                      |                      |                 |

| LOGGED BY: D. | .Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | PRO  | OPER <sup>-</sup> | TY: Og | gden |     |        | ZONE   | E: Thoma | s Ogd | en   | HOLE NO.: TOG-18-0         | 62     | Page     | e 9 of 11              |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------------------|--------|------|-----|--------|--------|----------|-------|------|----------------------------|--------|----------|------------------------|
| METERAGE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCK      |      | Alt'n             | Index  |      |     |        | SAMP   | LES      |       |      |                            | ASSA   | YS       |                        |
| FROM TO       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODE      | Carb | Alb               | %Qtz   | Ser  | No. | FROM   | то     | LENGTH   | %Py   | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) | Ni (%) C | Co (%) Zn (%) Ag (ppm) |
|               | <ul><li>326.50 - 326.80m section with tremendous quartz flooding as coarse white calcite growth</li><li>329.90 to 330.55m: badly broken but might be drill induced as a result of very shallow jointing</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fel       | 0    | 1.5               | 0      | 0    | 060 | 332.00 | 333.00 | 1.00     | 5     | tr   | 0.153                      |        |          |                        |
| 333.00 337.30 | WACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cong/dike | 1    | 2                 | 2      | 0    | 061 | 333.00 | 333.95 | 0.95     | 5     | tr   | 0.269                      |        |          |                        |
|               | I Init actually starts off with an altered conglomerate to 333 64m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wacke     | 1    | 1                 | 0      | 0    | 062 | 333.95 | 335.10 | 1.15     | tr    | -    | 0.124                      |        |          |                        |
|               | with strong albitization silicification and fuchsite. Tight foliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wacke     | 1    | 1                 | 0      | 1    | 063 | 335.10 | 336.20 | 1.10     | tr    | -    | 0.013                      |        |          |                        |
|               | <ul> <li>with stretched and ribboned pebbles; cream coloured felsic clasts are stretched 10:1 and ultramafic clasts are now ribboned fuchsite; rock is a buff grey/beige colour with yellow carb with and bands locally; well mineralized with approx 4% finely disseminated pyrite and trace arsenopyrite</li> <li>333.64 to 333.95m: felsite dike with sharp upper and lower contacts @ 20 and 40 deg tca respectively</li> <li>-contains a xenolith of conglomerate within</li> <li>-soft pinkish/grey colouration with a weak fish scale texture</li> <li>-very finely disseminated pyrite at 4-5%</li> <li>From 333.95 to 337.30m is an homogenous section of gritty wacke, grey in colour with dark brown wisps/bands @ 40 degrees tca; variable albite/sericite/chlorite alt; weak pyrite</li> <li>336.32 to 336.46m: felsic/felsite dike @ 48 degrees tca</li> <li>-similar to dike noted above but far less pyrite</li> </ul> |           |      |                   |        |      |     |        |        |          |       |      |                            |        |          |                        |

| LOGGED | BY: D.H | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | PR   | OPER  | TY: O | gden |     |        | ZONI   | E: Thoma | s Ogde | en   | HOLE NO.: TOG-18-          | ·62      | Page 10 of    | 11             |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|------|-----|--------|--------|----------|--------|------|----------------------------|----------|---------------|----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK  |      | Alt'n | Index |      |     |        | SAMF   | PLES     |        |      |                            | ASSAY    | S             |                |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE  | Carl | b Alb | %Qtz  | Ser  | No. | FROM   | то     | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) N | li (%) Co (%) | Zn (%) Ag (ppm |
| 337.30 | 343.65  | ARGILLITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arg   | 0    | 0     | 2     | 0    | 065 | 337.30 | 338.30 | 1.00     | 2      | -    | 0.080                      |          |               |                |
|        |         | Finely bedded silts to mudstones. Unit is grey to black with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arg   | 0    | 0     | 2     | 0    | 066 | 338.30 | 339.30 | 1.00     | 1.5    | -    | 0.029                      |          |               |                |
|        |         | repetitive bedding from grey silts to aphanitic black tops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arg   | 0    | 0     | 5     | 0    | 067 | 339.30 | 340.30 | 1.00     | 1      | -    | 0.005                      |          |               |                |
|        |         | Younging appears to be downhole or in a northerly direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arg   | 0    | 0     | 3     | 0    | 068 | 340.30 | 341.30 | 1.00     | 1      | -    | 0.007                      |          |               |                |
|        |         | Silty beds are as large as 16cm true width or 35cm core length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blank |      |       |       |      | 069 | 341.30 | 341.30 | 0.00     | ~ =    |      | 0.002                      |          |               |                |
|        |         | and exhibit weak albitization. Bedding angles start off at 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arg   | 0    | 0     | 1     | 0    | 070 | 341.30 | 342.40 | 1.10     | 0.5    | -    | 0.011                      |          |               |                |
|        |         | degrees tca but steepen to 60 degrees tca by base of unit.<br>Narrow 1-15mm white quartz/carb extensional stringers/veinlets<br>cut obliquely across the bedding at generally 30 deg tca. Pyrite<br>mineralization found within the quartz structures as well as<br>within the bedding itself as secondary mineralization.<br>A late cleavage is developed and evident cutting obliquely<br>across bedding at 65 degrees tca.<br>The last 1.3m of the unit has tremendous dark green chlorite<br>growth causing a speckled/pitted texture.                                            | aıy   | 0    | 0     | 0     | U    | 071 | 342.40 | 343.00 | 1.23     | 0.23   | -    | 0.013                      |          |               |                |
| 343.65 | 345.55  | MAFIC DIKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M.dk  | 1    | 1     | 6     | 0    | 072 | 343.65 | 344.65 | 1.00     | 3      | -    | 0.035                      |          |               |                |
|        |         | <ul> <li>Very fine-grained grey/green/purplish colour; generally massive and textureless. Fine green chlorite alt and approx 10% fine white plag; cut by semi-transparent quartz/white to locally rose calcite stringers and veinlets to 3cm width; late structures have coarse blebby pyrite mineralization within. The dike itself is well mineralized by fine disseminated pyrite at approx 3-4%. Upper and lower contacts @ 60 and 18 degrees respectively Non-magnetic</li> <li>343.65 to 343.79m is a section of quartz flooding and strong albitization with pyrite</li> </ul> | M.dk  | 1    | 0     | 2     | 0    | 073 | 344.65 | 345.55 | 0.90     | 4      | -    | 0.039                      |          |               |                |

#### METALS CREEK RESOURCES

| LOGGED BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                              |      | PRC  | PER   | rY: Og | gden |     |        | ZONE   | : Thoma | s Ogde | en   | HOLE NO.: TOG-18-62                 | Page 11 of 11                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|--------|------|-----|--------|--------|---------|--------|------|-------------------------------------|-------------------------------|
| METERAGE      |                                                                                                                                                                                                                                                                                                                 | ROCK |      | Alt'n | Index  |      |     |        | SAMP   | LES     |        |      | ASSAY                               | 'S                            |
| FROM TO       | DESCRIPTION                                                                                                                                                                                                                                                                                                     | CODE | Carb | Alb   | %Qtz   | Ser  | No. | FROM   | то     | LENGTH  | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) I | Ni (%) Co (%) Zn (%) Ag (ppm) |
| 345.55 381.00 | ULTRAMAFICS                                                                                                                                                                                                                                                                                                     | um   | 0    | 0     | 0      | 0    | 074 | 345.55 | 346.55 | 1.00    | 0.5    | -    | 0.024                               |                               |
|               | Slightly harder uphole but increases in serp/talc alteration<br>downhole becoming softer and much more fractured and<br>blocky. Very little carb stringers.<br>346.41 - 346.55m: mafic dike like above<br>364.80 - 366.45m: mafic dike @ 80 deg tca<br>-darker and less mineralized than above<br>-non-magnetic | um   | 0    | 0     | 2      | 0    | 075 | 346.55 | 347.55 | 1.00    | tr     | -    | 0.008                               |                               |

Printed: April-27-18

| PROPERTY:     | Ogden                | CLAIM NO.:     | 9878 SEC       |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Started drilling with double hex core barrel and switched to |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|-----------------------------------------------------------------------|
| HOLE NO.:     | TOG-18-63            | LENGTH (m):    | 436.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | one round with long reaming shell @ 105m. Casing remains              |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5362073.000    | EASTING:       | 471002.000     | COLLAR SURVEY BY: Don (GPS)                 | and capped.                                                           |
| SECTION:      | TZ_2200W             | ZONE:          | Thomas Ogden   | ELEVATION (m): | 280.000        | DRILLING COMPANY: Norex                     |                                                                       |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 330. / -45.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Feb. 27, 2018 TO Mar. 09, 2018 | Core Storage: Norex compound                                          |
| HOLE STARTED  | ): February 26, 2018 | HOLE FINISHED: | March 02, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 9                                                           |

| METE  | ERAGE  |                                                                                                                                                                                          | ROCK |      | Alt'n I | Index |     |     |      | S | AMP | LES    |     |      |                            | ASSAYS    |           |                    |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|-------|-----|-----|------|---|-----|--------|-----|------|----------------------------|-----------|-----------|--------------------|
| FROM  | то     | DESCRIPTION                                                                                                                                                                              | CODE | Carb | Alb     | %Qtz  | Ser | No. | FROM | - | то  | LENGTH | %Py | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni | (%) Co (% | %) Zn (%) Ag (ppm) |
| 0.00  | 42.50  | OVERBURDEN                                                                                                                                                                               |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | Downhole surveys                                                                                                                                                                         |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 51m 328.2 azi, -42.6 dip                                                                                                                                                                 |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 102m 329.9 azi, -41.9 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 153m 330.5 azi, -40.6 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 204m 331.7 azi, -39.6 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 255m 333.5 azi, -39.7 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 306m 336.7 azi, -39.4 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 357m 339.0 azi, -39.0 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 408m 339.6 azi, -38.8 dip                                                                                                                                                                |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        |                                                                                                                                                                                          |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
| 42.50 | 118.20 | TUFF                                                                                                                                                                                     |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | Slightly hematized to 54.55m with a soft purplish hue. Well foliated and cut by a few pinkish quartz/carb veinlets to 1.3cm.                                                             |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | The unit for the most part is green chlorite altered with a moderate to strong fabric, speckled texture and local qtz/carb porphyroblasts. Fabric @ 50 deg tca. Unit is fairly competent |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | with moderate jointing.                                                                                                                                                                  |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 57.97 - 59.00m: intermediate dike??                                                                                                                                                      |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | -sharp contacts @ 58 degrees tca                                                                                                                                                         |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | -grey with a weak fabric parallel to fabric of tuff                                                                                                                                      |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        | 99.55m: 1cm carb veinlet @ 12 deg tca hosting coarse pyrite -clotty rust                                                                                                                 |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |
|       |        |                                                                                                                                                                                          |      |      |         |       |     |     |      |   |     |        |     |      |                            |           |           |                    |

| LOGGED                                                  | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | PR  | OPERT | Y: Og | gden |     |      | ZO  | NE: Thoma | is Ogd | en   | HOLE     | NO.: T   | OG-18-   | 63     | F      | Page 2 o | f 9             |
|---------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|-------|------|-----|------|-----|-----------|--------|------|----------|----------|----------|--------|--------|----------|-----------------|
| METE                                                    | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK |     | Alt'n | Index |      |     |      | SAM | IPLES     |        |      |          |          |          | ASSA   | YS     |          |                 |
| FROM                                                    | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE | Car | b Alb | %Qtz  | Ser  | No. | FROM | то  | LENGTH    | %Py    | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%)   | Zn (%) Ag (ppm) |
| 118.20                                                  | 188.80  | FRAGMENTAL<br>Groundmass is fine-grained and deep green chlorite altered<br>hosting light green fragments that are elongate and generally<br>pointy at the tips. Contacts are not extremely sharp for the<br>most part. Occasional hematitic fracture; thin epidote stringers<br>locally; thin hairline cream carb stringers cut the unit also.<br>Between 173.15 and 179.20m has undergone patchy and<br>gradational hematization; between 176.37 and 177.60m are<br>numerous thin hematite stringers with minor carb associated;<br>176.40 - 176.46m is a quartz vein with strong hematite growth<br>along contacts | -    | -   |       |       |      |     |      | -   |           |        |      | <u> </u> |          |          |        |        |          | <u> </u>        |
| 188.80                                                  | 208.50  | <b>TUFF</b><br>Similar to tuff logged above; speckled chlorite in a light<br>green/grey groundmass with a fabric.<br>189.90 - 189.97m: healed fault/shear @ 30 deg tca that has<br>been re-activated                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |       |       |      |     |      |     |           |        |      |          |          |          |        |        |          |                 |
| 208.50 217.25 A<br>T<br>a<br>a<br>v<br>c<br>c<br>p<br>s |         | ALTERED TUFF/SCHIST<br>This unit has undergone slightly stronger deformation and<br>alteration. Foliation with banding and evidence of boudinaging<br>as well as weak mylonitic texture @ 40-65 deg tca. White as<br>well as white/red qtz/carb/hematite veinlets <1cm showing<br>discontinuous folds, crenulations and knots. Banding consists<br>of ribbons of chlorite, sericite and hematization causing a soft<br>pinkish hue to the rock. Few breaks, a few with brown fe-carb<br>staining and carb growth.                                                                                                     |      |     |       |       |      |     |      |     |           |        |      |          |          |          |        |        |          |                 |

| LOGGED                                         | ) BY: D.I | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                       |      | PRC  | OPER  | ΓΥ: Ο | gden |     |      | ZQ | ONE: Thom | as Og | den  | HOLE NO .: 1      | OG-18-   | 63       | Page 3 o     | of 9            |
|------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|------|-----|------|----|-----------|-------|------|-------------------|----------|----------|--------------|-----------------|
| METE                                           | RAGE      |                                                                                                                                                                                                                                                                                                                                                                                          | ROCK |      | Alt'n | Index |      |     |      | SA | MPLES     |       |      |                   |          | ASSAYS   | 6            |                 |
| FROM                                           | ТО        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              | CODE | Carb | Alb   | %Qtz  | Ser  | No. | FROM | Т  | O LENGTI  | l %Py | %Ars | Pd (g/t) Pt (g/t) | Au (g/t) | Cu (%) N | i (%) Co (%) | Zn (%) Ag (ppm) |
| 217.25                                         | 266.70    | TUFF                                                                                                                                                                                                                                                                                                                                                                                     |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | Heterogeneous unit of chlorite speckled tuff with variable<br>alteration type and intensities. Well foliated to approx 252m<br>before is looses some intensity. Non-magnetic and barren of<br>sulphides.                                                                                                                                                                                 |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | The upper portion to 227.50m is green/grey with some<br>quartz/carb stringers and veinlets generally parallel to foliation.<br>221.70 - 221.87m: 65% white to white/pink quartz<br>veining/flooding showing tight folding with associated<br>sericite/hem/chl banding and wisps                                                                                                          |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | From 227.50 to 234.40m is a section of fairly pervasive hematization causing a pinking of core; weak mylonitic texture                                                                                                                                                                                                                                                                   |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | From 234.40 to 252.70m is a deep green strongly foliated chloritic section; foliation @ 40 degrees tca                                                                                                                                                                                                                                                                                   |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | From 252.70 to 266.70 the unit appears less foliated and contains sericite/epidote stringers cross-cutting at random angles tca; occasional semi-transparent quartz veinlet                                                                                                                                                                                                              |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
| 266.70                                         | 311.70    | FRAGMENTAL                                                                                                                                                                                                                                                                                                                                                                               |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
| 266.70 311.70 F<br>F<br>a<br>r<br>c<br>a<br>ii |           | Fragment poor unit with small fragments set in a green chloritic<br>and speckled groundmass; the fragments are sub-rounded and<br>range from 4mm to 4cm well elongated; fragments vary from<br>cream to orange coloured. Non-magnetic; barren of sulphides<br>and very competent. Deeper in the unit the fragment sizes<br>increase slightly and undergo hematization for the most part. |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |
|                                                |           | 282.50 - 283.40m: increased fracturing with deep red hematite fracture faces and minor red hematite stringers; slight                                                                                                                                                                                                                                                                    |      |      |       |       |      |     |      |    |           |       |      |                   |          |          |              |                 |

| LOGGED | BY: D.I | Heerema                                                                                                                                                                                                                                                                                                    | SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | PF | ROPE    | RTY: (          | Ogden  |            |      | ZON | IE: Thoma | ıs Ogd | en    | HOLE NO    | ).: TOG-18              | 3-63     | Р              | age 4 of 9            |                |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|---------|-----------------|--------|------------|------|-----|-----------|--------|-------|------------|-------------------------|----------|----------------|-----------------------|----------------|
| METE   | RAGE    | Τ                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROCK | ]  | Alt     | t'n Inde        | x      |            |      | SAM | PLES      |        |       |            |                         | ASSA     | AYS            |                       |                |
| FROM   | то      | 1                                                                                                                                                                                                                                                                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CODE | Ca | arb Al  | lb %Qt          | tz Ser | No.        | FROM | то  | LENGTH    | %Py    | %Ars  | Pd (g/t) P | t (g/t) Au (g/t)        | ) Cu (%) | Ni (%)         | Co (%) Zr             | I (%) Ag (ppm) |
| 311.70 | 344.90  | hematization of h<br>284.90m: 3.5cm of<br>calcite veinlet @<br>296.80 - 297.72m<br>-weak chlorite an<br>From 297.72 to 3<br>local patches of s<br>undergone strong<br><b>TUFF</b><br>Green/grey unit of<br>epidotization and<br>dark green. The<br>stringers and occ<br>Below 327m the<br>speckled texture | nost tuff<br>extensional semi-transparent quartz/pink<br>47 deg tca<br>n: sericite schist @ 43 deg tca<br>nd hematization amidst the sericite<br>311.70m weak pervasive hematization with<br>stronger intensity; fragments appear to have<br>ger hematization than groundmass<br>of chlorite specked rock that has patchy<br>d weak hematization to 327m before turning<br>a upper section has been cut by thin carb<br>casional veinlets; local weak mylonitic texture.<br>unit is a deep green chlorite-rich section with<br>and hosts few dark green/black shards; unit |      |    | <u></u> | <u> D</u> 70441 |        | <u>NO.</u> | FROM |     |           | 70F y  | 70415 |            | <u>t (9/t)</u> Au (9/t) |          | <u>NI (70)</u> | <u><u><u></u></u></u> | Ag (ppm)       |
| 244.00 | 200.45  | has been intruder<br>veinlets as well a<br>334.50 and 338.2<br>extensional vein<br>thin veins of the a<br>quartz and green                                                                                                                                                                                 | <ul> <li>d moderately by late quartz/carb stringers and as fine epidote veinlets.</li> <li>25m are locations of small scale en-echelon arrays only 5cm and 12cm long respectively; arrays are oriented 22 degs tca; filled with n epidote</li> </ul>                                                                                                                                                                                                                                                                                                                       |      |    |         |                 |        |            |      |     |           |        |       |            |                         |          |                |                       | _              |
| 344.90 | 360.45  | CHLORITE SCH                                                                                                                                                                                                                                                                                               | IST/FRAGMENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |         |                 |        |            |      |     |           |        |       |            |                         |          |                |                       |                |

| OGGEC  | ) BY: D.I | Heerema                                                                                                                                                                                                                                                                                                 | SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | PR   | OPE  | RTY: O    | gden |     |        | ZONE   | : Thoma | s Ogd | en   | HOLE NO.: T       | rog-18-6   | 33        | Page   | 9 5 of 9 |                |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-----------|------|-----|--------|--------|---------|-------|------|-------------------|------------|-----------|--------|----------|----------------|
| METE   | RAGE      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCK | ]    | Alt  | t'n Index |      |     |        | SAMP   | 'LES    |       |      | Ι                 |            | ASSAYS    | 3      |          |                |
| FROM   | то        | 1                                                                                                                                                                                                                                                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODE | Carl | b Al | b %Qtz    | Ser  | No. | FROM   | то     | LENGTH  | %Py   | %Ars | Pd (g/t) Pt (g/t) | ) Au (g/t) | Cu (%) Ni | (%) Co | (%) Zı   | n (%) Ag (ppm) |
|        |           | Deep green chlorite-r<br>discontinuous and su<br>similar appearance to<br>what appear as fragm<br>fragments are elonga<br>parallel to foliation at<br>fragments in dark gre<br>increases downhole v<br>white qtz/carb veinlet                                                                           | ich unit with a strong fabric and<br>b-rounded felsic/carb stringers. Has a<br>o the ultramafic below but contains areas of<br>nents or perhaps a flow top breccia. The<br>ite and look like 4-5cm jelly beans aligned<br>60 deg tca. Light to moderate green<br>een deformed groundmass. Strain<br>with weak mylonitic texture. Occasional                                                                                                                                                            |      |      |      |           |      |     |        |        |         |       |      |                   |            |           |        |          |                |
| 360.45 | 372.40    | ULTRAMAFICS                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um   | 1    | 0    | 10        | 0    | 001 | 368.40 | 369.40 | 1.00    | 0.5   |      |                   | 0.009      |           |        |          |                |
|        |           | The unit starts off wit                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um   | 1    | 0    | 2         | 0    | 002 | 369.40 | 370.40 | 1.00    | tr    | tr   |                   | 0.003      |           |        |          |                |
|        |           | that has a more mass                                                                                                                                                                                                                                                                                    | a strongly hemalized section to 502.55m -                                                                                                                                                                                                                                                                                                                                                                                                                                                              | um   | 1    | 0    | 2         | 0    | 003 | 370.40 | 371.40 | 1.00    | tr    | -    |                   | 0.002      |           |        |          |                |
|        |           | base of the ultramafic<br>Below 362.55 the uni<br>carbonate banded un<br>with approx 40% whit<br>texture'; weak fuchsite<br>evident near the cont<br>Sharp contact at 45 d<br>369.05m: 1cm carb s<br>370.28 - 370.50m: se<br>371.60 - 372.40m inc<br>causing a soft buff br<br>tca with a gentle 's' fc | <ul> <li>s.</li> <li>t becomes the typically well strained and<br/>it; dark green/black serpentine/talc altered<br/>ce bands and veinlets causing the 'zebra<br/>e alteration evident becoming more<br/>act with adjacent sediments. Local pyrite.<br/>legrees tca</li> <li>eam with coarse cubic pyrite at 5%</li> <li>ection of approx 15% fuchsite</li> <li>creasing in sericite/albite and silicification<br/>rownish colouration; well foliated @ 45 deg<br/>old over 10cm at 372.05m.</li> </ul> |      |      |      |           |      |     |        |        |         |       |      |                   |            |           |        |          |                |
|        |           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |      |           |      |     |        |        |         |       |      |                   |            |           |        |          |                |

| LOGGED | BY: D.H | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | PR   | OPER | TY: Og  | gden |     |        | ZONE   | E: Thoma | is Ogd | en   | HOLE NO.: TOG-18-63                      | age 6 of 9             |
|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|---------|------|-----|--------|--------|----------|--------|------|------------------------------------------|------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROCK  | T    | Alt' | n Index |      |     |        | SAMP   | LES      |        |      | ASSAYS                                   |                        |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CODE  | Cark | Alb  | %Qtz    | Ser  | No. | FROM   | то     | LENGTH   | %Py    | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) | Co (%) Zn (%) Ag (ppm) |
| 372.40 | 381.00  | ALTERED CONGLOMERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | congl | 1    | 1    | 3       | 1    | 005 | 372.40 | 373.40 | 1.00     | tr     | -    | 0.014                                    |                        |
|        |         | Hotorogonoous unit of variable alteration and composition: the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | congl | 1    | 1    | 0       | 2    | 006 | 373.40 | 374.40 | 1.00     | tr     | -    | 0.022                                    |                        |
|        |         | upit starts off as moderately people-rich upit with stronger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | congl | 1    | 2    | 0       | 1    | 007 | 374.40 | 375.40 | 1.00     | 0.25   | -    | 0.199                                    |                        |
|        |         | chlorite/sericite alteration with weak silicification; grey to yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | congl | 1    | 2    | 0       | 1    | 008 | 375.40 | 376.40 | 1.00     | 0.25   | -    | 0.250                                    |                        |
|        |         | colouration with abostly discarnable pables: silicification and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wacke | 1    | 0    | 0       | 0    | 009 | 376.40 | 377.40 | 1.00     | tr     | -    | 0.004                                    |                        |
|        |         | albitization alteration increasing downhole to 376 40m; foliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wacke | 1    | 0    | 0       | 0    | 010 | 377.40 | 378.40 | 1.00     | tr     | -    | 0.012                                    |                        |
|        |         | angles at 16 deg toa: trace purite mineralization as well as fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wacke | 1    | 0    | 0       | 1    | 011 | 378.40 | 379.40 | 1.00     | tr     | -    | 0.091                                    |                        |
|        |         | local sobalarite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | congl | 1    | 0    | 0       | 2    | 012 | 379.40 | 380.40 | 1.00     | tr     | -    | 0.027                                    |                        |
|        |         | local sphaleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | congl | 1    | 0    | 5       | 2    | 013 | 380.40 | 381.00 | 0.60     | tr     | -    | 0.071                                    |                        |
|        |         | 374.67 to 374.72m: thin interbedded argillite seam with minor white carb stringers and pyritization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |      |         |      |     |        |        |          |        |      |                                          |                        |
|        |         | VG at 374.75m as one 0.5mm x 0.5mm fleck in a very silicous section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |      |         |      |     |        |        |          |        |      |                                          |                        |
|        |         | From 376.40 to 379.90m is a very clast poor section of more wacke material with far less silicification, sericite or albite alteration; a green to grey colour with occasional cream/beige pebble; local minor pyrite mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |      |         |      |     |        |        |          |        |      |                                          |                        |
| 381.00 | 391 78  | FFI SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fel   | 0    | 2    | 20      | 1    | 014 | 381.00 | 382.00 | 1.00     | 3      | 0.5  | 0.386                                    |                        |
| 001.00 | 001.70  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fel   | 0    | 1    | 6       | 2    | 015 | 382.00 | 383.00 | 1.00     | tr     | tr   | 0.280                                    |                        |
|        |         | Extremely silicous unit with abundant quartz flooding and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blank |      |      |         |      | 016 | 383.00 | 383.00 | 0.00     |        |      | 0.002                                    |                        |
|        |         | veining with a marbled texture; the unit is a buff grey/beige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fel   | 1    | 2    | 10      | 1    | 017 | 383.00 | 384.00 | 1.00     | 2      | tr   | 2.520                                    |                        |
|        |         | colour, fine-grained with a weak porphyritic texture containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fel   | 0    | 2    | 3       | 1    | 018 | 384.00 | 385.00 | 1.00     | 2      | tr   | 0.514                                    |                        |
|        |         | white plag phenos; massive texture; hosts shards of brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fel   | 0    | 1    | 2       | 2    | 019 | 385.00 | 386.00 | 1.00     | 1      | tr   | 0.214                                    |                        |
|        |         | alburgation; wisps of local green fuchsite, tiny clots of gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fel   | 1    | 2    | 2       | 2    | 020 | 386.00 | 387.00 | 1.00     | 3      | tr   | 0.444                                    |                        |
|        |         | coloured carbonate as well as wispy stringers to thin bands of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fel   | 0    | 2    | 2       | 1    | 021 | 387.00 | 388.00 | 1.00     | 3      | tr   | 3.110                                    |                        |
|        |         | Consistent of the second | fel   | 0    | 2    | 8       | 1    | 022 | 388.00 | 389.00 | 1.00     | 2.5    | tr   | 0.223                                    |                        |
|        |         | Alteration of all types (fuchsite: seriaite: albitization) all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fel   | 0    | 1    | 8       | 2    | 023 | 389.00 | 390.00 | 1.00     | 2.5    | tr   | 0.755                                    |                        |
|        |         | Alteration of all types (lucinsite, sendle, albitization) all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fel   | 0    | 2.5  | 6       | 1    | 024 | 390.00 | 391.00 | 1.00     | 4      | tr   | 1.230                                    |                        |
|        |         | by later stringers and veinlets of quartz; there appear to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fel   | 0    | 2.5  | 20      | 1    | 025 | 391.00 | 391.78 | 0.78     | 4      | tr   | 2.180                                    |                        |

| LOGGED | BY: D. | .Heerema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | PROF | PER   | TY: O | gden |     |      | ZON | IE: Thoma | is Ogc | len  | HOLF     | E NO.: <sup>-</sup> | ГОG-18     | -63    | ſ      | Page 7 c | if 9            |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|------|-----|------|-----|-----------|--------|------|----------|---------------------|------------|--------|--------|----------|-----------------|
| METE   | RAGE   | Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROCK | 1    | Alt'n | Index |      |     |      | SAM | PLES      |        |      |          |                     |            | ASSA   | YS     |          |                 |
| FROM   | то     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CODE | Carb | Alb   | %Qtz  | Ser  | No. | FROM | то  | LENGTH    | %Py    | %Ars | 5 Pd (g/ | t) Pt (g/t          | ) Au (g/t) | Cu (%) | Ni (%) | Co (%)   | Zn (%) Ag (ppm) |
|        |        | multiple ages of c<br>disrupted alteratic<br>transparent quart<br>wide. These feat<br>mineralized semi-<br>shallow core angl<br>stringers appear to<br>35% and 15% res<br>albitization and st<br>Within the dike ur<br>is partially digeste<br>most part. Congl<br>to 383.04m, 387.0<br>sections are gene<br>pebbles and far le<br>congl patch that c<br>pyrite + 1% arser<br>Lower contact ex<br>381.29m: 8x8mm<br>veinlet<br>387.48 to 387.61<br>-sub-rounded to r<br>a cream carbonar<br>-one narrow blac | prosscutting features; a flooding event has<br>on; cut by younger barren steeper angled semi-<br>z/white carb extensional veinlets approx 0.5cm<br>ures have been cut by yet younger and<br>-transparent to smokey grey quartz veinlets at<br>les of approx 20 to 45 deg tca. Thin white carb<br>to cross-cut all features. Strongest quartz<br>ver first 50cm and last 70cm of unit at approx<br>spectively associated with fine pervasive<br>tronger mineralization.<br>nit are sections of conglomerate material that<br>ed with diffuse and subjective contacts for the<br>lomerate sections381.90 to 382.10m, 382.60<br>00 to 387.48m, 390.46 to 390.74m. These<br>arally very sericite-rich with remnant beige<br>ess mineralization with exception of the last<br>contains strong fuchsite banding as well as 3%<br>nopyrite<br>tremely sharp @ 77 deg tca<br>n clot of sphalerite with trace cpy in quartz<br>m: healed fault @ 75 degrees tca<br>rounded mineralized grey quartz shards set in<br>te matrix that has healed the structure<br>k tourmaline stringer with pyrite within |      |      |       |       |      |     |      |     |           |        |      |          |                     |            |        |        |          |                 |

| LOGGED | BY: D.H | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                     |          | PR   | OPER  | TY: O | gden |     |        | ZON    | E: Thomas | s Ogd | ən   | HOLE NO.: TOG-18-63 Page 8 of 9                                 |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-------|------|-----|--------|--------|-----------|-------|------|-----------------------------------------------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                        | ROCK     |      | Alt'ı | Index |      |     |        | SAMF   | PLES      |       |      | ASSAYS                                                          |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                            | CODE     | Carl | b Alb | %Qtz  | Ser  | No. | FROM   | то     | LENGTH    | %Py   | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm) |
| 391.78 | 394.50  | CONGLOMERATE                                                                                                                                                                                                                                                                                                                           | cong     | 1    | 0     | 0     | 2    | 026 | 391.78 | 392.50 | 0.72      | 1     | <0.5 | 0.473                                                           |
|        |         | Dabble pear conglemente: oblerite + corigite alteration                                                                                                                                                                                                                                                                                | Standard |      |       |       |      | 027 | 392.50 | 392.50 | 0.00      |       |      | 3.030                                                           |
|        |         | dominates with minor fuchsite. Unit is well stretched making                                                                                                                                                                                                                                                                           | congl    | 1    | 0     | 2     | 1    | 028 | 392.50 | 393.50 | 1.00      | tr    | -    | 0.043                                                           |
|        |         | pebbles very elongate or ribbon-like; felsic pebbles are slightly<br>more resistant to the stretching. Foliation angle of 65 deg tca.<br>Strong pyrite + aspy mineralization over first 8cm but quickly<br>diminishes to sporadic pyrite blebs                                                                                         | congl    | 1    | 0     | 0     | 1    | 029 | 393.50 | 394.50 | 1.00      | tr    | -    | 0.019                                                           |
|        |         | Standard 027 used CDN-GS-3H                                                                                                                                                                                                                                                                                                            |          |      |       |       |      |     |        |        |           |       |      |                                                                 |
| 394.50 | 397.25  | WACKE                                                                                                                                                                                                                                                                                                                                  | wacke    | 0    | 1     | 3     | 2    | 030 | 394.50 | 395.50 | 1.00      | tr    | -    | 0.011                                                           |
|        |         | The unit is a fining of the adjacent conglomerates to a well                                                                                                                                                                                                                                                                           | wacke    | 0    | 0     | 1     | 1    | 031 | 395.50 | 396.50 | 1.00      | tr    | -    | 0.002                                                           |
|        |         | banded and generally textureless chlorite + sericite schist.<br>Quartz porphyroblasts present over the first 45cm. Trace pyrite<br>as fine blebs.                                                                                                                                                                                      | wacke    | 1    | 0     | 3     | 0    | 032 | 396.50 | 397.25 | 0.75      | tr    | -    | 0.002                                                           |
| 397.25 | 405.65  | ARGILLITE                                                                                                                                                                                                                                                                                                                              | arg      | 0    | 0     | 4     | 0    | 033 | 397.25 | 398.25 | 1.00      | tr    | -    | 0.011                                                           |
|        |         | David finally hadded alles to mysley alightly allege by the service                                                                                                                                                                                                                                                                    | arg      | 0    | 0     | 3     | 0    | 034 | 398.25 | 399.25 | 1.00      | tr    | -    | 0.004                                                           |
|        |         | Dark finely bedded slits to muds; slightly slitler but becoming                                                                                                                                                                                                                                                                        | arg      | 0    | 0     | 2     | 0    | 035 | 399.25 | 400.25 | 1.00      | tr    | -    | 0.004                                                           |
|        |         | angles are 60 deg tes @ 200m and 45 deg tes @ 405m. Rede                                                                                                                                                                                                                                                                               | arg      | 0    | 0     | 2     | 0    | 036 | 400.25 | 401.25 | 1.00      | 0.5   | -    | 0.011                                                           |
|        |         | angles are 60 deg ica @ 59911 and 45 deg ica @ 405111. Beds                                                                                                                                                                                                                                                                            | Blank    |      |       |       |      | 037 | 401.25 | 401.25 | 0.00      |       |      | 0.001                                                           |
|        |         | carb stringers throughout with an exception from 404.60 to                                                                                                                                                                                                                                                                             | arg      | 0    | 0     | 4     | 0    | 038 | 401.25 | 402.25 | 1.00      | 0.5   | -    | 0.010                                                           |
|        |         | 405.35m that is cross-cut by approximately $45%$ white                                                                                                                                                                                                                                                                                 | arg      | 0    | 0     | 1     | 0    | 039 | 402.25 | 403.25 | 1.00      | 0.5   | -    | 0.018                                                           |
|        |         | quartz/carb stringers and veinlets from 2mm to 8mm in width                                                                                                                                                                                                                                                                            | arg      | 0    | 0     | 2     | 0    | 040 | 403.25 | 404.35 | 1.10      | 0.75  | -    | 0.014                                                           |
|        |         | These features are extensional gash fractures @ 63-65 deg tca<br>and cross-cut bedding at almost perpendicular angles. Barren<br>of mineralization.<br>Pyrite mineralization throughout averaging approx 0.5% as fine<br>blebs parallel to bedding generally associated with carbonate.<br>Extremely sharp lower contact @ 65 deg tca. | arg      | 0    | 0     | 8     | 0    | 041 | 404.35 | 405.65 | 1.30      | tr    | -    | 0.104                                                           |

| LOGGED | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                    |      | PRC  | OPER  | TY: O   | gden |     |        | ZON    | E: Thoma | s Ogd | en   | HOLE     | NO.: 1   | FOG-18   | -63    |        | Page 9 | of 9              |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|---------|------|-----|--------|--------|----------|-------|------|----------|----------|----------|--------|--------|--------|-------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                       | ROCK |      | Alt'ı | n Index |      |     |        | SAMF   | LES      |       |      |          |          |          | ASSA   | AYS    |        |                   |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                           | CODE | Carb | Alb   | %Qtz    | Ser  | No. | FROM   | то     | LENGTH   | %Py   | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%  | ) Zn (%) Ag (ppm) |
|        |         | 400.60 to 401.17m; ground section that likely represents a fault<br>-gravel type material with shards hosting significant pyrite<br>(ground pyrite seam)                                                                                                                                              |      |      |       |         |      |     |        |        |          |       |      |          |          |          |        |        |        |                   |
| 405.65 | 436.00  | ULTRAMAFICS                                                                                                                                                                                                                                                                                           | um   | 0    | 0     | 0       | 0    | 042 | 405.65 | 406.65 | 1.00     | -     | -    |          |          | 0.092    |        |        |        |                   |
|        |         | Typical softer unit of serp/talc altered ultramafics; more<br>competent and slightly harder to 425.50m becoming very<br>blocky. The unit has a pillow appearance below 414m but is<br>likely an alteration effect. Anastomosing serp seams become<br>more prevalent below 419m with alteration halos. |      |      |       |         |      |     |        |        |          |       |      |          |          |          |        |        |        |                   |

| PROPERTY:     | Ogden                | CLAIM NO.:     | HR938          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Lost water return very early near top of hole. Hole plugged |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|----------------------------------------------------------------------|
| HOLE NO.:     | NZ18-001             | LENGTH (m):    | 144.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | with rubber plug and casing remains, capped.                         |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5363278.000    | EASTING:       | 474760.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                                      |
| SECTION:      | N/A                  | ZONE:          | North Zone     | ELEVATION (m): | 308.000        | DRILLING COMPANY: Norex                     |                                                                      |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 360. / -45.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 13, 2018 TO Mar. 14, 2018 | Core Storage: Norex compound                                         |
| HOLE STARTED  | : March 12, 2018     | HOLE FINISHED: | March 13, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 9                                                          |

| METE | RAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK |      | Alt'n | 1 Index |     |     |       | SAM   | PLES   |     |      |                            | ASSAYS    | \$        |                    |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|---------|-----|-----|-------|-------|--------|-----|------|----------------------------|-----------|-----------|--------------------|
| FROM | ТО    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE | Carb | Alb   | %Qtz    | Ser | No. | FROM  | то    | LENGTH | %Py | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni | (%) Co (? | %) Zn (%) Ag (ppm) |
| 0.00 | 4.20  | OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |       |         |     |     |       |       |        |     |      |                            |           |           |                    |
|      |       | Downhole surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |       |         |     |     |       |       |        |     |      |                            |           |           |                    |
|      |       | 18m 2.3 azi, -44.9 dip<br>69m 3.0 azi, -45.0 dip<br>120m 5.2 azi, -45.1 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |       |         |     |     |       |       |        |     |      |                            |           |           |                    |
| 4.20 | 35.50 | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um   | 2    | 0     | 0       | 0   | 001 | 34.50 | 35.50 | 1.00   | -   | -    | 0.002                      |           |           |                    |
|      |       | <ul> <li>Black, soft, serp/talc altered unit with has been strained comprised of approx 30% white carbonate/serp stringers and veinlets at random but generally conform to foliation @ approx 70 deg tca. The carb material often contains clots of soft mint green serpentine within; the carb content slowly increases downhole as does deformation. Weak pervasive magnetism in upper portion of unit that appears to diminish as carb increases. At approx 28m is the first sign of rusty ankerite associated with breaks/seams. Numerous rusty natural fractures present below 2.93m. Due to the softness and weak nature of the serp rich rock, breaks are abundant. Upper section to 12m is extremely faulted with numerous seams of fine clay to sand gouge @ 45 degrees tca</li> <li>17.10 - 17.15m: gouge seam @ 60 deg tca</li> <li>27.93m and 28.08m: rusty ankerite altered fractures that might reflect groundwater movement</li> </ul> |      |      |       |         |     |     |       |       |        |     |      |                            |           |           |                    |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | PR   | OPEF  | RTY: O  | gden |     |       | ZON   | E: North Z | Zone |      | HOLE NO.: NZ18-001           | Page 2 of 9                         |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|---------|------|-----|-------|-------|------------|------|------|------------------------------|-------------------------------------|
| METE   | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROCK |      | Alt'  | n Index |      |     |       | SAMF  | PLES       |      |      | A                            | ASSAYS                              |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CODE | Carl | b Alk | %Qtz    | Ser  | No. | FROM  | то    | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) C | u (%) Ni (%) Co (%) Zn (%) Ag (ppm) |
|        |        | 28.97m: 1cm gouge seam @ 50 deg tca with coarse ankerite growth forming a 15cm halo bounding the structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |       |         |      |     |       |       |            |      |      | · · · · · · ·                |                                     |
| 35.50  | 40.70  | PORPHYRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | por  | 2    | 1     | 8       | 1    | 002 | 35.50 | 36.60 | 1.10       | 0.5  | -    | 0.002                        |                                     |
|        |        | Extremely silicous intrusive with approx 15-25% white feldenar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | por  | 2    | 1     | 3       | 1    | 003 | 36.60 | 37.70 | 1.10       | 0.5  | -    | 0.016                        |                                     |
|        |        | nhenocrysts that for the most part are overprinted by alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | por  | 2    | 1     | 1       | 1    | 004 | 37.70 | 38.70 | 1.00       | 0.5  | -    | 0.024                        |                                     |
|        |        | A soft rusty/areen/vellowish colouration throughout Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | por  | 1    | 0     | 4       | 0    | 005 | 38.70 | 39.70 | 1.00       | 0.5  | -    | 0.014                        |                                     |
|        |        | chlorite as fine flecks within the unit that decrease downhole.<br>Occasional green chlorite stringers and clots. Pervasive rusty<br>colouration in areas of breaks as ankerite alteration halos; clotty<br>ankerite growth in carb filled fractures as well in some quartz<br>veinlets. White quartz flooding as irregular knots in upper 80m;<br>white quartz veinlets from 1 to 4mm wide throughout unit with<br>thin tourmaline centers that are in areas of pervasive ankerite<br>alteration.<br>Disseminated pyrite throughout as fine to 1mm blebs averaging<br>approx 0.5%.<br>Upper and lower contacts @ 55 and 62 deg tca respectively | por  |      | 0     | -       | 0    |     | 55.76 | 40.70 | 1.00       | 0.0  |      | 0.012                        |                                     |
| 40.70  | 41.10  | ULTRAMAFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um   | 3    | 0     | 4       | 0    | 007 | 40.70 | 41.10 | 0.40       | -    | -    | 0.002                        |                                     |
|        |        | Extremely ankerite altered to 80% brown/rusty colouration; with white calcite; cut by late white quartz veinlets exhibiting 'z' folds; well foliated @ 65 deg tca. No visible sulphides.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |       |         |      |     |       |       |            |      |      |                              |                                     |
| 41.10  | 41.75  | QUARTZ VEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | qv   | 0    | 0     | 90      | 0    | 008 | 41.10 | 41.75 | 0.65       | -    | -    | 0.002                        |                                     |
|        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |       |         |      |     |       |       |            |      |      |                              |                                     |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                    |         | PR   | OPER  | TY: Og | gden |     |       | ZONE  | E: North Z | lone |      | HOLE NO.: NZ18-001 F                     | age 3 of 9             |
|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|--------|------|-----|-------|-------|------------|------|------|------------------------------------------|------------------------|
| METER  | AGE    |                                                                                                                                                                                                                                                                                       | ROCK    |      | Alt'n | Index  |      |     |       | SAMP  | LES        |      |      | ASSAYS                                   |                        |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                           | CODE    | Cark | o Alb | %Qtz   | Ser  | No. | FROM  | то    | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) | Co (%) Zn (%) Ag (ppm) |
|        |        | Upper 10cm is porphyry material followed by white quartz<br>veining containing irregular xenoliths of ankerite altered<br>ultramafics as well as xenoliths of grey carb altered ultramafics<br>from mid way down veining. Lower contact is irregular with no<br>distinct orientation. |         |      |       |        |      |     |       |       |            |      |      |                                          |                        |
| 41.75  | 58.00  | CARBONATE ALTERED ULTRAMAFICS                                                                                                                                                                                                                                                         | carb um | 3    | 0     | 3      | 0    | 009 | 41.75 | 43.00 | 1.25       | -    | -    | 0.002                                    |                        |
|        |        | Intensely strained ultramofics that exhibit a highly variable                                                                                                                                                                                                                         | carb um | 3    | 0     | 0      | 0    | 010 | 43.00 | 44.00 | 1.00       | -    | -    | 0.002                                    |                        |
|        |        | foliation as well as folds, kinks and cropulations that have been                                                                                                                                                                                                                     | carb um | 3    | 0     | 3      | 0    | 011 | 44.00 | 45.00 | 1.00       | tr   | -    | 0.039                                    |                        |
|        |        | cut by late mm scale clip planes. Grov carbonate alteration                                                                                                                                                                                                                           | Blank   |      |       |        |      | 012 | 45.00 | 45.00 | 0.00       |      |      | 0.002                                    |                        |
|        |        | dominates with sections of more vellowish/groop sericite as well                                                                                                                                                                                                                      | carb um | 3    | 0     | 1      | 1    | 013 | 45.00 | 46.00 | 1.00       | -    | -    | 0.135                                    |                        |
|        |        | as minor groop fuchsite locally. Slight increase in silicification                                                                                                                                                                                                                    | carb um | 3    | 0     | 1      | 1    | 014 | 46.00 | 47.00 | 1.00       | -    | -    | 0.024                                    |                        |
|        |        | between 41 75 and 44 50m. Unit has the zebra type striping as                                                                                                                                                                                                                         | carb um | 3    | 0     | 1      | 1    | 015 | 47.00 | 48.00 | 1.00       | -    | -    | 0.208                                    |                        |
|        |        | a result of carb stringers and veinlets that become grossly                                                                                                                                                                                                                           | carb um | 3    | 0     | 2      | 1    | 016 | 48.00 | 49.00 | 1.00       | -    | -    | 1.660                                    |                        |
|        |        | deformed and manaled below 51 20m                                                                                                                                                                                                                                                     | carb um | 3    | 0     | 2      | 1    | 017 | 49.00 | 50.00 | 1.00       | -    | -    | 0.947                                    |                        |
|        |        | Pyrite found locally: at 44 70m as coarse cubes to 5mm; also at                                                                                                                                                                                                                       | carb um | 3    | 0     | 2      | 1    | 018 | 50.00 | 51.00 | 1.00       | tr   | -    | 0.097                                    |                        |
|        |        | 50 90m as tiny blobs in sericite rich alteration adjacent to late                                                                                                                                                                                                                     | carb um | 3    | 0     | 2      | 0    | 019 | 51.00 | 52.00 | 1.00       | -    | -    | 0.018                                    |                        |
|        |        | quartz veinlet                                                                                                                                                                                                                                                                        | carb um | 3    | 0     | 2      | 0    | 020 | 52.00 | 53.00 | 1.00       | -    | -    | 0.022                                    |                        |
|        |        | Late white quartz veinlets and knots not uncommon throughout                                                                                                                                                                                                                          | carb um | 3    | 0     | 2      | 0    | 021 | 53.00 | 54.00 | 1.00       | -    | -    | 0.216                                    |                        |
|        |        | at random orientations: larger structures below                                                                                                                                                                                                                                       | carb um | 3    | 0     | 2      | 0    | 022 | 54.00 | 55.00 | 1.00       | -    | -    | 0.008                                    |                        |
|        |        | a random onomationo, largor otraditado bolow                                                                                                                                                                                                                                          | carb um | 3    | 0     | 2      | 0    | 023 | 55.00 | 56.00 | 1.00       | -    | -    | 0.002                                    |                        |
|        |        | 44 88 - 44 91m: 3cm quartz veinlet @ 3 deg tca                                                                                                                                                                                                                                        | carb um | 3    | 0     | 2      | 0    | 024 | 56.00 | 57.00 | 1.00       | -    | -    | 0.002                                    |                        |
|        |        |                                                                                                                                                                                                                                                                                       | carb um | 3    | 0     | 12     | 0    | 025 | 57.00 | 58.00 | 1.00       | -    | -    | 0.039                                    |                        |
|        |        | 50.54m: a natural break with very strong ankerite alt halo of 10cm<br>57.08m: white quartz vein @ 10 degrees tca with minor clotty ankerite along contact and 0.5% green wispy fuchsite within the                                                                                    |         |      |       |        |      |     |       |       |            |      |      |                                          |                        |
|        |        | vein; barren                                                                                                                                                                                                                                                                          |         |      |       |        |      |     |       |       |            |      |      |                                          |                        |

| LOGGE    | D BY: D.I | Heerema SIGNATURE:                                                  |          | PR  | OPER  | TY: Og | gden |     |       | ZON   | E: North Z | Zone |      | HOLE NO.: NZ18-00          | 1            | Page 4 of 9              |
|----------|-----------|---------------------------------------------------------------------|----------|-----|-------|--------|------|-----|-------|-------|------------|------|------|----------------------------|--------------|--------------------------|
| METE     | ERAGE     |                                                                     | ROCK     | T   | Alt'r | Index  |      | [   |       | SAM   | PLES       |      |      |                            | ASSAYS       |                          |
| FROM     | то        | DESCRIPTION                                                         | CODE     | Car | b Alb | %Qtz   | Ser  | No. | FROM  | то    | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | %) Co (%) Zn (%) Ag (ppn |
| 58.00    | 63.00     | FELSIC/INTERMEDIATE DIKING                                          | dk       | 1   | 0     | 2      | 0    | 026 | 58.00 | 59.00 | 1.00       | 0.5  | -    | 0.026                      |              |                          |
|          |           | Sharp contacts with dark arey to black chill margins of 1-3cm       | dk       | 1   | 0     | 8      | 0    | 027 | 59.00 | 60.00 | 1.00       | 1    | -    | 0.283                      |              |                          |
|          |           | The dike is massive with a fish scale texture: composed of 35%      | Standard |     |       |        |      | 028 | 60.00 | 60.00 | 0.00       |      |      | 3.080                      |              |                          |
|          |           | interstitial chlorite around 50% grev guartz phenos and 15%         | dk       | 1   | 0     | 4      | 0    | 029 | 60.00 | 61.00 | 1.00       | 0.5  | -    | 0.022                      |              |                          |
|          |           | very fine interstitial albite. Cut by minor quartz stringers to 3mm | dk       | 1   | 0     | 10     | 0    | 030 | 61.00 | 62.00 | 1.00       | 0.5  | -    | 0.143                      |              |                          |
|          |           | as well as some larger extensional guartz/carb veinlets to 3cm      | um       | 3   | 0     | 5      | 0    | 031 | 62.00 | 62.44 | 0.44       | -    | -    | 0.032                      |              |                          |
|          |           | in width with white carb contacts and semi-transparent to white     | dk       | 1   | 0     | 15     | 0    | 032 | 62.44 | 63.00 | 0.56       | 0.5  | -    | 0.014                      |              |                          |
|          |           | quartz. Late quartz flooding increasing in abundance downhole       |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | with associated vellow/gold coloured carbonate.                     |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | Disseminated pyrite throughout at approx 0.5% with an increase      |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | locally associated with late quartz veining.                        |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           |                                                                     |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | 59.70m: irregularly oriented transecting quartz/carb veining that   |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | cross core @ 55 and 5 deg tca. The boundaries of these              |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | structures has a thin 1-3mm rind of chlorite and locally brown      |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | carb. Strong disseminated pyrite within the chlorite and carb       |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | rind but not in the veining itself.                                 |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           |                                                                     |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | Standard 028 used CDN-GS-3H                                         |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | 62.00 - 62.44m; ultramatic with ankerite alteration and late        |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | guartz/carb veining                                                 |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
|          |           | 1                                                                   |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |
| <u> </u> | 444 50    |                                                                     | um       | 2   | 0     | 1      | 0    | 022 | 63.00 | 64 10 | 1 10       | tr   |      | 0.000                      |              |                          |
| 63.00    | 111.50    | CARBONATE ALTERED ULTRAMAFICS                                       | Blank    | Z   | 0     | 1      | 0    | 033 | 64 10 | 64.10 | 0.00       | u    | -    | 0.002                      |              |                          |
|          |           | Quite variable unit of deformed and altered ultramafics ranging     | carb um  | 2   | 0     | 9      | 0    | 035 | 64 10 | 65.20 | 1 10       | _    | -    | 0.002                      |              |                          |
|          |           | from soft serp/talc to harder pervasively olive green/fuchsite      | carb um  | 3   | 0     | 0      | 0    | 036 | 65.20 | 66.30 | 1.10       | -    | _    | 0.002                      |              |                          |
|          |           | altered material with sections of rusty ankerite alteration. Upper  | um/av    | 2   | 0     | 80     | 0    | 037 | 66.30 | 66.85 | 0.55       | -    | -    | 0.002                      |              |                          |
|          |           | 1.3m is more typical serp/talc altered material that has 75%        | carb um  | 3   | 0     | 10     | 0    | 038 | 66.85 | 67.60 | 0.75       | -    | -    | 0.002                      |              |                          |
|          |           | carbonate banding (zebra texture) before becoming olive green       | um/av    | 2   | 0     | 85     | 0    | 039 | 67.60 | 68.70 | 1.10       | -    | -    | 0.002                      |              |                          |
|          |           | carbonate altered with weak to moderate silicification locally      | carb um  | 3   | 0     |        | 0    | 040 | 68.70 | 69.70 | 1.00       |      | 1    | 0.002                      |              |                          |
|          |           | showing evidence of strong deformation. Numerous dark slip          | carb um  | 3   | 0     | 5      | 0    | 041 | 69.70 | 70.85 | 1.15       | -    | -    | 0.002                      |              |                          |
|          |           | planes at approx 80 deg tca showing upto 5mm movement as            | carb um  | 3   | 0     | 0      | 0    | 042 | 70.85 | 72.00 | 1.15       | -    | -    | 0.002                      |              |                          |
|          |           |                                                                     |          |     |       |        |      |     |       |       |            |      |      |                            |              |                          |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                   |          | PR   | OPER  | TY: Og | gden |     |        | ZON    | E: North Z | Ione |      | HOLE NO.: NZ18-001 Page 5 of 9                       |              |
|--------|--------|----------------------------------------------------------------------|----------|------|-------|--------|------|-----|--------|--------|------------|------|------|------------------------------------------------------|--------------|
| METER  | AGE    |                                                                      | ROCK     |      | Alt'n | Index  |      |     |        | SAMF   | PLES       |      |      | ASSAYS                                               |              |
| FROM   | то     | DESCRIPTION                                                          | CODE     | Carl | o Alb | %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn ( | (%) Ag (ppm) |
|        |        | seen by truncated and offset quartz veinlets between 64.20 and       | carb um  | 3    | 0     | 0      | 0    | 043 | 72.00  | 73.00  | 1.00       | -    | -    | 0.002                                                |              |
|        |        | 69m. Best exposure around 66.15m. Between the slip planes            | carb um  | 3    | 0     | 0      | 0    | 044 | 73.00  | 74.00  | 1.00       | -    | -    | 0.002                                                |              |
|        |        | is small scale folding of alteration (drag folds?). Foliation of the | carb um  | 3    | 0     | 0      | 0    | 045 | 74.00  | 75.00  | 1.00       | -    | -    | 0.002                                                |              |
|        |        | unit is @ 80 deg tca at 66m, @ 30 deg tca by 69.30m, parallel        | carb um  | 3    | 0     | 3      | 0    | 046 | 75.00  | 76.00  | 1.00       | 0.25 | -    | 0.022                                                |              |
|        |        | tca @ 72m and 60 deg tca @ 81m.                                      | carb um  | 3    | 0     | 3      | 0    | 047 | 76.00  | 77.00  | 1.00       | <0.5 | -    | 0.002                                                |              |
|        |        |                                                                      | carb um  | 3    | 0     | 7      | 0    | 048 | 77.00  | 78.00  | 1.00       | tr   | -    | 0.007                                                |              |
|        |        | 64.57 - 64.73m: irregular quartz/carb flooding; moderate ankerite    | carb um  | 3    | 0     | 2      | 0    | 049 | 78.00  | 79.00  | 1.00       | -    | -    | 0.032                                                |              |
|        |        |                                                                      | carb um  | 3    | 0     | 5      | 0    | 050 | 79.00  | 80.00  | 1.00       | -    | -    | 0.138                                                |              |
|        |        | 66.50 - 66.85m: white quartz veining with irregular contacts;        | Standard |      |       |        |      | 051 | 80.00  | 80.00  | 0.00       |      |      | 2.650                                                |              |
|        |        | hosting 2% clotty ankerite and irregular shards of ultramafics;      | carb um  | 3    | 0     | 13     | 0    | 052 | 80.00  | 81.00  | 1.00       | -    | -    | 0.002                                                |              |
|        |        | barren of sulphides                                                  | carb um  | 3    | 0     | 8      | 0    | 053 | 81.00  | 82.20  | 1.20       | 0.25 | -    | 0.121                                                |              |
|        |        |                                                                      | carb um  | 3    | 0     | 4      | 0    | 054 | 82.20  | 83.45  | 1.25       | tr   | -    | 0.110                                                |              |
|        |        | 67.60 - 67.90m: quartz/ankerite vein; lower 6cm is 30% coarse        | fuch     | 3    | 0     | 50     | 0    | 055 | 83.45  | 84.45  | 1.00       | -    | -    | 0.007                                                |              |
|        |        | ankerite; upper section contains xenoliths of extremely silicous     | fuch     | 3    | 0     | 10     | 0    | 056 | 84.45  | 85.45  | 1.00       | -    | -    | 0.175                                                |              |
|        |        | um's                                                                 | Blank    |      |       |        |      | 057 | 85.45  | 85.45  | 0.00       |      |      | 0.002                                                |              |
|        |        |                                                                      | fuch     | 3    | 0     | 10     | 0    | 058 | 85.45  | 86.45  | 1.00       | -    | -    | 0.513                                                |              |
|        |        | 68.20 - 68.70m: white quartz veining @ approx 70 deg tca;            | fuch     | 3    | 0     | 12     | 0    | 059 | 86.45  | 87.45  | 1.00       | -    | -    | 0.022                                                |              |
|        |        | wavy contacts; approx 4% fine to clotty ankerite; local              | fuch     | 3    | 0     | 15     | 0    | 060 | 87.45  | 88.45  | 1.00       | -    | -    | 0.091                                                |              |
|        |        | crenulated hairline tourmaline fracture; barren                      | fuch     | 3    | 0     | 4      | 0    | 061 | 88.45  | 89.45  | 1.00       | tr   | -    | 0.006                                                |              |
|        |        |                                                                      | fuch     | 3    | 0     | 6      | 0    | 062 | 89.45  | 90.45  | 1.00       | -    | -    | 0.023                                                |              |
|        |        | Below 68.70m the unit consists mainly of olive green and grey        | carb um  | 3    | 0     | 11     | 0    | 063 | 90.45  | 91.45  | 1.00       | tr   | -    | 0.002                                                |              |
|        |        | carbonate with minor chlorite; intruded heavily by late white        | carb um  | 3    | 0     | 2      | 0    | 064 | 91.45  | 92.45  | 1.00       | -    | -    | 0.008                                                |              |
|        |        | quartz/carb stringers to veinlets ranging from 2mm to 5cm in         | carb um  | 2    | 0     | 3      | 1    | 065 | 92.45  | 93.45  | 1.00       | -    | -    | 0.028                                                |              |
|        |        | width; thinner veinlets are generally subparallel to foliation       | carb um  | 2    | 0     | 1      | 2    | 066 | 93.45  | 94.45  | 1.00       | -    | -    | 0.093                                                |              |
|        |        | where as the larger features are at random orientations;             | carb um  | 2    | 0     | 3      | 2    | 067 | 94.45  | 95.45  | 1.00       | -    | -    | 0.833                                                |              |
|        |        | extensional fractures with a coulombs texture within; occasional     | carb um  | 2    | 0     | 2      | 2    | 068 | 95.45  | 96.45  | 1.00       | -    | -    | 0.059                                                |              |
|        |        | break with approx 10cm rusty halos; strong deformation               | carb um  | 2    | 0     | 1      | 2    | 069 | 96.45  | 97.45  | 1.00       | tr   | -    | 0.002                                                |              |
|        |        | Trace pyrite at best with exception of 75.74 to 76.38m that          | carb um  | 2    | 0     | 10     | 2    | 070 | 97.45  | 98.45  | 1.00       | -    | -    | 0.077                                                |              |
|        |        | contains approx 1.5% finely disseminated pyrite; the sulphide        | carb um  | 2    | 0     | 0      | 3    | 071 | 98.45  | 99.45  | 1.00       | tr   | -    | 0.002                                                | i            |
|        |        | bearing material is truncated by slips and late quartz veinlets.     | carb um  | 2    | 0     | 5      | 1    | 072 | 99.45  | 100.45 | 1.00       | -    | -    | 0.193                                                | i            |
|        |        | Weak pyrite mineralization in the area of 77.60m.                    | Blank    |      |       |        |      | 073 | 100.45 | 100.45 | 0.00       |      |      | 0.002                                                |              |
|        |        |                                                                      | carb um  | 3    | 0     | 5      | 0    | 074 | 100.45 | 101.45 | 1.00       | tr   | -    | 0.009                                                |              |
|        |        | From 83.45 to 90.57m is a fuchsite zone of basically 50-70%          | carb um  | 3    | 0     | 2      | 0    | 075 | 101.45 | 102.45 | 1.00       | tr   | -    | 0.005                                                |              |
|        |        | tuchsite with minor grey carb, minor sericite locally and            | carb um  | 3    | 0     | 2      | 0    | 076 | 102.45 | 103.45 | 1.00       | tr   | -    | 0.038                                                |              |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | PR   | OPEF  | RTY: O  | gden |     |        | ZONE   | E: North 2 | Zone |      | HOLE NO.: NZ18-001                | Page 6 of 9                   |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|---------|------|-----|--------|--------|------------|------|------|-----------------------------------|-------------------------------|
| METER  | AGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCK    |      | Alt'  | n Index |      |     |        | SAMP   | LES        |      |      | ASS                               | AYS                           |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODE    | Cark | b Alk | o %Qtz  | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) | Ni (%) Co (%) Zn (%) Ag (ppm) |
|        |        | abundant quartz veining. Dark green coarser-grained clots of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | carb um | 3    | 0     | 3       | 1    | 077 | 103.45 | 104.45 | 1.00       | 0.25 | -    | 0.149                             |                               |
|        |        | fuchsite in areas of quartz flooding; and a soft green in areas of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | carb um | 2    | 0     | 2       | 1    | 078 | 104.45 | 105.45 | 1.00       | tr   | -    | 0.002                             |                               |
|        |        | less quartz. Quartz veining as semi-transparent to white quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | carb um | 3    | 0     | 0       | 0    | 079 | 105.45 | 106.45 | 1.00       | -    | -    | 0.002                             |                               |
|        |        | with white carbonate along boundaries. Quartz anastomosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | carb um | 2    | 0     | 7       | 2    | 080 | 106.45 | 107.45 | 1.00       | tr   | -    | 0.002                             |                               |
|        |        | but generally at shallow angles tca. The fuchsite has a direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | carb um | 3    | 0     | 1       | 0    | 081 | 107.45 | 108.45 | 1.00       | tr   | -    | 0.002                             |                               |
|        |        | relationship to the quartz/silica flooding. Quartz veining as high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | carb um | 3    | 0     | 2       | 0    | 082 | 108.45 | 109.45 | 1.00       | tr   | -    | 0.009                             |                               |
|        |        | as 50% over intervals to 1m. Extremely foliated with local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | carb um | 3    | 0     | 6       | 1    | 083 | 109.45 | 110.45 | 1.00       | tr   | -    | 0.291                             |                               |
|        |        | waviness. Trace pyrite within a quartz veinlet at 88.88m. Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | carb um | 3    | 0     | 5       | 0    | 084 | 110.45 | 111.50 | 1.05       | tr   | -    | 0.038                             |                               |
|        |        | carb/weak sericite section from 84.26 to 86.80m with two 20cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | patches of fuchsite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | Silica flooded section from 89.30 to 89.60m with a break and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | ankerite alteration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | 90.45 -90.57m: quartz vein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | From 90.57 to 100.00m is a section of stronger sericite<br>alteration with a soft yellow/soft beige colouration to most of the<br>unit. Minor green fuchsite as well as grey carb and minor<br>chlorite; well foliated to banded @ 35-40 deg tca; the sericite<br>alteration is fairly pervasive cut by bands and seams of fuchsite<br>and grey carb; slips planes evident; late quartz as thin<br>crenulated veinlets to 4mm and larger more linear veinlets to<br>9cm. Pyrite mineralization present in trace quantities slight<br>increase locally. |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |        | Below 100.00m the unit is mainly olive green carbonate with gradational sericitic patches; unit contains the highly contorted and irregular white carb stringers and veinlets to 45% of unit. Well formed and variable foliation. Pyrite mineralization in trace quantity with exception of a few short intervals with upto 1% fine disseminations associated with more sericitic patches; 104.10 - 104.50m approx 1% fine pyrite                                                                                                                      |         |      |       |         |      |     |        |        |            |      |      |                                   |                               |

| LOGGED | BY: D.ł | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                 |          | PR   | OPER  | TY: O | gden |     |        | ZONE   | E: North Z | Ione |      | HOLE NO.: NZ18-00          | 1           | Page 7 of 9  | I.             |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-------|------|-----|--------|--------|------------|------|------|----------------------------|-------------|--------------|----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                    | ROCK     |      | Alt'r | Index |      |     |        | SAMP   | LES        |      |      |                            | ASSAYS      |              |                |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                        | CODE     | Carl | b Alb | %Qtz  | Ser  | No. | FROM   | ТО     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni ( | (%) Co (%) Z | n (%) Ag (ppm) |
| 111.50 | 115.14  | INTERMEDIATE DIKE?                                                                                                                                                                                                                                                                                                                 | dk       | 1    | 1     | 4     | 0    | 085 | 111.50 | 112.50 | 1.00       | 2    | -    | 1.290                      | •           | <u> </u>     | ·              |
|        |         | Once hand events rich white an election of 45 500/ fine events                                                                                                                                                                                                                                                                     | dk       | 1    | 1     | 10    | 0    | 086 | 112.50 | 113.50 | 1.00       | 2    | -    | 1.040                      |             |              | -              |
|        |         | Grey nard quartz-rich unit consisting of 45-50% fine grey quartz                                                                                                                                                                                                                                                                   | Standard |      |       |       |      | 087 | 113.50 | 113.50 | 0.00       |      |      | 0.460                      |             |              |                |
|        |         | phenos with approx 25% line interstitial abite and 25% line                                                                                                                                                                                                                                                                        | dk       | 1    | 1     | 1     | 0    | 088 | 113.50 | 114.40 | 0.90       | 2    | -    | 0.750                      |             |              |                |
|        |         | texture. Sharp upper and lower contacts @ 32 and 47 deg tca<br>respectively. Weak to moderate yellow carb alteration locally.<br>Unit cut by approx 7-8% quartz/carb stringers and veinlets<br>ranging from mm to 2cm in size and 35 to 45 deg tca. Locally<br>boudined.<br>Fine to locally blebby pyrite throughout at approx 2%. | dk       | 1    | 1     | 3     | 0    | 089 | 114.40 | 115.14 | 0.74       | 2.5  | -    | 0.002                      |             |              |                |
| 115.14 | 122.90  | Standard 087 used HGS1 CARBONATE ALTERED ULTRAMAFICS                                                                                                                                                                                                                                                                               | carb um  | 3    | 0     | 1     | 0    | 090 | 115.14 | 116.00 | 0.86       |      |      | 0.072                      |             |              |                |
| 110.11 | 122.00  |                                                                                                                                                                                                                                                                                                                                    | carb um  | 2    | 0     | 2     | 2    | 091 | 116.00 | 117.00 | 1.00       | 0.5  | -    | 0.002                      |             |              |                |
|        |         | Similar to uphole with olive green carbonate and blonder                                                                                                                                                                                                                                                                           | carb um  | 2    | 0     | 4     | 2    | 092 | 117.00 | 118.00 | 1.00       | 0.25 | -    | 0.010                      |             |              |                |
|        |         | sericitic patches; evidence of stronger deformation here with                                                                                                                                                                                                                                                                      | carb um  | 2    | 0     | 3     | 2    | 093 | 118.00 | 119.00 | 1.00       | tr   | -    | 0.002                      |             |              |                |
|        |         | tighter folding and slip planes with left-lateral mm-scale offsets;                                                                                                                                                                                                                                                                | carb um  | 2    | 0     | 2     | 2    | 094 | 119.00 | 120.00 | 1.00       | -    | -    | 0.002                      |             |              |                |
|        |         | strong presence of thin white carb bands within the darker carb                                                                                                                                                                                                                                                                    | carb um  | 3    | 0     | 6     | 0    | 095 | 120.00 | 120.60 | 0.60       | -    | -    | 0.002                      |             |              |                |
|        |         | alteration; sericitic sections are slightly more silicous and                                                                                                                                                                                                                                                                      | Blank    |      |       |       |      | 096 | 120.60 | 120.60 | 0.00       |      |      | 0.002                      |             |              |                |
|        |         | contain far less carb stringers. Very strong foliation that is quite                                                                                                                                                                                                                                                               | qv       | 1    | 0     | 98    | 0    | 097 | 120.60 | 121.00 | 0.40       | -    | -    | 0.002                      |             |              |                |
|        |         | variable and shallows to sub-parallel to a by 120m.                                                                                                                                                                                                                                                                                | carb um  | 3    | 0     | 50    | 0    | 098 | 121.00 | 122.00 | 1.00       | -    | -    | 0.002                      |             |              |                |
|        |         | 1%. Section from 116.60 to 117.00m contains approx 1% pyrite<br>Late anastomosing white quartz/carb veining present and more<br>abundant deeper in unit to 45% between 120.10 and 122.90m.<br>120.60 to 121.00m: quartz/carb vein @ approx 70 deg tca<br>-white to rusty coloured containing 25% clotty ankerite                   | carb um  | 3    | 0     | 20    | 0    | 099 | 122.00 | 122.90 | 0.90       | -    | -    | 0.011                      |             |              |                |
|        |         | -cut by late semi-transparent quartz<br>121.35 to 121.87m: 80% quartz with angular xenoliths of carb                                                                                                                                                                                                                               |          |      |       |       |      |     |        |        |            |      |      |                            |             |              |                |

| LOGGED | ) BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                 |      | PR   | OPER  | TY: O   | gden |     |        | ZON    | E: North Z | Zone |      | HOLE NO.: NZ18-001                | Page 8 of 9                   |
|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|---------|------|-----|--------|--------|------------|------|------|-----------------------------------|-------------------------------|
| METE   | RAGE      |                                                                                                                                                                                                                                                                                                    | ROCK |      | Alt'r | n Index |      |     |        | SAMF   | PLES       |      |      | ASSA                              | YS                            |
| FROM   | ТО        | DESCRIPTION                                                                                                                                                                                                                                                                                        | CODE | Carl | b Alb | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) | Ni (%) Co (%) Zn (%) Ag (ppm) |
|        |           | um                                                                                                                                                                                                                                                                                                 |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
| 122.90 | 123.87    | PORPHYRY                                                                                                                                                                                                                                                                                           | por  | 0    | 0     | 2       | 0    | 100 | 122.90 | 123.87 | 0.97       | 0.25 | -    | 0.002                             |                               |
|        |           | Extremely silicous with a moderate porphyry texture hosting<br>approximately 25% white plag phenos; very soft pinkish hue;<br>fine dust like chlorite and black hairline filled fractures. Weak<br>pyritization. Cut by few semi-transparent quartz with white carb<br>forming a coulombs texture. |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           | 123.25 - 123.36m: foliated ultramafics                                                                                                                                                                                                                                                             |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
| 123.87 | 124.47    | ULTRAMAFICS                                                                                                                                                                                                                                                                                        | um   | 2    | 0     | 45      | 0    | 101 | 123.87 | 124.47 | 0.60       | -    | -    | 0.030                             |                               |
|        |           | Green carb and chlorite altered ultramafics.                                                                                                                                                                                                                                                       |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           | 124.00 - 124.20m: quartz/carb vein with strong beige/brown albitization                                                                                                                                                                                                                            |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
| 124.47 | 124.95    |                                                                                                                                                                                                                                                                                                    | dk   | 0    | 0     | 1       | 0    | 102 | 124.47 | 124.95 | 0.48       | 0.5  | -    | 0.002                             |                               |
|        |           | Same as dike above. Sharp contacts @ 52 and 20 deg tca.                                                                                                                                                                                                                                            |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           |                                                                                                                                                                                                                                                                                                    |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           |                                                                                                                                                                                                                                                                                                    |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           |                                                                                                                                                                                                                                                                                                    |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |
|        |           |                                                                                                                                                                                                                                                                                                    |      |      |       |         |      |     |        |        |            |      |      |                                   |                               |

#### METALS CREEK RESOURCES

| LOGGED | BY: D.I | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | PRC  | OPER  | TY: Og | gden |     |        | ZONE   | E: North Z | Ione |      | HOLE NO.: NZ18-00          | 1            | Page 9 of 9               |
|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|--------|------|-----|--------|--------|------------|------|------|----------------------------|--------------|---------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK |      | Alt'n | Index  |      |     |        | SAMP   | LES        |      |      |                            | ASSAYS       |                           |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE | Carb | Alb   | %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | %) Co (%) Zn (%) Ag (ppm) |
| 124.95 | 144.00  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um   | 0    | 0     | 2      | 0    | 103 | 124.95 | 126.00 | 1.05       | -    | -    | 0.307                      |              |                           |
|        |         | Darker and softer unit of serpentine/talc alteration; serp/talc increases downhole; well foliated from 25 to 45 deg tca. White carbonate stringers and bands common with local boudins.<br>136.33 to 136.87m: felsic diking squeezed in basically parallel to foliation; irregular and wavy contact with evidence of boudinaging; very fine-grained, silicous with a purplish/beige colouration; hosts approx 1-1.5% fine disseminated pyrite; true width approx 3cm. | f.dk | 0    | 1     | 0      | 0    | 104 | 136.33 | 136.87 | 0.54       | 1    | -    |                            |              |                           |

Printed: April-27-18

| PROPERTY:     | Ogden                | CLAIM NO.:     | HR938          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Hole plugged with a rubber plug. Casing remains and capped. |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|----------------------------------------------------------------------|
| HOLE NO .:    | NZ18-002             | LENGTH (m):    | 138.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                |                                                                      |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5363278.000    | EASTING:       | 474794.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                                      |
| SECTION:      | N/A                  | ZONE:          | North Zone     | ELEVATION (m): | 310.000        | DRILLING COMPANY: Norex                     |                                                                      |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 360. / -47.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 19, 2018 TO Mar. 20, 2018 | Core Storage: Norex compound                                         |
| HOLE STARTED  | ): March 14, 2018    | HOLE FINISHED: | March 15, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 5                                                          |

| METE | RAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROCK |      | Alt'n Index |       |     |      | SAMP | LES    |      |      |                            | ASSAYS    | 5        |                     |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------------|-------|-----|------|------|--------|------|------|----------------------------|-----------|----------|---------------------|
| FROM | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CODE | Carb | Alb %Qt     | z Ser | No. | FROM | то   | LENGTH | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni | i (%) Co | (%) Zn (%) Ag (ppm) |
| 0.00 | 6.50  | OVERBURDEN<br>Downhole surveys<br>15m 358.8 azi, -46.1 dip<br>66m 0.2 azi, -46.6 dip<br>120m 0.7 azi, -46.8 dip                                                                                                                                                                                                                                                                                                                                                                  |      |      | 4           | K     |     | Z    | /    |        | >    |      |                            |           |          |                     |
| 6.50 | 9.85  | INTERMEDIATE DIKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I.Dk |      | 2           |       | 001 | 6.50 | 7.50 | 1.00   | 1    | -    | 0.016                      |           |          |                     |
|      |       | Fine grained massive gravite legally pink dike besting                                                                                                                                                                                                                                                                                                                                                                                                                           | I.Dk |      | 3           |       | 002 | 7.50 | 8.60 | 1.10   | 1.25 | -    | 0.034                      |           |          |                     |
|      |       | approximately 1% fine disseminated to locally blebby pyrite.<br>The dike is mainly greyish/pink in colour composed of approx<br>50-55% green chlorite; very fine-grained pink felsic patches with<br>moderately sharp contacts are silicous, range in size from 3cm<br>to 30cm in length and contain coarser sulphides.<br>Unit has been cut by late white quartz veinlets (<1cm) that have<br>subsequently cut and offset by chloritic slip planes (right lateral<br>movement). | I.Dk |      | 2           |       | 003 | 8.60 | 9.85 | 1.25   | 1    | -    | 0.185                      |           |          |                     |
| 9.85 | 71.30 | ULTRAMAFICS<br>Dark green/bluish unit of serp/talc altered ultramafics, soft and<br>showing moderate strain that increases over the last 6m of unit.<br>The rocks contain approx 35% white carb/serp stringers<br>generally oriented parallel to foliation but locally anastomosing.<br>Extremely soft mint green serp present as clots and knots within<br>the carb stringers.<br>For the most part the rocks are fairly competent with only local                              |      |      |             |       |     |      |      |        |      |      |                            |           |          |                     |

| LOGGED       | BY: D. | .Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | PRO  | PERT         | ΓY: Οg        | gden |     |      | ZON       | IE: North Z    | Zone |      | HOLE     | NO.: N   | Z18-00   | 2              | I            | Page 2 of | 5               |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------|---------------|------|-----|------|-----------|----------------|------|------|----------|----------|----------|----------------|--------------|-----------|-----------------|
| METE         | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCK |      | Alt'n        | Index         |      |     |      | SAM       | PLES           |      |      |          |          |          | ASSA           | YS           |           |                 |
| FROM         | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CODE | Carb | Alb          | %Qtz          | Ser  | No. | FROM | то        | LENGTH         | %Py  | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%)         | Ni (%)       | Co (%)    | Zn (%) Ag (ppm) |
| METE<br>FROM | TO     | DESCRIPTION         areas of faulting.         Trace pyrite mineralization.         Local patches of strong magnetism in upper 12m of unit.         15.00 to 29.35m: increased fracturing with sections of definitive faulting         15.00 to 19.45m: fault @ approx 45-55 deg tca         -6cm of remnant clay gouge at 18m and drillers note 2.6ft of ground and washed rock         20.30 to 20.60m: fault with minor gouge         23.15 to 23.60m: fault @ 60 deg tca         28.40 to 28.55m: fault @ 75 deg tca         29.07 to 29.30m: fault @ 65 deg tca         57.00 to 57.85m: fault @ 90 deg tca?? Fine poker chip material that might be drill induced | CODE | Carb | Alt'n<br>Alb | Index<br>%Qtz | Ser  | No. | FROM | SAM<br>TO | PLES<br>LENGTH | %Py  | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | ASSA<br>Cu (%) | YS<br>Ni (%) | Co (%)    | Zn (%) Ag (ppm) |
|              |        | 62.35 to 62.46m: quartz/carb vein<br>65.00 to 65.07m: quartz/carb vein<br>69.63 and 69.73m: breaks with rusty ankerite staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |              |               |      |     |      |           |                |      |      |          |          |          |                |              |           |                 |
|              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |              |               |      |     |      |           |                |      |      |          |          |          |                |              |           |                 |

| OGGED | ) BY: D. | Heerema                   | SIGNATURE:                                   |          | PRO  | OPER | TY: O   | gden |     |        | ZONI   | E: North Z | Zone  |      | HOLE NO.: NZ18-002         | <u>)</u>     | Page 3 of | 5               |
|-------|----------|---------------------------|----------------------------------------------|----------|------|------|---------|------|-----|--------|--------|------------|-------|------|----------------------------|--------------|-----------|-----------------|
| METE  | RAGE     |                           |                                              | ROCK     |      | Alt' | n Index |      |     |        | SAMF   | PLES       |       |      |                            | ASSAYS       |           |                 |
| FROM  | то       | 1 [                       | DESCRIPTION                                  | CODE     | Carb | Alb  | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py   | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | %) Co (%) | Zn (%) Ag (ppm) |
| 71.30 | 82.93    | PORPHYRY                  |                                              | por      | •    |      | 2       |      | 004 | 71.30  | 72.30  | 1.00       | 0.5   | -    | 0.002                      |              | <u> </u>  | ·               |
|       |          | Maasiya welt of alliague  | -                                            | por      |      |      | 2       |      | 005 | 72.30  | 73.30  | 1.00       | 0.5   | -    | 0.002                      |              |           |                 |
|       |          | Massive unit of silicous  | guanz-nch porphyry. Unit consists of         | por      |      |      | 3       |      | 006 | 73.30  | 74.30  | 1.00       | 0.5   | -    | 0.254                      |              |           |                 |
|       |          | approximately 40% qua     | x 5% while play phenocrysis, 20%             | por      |      |      | 1       |      | 007 | 74.30  | 75.30  | 1.00       | 0.5   | -    | 0.592                      |              |           |                 |
|       |          | a dull porvegive rugty/o  | x 5% carb + pyrite. The unit starts on as    | por      |      |      | 3       |      | 800 | 75.30  | 76.30  | 1.00       | 0.5   | -    | 0.191                      |              |           |                 |
|       |          | a duil pervasive rusty/o  | colour before gradationally                  | por      |      |      | 1       |      | 009 | 76.30  | 77.30  | 1.00       | 0.5   | -    | 0.009                      |              |           |                 |
|       |          | arov/black chlorito strip | colouration (Saussuntization?). Dark         | por      |      |      | 1       |      | 010 | 77.30  | 78.30  | 1.00       | 0.5   | -    | 0.117                      |              |           |                 |
|       |          | yeinlet                   | igers/fractures. Occasional late quartz      | por      |      |      | 1       |      | 011 | 78.30  | 79.30  | 1.00       | 0.5   | -    | 0.022                      |              |           |                 |
|       |          | Fine to 2mm subbodral     | I to subodral pyrite throughout sveraging    | por      |      |      | 1       |      | 012 | 79.30  | 80.30  | 1.00       | 0.5   | -    | 0.030                      |              |           |                 |
|       |          |                           |                                              | por      |      |      | 1       |      | 013 | 80.30  | 81.30  | 1.00       | 0.5   | -    | 0.450                      |              |           |                 |
|       |          | Very blocky unit becom    | ning slightly more competent as it           | Blank    |      |      |         |      | 014 | 81.30  | 81.30  | 0.00       |       |      | 0.002                      |              |           |                 |
|       |          | becomes greener in co     |                                              | por      |      |      | 1       |      | 015 | 81.30  | 82.30  | 1.00       | 0.5   | -    | 0.017                      |              |           |                 |
|       |          | Sharn contacts at annu    | ox 15 and 80 deg toa                         | por      |      |      | 1       |      | 016 | 82.30  | 82.93  | 0.63       | 0.5   | -    | 0.040                      |              |           |                 |
|       |          |                           |                                              |          |      |      |         |      |     |        |        |            |       |      |                            |              |           |                 |
| 82.93 | 109.65   | CARBONATE ALTERI          | ED ULTRAMAFICS                               | carb um  | 3    | 0    | 50      | 0    | 017 | 82.93  | 84.00  | 1.07       | tr    | -    | 0.002                      |              |           |                 |
|       |          | Extromoly strained unit   | with immonse shortening with ovidence        | carb um  | 3    | 0    | 10      | 0    | 018 | 84.00  | 85.00  | 1.00       | tr    | -    | 0.073                      |              |           |                 |
|       |          | of tight cropulations and | d numerous slip planes. The unit             | carb um  | 3    | 0    | 20      | 0    | 019 | 85.00  | 86.00  | 1.00       | tr    | -    | 0.031                      |              |           |                 |
|       |          | consists of variable am   | ounte of fuchsite, olive groop carb          | carb um  | 3    | 0    | 22      | 0    | 020 | 86.00  | 87.00  | 1.00       | tr    | -    | 0.002                      |              |           |                 |
|       |          | chlorite sericite and lo  | cal ankerite. Entire unit has been cut or    | carb um  | 3    | 0    | 8       | 1    | 021 | 87.00  | 88.00  | 1.00       | <0.25 | -    | 0.182                      |              |           |                 |
|       |          | flooded by variable and   | ounts of late white quartz veining also      | carb um  | 3    | 0    | 5       | 2    | 022 | 88.00  | 89.00  | 1.00       | <0.25 | -    | 0.328                      |              |           |                 |
|       |          | nouced by variable and    | ounts of late write quartz verifing also.    | carb um  | 3    | 0    | 5       | 2    | 023 | 89.00  | 90.00  | 1.00       | tr    | -    | 0.153                      |              |           |                 |
|       |          | 82 93 to approx 84 75n    | n is a section of darker chlorite alteration | carb um  | 3    | 0    | 1       | 2    | 024 | 90.00  | 91.00  | 1.00       | tr    | -    | 0.007                      |              |           |                 |
|       |          | agining some fuchsite     | deeper into the interval From 83 20 to       | carb um  | 3    | 0    | 2       | 2    | 025 | 91.00  | 92.00  | 1.00       | tr    | -    | 0.002                      |              |           |                 |
|       |          | 83 60m is a section of (  | 60% white quartz hosting small angular       | Standard |      |      |         |      | 026 | 92.00  | 92.00  | 0.00       |       |      | 2.760                      |              |           |                 |
|       |          | shards of chlorite as we  | ell as some clotty brown ankerite            | carb um  | 3    | 0    | 0.5     | 2    | 027 | 92.00  | 93.00  | 1.00       | tr    | -    | 0.032                      |              |           |                 |
|       |          | Shards of chieffic as we  |                                              | carb um  | 3    | 0    | 0.5     | 2    | 028 | 93.00  | 94.00  | 1.00       | tr    | -    | 0.066                      |              |           |                 |
|       |          | From 84 75 to 88 20m      | is a fuchsite-rich interval cut by approx    | carb um  | 3    | 0    | 2       | 2    | 029 | 94.00  | 95.00  | 1.00       | 0.25  | -    | 0.200                      |              |           |                 |
|       |          | 35% quartz: sections of   | f the interval are less deformed and         | carb um  | 3    | 0    | 4       | 2    | 030 | 95.00  | 96.00  | 1.00       | 0.5   | -    | 1.680                      |              |           |                 |
|       |          | show pervasive fuchsit    | e and a moderate fabric and slightly         | carb um  | 3    | 0    | 8       | 2    | 031 | 96.00  | 97.00  | 1.00       | tr    | -    | 1.130                      |              |           |                 |
|       |          | more pyrite mineralizat   | ion where as other sections of the           | carb um  | 3    | 0    | 60      | 1.5  | 032 | 97.00  | 98.00  | 1.00       | tr    | -    | 0.420                      |              |           |                 |
|       |          | interval show tremendo    | ous strain and moderate mylonitic fabric     | carb um  | 3    | 0    | 13      | 0    | 033 | 98.00  | 99.00  | 1.00       | -     | -    | 0.019                      |              |           |                 |
|       |          | 85.75 to 86 36m is 85%    | 6 guartz flooding with a massive vein        | carb um  | 3    | 0    | 4       | 0    | 034 | 99.00  | 100.00 | 1.00       | -     | -    | 0.002                      |              |           |                 |
|       |          |                           |                                              | carb um  | 3    | 0    | 4       | 0    | 035 | 100.00 | 101.00 | 1.00       | tr    | -    | 0.015                      |              |           |                 |

#### METALS CREEK RESOURCES

| LOGGED | BY: D | .Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |         | PRO  | OPER  | TY: O   | gden |     |        | ZON    | E: North 2 | Zone  |      | HOLE NO.: NZ18-002         | 2 Page 4 of 5                      |
|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|------|-------|---------|------|-----|--------|--------|------------|-------|------|----------------------------|------------------------------------|
| METE   | RAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | ROCK    | ]    | Alt'r | n Index |      |     |        | SAMF   | PLES       |       |      |                            | ASSAYS                             |
| FROM   | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | CODE    | Carb | Alb   | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py   | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) Co (%) Zn (%) Ag (pr |
|        |       | from 86.08 to 86.36m;                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    | carb um | 3    | 0     | 2       | 0    | 036 | 101.00 | 102.00 | 1.00       | <0.25 | -    | 0.002                      |                                    |
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | Blank   |      |       |         |      | 037 | 102.00 | 102.00 | 0.00       |       |      | 0.002                      |                                    |
|        |       | 87.37m: a break with strong rusty halo and pervasive                                                                                                                                                                                                                                                                                                                                                                              | yellowish                                                          | carb um | 3    | 0     | 0       | 0    | 038 | 102.00 | 103.00 | 1.00       | 0.25  | -    | 0.010                      |                                    |
|        |       | sericite/carb alteration over next 20cm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | carb um | 3    | 0     | 2       | 0    | 039 | 103.00 | 104.00 | 1.00       | 0.25  | -    | 0.002                      |                                    |
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | carb um | 3    | 0     | 2       | 0    | 040 | 104.00 | 105.00 | 1.00       | tr    | -    | 0.005                      |                                    |
|        |       | From 88.20 to 97.37m the unit consists mainly of dark                                                                                                                                                                                                                                                                                                                                                                             | <                                                                  | carb um | 3    | 0     | 3       | 1    | 041 | 105.00 | 106.00 | 1.00       | tr    | -    | 0.010                      |                                    |
|        |       | green/black chlorite and light brown/yellowish                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | carb um | 3    | 0     | 2       | 1    | 042 | 106.00 | 107.00 | 1.00       | -     | -    | 0.002                      |                                    |
|        |       | sericite/carbonate; approx 85% sericite/carb with 15%                                                                                                                                                                                                                                                                                                                                                                             | 6 black                                                            | carb um | 3    | 0     | 4       | 0    | 043 | 107.00 | 108.00 | 1.00       | -     | -    | 0.006                      |                                    |
|        |       | stringers and bands parallel to foliation; immense squ                                                                                                                                                                                                                                                                                                                                                                            | leezing as                                                         | carb um | 3    | 0     | 14      | 0    | 044 | 108.00 | 108.85 | 0.85       | -     | -    | 0.002                      |                                    |
|        |       | seen in the tight crenulations and folds throughout as<br>numerous slip planes showing mm to 1cm scale slips<br>foliation at approx 90 degrees tca with slips often para<br>seen best between 95.40 and 96.00m. Pyrite minera<br>throughout as fine disseminations as well as local are<br>poorly formed pyrite stringers. Quartz veinlets preser<br>strongest from 88.20 to 90.00m before becoming very<br>occasional to 96.30m. | well as<br>; tight<br>allel tca as<br>lization<br>eas of<br>nt but | carb um | 3    | 0     | 8       | 0    | 045 | 108.85 | 109.65 | 0.80       | -     | -    | 0.066                      |                                    |

97.37 to 97.55m: quartz vein with irregular contacts containing 10% xenoliths of sericite/carb altered material

From 97.55 to 109.65m is a section of dark olive green and grey carbonate; occasional patches of yellower carb/sericite; <1mm specks of gold coloured carbonate speckled upto 2-3% locally; well foliated with dark chloritic slip planes; folds and crenulations present; fine to coarser cubic pyrite random; white quartz/carb veinlets strongest to 100m at approx 25% of interval. From there they are sporadic. Foliation generally shallowing downhole.

108.04 to 108.14m: white quartz/carb vein @ 55 deg tca

Standard 026 used HGS1

### METALS CREEK RESOURCES

| LOGGED | D BY: D.Heerema SIGNATURE: |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                          |      | PROP | ERT     | Y: Og | gden |     |        | ZON    | E: North Z | Zone |      | HOLE     | NO.: NZ18   | 3-002   |             | Page {    | 5 of 5   |          |
|--------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|-------|------|-----|--------|--------|------------|------|------|----------|-------------|---------|-------------|-----------|----------|----------|
| METE   | RAGE                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                          | ROCK |      | Alt'n l | Index |      |     |        | SAMF   | PLES       |      |      |          |             |         | ASSAYS      |           |          |          |
| FROM   | то                         |                                                                                                                                                                                                                                             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              | CODE | Carb | Alb     | %Qtz  | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) | Pt (g/t) Au | (g/t) ( | Cu (%) Ni ( | (%) Co (° | %) Zn (% | Ag (ppm) |
| 109.65 | 138.00                     | ULTRAMAFICS                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          | um   |      |         |       |      | 046 | 109.65 | 110.65 | 1.00       | -    | -    |          | (           | 0.002   |             |           |          |          |
|        |                            | Softer unit of folia<br>colour with 20-259<br>at very shallow co<br>downhole. Occas<br>mylonitic fabric.<br>110.73 to 110.87r<br>-fine-grained with<br>-cubic pyrite throu<br>111.60m: a tiny pi<br>-appears the hole<br>one side of the co | ted and serp/talc altered; dark green/black<br>% white carb stringers and knots; well foliated<br>bre angles at top of unit but slowly steepens<br>sional fold evident as well as areas of slight<br>n: fine-grained porphyry dike @ 28 deg tca<br>a beige colouration<br>ighout at 2%<br>ecce of porphyry material (8cm x 3cm)<br>just nicked the edge of the dike as its only on<br>re | dk   |      |         |       |      | 047 | 110.65 | 110.90 | 0.25       | 2    | -    |          |             | 0.054   |             |           |          |          |

Printed: April-27-18

# <u>k</u>

# DIAMOND DRILL CORE LOGGING SHEET

| PROPERTY:     | Ogden                | CLAIM NO.:     | HR1008         |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Casing remains and capped. Rubber plug pushed to 33m. |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|----------------------------------------------------------------|
| HOLE NO .:    | OG18-042             | LENGTH (m):    | 192.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                |                                                                |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5363023.000    | EASTING:       | 474796.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                                |
| SECTION:      | SZ_660W              | ZONE:          | South Zone     | ELEVATION (m): | 300.000        | DRILLING COMPANY: Norex                     |                                                                |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 359. / -50.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 09, 2018 TO Mar. 10, 2018 | Core Storage: Norex compound                                   |
| HOLE STARTED  | ): March 08, 2018    | HOLE FINISHED: | March 09, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 8                                                    |

| METE  | RAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROCK |      | Alt | t'n Inde | ×      |       |    |       | SAM   | PLES   |      |      |                            | ASSAYS       |              |                |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|----------|--------|-------|----|-------|-------|--------|------|------|----------------------------|--------------|--------------|----------------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CODE | Carb | Alt | b %Q     | ≀tz Se | er No | о. | FROM  | то    | LENGTH | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | ») Co (%) Zn | 1 (%) Ag (ppm) |
| 0.00  | 22.50 | OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
|       |       | Dowhnhole surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
|       |       | 33m 1 azi, -51.3 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
|       |       | 84m 1.6 azi, -51.6 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
|       |       | 135m 3.8 azi, -51.1 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
|       |       | 186m 5.6 azi, -51.3 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |
| 22.50 | 76.63 | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | um   | 2    | 0   | 10       | 1      | I 00  | 01 | 75.63 | 77.63 | 2.00   | 0.25 | -    | 0.087                      |              |              |                |
|       |       | Deep green serp/talc altered unit with sections of more olive<br>green carbonate; soft to scratch; strong shallow foliation that<br>steepens downhole from approx 25-40 deg tca to 65-70 deg tca<br>by bottom of unit; local med-grained spinifex evident.<br>White to rusty coloured carbonate stringers, veinlets and seams<br>throughout at variable angles; often showing folds, strong<br>crenulations and boudins; approx 50:50 white and rusty carb;<br>some apple green serp along contacts with these features;<br>comprise approx 25% of the unit.<br>Fairly fractured unit with some faulting<br>22.50 to 24.00m: fault at 10 degrees tca<br>-essentially all gouge<br>26.85 to 27.00m: fault gouge with shards of um<br>35.30 to 36.70m: narrow 0.5 to 2cm seams of serpentine as<br>shears at 5-10 degrees tca |      |      |     |          |        |       |    |       |       |        |      |      |                            |              |              |                |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | PRO  | OPER  | TY: Og  | gden |     |       | ZONI  | E: South 2 | Zone |      | HOLE NO.: OG18-042            | Page 2 of 8                       |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|---------|------|-----|-------|-------|------------|------|------|-------------------------------|-----------------------------------|
| METE   | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCK |      | Alt'ı | n Index |      |     |       | SAMF  | PLES       |      |      | A                             | SSAYS                             |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CODE | Carb | Alb   | %Qtz    | Ser  | No. | FROM  | то    | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu | (%) Ni (%) Co (%) Zn (%) Ag (ppm) |
|        |        | Last 8cm is well carbonate altered to a beige colouration with trace pyrite; a 3cm section adjacent to it has minor quartz flooding with fine pyrite mineralization at 3%.                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |       |         |      |     |       |       |            |      |      |                               |                                   |
| 76.63  | 80.60  | FELSIC DIKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f.dk | 0    | 1     | 3       | 1    | 002 | 76.63 | 77.63 | 1.00       | 2.5  | -    | 0.096                         |                                   |
|        |        | Very fine-grained unit with a soft pink to dull grey colouration:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f.dk | 0    | 1     | 2       | 1    | 003 | 77.63 | 78.63 | 1.00       | 1.5  | -    | 0.064                         |                                   |
|        |        | slight brownish hue locally: mineralized by fine-grained to 2mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f.dk | 0    | 1     | 3       | 1    | 004 | 78.63 | 79.63 | 1.00       | 2    | -    | 0.199                         |                                   |
|        |        | cubic pyrite averaging approximately 2% throughout. The<br>slightly more silicous sections are pinker and contain slightly<br>more pyrite. Unit cross-cut by thin to 2cm semi-transparent to<br>white quartz/carb stringers and veinlets; thin chloritic slips<br>appear to truncate and off-set the quartz features on a mm-<br>scale.<br>Upper and lower contacts extremely sharp @ 60 and 32 deg tca<br>respectively<br>A few breaks with fe-carb staining<br>77.40 to 77.75m: ground core that have been drill induced<br>-angular shards 2 to 4cm in size<br>-Fe-carb staining on 60% of material | LUK  | 0    |       | 0       |      |     | 79.03 | 50.00 | 0.97       | 2.0  | -    | 0.160                         |                                   |
| 80.60  | 82.50  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | um   | 2    | 0     | 27      | 0    | 006 | 80.60 | 81.60 | 1.00       | tr   | -    | 0.009                         |                                   |
|        |        | Olive green carbonate with minor fuchsite; well foliated; intruded<br>by white qtz/carb veinlets over upper 1.10m showing evidence<br>of folds; trace rustiness associated with the carbonate; remnant<br>spinifex at 81.65m.<br>Trace pyrite at best<br>Rubbly lower contact                                                                                                                                                                                                                                                                                                                          |      |      |       |         |      |     |       |       |            |      |      |                               |                                   |

| OGGED | BY: D. | .Heerema SIGNATURE:                                                |          | PRO  | OPER  | TY: Og | gden |     |        | ZONE   | E: South Z | Zone |      | HOLE NO.: OG18-04          | 2           | Page 3 of 8      |            |
|-------|--------|--------------------------------------------------------------------|----------|------|-------|--------|------|-----|--------|--------|------------|------|------|----------------------------|-------------|------------------|------------|
| METE  | RAGE   |                                                                    | ROCK     |      | Alt'r | Index  |      |     |        | SAMP   | LES        |      |      |                            | ASSAYS      |                  |            |
| FROM  | то     | DESCRIPTION                                                        | CODE     | Carb | o Alb | %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni ( | (%) Co (%) Zn (% | Ag (ppm)   |
| 82.50 | 148.10 | AMYGDULOIDAL BASALTS                                               | vol      | 0    | 0     | 2      | 0    | 007 | 105.35 | 106.35 | 1.00       | tr   | -    | 0.017                      | •           | <u> </u>         | . <u> </u> |
|       |        | Light group your find grained valageing that appear to be          | min z    | 0    | 1     | 10     | 0    | 800 | 106.35 | 106.56 | 0.21       | 10   | 1    | 1.490                      |             |                  |            |
|       |        | Light green very line-grained voicanics that appear to be          | vol      | 0    | 0     | 2      | 0    | 009 | 106.56 | 107.56 | 1.00       | tr   | -    | 0.005                      |             |                  |            |
|       |        | possible pillows. The unit contains cream coloured/dark grey       | vol      | 0    | 0     | 5      | 0    | 010 | 107.56 | 108.56 | 1.00       | tr   | -    | 0.004                      |             |                  |            |
|       |        | quartz amygoules from smin to 6min in true width. Some of the      | vol      | 0    | 0     | 1.5    | 0    | 011 | 108.56 | 109.56 | 1.00       | tr   | -    | 0.010                      |             |                  |            |
|       |        | amygoules have qualiz centers infined with the line cream          | vol      | 0    | 0     | 1      | 0    | 012 | 109.56 | 110.08 | 0.52       | 0.5  | tr   | 0.300                      |             |                  |            |
|       |        | cementation. This darker anygoute free areas likely represent      | Blank    |      |       |        |      | 013 | 110.08 | 110.08 | 0.00       |      |      | 0.002                      |             |                  |            |
|       |        | Fillow Selvages.                                                   | vol      | 0    | 0     | 2      | 0    | 014 | 110.08 | 110.90 | 0.82       | tr   | -    | 0.379                      |             |                  |            |
|       |        | guite common throughout over 15cm areas: filled with grov          | min z    | 0    | 2     | 10     | 1    | 015 | 110.90 | 111.20 | 0.30       | 5    | 1    | 2.380                      |             |                  |            |
|       |        | smokov quartz; goporally @ 65.75 dog too; locally contain          | vol      | 0    | 0     | 0      | 0    | 016 | 111.20 | 112.20 | 1.00       | tr   | -    | 0.040                      |             |                  |            |
|       |        | sinokey qualiz, generally @ 03-75 deg ica, locally contain         | vol      | 0    | 0     | 0      | 0    | 017 | 112.00 | 113.25 | 1.25       | tr   | -    | 0.045                      |             |                  |            |
|       |        | pymone                                                             | vol      | 0    | 0     | 0      | 0    | 018 | 113.25 | 114.33 | 1.08       | tr   | -    | 0.004                      |             |                  |            |
|       |        | Soveral mineralized/alteration zones exist and are broken out      | min z    | 0    | 1     | 12     | 1    | 019 | 114.33 | 115.40 | 1.07       | 4    | 0.5  | 0.684                      |             |                  |            |
|       |        | separately below: some of these zones have poorly developed        | min z    | 0    | 2     | 10     | 1    | 020 | 115.40 | 116.50 | 1.10       | 7    | 1.5  | 2.670                      |             |                  |            |
|       |        | alteration but consist more of strong pyrite $\pm/2$ arsonopyrite: | vol      | 0    | 0     | 8      | 0    | 021 | 116.50 | 117.50 | 1.00       | 0.5  | tr   | 0.101                      |             |                  |            |
|       |        | alteration generally consists of bleaching and extremely fine-     | vol      | 0    | 0     | 2      | 0    | 022 | 117.50 | 119.00 | 1.50       | -    | -    | 0.015                      |             |                  |            |
|       |        | areined cream coloured albitization                                | vol      | 0    | 0     | 1      | 0    | 023 | 119.00 | 120.50 | 1.50       | -    | -    | 0.177                      |             |                  |            |
|       |        |                                                                    | vol      | 0    | 0     | 5      | 0    | 024 | 120.50 | 122.00 | 1.50       | tr   | -    | 0.002                      |             |                  |            |
|       |        | 90.80 to 90.90m; intermediate dike @ 50 deg to a                   | vol      | 0    | 0     | 2      | 0    | 025 | 122.00 | 123.00 | 1.00       | tr   | -    | 0.015                      |             |                  |            |
|       |        |                                                                    | Standard |      |       |        |      | 026 | 123.00 | 123.00 | 0.00       |      |      | 2.980                      |             |                  |            |
|       |        | 97 70m: irregular semi-transparent guartz veinlet @ 40 deg tca     | vol      | 0    | 0     | 3      | 0    | 027 | 123.00 | 124.00 | 1.00       | 0.25 | -    | 0.050                      |             |                  |            |
|       |        | -chlorite along contacts with cubic pyrite                         | min z    | 0    | 1     | 8      | 1    | 028 | 124.00 | 124.40 | 0.40       | 6    | 1    | 5.540                      |             |                  |            |
|       |        | -clotty calcite                                                    | vol      | 0    | 0     | 1      | 0    | 029 | 124.40 | 125.00 | 0.60       | 0.5  | -    | 0.044                      |             |                  |            |
|       |        | -cut by hairline carb stringers                                    | vol      | 0    | 0     | 1      | 0    | 030 | 125.00 | 126.50 | 1.50       | tr   | -    | 0.007                      |             |                  |            |
|       |        |                                                                    | vol      | 0    | 0     | 1      | 0    | 031 | 126.50 | 128.00 | 1.50       | tr   | -    | 0.004                      |             |                  |            |
|       |        | 99.36 to 100.04m; intermediate dike @ 42 and 5 degrees toa         | vol      | 0    | 0     | 1      | 0    | 032 | 128.00 | 129.50 | 1.50       | tr   | -    | 0.006                      |             |                  |            |
|       |        | resp                                                               | vol      | 0    | 0     | 1      | 0    | 033 | 129.50 | 131.00 | 1.50       | tr   | -    | 0.008                      |             |                  |            |
|       |        | -lower contact shows extensional dilation that has been filled by  | vol      | 0    | 0     | 0      | 0    | 034 | 131.00 | 132.00 | 1.00       | tr   | -    | 0.005                      |             |                  |            |
|       |        | rimmed by orange k-spar and filled by guartz                       | vol      | 0    | 0     | 0      | 0    | 035 | 132.00 | 133.00 | 1.00       | 1    | -    | 0.008                      |             |                  |            |
|       |        | -angular shard of host vol within the guartz and rimmed by         | vol      | 0    | 0     | 0      | 0    | 036 | 133.00 | 134.05 | 1.05       | tr   | -    | 0.025                      |             |                  |            |
|       |        | orange k-spar                                                      | Blank    |      |       |        |      | 037 | 134.05 | 134.05 | 0.00       |      |      | 0.001                      |             |                  |            |
|       |        |                                                                    | min z    | 0    | 2     | 6      | 1    | 038 | 134.05 | 134.52 | 0.47       | 2.5  | tr   | 2.060                      |             |                  |            |
|       |        | 101.88 to 102.07m: intermediate dike @ 45 and 25 dea tca resp      | vol      | 0    | 0     | 0      | 0    | 039 | 134.52 | 135.10 | 0.58       | tr   | -    | 0.040                      |             |                  |            |
|       |        | -similar appearance and texture as dike above                      | min z    | 0    | 1     | 8      | 1    | 040 | 135.10 | 135.90 | 0.80       | 4.5  | 1    | 1.250                      |             |                  |            |

| LOGGED              | BY: D. | Heerema SIGNATURE:                                                  |       | PRC  | OPER  | ΓY: Og | gden |     |        | ZON    | E: South Z | Zone |      | HOLE NO.: OG18-04          | 12 1          | Page 4 of 8           |
|---------------------|--------|---------------------------------------------------------------------|-------|------|-------|--------|------|-----|--------|--------|------------|------|------|----------------------------|---------------|-----------------------|
| METE                | RAGE   |                                                                     | ROCK  |      | Alt'n | Index  |      |     |        | SAM    | PLES       |      |      |                            | ASSAYS        |                       |
| METERAGE<br>FROM TO |        | DESCRIPTION                                                         | CODE  | Carb | Alb   | %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) | Co (%) Zn (%) Ag (ppm |
|                     |        | -massive pyrite stringer 1-6mm wide at upper contact                | vol   | 0    | 0     | 0      | 0    | 041 | 135.90 | 137.30 | 1.40       | tr   | -    | 0.092                      |               |                       |
|                     |        | -brecciated and healed fault structure at upper contact             | min z | 0    | 1     | 2      | 1    | 042 | 137.30 | 138.08 | 0.78       | 1.5  | tr   | 1.680                      |               |                       |
|                     |        |                                                                     | vol   | 0    | 0     | 0      | 0    | 043 | 138.08 | 139.00 | 0.92       | tr   | -    | 0.019                      |               |                       |
|                     |        | 106.35 to 106.56m: mineralized zone @ 52 deg tca                    | VOI   | 0    | 0     | 0      | 0    | 044 | 139.00 | 140.00 | 1.00       | -    | -    | 0.010                      |               |                       |
|                     |        | -soft mauve/brownish colour                                         |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -mod albitization containing 10% pyrite + 1-2% arsenopyrite         |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -snalp contacts                                                     |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | along upper contact of veinlet                                      |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        |                                                                     |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | 109.96 to 110.08m: weakly altered and mineralized                   |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -gradational contacts with approximately 2% pyrite + trace aspy     |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | 110.90 to 111.20m: mineralized zone @ 70 deg tca                    |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -center 10cm is mod to strongly albitized with weak sericite        |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | hosting 5% pyrite and 1% arsenopyrite                               |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -upper 10cm is heavily quartz flooded                               |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -lower 10cm the alteration decreases gradationally and              |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | mineralization bleeds out                                           |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | 114.33 to 116.50m: altered/mineralized zone                         |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | -upper 45cm has more patchy alteration and mineralized seams        |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | before becoming a pervasive albitized and mineralized zone;         |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | extremely fine albite/sericite alt to a soft creamy colour that has |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | been brecciated and intruded by thin mm-scale grey/white            |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | smokey quartz and carb veiniets; unit has been cut by late          |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | qualiz/carb verniers that post-date other qualiz and are            |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | mineralization: the mineralization is located with the brecciated   |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | alteration consisting of pyrite and arsenopyrite at approx 5:1      |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | ratio; averaging approx 5% pyrite and 1% arsenopyrite with          |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | sections as high as 15%                                             |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | Late quartz/chlorite veining from 114.99 to 115.16m as well         |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        | 116.50 to 116.55m (5cm true width @ 15 deg tca.                     |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |
|                     |        |                                                                     |       |      |       |        |      |     |        |        |            |      |      |                            |               |                       |

| LOGGE  | DBY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | PRO  | )PER  | TY: O | gden |     |      | Z  | ONE: South | Zone |      | HOLE N   | NO.: OG18      | -042   | 2            | Pag   | e 5 of 8    |          |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|------|-----|------|----|------------|------|------|----------|----------------|--------|--------------|-------|-------------|----------|
| METE   | ERAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROCK |      | Alt'n | Index |      |     |      | SA | MPLES      |      |      |          |                | -      | ASSAYS       |       |             |          |
| FROM   | то      | TO DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Carb | Alb   | %Qtz  | Ser  | No. | FROM | Т  | O LENGTH   | %Py  | %Ars | Pd (g/t) | Pt (g/t) Au (g | g/t) C | Cu (%) Ni (' | %) Co | o (%) Zn (% | Ag (ppm) |
|        |         | <ul> <li>124.00 to 124.40m: mineralized zone @ 70 deg tca</li> <li>-center 10cm is moderately ser/alb altered hosting 6% pyrite and 1% arsenopyrite with alteration and mineralization decreasing away</li> <li>-narrow 5cm quartz veinlet from 124.34 to 124.34m</li> <li>134.05 to 134.52m: mineralized zone @ 70 deg tca</li> <li>-moderate albitization to a soft cream/mauve locally</li> <li>-approx 2-3% pyrite + trace arsenopyrite</li> <li>-alteration increases throughout zone downhole to sharp contact</li> <li>135.10 to 135.90m: mineralized/alteration zone @ 65 deg tca</li> <li>-moderately developed alteration zone with moderate contacts; grey/beige colouration; fine albitization hosting approximately 4-5% fine pyrite and ~1% arsenopyrite</li> <li>137.30 to 137.46, 137.66 to 137.81 and 137.97 to 138.08m: mineralized zones with weak to moderate albitization and weaker pyrite and arsenopyrite mineralization averaging approximately 2%</li> <li>Standard 026 used HGS1</li> </ul> |      |      |       |       |      |     |      |    |            |      |      |          |                |        |              |       |             |          |
| 148.10 | 152.45  | ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      |       |       |      |     |      |    |            |      |      |          |                |        |              |       |             |          |
|        |         | Darker green and slightly coarser-grained; foliated; a narrow section of flow top breccia between 150.98 and 151.07m. Weak tuffacous texture downhole from this breccia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |       |       |      |     |      |    |            |      |      |          |                |        |              |       |             |          |
| 152.45 | 167.45  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |       |       |      |     |      |    |            |      |      |          |                |        |              |       |             |          |

| LOGGED | GGED BY: D.Heerema SIGNATURE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | PR             | OPEF  | RTY: C | )gden |     |        | ZONE     | E: South 2 | Zone |          | HOLE NO.: OG18-042 Page 6 of 8           |                          |  |  |  |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|--------|-------|-----|--------|----------|------------|------|----------|------------------------------------------|--------------------------|--|--|--|
| METE   | RAGE                          | ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROCK     | CK Alt'n Index |       |        |       | Τ   |        | SAMPLES  |            |      |          | ASSAYS                                   |                          |  |  |  |
| FROM   | то                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CODE     | Car            | b Al' | b %Qtz | Ser   | No. | FROM   | то       | LENGTH     | %Py  | %Ars     | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) | ) Co (%) Zn (%) Ag (ppm) |  |  |  |
|        |                               | Deep green/bluish/black soft unit of well foliated and strained<br>serp/talc altered ultramafics; strong presence of white and rust<br>carb stringers and bands at approx 20-25% of unit.<br>Unit non-magnetic except for a strongly magnetic section from<br>157.80 to 159.45m where strong pervasive magnetism exists<br>156.93 to 157.80m and 159.45 to 159.70m: intermediate diking<br>-approx 50% mafics and 50% pinkish feldspar<br>-disseminated pyrite                                                   |          |                |       |        |       | ·   |        | <u>.</u> | <u> </u>   |      | <u>.</u> | · · · · ·                                |                          |  |  |  |
| 167.45 | 180.35                        | ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and      | 0              | 0     | 0      | 0     | 045 | 179.35 | 180.35   | 1.00       | -    | -        | 0.057                                    |                          |  |  |  |
|        |                               | Moderate to dark green; massive and unfoliated; cut by approx 5-7% thin white quartz/carb extensional fractures; sharp contact adjacent mineralized zone.                                                                                                                                                                                                                                                                                                                                                        |          |                |       |        |       |     |        |          |            |      |          |                                          |                          |  |  |  |
| 180.35 | 183.25                        | MINERALIZED ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | min z    | 2              | 0     | 30     | 2     | 046 | 180.35 | 180.90   | 0.55       | 10   | 1        | 2.070                                    |                          |  |  |  |
|        |                               | This mineralized is beterogeneous and covers four different                                                                                                                                                                                                                                                                                                                                                                                                                                                      | min z    | 0              | 0     | 8      | 0     | 047 | 180.90 | 181.35   | 0.45       | 12   | -        | 1.390                                    |                          |  |  |  |
|        |                               | protoliths: andesite, graphitic argillite, greywacke and                                                                                                                                                                                                                                                                                                                                                                                                                                                         | min z    | 1              | 3     | 3      | 0     | 048 | 181.35 | 182.35   | 1.00       | 13   | tr       | 0.335                                    |                          |  |  |  |
|        |                               | ultramafics. Below is a breakdown in better detail                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard |                |       |        |       | 049 | 182.35 | 182.35   | 0.00       |      |          | 1.450                                    |                          |  |  |  |
|        |                               | 180.35 to 180.90m is a section of sericite/albite and yellow<br>brown carbonate alteration that has been tremendously quartz<br>flooded with local clotty pink k-spar; sudden appearance of<br>foliation at 60-65 deg tca as seen in the wisps and bands of<br>sericite/albite and carbonate material. Fine quartz stringers and<br>tiny veinlets flood the unit brecciating the alteration; extremely<br>mineralized with pyrite at 10% and arsenopyrite at approx 1%.<br>Occasional 1-2mm clot of chalcopyrite | min z    | 3              | 0.5   | 35     | -     | 050 | 182.35 | 183.25   | 0.90       | 10   | 2        | 0.393                                    |                          |  |  |  |

| LOGGED BY: D.Heerema SIGNATURE: |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROF | ERT  | Y: Og   | gden |     |     | ZON  | E: South 2 | Zone   |     | HOLE NO.: OG18-042 Page 7 of 8 |                            |              |                           |  |  |
|---------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|------|-----|-----|------|------------|--------|-----|--------------------------------|----------------------------|--------------|---------------------------|--|--|
| METERAGE                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCK | ]    | Alt'n l | ndex |     |     |      | SAMPLES    |        |     |                                |                            | ASSAYS       | S                         |  |  |
| FROM T                          | 0 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CODE | Carb | Alb     | %Qtz | Ser | No. | FROM | то         | LENGTH | %Py | %Ars                           | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (° | %) Co (%) Zn (%) Ag (ppm) |  |  |
|                                 |   | 180.90 to 181.35m is a mineralized graphitic argillite with core<br>angles of 70 deg tca; extremely fine-grained; upper 23cm is<br>very silicous with buff grey silica flooding amongst the black<br>unit; lower 22cm contains silicous/albitized and mineralized<br>xenoliths of adjacent downhole unit; xenoliths are of all shapes<br>up to 2cm in diameter with foliation warping around them. Late<br>barren white qtz/carb veining cutting center 2-3cm of interval<br>Extremely pyritized unit of argillite hosting approximately 12%<br>as fine disseminations. |      |      |         |      |     |     |      |            |        |     |                                |                            |              |                           |  |  |
|                                 |   | 181.35 to 182.35m is a pervasively albitized wacke unit to a peachy/greyish colour to 181.85m where more silicification becomes prominent; upper 20cm is cut by finely crystalized quartz/carb veining containing rafts of mineralized argillite. Unit cut by few off-white carb stringers; well mineralized interval of approximately 12-15% pyrite with minor arsenopyrite                                                                                                                                                                                            |      |      |         |      |     |     |      |            |        |     |                                |                            |              |                           |  |  |
|                                 |   | 182.25 to 183.35m is a carbonate-rich portion of ultramafic prololith with upper contact @ 30 deg tca; upper 40cm is sericite/fuchsite altered to a fine olive green colouration cut by approx 5-6% fine grey quartz veinlets; mineralized with 7-8% pyrite and approx 0.5% arsenopyrite. Lower 50cm is brilliant green fuchsite with approx 50% fine grey quartz veining with 3cm beige albitization clot at 182.85m. Extremely mineralized with pyrite and arsenopyrite at approx 10% and 2% respectively.                                                            |      |      |         |      |     |     |      |            |        |     |                                |                            |              |                           |  |  |
|                                 |   | Standard 049 used CDM-CN-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |      |     |     |      |            |        |     |                                |                            |              |                           |  |  |

#### METALS CREEK RESOURCES

| LOGGED BY: D.Heerema SIGNATURE: |        |                                                                                                                                                                                                                                                                                                              | PROPERTY: Ogden  |      |     |      |     |     |        |        | E: South 2 | Zone |      | HOLE NO.: OG18-042 Page 8 of 8                                  |  |  |  |
|---------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|-----|------|-----|-----|--------|--------|------------|------|------|-----------------------------------------------------------------|--|--|--|
| METERAGE                        |        |                                                                                                                                                                                                                                                                                                              | ROCK Alt'n Index |      |     |      |     |     |        | SAMP   | LES        |      |      | ASSAYS                                                          |  |  |  |
| FROM                            | то     |                                                                                                                                                                                                                                                                                                              |                  | Carb | Alb | %Qtz | Ser | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm) |  |  |  |
| 183.25                          | 185.30 | ULTRAMAFICS                                                                                                                                                                                                                                                                                                  | um               | 2    | 0   | 2    | 0   | 051 | 183.25 | 184.25 | 1.00       | 1.5  | tr   | 0.039                                                           |  |  |  |
|                                 |        | Well foliated ultramafics with olive green to grey carbonate<br>alteration; carbonate stringers and banding at approx 15%; late<br>white quartz flooding locally, especially over the last 45cm.<br>Pyrite mineralization disseminated throughout at approximately<br>1.5% with trace to minor arsenopyrite. | um               | 2    | 0   | 10   | 0   | 052 | 184.25 | 185.30 | 1.05       | 1.5  | tr   | 0.068                                                           |  |  |  |
| 185.30                          | 188.40 | FELDSPAR POPRHYRY                                                                                                                                                                                                                                                                                            | por              | 0    | 0   | 0    | 0   | 053 | 185.30 | 186.30 | 1.00       | 1    | -    | 0.101                                                           |  |  |  |
|                                 |        | Medium-grained, massive pinkish porphyry with approx 40%<br>subhedral white plag phenocrysts and 10% grey chlorite wisps.<br>Black chlorite along moderate fracturing. 1% finely<br>disseminated pyrite throughout.<br>Sharp upper contact @ 60 deg tca. Lower contact rubbly.                               |                  |      |     |      |     |     |        |        |            |      |      |                                                                 |  |  |  |
| 188.40                          | 192.00 | ULTRAMAFICS                                                                                                                                                                                                                                                                                                  |                  |      |     |      |     |     |        |        |            |      |      |                                                                 |  |  |  |
|                                 |        | Soft, dark and blocky. Serpentine/talc altered. Non-magnetic. Well foliated.                                                                                                                                                                                                                                 |                  |      |     |      |     |     |        |        |            |      |      |                                                                 |  |  |  |

Printed: April-27-18

| PROPERTY:     | Ogden                | CLAIM NO.:     | HR1008         |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Hole plugged and casing remains capped. |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|--------------------------------------------------|
| HOLE NO .:    | OG18-043             | LENGTH (m):    | 225.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                |                                                  |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5363064.000    | EASTING:       | 474736.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                  |
| SECTION:      | SZ_720W              | ZONE:          | South Zone     | ELEVATION (m): | 300.000        | DRILLING COMPANY: Norex                     |                                                  |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 359. / -59.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 11, 2018 TO Mar. 12, 2018 | Core Storage: Norex compound                     |
| HOLE STARTED  | ): March 09, 2018    | HOLE FINISHED: | March 11, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 8                                      |

| METE  | ERAGE |                                                                                                                                                                                                                                              | ROCK |      | Alt'n Ir | ndex |     |     |      |   | SAM | PLES      |       |      | ASSAYS         |              |        |        |           |          |  |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|------|-----|-----|------|---|-----|-----------|-------|------|----------------|--------------|--------|--------|-----------|----------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                  | CODE | Carb | Alb      | %Qtz | Ser | No. | FROM | N | то  | LENGT     | H %Py | %Ars | Pd (g/t) Pt (g | /t) Au (g/t) | Cu (%) | Ni (%) | Co (%) Zn | Ag (ppm) |  |
| 0.00  | 25.80 | OVERBURDEN                                                                                                                                                                                                                                   |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
|       |       | Downhole surveys                                                                                                                                                                                                                             |      |      |          |      |     |     |      |   | /   | $\bigcap$ | 1     |      |                |              |        |        |           |          |  |
|       |       | 36m 358.6 azi, -58.7 dip                                                                                                                                                                                                                     |      |      |          |      |     |     |      |   |     | ///       |       |      | -              |              |        |        |           |          |  |
|       |       | 87m 359.2 azi, -59.3 dip                                                                                                                                                                                                                     |      |      |          |      |     |     |      |   | 1/1 | M         |       |      |                |              |        |        |           |          |  |
|       |       | 138m 0.8 azi, -59.2 dip                                                                                                                                                                                                                      |      |      |          |      |     |     |      | A | \// |           |       |      |                |              |        |        |           |          |  |
|       |       | 189m 1.9 azi, -58.7 dip                                                                                                                                                                                                                      |      |      |          |      |     |     |      |   | C   |           |       |      |                |              |        |        |           |          |  |
| 25.80 | 33.00 |                                                                                                                                                                                                                                              |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           | -        |  |
| 20.00 | 00.00 |                                                                                                                                                                                                                                              |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
|       |       | Moderate green colouration with a slightly more felsic<br>composition; approx 10% creamy felds filled amygdules. Very<br>blocky unit showing strong pitting as a result of dissolved<br>minerals. Last 40cm appear to be in a brittle fault. |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
| 33.00 | 57.90 | ANDESITE<br>More mafic composition with a deeper green chloritic alteration;<br>fairly massive texture; extremely broken/blocky/faulted unit at<br>very shallow angle tca. Strong pitting as well as fine                                    |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
|       |       | cream/green feids/epi stringers.                                                                                                                                                                                                             |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
|       |       | fracture angles of 5-20 deg tca                                                                                                                                                                                                              |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
|       |       | 38.40 - 41.40m: extremely fractured to 3-5cm lengths of core with gravel material locally; fracturing @ approx 40-45 deg tca                                                                                                                 |      |      |          |      |     |     |      |   |     |           |       |      |                |              |        |        |           |          |  |
| METERAGE         DESCRIPTION         ROCK         APP Index         SAMPLES         ASSAYS           43.44 - 43.87m: fault @ 65 degree tca<br>usly with gravel gouge         43.44 - 43.87m; fault @ 65 degree tca<br>usly with gravel gouge         43.44 - 43.87m; fault @ 65 degree tca<br>usly with gravel gouge         45.30 - 47.97m is a section of increased silicification with<br>increased secondary quartz veinlets; extensional veining<br>forming weak voin arrays; trace pyrite         47.97 - 48.07m; white quartz veinlets; extensional veining<br>forming weak voin arrays; trace pyrite         70         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOGGED | BY: D.I        | Heerema SIGNATURE:                                                                                                                                           |       | PRO  | OPER | TY: O   | gden |     |        | ZONE   | E: South 2 | Zone |      | HOLE N   | O.: OG18-0       | 043      | Pa        | ige 2 of 8 |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|---------|------|-----|--------|--------|------------|------|------|----------|------------------|----------|-----------|------------|--------------|
| PROM         TO         DESCRIPTION           43.44 - 43.87m: fault @ 65 degree tca<br>-rusty with gravel gouge         43.44 - 43.87m: fault @ 65 degree tca<br>-rusty with gravel gouge         45.30 - 47.97m is a section of increased silicification with<br>increased secondary quartz velnels; extensional velning<br>forming weak vein array; trace pythe         47.97 - 48.07m: white quartz veln @ 45 deg tca           47.97 - 48.07m: white quartz veln @ 45 deg tca<br>49.30 - 49.83m: brittle fault @ 43 deg tca with angular gravel<br>material         mdk         0         0         0         0         0         1765         7.85         1.85         1         0.002           57.90         106.45         AMYGDULOIDAL PILLOWS<br>Light green more dacitic composition with darker green/black<br>chloritic selvages and vesicles now filled with quartz and<br>cream/green (edd/scar). The arroydules range from 4.15%;<br>stringers cut the unit and locally (good example at 06.960m)<br>show Smn list areal offstation and quartz Mith ascolated pyrhoticus. Unit string<br>of fine cream/being ablitzation and quartz Mith ascolated pyrhoticus.<br>Stringers cut the unit and locally (good example at 69.60m)<br>show Smn list areal distation and quartz Britis fart<br>of blockier and faulted but blefw 60.05m the rocks are much<br>minz         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | METE   | TO DESCRIPTION |                                                                                                                                                              | ROCK  |      | Alt' | n Index |      |     |        | SAMP   | PLES       |      |      |          |                  | ASSA     | <b>YS</b> |            |              |
| 43.44 - 43.87m: fault @ 65 degree tca<br>-rusty with gravel gouge         45.30 - 47.97m is a socian of increased silicification with<br>increased secondary quartz veinlets; extensional veining<br>forming weak vein arrays; trace pyrife         47.97 - 48.07m: white quartz vein @ 45 deg tca         49.30 - 49.83m: brittle fault @ 43 deg tca with angular shards to 3cm         51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel<br>material         53.65 - 53.70m: white quartz veinlet @ 60 deg tca         57.90       106.45         AMYGDULOIDAL PILLOWS         Immz       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FROM   | то             | DESCRIPTION                                                                                                                                                  | CODE  | Carb | Alb  | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) | Pt (g/t) Au (g/t | ) Cu (%) | Ni (%) (  | Co (%) Zn  | (%) Ag (ppm) |
| 45.30 - 47.97 m is a section of increased silicification with increased secondary quartz veinilets: extensional veining forming weak vein arrays; trace pyrite         47.97 - 48.07m: white quartz veinilet 5 extensional veining forming weak vein arrays; trace pyrite         43.30 - 49.83m: brittle fault with gravel to angular shards to 3cm         51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel material         53.65 - 53.70m: white quartz veinilet @ 60 deg tca         57.90       106.45         AMYGDULOIDAL PILLOWS         Light green more dacitic composition with darker green/black chloritic selvages and veicles now filled with quartz and cream/green felds/carb. The amgdules range from 4-15% in abundance and frum to run in true with Local selvages contain late quartz with associated pyrrhoite. This felds/carb stringers cut the unit and locally (good example at 69.00m) show 5mm left lateral offseting of original textures. Unit starts of blockier and faunto to locally (good example at 69.00m) more competent. Mineralized alteration zones within consisting of finc cream/beige abilization and quarz. flooding hosting pyrite and aresnopyrite. These features are broken out below 40.007         vol       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                | 43.44 - 43.87m: fault @ 65 degree tca<br>-rusty with gravel gouge                                                                                            |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| 47.97 - 48.07m: white quartz vein @ 45 deg tca         49.30 - 49.83m: brittle fault with gravel to angular shards to 3cm         51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel material         53.65 - 53.70m: white quartz veinlet @ 60 deg tca         57.90       106.45       AMYGDULOIDAL PILLOWS         Light greem more dacitic composition with darker green/black chloritic selvages and vesicles now filled with quartz and cream/green felds/carb. The amygdules range from 4-15% in abundance and 4mm to 1cm in true width. Local selvages stringers cut the unit and locally (good example at 68.60m) show 5mm left lateral offsetting of original textures. Unit starts off blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting prifte and arsenopyrite. These features are broken out below.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td></td><td>45.30 - 47.97m is a section of increased silicification with increased secondary quartz veinlets; extensional veining forming weak vein arrays; trace pyrite</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                | 45.30 - 47.97m is a section of increased silicification with increased secondary quartz veinlets; extensional veining forming weak vein arrays; trace pyrite |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| 49.30 - 49.83m: brittle fault with gravel to angular shards to 3cm         51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel<br>material         53.65 - 53.70m: white quartz veinlet @ 60 deg tca         57.90       106.45         AMYGDULOIDAL PILLOWS         Imdk       0       0       0       0       0       0       0.002       71.85       1.35       1       -       0.002         106.45       AMYGDULOIDAL PILLOWS       m.dk       0       0       0       0       0.001       70.50       71.85       1.35       1       -       0.002         106.45       AMYGDULOIDAL PILLOWS       m.dk       0       0       0       0.001       70.50       71.85       1.35       1       -       0.002         vol       0       0       0       0       0.002       71.85       73.20       1.35       1       -       0.003         wol       0       0       0       0.001       83.63       8.00       -       -       0.003         wol       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                | 47.97 - 48.07m: white quartz vein @ 45 deg tca                                                                                                               |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| 51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel material         53.65 - 53.70m: white quartz veinlet @ 60 deg tca         57.90       106.45       AMYGDULOIDAL PILLOWS         Light green more dacitic composition with darker green/black chloritic selvages and vesicles now filled with quartz and cream/green felds/carb. The amygdlues range from 4.15% in abundance and 4mm to 1cm in true width. Local selvages contain late quartz with associated pyrthotite. Thin felds/carb stringers cut the unit and locally (good example at 69.60m) show 5mm left lateral offsetting of original textures. Unit starts of blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting of fine cream/beige albitization and quartz flooding hosting pyrite and arsenopyrite. These features are broken out below. <ul> <li>57.73 - 58.00m: brittle fault</li> <li>61.00 - 61.30m: brittle fault</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                | 49.30 - 49.83m: brittle fault with gravel to angular shards to 3cm                                                                                           |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| 53.65 - 53.70m: white quartz veinlet @ 60 deg tca         57.90       106.45       AMYGDULOIDAL PILLOWS         Light green more dacitic composition with darker green/black chloritic selvages and vesicles now filled with quartz and cream/green felds/carb. The amygdules range from 4-15% in abundance and 4mm to 1cm in true width. Local selvages contain late quartz with associated pyrrhotite. Thin felds/carb stringers cut the unit and locally (good example at 69.60m) show 5mm left lateral offsetting of original textures. Unit starts off blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting of fine cream/beige ablitization and quartz flooding hosting pyrite and arsenopyrite. These features are broken out below.       min z       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td></td> <td>51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel material</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                | 51.30 - 51.75m: brittle fault @ 43 deg tca with angular gravel material                                                                                      |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| 57.90       106.45       AMYGDULOIDAL PILLOWS       m.dk       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                | 53.65 - 53.70m: white quartz veinlet @ 60 deg tca                                                                                                            |       |      |      |         |      |     |        |        |            |      |      |          |                  |          |           |            |              |
| Light green more dacitic composition with darker green/black<br>chloritic selvages and vesicles now filled with quartz and<br>cream/green felds/carb. The amygdules range from 4-15% in<br>abundance and 4mm to 1 cm in true width. Local selvages<br>contain late quartz with associated pyrrhotite. Thin felds/carb<br>stringers cut the unit and locally (good example at 69,60m)<br>show 5mm left lateral offsetting of original textures. Unit starts<br>off blockier and faulted but below 69.05m the rocks are much<br>more competent. Mineralized alteration zones within consisting<br>of fine cream/beige albitization and quartz flooding hosting<br>pyrite and arsenopyrite. These features are broken out below.m.dk0000001.351-0.005 $Vol$ 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.90  | 106.45         | AMYGDULOIDAL PILLOWS                                                                                                                                         | m.dk  | 0    | 0    | 0       | 0    | 001 | 70.50  | 71.85  | 1.35       | 1    | -    |          | 0.03             | 2        |           |            |              |
| vol       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                | Light green more decitic composition with derker green/black                                                                                                 | m.dk  | 0    | 0    | 0       | 0    | 002 | 71.85  | 73.20  | 1.35       | 1    | -    |          | 0.00             | 5        |           |            |              |
| bit in the derivative of the grant of the any glules range from 4-15% in abundance and 4mm to 1 cm in true width. Local selvages contain late quartz with associated pyrrhotite. Thin felds/carb stringers cut the unit and locally (good example at 69.60m) show 5mm left lateral offsetting of original textures. Unit starts off blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting pyrite and arsenopyrite. These features are broken out below.              min z             0             2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                | chloritic selvages and vesicles now filled with quartz and                                                                                                   | vol   | 0    | 0    | 0       | 0    | 003 | 82.63  | 83.63  | 1.00       | -    | -    |          | 0.00             | 3        |           |            |              |
| vol001000584.8385.831.00tr-0.208 $vol$ 002000685.8387.001.17tr-0.004 $vol$ 002000787.0088.501.50tr-0.004 $vol$ 002000787.0088.501.50tr-0.004 $vol$ 002000787.0088.501.50tr-0.004 $vol$ 004000888.5090.001.50tr-0.006 $vol$ 0000000.001.000.006 $vol$ 0000000.001.000.006 $vol$ 0000000.0090.000.00-0.001 $vol$ 000000000.0010.0027 $vol$ 000000000000.001 $vol$ 000000000000.0027 $vol$ 0000000000000 $vol$ 0000000000 <t< td=""><td></td><td></td><td>cream/green felds/carb. The amygdules range from 4-15% in</td><td>min z</td><td>0</td><td>2</td><td>3</td><td>0</td><td>004</td><td>83.63</td><td>84.83</td><td>1.20</td><td>8</td><td>0.5</td><td></td><td>2.64</td><td>0</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                | cream/green felds/carb. The amygdules range from 4-15% in                                                                                                    | min z | 0    | 2    | 3       | 0    | 004 | 83.63  | 84.83  | 1.20       | 8    | 0.5  |          | 2.64             | 0        |           |            |              |
| vol       0       0       2       0       006       85.83       87.00       1.17       tr       -       0.004         vol       0       0       2       0       007       87.00       88.50       1.50       tr       -       0.004         vol       0       0       2       0       007       87.00       88.50       1.50       tr       -       0.004         vol       0       0       4       0       008       88.50       90.00       1.50       tr       -       0.006         vol       0       0       4       0       008       88.50       90.00       1.50       tr       -       0.006         vol       0       0       0       0       0       0       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 <td< td=""><td></td><td></td><td>abundance and 4mm to 1cm in true width I ocal selvages</td><td>vol</td><td>0</td><td>0</td><td>1</td><td>0</td><td>005</td><td>84.83</td><td>85.83</td><td>1.00</td><td>tr</td><td>-</td><td></td><td>0.20</td><td>8</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                | abundance and 4mm to 1cm in true width I ocal selvages                                                                                                       | vol   | 0    | 0    | 1       | 0    | 005 | 84.83  | 85.83  | 1.00       | tr   | -    |          | 0.20             | 8        |           |            |              |
| vol       0       0       2       0       007       87.00       88.50       1.50       tr       -       0.003         stringers cut the unit and locally (good example at 69.60m) show 5mm left lateral offsetting of original textures. Unit starts off blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting of fine cream/beige albitization and quartz flooding hosting pyrite and arsenopyrite. These features are broken out below.       0       0       0       0       0       0       0       0       0       0.003       0.000         vol       0       0       0       0       0       0       0       0       0.003       0.000       0.000         blank       009       90.00       90.00       90.00       0.00       0.001       0.001         vol       0       0       0       0       0       0       0.011       90.00       91.00       1.00       -       0.004         vol       0       0       0       0       0.011       91.00       92.04       1.04       tr       -       0.0027         min z       0       1       1       0       012       92.04       92.24       0.20       1       1       0.027         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                | contain late quartz with associated pyrrhotite. Thin felds/carb                                                                                              | vol   | 0    | 0    | 2       | 0    | 006 | 85.83  | 87.00  | 1.17       | tr   | -    |          | 0.00             | 4        |           |            |              |
| vol       0       0       4       0       008       88.50       90.00       1.50       tr       -       0.006         shows 5mm left lateral offsetting of original textures. Unit starts off blockier and faulted but below 69.05m the rocks are much more competent. Mineralized alteration zones within consisting of fine cream/beige albitization and quartz flooding hosting pyrite and arsenopyrite. These features are broken out below.       00       0       0       0       0       0       0       0.008       88.50       90.00       1.50       tr       -       0.006         Blank       009       90.00       90.00       90.00       0.00       0.001       0.001         vol       0       0       0       0       0       0       0       0.00       90.00       90.00       0.00       0.001         wol       0       0       0       0       0       0       0       0.01       90.00       90.00       0.00       0.001       0.001         wol       0       0       0       0       0       0       011       91.00       92.04       1.04       tr       -       0.0027         min z       0       1       0       013       92.24       93.24       1.00       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                | stringers cut the unit and locally (good example at 69.60m)                                                                                                  | vol   | 0    | 0    | 2       | 0    | 007 | 87.00  | 88.50  | 1.50       | tr   | -    |          | 0.00             | 3        |           |            |              |
| $\frac{ B ank }{ V  } = \frac{ B ank }{$ |        |                | show 5mm left lateral offsetting of original textures. Unit starts                                                                                           | vol   | 0    | 0    | 4       | 0    | 008 | 88.50  | 90.00  | 1.50       | tr   | -    |          | 0.00             | 6        |           |            |              |
| $\frac{\text{vol}  0  0  0  0  0  0  0  0  0  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                | off blockier and faulted but below 69.05m the rocks are much                                                                                                 | Blank |      |      |         |      | 009 | 90.00  | 90.00  | 0.00       |      |      |          | 0.00             | 1        |           |            |              |
| vol       0       0       4       0       011       91.00       92.04       1.04       tr       -       0.027         min z       0       1       1       0       012       92.04       92.04       92.04       1       1       0.027         min z       0       1       1       0       012       92.04       92.24       0.20       1       1       0.737         57.73 - 58.00m: brittle fault       vol       0       0       0       0       0       0       014       104.68       105.68       1.00       -       -       0.008         vol       0       0       0       0       0       0       015       105.68       106.45       0.77       15       2       7.120         61.00 - 61.30m: brittle fault       initial fault       initial fault       0       3       20       0       015       105.68       106.45       0.77       15       2       7.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                | more competent. Mineralized alteration zones within consisting                                                                                               | vol   | 0    | 0    | 0       | 0    | 010 | 90.00  | 91.00  | 1.00       | -    | -    |          | 0.00             | 4        |           |            |              |
| min z       0       1       1       0       012       92.04       92.24       0.20       1       1       0.737         57.73 - 58.00m: brittle fault       57.73 - 58.00m: brittle fault       min z       0       1       0       012       92.04       92.24       0.20       1       1       0.737         61.00 - 61.30m: brittle fault       min z       0       0       0       0       013       92.24       93.24       1.00       -       -       0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                | of fine cream/beige albitization and guartz flooding hosting                                                                                                 | vol   | 0    | 0    | 4       | 0    | 011 | 91.00  | 92.04  | 1.04       | tr   | -    |          | 0.02             | 7        |           |            |              |
| vol       0       0       1       0       013       92.24       93.24       1.00       -       -       0.008         57.73 - 58.00m: brittle fault       vol       0       0       0       0       0       014       104.68       105.68       1.00       -       -       0.008         61.00 - 61.30m: brittle fault       min z       0       3       20       0       015       105.68       106.45       0.77       15       2       7.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                | pyrite and arsenopyrite. These features are broken out below.                                                                                                | min z | 0    | 1    | 1       | 0    | 012 | 92.04  | 92.24  | 0.20       | 1    | 1    |          | 0.73             | 7        |           |            |              |
| 57.73 - 58.00m: brittle fault       vol       0       0       0       01       104.68       105.68       1.00       -       -       0.021         61.00 - 61.30m: brittle fault       min z       0       3       20       0       015       105.68       106.45       0.77       15       2       7.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                | ······································                                                                                                                       | vol   | 0    | 0    | 1       | 0    | 013 | 92.24  | 93.24  | 1.00       | -    | -    |          | 0.00             | 8        |           |            |              |
| min z 0 3 20 0 015 105.68 106.45 0.77 15 2 7.120<br>61.00 - 61.30m: brittle fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                | 57.73 - 58.00m: brittle fault                                                                                                                                | vol   | 0    | 0    | 0       | 0    | 014 | 104.68 | 105.68 | 1.00       | -    | -    |          | 0.02             | 1        |           |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                | 61.00 - 61.30m: brittle fault                                                                                                                                | min z | 0    | 3    | 20      | 0    | 015 | 105.68 | 106.45 | 0.77       | 15   | 2    |          | 7.12             | 0        |           |            |              |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | PROF | PERTY    | /: Og | den |     |      | ZOI | NE: South | Zone |      | HOLE    | : NO.: C   | )G18-04  | 43     | P      | age 3 of 8 |              |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|-------|-----|-----|------|-----|-----------|------|------|---------|------------|----------|--------|--------|------------|--------------|
| METE   | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROCK |      | Alt'n In | ndex  |     |     |      | SAN | IPLES     |      |      |         |            |          | ASSA   | YS     |            |              |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CODE | Carb | Alb      | %Qtz  | Ser | No. | FROM | то  | LENGTH    | %Py  | %Ars | Pd (g/t | ) Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%) Zn  | (%) Ag (ppm) |
|        |        | 63.68 - 64.30m: brittle fault @ approx 65 deg tca with gravel size shards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 67.00 - 67.80m: brittle fault @ approx 70 deg tca -minor rustiness and strong pitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 68.35 to 68.60m is a poorly developed alteration zone with weak albitization and pyrite + arsenopyrite mineralization at approx 1% combined; foliation @ 40 deg tca                                                                                                                                                                                                                                                                                                                                                                                                |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 68.60 - 69.05m: brittle fault with coarse sand to tiny gravel material within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 70.50 to 73.20m is a fine-grained and massive mafic (Diabase)<br>dike with sharp upper and lower contacts @ 28 deg tca<br>-classic salt and pepper texture of unit<br>-50% mafics (actinolite) and 50% dark purplish coloured felsics<br>-homogenous with disseminated cubes of pyrite to 2mm<br>averaging approximately 1%<br>-non-magnetic                                                                                                                                                                                                                       |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 83.63 - 84.85m: mineralized/altered zone; foliated and very<br>finely albitized to a creamy/mauve colouration; foliation starts off<br>@ 65 deg tca but shallows and becomes more contorted near<br>base of interval to 10 deg tca; the alteration and strongest<br>mineralization is truncated at a thin carb slip with bleaching<br>forming a halo; late semi-transparent quartz flooding present as<br>local knots and irregular veinlets; barren<br>mineralization consists of very finely disseminated pyrite at<br>approx 8% with minor to 0.5% arsenopyrite |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |
|        |        | 92.04 - 92.24m: weakly altered and mineralized zone; slight albitization with gradational contacts; slightly coarser pyrite with                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |          |       |     |     |      |     |           |      |      |         |            |          |        |        |            |              |

| LOGGE  | ) BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                       |                | PR   | OPER  | TY: O   | )gden |     |        | ZONE   | E: South Z | Zone |      | HOLE NO.: OG18-043                  | Page 4 of 8                  |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|---------|-------|-----|--------|--------|------------|------|------|-------------------------------------|------------------------------|
| MET    | ERAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROCK           | Т    | Alt'ı | n Index |       | Τ   |        | SAMP   | LES        |      |      | ASSAY                               | 3                            |
| FROM   | то       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                              | CODE           | Carl | dIA d | %Qtz    | Ser   | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) N | i (%) Co (%) Zn (%) Ag (ppm) |
|        |          | fine needle arsenopyrite forming weak stringers<br>105.68 - 106.45m: strongly altered and mineralized zone; sharp<br>alteration contacts; foliated @ 62 deg tca; intense albitization to<br>mauve/beige colour and pyritization that has been intruded and<br>brecciated by thin grey quartz stringers and veinlets; unit<br>composed of approx 20% quartz; pyrite averaging<br>approximately 15-20% with 1-2% fine arsenopyrite needles |                |      |       |         |       |     |        |        |            |      |      |                                     |                              |
| 106.45 | 113.65   | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                              | um             | 3    | 0     | 4       | 1     | 016 | 106.45 | 107.45 | 1.00       | 2    | 0.5  | 0.660                               |                              |
|        |          | Carbonate altered and cut by late quartz with pyrite                                                                                                                                                                                                                                                                                                                                                                                     | um             | 3    | 0     | 10      | 0     | 017 | 107.45 | 108.45 | 1.00       | 0.5  |      | 0.017                               |                              |
|        |          | mineralization. The upper 35cm of the unit is a being banded                                                                                                                                                                                                                                                                                                                                                                             | um             | 3    | 0     | 4       | 0     | 018 | 108.45 | 109.45 | 1.00       | tr   | -    | 0.004                               |                              |
|        |          | section of more sericite alteration with dark chlorite seams and                                                                                                                                                                                                                                                                                                                                                                         | um             | 3    | 0     | 1       | 0     | 019 | 109.45 | 110.45 | 1.00       | tr   |      | 0.008                               |                              |
|        |          | minor fuchsite; coarser blebs of pyrite at approx 1.5% over this                                                                                                                                                                                                                                                                                                                                                                         |                | 3    | 0     | 2       | 0     | 020 | 110.45 | 111.45 | 1.00       | tr   |      | 0.020                               |                              |
|        |          | interval.                                                                                                                                                                                                                                                                                                                                                                                                                                | UM<br>Stondard |      | 0     |         | 0     | 021 | 111.45 | 112.45 | 1.00       | tr   |      | 0.012                               |                              |
|        |          | From 106.80 to 107.25m is a section of pervasive brilliant green<br>fuchsite now intruded by quartz flooding/veinlets showing<br>deformation; pyrite and arsenopyrite mineralization at approx 3-<br>4% and 1% respectively                                                                                                                                                                                                              | um             | 3    | 0     | 0       | 0     | 023 | 112.45 | 113.65 | 1.20       | tr   | -    | 0.016                               |                              |
|        |          | <ul> <li>107.25 - 108.90m is a section with olive green carb, minor fuchsite and sections of beige carbonate that has been intruded by late semi-transparent quartz veins ranging from 1cm to 8cm. Minor pyrite with trace arsenopyrite</li> <li>108.20 - 108.28m: white quartz vein @ 60 deg tca</li> </ul>                                                                                                                             |                |      |       |         |       |     |        |        |            |      |      |                                     |                              |
|        |          | below 108.90m the unit is basically olive green carbonate<br>altered with trace fuchsite<br>109.40 - 110.14m and 112.45 - 112.85m: mafic dikes @ 40 and<br>60 degrees tca respectively                                                                                                                                                                                                                                                   |                |      |       |         |       |     |        |        |            |      |      |                                     |                              |

| LOGGED | ) BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                             |       | PR  | OPER  | RTY: Og | gden |     |        | ZONE   | : South 2 | Zone |      | HOLE NO.: OG18-043                     | Page 5 of 8               |
|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|---------|------|-----|--------|--------|-----------|------|------|----------------------------------------|---------------------------|
| METE   | RAGE      |                                                                                                                                                                                                                                                                                                                                                | ROCK  |     | Alt'  | n Index |      |     |        | SAMP   | LES       |      |      | ASSAYS                                 |                           |
| FROM   | то        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                    | CODE  | Car | b Alb | %Qtz    | Ser  | No. | FROM   | то     | LENGTH    | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni ( | %) Co (%) Zn (%) Ag (ppm) |
|        |           | Standard 022 used HGS1                                                                                                                                                                                                                                                                                                                         |       |     |       |         |      |     |        |        |           |      |      |                                        |                           |
| 113.65 | 143.80    | AMYGDULOIDAL VOLCANICS                                                                                                                                                                                                                                                                                                                         | vol   | 0   | 0     | 0       | 0    | 024 | 113.65 | 114.25 | 0.60      | 0.25 | -    | 0.888                                  |                           |
|        |           | Depition unit of amy adulaidal valegation that appear to be pillowe                                                                                                                                                                                                                                                                            | min z | 0   | 1.5   | 2       | 0    | 025 | 114.25 | 115.25 | 1.00      | 3    | tr   | 2.520                                  |                           |
|        |           | with darker parrow solvages. Unit is same as above the                                                                                                                                                                                                                                                                                         | min z | 0   | 1.5   | 2       | 0    | 026 | 115.25 | 116.20 | 0.95      | 3    | tr   | 4.020                                  |                           |
|        |           | with darker harrow servages. Unit is same as above the                                                                                                                                                                                                                                                                                         | vol   | 0   | 0     | 2       | 0    | 027 | 116.20 | 117.20 | 1.00      | tr   | -    | 0.017                                  |                           |
|        |           | alteration/mineralized zones like above and are broken out                                                                                                                                                                                                                                                                                     | vol   | 0   | 0     | 0       | 0    | 028 | 138.20 | 139.20 | 1.00      | -    | -    | 0.007                                  |                           |
|        |           |                                                                                                                                                                                                                                                                                                                                                | min z | 0   | 2     | 2       | 0    | 029 | 139.20 | 140.10 | 0.90      | 3    | tr   | 1.910                                  |                           |
|        |           | Delow.                                                                                                                                                                                                                                                                                                                                         | vol   | 0   | 0     | 0       | 0    | 030 | 140.10 | 141.10 | 1.00      | -    | -    | 0.017                                  |                           |
|        |           | 114 25 - 116 20m; alteration/mineralized zone; weak to                                                                                                                                                                                                                                                                                         | vol   | 0   | 0     | 0       | 0    | 031 | 141.10 | 142.10 | 1.00      | -    | -    | 0.007                                  |                           |
|        |           | moderate albitization with few late quartz veinlets: fine pyrite                                                                                                                                                                                                                                                                               | vol   | 0   | 0     | 0       | 0    | 032 | 142.10 | 143.10 | 1.00      | -    | -    | 0.008                                  |                           |
|        |           | mineralization averaging approx 3% with minor arsenopyrite                                                                                                                                                                                                                                                                                     | vol   | 0   | 0     | 25      | 0    | 033 | 143.10 | 143.80 | 0.70      | 0.5  | -    | 0.062                                  |                           |
|        |           | 139.20 - 140.10m: alteration/mineralized zone with more<br>pervasive albitization; soft green/cream/beige colour; stronger<br>mineralization in center of interval decreasing toward the<br>contacts; thin grey quartz and chlorite material cutting alteration;<br>pyrite mineralization as fine disseminations to 2mm blebs<br>averaging 3%. |       |     |       |         |      |     |        |        |           |      |      |                                        |                           |
| 143 80 | 147 55    |                                                                                                                                                                                                                                                                                                                                                | min z | 0   | 3     | 5       | 0    | 034 | 143.80 | 144.55 | 0.75      | 8    | 1.5  | 1.550                                  |                           |
| 140.00 | 147.00    |                                                                                                                                                                                                                                                                                                                                                | min z | 0   | 3     | 2       | 0    | 035 | 144.55 | 145.55 | 1.00      | 12   | 2    | 3.390                                  |                           |
|        |           | Pervasively albitized to a dull cream/greyish colour with a hint of                                                                                                                                                                                                                                                                            | Blank |     |       |         |      | 036 | 145.55 | 145.55 | 0.00      |      |      | 0.002                                  |                           |
|        |           | soft mint green. The alteration has been intruded by thin grey                                                                                                                                                                                                                                                                                 | min z | 0   | 3     | 5       | 0    | 037 | 145.55 | 146.55 | 1.00      | 15   | 3    | 2.870                                  |                           |
|        |           | quartz stringers and veinlets at averaging approx 5%. Alteration                                                                                                                                                                                                                                                                               | min z | 0   | 3     | 6       | 0    | 038 | 146.55 | 147.55 | 1.00      | 13   | 2    | 3.300                                  |                           |
|        |           | Very fine pyrite and arsenopyrite throughout at approx 5:1 ratio<br>or approx 13% and 2%. The lower 90cm has slightly less albite<br>and a more brecciated texture and stronger foliation with<br>coarser pyrite as 1-2mm cubes. Contacts of alteration zone are<br>fairly pronounced at 70 deg tca.                                           |       |     |       |         |      |     |        |        |           |      |      |                                        |                           |

| LOGGE  | BY: D.I | Heerema SIGNATURE:                                                |       | PR   | OPER  | TY: Og  | gden |     |        | ZONI   | E: South Z | Zone |      | HOLE NO.: OG18-043 Page 6 of 8                        | Page 6 of 8      |
|--------|---------|-------------------------------------------------------------------|-------|------|-------|---------|------|-----|--------|--------|------------|------|------|-------------------------------------------------------|------------------|
| METE   | RAGE    |                                                                   | ROCK  |      | Alt'ı | n Index |      |     |        | SAMF   | PLES       |      |      | ASSAYS                                                |                  |
| FROM   | ТО      | DESCRIPTION                                                       | CODE  | Carl | b Alb | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (% | Co (%) Zn (%) Ag |
| 147.55 | 166.23  | AMYGDULOIDAL VOLCANICS                                            | vol   | 0    | 0     | 0       | 0    | 039 | 147.55 | 148.55 | 1.00       | tr   | -    | 0.085                                                 |                  |
|        |         | Heterogeneous unit of amygduloidal volcanics: beterogeneous       | vol   | 0    | 0     | 2       | 0    | 040 | 148.55 | 149.55 | 1.00       | tr   | -    | 0.006                                                 |                  |
|        |         | by alteration as the upper portion to 161m is more chlorite       | vol   | 0    | 0     | 2       | 0    | 041 | 149.55 | 151.00 | 1.45       | 0.75 | -    | 0.094                                                 |                  |
|        |         | altered and weakly brecciated by late quartz and dark chlorite    | vol   | 0    | 0     | 0       | 0    | 042 | 165.23 | 166.23 | 1.00       | tr   | -    | 0.118                                                 |                  |
|        |         | breaks; coarse blebby pyrite found within the chlorite/guartz     |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | matrix reaching as much as 0.75% over a meter. Amygdules          |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | present but far less abundant. From 161 to 166.23m the unit       |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | has the more typical lighter green colour, no brecciation and     |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | more pronounced creamy coloured amygdules.                        |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | 154.03 - 154.13m: narrow alteration/mineralized seam @ 58         |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | deg tca; albitized and mineralized with 4% pyrite and minor       |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | arsenopyrite                                                      |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         |                                                                   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
| 166.23 | 166.73  | MINERALIZED ZONE                                                  | min z | 0    | 1     | 0       | 0    | 043 | 166.23 | 166.73 | 0.50       | 2    | tr   | 1.130                                                 |                  |
|        |         | Moderately developed alteration zone of albitization and          |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | associated mineralization; contacts are slightly more gradational |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | than the stronger alteration zones; mineralization is weaker      |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         | consisting of approx 2% pyrite and trace to minor arsenopyrite.   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         |                                                                   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         |                                                                   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
| 166.73 | 175.82  | ANDESITE                                                          | vol   | 0    | 0     | 0       | 0    | 044 | 166.73 | 167.73 | 1.00       | tr   | -    | 0.130                                                 |                  |
|        |         | ····                                                              | vol   | 0    | 0     | 1       | 0    | 045 | 167.75 | 169.25 | 1.50       | tr   | -    | 0.097                                                 |                  |
|        |         | Darker, more matic and more massive with occasional               | vol   | 0    | 0     | 1       | 0    | 046 | 169.25 | 170.75 | 1.50       | -    | -    | 0.005                                                 |                  |
|        |         | amygdule. Unit has been cut by numerous thin 1-2mm white          | vol   | 0    | 0     | 1       | 0    | 047 | 170.75 | 172.25 | 1.50       | -    | -    | 0.031                                                 |                  |
|        |         | Extensional fracturing filled with late semi-transparent quartz   | vol   | 0    | 0     | 1       | 0    | 048 | 172.25 | 173.75 | 1.50       | -    | -    | 0.005                                                 |                  |
|        |         | and minor green chlorite present also                             | vol   | 0    | 0     | 1       | 0    | 049 | 173.75 | 174.82 | 1.07       | -    | -    | 0.104                                                 |                  |
|        |         |                                                                   | vol   | 0    | 0     | 0       | 0    | 050 | 174.82 | 174.82 | 0.00       | -    | -    | 0.255                                                 |                  |
|        |         |                                                                   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |
|        |         |                                                                   |       |      |       |         |      |     |        |        |            |      |      |                                                       |                  |

| LOGGED | BY: D.H | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | PRC  | OPER  | TY: Og | gden |     |        | ZON    | E: South 2 | Zone |      | HOLE NO.: OG18-04          | 3         | Page 7 of 8                |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|--------|------|-----|--------|--------|------------|------|------|----------------------------|-----------|----------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROCK     |      | Alt'n | Index  |      |     |        | SAMF   | PLES       |      |      |                            | ASSAYS    | 5                          |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CODE     | Carb | Alb   | %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni | (%) Co (%) Zn (%) Ag (ppm) |
| 175.82 | 178.15  | MINERALIZED ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | min z    | 0    | 2     | 5      | 1    | 051 | 175.82 | 176.55 | 0.73       | 8    | 1    | 3.240                      |           |                            |
|        |         | This mineralized zone appears to be within three protoliths: the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard |      |       |        |      | 052 | 176.55 | 176.55 | 0.00       |      |      | 1.320                      |           |                            |
|        |         | andesitic volcanics, graphitic argillite and ultramafics. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | min z    | 0    | 3     | 6      | 1    | 053 | 176.55 | 177.55 | 1.00       | 15   | 2    | 2.350                      |           |                            |
|        |         | upper section of the unit to 177.55m is interpreted to be altered volcanics but may be altered sediments; contact with argillites drawn based upon the sudden presence of black finely laminated mudstones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | min z    | 1    | 2     | 9      | 1    | 054 | 177.55 | 178.15 | 0.60       | 7    | 1    | 0.447                      |           |                            |
|        |         | From 175.82 to 177.55m is very finely albitized/sericitized to a light cream/beige colour that gradationally darkens to a darker brown/grey colouration; unit cut by approx 5-6% anastomosing thin 0.5 to 3mm dark grey quartz stringers/veinlets. Extremely mineralized by pyrite and arsenopyrite; strongest below 176.40m. Very fine to fine pyrite averaging approx 15% with approx 2% arsenopyrite with sulphide grains often grown with long axis parallel to moderate foliation @ 60-65 deg tca.<br>From 177.55 to 178.00m is what is likely the graphitic argillite horizon; upper 22cm is very dark finely bedded mudstones; graded bedding showing south younging; bedding @ 60 deg tca; weakly silicified and cut by semi-transparent quartz veinlets; well mineralized with 8% pyrite, trace arsenopyrite and minor sphalerite the lower 23cm is strongly sericite/albite altered to more pervasive bands with local quartz flooding and weak brecciation; approx 2% pyrite and minor arsenopyrite |          |      |       |        |      |     |        |        |            |      |      |                            |           |                            |
|        |         | The last 15cm of mineralized interval from 178.00 to 178.15m is extremely and quartz flooded that likely represents an ultramafic protolith. Approximately 4% pyrite and minor arsenopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      |       |        |      |     |        |        |            |      |      |                            |           |                            |
|        |         | Standard 052 used CDN-CM-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |       |        |      |     |        |        |            |      |      |                            |           |                            |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |       |        |      |     |        |        |            |      |      |                            |           |                            |

### METALS CREEK RESOURCES

| LOGGED | BY: D.H | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                       |      | PRC  | PER  | TY: Og  | gden |     |        | ZONE   | E: South 2 | Zone |      | HOLE NO .:     | OG18-0       | 43     | F      | Page 8 of | 8      |          |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|---------|------|-----|--------|--------|------------|------|------|----------------|--------------|--------|--------|-----------|--------|----------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                          | ROCK |      | Alt' | n Index |      |     |        | SAMP   | LES        |      |      |                |              | ASSA   | YS     |           |        |          |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                              | CODE | Carb | Alb  | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g | /t) Au (g/t) | Cu (%) | Ni (%) | Co (%)    | Zn (%) | Ag (ppm) |
| 178.15 | 225.00  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                              | um   | 1    | 0    | 0       | 0    | 055 | 178.15 | 179.15 | 1.00       | tr   | -    |                | 0.029        | 9      |        |           |        |          |
|        |         | Deep green/black unit with strong white carb stringers and<br>bands showing moderate deformation at top of the unit (south)<br>that gradationally decreases to a massive generally undeformed<br>unit with only occasional carb structures below 190m. Very<br>local and weak magnetism to 196.75m where is becomes<br>strong and pervasive. Deeper in unit the rock generates a<br>slightly bluish hue. |      |      |      |         |      |     |        |        |            |      |      |                |              |        |        |           |        |          |

Printed: April-27-18

| PROPERTY:     | Ogden                | CLAIM NO.:     | HR1008         |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Drilling below hole OG17-041 starting with 2 hex corebarrels. |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|------------------------------------------------------------------------|
| HOLE NO .:    | OG18-044             | LENGTH (m):    | 387.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | Hole plugged beneath casing and casing remains.                        |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5362914.000    | EASTING:       | 474676.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                                        |
| SECTION:      | SZ_780W              | ZONE:          | South Zone     | ELEVATION (m): | 298.000        | DRILLING COMPANY: Norex                     |                                                                        |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 358. / -59.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 21, 2018 TO Mar. 24, 2018 | Core Storage: Norex compound                                           |
| HOLE STARTED  | ): March 20, 2018    | HOLE FINISHED: | March 24, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 12                                                           |

| METE | ERAGE  |                                                                                                                                                                                                                      | ROCK  |      | Alt' | n Index |     |     |      | 5   | SAMPL | ES     |      |      |                   |          | ASSA   | YS     |        |                 |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|---------|-----|-----|------|-----|-------|--------|------|------|-------------------|----------|--------|--------|--------|-----------------|
| FROM | ТО     | DESCRIPTION                                                                                                                                                                                                          | CODE  | Carb | Alb  | %Qtz    | Ser | No. | FRO  | M   | то    | LENGTH | %Py  | %Ars | Pd (g/t) Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%) | Zn (%) Ag (ppm) |
| 0.00 | 5.00   | OVERBURDEN                                                                                                                                                                                                           |       |      |      |         |     |     |      |     |       |        |      |      |                   |          |        |        |        |                 |
|      |        | Downhole surveys                                                                                                                                                                                                     |       |      |      |         |     |     |      |     |       |        |      |      |                   |          |        |        |        |                 |
|      |        | 15m 357.2 azi, -58.1 dip<br>66m 358.1 azi, -57.7 dip<br>117m 359.5 azi, -56.8 dip<br>168m 0.4 azi, -56.8 dip<br>219m 1 azi, -55.7 dip<br>270m 1 azi, -55.2 dip<br>321m 1.1 azi, -55.1 dip<br>372m 2.8 azi, -54.9 dip |       |      |      |         |     | A   | Ø    | A   | L     | /      |      |      |                   |          |        |        |        |                 |
| 5.00 | 147.00 | CONGLOMERATE                                                                                                                                                                                                         | congl | 2    | 0    | 2       | 0   | 001 | 48.0 | 0 4 | 49.50 | 1.50   | 4    | -    |                   | 0.038    |        |        |        |                 |
|      |        |                                                                                                                                                                                                                      | congl | 2    | 0    | 2       | 0   | 002 | 49.5 | 0   | 51.00 | 1.50   | 4    | -    |                   | 0.002    |        |        | -      | -               |
|      |        | Gritty unit of peoble conglomerate; coarse slit to sandy                                                                                                                                                             | congl | 2    | 0    | 0       | 0   | 003 | 51.0 | 0   | 52.50 | 1.50   | 0.75 | -    |                   | 0.011    |        |        |        |                 |
|      |        | groundmass nosting peoples ranging from feisic to ultramatic.                                                                                                                                                        | congl | 2    | 0    | 0       | 0   | 004 | 52.5 | 0   | 54.00 | 1.50   | 3    | -    |                   | 0.030    |        |        |        |                 |
|      |        | Light in the unit the electe are smaller and less abundant.                                                                                                                                                          | congl | 2    | 0    | 1       | 0   | 005 | 54.0 | 0   | 55.50 | 1.50   | tr   | -    |                   | 0.022    |        |        |        |                 |
|      |        | Deeper in the unit the deminant clasts are ultramatic. The unit                                                                                                                                                      | congl | 2    | 0    | 0       | 0   | 006 | 55.5 | 0 9 | 57.00 | 1.50   | 0.5  | -    |                   | 0.023    |        |        |        |                 |
|      |        | is well foliated with people elongation: ultramatic peoples                                                                                                                                                          | congl | 2    | 0    | 0       | 0   | 007 | 57.0 | 0 9 | 58.50 | 1.50   | tr   | -    |                   | 0.006    |        |        |        |                 |
|      |        | showing more elongation than the folsic                                                                                                                                                                              | congl | 2    | 0    | 0       | 0   | 800 | 58.5 | 0   | 60.00 | 1.50   | tr   | -    |                   | 0.002    |        |        |        |                 |
|      |        | Chlorite sericite and carbonate alteration throughout: sericite as                                                                                                                                                   | congl | 2    | 0    | 0       | 0   | 009 | 60.0 | 0 0 | 61.50 | 1.50   | 2    | -    |                   | 0.002    |        |        |        |                 |
|      |        | thin wishs to hands: the carbonate alteration mainly of                                                                                                                                                              | congl | 2    | 0    | 2       | 0   | 010 | 61.5 | 0   | 63.00 | 1.50   | 2    | -    |                   | 0.043    |        |        |        |                 |
|      |        | ultramatic clasts to an olive green and locally fuchsite                                                                                                                                                             | congl | 2    | 0    | 0       | 0   | 011 | 63.0 | 0 0 | 64.50 | 1.50   | tr   | -    |                   | 0.002    |        |        |        |                 |
|      |        | Silicification locally present also Quartz porphyroblasts                                                                                                                                                            | congl | 2    | 0    | 1       | 0   | 012 | 64.5 | 0   | 66.00 | 1.50   | 0.25 | -    |                   | 0.034    |        |        |        |                 |
|      |        | throughout from trace to 15% as glassy round to subangular                                                                                                                                                           | congl | 2    | 0    | 3       | 0   | 013 | 66.0 | 0   | 67.50 | 1.50   | 5    | -    |                   | 0.071    |        |        |        |                 |
|      |        | Pyrite mineralization as fine blebs within bedding locally: or as                                                                                                                                                    | congl | 2    | 0    | 0       | 0   | 014 | 67.5 | 0   | 69.00 | 1.50   | 2    | -    |                   | 0.022    |        |        |        |                 |
|      |        | mineralized pebbles. Local enrichment in pyrite noted below.                                                                                                                                                         | congl | 2    | 0    | 2       | 0   | 015 | 69.0 | 0   | 70.65 | 1.65   | 2    | -    |                   | 0.045    |        |        |        |                 |

| LOGGED | DBY: D. | Heerema SIGNATURE:                                                |          | PR   | OPER  | RTY: Og | gden |     |        | ZONE   | E: South Z | Cone |      | HOLE NO.: OG18-044 Page 2 of 12                               |
|--------|---------|-------------------------------------------------------------------|----------|------|-------|---------|------|-----|--------|--------|------------|------|------|---------------------------------------------------------------|
| METE   | ERAGE   |                                                                   | ROCK     |      | Alt'  | n Index |      |     |        | SAMP   | LES        |      |      | ASSAYS                                                        |
| FROM   | то      | DESCRIPTION                                                       | CODE     | Carl | b Alb | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (Pf |
|        |         |                                                                   | congl    | 2    | 0     | 1.5     | 0    | 016 | 70.65  | 72.36  | 1.71       | 1    | -    | 0.048                                                         |
|        |         | 30.00 to 30.70m: ground rock; fault or drill induced?             | Blank    |      |       |         |      | 017 | 72.36  | 72.36  | 0.00       |      |      | 0.002                                                         |
|        |         |                                                                   | I.Dk     |      |       | 3       |      | 018 | 72.36  | 73.40  | 1.04       | 0.5  | -    | 0.002                                                         |
|        |         | 36.13 to 47.85m is a section of pebble poor conglomerate that     | I.Dk     |      |       | 3       |      | 019 | 73.40  | 74.55  | 1.15       | 0.5  | -    | 0.002                                                         |
|        |         | is more of a wacke. Strong glassy quartz porphyroblasts           | congl    | 2    | 0     | 0       | 0    | 020 | 74.55  | 76.00  | 1.45       | 5    | -    | 0.080                                                         |
|        |         | throughout at 15%. A few thin quartz veinlets between 43.85       | congl    | 2    | 0     | 0       | 0    | 021 | 76.00  | 77.50  | 1.50       | 5    | -    | 0.082                                                         |
|        |         | and 45.00m.                                                       | congl    | 2    | 0     | 8       | 0    | 022 | 77.50  | 79.00  | 1.50       | 4    | -    | 0.010                                                         |
|        |         |                                                                   | congl    | 2    | 0     | 0       | 0    | 023 | 79.00  | 80.50  | 1.50       | 1    | -    | 0.030                                                         |
|        |         | 41.40 to 41.66m: semi-transparent to white quartz veining as      | congl    | 2    | 0     | 4       | 0    | 024 | 80.50  | 82.00  | 1.50       | 3    | -    | 0.011                                                         |
|        |         | numerous 4-5cm veins with irregular contacts; associated          | congl    | 2    | 0     | 5       | 0    | 025 | 82.00  | 83.50  | 1.50       | 4    | -    | 0.111                                                         |
|        |         | sericite alteration with trace pyrite                             | Standard |      |       |         |      | 026 | 83.50  | 83.50  | 0.00       |      |      | 3.160                                                         |
|        |         |                                                                   | congl    | 2    | 0     | 3       | 0    | 027 | 83.50  | 85.00  | 1.50       | 3    | -    | 0.068                                                         |
|        |         | From 47.85 to 147m the conglomerate changes to a very             | congl    | 2    | 0     | 12      | 0    | 028 | 85.00  | 86.50  | 1.50       | 3    | -    | 0.019                                                         |
|        |         | ultramafic pebble-rich unit with approx 80% ultramafic pebbles,   | congl    | 2    | 0     | 0       | 0    | 029 | 86.50  | 88.00  | 1.50       | tr   | -    | 0.011                                                         |
|        |         | 10% felsic pebbles and 10% gritty groundmass. Well foliated       | congl    | 2    | 0     | 0       | 0    | 030 | 88.00  | 89.50  | 1.50       | 0.25 | -    | 0.007                                                         |
|        |         | and elongate pebbles with the more mafic pebbles often            | congl    | 2    | 0     | 0       | 0    | 031 | 89.50  | 91.00  | 1.50       | 0.25 | -    | 0.081                                                         |
|        |         | stretched to ribbons and the harder felsic to silicous pebbles    | congl    | 2    | 0     | 2       | 0    | 032 | 91.00  | 92.27  | 1.27       | tr   | -    | 0.002                                                         |
|        |         | retaining a slightly rounder shape. Pyrite found within           | congl    | 2    | 0     | 1       | 0    | 033 | 92.27  | 93.27  | 1.00       | tr   | -    | 0.002                                                         |
|        |         | felsic/silicous clasts with appears to associated with carbonate; | l.dk     |      |       | 3       |      | 034 | 93.27  | 94.70  | 1.43       | 0.5  | -    | 0.002                                                         |
|        |         | pyrite not primary or from source of pebble but has grown into    | l.dk     |      |       | 10      |      | 035 | 94.70  | 96.20  | 1.50       | 0.5  | -    | 0.002                                                         |
|        |         | subhedral-euhdral cubes from dust-like to 3mm in size as          | l.dk     |      |       | 10      |      | 036 | 96.20  | 97.70  | 1.50       | 0.5  | -    | 0.002                                                         |
|        |         | possible replacement. Pyrite content can reach to 90% in a        | congl    | 2    | 0     | 1       | 0    | 037 | 97.70  | 99.00  | 1.30       | 3.5  | -    | 0.050                                                         |
|        |         | pebble and average mineralized pebble per meter is approx 4.      | congl    | 2    | 0     | 0       | 0    | 038 | 99.00  | 100.50 | 1.50       | tr   | -    | 0.009                                                         |
|        |         | From approx 113m to 147m is a slight increase in sericite         | congl    | 2    | 0     | 0       | 0    | 039 | 100.50 | 102.00 | 1.50       | 0.5  | -    | 0.027                                                         |
|        |         | alteration and variable clast types. Minor fuchsite alteration    | congl    | 2    | 0     | 1       | 0    | 040 | 102.00 | 103.50 | 1.50       | tr   | -    | 0.009                                                         |
|        |         | locally. From 126.60 to 130.20m is an influx of quartz flooding   | congl    | 2    | 0     | 0       | 0    | 041 | 103.50 | 105.00 | 1.50       | 0.5  | -    | 0.007                                                         |
|        |         | as irregular and anastomosing quartz veinlets with 60% quartz     | congl    | 2    | 0     | 2       | 0    | 042 | 105.00 | 106.50 | 1.50       | 1    | -    | 0.020                                                         |
|        |         | over 40cm intervals. Semi-transparent to white quartz; barren     | congl    | 2    | 0     | 2       | 0    | 043 | 106.50 | 108.00 | 1.50       | 0.5  | -    | 0.021                                                         |
|        |         | of sulphides                                                      | congl    | 2    | 0     | 3       | 0    | 044 | 108.00 | 109.50 | 1.50       | 4    | -    | 0.079                                                         |
|        |         |                                                                   | congl    | 2    | 0     | 1       | 0    | 045 | 109.50 | 111.00 | 1.50       | <1   | -    | 0.010                                                         |
|        |         | 69.48 to 69.72m: purplish silicous dike @ 30 deg tca              | congl    | 2    | 0     | 0.5     | 0    | 046 | 111.00 | 112.50 | 1.50       | tr   | -    | 0.002                                                         |
|        |         | -grey and purplish with approx 15% black tourmaline specks        | conal    | 2    | 0     | 0       | 0    | 047 | 112.50 | 114.00 | 1.50       | 1    | -    | 0.010                                                         |
|        |         | -sharp contacts and 2% fine cubic pyrite                          | congl    | 2    | 0     | 0       | 0.5  | 048 | 114.00 | 115.00 | 1.00       | 2    | -    | 0.005                                                         |
|        |         |                                                                   | congl    | 2    | 0     | 0       | 0.5  | 049 | 115.00 | 116.00 | 1.00       | 4    | -    | 0.034                                                         |
| L      |         |                                                                   |          | -    | -     | -       |      |     |        |        |            |      |      |                                                               |

| LOGGED | BY: D | Heerema SIGNATURE:                                                  |          | PR  | OPER  | TY: O   | gden |     |        | ZON    | E: South 2 | Zone |      | HOLE NO.: OG18-044         | 4 F           | 'age 3 of 12                          |
|--------|-------|---------------------------------------------------------------------|----------|-----|-------|---------|------|-----|--------|--------|------------|------|------|----------------------------|---------------|---------------------------------------|
| METE   | RAGE  |                                                                     | ROCK     |     | Alt'r | n Index |      |     |        | SAMF   | LES        |      |      |                            | ASSAYS        |                                       |
| FROM   | то    | DESCRIPTION                                                         | CODE     | Car | b Alb | %Qtz    | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) | Co (%) Zn (%) Ag (ppm                 |
|        | -     | 72.36 to 74.55m: intermediate dike with a moderate fabric @ 45      | congl    | 2   | 0     | 0       | 0.5  | 050 | 116.00 | 117.00 | 1.00       | 0.5  | -    | 0.005                      |               | · · · · · · · · · · · · · · · · · · · |
|        |       | deg tca                                                             | congl    | 2   | 0     | 0       | 0.5  | 051 | 117.00 | 118.00 | 1.00       | 0.5  | -    | 0.007                      |               |                                       |
|        |       | -moderate to sharp contacts                                         | congl    | 2   | 0     | 0       | 0.5  | 052 | 118.00 | 119.00 | 1.00       | 2    | -    | 0.019                      |               |                                       |
|        |       | -a fine-grained dike within the dike from 72.75 to 73.07m @ 30      | congl    | 2   | 0     | 5       | 0.5  | 053 | 119.00 | 120.00 | 1.00       | 1.5  | -    | 0.026                      |               |                                       |
|        |       | deg tca parallel to initial dike; aphanitic sericitic chill margins | congl    | 2   | 0     | 0       | 1    | 054 | 120.00 | 120.77 | 0.77       | tr   | -    | 0.002                      |               |                                       |
|        |       |                                                                     | I.dk     |     |       | 10      |      | 055 | 120.77 | 122.27 | 1.50       | -    | -    | 0.002                      |               |                                       |
|        |       | 76.68 to 76.82m: purplish silicous dike/vein @ 32 deg tca           | I.dk     |     |       | 10      |      | 056 | 122.27 | 123.77 | 1.50       | -    | -    | 0.002                      |               |                                       |
|        |       | -darker purple with cubic pyrite along contacts                     | I.dk     |     |       | 10      |      | 057 | 123.77 | 125.45 | 1.68       | -    | -    | 0.002                      |               |                                       |
|        |       |                                                                     | congl    | 1   | 0     | 8       | 0    | 058 | 125.45 | 126.60 | 1.15       | tr   | -    | 0.002                      |               |                                       |
|        |       | 80.95 to 81.01m: white quartz veinlet @ 70 deg tca                  | Standard |     |       |         |      | 059 | 126.60 | 126.60 | 0.00       |      |      | 1.330                      |               |                                       |
|        |       |                                                                     | congl    | 2   | 1     | 35      | 0    | 060 | 126.60 | 127.80 | 1.20       | tr   | -    | 0.015                      |               |                                       |
|        |       | 85.22 to 85.51m: semi-transparent quartz veining with irregular     | congl    | 2   | 1     | 12      | 0    | 061 | 127.80 | 129.00 | 1.20       | 0.5  | -    | 0.002                      |               |                                       |
|        |       | contacts; minor pyrite over last 5cm                                | congl    | 2   | 0     | 25      | 0    | 062 | 129.00 | 130.00 | 1.00       | 0.5  | -    | 0.005                      |               |                                       |
|        |       |                                                                     | congl    | 2   | 0     | 7       | 0    | 063 | 130.00 | 131.00 | 1.00       | 0.25 | -    | 0.005                      |               |                                       |
|        |       | 93.27 to 97.70m: fine-grained massive intermediate dike with        | congl    | 2   | 0     | 1       | 0.5  | 064 | 131.00 | 132.00 | 1.00       | 1    | -    | 0.002                      |               |                                       |
|        |       | sharp upper and lower contacts @ 60 and highly irregular; grey      | congl    | 2   | 0     | 3       | 0    | 065 | 132.00 | 133.00 | 1.00       | 0.25 | -    | 0.007                      |               |                                       |
|        |       | with weak hematization of plag; unit but by white quartz/chlorite   | congl    | 2   | 0     | 1       | 0    | 066 | 133.00 | 134.00 | 1.00       | 0.25 | -    | 0.014                      |               |                                       |
|        |       | veinlets from 2mm to 9cm. Some of the features are                  | congl    | 2   | 0     | 0       | 0    | 067 | 134.00 | 135.00 | 1.00       | tr   | -    | 0.002                      |               |                                       |
|        |       | discontinuous filling cracks and healing hairline slip planes.      | congl    | 2   | 0     | 0       | 0    | 068 | 135.00 | 136.00 | 1.00       | 0.25 | -    | 0.011                      |               |                                       |
|        |       | Minor disseminated pyrite at approx 1% throughout.                  | congl    | 2   | 0     | 0       | 1    | 069 | 136.00 | 137.00 | 1.00       | 0.5  | -    | 0.002                      |               |                                       |
|        |       |                                                                     | congl    | 2   | 0     | 4       | 1.5  | 070 | 137.00 | 138.00 | 1.00       | 0.5  | -    | 0.002                      |               |                                       |
|        |       | 98.32 to 98.60m: brittle fault with fractured and ground core;      | congl    | 2   | 0     | 3       | 1    | 071 | 138.00 | 139.00 | 1.00       | 1.5  | -    | 0.002                      |               |                                       |
|        |       | dark staining as well as strong pitting                             | congl    | 2   | 0     | 0       | 0.5  | 072 | 139.00 | 140.00 | 1.00       | 0.25 | -    | 0.028                      |               |                                       |
|        |       |                                                                     | congl    | 2   | 0     | 0       | 0    | 073 | 140.00 | 141.00 | 1.00       | 0.5  | -    | 0.002                      |               |                                       |
|        |       | 120.77 to 125.45m: intermediate dike with a weak to moderate        | congl    | 2   | 0     | 0       | 0    | 074 | 141.00 | 142.00 | 1.00       | 0.25 | -    | 0.002                      |               |                                       |
|        |       | fabric; tuffacous texture; cut by numerous white quartz veinlets    | congl    | 2   | 0     | 1       | 0    | 075 | 142.00 | 143.00 | 1.00       | 0.25 | -    | 0.002                      |               |                                       |
|        |       | at approx 10% of unit; 1mm to 1cm in width                          | congl    | 2   | 0     | 0       | 0.5  | 076 | 143.00 | 144.00 | 1.00       | tr   | -    | 0.002                      |               |                                       |
|        |       |                                                                     | Blank    |     |       |         |      | 077 | 144.00 | 144.00 | 0.00       |      |      | 0.002                      |               |                                       |
|        |       | Standard 026 used CDN-GS-3H                                         | congl    | 2   | 0     | 0       | 0.5  | 078 | 144.00 | 145.00 | 1.00       | 1.5  | -    | 0.002                      |               |                                       |
|        |       | Standard 059 used CDN-CM-2                                          | congl    | 2   | 0     | 11      | 0    | 079 | 145.00 | 146.00 | 1.00       | 0.5  | -    | 0.002                      |               |                                       |
|        |       | Foliation angles                                                    | congl    | 2   | 0     | 1       | 2    | 080 | 146.00 | 147.00 | 1.00       | 0.5  | -    | 0.002                      |               |                                       |
|        |       | ~<br>75m @ 45 deg, 87m @ 30 deg, 99m @ 20 deg, 103m @ 40            |          |     |       |         |      |     |        |        |            |      |      |                            |               |                                       |

| LOGGED | BY: D.            | Heerema SIGNATURE:                                                                                                                                                                                                                      |          | PROF | PERT  | Y: Og | gden |     |        | ZONE   | E: South 2 | Zone |      | HOLE N   | 10.: 00  | G18-04   | 4      | Pa     | age 4 of 1 | 2               |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-------|------|-----|--------|--------|------------|------|------|----------|----------|----------|--------|--------|------------|-----------------|
| METE   | RAGE              |                                                                                                                                                                                                                                         | ROCK     |      | Alt'n | ndex  |      |     |        | SAMP   | LES        |      |      |          |          |          | ASSA   | YS     |            |                 |
| FROM   | то                | DESCRIPTION                                                                                                                                                                                                                             | CODE     | Carb | Alb   | %Qtz  | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%)     | Zn (%) Ag (ppm) |
|        |                   | deg, 114m @ 45 deg, 120m @ 20 deg, 133m @ parallel, 135m<br>@ 10 deg, 141m @ parallel, 144m @ 10 deg, 147m @ 25 deg                                                                                                                     |          | •    |       |       |      | •   |        |        | <u> </u>   |      | •    | <u> </u> | •        |          |        |        |            |                 |
| 147.00 | 156.25            | GREYWACKE                                                                                                                                                                                                                               |          |      |       |       |      |     |        |        |            |      |      |          |          |          |        |        |            |                 |
|        |                   | Gritty silt to sandy material with no evidence of pebbles. Grey-<br>green with yellowish wisps and bands of sericite. Fairly<br>homogenous unit. Moderate local silicification. Trace to minor<br>pyrite.<br>Lower contact @ 40 deg tca |          |      |       |       |      |     |        |        |            |      |      |          |          |          |        |        |            |                 |
| 156.25 | 182.24            | ARGILLITE                                                                                                                                                                                                                               | arg      |      |       | 8     |      | 081 | 156.25 | 157.00 | 0.75       | tr   | -    |          |          | 0.006    |        |        |            |                 |
|        |                   | E a baile de la della de la construcción de la construcción de la della construcción                                                                                                                                                    | arg      |      |       | 3     |      | 082 | 157.00 | 158.00 | 1.00       | tr   | -    |          |          | 0.012    |        |        |            |                 |
|        |                   | Finely bedded and black; local evidence of graded bedding with                                                                                                                                                                          | arg      |      |       | 2     |      | 083 | 158.00 | 159.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | the grey sitty bases that line to aphanitic black tops. Beds vary                                                                                                                                                                       | arg      |      |       | 12    |      | 084 | 159.00 | 160.00 | 1.00       | tr   | -    |          |          | 0.006    |        |        |            |                 |
|        |                   | from <1mm to dm scale. Hard to distinguish younging as it                                                                                                                                                                               | arg      |      |       | 6     |      | 085 | 160.00 | 161.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | appears different in different locations. Bedding angles vary                                                                                                                                                                           | arg      |      |       | 7     |      | 086 | 161.00 | 162.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | starting @ 40 deg tea shallowing to parallel tea at 173.5m and                                                                                                                                                                          | arg      |      |       | 0.5   |      | 087 | 168.00 | 169.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | Steepening to 40 deg tca by 180m and 90 deg tca at 180.50m.                                                                                                                                                                             | arg      |      |       | 0.5   |      | 088 | 169.00 | 170.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | Rocks line and become graphilic at end of unit.                                                                                                                                                                                         | Standard |      |       |       |      | 089 | 170.00 | 170.00 | 0.00       |      |      |          |          | 3.090    |        |        |            |                 |
|        |                   | I have by irregular and contarted guarta/carb stringers and                                                                                                                                                                             | arg      |      |       | 2     |      | 090 | 170.00 | 171.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | Unit cut by inegular and contoned qualiz/carb stringers and                                                                                                                                                                             | arg      |      |       | 1     |      | 091 | 171.00 | 172.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | beeling this frontures atrongest from 156.25 to 164.25m                                                                                                                                                                                 | arg      |      |       | 4     |      | 092 | 172.00 | 173.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | Concreding this flactures strongest from 156.25 to 164.25m.                                                                                                                                                                             | arg      |      |       | 2     |      | 093 | 173.00 | 174.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | stringers/voinlets and not in the argillite itself. Miner                                                                                                                                                                               | arg      |      |       | 2.5   |      | 094 | 174.00 | 175.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | shaleepyrite lecally associated with galena. Galena and grange                                                                                                                                                                          | arg      |      |       | 0     |      | 095 | 175.00 | 176.00 | 1.00       | tr   | -    |          |          | 0.008    |        |        |            |                 |
|        | c<br>s<br>c<br>fi | chalcopynie locally associated with galena. Galena and orange                                                                                                                                                                           | Blank    |      |       |       |      | 096 | 176.00 | 176.00 | 0.00       |      |      |          |          | 0.002    |        |        |            |                 |
|        |                   | common than galena. Galena + chalcopyrite present along fracture at 176m.                                                                                                                                                               | arg      |      |       | 3     |      | 097 | 176.00 | 177.00 | 1.00       | tr   | -    |          |          | 0.002    |        |        |            |                 |
|        |                   | 180.60 to 182.24: fault zone with extremely fractured and ground core                                                                                                                                                                   |          |      |       |       |      |     |        |        |            |      |      |          |          |          |        |        |            |                 |

| LOGGED | ) BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | PROF | PERTY    | ′: Og | gden |     |        | ZON    | E: South 2 | Zone |      | HOLE NO.: OG18-04          | 14     | Page      | 5 of 12     |             |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|-------|------|-----|--------|--------|------------|------|------|----------------------------|--------|-----------|-------------|-------------|
| METE   | RAGE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK     |      | Alt'n In | dex   |      |     |        | SAMF   | PLES       |      |      |                            | ASSA'  | YS        |             |             |
| FROM   | ТО       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE     | Carb | Alb      | %Qtz  | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) | Ni (%) Co | ა (%) Zn (º | %) Ag (ppm) |
|        |          | Standard 089 used CDN-GS-3H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |      |          |       |      |     |        |        |            |      |      |                            |        |           |             |             |
| 182.24 | 184.65   | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um       |      | (        | )     |      | 098 | 182.24 | 183.45 | 1.21       | tr   | -    | 0.002                      |        |           |             |             |
|        |          | Strong olive green carbonate alteration with approx 30% white wispy to stringer carbonate; upper 0.90m weakly silicified with trace to minor pyrite. Foliated @ approx 90 deg tca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | um       |      | (        | )     |      | 099 | 183.45 | 184.65 | 1.20       | tr   | -    | 0.002                      |        |           |             |             |
| 184.65 | 188.05   | SILICIFIED ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sil zone |      | 3        | 0     |      | 100 | 184.65 | 185.35 | 0.70       | 0.25 | -    | 0.002                      |        |           |             |             |
|        |          | Original textures are overprinted by strong silicification as well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sil zone |      | 3        | 3     |      | 101 | 185.35 | 186.35 | 1.00       | 0.5  | -    | 0.002                      |        |           |             |             |
|        |          | as fine albitization, chloritization and wisny vellow carbonate: the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sil zone |      | 3        | 3     |      | 102 | 186.35 | 187.35 | 1.00       | 0.5  | -    | 0.002                      |        |           |             |             |
|        |          | green chlorite and cream albitization has a weak brecciated<br>texture; yellow wispy carbonate present from 185.75 to<br>186.35m; areas of strongest silicification are aphanitic with a<br>cherty appearance. Unit moderately flooded by white quartz to<br>186.35m as well as thin white to grey veinlets from 186.75 to<br>187.45m. Quartz generally as veinlets but also as knots that cut<br>and brecciate the alteration. A thin 1cm veinlet from 186.70 to<br>186.93m runs parallel tca showing tight folds and crenulations<br>with clotty pyrite along the contacts and occasional fold nose.<br>Pyrite mineralization as fine disseminations strongest in yellow<br>carbonate altered section at approx 1% with approx 0.25 to<br>0.5% throughout the rest. | sil zone |      | 3        | 3     |      | 103 | 187.35 | 188.05 | 0.70       | 0.25 |      | 0.023                      |        |           |             |             |

| LOGGED | BY: D.H | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | PR   | OPER  | TY: O | gden |     |        | ZON    | E: South Z | Zone |      | HOLE NO.: OG18-044                   | Page 6 of 12               |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|------|-----|--------|--------|------------|------|------|--------------------------------------|----------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROCK |      | Alt'r | Index |      |     |        | SAMF   | PLES       |      |      | ASSAYS                               | ;                          |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CODE | Carl | b Alb | %Qtz  | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni | (%) Co (%) Zn (%) Ag (ppm) |
| 188.05 | 217.00  | ARGILLITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arg  |      |       | 2     |      | 104 | 188.05 | 189.00 | 0.95       | tr   | -    | 0.002                                |                            |
|        |         | Finely bedded arey silts to black mudstones: Graded bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arg  |      |       | 4     |      | 105 | 211.00 | 212.00 | 1.00       | 0.5  | -    | 0.002                                |                            |
|        |         | present showing waviness and crenulations. Unit moderately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arg  |      | 0.5   | 1     | 0.5  | 106 | 212.00 | 213.00 | 1.00       | 0.5  | -    | 0.002                                |                            |
|        |         | disturbed by thin white carb stringers predominantly between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arg  | 1    | 1     | 25    | 1    | 107 | 213.00 | 214.00 | 1.00       | 0.5  | -    | 0.002                                |                            |
|        |         | 195 and 205m. Thin semi-transparent quartz stringers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arg  |      |       | 1     |      | 108 | 214.00 | 215.00 | 1.00       | 0.5  | -    | 0.002                                |                            |
|        |         | veinlets with minor white carb cut the unit also: hosting minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arg  |      |       | 4     |      | 109 | 215.00 | 216.00 | 1.00       | 0.5  | -    | 0.002                                |                            |
|        |         | <ul> <li>verifiets with minor write carb cut the unit also, hosting minor</li> <li>clotty pyrite as well as local orange sphalerite and lesser</li> <li>galena. The quartz veinlets are filling extensional fractures.</li> <li>Approx 0.25% pyrite throughout the unit with exception of pyrite</li> <li>stringers located between 216.56 and 216.87m. Sphalerite as</li> <li>clots as well as thin stringers present between 211.85 and</li> <li>214.20m. Galena clots of 12x4mm</li> <li>between 212.30 and 212.46m.</li> <li>200.95 to 201.04m: irregular semi-transparent quartz vein with</li> <li>trace sphalerite</li> <li>210.87 to 211.10m: bodied quartz veining at approx 40% over</li> <li>interval hosting coarse blebby pyrite within quartz</li> <li>From 212.80 to 213.60m is a section of tremendous grey to</li> <li>white quartz flooding leading to strong wispy brown carb,</li> <li>chlorite, albite, fuchsite, sericite and silicification to a cherty</li> <li>texture; the flooding has resulted in wisps and bands contorted</li> <li>and brecciated; brecciation present from 213.13 to 213.17m</li> <li>possible as a healed fault. Few thin cross-cutting carb stringers</li> <li>present with minor sphalerite. Trace to minor pyrite</li> </ul> | arg  |      |       | 0.5   |      | 110 | 216.00 | 217.00 | 1.00       | 1    | -    | 0.008                                |                            |
| 217.00 | 222.95  | AMYGDULOIDAL PILLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |       |       |      |     |        |        |            |      |      |                                      |                            |

| LOGGE  | ) BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | PRO      | PER <sup>.</sup> | TY: Oʻ | gden |          |        | ZONE   | E: South 7 | Zone |      | HOLE     | : NO.: (  | DG18-(    | )44            | Р        | 'age 7 o | f 12              |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------|--------|------|----------|--------|--------|------------|------|------|----------|-----------|-----------|----------------|----------|----------|-------------------|
| MET    | ERAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROCK     | <u>Т</u> | Alt'n            | Index  |      | 1        |        | SAMF   | LES        |      |      | Ι        |           |           | ASS            | AYS      |          |                   |
| FROM   | то       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CODE     | Carb     | Alb              | %Qtz   | Ser  | No.      | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) | ) Pt (g/t | ) Au (g/t | ) Cu (%)       | ) Ni (%) | Co (%)   | ) Zn (%) Ag (ppm) |
|        |          | Light to dull olive green coloured pillows with dark irregular<br>selvages and trace to 3% amydgules; pillows are very fine-<br>grained closer to selvages with slightly coarser centers; well<br>fractured, now healed by felds/carb material; occasional<br>younger quartz/carb veinlet cutting unit. Late carbonate veinlets<br>between 222.42 and 222.95m that contain coarser orange<br>sphalerite and galena at approx 4:1 ratio respectively. One tiny<br>speck of cpy with sph and gn in veinlet @ 222.42. Trace pyrite<br>within the pillowed unit. |          |          |                  |        |      | <u> </u> |        |        |            |      |      | <u>.</u> |           |           |                |          |          |                   |
| 222.95 | 235.65   | GRAPHITIC ARGILLITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arg      | ·        |                  | 1      |      | 111      | 222.95 | 224.00 | 1.05       | 5    |      |          |           | 0.04      | <sup>,</sup> 8 |          |          |                   |
|        |          | Very dark and fine-grained mudstones: bedding for the most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | arg      |          |                  | 1      |      | 112      | 224.00 | 225.00 | 1.00       | 4    | -    |          |           | 0.01      | 8              |          |          |                   |
|        |          | part is well preserved but shows more deformation downhole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blank    |          |                  |        |      | 113      | 225.00 | 225.00 | 0.00       |      |      |          |           | 0.00      | 2              |          |          |                   |
|        |          | badding angles start off at 53 deg too and steepen to 60 deg by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arg      |          |                  | 0      |      | 114      | 225.00 | 226.00 | 1.00       | 6    | -    |          |           | 0.02      | .7             |          |          |                   |
|        |          | 228m before shallowing again to 25 deg too at and of unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arg      |          |                  | 0      |      | 115      | 226.00 | 227.00 | 1.00       | 3    | -    |          |           | 0.01      | 4              |          |          |                   |
|        |          | Auch stronger pyrite mineralization in this unit than unbelo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arg      |          |                  | 1      |      | 116      | 227.00 | 228.00 | 1.00       | 3.5  | -    |          |           | 0.02      | .3             |          |          |                   |
|        |          | nucli stronger pyrite mineralization in this unit than uphole,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arg      |          |                  | 10     |      | 117      | 228.00 | 229.10 | 1.10       | 4    | -    |          |           | 0.02      | .0             |          |          |                   |
|        |          | pyrite most common as sumgers, line disseminations forming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | um       | 3 (      | 0                | 3      | 0    | 118      | 229.10 | 230.72 | 1.62       | 0.25 | -    |          |           | 0.00      | 2              |          |          |                   |
|        |          | weak stilligers, noucles and dust-like grains, the pyriters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard |          |                  |        |      | 119      | 230.72 | 230.72 | 0.00       |      |      |          |           | 1.50      | 0              |          |          |                   |
|        |          | secondary and grown in association with the white carbonate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arg      |          |                  | 0      | -    | 120      | 230.72 | 231.72 | 1.00       | 7    | -    |          |           | 0.00      | 7              |          |          |                   |
|        |          | pyrite housies as porphyrobiasis, pyrite content averages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arg      |          |                  | 1      |      | 121      | 231.72 | 232.72 | 1.00       | 4    | -    |          |           | 0.02      | .2             |          |          |                   |
|        |          | approx 4-5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arg      |          |                  | 0      | -    | 122      | 232.72 | 233.72 | 1.00       | 4    | -    |          |           | 0.03      | 2              |          |          |                   |
|        |          | 222m: discontinuous carbonato voinlot filling a cash fractura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arg      |          |                  | 0      | -    | 123      | 233.72 | 234.72 | 1.00       | 3.5  | -    |          |           | 0.02      | .6             |          |          |                   |
|        |          | with coarse orange sphalerite + galena cutting across bedding;<br>oriented @ 15 deg tca                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arg      |          |                  | 0      |      | 124      | 234.72 | 235.65 | 0.93       | 3    | -    |          |           | 0.02      | 2              |          |          |                   |
|        |          | 228.26 to 228.60m: fracturing with a healed fault @ 55 deg tca<br>-228.48 to 228.60m consists of a healed fault consisting of<br>square calcite growths from 1 to 3mm within a fine mesh of dirty<br>graphitic material; speckled appearance as a result of the<br>calcite growths; approx 90% calcite                                                                                                                                                                                                                                                       |          |          |                  |        |      |          |        |        |            |      |      |          |           |           |                |          |          |                   |
|        |          | 229.10 to 230.72m is a section of olive green carbonate altered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |                  |        |      |          |        |        |            |      |      |          |           |           |                |          |          |                   |

| LOGGED | ) BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | PR   | OPER  | TY: O   | gden |          |        | ZONI   | E: South 2 | Zone |      | HOLE NO .:     | OG18-04      | 14     | Page      | 8 of 12    |          |
|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|---------|------|----------|--------|--------|------------|------|------|----------------|--------------|--------|-----------|------------|----------|
| METE   | RAGE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROCK  |      | Alt'  | n Index |      |          |        | SAMF   | PLES       |      |      |                |              | ASSA   | YS        |            |          |
| FROM   | то        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CODE  | Carl | b Alb | %Qtz    | Ser  | No.      | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g | /t) Au (g/t) | Cu (%) | Ni (%) Co | (%) Zn (%) | Ag (ppm) |
|        | <u>.</u>  | ultramafics; well foliated with strong fracturing and minor late<br>quartz/carb veinlets<br>Standard 119 used CDN-CM-2                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |       |         |      | <u> </u> |        |        |            |      |      |                |              |        |           |            |          |
| 235.65 | 236.55    | GREYWACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wacke | 1    | 1     | 0       | 1    | 125      | 235.65 | 236.55 | 0.90       | 3    | -    |                | 0.002        |        |           |            |          |
|        |           | Massive with weak to moderate pervasive yellow carbonate<br>alteration to a mauve colour. Last 5cm of the unit is foliated<br>with stronger carb alt; unit hosts 3% disseminated pyrite. Sharp<br>upper and lower contacts @ 25 and 33 deg tca respectively.<br>Cross-cutting quartz veinlets @ 336.40 and 336.46m that have<br>been cut and displaced by late slips; clotty orange sphalerite<br>and chalcopyrite within quartz                                                                                                              |       |      |       |         |      |          |        |        |            |      |      |                |              |        |           |            |          |
| 236.55 | 272.80    | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l.dk  |      |       |         |      | 126      | 250.70 | 251.90 | 1.20       | 2.5  | -    |                | 0.018        |        |           |            | <u> </u> |
|        |           | Wall faliated, alive group to act being carbonate alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l.dk  |      |       |         |      | 127      | 256.00 | 257.40 | 1.40       | 2    | -    |                | 0.133        |        |           |            |          |
|        |           | throughout with a speekled texture: trace furbolite: approx 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I.dk  |      |       |         |      | 128      | 260.80 | 261.70 | 0.90       | 2    | -    |                | 0.007        |        |           |            |          |
|        |           | and this bands: applox 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F.dk  |      |       |         |      | 129      | 261.70 | 262.45 | 0.75       | 0.5  | -    |                | 0.063        |        |           |            |          |
|        |           | <ul> <li>soft white carbonate stringers and thin bands; occasional rate quartz/carb veinlet. Pyrite mineralization as coarser blebs to 241.50m before becoming finer cubes at minor quantities. Unit cut by numerous intermediate dikes.</li> <li>242.90 to 243.73m: dike @ 58 deg tca -pervasive beige colouration with 0.5% pyrite</li> <li>245.85 to 246.10m: dike @ 65 deg tca -pinkish-grey with 1.5% pyrite</li> <li>246.80 to 248.93m: dike @ 40 deg tca -slightly coarser grained with a moderate fabric; 0.5% diss pyrite</li> </ul> | l.dk  |      |       |         |      | 130      | 263.45 | 263.85 | 0.40       | 2.5  | -    |                | 0.002        |        |           |            |          |

| LOGGE  | DBY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                  |       | PRO  | PER   | TY: Og  | gden |     |        | ZONE   | : South  | Zone |         | HOLE NO.: OG18-           | )44      | Page 9 of 2   | 12              |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|---------|------|-----|--------|--------|----------|------|---------|---------------------------|----------|---------------|-----------------|
| MET    | ERAGE   |                                                                                                                                                                                                                                                                                                                     | ROCK  |      | Alt'ı | n Index |      |     |        | SAMP   | LES      |      |         |                           | ASSA     | YS            |                 |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                         | CODE  | Carb | Alb   | %Qtz    | Ser  | No. | FROM   | то     | LENGTH   | %Py  | %Ars    | Pd (g/t) Pt (g/t) Au (g/t | ) Cu (%) | Ni (%) Co (%) | Zn (%) Ag (ppm) |
|        |         | 250.70 to 251.90m: dike @ 30 uct and lct 45 deg tca<br>-grey and pinkish; weakly zoned; finer grained mafic chill<br>margins<br>-2-3% disseminated pyrite                                                                                                                                                           |       | •    |       |         |      |     |        |        | <u> </u> |      |         | · · · ·                   | · · ·    |               |                 |
|        |         | 256.00 to 257.40m: dike @ 55 deg tca<br>-slightly finer-grained; cut by late quartz/carb stringers and<br>associated with these structures is silicification and bleached<br>halos to a peach/pink colour; approx 1% pyrite                                                                                         |       |      |       |         |      |     |        |        |          |      |         |                           |          |               |                 |
|        |         | 260.80 to 262.45m: dike @ 60 deg tca<br>-unit fine-grained and grey to 261.70m with 2% disseminated<br>pyrite<br>-261.70 to 262.25m is extremely felsic and silicous with only 5%<br>mafics and a pervasive peach colouration; cherty texture; hosts<br>0.25% pyrite<br>-262.25 to 262.45m: more mafic chill margin |       |      |       |         |      |     |        |        |          |      |         |                           |          |               |                 |
|        |         | 263.40 to 263.85m: dike @ 85 deg tca<br>-darker and more mafic with felsic patches; approx 2.5% pyrite                                                                                                                                                                                                              |       |      |       |         |      |     |        |        |          |      |         |                           |          |               |                 |
| 272.80 | 314.90  | AMYGDULOIDAL PILLOWS                                                                                                                                                                                                                                                                                                | vol   | 0    | 1     | 1       | 0    | 131 | 273.00 | 274.00 | 1.00     | -    | -       | 0.14                      | 5        |               |                 |
|        |         | l ight green dacitic volcanics with dark (almost black) anhanitic                                                                                                                                                                                                                                                   | vol   | 0    | 2     | 2       | 0    | 132 | 274.00 | 275.00 | 1.00     | 0.25 | tr      | 0.16                      | 7        |               |                 |
|        |         | selvages and variable amyodule content Amyodules like                                                                                                                                                                                                                                                               | vol   | 0 (  | 0.5   | 1       | 0    | 133 | 281.43 | 282.43 | 1.00     | tr   | -       | 0.08                      | 3        |               |                 |
|        |         | uphole are a cream colour and likely cemented by fine feldspar.                                                                                                                                                                                                                                                     | min   | 0    | 3     | 6       | 0    | 134 | 282.53 | 283.53 | 1.00     | 4    | 0.5     | 3.10                      | 0        |               |                 |
|        |         | Unit moderately fractured. Small scale sigmoidal fracturing                                                                                                                                                                                                                                                         | min   | 0    | 3     | 7       | 0    | 135 | 283.53 | 284.25 | 0.72     | 4    | 0.5     | 2.63                      | 0        |               |                 |
|        |         | locally filled with grey smokey quartz. Occasional hematitic                                                                                                                                                                                                                                                        | VOI   | 0    | 0     |         | 0    | 136 | 284.25 | 285.25 | 1.00     | tr   | -       | 0.04                      | 3        |               |                 |
|        |         | fracture; and quartz/carb veinlet with a slight pinkish colouration                                                                                                                                                                                                                                                 | Blank | 0    | 0     | 2       |      | 137 | 301.50 | 301.50 | 0.00     | 4.0  |         | 0.00                      | 2        |               |                 |
|        |         | Mineralization in the form of very fine pyrite and arsenopyrite                                                                                                                                                                                                                                                     | VOI   | 0    | 1     | Z       | 0    | 130 | 301.50 | 302.50 | 1.00     | เก   | -<br>+r | 0.06                      | 1        |               |                 |
|        |         | associated with albitized and weakly quartz flooded zones.                                                                                                                                                                                                                                                          | vol   | 0    | 0     | 4       | 0    | 140 | 302.50 | 302.00 | 1.00     | -    | - u     | 0.65                      | 0        |               |                 |
|        |         |                                                                                                                                                                                                                                                                                                                     | vol   | 0    | 0     | 1       | 0    | 141 | 310.82 | 311.82 | 1.00     | -    | -       | 0.10                      | 5        |               |                 |
|        |         | From 372.80 to 275.10m is an interval of weak to moderate albitization but lacks mineralization; occasional thin quartz                                                                                                                                                                                             | min   | 0    | 2     | 15      | 0    | 142 | 311.82 | 312.20 | 0.38     | 2.5  | tr      | 0.06                      | 2        |               |                 |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | PRO  | PER <sup>-</sup> | TY: Og | gden |            |                  | ZON              | E: South 2   | Zone    |          | HOLE NO.: OG18-04          | 4 F          | Page 10 of 12            |
|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------------------|--------|------|------------|------------------|------------------|--------------|---------|----------|----------------------------|--------------|--------------------------|
| METER  | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROCK       |      | Alt'n            | Index  |      |            |                  | SAM              | PLES         |         |          |                            | ASSAYS       |                          |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CODE       | Carb | Alb              | %Qtz   | Ser  | No.        | FROM             | то               | LENGTH       | %Py     | %Ars     | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (% | b) Co (%) Zn (%) Ag (ppm |
|        |        | veinlet showing folding and crenulations; approx 2% pyrite and trace arsenopyrite present from 374.40 to 374.47m associated with albitization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vol<br>min | 0    | 1<br>3           | 0<br>4 | 0    | 143<br>144 | 312.20<br>313.60 | 313.60<br>314.90 | 1.40<br>1.30 | tr<br>3 | -<br>1.5 | 0.518<br>3.010             |              |                          |
|        |        | 276.30 to 276.50m white quartz vein nicked by hole at approx 5 deg tca; stringer pyrite found in surrounding volcanics close to contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |      |                  |        |      |            |                  |                  |              |         |          |                            |              |                          |
|        |        | 282.53 to 284.25: strongly mineralized/alteration zone @ 85 deg<br>tca; pervasive albitizaiton to a tan/beige colouration cut by very<br>thin white to grey quartz stringers and veinlets; an insitu breccia-<br>like texture to 283m; from there the unit is basically thinly<br>banded albite wisps and bands with some carbonate alteration<br>parallel to orientation of quartz flooding; specks of fuchsite not<br>uncommon to 283m; well mineralized by fine pyrite and<br>arsenopyrite averaging approx 4% at an approx pyrite to<br>arsenopyrite ratio of 10:1. Sharp upper and lower contacts.<br>302.50 to 302.88m: weak to moderate mineralized/alteration<br>zone with more diffuse contacts; interval somewhat bound by<br>0.5cm quartz veinlets on each side; weak pervasive albitization<br>to a slightly browner hue; approximately 2% very finely<br>disseminated pyrite + minor arsenopyrite<br>311.82 to 312.20m; moderately mineralized zone with weak to<br>moderate albitization and quartz veining; a semi-transparent to<br>white quartz vein present from 311.82 to 311.95m; barren;<br>approx 3% pyrite + arsenopyrite outside of vein; fracturing |            |      |                  |        |      |            |                  |                  |              |         |          |                            |              |                          |
|        |        | throughout interval with a ground lower contact<br>313.60 to 314.90m: mineralized/alteration zone @ 87-90 deg tca<br>-tan/mauve/beige colour as weak wisps and bands parallel to<br>foliation; locally intruded by narrow 1-2mm semi-transparent to<br>white quartz stringers/veinlets at only approx 4% of entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |                  |        |      |            |                  |                  |              |         |          |                            |              |                          |

| LOGGED | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | PR  | OPE  | RTY: O   | gden |     |        | ZON    | E: South 2 | Zone |      | HOLE NO.: OG18-044                  | Page 11 of 12                 |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|----------|------|-----|--------|--------|------------|------|------|-------------------------------------|-------------------------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCK |     | Alt  | 'n Index |      |     |        | SAMF   | LES        |      |      | ASSAY                               | ′S                            |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CODE | Car | b Al | b %Qtz   | Ser  | No. | FROM   | то     | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) 1 | Ni (%) Co (%) Zn (%) Ag (ppm) |
|        |         | interval<br>Well mineralized with a consistent pyrite and arsenopyrite<br>content at approx 5% and a ratio of 2:1 respectively. Extremely<br>blocky unit with only piece of core exceeding 10cm throughout<br>the interval; unit broken parallel to foliation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      |          |      |     |        |        |            |      |      |                                     |                               |
| 314.90 | 317.30  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | um   | 3   | 0    | 0        | 0    | 145 | 314.90 | 316.10 | 1.20       | tr   | -    | 0.017                               |                               |
|        |         | Well foliated; olive green carb altered and weakly to moderately silicified; hard; unit cut by carb stringers to bands that show kinks and crenulations. Very blocky unit with a 6mm gouge seam at 315.40m. Local subhedral blebs of pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | um   | 3   | 0    | 0        | 0    | 146 | 316.10 | 317.20 | 1.10       | tr   | -    | 0.005                               |                               |
| 317.30 | 347.30  | FELDSPAR PORPHYRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | por  | 0   | 0    | 15       | 0    | 147 | 317.30 | 318.30 | 1.00       | 0.75 | -    | 0.155                               |                               |
|        |         | Massive and silicous unit containing 35-45% white subhedral to<br>euhedral plag phenocrysts; Unit composed of approx 40%<br>phenos, 40% interstitial semi-transparent quartz and 20% fine<br>amphibole or more locally cream/yellowish sericite causing a<br>fairly pervasive tan colour to the rock associated with areas of<br>late quartz flooding. For the most part the rock is dull grey/tan<br>colour. Black chlorite fractures cut the unit. Extensional veinlets<br>strongest between 326.60 and 328.60m filled with semi-<br>transparent quartz and minor white calcite. This is the area of<br>the strongest yellowish colouration. Disseminated pyrite<br>throughout at approx 0.5 to 0.75% with slight local increases.<br>Upper section to 318.40m cut by increase quartz flooding<br>hosting black tourmaline. Slight increase in pyrite content.<br>339.64 to 344.62m: mafic dike @ 42 deg tca with sharp dark<br>contacts with 1.5cm chill margins; the dike is dark grey in<br>colour; composed of approx 60% coarser hornblende + 5% | por  | 0   | 0    | 2        | 0    | 148 | 318.30 | 319.30 | 1.00       | 0.5  | -    | 0.080                               |                               |

#### METALS CREEK RESOURCES

| LOGGED | BY: D.I | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | PROF | PERT    | Y: Og | gden |     |      | ZON | E: South | Zone |      | HOLE     | NO.: C   | G18-04   | 14     | Pag    | e 12 of | 12             |
|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|-------|------|-----|------|-----|----------|------|------|----------|----------|----------|--------|--------|---------|----------------|
| METE   | RAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROCK |      | Alt'n I | Index |      |     |      | SAM | PLES     |      |      |          |          |          | ASSA   | YS     |         |                |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CODE | Carb | Alb     | %Qtz  | Ser  | No. | FROM | то  | LENGTH   | %Py  | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%)  | Zn (%) Ag (ppr |
|        |         | green actinolite with interstitial plag; gabbroic texture; non-<br>magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |
| 347.30 | 349.20  | MAFIC DIKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |
|        |         | Similar to dike noted above in porphyry but this one has a weak fabric as well as weak magnetism; barren of sulphides. Upper and lower contacts @ 67 and 35 deg tca respectively.                                                                                                                                                                                                                                                                                                                               |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |
| 349.20 | 387.00  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |
|        |         | Very dark and soft unit of serp/talc altered ultramafics with a weak pillowed appearance as a result of 35% anastomosing serp/carb seams; very soft with a waxy feel. Carbonate stringers often found within the anastomosing seams. Below 359.50m the ultramafic material amongst the anastomosing serp/carb becomes strongly magnetic; the serp/carb material is non-magnetic.<br>349.70 to 349.90m: fault @ 50 deg tca -serp-rich gouge<br>354.90 to 355.10m is a less altered section with spinifex texture |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      |         |       |      |     |      |     |          |      |      |          |          |          |        |        |         |                |

Printed: April-27-18

| PROPERTY:     | Ogden                | CLAIM NO.:     | P8594          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Rods got jammed at 99m and could not be freed. Tried to |
|---------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|------------------------------------------------------------------|
| HOLE NO.:     | OG18-045             | LENGTH (m):    | 98.0           | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | reduce but the BQ would not go through. Put rubber plug          |
| COORD SYSTEM: | UTM Nad 83           | NORTHING:      | 5363011.000    | EASTING:       | 474646.000     | COLLAR SURVEY BY: Don (GPS)                 | Remainder stuck in hole.                                         |
| SECTION:      | SZ_810W              | ZONE:          | South Zone     | ELEVATION (m): | 298.000        | DRILLING COMPANY: Norex                     |                                                                  |
| COLLAR ORIEN  | TATION (AZIMUTH/DIP) | PLANNED:       | 360. / -47.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 20, 2018 TO Mar. 20, 2018 | Core Storage: Norex compound                                     |
| HOLE STARTED  | ): March 15, 2018    | HOLE FINISHED: | March 18, 2018 | MAG:           | 11 w           | LOGGED BY: D.Heerema                        | Page 1 of 3                                                      |

| METERAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROCK |      | Alt'n | Index |     |     |       | SAMP  | LES    |     |      | ASSAYS                                                 |          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|-----|-----|-------|-------|--------|-----|------|--------------------------------------------------------|----------|
| FROM TO     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CODE | Carb | Alb   | %Qtz  | Ser | No. | FROM  | то    | LENGTH | %Py | %Ars | Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) | Ag (ppm) |
| 0.00 24.40  | OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |       |       |     |     |       |       |        |     |      |                                                        |          |
|             | Downhole surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |       |       |     |     |       |       |        |     |      |                                                        |          |
|             | 33m  359 azi, -46.5 dip<br>84m  0.4 azi, -46.6 dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |       |       |     |     |       |       |        |     |      |                                                        |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      |       |       |     |     |       |       |        |     |      |                                                        |          |
| 24.40 60.80 | AMYGDULOIDAL VOLCANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | min  |      |       |       |     | 001 | 55.05 | 55.77 | 0.72   | 1   | 2    | 3.350                                                  |          |
|             | Fine-grained green chloritic groundmass containing amodules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | min  |      |       |       |     | 002 | 57.92 | 58.16 | 0.24   | 1   | 0.5  | 0.537                                                  |          |
|             | <ul> <li>anywhere from trace to 30%. Amygdules are a light green/cream colour. The rock is generally featureless with thinner dark seams that appear to be pillow selvages. Generally competent rock with moderate fracturing except for the brittle fault zones. Some natural breaks exhibiting groundwater movement with pitting and rusty staining.</li> <li>30.60 - 31.10m: brittle fault with strong evidence of groundwater -oriented @ approx 20 deg tca</li> <li>53.20m: ground seam with minor remnant gouge @ 45 deg tca</li> <li>55.05 to 55.77m: mineralized alteration zone @ 30 deg tca -upper 10cm is flooded by 90% semi-transparent quartz followed by moderate albitization with needles of arsenopyrite to 3%.</li> <li>From 55.28 to 55.57m is a rubbly fault with strong rustiness and some weathered sulphides</li> </ul> | min  |      |       |       |     | 003 | 59.70 | 60.40 | 0.70   | 2   | 2    | 0.584                                                  |          |

| LOGGED | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                            |      | PRO  | PERT  | Y: Og | gden |     |      | ZO  | NE: South | Zone |      | HOLE N   | IO.: OG1    | 8-045    |             | Page 2   | of 3               |
|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|------|-----|------|-----|-----------|------|------|----------|-------------|----------|-------------|----------|--------------------|
| METER  | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                               | ROCK |      | Alt'n | Index |      |     |      | SAI | MPLES     |      |      |          |             | Α        | SSAYS       |          |                    |
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                   | CODE | Carb | Alb   | %Qtz  | Ser  | No. | FROM | то  | LENGTH    | %Py  | %Ars | Pd (g/t) | Pt (g/t) Au | (g/t) Cr | u (%) Ni (' | %) Co (% | %) Zn (%) Ag (ppm) |
|        |        | 57.92 to 58.16m: 4cm quartz vein @ 45 deg tca with strong yellow sericite/carb and moderate cream/beige albitization; sericite/carb alt has been weakly brecciated by late quartz veinlets<br>-minor pyrite and arsenopyrite                                                                                                                                                                                  |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        | 59.70 to 60.40m: mineralized alteration zone @ 35-45 deg tca<br>-strongly albitized cream/beige patches with gradational<br>contacts bleeding into the green chloritic material; strong pyrite<br>and arsenopyrite at approx 4% within albitized material; unit<br>intruded by late quartz veining and later broken by<br>fracturing/brittle faulting within; rustiness of fracturing                         |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
| 60.80  | 98.00  | ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        | Darker green more mafic unit with no visible amygdules. The<br>unit is well foliated with sections of wisping and gradational<br>alteration as actinolite. Waves and weak folds evident in the<br>foliation. Cubic and irregular blebs of pyrite upto 0.5% locally.<br>Slight increase in fracturing versus uphole. Evidence of<br>groundwater movement at local breaks with rustiness and<br>strong pitting. |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        | 65.45 to 66.05m: heavily fractured with dark rustiness<br>-drillers note losing water return here                                                                                                                                                                                                                                                                                                             |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        | 71.55m, 72.75m, 73.10m, 75.90m, 81.13m, 87.60m, 88.10m<br>and 88.40m are natural breaks with dark staining and pitting<br>due to groundwater movement; narrow brittle faults?                                                                                                                                                                                                                                 |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        | 88.70 to 89.02m: brittle fault @ 30 deg tca -extremely fractured with dark staining and trace gouge                                                                                                                                                                                                                                                                                                           |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |
|        |        |                                                                                                                                                                                                                                                                                                                                                                                                               |      |      |       |       |      |     |      |     |           |      |      |          |             |          |             |          |                    |

| LOGGED | BY: D.I | Heerema SIGNATURE:                                                               |      | PRO  | PER   | TY: Og | gden |     |      | ZONE | E: South 2 | Zone |      | HOLE    | NO.:      | OG18-0      | 45     |        | Page 3 o | f 3    |          |
|--------|---------|----------------------------------------------------------------------------------|------|------|-------|--------|------|-----|------|------|------------|------|------|---------|-----------|-------------|--------|--------|----------|--------|----------|
| METER  | RAGE    |                                                                                  | ROCK |      | Alt'n | Index  |      |     |      | SAMP | PLES       |      |      |         |           |             | ASSA   | AYS    |          |        |          |
| FROM   | то      | DESCRIPTION                                                                      | CODE | Carb | Alb   | %Qtz   | Ser  | No. | FROM | то   | LENGTH     | %Py  | %Ars | Pd (g/t | ) Pt (g/t | ) Au (g/t)  | Cu (%) | Ni (%) | Co (%)   | Zn (%) | Ag (ppm) |
|        |         | 94.80 to 95.00m: fracture zone with pitting                                      |      |      |       |        |      |     |      |      |            |      |      |         |           |             |        |        |          |        |          |
|        |         | 95.55 to 95.84m: brittle fault zone with angular shards of rock -pitting evident |      |      |       |        |      |     |      |      |            |      |      |         |           |             |        |        |          |        |          |
|        |         | 97.30 to 98.00m: brittle fault that jammed the rods                              |      |      |       |        |      |     |      |      |            |      |      |         |           |             |        |        |          |        |          |
| L      |         |                                                                                  |      |      |       |        |      |     |      |      |            |      |      | Pr      | inted: A  | pril-27-18. |        |        |          |        |          |

| PROPERTY:     | Ogden                 | CLAIM NO .:    | P8594          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Stepped back 4m from OG18-045 to try again. Drilled with |
|---------------|-----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|-------------------------------------------------------------------|
| HOLE NO .:    | OG18-045A             | LENGTH (m):    | 183.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | one round corebarrel and long reaming shell. Hole plugged by      |
| COORD SYSTEM: | UTM Nad 83            | NORTHING:      | 5363007.500    | EASTING:       | 474646.000     | COLLAR SURVEY BY: Don (GPS)                 | rubber plug and casing remains.                                   |
| SECTION:      | SZ_810W               | ZONE:          | South Zone     | ELEVATION (m): | 299.000        | DRILLING COMPANY: Norex                     |                                                                   |
| COLLAR ORIEN  | ITATION (AZIMUTH/DIP) | PLANNED:       | 360. / -49.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 20, 2018 TO Mar. 21, 2018 | Core Storage: Norex compound                                      |
| HOLE STARTE   | D: March 19, 2018     | HOLE FINISHED: | March 20, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 5                                                       |

| METE  | RAGE  |                                                                                                                                                                                                                                        | ROCK |      | Alt'n | Index |     |     |      | S | AMP | LES    |     |      |         |          |           | ASS      | SAYS     |          |          |          |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|-----|-----|------|---|-----|--------|-----|------|---------|----------|-----------|----------|----------|----------|----------|----------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                            | CODE | Carb | Alb   | %Qtz  | Ser | No. | FROM |   | то  | LENGTH | %Py | %Ars | Pd (g/t | ) Pt (g/ | t) Au (g/ | t) Cu (% | ,) Ni (' | %) Co (? | 6) Zn (% | Ag (ppm) |
| 0.00  | 25.80 | OVERBURDEN                                                                                                                                                                                                                             |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          | <u>.</u> |          |          |
|       |       | Downhole surveys                                                                                                                                                                                                                       |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 36m 1.1 azi, -49.7 dip                                                                                                                                                                                                                 |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 90m 4 azi, -49.8 dip                                                                                                                                                                                                                   |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 141m 5.4 azi, -50.4 dip                                                                                                                                                                                                                |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 183m 8.4 azi, -50.9 dip                                                                                                                                                                                                                |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
| 25.80 | 31.68 | ULTRAMAFICS                                                                                                                                                                                                                            |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | Well foliated unit of grey carbonate altered ultramafics, harder<br>with minor silicification; carbonate stringers and banding<br>common with local rustiness. Minor fuchsite over the first<br>65cm. Well fractured with fault seams. |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 26.36m: narrow brittle seam                                                                                                                                                                                                            |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 26.60 to 27.33m: intermediate grey dike @ approx 40 deg tca -weak fabric containing approx 1% disseminated pyrite                                                                                                                      |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       | 28.95 to 29.63m: well fractured with ground ends with rustiness                                                                                                                                                                        |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |
|       |       |                                                                                                                                                                                                                                        |      |      |       |       |     |     |      |   |     |        |     |      |         |          |           |          |          |          |          |          |

| LOGGED | ED BY: D.Heerema SIGNATURE: |                                                                     |      | PRO  | PERT  | ry: Og | den |     |       | ZON   | E: South 2 | Zone |      | HOLE NO.: OG18-045         | ōa            | Page 2 of 5  |             |
|--------|-----------------------------|---------------------------------------------------------------------|------|------|-------|--------|-----|-----|-------|-------|------------|------|------|----------------------------|---------------|--------------|-------------|
| METE   | RAGE                        |                                                                     | ROCK |      | Alt'n | Index  |     |     |       | SAM   | PLES       |      |      |                            | ASSAYS        |              |             |
| FROM   | то                          | DESCRIPTION                                                         | CODE | Carb | Alb   | %Qtz   | Ser | No. | FROM  | то    | LENGTH     | %Py  | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) | Co (%) Zn (% | %) Ag (ppm) |
| 31.68  | 35.55                       | FELSIC DIKE                                                         | F.dk |      |       | 10     |     | 001 | 31.68 | 32.55 | 0.87       | 0.5  | -    | 0.014                      |               |              |             |
|        |                             | Very fine-grained silicous dike with a lite pink to grevish colour: | F.dk |      |       | 1      |     | 002 | 32.55 | 33.55 | 1.00       | 0.5  | -    | 0.002                      |               |              |             |
|        |                             | approx 5-10% fine black specks of chlorite within: unit cut by      | F.dk |      |       | 0.5    |     | 003 | 33.55 | 34.55 | 1.00       | 0.5  | -    | 0.008                      |               |              |             |
|        |                             | white quartz/carb veinlets to 1.2cm. Well fractured unit healed     | F.dk |      |       | 2      |     | 004 | 34.55 | 35.55 | 1.00       | 0.5  | -    | 0.002                      |               |              |             |
|        |                             | by white quartz and thin black chlorite. Late hairline black        |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | chlorite slips showing left lateral movements. Pyrite               |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | mineralization throughout as fine to moderate disseminations        |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | averaging approx 1% found both within the dike material as well     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | as in the healed fractures.                                         |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
| 35.55  | 36.77                       | ULTRAMAFICS                                                         | um   | 3    |       | 0      |     | 005 | 35.55 | 36.77 | 1.22       | tr   | -    | 0.002                      |               |              |             |
|        |                             | Olive green carbonate altered with a strong foliation @ 70 deg      |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | tca; tight crenulations evident at 35.90m hosting fine pyrite       |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | mineralization; trace fuchsite at lower contact                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
| 36.77  | 88.85                       | AMYGDULOIDAL VOLCANICS                                              |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | Light to darker green unit of what appear to be pillowed            |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | volcanics with thin dark selvages and pillows hosting cream         |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | coloured amygdules. The rocks appear to vary from dacitic to        |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | andesitic. Minor quartz stringers and hairline carb. Occasional     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | areas of small scale extensional gashes filled with quartz carb     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | material. Unit starts off very competent but becomes much           |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | blockier below 65m.                                                 |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | 67.00 to 67.34m; well fractured with strong pitting                 |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | 68.65 to 72.00m: fault zone with tremendous fracturing as well      |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | as gouge to gravel size material; drillers note 4ft of wash and     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             | grinding                                                            |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |
|        |                             |                                                                     |      |      |       |        |     |     |       |       |            |      |      |                            |               |              |             |

| LOGGED | GED BY: D.Heerema SIGNATURE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | PR  | OPEF  | RTY: O  | gden |     |        | ZONE   | E: South | Zone |      | HOLE I   | NO.: OC  | G18-04   | 5a        | Page 3 of 5  | <b>;</b>        |
|--------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|---------|------|-----|--------|--------|----------|------|------|----------|----------|----------|-----------|--------------|-----------------|
| METE   | RAGE                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROCK |     | Alt   | n Index |      |     |        | SAMP   | LES      |      |      |          |          |          | ASSAYS    |              |                 |
| FROM   | ТО                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CODE | Car | b Alt | o %Qtz  | Ser  | No. | FROM   | то     | LENGTH   | %Py  | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) Ni | (%) Co (%) Z | .'n (%) Ag (ppm |
|        |                              | 74.70 to 75.00m: brittle fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
|        |                              | 75.95 to 76.10m: brittle fault with pitting and extreme fracturing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
|        |                              | 77.85 to 77.93m: gravel type material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
|        |                              | 80.85 to 81.20m: rusty fracturing with abundant pitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
|        |                              | 86.80 to 87.00m: hematized and folded dike of 4cm (true width) oriented at approx 42 deg tca; deep blood red colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
| 88.85  | 114.20                       | ANDESITE/DACITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              | _               |
|        |                              | This unit is a dacite to andesite unit with a slightly more massive<br>texture; does not appear pillowed and does not contain<br>amygdules. Appears to be a slight gradational increase in mafic<br>content downhole. Unit is cut by localized quartz stringers and<br>veinlets often with minor carbonate; local hematization of<br>fractures common from 93 to 101m. Minor orange k-spar<br>present at 100.30 to 100.90m.<br>Local areas of weak to moderate cubic pyrite. One 2x4mm bleb<br>of chalcopyrite found within a quartz/carb veinlet at 100.50m.<br>Unit is well fractured with occasional rusty breaks |      |     |       |         |      |     |        |        |          |      |      |          |          |          |           |              |                 |
| 114 20 | 159 75                       | AMYGDUI OIDAL VOI CANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vol  | 0   | 0     | 2       | 0    | 006 | 119.73 | 120.73 | 1.00     | -    | -    |          |          | 0.040    |           |              |                 |
|        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | min  | 0   | 2     | 0       | 0    | 007 | 120.73 | 121.69 | 0.96     | 6    | <1   |          |          | 1.710    |           |              |                 |
|        |                              | Similar to the amygduloidal unit above with a light green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vol  | 0   | 0     | 0       | 0    | 008 | 121.69 | 122.69 | 1.00     | -    | -    |          |          | 0.049    |           |              |                 |
|        |                              | groundmass hosting a variable amygdule content; pillow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vol  | 0   | 0     | 0       | 0    | 009 | 144.22 | 145.22 | 1.00     | tr   | -    |          |          | 0.035    |           |              |                 |
|        |                              | associated pyrrhotite mineralization locally. Unit cut by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min  | 0   | 1     | 0       | 0    | 010 | 145.22 | 145.45 | 0.23     | 2    | -    |          |          | 2.030    |           |              |                 |
|        |                              | quartz/carb stringers and veinlets at random orientations; some<br>with a pinkish hue.<br>The unit is also cut by some intermediate diking as noted below.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vol  | 0   | 0     | 2       | 0    | 011 | 145.45 | 146.45 | 1.00     | -    | -    |          |          | 0.047    |           |              |                 |

| LOGGED | BY: D.H | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | PRC  | OPER  | TY: O | gden |            |                  | ZONE             | : South 2    | Zone      |          | HOLE NO.:        | OG18-04        | 45a       | Page 4 o   | 5               |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------|-------|------|------------|------------------|------------------|--------------|-----------|----------|------------------|----------------|-----------|------------|-----------------|
| METER  | AGE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROCK       |      | Alt'n | Index |      |            |                  | SAMP             | LES          |           |          |                  |                | ASSAYS    |            |                 |
| FROM   | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                          | CODE       | Carb | Alb   | %Qtz  | Ser  | No.        | FROM             | то               | LENGTH       | %Py       | %Ars     | Pd (g/t) Pt (g/t | ) Au (g/t)     | Cu (%) Ni | (%) Co (%) | Zn (%) Ag (ppm) |
|        |         | Pyrite and arsenopyrite present associated with poorly to moderately developed albitized zones.                                                                                                                                                                                                                                                                                                                                                      |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
|        |         | 120.73 to 121.69m: alteration/mineralized zone @ 80 deg tca<br>-cream coloured albite amongst chlorite to form moderate<br>banding showing evidence of crenulations and small scale drag<br>folds along slips; pyrite and arsenopyrite associated directly with<br>albitization upto approx 6-7% sulphides overall with strongest<br>mineralization over the upper 50cm and lowest 15cm of<br>interval. Pyrite to arsenopyrite ratio of approx 10:1. |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
|        |         | 123.55 to 123.65m: intermediate dike @ 40 deg tca                                                                                                                                                                                                                                                                                                                                                                                                    |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
|        |         | Between 123.65 and 133.00m are numerous sections of breccia that appear to be shards of pillows within the next pillow during formation of the pillows; subangular shards upto 1cm in diameter.                                                                                                                                                                                                                                                      |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
|        |         | 140.85 to 142.65m: intermediate dike with upper and lower contacts at 30 and 20 deg tca respectively; approx 50% hematized plag; massive; hosting 1.5% cubic pyrite with cubes to 5mm.                                                                                                                                                                                                                                                               |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
|        |         | 145.22 to 145.45m: shear zone with minor albite and pyrite mineralization of approx 4%. No visible arsenopyrite Orientation of 65 deg tca                                                                                                                                                                                                                                                                                                            |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |
| 159.75 | 183.00  | ANDESITE                                                                                                                                                                                                                                                                                                                                                                                                                                             | vol        | 0    | 0     | 1     | 0    | 012        | 170.10           | 171.10           | 1.00         | -         | -        |                  | 0.023          |           |            |                 |
|        |         | Darker green more mafic unit with a weak foliation; competent                                                                                                                                                                                                                                                                                                                                                                                        | min<br>vol | 0    | 0.5   | 0     | 0    | 013<br>014 | 171.10<br>172.27 | 172.27<br>173.27 | 1.17<br>1.00 | 0.5<br>tr | 0.5<br>- |                  | 0.950<br>0.024 |           |            |                 |
|        |         | 171.10 to 172.27m: a mineralized section with little alteration except for zones of weak to moderate albitization and                                                                                                                                                                                                                                                                                                                                |            |      |       |       |      |            |                  |                  |              |           |          |                  |                |           |            |                 |

### METALS CREEK RESOURCES

| LOGGED I | 3Y: D.H | leerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                          |      | PRO  | PERT  | Y: Og | den |     |      | ZONE | : South 2 | Zone |      | HOLE    | : NO.: (   | DG18-04  | 45a    | Р      | age 5 of | 5        |          |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|-----|-----|------|------|-----------|------|------|---------|------------|----------|--------|--------|----------|----------|----------|
| METER    | AGE     |                                                                                                                                                                                                                                                                                                                                                                             | ROCK |      | Alt'n | Index |     |     |      | SAMP | LES       |      |      |         |            |          | ASSA   | YS     |          |          |          |
| FROM     | то      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                 | CODE | Carb | Alb   | %Qtz  | Ser | No. | FROM | то   | LENGTH    | %Py  | %Ars | Pd (g/t | ) Pt (g/t) | Au (g/t) | Cu (%) | Ni (%) | Co (%)   | Zn (%) 🔺 | .g (ppm) |
|          |         | silicification from 171.60 to 171.65 and 171.90 to 172.12m.<br>These more altered zones contain coarse blebby pyrite, minor<br>pyrrhotite and coarse arsenopyrite. Outside of the altered<br>zones the mineralization bleeds out as 0.25% coarse<br>arsenopyrite with trace to 0.25% pyrrhotite and pyrite. The<br>interval marks the extents of the visual mineralization. |      |      |       |       |     |     |      |      |           |      |      |         |            |          |        |        |          |          |          |
|          |         |                                                                                                                                                                                                                                                                                                                                                                             |      |      |       |       |     |     |      |      |           |      |      | D.,     | interal. A |          |        |        |          |          |          |

Printed: April-27-18

| PROPERTY:     | Ogden                 | CLAIM NO.:     | P8060          |                |                | DOWNHOLE SURVEY METHOD: EZ Shot             | REMARKS: Using one round core barrel. Casing pulled out. Drilled east |
|---------------|-----------------------|----------------|----------------|----------------|----------------|---------------------------------------------|-----------------------------------------------------------------------|
| HOLE NO .:    | PH18-001              | LENGTH (m):    | 198.0          | CORE SIZE:     | NQ             | DOWNHOLE SURVEY BY: Drillers                | of the large outcroping (hill).                                       |
| COORD SYSTEM: | UTM Nad 83            | NORTHING:      | 5363365.000    | EASTING:       | 474029.000     | COLLAR SURVEY BY: Don (GPS)                 |                                                                       |
| SECTION:      | N/A                   | ZONE:          | Porphyry Hill  | ELEVATION (m): | 290.000        | DRILLING COMPANY: Norex                     |                                                                       |
| COLLAR ORIEN  | ITATION (AZIMUTH/DIP) | PLANNED:       | 180. / -59.0   | SURVEYED:      | 1.000 / -1.000 | DATE LOGGED: Mar. 25, 2018 TO Mar. 26, 2018 | Core Storage: Norex compound                                          |
| HOLE STARTED  | D: March 24, 2018     | HOLE FINISHED: | March 26, 2018 | MAG:           | 11º w          | LOGGED BY: D.Heerema                        | Page 1 of 3                                                           |

| METE  | RAGE  |                                                                                                                                                                                                                                                                                                  | ROCK |      | Alt'n         | Index |     |     |      | SA | MPL | .ES    |     |      |                   | Α           | SSAY  | ′S       |                |               |    |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------------|-------|-----|-----|------|----|-----|--------|-----|------|-------------------|-------------|-------|----------|----------------|---------------|----|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                      | CODE | Carb | Alb           | %Qtz  | Ser | No. | FROM | т  | 0   | LENGTH | %Py | %Ars | Pd (g/t) Pt (g/t) | Au (g/t) Cu | u (%) | Ni (%) C | <b>:</b> o (%) | Zn (%) Ag (pp | m) |
| 0.00  | 36.00 | OVERBURDEN                                                                                                                                                                                                                                                                                       |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       | -        |                |               |    |
|       |       | Downhole surveys                                                                                                                                                                                                                                                                                 |      | /    |               | 7/    |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
|       |       | 45m 180.5 azi, -58.0 dip                                                                                                                                                                                                                                                                         |      | / /  |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
|       |       | 96m 180.3 azi, -59.2 dip                                                                                                                                                                                                                                                                         | A    |      | $\mathcal{T}$ |       |     |     | >    |    |     |        |     |      |                   |             |       |          |                |               |    |
|       |       | 150m 185.4 azi, -59.2 dip<br>198m 187 8 azi, -59.2 dip                                                                                                                                                                                                                                           |      | V V  |               | /     |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
|       |       | 19011 107.0 azi, -39.2 up                                                                                                                                                                                                                                                                        |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
| 36.00 | 43.00 | ULTRAMAFICS                                                                                                                                                                                                                                                                                      |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                | _             |    |
|       |       | Extremely fractured unit representing a fault system of<br>serpentine/talc altered dark material; serpentine slips<br>throughout with almost fibrous greenish/blue serp. Only 5% of<br>interval contains core lengths exceeding 10cm in length.<br>Strong magnetism and minor pyrite along slips |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
| 43.00 | 46.55 | MAFIC DIKE                                                                                                                                                                                                                                                                                       |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |
|       |       | Dark fine-grained, brownish/black unit with moderate magnetism; contacts somewhat hard to distinguish; lower is rubbly; approx 30% fine white plag; unit cut by random and often discontinuous white carb stringers.                                                                             |      |      |               |       |     |     |      |    |     |        |     |      |                   |             |       |          |                |               |    |

| LOGGE | BY: D. | Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | PROF | PERT    | Y: Og | den |     |       | ZON   | E: Porphy | ry Hill |      | HOLE NO.: PH18-001         | F             | Page 2 of 3            |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------|-------|-----|-----|-------|-------|-----------|---------|------|----------------------------|---------------|------------------------|
| METE  | RAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROCK  |      | Alt'n I | ndex  |     |     |       | SAM   | PLES      |         |      |                            | ASSAYS        |                        |
| FROM  | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CODE  | Carb | Alb     | %Qtz  | Ser | No. | FROM  | то    | LENGTH    | %Py     | %Ars | Pd (g/t) Pt (g/t) Au (g/t) | Cu (%) Ni (%) | Co (%) Zn (%) Ag (ppm) |
| 46.55 | 88.30  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um    |      |         |       |     | 001 | 86.30 | 87.30 | 1.00      | tr      | -    | 0.002                      |               |                        |
|       |        | <ul> <li>Similar to uphole, extremely blocky and easily fractured unit as a result of immense anastomosing serp/carb slips forming a pseudo breccia; serp is green/blueish in colour often containing minor white carb material; the 'clasts' are strongly magnetic amongst the non-magnetic serp/carb seams; unit becomes slightly more competent moving downhole.</li> <li>From 85.90 to 88.30m is an alteration halo as a result of the adjacent porphyry unit; the alteration zone is more competent; with a biotite/hbl alteration and weak leopard texture; a bladed shimmering mineral present (actinolite?); pyrite on fractures</li> <li>68.50: 3cm white calcite veinlet @ 70 deg tca</li> <li>86.10 to 86.20m: white calcite vein with inverted upper and lower contacts @ 75 and 70 deg tca respectively</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | um    |      |         |       |     | 002 | 87.30 | 88.30 | 1.00      | tr      | -    | 0.002                      |               |                        |
| 88.30 | 99.65  | PORPHYRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | por   |      |         | 2     |     | 003 | 88.30 | 89.00 | 0.70      | 0.5     | -    | 0.053                      |               |                        |
|       |        | Fine to medium project and measure this dile consists of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | por   |      |         | 3     |     | 004 | 89.00 | 90.00 | 1.00      | tr      | -    | 0.002                      |               |                        |
|       |        | Fine to medium-grained and massive, this dike consists of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | por   |      |         | 0     |     | 005 | 90.00 | 91.00 | 1.00      | tr      | -    | 0.011                      |               |                        |
|       |        | approximately 40% while play prierios from 1-5mm, 50% semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | por   |      |         | 0     |     | 006 | 91.00 | 92.00 | 1.00      | tr      | -    | 0.016                      |               |                        |
|       |        | diagonation of the second children of the second seco | por   |      |         | 0     |     | 007 | 92.00 | 93.00 | 1.00      | 0.5     | -    | 5.000                      |               |                        |
|       |        | disseminated pyrite. The unit has a grey/green/pinkish nue with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | por   |      |         | 0     |     | 800 | 93.00 | 94.00 | 1.00      | 0.5     | -    | 1.410                      |               |                        |
|       |        | a slight helefogeneity, weak quartz veiniets present from 66.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | por   |      |         | 0     |     | 009 | 94.00 | 95.00 | 1.00      | 0.75    | -    | 0.221                      |               |                        |
|       |        | to 66.50m with associated abilization and decrease in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | por   |      |         | 0     |     | 010 | 95.00 | 96.00 | 1.00      | 1.5     | -    | 0.131                      |               |                        |
|       |        | chionite/amphiboles. Well inactured unit with hall healed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | por   |      |         | 0     |     | 011 | 96.00 | 96.80 | 0.80      | 1       | -    | 5.390                      |               |                        |
|       |        | black chionite. Aside from the minor quartz veinlets noted from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blank |      |         |       |     | 012 | 96.80 | 96.80 | 0.00      |         |      | 0.002                      |               |                        |
|       |        | A section from 04 90 to 00 F0m has fine histite at 40 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | por   |      |         | 0     |     | 013 | 96.80 | 97.60 | 0.80      | tr      | -    | 0.197                      |               |                        |
|       |        | A section from 94.80 to 96.50m has line blottle at 10-12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | um    |      |         | 0     |     | 014 | 97.60 | 98.70 | 1.10      | -       | -    | 0.058                      |               |                        |
|       |        | pyrite mineralization also to approx 1.5% as fine disseminations<br>Sharp upper and lower contacts @ 30 and 42 deg tca<br>respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | por   |      |         | 0     |     | 015 | 98.70 | 99.65 | 0.95      | tr      | -    | 0.017                      |               |                        |

| LOGGED BY: D. | GED BY: D.Heerema SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | PERT     | Y: Og | gden |     |       | ZONE   | E: Porphy | vry Hill |      | HOLE     | NO.: P   | H18-00   | 1        | Page     | e 3 of 3            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|-------|------|-----|-------|--------|-----------|----------|------|----------|----------|----------|----------|----------|---------------------|
| METERAGE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROCK |      | Alt'n lı | ndex  |      |     |       | SAMP   | PLES      |          |      |          |          |          | ASSAY    | S        |                     |
| FROM TO       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CODE | Carb | Alb      | %Qtz  | Ser  | No. | FROM  | то     | LENGTH    | %Py      | %Ars | Pd (g/t) | Pt (g/t) | Au (g/t) | Cu (%) N | i (%) Co | (%) Zn (%) Ag (ppm) |
|               | 97.60 to 98.70m is a cooked up interval of ultramafics as described above with biotite and leopard texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |          |       |      |     |       |        |           |          |      |          |          |          |          |          |                     |
| 99.65 198.00  | ULTRAMAFICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | um   |      |          |       |      | 016 | 99.65 | 100.65 | 1.00      | -        | -    |          |          | 0.002    |          |          |                     |
|               | Upper 1.3m altered as a halo adjacent to porphyry unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |          |       |      |     |       |        |           |          |      |          |          |          |          |          |                     |
|               | <ul> <li>Below 101.30m to 111.00m is a fault zone with immense fracturing and slips and local patches of gouge. Slips appear to be at relatively shallow angles tca generally around 40 deg. Strong presence of green/blue serpentine.</li> <li>Below 111.00 to 139.00m the unit is moderately competent with more localized fracture zone and potential faults with far less anastomosing serp seams. Seams range from 2cm to 50cm and far too many to note. More localized carb stringers; dark textureless with local spinifex from 122.30 to 123.60m. Strong pervasive magnetism. Drillers note that core breaks easy when emptying the tube.</li> <li>125.20 to 126.20m: fault zone?</li> <li>127.40 to 131.00m contains multiple fracture/slip/fault zones</li> <li>Below 139m the unit becomes extremely fractured with an abundance of anastomosing serp slips causing weakness. Numerous serp gouge seams as the rocks show strong evidence of squeezing. This interval of unit contains approx only 25% core exceeding 10cm in length.</li> </ul> |      |      |          |       |      |     |       |        |           |          |      |          |          |          |          |          |                     |

# APPENDIX IV ASSAY CERTIFICATES



5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES 945 COBALT CRES THUNDER BAY, ON P7B5Z4 (807) 345-4990

#### ATTENTION TO: MICHAEL MACISAAC

PROJECT: TOG18

AGAT WORK ORDER: 18T316586

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Apr 17, 2018

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

\*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

|  | aboratories |
|--|-------------|
|--|-------------|

# Certificate of Analysis

AGAT WORK ORDER: 18T316586 PROJECT: TOG18

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

#### ATTENTION TO: MICHAEL MACISAAC

|                       |          |       |         | (202-052) Fire Assay - Trace / | Au, ICP-OES finish (ppm)    |                         |
|-----------------------|----------|-------|---------|--------------------------------|-----------------------------|-------------------------|
| DATE SAMPLED: Mar     | 01, 2018 |       |         | DATE RECEIVED: Mar 02, 2018    | DATE REPORTED: Apr 17, 2018 | SAMPLE TYPE: Drill Core |
|                       | Analyte: | Au    | Au-Grav |                                |                             |                         |
|                       | Unit:    | ppm   | g/t     |                                |                             |                         |
| Sample ID (AGAT ID)   | RDL:     | 0.001 | 0.5     |                                |                             |                         |
| TOG18-62 1 (9098348)  |          | 0.010 |         |                                |                             |                         |
| TOG18-62 2 (9098349)  |          | 0.003 |         |                                |                             |                         |
| TOG18-62 3 (9098350)  |          | 0.004 |         |                                |                             |                         |
| TOG18-62 4 (9098351)  |          | 0.002 |         |                                |                             |                         |
| TOG18-62 5 (9098352)  |          | 0.007 |         |                                |                             |                         |
| TOG18-62 6 (9098353)  |          | 0.217 |         |                                |                             |                         |
| TOG18-62 7 (9098354)  |          | 0.354 |         |                                |                             |                         |
| TOG18-62 8 (9098355)  |          | 0.765 |         |                                |                             |                         |
| TOG18-62 9 (9098356)  |          | 0.691 |         |                                |                             |                         |
| TOG18-62 10 (9098357) |          | 1.13  | 1.1     |                                |                             |                         |
| TOG18-62 11 (9098358) |          | 0.124 |         |                                |                             |                         |
| TOG18-62 12 (9098359) |          | 0.004 |         |                                |                             |                         |
| TOG18-62 13 (9098360) |          | 0.328 |         |                                |                             |                         |
| TOG18-62 14 (9098361) |          | 0.516 |         |                                |                             |                         |
| TOG18-62 15 (9098362) |          | 1.44  | 1.6     |                                |                             |                         |
| TOG18-62 16 (9098363) |          | 0.028 |         |                                |                             |                         |
| TOG18-62 17 (9098364) |          | 0.029 |         |                                |                             |                         |
| TOG18-62 18 (9098365) |          | 0.013 |         |                                |                             |                         |
| TOG18-62 19 (9098366) |          | 0.134 |         |                                |                             |                         |
| TOG18-62 20 (9098367) |          | 0.214 |         |                                |                             |                         |
| TOG18-62 21 (9098368) |          | 1.28  | 1.84    |                                |                             |                         |
| TOG18-62 22 (9098369) |          | 1.84  | 2.1     |                                |                             |                         |
| TOG18-62 23 (9098370) |          | 0.991 |         |                                |                             |                         |
| TOG18-62 24 (9098371) |          | 2.80  |         |                                |                             |                         |
| TOG18-62 25 (9098372) |          | 1.51  | 1.89    |                                |                             |                         |
| TOG18-62 26 (9098373) |          | 1.03  | 1.1     |                                |                             |                         |
| TOG18-62 27 (9098374) |          | 0.616 |         |                                |                             |                         |
| TOG18-62 28 (9098375) |          | 0.394 |         |                                |                             |                         |
| TOG18-62 29 (9098376) |          | 0.212 |         |                                |                             |                         |
| TOG18-62 30 (9098377) |          | 0.159 |         |                                |                             |                         |
| TOG18-62 31 (9098378) |          | 0.172 |         |                                |                             |                         |
| TOG18-62 32 (9098379) |          | 0.071 |         |                                |                             |                         |

Certified By:

- Sherin Houssa

# Certificate of Analysis

AGAT WORK ORDER: 18T316586 PROJECT: TOG18 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

#### ATTENTION TO: MICHAEL MACISAAC

| (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |       |         |                             |                             |                         |  |
|-------------------------------------------------------|----------|-------|---------|-----------------------------|-----------------------------|-------------------------|--|
| DATE SAMPLED: Mar 01, 2018                            |          |       |         | DATE RECEIVED: Mar 02, 2018 | DATE REPORTED: Apr 17, 2018 | SAMPLE TYPE: Drill Core |  |
|                                                       | Analyte: | Au    | Au-Grav |                             |                             |                         |  |
|                                                       | Unit:    | ppm   | g/t     |                             |                             |                         |  |
| Sample ID (AGAT ID)                                   | RDL:     | 0.001 | 0.5     |                             |                             |                         |  |
| TOG18-62 33 (9098380)                                 |          | 0.062 |         |                             |                             |                         |  |
| TOG18-62 34 (9098381)                                 |          | 0.024 |         |                             |                             |                         |  |
| TOG18-62 35 (9098382)                                 |          | 0.081 |         |                             |                             |                         |  |
| TOG18-62 36 (9098383)                                 |          | 0.054 |         |                             |                             |                         |  |
| TOG18-62 37 (9098384)                                 |          | 0.123 |         |                             |                             |                         |  |
| TOG18-62 38 (9098385)                                 |          | 0.171 |         |                             |                             |                         |  |
| TOG18-62 39 (9098386)                                 |          | 0.15  |         |                             |                             |                         |  |
| TOG18-62 40 (9098387)                                 |          | 3.73  | 4.27    |                             |                             |                         |  |
| TOG18-62 41 (9098388)                                 |          | 0.456 |         |                             |                             |                         |  |
| TOG18-62 42 (9098389)                                 |          | 0.057 |         |                             |                             |                         |  |
| TOG18-62 43 (9098390)                                 |          | 0.684 |         |                             |                             |                         |  |
| TOG18-62 44 (9098391)                                 |          | 0.120 |         |                             |                             |                         |  |
| TOG18-62 45 (9098392)                                 |          | 0.105 |         |                             |                             |                         |  |
| TOG18-62 46 (9098393)                                 |          | 1.18  | 1.1     |                             |                             |                         |  |
| TOG18-62 47 (9098394)                                 |          | 0.774 |         |                             |                             |                         |  |
| TOG18-62 48 (9098395)                                 |          | 2.10  |         |                             |                             |                         |  |
| TOG18-62 49 (9098396)                                 |          | 0.859 |         |                             |                             |                         |  |
| TOG18-62 50 (9098397)                                 |          | 2.03  | 1.65    |                             |                             |                         |  |
| TOG18-62 51 (9098398)                                 |          | 0.173 |         |                             |                             |                         |  |
| TOG18-62 52 (9098399)                                 |          | 0.136 |         |                             |                             |                         |  |
| TOG18-62 53 (9098400)                                 |          | 0.139 |         |                             |                             |                         |  |
| TOG18-62 54 (9098401)                                 |          | 0.197 |         |                             |                             |                         |  |
| TOG18-62 55 (9098402)                                 |          | 0.099 |         |                             |                             |                         |  |
| TOG18-62 56 (9098403)                                 |          | 0.009 |         |                             |                             |                         |  |
| TOG18-62 57 (9098404)                                 |          | 0.192 |         |                             |                             |                         |  |
| TOG18-62 58 (9098405)                                 |          | 0.266 |         |                             |                             |                         |  |
| TOG18-62 59 (9098406)                                 |          | 0.272 |         |                             |                             |                         |  |
| TOG18-62 60 (9098407)                                 |          | 0.153 |         |                             |                             |                         |  |
| TOG18-62 61 (9098408)                                 |          | 0.269 |         |                             |                             |                         |  |
| TOG18-62 62 (9098409)                                 |          | 0.124 |         |                             |                             |                         |  |
| TOG18-62 63 (9098410)                                 |          | 0.013 |         |                             |                             |                         |  |
| TOG18-62 64 (9098411)                                 |          | 0.032 |         |                             |                             |                         |  |

Certified By:

- Sherin Houssa



# Certificate of Analysis

AGAT WORK ORDER: 18T316586 PROJECT: TOG18 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |       |         |                             |                             |                         |  |  |
|-------------------------------------------------------|----------|-------|---------|-----------------------------|-----------------------------|-------------------------|--|--|
| DATE SAMPLED: Mar 01, 2018                            |          |       |         | DATE RECEIVED: Mar 02, 2018 | DATE REPORTED: Apr 17, 2018 | SAMPLE TYPE: Drill Core |  |  |
|                                                       | Analyte: | Au    | Au-Grav |                             |                             |                         |  |  |
|                                                       | Unit:    | ppm   | g/t     |                             |                             |                         |  |  |
| Sample ID (AGAT ID)                                   | RDL:     | 0.001 | 0.5     |                             |                             |                         |  |  |
| TOG18-62 65 (9098412)                                 |          | 0.080 |         |                             |                             |                         |  |  |
| TOG18-62 66 (9098413)                                 |          | 0.029 |         |                             |                             |                         |  |  |
| TOG18-62 67 (9098414)                                 |          | 0.005 |         |                             |                             |                         |  |  |
| TOG18-62 68 (9098415)                                 |          | 0.007 |         |                             |                             |                         |  |  |
| TOG18-62 69 (9098416)                                 |          | 0.002 |         |                             |                             |                         |  |  |
| TOG18-62 70 (9098417)                                 |          | 0.011 |         |                             |                             |                         |  |  |
| TOG18-62 71 (9098418)                                 |          | 0.013 |         |                             |                             |                         |  |  |
| TOG18-62 72 (9098419)                                 |          | 0.035 |         |                             |                             |                         |  |  |
| TOG18-62 73 (9098420)                                 |          | 0.039 |         |                             |                             |                         |  |  |
| TOG18-62 74 (9098421)                                 |          | 0.024 |         |                             |                             |                         |  |  |
| TOG18-62 75 (9098422)                                 |          | 0.008 |         |                             |                             |                         |  |  |
|                                                       |          |       |         |                             |                             |                         |  |  |

Comments: RDL - Reported Detection Limit

Certified By:

Sherin Houss



# Certificate of Analysis

AGAT WORK ORDER: 18T316586 PROJECT: TOG18 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| Sieving - % Passing (Crushing) |          |                             |       |       |        |                             |                         |  |
|--------------------------------|----------|-----------------------------|-------|-------|--------|-----------------------------|-------------------------|--|
| DATE SAMPLED: Mar              |          | DATE RECEIVED: Mar 02, 2018 |       |       |        | DATE REPORTED: Apr 17, 2018 | SAMPLE TYPE: Drill Core |  |
|                                | Analyte: | Over 2mm Under 2mm          |       | Total | Pass % |                             |                         |  |
|                                | Unit:    | g                           | g     | g     | %      |                             |                         |  |
| Sample ID (AGAT ID)            | RDL:     | 0.01                        | 0.01  | 0.01  | 0.01   |                             |                         |  |
| TOG18-62 2 (9098349)           |          | 113.4                       | 506.6 | 620   | 81.7   |                             |                         |  |
| TOG18-62 31 (9098378)          |          | 128.3                       | 454.9 | 583.2 | 78     |                             |                         |  |
| TOG18-62 60 (9098407)          |          | 141.5                       | 424.5 | 566   | 75     |                             |                         |  |

Comments: RDL - Reported Detection Limit

Certified By:

-sherin Houss


AGAT WORK ORDER: 18T316586 PROJECT: TOG18 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

|                       |          |               |          |          | Sieving        | - % Passing | g (Pulverizing)             |                         |
|-----------------------|----------|---------------|----------|----------|----------------|-------------|-----------------------------|-------------------------|
| DATE SAMPLED: Mar     | 01, 2018 |               |          | DATE REC | CEIVED: Mar 02 | 2, 2018     | DATE REPORTED: Apr 17, 2018 | SAMPLE TYPE: Drill Core |
|                       | Analyte: | Over 75um Und | der 75um | Total    | Pass %         |             |                             |                         |
|                       | Unit:    | g             | g        | g        | %              |             |                             |                         |
| Sample ID (AGAT ID)   | RDL:     | 0.01          | 0.01     | 0.01     | 0.01           |             |                             |                         |
| TOG18-62 1 (9098348)  |          | 5             | 95       | 100      | 95             |             |                             |                         |
| TOG18-62 31 (9098378) |          | 11.5          | 88.5     | 100      | 88.5           |             |                             |                         |
| TOG18-62 38 (9098385) |          | 6.7           | 93.3     | 100      | 93.3           |             |                             |                         |
| TOG18-62 64 (9098411) |          | 14.8          | 85.2     | 100      | 85.2           |             |                             |                         |

Certified By:

- Sherin Houss



# Quality Assurance - Replicate AGAT WORK ORDER: 18T316586 PROJECT: TOG18

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

|           | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |           |      |           |          |           |       |           |          |           |       |           |          |           |       |
|-----------|-------------------------------------------------------|----------|-----------|------|-----------|----------|-----------|-------|-----------|----------|-----------|-------|-----------|----------|-----------|-------|
|           |                                                       | REPLIC   | ATE #1    |      |           | REPLIC   | ATE #2    |       |           | REPLIC   | ATE #3    |       |           | REPLIC   | ATE #4    |       |
| Parameter | Sample ID                                             | Original | Replicate | RPD  | Sample ID | Original | Replicate | RPD   | Sample ID | Original | Replicate | RPD   | Sample ID | Original | Replicate | RPD   |
| Au        | 9098348                                               | 0.010    | < 0.001   |      | 9098358   | 0.124    | 0.108     | 13.8% | 9098383   | 0.054    | 0.071     | 27.2% | 9098398   | 0.173    | 0.126     | 31.4% |
|           | REPLICATE #5                                          |          |           |      |           |          |           |       |           |          |           |       |           |          |           |       |
| Parameter | Sample ID                                             | Original | Replicate | RPD  |           |          |           |       |           |          |           |       |           |          |           |       |
| Au        | 9098408                                               | 0.269    | 0.253     | 6.1% |           |          |           |       |           |          |           |       |           |          |           |       |
| Au-Grav   |                                                       |          |           |      | 9098397   | 1.65     | 1.42      | 15.0% |           |          |           |       |           |          |           |       |



# Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T316586 PROJECT: TOG18

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

|           | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |            |          |                    |        |        |          |            |        |        |          |            |        |        |          |            |
|-----------|-------------------------------------------------------|------------|----------|--------------------|--------|--------|----------|------------|--------|--------|----------|------------|--------|--------|----------|------------|
|           |                                                       | (ref.GS6E) |          | CRM #2 (ref.GSP7L) |        |        |          |            | CF     | RM #3  |          | CRM #4     |        |        |          |            |
| Parameter | Expect                                                | Actual     | Recovery | Limits             | Expect | Actual | Recovery | Limits     | Expect | Actual | Recovery | Limits     | Expect | Actual | Recovery | Limits     |
| Au        | 6.06                                                  | 6.01       | 99%      | 90% - 110%         | 0.709  | 0.668  | 94%      | 90% - 110% | 0.709  | 0.71   | 100%     | 90% - 110% | 0.709  | 0.69   | 97%      | 90% - 110% |
|           | CRM #5                                                |            |          |                    |        |        |          |            |        |        |          |            |        |        |          |            |
| Parameter | Expect                                                | Actual     | Recovery | Limits             |        |        |          |            |        |        |          |            |        |        |          |            |
| Au-Grav   | 14.9                                                  | 14.9       | 100%     | 95% - 105%         |        |        |          |            |        |        |          |            |        |        |          |            |



5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES 945 COBALT CRES THUNDER BAY, ON P7B5Z4 (807) 345-4990

## ATTENTION TO: MICHAEL MACISAAC

PROJECT:

AGAT WORK ORDER: 18T321741

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Apr 24, 2018

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

\*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

| AGGAT La | aboratories |
|----------|-------------|
|----------|-------------|

# Certificate of Analysis

AGAT WORK ORDER: 18T321741 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

# CLIENT NAME: METALS CREEK RESOURCES

|                       |          |         |         | (202-052) Fire Assay - Trace | Au, ICP-OES finish (ppm)    |                         |
|-----------------------|----------|---------|---------|------------------------------|-----------------------------|-------------------------|
| DATE SAMPLED: Mar     | 19, 2018 |         |         | DATE RECEIVED: Mar 16, 2018  | DATE REPORTED: Apr 24, 2018 | SAMPLE TYPE: Drill Core |
|                       | Analyte: | Au      | Au-Grav |                              |                             |                         |
|                       | Unit:    | ppm     | g/t     |                              |                             |                         |
| Sample ID (AGAT ID)   | RDL:     | 0.001   | 0.5     |                              |                             |                         |
| TOG18-63-1 (9138763)  |          | 0.009   |         |                              |                             |                         |
| TOG18-63-2 (9138764)  |          | 0.003   |         |                              |                             |                         |
| TOG18-63-3 (9138765)  |          | <0.001  |         |                              |                             |                         |
| TOG18-63-4 (9138766)  |          | 0.005   |         |                              |                             |                         |
| TOG18-63-5 (9138767)  |          | 0.014   |         |                              |                             |                         |
| TOG18-63-6 (9138768)  |          | 0.022   |         |                              |                             |                         |
| TOG18-63-7 (9138769)  |          | 0.199   |         |                              |                             |                         |
| TOG18-63-8 (9138770)  |          | 0.250   |         |                              |                             |                         |
| TOG18-63-9 (9138771)  |          | 0.004   |         |                              |                             |                         |
| TOG18-63-10 (9138772) |          | 0.012   |         |                              |                             |                         |
| TOG18-63-11 (9138773) |          | 0.091   |         |                              |                             |                         |
| TOG18-63-12 (9138774) |          | 0.027   |         |                              |                             |                         |
| TOG18-63-13 (9138775) |          | 0.071   |         |                              |                             |                         |
| TOG18-63-14 (9138776) |          | 0.386   |         |                              |                             |                         |
| TOG18-63-15 (9138777) |          | 0.280   |         |                              |                             |                         |
| TOG18-63-16 (9138778) |          | <0.001  |         |                              |                             |                         |
| TOG18-63-17 (9138779) |          | 2.52    | 2.20    |                              |                             |                         |
| TOG18-63-18 (9138780) |          | 0.514   |         |                              |                             |                         |
| TOG18-63-19 (9138781) |          | 0.214   |         |                              |                             |                         |
| TOG18-63-20 (9138782) |          | 0.444   |         |                              |                             |                         |
| TOG18-63-21 (9138783) |          | 2.67    | 3.11    |                              |                             |                         |
| TOG18-63-22 (9138784) |          | 0.223   |         |                              |                             |                         |
| TOG18-63-23 (9138785) |          | 0.755   |         |                              |                             |                         |
| TOG18-63-24 (9138786) |          | 1.23    | 1.20    |                              |                             |                         |
| TOG18-63-25 (9138787) |          | 2.18    | 1.60    |                              |                             |                         |
| TOG18-63-26 (9138788) |          | 0.473   |         |                              |                             |                         |
| TOG18-63-27 (9138789) |          | 3.03    |         |                              |                             |                         |
| TOG18-63-28 (9138790) |          | 0.043   |         |                              |                             |                         |
| TOG18-63-29 (9138791) |          | 0.019   |         |                              |                             |                         |
| TOG18-63-30 (9138792) |          | 0.011   |         |                              |                             |                         |
| TOG18-63-31 (9138793) |          | 0.002   |         |                              |                             |                         |
| TOG18-63-32 (9138794) |          | < 0.001 |         |                              |                             |                         |

Certified By:

- Sherin Houssa



AGAT WORK ORDER: 18T321741 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

## CLIENT NAME: METALS CREEK RESOURCES

|                       | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |         |                             |                             |                         |  |  |  |  |  |
|-----------------------|-------------------------------------------------------|----------|---------|-----------------------------|-----------------------------|-------------------------|--|--|--|--|--|
| DATE SAMPLED: Mar     | 19, 2018                                              |          |         | DATE RECEIVED: Mar 16, 2018 | DATE REPORTED: Apr 24, 2018 | SAMPLE TYPE: Drill Core |  |  |  |  |  |
|                       | Analyte:                                              | Au       | Au-Grav |                             |                             |                         |  |  |  |  |  |
|                       | Unit:                                                 | ppm      | g/t     |                             |                             |                         |  |  |  |  |  |
| Sample ID (AGAT ID)   | RDL:                                                  | 0.001    | 0.5     |                             |                             |                         |  |  |  |  |  |
| TOG18-63-33 (9138795) |                                                       | 0.011    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-34 (9138796) |                                                       | 0.004    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-35 (9138797) |                                                       | 0.004    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-36 (9138798) |                                                       | 0.011    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-37 (9138799) |                                                       | 0.001    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-38 (9138800) |                                                       | 0.010    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-39 (9138801) |                                                       | 0.018    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-40 (9138802) |                                                       | 0.014    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-41 (9138803) |                                                       | 0.104    |         |                             |                             |                         |  |  |  |  |  |
| TOG18-63-42 (9138804) |                                                       | 0.092    |         |                             |                             |                         |  |  |  |  |  |
| Comments: RDL - R     | eported Detection                                     | on Limit |         |                             |                             |                         |  |  |  |  |  |

Certified By:

Sherin Houss



AGAT WORK ORDER: 18T321741 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

## CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

|                       | Sieving - % Passing (Crushing) |          |           |          |                    |     |                             |                         |  |  |  |  |  |
|-----------------------|--------------------------------|----------|-----------|----------|--------------------|-----|-----------------------------|-------------------------|--|--|--|--|--|
| DATE SAMPLED: Mar     | 19, 2018                       |          |           | DATE REC | CEIVED: Mar 16, 20 | )18 | DATE REPORTED: Apr 24, 2018 | SAMPLE TYPE: Drill Core |  |  |  |  |  |
|                       | Analyte:                       | Over 2mm | Under 2mm | Total    | Pass %             |     |                             |                         |  |  |  |  |  |
|                       | Unit:                          | g        | g         | g        | %                  |     |                             |                         |  |  |  |  |  |
| Sample ID (AGAT ID)   | RDL:                           | 0.01     | 0.01      | 0.01     | 0.01               |     |                             |                         |  |  |  |  |  |
| TOG18-63-1 (9138763)  |                                | 52       | 421       | 473      | 89.01              |     |                             |                         |  |  |  |  |  |
| TOG18-63-28 (9138790) |                                | 75       | 475       | 550      | 86.36              |     |                             |                         |  |  |  |  |  |

Certified By:

- Sherin Houss



AGAT WORK ORDER: 18T321741 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

|                                                                                                          | Sieving - % Passing (Pulverizing) |              |          |       |        |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|----------|-------|--------|--|--|--|--|--|--|--|--|
| DATE SAMPLED: Mar 19, 2018 DATE RECEIVED: Mar 16, 2018 DATE REPORTED: Apr 24, 2018 SAMPLE TYPE: Drill Co |                                   |              |          |       |        |  |  |  |  |  |  |  |  |
|                                                                                                          | Analyte:                          | Over 75um Un | der 75um | Total | Pass % |  |  |  |  |  |  |  |  |
|                                                                                                          | Unit:                             | g            | g        | g     | %      |  |  |  |  |  |  |  |  |
| Sample ID (AGAT ID)                                                                                      | RDL:                              | 0.01         | 0.01     | 0.01  | 0.01   |  |  |  |  |  |  |  |  |
| TOG18-63-1 (9138763)                                                                                     |                                   | 4.4          | 95.6     | 100   | 95.6   |  |  |  |  |  |  |  |  |
| TOG18-63-31 (9138793)                                                                                    |                                   | 3.1          | 96.9     | 100   | 96.9   |  |  |  |  |  |  |  |  |

Certified By:

- Sherin Houss



Quality Assurance - Replicate AGAT WORK ORDER: 18T321741 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

### ATTENTION TO: MICHAEL MACISAAC

|                                                                | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |           |     |           |                                                                |       |       |         |       |       |      |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------|----------|-----------|-----|-----------|----------------------------------------------------------------|-------|-------|---------|-------|-------|------|--|--|--|--|
|                                                                | REPLICATE #1     REPLICATE #2     REPLICATE #3        |          |           |     |           |                                                                |       |       |         |       |       |      |  |  |  |  |
| Parameter                                                      | Sample ID                                             | Original | Replicate | RPD | Sample ID | ple ID Original Replicate RPD Sample ID Original Replicate RPD |       |       |         |       |       |      |  |  |  |  |
| Au                                                             | 9138763                                               | 0.009    | 0.005     |     | 9138774   | 0.027                                                          | 0.037 | 31.2% | 9138798 | 0.011 | 0.026 |      |  |  |  |  |
| Au-Grav         9138787         1.60         1.55         3.2% |                                                       |          |           |     |           |                                                                |       |       |         |       |       | 3.2% |  |  |  |  |



Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T321741 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

| (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm | ı) |
|------------------------------------------------------|----|
|------------------------------------------------------|----|

|           | CRM #1 (ref.OxC102) CRM #2 (ref.OxA89) |        |          |            |        |        | CRM #3 CRM #4 |            |        |        |          |            |        |        |          |            |
|-----------|----------------------------------------|--------|----------|------------|--------|--------|---------------|------------|--------|--------|----------|------------|--------|--------|----------|------------|
| Parameter | Expect                                 | Actual | Recovery | Limits     | Expect | Actual | Recovery      | Limits     | Expect | Actual | Recovery | Limits     | Expect | Actual | Recovery | Limits     |
| Au        | 0.207                                  | 0.206  | 99%      | 90% - 110% | 0.0836 | 0.0847 | 101%          | 90% - 110% | 0.207  | 0.192  | 92%      | 90% - 110% |        |        |          |            |
| Au-Grav   |                                        |        |          |            |        |        |               |            |        |        |          |            | 14.9   | 14.87  | 99%      | 95% - 105% |



5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES 945 COBALT CRES THUNDER BAY, ON P7B5Z4 (807) 345-4990

# ATTENTION TO: MICHAEL MACISAAC

PROJECT:

AGAT WORK ORDER: 18T321758

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: May 01, 2018

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

\*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.



AGAT WORK ORDER: 18T321758 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

|                       |          |        |         | (202-052         | ?) Fire Assay - Trace | Au, ICP-OES finish (ppm)    |                         |
|-----------------------|----------|--------|---------|------------------|-----------------------|-----------------------------|-------------------------|
| DATE SAMPLED: Mar     | 19, 2018 |        |         | DATE REC         | EIVED: Mar 16, 2018   | DATE REPORTED: May 01, 2018 | SAMPLE TYPE: Drill Core |
|                       | Analyte: | Au     | Au-Grav | Au-ICP-<br>check |                       |                             |                         |
|                       | Unit:    | ppm    | g/t     | ppm              |                       |                             |                         |
| Sample ID (AGAT ID)   | RDL:     | 0.001  | 0.5     | 0.001            |                       |                             |                         |
| OG-18-42-1 (9138834)  |          | 0.087  |         |                  |                       |                             |                         |
| OG-18-42-2 (9138835)  |          | 0.096  |         |                  |                       |                             |                         |
| OG-18-42-3 (9138836)  |          | 0.064  |         |                  |                       |                             |                         |
| OG-18-42-4 (9138837)  |          | 0.199  |         |                  |                       |                             |                         |
| OG-18-42-5 (9138838)  |          | 0.160  |         |                  |                       |                             |                         |
| OG-18-42-6 (9138839)  |          | 0.009  |         |                  |                       |                             |                         |
| OG-18-42-7 (9138840)  |          | 0.017  |         |                  |                       |                             |                         |
| OG-18-42-8 (9138841)  |          | 1.49   |         | 0.97             |                       |                             |                         |
| OG-18-42-9 (9138842)  |          | 0.005  |         |                  |                       |                             |                         |
| OG-18-42-10 (9138843) |          | 0.004  |         |                  |                       |                             |                         |
| OG-18-42-11 (9138844) |          | 0.010  |         |                  |                       |                             |                         |
| OG-18-42-12 (9138845) |          | 0.300  |         |                  |                       |                             |                         |
| OG-18-42-13 (9138846) |          | <0.001 |         |                  |                       |                             |                         |
| OG-18-42-14 (9138847) |          | 0.379  |         |                  |                       |                             |                         |
| OG-18-42-15 (9138848) |          | 2.38   | 2.29    |                  |                       |                             |                         |
| OG-18-42-16 (9138849) |          | 0.040  |         |                  |                       |                             |                         |
| OG-18-42-17 (9138850) |          | 0.045  |         |                  |                       |                             |                         |
| OG-18-42-18 (9138851) |          | 0.004  |         |                  |                       |                             |                         |
| OG-18-42-19 (9138852) |          | 0.684  |         |                  |                       |                             |                         |
| OG-18-42-20 (9138853) |          | 2.67   | 2.05    |                  |                       |                             |                         |
| OG-18-42-21 (9138854) |          | 0.101  |         |                  |                       |                             |                         |
| OG-18-42-22 (9138855) |          | 0.015  |         |                  |                       |                             |                         |
| OG-18-42-23 (9138856) |          | 0.177  |         |                  |                       |                             |                         |
| OG-18-42-24 (9138857) |          | 0.002  |         |                  |                       |                             |                         |
| OG-18-42-25 (9138858) |          | 0.015  |         |                  |                       |                             |                         |
| OG-18-42-26 (9138859) |          | 2.98   |         |                  |                       |                             |                         |
| OG-18-42-27 (9138860) |          | 0.050  |         |                  |                       |                             |                         |
| OG-18-42-28 (9138861) |          | 5.54   | 2.38    | 3.54             |                       |                             |                         |
| OG-18-42-29 (9138862) |          | 0.044  |         |                  |                       |                             |                         |
| OG-18-42-30 (9138863) |          | 0.007  |         |                  |                       |                             |                         |
| OG-18-42-31 (9138864) |          | 0.004  |         |                  |                       |                             |                         |
| OG-18-42-32 (9138865) |          | 0.006  |         |                  |                       |                             |                         |

Certified By:

Sherin House



AGAT WORK ORDER: 18T321758 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

#### ATTENTION TO: MICHAEL MACISAAC

|                       | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |        |         |                  |                     |                             |                         |  |  |  |  |  |
|-----------------------|-------------------------------------------------------|--------|---------|------------------|---------------------|-----------------------------|-------------------------|--|--|--|--|--|
| DATE SAMPLED: Ma      | r 19, 2018                                            |        |         | DATE RECE        | EIVED: Mar 16, 2018 | DATE REPORTED: May 01, 2018 | SAMPLE TYPE: Drill Core |  |  |  |  |  |
|                       | Analyte:                                              | Au     | Au-Grav | Au-ICP-<br>check |                     |                             |                         |  |  |  |  |  |
|                       | Unit:                                                 | ppm    | g/t     | ppm              |                     |                             |                         |  |  |  |  |  |
| Sample ID (AGAT ID)   | RDL:                                                  | 0.001  | 0.5     | 0.001            |                     |                             |                         |  |  |  |  |  |
| OG-18-42-33 (9138866) |                                                       | 0.008  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-34 (9138867) |                                                       | 0.005  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-35 (9138868) |                                                       | 0.008  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-36 (9138869) |                                                       | 0.025  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-37 (9138870) |                                                       | <0.001 |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-38 (9138871) |                                                       | 2.06   | 2.0     |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-39 (9138872) |                                                       | 0.040  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-40 (9138873) |                                                       | 0.98   |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-41 (9138874) |                                                       | 0.092  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-42 (9138875) |                                                       | 0.96   |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-43 (9138876) |                                                       | 0.019  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-44 (9138877) |                                                       | 0.010  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-45 (9138878) |                                                       | 0.057  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-46 (9138879) |                                                       | 2.07   | 1.55    |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-47 (9138880) |                                                       | 0.98   |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-48 (9138881) |                                                       | 0.335  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-49 (9138882) |                                                       | 1.45   |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-50 (9138883) |                                                       | 0.393  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-51 (9138884) |                                                       | 0.039  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-52 (9138885) |                                                       | 0.068  |         |                  |                     |                             |                         |  |  |  |  |  |
| OG-18-42-53 (9138886) |                                                       | 0.101  |         |                  |                     |                             |                         |  |  |  |  |  |
|                       |                                                       |        |         |                  |                     |                             |                         |  |  |  |  |  |

Certified By:

Sherin House



AGAT WORK ORDER: 18T321758 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

# CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| Sieving - % Passing (Crushing)                                                                             |          |          |           |       |        |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------|----------|-----------|-------|--------|--|--|--|--|--|--|--|
| DATE SAMPLED: Mar 19, 2018 DATE RECEIVED: Mar 16, 2018 DATE REPORTED: May 01, 2018 SAMPLE TYPE: Drill Core |          |          |           |       |        |  |  |  |  |  |  |  |
|                                                                                                            | Analyte: | Over 2mm | Under 2mm | Total | Pass % |  |  |  |  |  |  |  |
|                                                                                                            | Unit:    | g        | g         | g     | %      |  |  |  |  |  |  |  |
| Sample ID (AGAT ID)                                                                                        | RDL:     | 0.01     | 0.01      | 0.01  | 0.01   |  |  |  |  |  |  |  |
| OG-18-42-1 (9138834)                                                                                       |          | 54.1     | 492.8     | 546.9 | 90.11  |  |  |  |  |  |  |  |
| OG-18-42-23 (9138856)                                                                                      |          | 81.7     | 595.2     | 676.9 | 87.93  |  |  |  |  |  |  |  |
|                                                                                                            |          |          |           |       |        |  |  |  |  |  |  |  |

Certified By:

- Sherin Houss



AGAT WORK ORDER: 18T321758 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| Sieving - % Passing (Pulverizing)                                                                          |          |               |          |       |        |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------|---------------|----------|-------|--------|--|--|--|--|--|--|--|--|
| DATE SAMPLED: Mar 19, 2018 DATE RECEIVED: Mar 16, 2018 DATE REPORTED: May 01, 2018 SAMPLE TYPE: Drill Core |          |               |          |       |        |  |  |  |  |  |  |  |  |
|                                                                                                            | Analyte: | Over 75um Und | ler 75um | Total | Pass % |  |  |  |  |  |  |  |  |
|                                                                                                            | Unit:    | g             | g        | g     | %      |  |  |  |  |  |  |  |  |
| Sample ID (AGAT ID)                                                                                        | RDL:     | 0.01          | 0.01     | 0.01  | 0.01   |  |  |  |  |  |  |  |  |
| OG-18-42-1 (9138834)                                                                                       |          | 8             | 92       | 100   | 92     |  |  |  |  |  |  |  |  |
| OG-18-42-21 (9138854)                                                                                      |          | 4.1           | 95.9     | 100   | 95.9   |  |  |  |  |  |  |  |  |
| OG-18-42-41 (9138874)                                                                                      |          | 12            | 88       | 100   | 88     |  |  |  |  |  |  |  |  |

Certified By:

- Sherin Houss



Quality Assurance - Replicate AGAT WORK ORDER: 18T321758 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

|           | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |           |       |           |          |           |       |           |          |                           |       |           |          |           |       |
|-----------|-------------------------------------------------------|----------|-----------|-------|-----------|----------|-----------|-------|-----------|----------|---------------------------|-------|-----------|----------|-----------|-------|
|           | REPLICATE #1 REPLICATE #2                             |          |           |       |           |          |           |       |           |          | REPLICATE #3 REPLICATE #4 |       |           |          |           |       |
| Parameter | Sample ID                                             | Original | Replicate | RPD   | Sample ID | Original | Replicate | RPD   | Sample ID | Original | Replicate                 | RPD   | Sample ID | Original | Replicate | RPD   |
| Au        | 9138834                                               | 0.0868   | 0.0812    | 6.7%  | 9138845   | 0.300    | 0.321     | 6.8%  | 9138858   | 0.015    | 0.007                     | 72.7% | 9138869   | 0.0254   | 0.0287    | 12.2% |
|           |                                                       | REPLIC   | ATE #5    |       |           |          |           |       |           |          |                           |       |           |          |           |       |
| Parameter | Sample ID                                             | Original | Replicate | RPD   |           |          |           |       |           |          |                           |       |           |          |           |       |
| Au        | 9138885                                               | 0.068    | 0.086     | 23.4% |           |          |           |       |           |          |                           |       |           |          |           |       |
| Au-Grav   |                                                       |          |           |       | 9138853   | 2.05     | 1.83      | 11.3% |           |          |                           |       |           |          |           |       |



# Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T321758 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

|           | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |            |            |        |        |             |            |               |        |          |            |        |        |          |            |
|-----------|-------------------------------------------------------|----------|------------|------------|--------|--------|-------------|------------|---------------|--------|----------|------------|--------|--------|----------|------------|
|           |                                                       | CRM #1 ( | ref.OxC102 | :)         |        | CRM #2 | (ref.OxA89) |            | CRM #3 CRM #4 |        |          |            |        |        |          |            |
| Parameter | Expect                                                | Actual   | Recovery   | Limits     | Expect | Actual | Recovery    | Limits     | Expect        | Actual | Recovery | Limits     | Expect | Actual | Recovery | Limits     |
| Au        | 0.207                                                 | 0.192    | 93%        | 90% - 110% | 0.0836 | 0.0749 | 90%         | 90% - 110% | 0.207         | 0.192  | 92%      | 90% - 110% | 0.207  | 0.189  | 91%      | 90% - 110% |
|           |                                                       | CR       | M #5       |            |        |        |             |            |               |        | •        |            |        |        |          |            |
| Parameter | Expect                                                | Actual   | Recovery   | Limits     |        |        |             |            |               |        |          |            |        |        |          |            |
| Au-Grav   | 14.90                                                 | 14.65    | 98%        | 95% - 105% |        |        |             |            |               |        |          |            |        |        |          |            |



5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES 945 COBALT CRES THUNDER BAY, ON P7B5Z4 (807) 345-4990

## ATTENTION TO: MICHAEL MACISAAC

PROJECT: AGAT QUOTE 12-719

## AGAT WORK ORDER: 18T321762

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

## DATE REPORTED: Apr 24, 2018

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

\*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.



# Certificate of Analysis

AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

| (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |          |       |         |                             |                             |                         |  |  |  |  |  |
|-------------------------------------------------------|----------|-------|---------|-----------------------------|-----------------------------|-------------------------|--|--|--|--|--|
| DATE SAMPLED: Mar                                     | 19, 2018 |       |         | DATE RECEIVED: Mar 16, 2018 | DATE REPORTED: Apr 24, 2018 | SAMPLE TYPE: Drill Core |  |  |  |  |  |
|                                                       | Analyte: | Au    | Au-Grav |                             |                             |                         |  |  |  |  |  |
|                                                       | Unit:    | ppm   | g/t     |                             |                             |                         |  |  |  |  |  |
| Sample ID (AGAT ID)                                   | RDL:     | 0.001 | 0.5     |                             |                             |                         |  |  |  |  |  |
| OG18-43-1 (9138911)                                   |          | 0.032 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-2 (9138912)                                   |          | 0.005 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-3 (9138913)                                   |          | 0.003 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-4 (9138914)                                   |          | 2.64  | 2.37    |                             |                             |                         |  |  |  |  |  |
| OG18-43-5 (9138915)                                   |          | 0.208 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-6 (9138916)                                   |          | 0.004 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-7 (9138917)                                   |          | 0.003 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-8 (9138918)                                   |          | 0.006 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-9 (9138919)                                   |          | 0.001 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-10 (9138920)                                  |          | 0.004 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-11 (9138921)                                  |          | 0.027 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-12 (9138922)                                  |          | 0.737 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-13 (9138923)                                  |          | 0.008 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-14 (9138924)                                  |          | 0.021 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-15 (9138925)                                  |          | 6.81  | 7.12    |                             |                             |                         |  |  |  |  |  |
| OG18-43-16 (9138926)                                  |          | 0.660 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-17 (9138927)                                  |          | 0.017 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-18 (9138928)                                  |          | 0.004 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-19 (9138929)                                  |          | 0.008 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-20 (9138930)                                  |          | 0.020 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-21 (9138931)                                  |          | 0.012 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-22 (9138932)                                  |          | 2.72  |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-23 (9138933)                                  |          | 0.016 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-24 (9138934)                                  |          | 0.888 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-25 (9138935)                                  |          | 2.52  | 2.50    |                             |                             |                         |  |  |  |  |  |
| OG18-43-26 (9138936)                                  |          | 4.02  | 3.77    |                             |                             |                         |  |  |  |  |  |
| OG18-43-27 (9138937)                                  |          | 0.017 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-28 (9138938)                                  |          | 0.007 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-29 (9138939)                                  |          | 1.91  | 1.25    |                             |                             |                         |  |  |  |  |  |
| OG18-43-30 (9138940)                                  |          | 0.017 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-31 (9138941)                                  |          | 0.007 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-32 (9138942)                                  |          | 0.008 |         |                             |                             |                         |  |  |  |  |  |

Certified By:

Sherin Houss



AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) |            |       |         |                             |                             |                         |  |  |  |  |  |
|-------------------------------------------------------|------------|-------|---------|-----------------------------|-----------------------------|-------------------------|--|--|--|--|--|
| DATE SAMPLED: Ma                                      | r 19, 2018 |       |         | DATE RECEIVED: Mar 16, 2018 | DATE REPORTED: Apr 24, 2018 | SAMPLE TYPE: Drill Core |  |  |  |  |  |
|                                                       | Analyte:   | Au    | Au-Grav |                             |                             |                         |  |  |  |  |  |
|                                                       | Unit:      | ppm   | g/t     |                             |                             |                         |  |  |  |  |  |
| Sample ID (AGAT ID)                                   | RDL:       | 0.001 | 0.5     |                             |                             |                         |  |  |  |  |  |
| OG18-43-33 (9138943)                                  |            | 0.062 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-34 (9138944)                                  |            | 1.55  | 1.08    |                             |                             |                         |  |  |  |  |  |
| OG18-43-35 (9138945)                                  |            | 3.39  | 2.90    |                             |                             |                         |  |  |  |  |  |
| OG18-43-36 (9138946)                                  |            | 0.002 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-37 (9138947)                                  |            | 2.87  | 2.55    |                             |                             |                         |  |  |  |  |  |
| OG18-43-38 (9138948)                                  |            | 3.30  | 3.24    |                             |                             |                         |  |  |  |  |  |
| OG18-43-39 (9138949)                                  |            | 0.085 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-40 (9138950)                                  |            | 0.006 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-41 (9138951)                                  |            | 0.094 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-42 (9138952)                                  |            | 0.118 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-43 (9138953)                                  |            | 0.98  |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-44 (9138954)                                  |            | 0.130 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-45 (9138955)                                  |            | 0.097 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-46 (9138956)                                  |            | 0.005 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-47 (9138957)                                  |            | 0.031 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-48 (9138958)                                  |            | 0.005 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-49 (9138959)                                  |            | 0.104 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-50 (9138960)                                  |            | 0.255 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-51 (9138961)                                  |            | 3.24  | 3.08    |                             |                             |                         |  |  |  |  |  |
| OG18-43-52 (9138962)                                  |            | 1.32  |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-53 (9138963)                                  |            | 2.35  | 2.23    |                             |                             |                         |  |  |  |  |  |
| OG18-43-54 (9138964)                                  |            | 0.447 |         |                             |                             |                         |  |  |  |  |  |
| OG18-43-55 (9138965)                                  |            | 0.029 |         |                             |                             |                         |  |  |  |  |  |
|                                                       |            |       |         |                             |                             |                         |  |  |  |  |  |

Certified By:

-Sherin Houss



AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| Sieving - % Passing (Crushing)                                                                             |          |             |          |       |        |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------|-------------|----------|-------|--------|--|--|--|--|--|--|--|--|
| DATE SAMPLED: Mar 19, 2018 DATE RECEIVED: Mar 16, 2018 DATE REPORTED: Apr 24, 2018 SAMPLE TYPE: Drill Core |          |             |          |       |        |  |  |  |  |  |  |  |  |
|                                                                                                            | Analyte: | Over 2mm Ur | nder 2mm | Total | Pass % |  |  |  |  |  |  |  |  |
|                                                                                                            | Unit:    | g           | g        | g     | %      |  |  |  |  |  |  |  |  |
| Sample ID (AGAT ID)                                                                                        | RDL:     | 0.01        | 0.01     | 0.01  | 0.01   |  |  |  |  |  |  |  |  |
| OG18-43-1 (9138911)                                                                                        |          | 102         | 428      | 530   | 80.75  |  |  |  |  |  |  |  |  |
| OG18-43-19 (9138929)                                                                                       |          | 68          | 380      | 448   | 84.82  |  |  |  |  |  |  |  |  |
| OG18-43-23 (9138933)                                                                                       |          | 68          | 442      | 510   | 86.67  |  |  |  |  |  |  |  |  |
| OG18-43-43 (9138953)                                                                                       |          | 39          | 521      | 560   | 93.04  |  |  |  |  |  |  |  |  |
|                                                                                                            |          |             |          |       |        |  |  |  |  |  |  |  |  |

Certified By:

- Sherin Houss



AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: MICHAEL MACISAAC

| Sieving - % Passing (Pulverizing)                                                                          |          |               |          |       |        |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------|---------------|----------|-------|--------|--|--|--|--|--|--|--|--|
| DATE SAMPLED: Mar 19, 2018 DATE RECEIVED: Mar 16, 2018 DATE REPORTED: Apr 24, 2018 SAMPLE TYPE: Drill Core |          |               |          |       |        |  |  |  |  |  |  |  |  |
|                                                                                                            | Analyte: | Over 75um Und | der 75um | Total | Pass % |  |  |  |  |  |  |  |  |
|                                                                                                            | Unit:    | g             | g        | g     | %      |  |  |  |  |  |  |  |  |
| Sample ID (AGAT ID)                                                                                        | RDL:     | 0.01          | 0.01     | 0.01  | 0.01   |  |  |  |  |  |  |  |  |
| OG18-43-1 (9138911)                                                                                        |          | 5.6           | 94.4     | 100   | 94.4   |  |  |  |  |  |  |  |  |
| OG18-43-31 (9138941)                                                                                       |          | 7.6           | 92.4     | 100   | 92.4   |  |  |  |  |  |  |  |  |
|                                                                                                            |          |               |          |       |        |  |  |  |  |  |  |  |  |

Certified By:

-sherin Houss



Quality Assurance - Replicate AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

#### CLIENT NAME: METALS CREEK RESOURCES

|                               | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)    |          |           |       |           |          |           |       |  |  |  |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------|----------|-----------|-------|-----------|----------|-----------|-------|--|--|--|--|--|--|--|--|
| REPLICATE #1     REPLICATE #2 |                                                          |          |           |       |           |          |           |       |  |  |  |  |  |  |  |  |
| Parameter                     | Sample ID                                                | Original | Replicate | RPD   | Sample ID | Original | Replicate | RPD   |  |  |  |  |  |  |  |  |
| Au                            | 9138911                                                  | 0.034    | 0.015     | 77.6% | 9138922   | 0.737    | 0.659     | 11.2% |  |  |  |  |  |  |  |  |
| Au-Grav                       | y         9138925         7.12         6.90         3.1% |          |           |       |           |          |           |       |  |  |  |  |  |  |  |  |



# Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18T321762 PROJECT: AGAT QUOTE 12-719

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

### CLIENT NAME: METALS CREEK RESOURCES

|           | (202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)         |                                                   |          |            |        |                                                      |     |            |  |  |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------|---------------------------------------------------|----------|------------|--------|------------------------------------------------------|-----|------------|--|--|--|--|--|--|--|--|
|           | CRM #1 (ref.OxC102)         CRM #2 (ref.OxA89)         CRM #3 |                                                   |          |            |        |                                                      |     |            |  |  |  |  |  |  |  |  |
| Parameter | Expect                                                        | Actual                                            | Recovery | Limits     | Expect | Expect Actual Recovery Limits Expect Actual Recovery |     |            |  |  |  |  |  |  |  |  |
| Au        | 0.207                                                         | 0.195                                             | 94%      | 90% - 110% | 0.0836 | 0.079                                                | 94% | 90% - 110% |  |  |  |  |  |  |  |  |
| Au-Grav   |                                                               | 14.9         14.89         99%         95% - 105% |          |            |        |                                                      |     |            |  |  |  |  |  |  |  |  |

Quality Analysis ...



# Innovative Technologies

 Date Submitted:
 28-Mar-18

 Invoice No.:
 A18-03888

 Invoice Date:
 11-Apr-18

 Your Reference:

Metals Creek Resources 93 Edinburgh Ave. Gander NL A1V 19C Canada

ATTN: Sandy Stares (res)

# **CERTIFICATE OF ANALYSIS**

332 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

#### REPORT A18-03888

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| N218-01-001    | < 5   |
| N218-01-002    | < 5   |
| N218-01-003    | 16    |
| N218-01-004    | 24    |
| N218-01-005    | 14    |
| N218-01-006    | 12    |
| N218-01-007    | < 5   |
| N218-01-008    | < 5   |
| N218-01-009    | < 5   |
| N218-01-010    | < 5   |
| N218-01-011    | 39    |
| N218-01-012    | < 5   |
| N218-01-013    | 135   |
| N218-01-014    | 24    |
| N218-01-015    | 208   |
| N218-01-016    | 1660  |
| N218-01-017    | 947   |
| N218-01-018    | 97    |
| N218-01-019    | 18    |
| N218-01-020    | 22    |
| N218-01-021    | 216   |
| N218-01-022    | 8     |
| N218-01-023    | < 5   |
| N218-01-024    | < 5   |
| N218-01-025    | 39    |
| N218-01-026    | 26    |
| N218-01-027    | 283   |
| N218-01-028    | 3080  |
| N218-01-029    | 22    |
| N218-01-030    | 143   |
| N218-01-031    | 32    |
| N218-01-032    | 14    |
| N218-01-033    | < 5   |
| N218-01-034    | < 5   |
| N218-01-035    | < 5   |
| N218-01-036    | 7     |
| N218-01-037    | < 5   |
| N218-01-038    | < 5   |
| N218-01-039    | 17    |
| N218-01-040    | < 5   |
| N218-01-041    | < 5   |
| N218-01-042    | < 5   |
|                |       |

|   | Analyte Symbol | Au    |
|---|----------------|-------|
|   | Unit Symbol    | ppb   |
| 1 | Lower Limit    | 5     |
|   | Method Code    | FA-AA |
|   | N218-01-043    | < 5   |
|   | N218-01-044    | < 5   |
|   | N218-01-045    | < 5   |
|   | N218-01-046    | 22    |
|   | N218-01-047    | < 5   |
|   | N218-01-048    | 7     |
|   | N218-01-049    | 32    |
|   | N218-01-050    | 138   |
|   | N218-01-051    | 2650  |
|   | N218-01-052    | < 5   |
|   | N218-01-053    | 121   |
|   | N218-01-054    | 110   |
|   | N218-01-055    | 7     |
|   | N218-01-056    | 175   |
|   | N218-01-057    | < 5   |
|   | N218-01-058    | 513   |
|   | N218-01-059    | 22    |
|   | N218-01-060    | 91    |
|   | N218-01-061    | 6     |
|   | N218-01-062    | 23    |
|   | N218-01-063    | < 5   |
|   | N218-01-064    | 8     |
|   | N218-01-065    | 28    |
|   | N218-01-066    | 93    |
|   | N218-01-067    | 833   |
|   | N218-01-068    | 59    |
|   | N218-01-069    | < 5   |
|   | N218-01-070    | 77    |
|   | N218-01-071    | < 5   |
|   | N218-01-072    | 193   |
|   | N218-01-073    | < 5   |
|   | N218-01-074    | 9     |
|   | N218-01-075    | 5     |
|   | N218-01-076    | 38    |
|   | N218-01-077    | 149   |
|   | N218-01-078    | < 5   |
|   | N218-01-079    | < 5   |
|   | N218-01-080    | < 5   |
|   | N218-01-081    | < 5   |
| ļ | N218-01-082    | 9     |
| ļ | N218-01-083    | 291   |
|   | N218-01-084    | 38    |
|   |                |       |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| N218-01-085    | 1290  |
| N218-01-086    | 962   |
| N218-01-087    | 2640  |
| N218-01-088    | 366   |
| N218-01-089    | 672   |
| N218-01-090    | < 5   |
| N218-01-091    | 72    |
| N218-01-092    | < 5   |
| N218-01-093    | 10    |
| N218-01-094    | < 5   |
| N218-01-095    | < 5   |
| N218-01-096    | < 5   |
| N218-01-097    | < 5   |
| N218-01-098    | < 5   |
| N218-01-099    | < 5   |
| N218-01-100    | 11    |
| N218-01-101    | < 5   |
| N218-01-102    | 30    |
| N218-01-103    | < 5   |
| N218-01-104    | 307   |
| N218-02-001    | 16    |
| N218-02-002    | 34    |
| N218-02-003    | 185   |
| N218-02-004    | < 5   |
| N218-02-005    | < 5   |
| N218-02-006    | 254   |
| N218-02-007    | 592   |
| N218-02-008    | 191   |
| N218-02-009    | 9     |
| N218-02-010    | 117   |
| N218-02-011    | 22    |
| N218-02-012    | 30    |
| N218-02-013    | 450   |
| N218-02-014    | < 5   |
| N218-02-015    | 1/    |
| No19 00 017    | 40    |
| N218-02-017    | < 5   |
| N218-02-018    | /3    |
| N218-02-019    | 31    |
| N218-02-020    | < 5   |
| N218-02-021    | 182   |
| 11218-02-022   | 328   |
| 1              | 1     |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| N218-02-023    | 153   |
| N218-02-024    | 7     |
| N218-02-025    | < 5   |
| N218-02-026    | 2760  |
| N218-02-027    | 32    |
| N218-02-028    | 66    |
| N218-02-029    | 123   |
| N218-02-030    | 1260  |
| N218-02-031    | 1130  |
| N218-02-032    | 420   |
| N218-02-033    | 19    |
| N218-02-034    | < 5   |
| N218-02-035    | 15    |
| N218-02-036    | < 5   |
| N218-02-037    | < 5   |
| N218-02-038    | 10    |
| N218-02-039    | < 5   |
| N218-02-040    | 5     |
| N218-02-041    | 10    |
| N218-02-042    | < 5   |
| N218-02-043    | 6     |
| N218-02-044    | < 5   |
| N218-02-045    | 66    |
| N218-02-046    | < 5   |
| N218-02-047    | 54    |
| OG18-045-001   | 3350  |
| OG18-045-002   | 537   |
| OG18-045-003   | 584   |
| OG18-45A-001   | 14    |
| OG18-45A-002   | < 5   |
| OG18-45A-003   | 8     |
| OG18-45A-004   | < 5   |
| OG18-45A-005   | < 5   |
| OG18-45A-006   | 40    |
| OG18-45A-007   | 1710  |
| OG18-45A-008   | 49    |
| OG18-45A-009   | 35    |
| OG18-45A-010   | 2030  |
| OG18-45A-011   | 47    |
| OG18-45A-012   | 23    |
| OG18-45A-013   | 950   |
| OG18-45A-014   | 24    |
|                |       |

| Unit Symbol         ppb           Lower Limit         5           Method Code         FA-AA           OG18-44-01         38           OG18-44-02         < 5           OG18-44-03         11           OG18-44-04         30           OG18-44-05         22           OG18-44-06         23           OG18-44-07         6           OG18-44-08         < 5           OG18-44-010         43           OG18-44-010         43           OG18-44-011         < 5           OG18-44-012         34           OG18-44-013         711           OG18-44-014         222           OG18-44-015         45           OG18-44-016         48           OG18-44-017         < 5           OG18-44-018         < 5           OG18-44-020         80           OG18-44-021         82           OG18-44-023         30           OG18-44-024         111           OG18-44-025         1111           OG18-44-026         3160           OG18-44-027         68           OG18-44-028         19           OG18-44-029         111 </th <th>Analyte Symbol</th> <th>Au</th> | Analyte Symbol | Au          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| Lower Limit         5           Method Code         FA-AA           OG18-44-01         38           OG18-44-02         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit Symbol    | ppb         |
| Method Code         FA-AA           OG18-44-01         38           OG18-44-02         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lower Limit    | 5           |
| OG18-44-01         38           OG18-44-02         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method Code    | FA-AA       |
| OG18-44-02         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OG18-44-01     | 38          |
| OG18-44-03         11           OG18-44-04         30           OG18-44-05         22           OG18-44-06         23           OG18-44-07         6           OG18-44-09         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OG18-44-02     | < 5         |
| OG18-44-04         30           OG18-44-05         22           OG18-44-06         23           OG18-44-07         6           OG18-44-08         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OG18-44-03     | 11          |
| OG18-44-05         22           OG18-44-06         23           OG18-44-07         6           OG18-44-09         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OG18-44-04     | 30          |
| OG18-44-06         23           OG18-44-07         6           OG18-44-08         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OG18-44-05     | 22          |
| OG18-44-07         6           OG18-44-08         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OG18-44-06     | 23          |
| OG18-44-08         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OG18-44-07     | 6           |
| OG18-44-09         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OG18-44-08     | < 5         |
| OG18-44-010         43           OG18-44-011         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OG18-44-09     | < 5         |
| OG18-44-011         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-010    | 43          |
| OG18-44-012         34           OG18-44-013         711           OG18-44-014         22           OG18-44-015         45           OG18-44-016         48           OG18-44-017         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OG18-44-011    | < 5         |
| OG18-44-013         71           OG18-44-014         22           OG18-44-015         45           OG18-44-016         48           OG18-44-017         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OG18-44-012    | 34          |
| OG18-44-014         22           OG18-44-015         45           OG18-44-016         48           OG18-44-017         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OG18-44-013    | 71          |
| OG18-44-015         45           OG18-44-016         48           OG18-44-017         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OG18-44-014    | 22          |
| OG18-44-016         48           OG18-44-016         48           OG18-44-017         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OG18-44-015    | 45          |
| OG18-44-017         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-016    | 48          |
| OG18-44-018         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-017    | < 5         |
| OG18-44-019         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-018    | < 5         |
| OG18-44-020         80           OG18-44-021         82           OG18-44-021         82           OG18-44-022         10           OG18-44-023         30           OG18-44-024         11           OG18-44-025         111           OG18-44-026         3160           OG18-44-028         19           OG18-44-029         11           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OG18-44-019    | < 5         |
| OG18-44-021         82           OG18-44-021         82           OG18-44-022         10           OG18-44-023         30           OG18-44-024         11           OG18-44-025         111           OG18-44-026         3160           OG18-44-028         19           OG18-44-028         19           OG18-44-029         111           OG18-44-029         111           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OG18-44-020    | 80          |
| OG18-44-022         10           OG18-44-023         30           OG18-44-023         30           OG18-44-024         11           OG18-44-025         111           OG18-44-026         3160           OG18-44-028         19           OG18-44-029         11           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OG18-44-021    | 82          |
| GG18-44-023         30           OG18-44-023         30           OG18-44-024         11           OG18-44-025         111           OG18-44-026         3160           OG18-44-027         68           OG18-44-028         19           OG18-44-029         11           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OG18-44-022    | 10          |
| GG18-44-024         11           OG18-44-025         111           OG18-44-025         111           OG18-44-026         3160           OG18-44-027         68           OG18-44-028         19           OG18-44-029         111           OG18-44-029         111           OG18-44-029         111           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OG18-44-023    | 30          |
| GG18-44-025         111           OG18-44-025         111           OG18-44-026         3160           OG18-44-027         68           OG18-44-027         68           OG18-44-028         19           OG18-44-029         111           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OG18-44-024    | 11          |
| OG18-44-026         3160           OG18-44-027         68           OG18-44-028         19           OG18-44-029         11           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OG18-44-025    | 111         |
| OG 18         44-027         68           OG 18         44-028         19           OG 18         44-029         11           OG 18         44-029         11           OG 18         44-030         7           OG 18         44-031         81           OG 18         44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OG18-44-026    | 3160        |
| OG18-44-027         OG           OG18-44-028         19           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OG18-44-027    | 68          |
| OG18-44-029         11           OG18-44-029         11           OG18-44-030         7           OG18-44-031         81           OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OG18-44-027    | 19          |
| OG 18-44-023         11           OG 18-44-030         7           OG 18-44-031         81           OG 18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OG18-44-020    | 11          |
| OG 18-44-031         81           OG 18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OG18-44-030    | 7           |
| OG18-44-032         < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-031    | /<br>ي 1    |
| OG18-44-032         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OG18-44-032    | 01<br>- 5   |
| OG18-44-033         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0G18-44-032    | < 5         |
| OG18-44-034         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0G18-44-033    | < :)<br>_ F |
| OG18-44-035         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0019 44 025    | < 0         |
| OG18-44-030         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0G18-44-035    | < 0         |
| OG18-44-037         S0           OG18-44-038         9           OG18-44-039         27           OG18-44-040         9           OG18-44-041         7           OG18-44-042         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0619 44 027    | < 0         |
| OG18-44-030         9           OG18-44-039         27           OG18-44-040         9           OG18-44-041         7           OG18-44-042         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0018-44-037    | 50          |
| OG18-44-039         27           OG18-44-040         9           OG18-44-041         7           OG18-44-042         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0018-44-038    | 9           |
| OG18-44-040         9           OG18-44-041         7           OG18-44-042         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0018-44-039    | 2/          |
| OG18-44-041 7<br>OG18-44-042 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0G18-44-040    | 9           |
| 0G18-44-042 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0618-44-041    | 7           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0G18-44-042    | 20          |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| OG18-44-043    | 21    |
| OG18-44-044    | 79    |
| OG18-44-045    | 10    |
| OG18-44-046    | < 5   |
| OG18-44-047    | 10    |
| OG18-44-048    | 5     |
| OG18-44-049    | 34    |
| OG18-44-050    | 5     |
| OG18-44-051    | 7     |
| OG18-44-052    | 19    |
| OG18-44-053    | 26    |
| OG18-44-054    | < 5   |
| OG18-44-055    | < 5   |
| OG18-44-056    | < 5   |
| OG18-44-057    | < 5   |
| OG18-44-058    | < 5   |
| OG18-44-059    | 1330  |
| OG18-44-060    | 15    |
| OG18-44-061    | < 5   |
| OG18-44-062    | 5     |
| OG18-44-063    | 5     |
| OG18-44-064    | < 5   |
| OG18-44-065    | 7     |
| OG18-44-066    | 14    |
| OG18-44-067    | < 5   |
| OG18-44-068    | 11    |
| OG18-44-069    | < 5   |
| OG18-44-070    | < 5   |
| OG18-44-071    | < 5   |
| OG18-44-072    | 28    |
| OG18-44-073    | < 5   |
| OG18-44-074    | < 5   |
| OG18-44-075    | < 5   |
| OG18-44-076    | < 5   |
| OG18-44-077    | < 5   |
| OG18-44-078    | < 5   |
| OG18-44-079    | < 5   |
| OG18-44-080    | < 5   |
| OG18-44-081    | 6     |
| OG18-44-082    | 12    |
| OG18-44-083    | < 5   |
| OG18-44-084    | 6     |
|                |       |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| OG18-44-085    | < 5   |
| OG18-44-086    | < 5   |
| OG18-44-087    | < 5   |
| OG18-44-088    | < 5   |
| OG18-44-089    | 3090  |
| OG18-44-090    | < 5   |
| OG18-44-091    | < 5   |
| OG18-44-092    | < 5   |
| OG18-44-093    | < 5   |
| OG18-44-094    | < 5   |
| OG18-44-095    | 8     |
| OG18-44-096    | < 5   |
| OG18-44-097    | < 5   |
| OG18-44-098    | < 5   |
| OG18-44-099    | < 5   |
| OG18-44-100    | < 5   |
| OG18-44-101    | < 5   |
| OG18-44-102    | < 5   |
| OG18-44-103    | 23    |
| OG18-44-104    | < 5   |
| OG18-44-105    | < 5   |
| OG18-44-106    | < 5   |
| OG18-44-107    | < 5   |
| 0G18-44-108    | < 5   |
| 0G18-44-109    | < 5   |
| OG18-44-110    | 8     |
| 0G18-44-111    | 48    |
| 0018-44-112    | 10    |
| 0010-44-113    | < 5   |
| 0G18-44-114    | 14    |
| OG18-44-115    | 22    |
| OG18-44-117    | 20    |
| OG18-44-118    | < 5   |
| OG18-44-119    | 1500  |
| OG18-44-120    | 7     |
| OG18-44-121    | 22    |
| OG18-44-122    | 32    |
| OG18-44-123    | 26    |
| OG18-44-124    | 22    |
| OG18-44-125    | < 5   |
| OG18-44-126    | 18    |
|                |       |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| OG18-44-127    | 133   |
| OG18-44-128    | 7     |
| OG18-44-129    | 63    |
| OG18-44-130    | < 5   |
| OG18-44-131    | 145   |
| OG18-44-132    | 167   |
| OG18-44-133    | 83    |
| OG18-44-134    | 2290  |
| OG18-44-135    | 2630  |
| OG18-44-136    | 43    |
| OG18-44-137    | < 5   |
| OG18-44-138    | 61    |
| OG18-44-139    | 691   |
| OG18-44-140    | 150   |
| OG18-44-141    | 5     |
| OG18-44-142    | 62    |
| OG18-44-143    | 518   |
| OG18-44-144    | 3010  |
| OG18-44-145    | 17    |
| OG18-44-146    | 5     |
| OG18-44-147    | 155   |
| OG18-44-148    | 80    |
| PH18-01-001    | < 5   |
| PH18-01-002    | < 5   |
| PH18-01-003    | 53    |
| PH18-01-004    | < 5   |
| PH18-01-005    | 11    |
| PH18-01-006    | 16    |
| PH18-01-007    | 1170  |
| PH18-01-008    | 1350  |
| PH18-01-009    | 221   |
| PH18-01-010    | 131   |
| PH18-01-011    | 4940  |
| PH18-01-012    | < 5   |
| PH18-01-013    | 197   |
| PH18-01-014    | 58    |
| PH18-01-015    | 17    |
| PH18-01-016    | < 5   |

| Unit Symbol         ppb           Lower Limit         5           Method Code         FA-AA           OREAS 254 Meas         2410           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 254 Meas         2490           OREAS 254 Meas         2490           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531                                                              | Analyte Symbol | Au    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| Lower Limit         5           Method Code         FA-AA           OREAS 254 Meas         2410           OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Cert         2550                                                        | Unit Symbol    | ppb   |
| Method Code         FA-AA           OREAS 254 Meas         2410           OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Meas         2530           OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 254 Meas         2490           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Cert         2550                                                  | Lower Limit    | 5     |
| OREAS 254 Meas         2410           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531                                                  | Method Code    | FA-AA |
| OREAS 254 Cert         2550           OREAS 254 Meas         2570           OREAS 254 Cert         2550                                                | OREAS 254 Meas | 2410  |
| OREAS 254 Meas         2570           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531                                                    | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531      <                                              | OREAS 254 Meas | 2570  |
| OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Meas         2550           OREAS 254 Meas         2550           OREAS 254 Meas         2610           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531 <tr< td=""><td>OREAS 254 Cert</td><td>2550</td></tr<> | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2530           OREAS 254 Cert         2550           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Cert         531                                                    | OREAS 254 Meas | 2510  |
| OREAS 254 Meas         2530           OREAS 254 Cert         2550           OREAS 254 Cert         2511           OREAS 218 Cert         531           OREAS 218 Cert         531 <t< td=""><td>OREAS 254 Cert</td><td>2550</td></t<>  | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 254 Meas         2450           OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 218 Cert         531                                                        | OREAS 254 Meas | 2530  |
| OREAS 254 Meas         2510           OREAS 254 Cert         2550           OREAS 254 Meas         2610           OREAS 254 Meas         2450           OREAS 254 Cert         2550           OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 218 Cert         531                                                        | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2550           OREAS 254 Cert         2550           OREAS 218 Cert         531                                                         | OREAS 254 Meas | 2510  |
| OREAS 254 Meas         2550           OREAS 254 Cert         2550           OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 254 Cert         2511           OREAS 218 Cert         531                                                          | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2610           OREAS 254 Cert         2550           OREAS 254 Cert         2550           OREAS 254 Meas         2450           OREAS 254 Meas         2480           OREAS 254 Meas         2480           OREAS 254 Meas         2490           OREAS 254 Cert         2550           OREAS 218 Meas         519           OREAS 218 Cert         531                                                           | OREAS 254 Meas | 2550  |
| OREAS 254 Meas         2610           OREAS 254 Cert         2550           OREAS 218 Cert         531                                                            | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2450           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531                                                              | OREAS 254 Meas | 2610  |
| OREAS 254 Meas         2450           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531                                                               | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           <                                                      | OREAS 254 Meas | 2450  |
| OREAS 254 Meas         2480           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           OREAS 218 Cert         531 <t< td=""><td>OREAS 254 Cert</td><td>2550</td></t<>               | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2490           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           OREAS 218 Cert         531 <td< td=""><td>OREAS 254 Meas</td><td>2480</td></td<>              | OREAS 254 Meas | 2480  |
| OREAS 254 Meas         2490           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           O                                                          | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 254 Meas         2540           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           OREA                                                          | OREAS 254 Meas | 2490  |
| OREAS 254 Meas         2540           OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           OREAS                                                          | OREAS 254 Cert | 2550  |
| OREAS 254 Cert         2550           OREAS 218 Meas         544           OREAS 218 Cert         531           OREAS                                                           | OREAS 254 Meas | 2540  |
| OREAS 218 Meas         544           OREAS 218 Cert         531           OREAS 2                                                          | OREAS 254 Cert | 2550  |
| OREAS 218 Cert         531           OREAS 218 Meas         519           OREAS 218 Cert         531           OREAS 2                                                          | OREAS 218 Meas | 544   |
| OREAS 218 Meas         519           OREAS 218 Cert         531           OREAS 2                                                          | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Meas         500           OREAS 218 Cert         531                                                                                                                 | OREAS 218 Meas | 519   |
| OREAS 218 Meas         500           OREAS 218 Cert         531           OREAS 218 Cert         533           OREAS 218 Cert         531                                                                                                                                                                                                                                                                     | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Cert         538           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                          | OREAS 218 Meas | 500   |
| OREAS 218 Meas         538           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                          | OBEAS 218 Cert | 531   |
| OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                               | OREAS 218 Meas | 538   |
| OREAS 218 Meas         530           OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Meas         530           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Meas         530           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OREAS 218 Meas | 530   |
| OREAS 218 Meas         530           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Meas         530           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OREAS 218 Meas | 530   |
| OREAS 218 Meas         530           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Cert         531           OREAS 218 Meas         532           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OREAS 218 Meas | 530   |
| OREAS 218 Meas         532           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OREAS 218 Cert | 531   |
| OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OBEAS 218 Meas | 532   |
| OREAS 218 Meas         538           OREAS 218 Cert         531           OREAS 218 Meas         536           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OBEAS 218 Cert | 531   |
| OREAS 218 Cert         531           OREAS 218 Meas         536           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBEAS 218 Meas | 538   |
| OREAS 218 Meas         536           OREAS 218 Cert         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBEAS 218 Cert | 531   |
| OREAS 218 Cert 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OREAS 218 Mage | 536   |
| 5112R0 210 0011 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OREAS 218 Cort | 530   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sherio 210 Gen |       |

| Analyte Symbol                | Au    |
|-------------------------------|-------|
| Unit Symbol                   | ppb   |
| Lower Limit                   | 5     |
| Method Code                   | FA-AA |
| OREAS 218 Meas                | 518   |
| OREAS 218 Cert                | 531   |
| N218-01-013 Orig              | 143   |
| N218-01-013 Dup               | 126   |
| N218-01-022 Orig              | 8     |
| N218-01-022 Dup               | 7     |
| N218-01-031 Orig              | 33    |
| N218-01-031 Dup               | 31    |
| N218-01-048 Orig              | 6     |
| N218-01-048 Dup               | 8     |
| N218-01-050 Orig              | 138   |
| N218-01-050 Split             | 118   |
| N218-01-058 Orig              | 501   |
| N218-01-058 Dup               | 524   |
| N218-01-066 Orig              | 95    |
| N218-01-066 Dup               | 90    |
| N218-01-079 Orig              | < 5   |
| N218-01-079 Dup               | < 5   |
| N218-01-089 Orig              | 717   |
| N218-01-089 Dup               | 626   |
| N218-01-099 Orig              | < 5   |
| N218-01-099 Dup               | < 5   |
| N218-01-100 Orig              | 11    |
| N218-01-100 Split             | 9     |
| PREP DUP                      |       |
| N218-02-012 Orig              | 30    |
| N218-02-023 Orig              | 158   |
| N218-02-023 Dup               | 148   |
| N218-02-033 Orig              | 19    |
| N218-02-046 Orig              | < 5   |
| N218-02-046 Split<br>PREP DUP | 5     |
| N218-02-047 Oria              | 54    |
| N218-02-047 Dup               | 54    |
| OG18-45A-008<br>Orig          | 38    |
| OG18-45A-008<br>Dup           | 59    |
| OG18-44-04 Oria               | 27    |
| OG18-44-04 Dup                | 33    |
| OG18-44-014                   | 22    |
| Orig                          |       |
| OG18-44-014 Dup               | 22    |

|   | Analyte Symbol       | Au    |
|---|----------------------|-------|
| 1 | Unit Symbol          | ppb   |
| 1 | Lower Limit          | 5     |
|   | Method Code          | FA-AA |
| 1 | OG18-44-024          | 13    |
|   | Orig                 |       |
|   | OG18-44-024 Dup      | 9     |
| 1 | OG18-44-032          | < 5   |
|   | Orig                 |       |
|   | OG18-44-032          | < 5   |
|   | Split PREP DUP       |       |
|   | OG18-44-034          | < 5   |
|   | Orig                 |       |
|   | OG18-44-034 Dup      | < 5   |
|   | OG18-44-048          | 5     |
|   | Orig                 |       |
|   | OG18-44-048 Dup      | 5     |
|   | OG18-44-058          | < 5   |
|   |                      |       |
|   | OG18-44-058 Dup      | < 5   |
|   | OG18-44-068<br>Orig  | 9     |
|   |                      | 10    |
|   | OG18-44-068 Dup      | 13    |
|   | OG 18-44-082<br>Orig | 12    |
|   | OG18-44-082          | 11    |
|   | Split PREP DUP       |       |
|   | OG18-44-083          | 6     |
|   | Orig                 |       |
|   | OG18-44-083 Dup      | < 5   |
|   | OG18-44-093          | < 5   |
|   | Orig                 |       |
|   | OG18-44-093 Dup      | < 5   |
|   | OG18-44-103          | 21    |
|   |                      |       |
|   | OG18-44-103 Dup      | 24    |
|   | OG18-44-120<br>Orig  | 6     |
|   | OC19 44 120 Dup      | 7     |
|   | OG18-44-120 Dup      | 1     |
|   | OG 16-44-129<br>Oria | 01    |
|   | 0G18-44-129 Dun      | 64    |
|   | OG18-44-132          | 167   |
|   | Orig                 | 107   |
| 1 | OG18-44-132          | 171   |
|   | Split PREP DUP       |       |
|   | OG18-44-138          | 64    |
|   | Orig                 |       |
|   | OG18-44-138 Dup      | 57    |
|   | Method Blank         | < 5   |
|   |                      |       |
| Unit SymbolppbLower Limit5Method CodeFA-AAMethod Blank< 5Method Blank | Analyte Symbol | Au    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| Lower Limit5Method CodeFA-AAMethod Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit Symbol    | ppb   |
| Method CodeFA-AAMethod Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lower Limit    | 5     |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Code    | FA-AA |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank< 5Method Blank< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Blank   | < 5   |
| Method Blank < 5<br>Method Blank < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method Blank   | < 5   |
| Method Blank < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method Blank   | < 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blank   | < 5   |

Quality Analysis ...



### Innovative Technologies

 Date Submitted:
 28-Mar-18

 Invoice No.:
 A18-03888 (i)

 Invoice Date:
 17-Apr-18

 Your Reference:
 Invoice Date:

Metals Creek Resources 93 Edinburgh Ave. Gander NL A1V 19C Canada

ATTN: Sandy Stares (res)

# **CERTIFICATE OF ANALYSIS**

332 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-03888 (i)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

| Unit Symbol         g/tonne           Lower Limit         0.03           Method Code         FA-<br>GRA           N218-01-016         1.35           N218-01-083         0.47           N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-086         1.04           N218-01-089         0.75           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-45A-010         1.92           OG18-45A-010         1.92           OG18-45A-010         1.92           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39 | Analyte Symbol | Au         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
| Lower Limit         0.03           Method Code         FA-<br>GRA           N218-01-016         1.35           N218-01-083         0.47           N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-086         1.04           N218-01-086         0.46           N218-01-089         0.75           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                             | Unit Symbol    | g/tonne    |
| Method Code         FA-<br>GRA           N218-01-016         1.35           N218-01-083         0.47           N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-086         1.04           N218-01-089         0.75           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-134         2.62           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                    | Lower Limit    | 0.03       |
| N218-01-016         1.35           N218-01-083         0.47           N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-086         1.04           N218-01-089         0.75           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                | Method Code    | FA-<br>GRA |
| N218-01-083         0.47           N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-088         0.46           N218-01-089         0.75           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                       | N218-01-016    | 1.35       |
| N218-01-084         0.03           N218-01-085         1.21           N218-01-086         1.04           N218-01-088         0.46           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-134         2.62           OG18-44-134         2.62           OG18-44-134         2.60           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                          | N218-01-083    | 0.47       |
| N218-01-085         1.21           N218-01-086         1.04           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-134         2.62           OG18-44-107         5.00           PH18-01-007         5.00           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N218-01-084    | 0.03       |
| N218-01-086         1.04           N218-01-088         0.46           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N218-01-085    | 1.21       |
| N218-01-088         0.46           N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N218-01-086    | 1.04       |
| N218-01-089         0.75           N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N218-01-088    | 0.46       |
| N218-02-029         0.20           N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N218-01-089    | 0.75       |
| N218-02-030         1.68           N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N218-02-029    | 0.20       |
| N218-02-031         1.13           N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N218-02-030    | 1.68       |
| N218-02-032         0.49           OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N218-02-031    | 1.13       |
| OG18-045-001         3.17           OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N218-02-032    | 0.49       |
| OG18-45A-007         1.62           OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OG18-045-001   | 3.17       |
| OG18-45A-010         1.92           OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OG18-45A-007   | 1.62       |
| OG18-44-134         3.10           OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OG18-45A-010   | 1.92       |
| OG18-44-135         2.62           OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OG18-44-134    | 3.10       |
| OG18-44-144         2.80           PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OG18-44-135    | 2.62       |
| PH18-01-007         5.00           PH18-01-008         1.41           PH18-01-011         5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OG18-44-144    | 2.80       |
| PH18-01-008 1.41<br>PH18-01-011 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PH18-01-007    | 5.00       |
| PH18-01-011 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PH18-01-008    | 1.41       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PH18-01-011    | 5.39       |

| Analyte Symbol                 | Au         |
|--------------------------------|------------|
| Unit Symbol                    | g/tonne    |
| Lower Limit                    | 0.03       |
| Method Code                    | FA-<br>GRA |
| OREAS 214 Meas                 | 2.89       |
| OREAS 214 Cert                 | 3.03       |
| OREAS 214 Meas                 | 2.93       |
| OREAS 214 Cert                 | 3.03       |
| OREAS 216 (Fire<br>Assay) Meas | 6.55       |
| OREAS 216 (Fire<br>Assay) Cert | 6.66       |
| OREAS 216 (Fire<br>Assay) Meas | 6.46       |
| OREAS 216 (Fire<br>Assay) Cert | 6.66       |
| N218-02-031 Orig               | 1.13       |
| N218-02-031 Dup                | 1.13       |
| PH18-01-007 Orig               | 5.00       |
| PH18-01-011 Orig               | 5.39       |
| Method Blank                   | < 0.03     |
| Method Blank                   | < 0.03     |
| Method Blank                   | < 0.03     |

Quality Analysis ...



### Innovative Technologies

 Date Submitted:
 07-Mar-18

 Invoice No.:
 A18-02798

 Invoice Date:
 13-Mar-18

 Your Reference:
 18T316586

Metals Creek Resources 1100 Memorial Ave. Suite 329 Thunder Bay Ontario P7B 4A3 Canada

ATTN: Mike MacIsaac (Inv)

# **CERTIFICATE OF ANALYSIS**

8 Crushed Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-02798

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

|   | Analyte Symbol | Au    |
|---|----------------|-------|
| [ | Unit Symbol    | ppb   |
|   | Lower Limit    | 5     |
| [ | Method Code    | FA-AA |
| Ι | 9098352A       | 18    |
| [ | 9098361A       | 460   |
|   | 9098372A       | 982   |
|   | 9098380A       | 53    |
|   | 9098389A       | 64    |
|   | 9098398A-DUP   | 145   |
| [ | 9098408A       | 259   |
| [ | 9098417A       | 11    |
|   |                |       |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| OREAS 254 Meas | 2530  |
| OREAS 254 Cert | 2550  |
| OREAS 218 Meas | 513   |
| OREAS 218 Cert | 531   |
| 9098352A Orig  | 20    |
| 9098352A Dup   | 15    |
| Method Blank   | < 5   |

Quality Analysis ...



### Innovative Technologies

 Date Submitted:
 04-Apr-18

 Invoice No.:
 A18-04273

 Invoice Date:
 13-Apr-18

 Your Reference:

Metals Creek Resources 1100 Memorial Ave. Suite 329 Thunder Bay Ontario P7B 4A3 Canada

ATTN: Mike MacIsaac (Inv)

# **CERTIFICATE OF ANALYSIS**

17 Crushed Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-04273

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Footnote: Client sample 9138846 was INS for 1A2 analysis

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| 9138837        | 174   |
| 9138846        |       |
| 9138865        | 6     |
| 9138874        | 108   |
| 9138884        | 33    |
| 9138766        | < 5   |
| 9138775        | 101   |
| 9138785        | 905   |
| 9138794        | < 5   |
| 9138803        | 57    |
| 9138914        | 2550  |
| 9138923        | 6     |
| 9138933        | 51    |
| 9138942        | 9     |
| 9138951        | 129   |
| 9138961        | 3340  |
| 9138856        | 30    |
|                |       |

| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| OREAS 254 Meas | 2440  |
| OREAS 254 Cert | 2550  |
| OREAS 218 Meas | 534   |
| OREAS 218 Cert | 531   |
| 9138803 Orig   | 57    |
| 9138803 Dup    | 57    |
| Method Blank   | < 5   |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

#### To: METALS CREEK RESOURCES 945 COBALT CRESCENT THUNDER BAY ON P7B 5Z4

## CERTIFICATE TB18082687

| SAMPLE PREPARATION |                                  |                    |
|--------------------|----------------------------------|--------------------|
| ALS CODE           | DESCRIPTION                      |                    |
| WEI- 21            | Received Sample Weight           |                    |
| PUL-31d            | Pulverize Split - duplicate      |                    |
| LOG- 22d           | Sample login - Rcd w/o BarCode d | ир                 |
|                    |                                  |                    |
|                    | ANALYTICAL PROCED                | URES               |
| ALS CODE           | ANALYTICAL PROCED                | URES<br>INSTRUMENT |

This report is for 33 Crushed Rock samples submitted to our lab in Thunder Bay, ON, Canada on 11- APR- 2018. The following have access to data associated with this certificate:

DON HEEREMA

MIKE MACISAAC

To: METALS CREEK RESOURCES ATTN: DON HEEREMA 945 COBALT CRESCENT THUNDER BAY ON P7B 5Z4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

#### To: METALS CREEK RESOURCES 945 COBALT CRESCENT THUNDER BAY ON P7B 5Z4

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 23- APR- 2018 Account: MECRRE

## CERTIFICATE OF ANALYSIS TB18082687

| Sample Description                                                                     | Method<br>Analyte<br>Units<br>LOR | WEI- 21<br>Recvd Wt.<br>kg<br>0.02   | Au- AA23<br>Au<br>ppm<br>0.005               |  |
|----------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| N218-01-015<br>N218-01-025<br>N218-01-035<br>N218-01-035<br>N218-01-005<br>N218-01-045 |                                   | 0.24<br>0.38<br>0.40<br>0.21<br>0.46 | 0.282<br>0.022<br>0.006<br>0.009<br><0.005   |  |
| N218-01-055<br>N218-01-065<br>N218-01-075<br>N218-01-085<br>N218-01-095                |                                   | 0.39<br>0.36<br>0.26<br>0.36<br>0.28 | 0.016<br>0.017<br>0.009<br>1.380<br><0.005   |  |
| N218-02-005<br>N218-02-015<br>N218-02-025<br>N218-02-035<br>N218-02-045                |                                   | 0.32<br>0.27<br>0.30<br>0.27<br>0.35 | 0.007<br>0.047<br><0.005<br>0.017<br>0.052   |  |
| OG18-45A-005<br>OG18-44-05<br>OG18-44-015<br>OG18-44-025<br>OG18-44-035                |                                   | 0.31<br>0.33<br>0.26<br>0.43<br>0.31 | <0.005<br>0.032<br>0.029<br>0.128<br><0.005  |  |
| OG18-44-045<br>OG18-44-055<br>OG18-44-065<br>OG18-44-075<br>OG18-44-085                |                                   | 0.25<br>0.39<br>0.30<br>0.41<br>0.43 | 0.016<br><0.005<br>0.010<br><0.005<br><0.005 |  |
| OG18- 44- 095<br>OG18- 44- 105<br>OG18- 44- 115<br>OG18- 44- 125<br>OG18- 44- 135      |                                   | 0.44<br>0.43<br>0.41<br>0.44<br>0.51 | 0.013<br><0.005<br>0.017<br><0.005<br>3.17   |  |
| OG18- 44- 145<br>PH18- 01- 005<br>PH18- 01- 015                                        |                                   | 0.45<br>0.57<br>0.43                 | 0.025<br>0.017<br>0.009                      |  |



Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

#### To: METALS CREEK RESOURCES 945 COBALT CRESCENT THUNDER BAY ON P7B 5Z4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 23- APR- 2018 Account: MECRRE

## CERTIFICATE OF ANALYSIS TB18082687

|                    | CERTIFICATE COMMENTS                                                                               |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------|--|--|--|
|                    | LABORATORY ADDRESSES                                                                               |  |  |  |
| Applies to Method: | LOG- 22d PUL- 31d WEI- 21                                                                          |  |  |  |
| Applies to Method: | Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.<br>Au- AA23 |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |
|                    |                                                                                                    |  |  |  |