

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

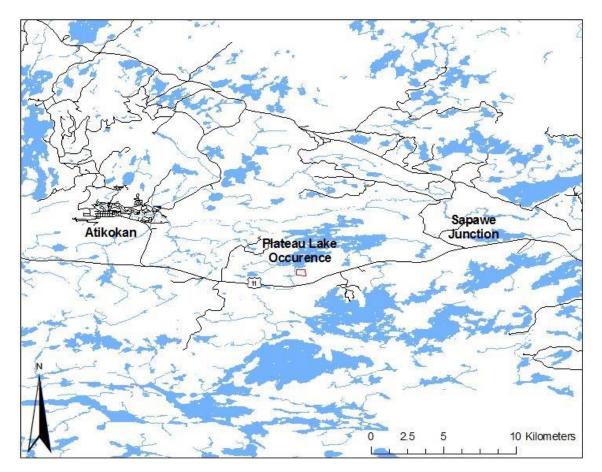
Plateau Lake Occurrence

Cu, Ni, PGE Project

Work Report 2019

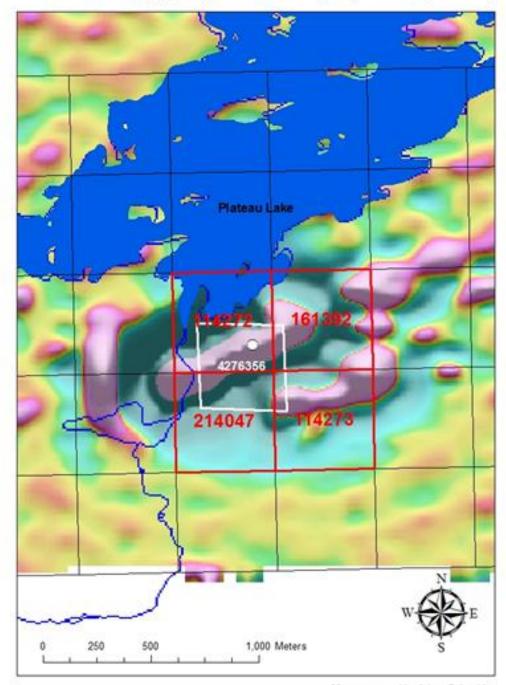
October 2019

Adam Schneider Michael Frymire


Overview

The Plateau Lake Property is a small set of claim units located approximately 10km east of Atikokan on the southern shore of Plateau Lake. Until the conversion from ground staking, the Property was a single claim numbered 4276356. It is now composed of 4 claim cells (114272, 161392, 214047 and 114273) which are located on the border of the Pickerel Lake (north), and McAlpine Lake claim sheets in the Thunder Bay district. The claim group contains the apex of a circular aeromagnetic anomaly outlining an ultramafic body for 800 meters, however a larger body would occur at depth than is exposed on surface. The group contains the Andowan copper/nickel occurrence (MDI52B12NE00003) along with surface assay results of up to 4.4% copper and 0.76% nickel, as well as >1000ppb platinum.

This report outlines the prospecting visit and sampling completed by Adam Schneider, Ian Kerslake, Allan Kerslake and Matthew Revell of Traxxin Resources Inc. in June of 2019.


Location and Access

The Plateau Lake Property is located just south of Plateau Lake in northwestern Ontario along Highway 11 approximately 225km west of Thunder Bay and 10km east of Atikokan. Access is made by foot trail along a power line which crosses Highway 11 southeast of the property, approximately 12km west of the Sapawe junction.

Claim Group

Current Group (Red) Former Legacy Claim (White)

Map composed by Adam Schneider Oct 1, 2018

Previous Work

The property has had considerable attention since its discovery the early 1900s.

There have been pits blasted, airborne and ground electromagnetic surveys, and a single diamond drill hole, to determine the extent and quality of the mineral occurrence. Reports all warrant further work including more extensive diamond drilling to determine size and tonnage of the intrusion.

The property was briefly studied through a grant by the Ontario Prospectors Association Program (OPAP) in the early 1990s.

(OPAP project numbers OP91-438, OP92-481, and OP92-821)

A series of shallow pits have previously been blasted on the property and have shown excellent mineralization at the surface proven by strong assay results including up to 4.4% Cu, 0.73% Ni and >1000ppb Pt.

Sample No.	Cu	Ni	Co	Pt	Pd	Au	Ag
	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppm)
AP1-1-84.	10900	2060	-	270	165	140	0. 22
AP1-1-84				250	140	86	
AP1-2-84.	15600	250		270	420	165	0.34
AP1-2-84		-		300	540	92	
AP1-3-84	94	220		4	4		
AP1-4-84	114	260	-	<1	<1	-	•
AWS-1-85	6200	3160	-	230	100	90	4
AWS-2-85	100	186	-	70	30	14	2
AWS-3-85	3100	220	-	290	70	50	12
AWS-4-85	44000	730	-	185	125	250	16
AWS-5-85	5120	2500		440	85	185	4
79-LKK-1	2700	600	100	103	343	343	tr
79-LKK-2	3500	300	80	103	69	343	tr
79-LKK-3	21200	3900	400	343	171	343	tr
79-LKK-4	5000	4600	500	206	137	343	tr
79-LKK-5	3800	7300	600	240	274	686	20.5
79-LKK-6	4200	2200	200	69	137	tr	tr
79-LKK-7	23200	1600	200	206	274	343	10.6
79-LKK-8	3500	800	100	34	69	tr	tr
79-LKK-9	3400	1400	100	34	103	tr	tr
79-LKK-10	11400	4200	700	171	240	343	tr
CK-4-1	9300	2400	-	686	tr		•
CK-9-1	4100	tr		1028	686		·
* : Re-as	say						
tr: Trace							

PGE Ontario OFR5681, p. 97

Previous Work (Cont.)

With help from a grant from the Ontario Prospectors Association in 1991, a single diamond drill hole was performed nearest the pits showing with the strongest mineralization and highest assay results. The assays from the drill core show widespread mineralization throughout 65 feet including copper in excess of 2%, nickel over 0.76% and considerable platinum values.

	D	SSAY RESU IAMOND DE LATEAU LA	RILL DDH1		E NAME: DDH	92 A				
SAMPLE NUMBER	FOOTAGE	LENGTH	Au PPB	Pt PPB	Pd PPB	Cu PPM	N1 PPM	CO	Cr	Rh PPM
PT1	0' -2'8"	2'8"	<1	27	14	535	343	88	518	
PT2	2'8" -5'	2'4"	<1	17	8	374	308	85	463	3
PT3	5' -6'4"	1'4"	42	33	30	2947	606	107	469	
PT4	6'4" -7'6"	1'2"	108	268	171	>2000	7688	583	342	
PT5	7'6" -8'2"	8"	207	212	79	>2000	3065	270	480	3
PT6	8'2" -10'	1'10"	143	294	138	10133	3968	331	484	
PT7	10' -12'3		268	277	231	10077	2841	258	483	3
PT8	12'3" -15'	2'9"	282	390	141	8103	2806	256	418	
PT9	15' -17'	2'	248	291	120	6861	3722	273	369	
PT10		0" 1'10"	194	362	148	4286	4419	336	335	
PT11	17'10"-20'	2'2"	228	363	174	7587	3729	265	303	
PT12	20' -21'3		225	352	105	5871	2093	190	322	
PT13	21'3" -23'2		24	49	23	1934	1293	140	381	
PT14	23'2" -25'	1'10"	69	99	45	7937	2073	204	427	3
PT15		1" 1'11"	97	112	56	3491	1377	138	395	
PT16	26'11"-28'5	" 1'6"	185	159	75	7843	1951	174	442	
PT17	28'5" -31'5	" 2'	209	232	59	10472	1425	141	510	
PT18	31'5" -35'	4'7"	46	19	14	2820	683	102	472	<2
PT19	35' -37'5	2'5"	136	21	13	5100	800	118	412	
PT20	37'5" -40'	2'7"	14	20	10	1658	628	97	425	
PT21	40' -42'5	" 2'7"	25	10	746	55	88	509		
PT22	42'5" -45'	2'7"	6	29	9	707	555	92	446	
PT23	45' -47'5		78	101	40	3698	728	115	479	
PT24	47'5" -50'	2'5"	33	59	30	2335	718	108	489	
PT25	50' -52'5		31	77	35	1512	693	83	430	
PT26	52'5" -55'	2'7"	13	21	10	941	347	56	215	
PT27	55' -60'	5'	<1	14	9	482	368	73	391	<2
PT28	60' -64'6'	4'6"	7	16	8	517	377	74	390	10.5775
PT29	64'6" -67'4	" 1'10"	20	118	31	1983	1250	138	265	
PT30	67'4" -70'7		56	101	42	4878	1339	122	330	3
PT31	70'7" -75'	4'5"	<1	11	8	421	269	60	351	
PT32	75' -80'	5'	<1	12	6	150	214	51	364	<2
PT33	80' -84'4'	" 4'4"	<1	14	3	195	183	48	305	10.00
PT34	84'4" -90'	5'8"	<1	<5	2	92	104	29	334	
PT35	90' -95'	5'	<1	8	2	77	100	28	338	<2
PT36	95' -100'	5'	<1	<5	1	84	103	29	506	

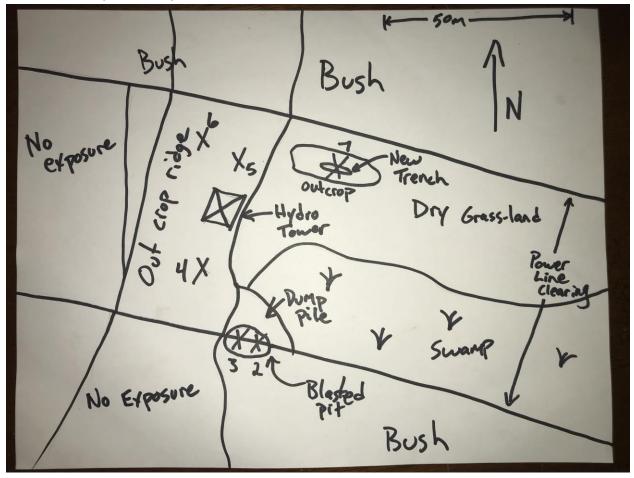
OPAP 1992 Report - OP92-821

Current Work

In October 2014, the property was staked (Claim no. 4276356) and briefly prospected by Michael Frymire and Adam Schneider. One of the previously blasted pits was found and a small amount of grab samples were taken.

The property was revisited again in June of 2019 by Adam Schneider, Ian Kerslake, Allan Kerslake and Matthew Revell. The focus of this visit was to revisit the old blasted pit, and sample the immediate area surrounding it.

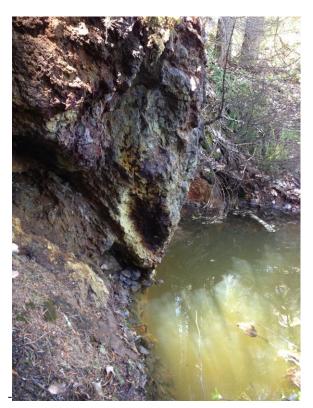
A total of 7 locations were sampled during the visit including a quartz vein observed 500 meters east of the main zone, 2 from the main blasted pit previously discovered, 3 from the large outcrop adjacent to the pit and a newly discovered small trench ~50 northof the pit. A large sample (~40lb) from the original blast pile was also taken as a specimen. 4 of the samples were sent in for assay.


	Daily Log of Activities								
Date	Work Performed								
	Travelled from Thunder Bay and spent the full day prospecting the main blasted pit and								
6-Jun-19	surrounding area.								

Obse	Observational Notes From Prospecting and Sampling Within Claim Group							
Date	Time	Location	Comments					
			Parked on Trans-Canada Highway 11 and hiked in along hydro					
	10:00-		line clear cut, stopping and inspecting outcrops. Located quartz					
6-Jun-19	12:00	Hydro Line	veining to be sampled while returning to vehicle.					
		Main Showing/	Located previously discovered pit and sampled the highly					
	12:00-	Blasted pit	mineralized rock still in outcrop. Inspected rumble dump pile					
6-Jun-19	2:00	(Clm# 114272)	and selected a large sample as a specimen.					
		Outcrop ridge	Chipped away at large outcrop adjacent to the main blasted pit,					
	2:00-	adjacent to pit	attempting to define different rock types, continuation of					
6-Jun-19	4:00	(Clm# 114272)	mineralization. 3 samples taken.					
		Newly	Small trench along hydro line spotted from outcrop ridge.					
		discovered	Mineralization resembled that of the main pit. Trench located					
	4:00-	small trench	~50m north of pit. Sampled the most mineralized available to					
6-Jun-19	5:00	(Clm# 114272)	be chipped.					
	5:00-		Hiked back out of bush along cleared hydro line. Stopped at					
6-Jun-19	6:00	Hydro Line	quartz veining discovered on hike in. Sampled.					

Prospecting Routes

Field Drawn Map with Sample Points



Samples Taken

19PT001 – (15U 610158 5397568) (Quartz vein on hydro line)

19PT002 + 19PT003 (15U 610270 5397617 + 15U 610273 5397618) (Old Blasted Pit and Dump Pile)

19PT004 + 19PT005 + 19PT006 (15U 610266 5397641 + 15U 610298 5397667 + 15U 610285 5397671) (Outcrop Ridge)

19PT007 (15U 610314 5397647) (Newly discovered trench)

Costs + Work Preformed								
Date	Explanation	Amount						
	Travel Costs							
	(Thunder Bay – Atikokan - Thunder Bay -							
6-Jun-19	360km @ \$0.50/km)	\$180.00						
6-Jun-19	Meal Allowance (\$25/day x 4 prospectors)	\$100.00						
	Prospecting/Sampling							
6-Jun-19	(Full day @ \$400/prospector x 4 prospectors)	\$1600.00						
29-Aug-19	Assays (Separated from group assay)	\$261.93						
1-Oct-19	Report (Half day @ \$400/day)	\$200.00						
	Total	\$2,341.93						

References

OFR5539	B. R. Schneiders, R. J. Dutka, 1985: Property Visits and Reports of the Atikokan Economic Geologists, 1979-1983, Atikokan Geological Survey; Ontario Geological Survey Open File Report 5539, 512p., 2 tables, 42 figures, 2 maps and 3 appendices.
OFR5681	Macdonald, A.J., and Cherry, M.E. 1988: The Platinum Group of Elements in Ontario; Ontario Geological Survey, Open File Report 5681, 279p., 74 figures, 28 tables, I appendix, and I map in back pocket.
OP91-438	Andrews, M. 1991: OPAP 1991 Report; Project Number OP91-438.
OP92-481	Hicks, C. 1992: OPAP 1992 Report; Project Number OP92-481.
OP92-821	Andrews, M. 1992: OPAP 1992 Report; Project Number OP92-821.
Patrie2001	Patrie, D. 2001: Total Field Magnetometer Survey on the Plateau Lake Property.
Middleton2001	Middleton, R.S., Halle, J. 2001: Magnetic Survey; Plateau Lake Property.

Map References

Map 80518	Ontario Geological Survey 1980: Airborne Electromagnetic and Total Intensity Magnetic
	Survey, Atikokan- Mine Centre Area, Eastern Part, District of Rainy River; by Questor
	Surveys Limited for the Ontario Geological Survey, Geophysical/Geochemical Series.
	Map 80518, Scale 1:20,000 Survey and Compilation, December 1979 to April 1980.

- Map 81 141 Ontario Geological Survey 2009. Airborne magnetic survey, colour-filled contours of the residual magnetic field and Keating coefficients, Marmion Lake area; Ontario Geological Survey, Map 81 141, scale 1:50 000.
- Map 81 142 Ontario Geological Survey 2009. Airborne magnetic survey, shaded colour image of the second vertical derivative of the residual magnetic field and Keating coefficients,
 Marmion Lake area; Ontario Geological Survey, Map 81 142, scale 1:50 000.

Sample No	Easting	Northing	Description	Sampler	Date
19PT001	610764	5397568	Bull white quartz w small iron staining	IK	06-Jun-19
19PT002	610270	5397617	Highly mineralized, blue and brown, weathers yellow and orange	AS	06-Jun-19
19PT003	610273	5397618	Highly mineralized, brown and red, weathers orange	IK	06-Jun-19
19PT004	610266	5397641	Dark green, altered, slightly mineralized	AS	06-Jun-19
19PT005	610298	5397667	Dark grey/black altered, mineralized	AS	06-Jun-19
19PT006	610285	5397671	Altered, black and pale beige, dulls dark grey from weathering	AS	06-Jun-19
19PT007	610314	5397647	Highly mineralized, blue and brown, weathers yellow and orange	AS	06-Jun-19

Comments	Cr (%)	Cu (%)	Ni (%)	Au (ppb)	Pd (ppb)	Pt (ppb)
Quartz on power line, ~500m E of pits	< 0.01	< 0.005	< 0.005	14	< 5	< 5
Main blasting pits, juicy yellow point over pit	0.08	1.07	0.383	71	34	125
Main blasting pits, between pits						
Power line ridge						
Across on power lidge ridge						
High on power line ridge	0.04	0.02	0.008	< 2	8	< 5
Newly discovered pit, ~50m NNE of main pits	0.07	0.089	0.04	17	71	242

Quality Analysis ...

Innovative Technologies

Date Submitted:09-Aug-19Invoice No.:A19-10390Invoice Date:29-Aug-19Your Reference:

Traxxin Resources 377 Albert Street Stratford Ontario N5A-2L1 Canada

ATTN: Mike Frymire

CERTIFICATE OF ANALYSIS

22 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2 QOP AA-Au (Au - Fire Assay AA) Code 1C-Assay OES QOP PGE-OES (Fire Assay ICPOES) Code 8-Peroxide ICP QOP Sodium Peroxide (Sodium Peroxide Fusion ICP)

REPORT A19-10390

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Cr	Cu	Ni	Au	Pd	Pt	Au
Unit Symbol	%	%	%	ppb	ppb	ppb	ppb
Lower Limit	0.01	0.005	0.005	2	5	5	5
Method Code	FUS- Na2O2	FUS- Na2O2	FUS- Na2O2	FA-ICP	FA-ICP	FA-ICP	FA-AA
COP 4051	0.10	< 0.005	0.068	< 2	< 5	< 5	
COP 4052	1.04	< 0.005	0.402	< 2	< 5	< 5	
COP 4054	1.08	< 0.005	0.426	< 2	< 5	< 5	
COP 4056	1.05	< 0.005	0.414	< 2	< 5	8	
COP 4059	0.50	< 0.005	0.213	4	< 5	< 5	
COP 4061	0.41	< 0.005	0.200	< 2	< 5	< 5	
COP 4062	0.12	< 0.005	0.053	< 2	< 5	< 5	
COP 4066	0.02	< 0.005	0.007	< 2	< 5	< 5	
COP 4067	0.19	< 0.005	0.094	< 2	< 5	< 5	
COP 4069	0.44	< 0.005	0.293	< 2	< 5	< 5	
COP 4071	0.03	< 0.005	0.015	< 2	< 5	< 5	
COP 4073	0.49	< 0.005	0.207	< 2	< 5	< 5	
19PT001	< 0.01	< 0.005	< 0.005	14	< 5	< 5	
19PT002	0.08	1.07	0.383	71	34	125	
19PT006	0.04	0.020	0.008	< 2	8	< 5	
19PT007	0.07	0.089	0.040	17	71	242	
19MEL008							< 5
19MEL009							6
19MEL010							< 5
19SMI043							322
19SMI045							234
19SMI047							1180

Analyte Symbol	Cr	Cu	Ni	Au	Au	Pd	Pt
Unit Symbol	%	%	%	ppb	ppb	ppb	ppb
Lower Limit	0.01	0.005	0.005	5	2	5	5
Method Code	FUS-	FUS-	FUS-	FA-AA	FA-ICP	FA-ICP	FA-ICP
	Na2O2	Na2O2	Na2O2				
PTM-1a Meas		23.5	46.6				
PTM-1a Cert		24.96	47.44				
DTS-2b Meas	1.58	< 0.005	0.388				
DTS-2b Cert		0.00030	0.378				
		0					
Oreas 74a (Fusion) Meas	0.18	0.117	3.23				
Oreas 74a	0.18	0.124	3.24				
(Fusion) Cert							
MP-1b Meas		3.06					
MP-1b Cert		3.07					
NCS DC73304 (GBW 07106) Meas	< 0.01	< 0.005	< 0.005				
NCS DC73304 (GBW 07106) Cert							
PK2 Meas					4910	6080	4840
PK2 Cert					4785	5918	4749
CZN-4 Meas		0.404					
CZN-4 Cert		0.403					
OREAS 922	< 0.01	0.222	< 0.005				
(Peroxide Fusion) Meas		U.LEL	< 0.000				
OREAS 922	0.009	0.222	0.004				
(Peroxide Fusion) Cert							
CCU-1e Meas		22.0					
CCU-1e Cert		22.9					
OREAS 254 Fire Assay Meas				2500			
OREAS 254 Fire Assay Cert				2550			
OREAS 254 Fire Assay Meas				2470			
OREAS 254 Fire Assay Cert				2550			
OREAS 220 (Fire Assay) Meas				836			
OREAS 220 (Fire				866			
Assay) Cert							
COP 4059 Orig	1			1	4	< 5	< 5
COP 4059 Dup					4		< 5
COP 4066 Orig	0.02	< 0.005	0.007				
COP 4066 Dup		< 0.005	0.007			<u> </u>	
	5.02	1 0.000	0.007	<u> </u>	 	 	

Analyte Symbol	Cr	Cu	Ni	Au	Au	Pd	Pt
Unit Symbol	%	%	%	ppb	ppb	ppb	ppb
Lower Limit	0.01	0.005	0.005	5	2	5	5
Method Code	FUS- Na2O2	FUS- Na2O2	FUS- Na2O2	FA-AA	FA-ICP	FA-ICP	FA-ICP
COP 4069 Orig	0.45	< 0.005	0.294				
COP 4069 Dup	0.44	< 0.005	0.292				
19PT006 Orig					< 2	8	< 5
19PT006 Dup					< 2	8	< 5
19PT007 Orig	0.07	0.089	0.041				
19PT007 Dup	0.07	0.089	0.040				
19MEL008 Orig				< 5			
19MEL008 Split PREP DUP				< 5			
Method Blank	< 0.01	< 0.005	< 0.005				
Method Blank	< 0.01	< 0.005	< 0.005				
Method Blank					< 2	< 5	< 5
Method Blank					< 2	< 5	< 5
Method Blank				< 5			
Method Blank				5			
Method Blank				< 5			