

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

## STRUCTURAL MAPPING REPORT

## ON THE

### **HAMILTON PROPERTY**

## **COLEMAN TOWNSHIP**

# LARDER LAKE MINING DIVISION, NORTHEASTERN ONTARIO

**FOR** 

COBALT INDUSTRIES OF CANADA INC.

Prepared by:

David R. Jamieson, P.Geo.

David Lewis, P.Geo.

Nov 8th , 2018

## **TABLE OF CONTENTS**

| 1. SUMMARY                                            |
|-------------------------------------------------------|
| 2. INTRODUCTION AND PROPERTY LOCATION                 |
| 3. REGIONAL GEOLOGY                                   |
| 4. PROPERTY GEOLOGY                                   |
| 5. HISTORY1                                           |
| 6. WORK PROGRAM1                                      |
| 7. INTERPRETATION AND CONCLUSIONS1                    |
| 8. RECOMMENDATIONS1                                   |
| 10. REFERENCES1                                       |
|                                                       |
| LIST OF FIGURES                                       |
| Figure 1: Location of the Hamilton Property           |
| Figure 2: Land Tenure of the Hamilton Property        |
| Figure 3 Regional Geology                             |
|                                                       |
| LIST OF TABLES                                        |
| Table 1: Tenure List                                  |
|                                                       |
|                                                       |
| APPENDIX A: Sample Locations and Rock Types           |
| APPENDIX B: Waypoint Descriptions                     |
|                                                       |
| APPENDIX C: Assay Certificates                        |
|                                                       |
| MAP: 1:2,500 scale Bedrock Geology, Hamilton Property |



#### 1. SUMMARY

This Technical Report has been prepared for the purpose of fulfilling the Technical Standards for Reporting Assessment Work, under the provisions of the Mining Act.

The Property is located in Coleman township and Gillies Limit approximately 3 km southwest of Cobalt, Ontario (Figure 1).

In the fall of 2017, and summer of 2018 First Cobalt Corp personnel performed structural mapping on the Hamilton property. In conjunction with this a photomosaic of the property was created using data from a UAV (Unmanned Arial Vehicle) survey completed in 2018.

The Property is located within the Cobalt embayment in the Southern Abitibi greenstone belt. The Property geology is dominated by Archean mafic volcanics, with the eastern edge overlain by sedimentary rocks of the Gowganda Formation, part of the Huronian Supergroup. East-west trending structures within the Huronian sediments host calcite-quartz-sulpharsenide-silver veins typical of the Cobalt mining camp.

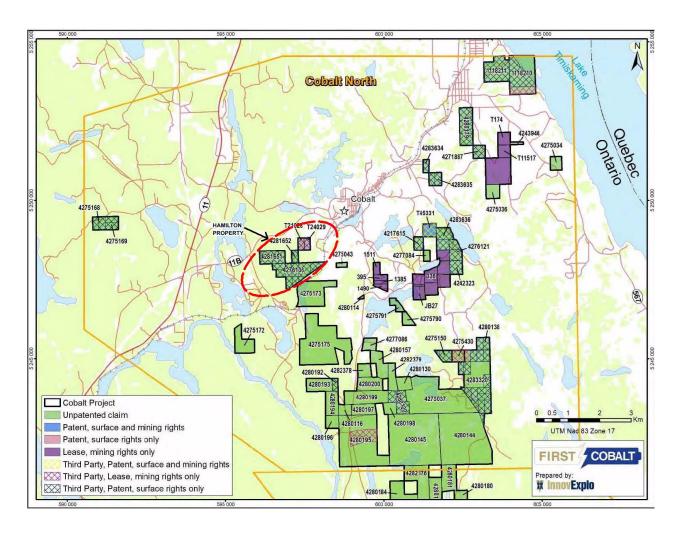
Additional exploration is warranted in historic areas of trenching south of Moffat Lake and along a trend toward the Hamilton shaft area.



### 2. INTRODUCTION AND PROPERTY LOCATION

In June of 2017, a contiguous block of 4 claims were optioned from George and Heather Pollock to Cobalt Camp Ontario Holdings Corp. and subsequently conveyed to Cobalt Industries of Canada Inc., a subsidiary of First Cobalt Corp (See table 1). This Technical Report provides a summary and description of results from exploration work carried out by First Cobalt personnel.

The Property is located in Coleman township and Gillies Limit approximately 3 km southwest of Cobalt, Ontario (Figure 1). Access is via highway 11B from Cobalt to a gravel road heading south from Green Lake (Figure 2). The local terrain is variable from swamps to steep cliffs. Typical vegetation on the Property consists of a boreal forest with a mixture of coniferous and deciduous trees, including poplar, white birch, red pine, white pine, white spruce, black spruce, balsam, cedar, and alders.


The historic Hamilton shaft and workings are located on the eastern part of the claim block.

The Hamilton property was mapped by David Lewis and field assistant on November 3, 2017 with Rémi Germain, then for four days' detailed mapping was done on June 15, 16, 17, and 20, 2018 with field assistant Russell Johnson. The purpose of the 2017 reconnaissance mapping was to document the major rock types, visit the historic Hamilton shaft and sample the Hamilton muckpile. The 2018 follow-up mapping was done to further constrain the lithological units, identify geological structures and to document the locations of historic shafts, pits, adits and trenches. A georeferenced photomosaic of the property was created using a UAV during the 2018 field season and was used to aid geological interpretation.

This report has been prepared based on data provided by First Cobalt field crews as well as publicly available information including assessment files, technical papers, and other information made available by the Pollocks and their consultants. The map was drafted and finalized by David Lewis.

For geographical reference purposes, all UTM locations used in this Technical Report use NAD83 Zone 17N projection. Tenure information presented in this Technical Report was valid on the MLAS website on Sept 30<sup>th</sup>, 2018.





**Figure 1: Location of the Hamilton property** 



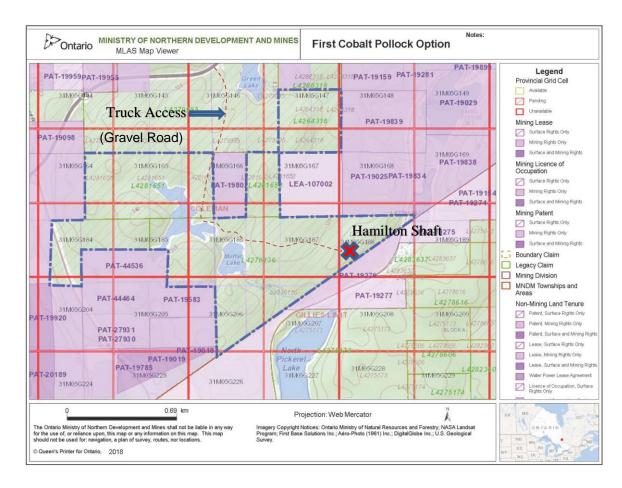



Figure 2: Land Tenure of the Hamilton Property (blue dashed outline)



Table 1: Tenure List for Hamilton Property

| Legacy Claim | Township / Area          | Tenure ID | Tenure Type                | Anniversary<br>Date |
|--------------|--------------------------|-----------|----------------------------|---------------------|
| 4264318      | COLEMAN                  | 214133    | Boundary Cell Mining Claim | 2018-11-28          |
| 4264318      | COLEMAN                  | 261581    | Single Cell Mining Claim   | 2018-11-28          |
| 4264318      | COLEMAN                  | 214135    | Boundary Cell Mining Claim | 2018-12-21          |
| 4264318      | COLEMAN                  | 214134    | Boundary Cell Mining Claim | 2018-11-28          |
| 4276136      | COLEMAN                  | 131429    | Single Cell Mining Claim   | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 338243    | Boundary Cell Mining Claim | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 279281    | Single Cell Mining Claim   | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 279280    | Boundary Cell Mining Claim | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 250752    | Single Cell Mining Claim   | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 250751    | Single Cell Mining Claim   | 2019-12-16          |
| 4276136      | COLEMAN,GILLIES<br>LIMIT | 163986    | Boundary Cell Mining Claim | 2019-12-16          |
| 4276136      | COLEMAN                  | 279283    | Single Cell Mining Claim   | 2019-12-16          |
| 4276136      | COLEMAN                  | 279282    | Single Cell Mining Claim   | 2019-12-16          |
| 4281651      | COLEMAN                  | 313050    | Single Cell Mining Claim   | 2018-12-21          |
| 4281651      | COLEMAN                  | 313049    | Boundary Cell Mining Claim | 2018-12-21          |
| 4281651      | COLEMAN                  | 186744    | Boundary Cell Mining Claim | 2018-12-21          |
| 4281651      | COLEMAN                  | 157867    | Boundary Cell Mining Claim | 2018-12-21          |
| 4281652      | COLEMAN                  | 131429    | Single Cell Mining Claim   | 2019-12-16          |
| 4281652      | COLEMAN,GILLIES<br>LIMIT | 279281    | Single Cell Mining Claim   | 2019-12-16          |
| 4281652      | COLEMAN                  | 214135    | Boundary Cell Mining Claim | 2018-12-21          |
| 4281652      | COLEMAN                  | 186744    | Boundary Cell Mining Claim | 2018-12-21          |

### 3. REGIONAL GEOLOGY

The claim block is located within the geological domain known as the Cobalt Embayment, a circular Proterozoic-age sedimentary basin underlain by Archean volcanic, sedimentary, mafic intrusive, and granitoid units related to the southern extent of the Abitibi Subprovince. The Archean units are unconformably overlain by relatively flat-lying to openly-folded early



Proterozoic Huronian Supergroup sedimentary rocks. In the Cobalt Embayment, the Huronian Supergroup consists solely of the Cobalt Group (lacking the underlying Elliot Lake, Hough Lake and Quirke Lake groups) and it comprises the Gowganda Formation and overlying Lorrain Formation. The Gowganda Formation consists (comprised from bottom to top) of the glaciogenic Coleman Member (conglomeratic diamictite, rhythmite, and sandstone), and the basinal mudstone, argillite, siltstone, and sandstone of the Firstbrook Member. The Lorrain Formation is an unsubdivided member consisting of sandstone, arenite, and greywacke (Legun, 1986). The sedimentary rocks are intruded by diabase and gabbroic intrusions of the 2219-2209 Ma Nipissing sills and dykes (Corfu and Andrews, 1986; Noble and Lightfoot, 1992). Economic mineralization of the Cobalt area includes extensive historic mining of silver-bearing polymetallic (Ag-Ni-Co-Cu-Bi) carbonate and quartz veins, which occur in faults and fractures of all rock types, but notably proximal to Nipissing sills, and the Archean/Proterozoic unconformity.

#### 4. PROPERTY GEOLOGY

The Hamilton property is dominated by Archean volcanic and sedimentary rocks, with minor overlying Coleman sedimentary rocks located near the eastern end of the property (Thomson, 1964). The Archean volcanic rocks are for the most part, mafic to intermediate composition, generally with pillowed to massive flow facies. Minor Archean interflow sedimentary rocks are known from the Hamilton muckpile and host the local Ag-Co veins (Sergiades, 1968). The Huronian sedimentary rocks are restricted to the conglomeratic (diamictite) phase of the Coleman Member of the Gowganda Formation. Several undifferentiated mafic dikes cut the Archean and Proterozoic rocks, including a laterally extensive, north-trending dike that bisects the property.

The major local structure is the western extent of the Cobalt Lake fault, a camp-scale structure that is elsewhere associated with veining. Immediately to the east of the property, the Cobalt Lake fault forms the structural contact between Archean and Proterozoic rocks (Thomson, 1964). The fault trends northeast with an unknown dip or sense of displacement.



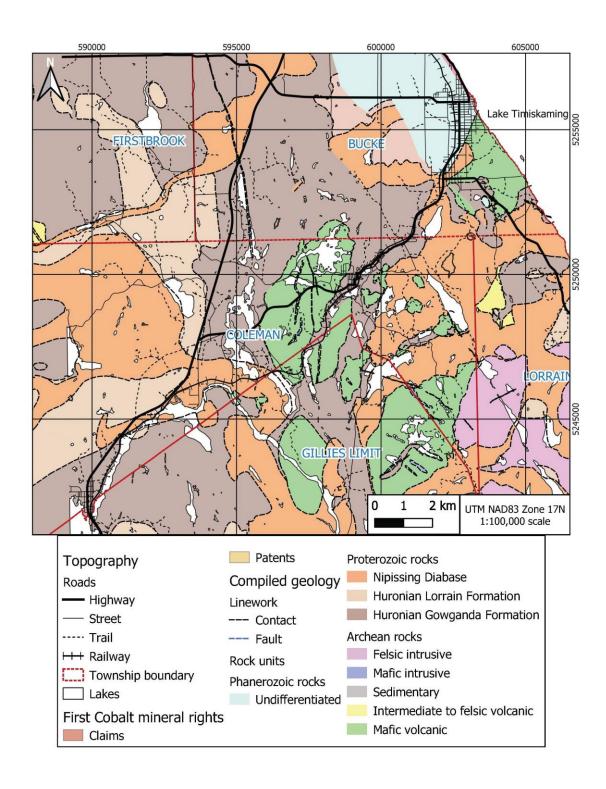



Figure 3 Regional Geology



#### 5. HISTORY

The Hamilton shaft is noted to be 100 feet deep with a level at 100 feet and a sublevel at 75 feet. A 30 foot deep winze was sunk from the 100 foot level west of the shaft. Production was very limited in 1938 and 1939, indicated to be 354 lbs of cobalt and 3 ounces of silver (Sergiades 1968)

Sampling of the muck pile near the Hamilton shaft was done by Canagco Mining Corp. in 2013. Three selected mineralized samples assayed from 0.94% to 5.48% cobalt.

### 6. WORK PROGRAM

The Hamilton property was mapped by David Lewis and field assistant during two intervals; first for reconnaissance purposes on November 3, 2017 with Rémi Germain, then for four days' detailed mapping on June 15, 16, 17, and 20, 2018 with Russell Johnson. The purpose of the 2017 reconnaissance mapping was to document the major rock types, visit the historic Hamilton shaft and sample the Hamilton muckpile. The 2018 follow-up mapping was done to further constrain the lithological units, identify geological structures and to document the locations of historic shafts, pits, adits and trenches.

The major rock unit throughout the Hamilton property is a fine-grained, variably-altered Archean mafic volcanic flow. Massive and pillowed flow facies dominate, although lesser volcaniclastic rocks are located near the northwestern shore of Moffat Lake. The selvages in the pillowed flows are generally thin, approximately 2-3 cm wide. Flow younging direction can be obtained by pillow tails and draped pillows. Minor, fine- to medium-grained, quartz-phyric felsic volcaniclastic rocks are locally interbedded with the mafic rocks. The interbedded graphitic sediments described by Sergiades (1968) were observed only in the Hamilton muckpile and not on surface. These interflow sedimentary rocks are thinly-bedded to laminated graphitic shales, folded on grab-sample scale.



The Proterozoic Huronian Supergroup sedimentary rocks were observed along the eastern extent of the property where they unconformably overlie the basal Archean rocks. These flatlying units are dominated by conglomerate, although minor sandstone is also preserved. In one locality, at or immediately above the Proterozoic-Archean unconformity, laminated to thinly-bedded sandstone is preserved (Station 18DL114; Appendix B).

Near the center of the property, a subvertical, NE-striking, medium-grained mafic dike of unknown affinity or age occurs. It was traced along strike for 50 m, but mapping by Thomson (1964) suggests that it extends to the north for at least 700m.

Several phases of deformation are preserved in the Hamilton property rocks, including an Archean foliation and (up to) three generations of Proterozoic foliations as well as several faults. The earliest foliation, most likely Archean as it is not present in the Proterozoic rocks, consists of a pervasive compressional chloritic foliation that intensifies into (brittle-ductile) sheared rocks. The fabric strikes NW-SE and dips steeply. It is most likely associated with an E-W trending shear zone which cuts the rocks immediately north of Moffat Lake. Two orientations of indistinguishable, early Proterozoic foliations are present in both the Archean and Proterozoic rocks. One is oriented subparallel to the Cobalt Lake fault and the second is consistently oriented clockwise to the earlier Proterozoic foliation and it is rotated in an anticlockwise manner as it approaches the Cobalt Lake fault. A late, NNW-striking Proterozoic spaced foliation overprints the earlier fabrics.

Three faults were observed at the Hamilton property. A NW-striking, steeply-dipping shear zone occurs in the Archean mafic volcanic rocks. It cuts and offsets an E-striking shear zone that occurs within the Archean rocks. At the shear zone intersection at Moffat Lake, a shaft was sunk. At the west shore of the unnamed lake immediately northwest of Moffat Lake, an adit occurs at this fault extension. Tentatively, both faults are interpreted as Archean structures that were reactivated in the Proterozoic. To the east, in the Coleman conglomerate, a thin, shallowly south-dipping brittle fault plane was mapped (Station 18DL115, 116).

During the course of this mapping, ten bedrock samples were collected for geochemical analysis. The location and description of these samples is shown in Appendix A. Ten samples with 1 standard (OREAS 902) were submitted for analysis to AGAT Laboratories for sodium peroxide fusion with ICP finish.



#### 7. INTERPRETATION AND CONCLUSIONS

Mapping work located a previously unmapped felsic unit with the Archean volcanic stratigraphy. Several Proterozoic-aged foliations were also recognized, possibly in some cases related to what appear to be reactivated Archean faults. An area of trenches south of Moffat Lake are on a southwest trend from the Hamilton-Red Jacket shaft areas and may represent a structural trend worthy of further exploration. A small outlier of Huronian sediments in this area supports the idea that this area is proximal to the Archean-Huronian unconformity, a key control for silvercobalt mineralization.

Samples E6097360 and E6097361 both show slightly elevated Ba, and Zn, indicating at least some degree of hydrothermal alteration related to the sheared and faulted nature of the rock samples. Arsenopyrite was observed in sample E6097358, and assaying indicated anomalous values of arsenic (225 ppm), cobalt (148 ppm), nickel (169 ppm), sulphur (1.58%), molybdenum (35 ppm), and antimony (1.5 ppm).

### 8. RECOMMENDATIONS

Additional detailed mapping and prospecting is recommended to follow up on the 2018 field work in the area between the Hamilton shaft and the area southeast of Moffat Lake. Although much of the that area is relatively low-lying, there may be potential to locate subcrop that could be exposed by hand or power stripping. Geochemical soil survey's may also help evaluate this area. Mechanical trenching could be used in poorly exposed bedrock areas, if prospecting and soil survey's warrant.



### 9. PERSONNEL

David Lewis Structural Geologist First Cobalt Corp.

Remi Germain Field Assistant First Cobalt Corp.

Russell Johnson Field Assistant First Cobalt Corp.



### **10. REFERENCES**

- Corfu, F., and Andrews, A.J. 1986. A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Canadian Journal of Earth Sciences, 23: 107-109.
- Legun, A. 1986. Huronian Stratigraphy and Sedimentation in the Cobalt Area. Ontario Geological Survey Miscellaneous Paper 124, 24p. Accompanied by 3 charts.
- Noble, S.R., and Lightfoot, P.C. 1992. U-Pb baddeleyite ages of the Kerns and Triangle Mountain intrusions, Nipissing Diabase, Ontario. Canadian Journal of Earth Sciences, 29: 1424-1429.
- Sergiades, A. O. 1968. Silver Cobalt Calcite Vein Deposits of Ontario; Mineral Resources Circular No. 10, Ontario Department of Mines: 192-193.
- Thomson, R. 1964. Cobalt Silver Area, Northern Sheet, Timiskaming District. Ontario Department of Mines, Map M2050, scale 1:12,000.



### **CERTIFICATE OF QUALIFICATION**

- I, David R. Jamieson do hereby certify that:
- 1. I am a Professional Geoscientist in the Province of Ontario with an office at 555 Maniece Avenue, Peterborough, Ontario.
- 2. I graduated with the degree of Bachelor of Honours Science from the University of Waterloo (1984) and have been a consulting geologist since 2000.
- 3. This certificate is to accompany the report titled "Structural Mapping Report on the Hamilton Property Project, Coleman township, Larder lake Mining Division, Northeastern Ontario for Cobalt Industries of Canada Inc."
- 4. I am a registered Professional Geoscientist with the Association of Professional Geoscientists of Ontario (APGO #1843).
- 5. I have worked as a geologist for over 30 years since my graduation from university, on a wide variety of gold and base metal exploration projects, including project management and property evaluations. Many of these projects have been located in the Abitibi greenstone belt.

Dated this 10<sup>th</sup> Day of November 2018



David Jamieson, P.Geo.



#### Statement of Qualification

### I, DAVID T. LEWIS, of Whitby, Ontario, DO HEREBY CERTIFY THAT:

- 1. I am a Professional Geologist in the Province of Ontario, working with First Cobalt Corporation, with an office at 140 Yonge Street, Toronto, Ontario.
- 2. I am a graduate of Geological Sciences with a Bachelor's of Science degree from the University of Saskatchewan in 2006. I am also a graduate of Geology with a Master's of Science degree from Laurentian University in 2012. I have practiced my profession as a Professional Geologist since graduation.
- 3. I am a Registered Professional Geoscientist in good standing with the Association of Professional Geoscientists of Ontario (No. 2135).
- 4. This certificate is to accompany the report titled "Structural Mapping Report on the Hamilton Property Project, Coleman Township, Larder Lake Mining Division, Northeastern Ontario for Cobalt Industries of Canada Inc."
- 5. I have worked as a geologist for 15 years on a wide variety of projects, mainly with a bedrock mapping or structural geological focus. Many of these projects have been located in the Superior Province in Ontario.

Respectfully submitted by,

David Lewis

David T. Lewis, M.Sc., P. Geo.

Senior Geologist, First Cobalt Corp.

## **APPENDIX A**

Sample Locations and Rock Types



## Hamilton Lewis Mapping Samples

|          | UTM NAD     | 83 Zone 17N  |                                          |
|----------|-------------|--------------|------------------------------------------|
| Name     | Easting (m) | Northing (m) | Rock type                                |
| E6097351 | 597737      | 5247826      | Coleman conglomerate                     |
| E6097352 | 597340      | 5247762      | Mafic volcanic                           |
| E6097353 | 597262      | 5247724      | Mafic volcanic                           |
| E6097354 | 597154      | 5247647      | Mafic volcanic                           |
| E6097355 | 597127      | 5247571      | Mafic volcanic                           |
| E6097356 | 597059      | 5247782      | Faulted mafic volcanic with arsenopyrite |
| E6097357 | 597229      | 5247869      | Faulted mafic volcanic                   |
| E6097359 | 597490      | 5247889      | Mafic volcanic                           |
| E6097360 | 596817      | 5247973      | Faulted mafic volcanic                   |
| E6097361 | 596739      | 5247970      | Sheared mafic volcanic                   |

## **APPENDIX B**

Waypoint descriptions



|         | UTM NAD     | 33 Zone 17N  |               |                                   |          |                     |
|---------|-------------|--------------|---------------|-----------------------------------|----------|---------------------|
| Station | Easting (m) | Northing (m) | Elevation (m) | Primary rock unit                 | Textures | Secondary rock unit |
| 17DL293 | 597018      | 5247269      | 309           | Archean mafic volcanic - massive  | -        | -                   |
| 17DL294 | 597009      | 5247503      | 321           | Archean mafic volcanic - massive  | Breccia  | -                   |
| 17DL295 | 597172      | 5247527      | 317           | Proterozoic conglomerate          | -        | -                   |
| 17DL296 | 597005      | 5247656      | 324           | Archean mafic volcanic - pillowed | Breccia  | -                   |
| 17DL297 | 596928      | 5247762      | 320           | Archean mafic volcanic - pillowed | -        | -                   |
| 17DL298 | 596825      | 5248055      | 322           | Archean mafic volcanic - pillowed | Breccia  | -                   |
| 17DL299 | 597305      | 5247843      | 319           | Archean mafic volcanic - pillowed | -        | -                   |
| 17DL300 | 597603      | 5247906      | 308           | Archean mafic volcanic - pillowed | -        | -                   |
| 17DL301 | 597737      | 5247830      | 317           | Proterozoic conglomerate          | -        | -                   |
| 18DL108 | 597737      | 5247826      | 334           | Proterozoic conglomerate          | -        | -                   |
| 18DL109 | 597707      | 5247781      | 329           | Proterozoic conglomerate          | -        | -                   |
| 18DL110 | 597824      | 5247748      | 313           | Proterozoic conglomerate          | -        | -                   |
| 18DL111 | 597714      | 5247845      | 328           | Proterozoic conglomerate          | -        | -                   |
| 18DL112 | 597733      | 5247909      | 329           | Proterozoic conglomerate          | -        | -                   |
| 18DL113 | 597732      | 5247955      | 330           | Proterozoic conglomerate          | -        | -                   |
| 18DL114 | 597729      | 5247958      | 323           | Proterozoic sandstone             | -        | -                   |
| 18DL115 | 597883      | 5247948      | 332           | Proterozoic sandstone             | -        | -                   |
| 18DL116 | 597907      | 5247924      | 332           | Proterozoic conglomerate          | -        | -                   |
| 18DL117 | 597985      | 5247888      | 329           | Proterozoic conglomerate          | -        | -                   |
| 18DL118 | 597910      | 5247867      | 338           | Proterozoic conglomerate          | -        | -                   |
| 18DL119 | 597339      | 5247762      | 325           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL120 | 597262      | 5247724      | 325           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL121 | 597154      | 5247647      | 319           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL122 | 597097      | 5247592      | 321           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL123 | 597127      | 5247571      | 323           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL124 | 597048      | 5247497      | 327           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL125 | 597112      | 5247495      | 328           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL126 | 597063      | 5247755      | 324           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL127 | 597059      | 5247782      | 315           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL128 | 597228      | 5247869      | 334           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL129 | 597246      | 5247849      | 329           | Archean mafic volcanic - massive  | -        | -                   |
| 18DL130 | 597300      | 5247839      | 330           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL131 | 597592      | 5247895      | 326           | Archean mafic volcanic - pillowed | -        | -                   |
| 18DL132 | 597490      | 5247889      | 334           | Archean mafic volcanic - massive  | -        | -                   |

### **Hamilton Lewis Mapping Waypoints**

|         | UTM NAD8    | 33 Zone 17N  |                                   |                                         |          |                                   |
|---------|-------------|--------------|-----------------------------------|-----------------------------------------|----------|-----------------------------------|
| Station | Easting (m) | Northing (m) | Elevation (m) Primary rock unit T |                                         | Textures | Secondary rock unit               |
| 18DL133 | 596812      | 5247998      | 329                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL134 | 596817      | 5247973      | 328                               | Archean mafic volcanic - volcaniclastic | -        | -                                 |
| 18DL135 | 596739      | 5247970      | 328                               | Archean mafic volcanic - pillowed       | -        | Undifferentiated mafic intrusive  |
| 18DL136 | 596848      | 5247975      | 327                               | Archean mafic volcaniclastic            | Breccia  | -                                 |
| 18DL137 | 596847      | 5247902      | 325                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL138 | 596928      | 5247769      | 329                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL139 | 596771      | 5248054      | 328                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL140 | 596697      | 5248148      | 325                               | Archean mafic volcanic - pillowed       | -        | Undifferentiated mafic intrusive  |
| 18DL141 | 596593      | 5248197      | 324                               | Undifferentiated mafic intrusive        | -        | -                                 |
| 18DL142 | 596495      | 5248237      | 327                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL143 | 596480      | 5248200      | 324                               | Archean mafic volcanic - pillowed       | -        | -                                 |
| 18DL144 | 596752      | 5248175      | 325                               | Archean felsic volcaniclastic           | -        | -                                 |
| 18DL145 | 596787      | 5248168      | 324                               | Archean felsic volcaniclastic           | -        | Archean mafic volcanic - pillowed |
| 18DL146 | 596807      | 5248061      | 326                               | Archean mafic volcanic - pillowed       | -        | -                                 |
|         |             |              |                                   |                                         |          |                                   |

## **APPENDIX C**

**Assay Certificates** 





5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP 488-1090 W GEORGIA VANCOUVER, BC V6E 3V7 604-687-7130

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

PROJECT: FLD-033

AGAT WORK ORDER: 18B392096

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Oct 18, 2018

PAGES (INCLUDING COVER): 14

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

\*NOTES



AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

| (200-) Sample Login Weight |          |                           |                             |                             |                   |  |  |  |  |  |
|----------------------------|----------|---------------------------|-----------------------------|-----------------------------|-------------------|--|--|--|--|--|
| DATE SAMPLED: Oct          | 01, 2018 |                           | DATE RECEIVED: Oct 01, 2018 | DATE REPORTED: Oct 18, 2018 | SAMPLE TYPE: Rock |  |  |  |  |  |
|                            | Analyte: | Sample<br>Login<br>Weight |                             |                             |                   |  |  |  |  |  |
|                            | Unit:    | kg                        |                             |                             |                   |  |  |  |  |  |
| Sample ID (AGAT ID)        | RDL:     | 0.01                      |                             |                             |                   |  |  |  |  |  |
| E6097351 (9591704)         |          | 1.23                      |                             |                             |                   |  |  |  |  |  |
| E6097352 (9591705)         |          | 1.56                      |                             |                             |                   |  |  |  |  |  |
| E6097353 (9591706)         |          | 2.03                      |                             |                             |                   |  |  |  |  |  |
| E6097354 (9591707)         |          | 1.50                      |                             |                             |                   |  |  |  |  |  |
| E6097355 (9591708)         |          | 1.21                      |                             |                             |                   |  |  |  |  |  |
| E6097356 (9591709)         |          | 1.73                      |                             |                             |                   |  |  |  |  |  |
| E6097357 (9591710)         |          | 3.75                      |                             |                             |                   |  |  |  |  |  |
| E6097358 (9591711)         |          | 0.01                      |                             |                             |                   |  |  |  |  |  |
| E6097359 (9591712)         |          | 1.66                      |                             |                             |                   |  |  |  |  |  |
| E6097360 (9591713)         |          | 2.10                      |                             |                             |                   |  |  |  |  |  |
| E6097361 (9591714)         |          | 1.83                      |                             |                             |                   |  |  |  |  |  |
| E6097362 (9591715)         |          | 1.41                      |                             |                             |                   |  |  |  |  |  |
| E6097363 (9591716)         |          | 1.21                      |                             |                             |                   |  |  |  |  |  |
| E6097364 (9591717)         |          | 1.12                      |                             |                             |                   |  |  |  |  |  |
| E6097365 (9591718)         |          | 1.59                      |                             |                             |                   |  |  |  |  |  |
| E6097366 (9591719)         |          | 1.43                      |                             |                             |                   |  |  |  |  |  |
| E6097367 (9591720)         |          | 1.74                      |                             |                             |                   |  |  |  |  |  |
| E6097368 (9591721)         |          | 0.56                      |                             |                             |                   |  |  |  |  |  |
| E6097369 (9591722)         |          | 1.22                      |                             |                             |                   |  |  |  |  |  |
| E6097370 (9591723)         |          | 0.59                      |                             |                             |                   |  |  |  |  |  |
| E6097371 (9591724)         |          | 1.88                      |                             |                             |                   |  |  |  |  |  |
| E6097372 (9591725)         |          | 0.01                      |                             |                             |                   |  |  |  |  |  |
| E6097373 (9591726)         |          | 0.79                      |                             |                             |                   |  |  |  |  |  |
| E6097374 (9591727)         |          | 1.66                      |                             |                             |                   |  |  |  |  |  |
| E6097375 (9591728)         |          | 1.11                      |                             |                             |                   |  |  |  |  |  |

Comments: RDL - Reported Detection Limit

Certified By:

Sherin Houssey



AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|                     |             |     | (20  | 1-378) Sc | odium P   | eroxide l | usion - | ICP-OES | S/ICP-MS | Finish        |      |          |            |      |      |
|---------------------|-------------|-----|------|-----------|-----------|-----------|---------|---------|----------|---------------|------|----------|------------|------|------|
| DATE SAMPLED: Oc    | et 01, 2018 |     | Γ    | DATE RECE | IVED: Oct | 01, 2018  |         | DATE I  | REPORTED | ): Oct 18, 20 | )18  | SAN      | IPLE TYPE: | Rock |      |
|                     | Analyte:    | Ag  | Al   | As        | В         | Ва        | Be      | Bi      | Ca       | Cd            | Ce   | Со       | Cr         | Cs   | Cu   |
|                     | Unit:       | ppm | %    | ppm       | ppm       | ppm       | ppm     | ppm     | %        | ppm           | ppm  | ppm      | %          | ppm  | ppm  |
| Sample ID (AGAT ID) | RDL:        | 1   | 0.01 | 5         | 20        | 0.5       | 5       | 0.1     | 0.05     | 0.2           | 0.1  | 0.5      | 0.005      | 0.1  | 5    |
| E6097351 (9591704)  |             | <1  | 6.93 | 28        | 25        | 616       | <5      | 0.2     | 1.31     | <0.2          | 33.0 | 25.8     | 0.017      | 2.0  | 18   |
| E6097352 (9591705)  |             | <1  | 7.69 | 12        | <20       | 120       | <5      | 0.2     | 5.64     | <0.2          | 11.2 | 41.3     | 0.021      | 0.6  | 38   |
| E6097353 (9591706)  |             | <1  | 7.91 | 7         | 21        | 157       | <5      | <0.1    | 5.51     | <0.2          | 11.7 | 58.0     | 0.019      | 0.6  | 96   |
| E6097354 (9591707)  |             | <1  | 8.03 | <5        | <20       | 19.6      | <5      | <0.1    | 6.73     | 0.3           | 9.9  | 56.8     | 0.024      | 0.2  | 101  |
| E6097355 (9591708)  |             | <1  | 8.03 | <5        | <20       | 24.7      | <5      | <0.1    | 7.89     | <0.2          | 9.7  | 48.8     | 0.023      | 0.2  | 107  |
| E6097356 (9591709)  |             | <1  | 6.80 | 225       | <20       | 33.7      | <5      | 0.1     | 6.11     | <0.2          | 15.1 | 148      | 0.022      | 0.1  | 165  |
| E6097357 (9591710)  |             | <1  | 7.94 | 6         | <20       | 101       | <5      | <0.1    | 5.77     | <0.2          | 11.2 | 58.1     | 0.026      | 0.4  | 108  |
| E6097358 (9591711)  |             | <1  | 4.49 | 583       | 128       | 175       | <5      | 8.2     | 4.10     | <0.2          | 73.9 | 1040     | 0.006      | 2.7  | 2990 |
| E6097359 (9591712)  |             | <1  | 8.17 | <5        | <20       | 38.3      | <5      | 0.2     | 6.15     | <0.2          | 10.0 | 54.1     | 0.026      | 0.3  | 95   |
| E6097360 (9591713)  |             | <1  | 7.41 | 19        | <20       | 123       | <5      | <0.1    | 3.81     | 0.4           | 9.7  | 52.1     | 0.022      | 0.4  | 106  |
| E6097361 (9591714)  |             | <1  | 7.32 | <5        | <20       | 318       | <5      | <0.1    | 5.79     | <0.2          | 20.5 | 60.6     | 0.019      | 1.5  | 84   |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           | T         |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               | 1    |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         | 1       |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      | <b>T</b> |            |      |      |
|                     |             |     |      |           |           |           | T       |         |          |               |      |          |            |      |      |
|                     |             |     |      |           |           |           |         |         |          |               |      |          |            |      |      |

Certified By:

Sherin Moussay



CLIENT NAME: FIRST COBALT CORP

## Certificate of Analysis

AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|                     |            |      | (20  | 1-378) S  | odium Po   | eroxide l | -usion | ICP-OES | S/ICP-MS | Finish       |      |      |            |      |      |
|---------------------|------------|------|------|-----------|------------|-----------|--------|---------|----------|--------------|------|------|------------|------|------|
| DATE SAMPLED: Oc    | t 01, 2018 |      | [    | DATE RECE | EIVED: Oct | 01, 2018  |        | DATE F  | REPORTED | : Oct 18, 20 | 018  | SAM  | IPLE TYPE: | Rock |      |
|                     | Analyte:   | Dy   | Er   | Eu        | Fe         | Ga        | Gd     | Ge      | Hf       | Но           | In   | K    | La         | Li   | Lu   |
|                     | Unit:      | ppm  | ppm  | ppm       | %          | ppm       | ppm    | ppm     | ppm      | ppm          | ppm  | %    | ppm        | ppm  | ppm  |
| Sample ID (AGAT ID) | RDL:       | 0.05 | 0.05 | 0.05      | 0.01       | 0.01      | 0.05   | 1       | 1        | 0.05         | 0.2  | 0.05 | 0.1        | 10   | 0.05 |
| E6097351 (9591704)  |            | 1.98 | 1.30 | 0.62      | 2.83       | 16.5      | 2.56   | 1       | 4        | 0.38         | <0.2 | 1.85 | 15.8       | 15   | 0.20 |
| E6097352 (9591705)  |            | 3.74 | 2.54 | 0.85      | 6.90       | 18.7      | 3.39   | 2       | 2        | 0.81         | <0.2 | 0.41 | 4.2        | 12   | 0.34 |
| E6097353 (9591706)  |            | 3.89 | 2.56 | 0.83      | 7.61       | 18.6      | 3.40   | 2       | 2        | 0.84         | <0.2 | 0.67 | 4.4        | 21   | 0.35 |
| E6097354 (9591707)  |            | 3.50 | 2.56 | 0.82      | 6.22       | 19.2      | 3.04   | 2       | 2        | 0.78         | <0.2 | 0.05 | 3.7        | 26   | 0.35 |
| E6097355 (9591708)  |            | 3.51 | 2.47 | 0.80      | 7.51       | 19.9      | 3.00   | 2       | 2        | 0.83         | <0.2 | 0.08 | 3.7        | 26   | 0.36 |
| E6097356 (9591709)  |            | 2.72 | 1.73 | 0.86      | 7.08       | 15.9      | 2.61   | 2       | 2        | 0.58         | <0.2 | 0.05 | 7.9        | <10  | 0.25 |
| E6097357 (9591710)  |            | 3.32 | 2.35 | 0.81      | 6.01       | 17.7      | 3.13   | 1       | 2        | 0.76         | <0.2 | 0.28 | 4.3        | 23   | 0.32 |
| E6097358 (9591711)  |            | 3.04 | 1.95 | 0.83      | 3.18       | 12.0      | 4.10   | 2       | 4        | 0.66         | 0.2  | 3.25 | 35.9       | 12   | 0.28 |
| E6097359 (9591712)  |            | 3.98 | 2.64 | 0.80      | 8.05       | 19.1      | 3.46   | 2       | 2        | 0.88         | <0.2 | 0.15 | 3.7        | 26   | 0.40 |
| E6097360 (9591713)  |            | 2.83 | 1.93 | 0.56      | 6.82       | 16.0      | 2.57   | 1       | 2        | 0.62         | <0.2 | 0.73 | 3.7        | 46   | 0.32 |
| E6097361 (9591714)  |            | 3.65 | 2.53 | 0.93      | 11.6       | 20.6      | 3.62   | 1       | 1        | 0.82         | <0.2 | 0.36 | 11.2       | 30   | 0.37 |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        | Ī       |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        | Ī       |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        | Ī       | T        |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        | Ī       |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        | Ī       |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         | T        |              | T    |      |            | 1    |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      |      |
|                     |            |      |      |           |            |           |        |         |          |              |      |      |            |      | 2    |
|                     |            |      |      |           |            |           |        | _       | _        |              |      |      |            | _    |      |

Certified By:

Sherin Moussay



CLIENT NAME: FIRST COBALT CORP

## Certificate of Analysis

AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|                     |             |      | (20  | 1-378) Sc | odium P    | eroxide I | usion - | ICP-OES | S/ICP-MS | Finish        |      |      |            |          |      |
|---------------------|-------------|------|------|-----------|------------|-----------|---------|---------|----------|---------------|------|------|------------|----------|------|
| DATE SAMPLED: Oc    | et 01, 2018 |      | [    | DATE RECE | EIVED: Oct | 01, 2018  |         | DATE I  | REPORTED | ): Oct 18, 20 | )18  | SAM  | IPLE TYPE: | Rock     |      |
|                     | Analyte:    | Mg   | Mn   | Мо        | Nb         | Nd        | Ni      | Р       | Pb       | Pr            | Rb   | S    | Sb         | Sc       | Si   |
|                     | Unit:       | %    | ppm  | ppm       | ppm        | ppm       | ppm     | %       | ppm      | ppm           | ppm  | %    | ppm        | ppm      | %    |
| Sample ID (AGAT ID) | RDL:        | 0.01 | 10   | 2         | 1          | 0.1       | 5       | 0.01    | 5        | 0.05          | 0.2  | 0.01 | 0.1        | 5        | 0.01 |
| E6097351 (9591704)  |             | 1.11 | 619  | 4         | 5          | 14.7      | 37      | 0.04    | 8        | 3.78          | 54.6 | 0.64 | 0.9        | 11       | 30.3 |
| E6097352 (9591705)  |             | 1.94 | 1500 | 3         | 3          | 8.1       | 91      | 0.04    | 11       | 1.64          | 12.5 | 0.05 | 0.7        | 43       | 24.8 |
| E6097353 (9591706)  |             | 3.00 | 1760 | <2        | 3          | 8.7       | 111     | 0.04    | <5       | 1.72          | 27.0 | 0.05 | <0.1       | 46       | 22.9 |
| E6097354 (9591707)  |             | 3.01 | 1680 | <2        | 2          | 7.4       | 115     | 0.03    | 18       | 1.49          | 1.9  | 0.08 | 0.5        | 42       | 22.5 |
| E6097355 (9591708)  |             | 1.93 | 1930 | <2        | 2          | 7.5       | 108     | 0.03    | 5        | 1.45          | 2.7  | 0.09 | 0.5        | 42       | 22.6 |
| E6097356 (9591709)  |             | 2.75 | 1560 | 35        | 3          | 9.1       | 91      | 0.03    | 26       | 2.00          | 0.9  | 0.76 | 0.6        | 34       | 25.1 |
| E6097357 (9591710)  |             | 2.70 | 1450 | <2        | 3          | 7.9       | 142     | 0.04    | <5       | 1.62          | 10.4 | 0.13 | <0.1       | 41       | 24.3 |
| E6097358 (9591711)  |             | 2.59 | 447  | 12        | 9          | 30.8      | 168     | 0.07    | 12       | 8.18          | 111  | 1.58 | 1.5        | 7        | 27.2 |
| E6097359 (9591712)  |             | 2.72 | 2240 | <2        | 3          | 8.1       | 121     | 0.04    | <5       | 1.54          | 5.3  | 0.10 | 0.6        | 45       | 23.1 |
| E6097360 (9591713)  |             | 3.85 | 1500 | <2        | 2          | 6.8       | 104     | 0.04    | 29       | 1.39          | 18.0 | 0.05 | 0.2        | 41       | 22.7 |
| E6097361 (9591714)  |             | 3.69 | 2670 | <2        | 2          | 9.9       | 97      | 0.03    | 6        | 2.25          | 11.7 | 0.07 | 0.3        | 34       | 21.2 |
|                     |             |      |      |           |            |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           |            |           |         |         | Ī        |               |      |      |            |          |      |
|                     |             |      |      |           | Ī          |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           |            | T         |         |         |          |               | T    |      |            |          |      |
|                     |             |      |      |           |            |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      | Ī         | Ī          |           |         |         | i        |               |      |      |            |          |      |
|                     |             |      |      |           | Ī          | T         |         |         |          |               |      |      |            | ī        |      |
|                     |             |      |      | T         | Ī          |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           | Ī          |           |         |         | Ī        |               |      |      |            | Ī        |      |
|                     |             |      |      |           | Ī          | T         |         |         | Ī        |               |      |      |            |          |      |
|                     |             |      |      |           |            |           |         |         |          |               |      |      | <b>T</b>   | <b>T</b> |      |
|                     |             |      |      |           |            |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           |            | <b>T</b>  |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           |            |           |         |         |          |               |      |      |            |          |      |
|                     |             |      |      |           |            |           |         |         |          |               |      |      |            |          |      |

Certified By:

Sherin Moussay



AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|                     |            |     | (20 | 1-378) Sc | odium Pe   | eroxide F | usion - | ICP-OES | S/ICP-MS | Finish       |      |     |           |      |     |
|---------------------|------------|-----|-----|-----------|------------|-----------|---------|---------|----------|--------------|------|-----|-----------|------|-----|
| DATE SAMPLED: Oc    | t 01, 2018 |     | [   | DATE RECE | EIVED: Oct | 01, 2018  |         | DATE I  | REPORTED | : Oct 18, 20 | )18  | SAM | PLE TYPE: | Rock |     |
|                     | Analyte:   | Sm  | Sn  | Sr        | Та         | Tb        | Th      | Ti      | TI       | Tm           | U    | V   | W         | Υ    | Yb  |
|                     | Unit:      | ppm | ppm | ppm       | ppm        | ppm       | ppm     | %       | ppm      | ppm          | ppm  | ppm | ppm       | ppm  | ppm |
| Sample ID (AGAT ID) | RDL:       | 0.1 | 1   | 0.1       | 0.5        | 0.05      | 0.1     | 0.01    | 0.5      | 0.05         | 0.05 | 5   | 1         | 0.5  | 0.1 |
| E6097351 (9591704)  |            | 2.8 | 2   | 262       | <0.5       | 0.36      | 4.6     | 0.22    | <0.5     | 0.18         | 1.50 | 70  | 1         | 11.3 | 1.3 |
| E6097352 (9591705)  |            | 2.6 | <1  | 441       | <0.5       | 0.56      | 0.5     | 0.63    | <0.5     | 0.37         | 0.12 | 305 | <1        | 22.1 | 2.4 |
| E6097353 (9591706)  |            | 2.7 | <1  | 144       | <0.5       | 0.59      | 0.5     | 0.65    | <0.5     | 0.35         | 0.10 | 324 | <1        | 22.4 | 2.4 |
| E6097354 (9591707)  |            | 2.2 | 2   | 152       | <0.5       | 0.53      | 0.4     | 0.61    | <0.5     | 0.34         | 0.10 | 286 | <1        | 20.9 | 2.3 |
| E6097355 (9591708)  |            | 2.3 | <1  | 184       | <0.5       | 0.55      | 0.4     | 0.59    | <0.5     | 0.36         | 0.09 | 294 | <1        | 21.7 | 2.4 |
| E6097356 (9591709)  |            | 2.1 | <1  | 272       | <0.5       | 0.43      | 0.4     | 0.58    | <0.5     | 0.26         | 0.29 | 255 | 4         | 16.1 | 1.6 |
| E6097357 (9591710)  |            | 2.4 | <1  | 143       | <0.5       | 0.52      | 0.4     | 0.62    | <0.5     | 0.31         | 0.10 | 276 | <1        | 20.3 | 2.1 |
| E6097358 (9591711)  |            | 5.5 | 3   | 28.4      | 0.6        | 0.57      | 10.6    | 0.23    | 0.7      | 0.26         | 6.03 | 57  | 4         | 19.0 | 1.9 |
| E6097359 (9591712)  |            | 2.7 | <1  | 241       | <0.5       | 0.56      | 0.5     | 0.64    | <0.5     | 0.38         | 0.09 | 305 | <1        | 24.1 | 2.6 |
| E6097360 (9591713)  |            | 2.1 | 2   | 59.0      | <0.5       | 0.42      | 0.4     | 0.58    | <0.5     | 0.31         | 0.10 | 279 | <1        | 17.0 | 2.1 |
| E6097361 (9591714)  |            | 2.7 | 1   | 216       | <0.5       | 0.55      | 0.4     | 0.48    | <0.5     | 0.34         | 1.18 | 243 | <1        | 23.0 | 2.5 |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     | Ī         |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     | Ī         |      |     |
|                     |            |     | Ī   |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     | Ī         |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |
|                     |            |     |     |           |            |           |         |         |          |              |      |     |           |      |     |

Certified By:

-Sherin Moussay



AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

| (201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish |            |     |      |                           |                             |                   |  |  |  |  |
|----------------------------------------------------------|------------|-----|------|---------------------------|-----------------------------|-------------------|--|--|--|--|
| DATE SAMPLED: Oc                                         | t 01, 2018 |     | DA   | TE RECEIVED: Oct 01, 2018 | DATE REPORTED: Oct 18, 2018 | SAMPLE TYPE: Rock |  |  |  |  |
|                                                          | Analyte:   | Zn  | Zr   |                           |                             |                   |  |  |  |  |
|                                                          | Unit:      | ppm | ppm  |                           |                             |                   |  |  |  |  |
| Sample ID (AGAT ID)                                      | RDL:       | 5   | 0.5  |                           |                             |                   |  |  |  |  |
| E6097351 (9591704)                                       |            | 40  | 140  |                           |                             |                   |  |  |  |  |
| E6097352 (9591705)                                       |            | 60  | 68.9 |                           |                             |                   |  |  |  |  |
| E6097353 (9591706)                                       |            | 91  | 69.7 |                           |                             |                   |  |  |  |  |
| E6097354 (9591707)                                       |            | 148 | 62.5 |                           |                             |                   |  |  |  |  |
| E6097355 (9591708)                                       |            | 81  | 60.6 |                           |                             |                   |  |  |  |  |
| E6097356 (9591709)                                       |            | 63  | 57.8 |                           |                             |                   |  |  |  |  |
| E6097357 (9591710)                                       |            | 57  | 61.1 |                           |                             |                   |  |  |  |  |
| E6097358 (9591711)                                       |            | 6   | 175  |                           |                             |                   |  |  |  |  |
| E6097359 (9591712)                                       |            | 74  | 66.5 |                           |                             |                   |  |  |  |  |
| E6097360 (9591713)                                       |            | 326 | 61.3 |                           |                             |                   |  |  |  |  |
| E6097361 (9591714)                                       |            | 148 | 49.0 |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            | I   |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |
|                                                          |            |     |      |                           |                             |                   |  |  |  |  |

Comments: RDL - Reported Detection Limit

Certified By:

Sherin Houssey



AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

| Sieving - % Passing (Crushing) |                 |           |                             |                             |                   |  |  |  |  |  |  |
|--------------------------------|-----------------|-----------|-----------------------------|-----------------------------|-------------------|--|--|--|--|--|--|
| DATE SAMPLED: Oct              | 01, 2018        |           | DATE RECEIVED: Oct 01, 2018 | DATE REPORTED: Oct 18, 2018 | SAMPLE TYPE: Rock |  |  |  |  |  |  |
|                                | Analyte:        | Pass %    |                             |                             |                   |  |  |  |  |  |  |
|                                | Unit:           | %         |                             |                             |                   |  |  |  |  |  |  |
| Sample ID (AGAT ID)            | RDL:            | 0.01      |                             |                             |                   |  |  |  |  |  |  |
| E6097351 (9591704)             |                 | 89        |                             |                             |                   |  |  |  |  |  |  |
| E6097370 (9591723)             |                 | 90        |                             |                             |                   |  |  |  |  |  |  |
| E6097375 (9591728)             |                 | 81        |                             |                             |                   |  |  |  |  |  |  |
|                                |                 |           |                             |                             |                   |  |  |  |  |  |  |
| Comments: RDL - R              | Reported Detect | ion Limit |                             |                             |                   |  |  |  |  |  |  |

Certified By:



Quality Assurance - Replicate AGAT WORK ORDER: 18B392096 PROJECT: FLD-033 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|           |           |          |           | (201-3 | 378) Sod  | ium Pe   | roxide l  | Fusion | - ICP-O   | S/ICP-   | MS Fini   | sh    |  |  |
|-----------|-----------|----------|-----------|--------|-----------|----------|-----------|--------|-----------|----------|-----------|-------|--|--|
|           |           | REPLIC   | ATE #1    |        |           | REPLIC   | ATE #2    |        |           | REPLIC   | ATE #3    |       |  |  |
| Parameter | Sample ID | Original | Replicate | RPD    | Sample ID | Original | Replicate | RPD    | Sample ID | Original | Replicate | RPD   |  |  |
| Ag        | 9591704   | < 1      | < 1       | 0.0%   | 9591715   | < 1      | < 1       | 0.0%   | 9591727   | < 1      | < 1       | 0.0%  |  |  |
| Al        | 9591704   | 6.93     | 6.98      | 0.7%   | 9591715   | 7.66     | 8.02      | 4.6%   | 9591727   | 0.07     | 0.05      |       |  |  |
| As        | 9591704   | 28       | 25        | 11.3%  | 9591715   | 6        | 5         | 18.2%  | 9591727   | < 5      | < 5       | 0.0%  |  |  |
| В         | 9591704   | 25       | 24        | 4.1%   | 9591715   | < 20     | < 20      | 0.0%   | 9591727   | < 20     | < 20      | 0.0%  |  |  |
| Ва        | 9591704   | 616      | 616       | 0.0%   | 9591715   | 64.4     | 65.4      | 1.5%   | 9591727   | 17.7     | 19.0      | 7.1%  |  |  |
| Be        | 9591704   | < 5      | < 5       | 0.0%   | 9591715   | < 5      | < 5       | 0.0%   | 9591727   | < 5      | < 5       | 0.0%  |  |  |
| Bi        | 9591704   | 0.2      | 0.2       | 0.0%   | 9591715   | 0.2      | 0.2       | 0.0%   | 9591727   | < 0.1    | < 0.1     | 0.0%  |  |  |
| Ca        | 9591704   | 1.31     | 1.29      | 1.5%   | 9591715   | 3.42     | 3.64      | 6.2%   | 9591727   | 34.0     | 33.8      | 0.6%  |  |  |
| Cd        | 9591704   | < 0.2    | < 0.2     | 0.0%   | 9591715   | < 0.2    | < 0.2     | 0.0%   | 9591727   | < 0.2    | < 0.2     | 0.0%  |  |  |
| Се        | 9591704   | 33.0     | 31.9      | 3.4%   | 9591715   | 10.2     | 10.0      | 2.0%   | 9591727   | 0.9      | 0.8       | 11.8% |  |  |
| Со        | 9591704   | 25.8     | 23.7      | 8.5%   | 9591715   | 11.4     | 11.4      | 0.0%   | 9591727   | 0.8      | 1.0       | 22.2% |  |  |
| Cr        | 9591704   | 0.0166   | 0.0159    | 4.3%   | 9591715   | 0.0075   | 0.0071    | 5.5%   | 9591727   | < 0.005  | < 0.005   | 0.0%  |  |  |
| Cs        | 9591704   | 1.97     | 1.91      | 3.1%   | 9591715   | 0.2      | 0.2       | 0.0%   | 9591727   | 0.2      | < 0.1     |       |  |  |
| Cu        | 9591704   | 18       | 15        | 18.2%  | 9591715   | 46       | 46        | 0.0%   | 9591727   | 7        | 7         | 0.0%  |  |  |
| Dy        | 9591704   | 1.98     | 1.88      | 5.2%   | 9591715   | 0.79     | 0.84      | 6.1%   | 9591727   | 0.16     | 0.22      |       |  |  |
| Er        | 9591704   | 1.30     | 1.25      | 3.9%   | 9591715   | 0.47     | 0.50      | 6.2%   | 9591727   | 0.142    | 0.152     | 6.8%  |  |  |
| Eu        | 9591704   | 0.62     | 0.62      | 0.0%   | 9591715   | 0.333    | 0.304     | 9.1%   | 9591727   | < 0.05   | < 0.05    | 0.0%  |  |  |
| Fe        | 9591704   | 2.83     | 2.79      | 1.4%   | 9591715   | 3.42     | 3.55      | 3.7%   | 9591727   | 0.09     | 0.08      | 11.8% |  |  |
| Ga        | 9591704   | 16.5     | 16.0      | 3.1%   | 9591715   | 19.4     | 19.5      | 0.5%   | 9591727   | 0.23     | 0.20      | 14.0% |  |  |
| Gd        | 9591704   | 2.56     | 2.44      | 4.8%   | 9591715   | 1.12     | 1.07      | 4.6%   | 9591727   | 0.21     | 0.19      | 10.0% |  |  |
| Ge        | 9591704   | 1        | 1         | 0.0%   | 9591715   | < 1      | < 1       | 0.0%   | 9591727   | 1        | 1         | 0.0%  |  |  |
| Hf        | 9591704   | 4        | 4         | 0.0%   | 9591715   | 2        | 2         | 0.0%   | 9591727   | < 1      | < 1       | 0.0%  |  |  |
| Но        | 9591704   | 0.384    | 0.398     | 3.6%   | 9591715   | 0.179    | 0.164     | 8.7%   | 9591727   | < 0.05   | < 0.05    | 0.0%  |  |  |
| In        | 9591704   | < 0.2    | < 0.2     | 0.0%   | 9591715   | < 0.2    | < 0.2     | 0.0%   | 9591727   | < 0.2    | < 0.2     | 0.0%  |  |  |
| K         | 9591704   | 1.85     | 1.86      | 0.5%   | 9591715   | 0.39     | 0.41      | 5.0%   | 9591727   | 0.05     | 0.05      | 0.0%  |  |  |
| La        | 9591704   | 15.8     | 15.3      | 3.2%   | 9591715   | 4.55     | 4.41      | 3.1%   | 9591727   | 1.1      | 1.1       | 0.0%  |  |  |
| Li        | 9591704   | 15       | 15        | 0.0%   | 9591715   | < 10     | < 10      | 0.0%   | 9591727   | < 10     | < 10      | 0.0%  |  |  |
| Lu        | 9591704   | 0.195    | 0.188     | 3.7%   | 9591715   | 0.07     | 0.07      | 0.0%   | 9591727   | < 0.05   | < 0.05    | 0.0%  |  |  |
| Mg        | 9591704   | 1.11     | 1.09      | 1.8%   | 9591715   | 1.65     | 1.65      | 0.0%   | 9591727   | 1.00     | 1.01      | 1.0%  |  |  |
| Mn        | 9591704   | 619      | 608       | 1.8%   | 9591715   | 936      | 977       | 4.3%   | 9591727   | < 10     | < 10      | 0.0%  |  |  |
| Мо        | 9591704   | 4        | 5         | 22.2%  | 9591715   | 2        | 2         | 0.0%   | 9591727   | < 2      | < 2       | 0.0%  |  |  |



Quality Assurance - Replicate AGAT WORK ORDER: 18B392096 PROJECT: FLD-033 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP

### ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|    | IL. I IING I C | ODALIO | OIN   |      |         |       |       |      |         | /\\     L | 11101110 | . I IVAININ | 0/1141/100 | טוטול טונט | (IND |
|----|----------------|--------|-------|------|---------|-------|-------|------|---------|-----------|----------|-------------|------------|------------|------|
| Nb | 9591704        | 5      | 5     | 0.0% | 9591715 | 1     | < 1   |      | 9591727 | < 1       | < 1      | 0.0%        |            |            |      |
| Nd | 9591704        | 14.7   | 14.0  | 4.9% | 9591715 | 5.5   | 5.2   | 5.6% | 9591727 | 0.8       | 0.8      | 0.0%        |            |            |      |
| Ni | 9591704        | 37     | 36    | 2.7% | 9591715 | 31    | 32    | 3.2% | 9591727 | < 5       | < 5      | 0.0%        |            |            |      |
| Р  | 9591704        | 0.04   | 0.04  | 0.0% | 9591715 | 0.03  | 0.03  | 0.0% | 9591727 | < 0.01    | < 0.01   | 0.0%        |            |            |      |
| Pb | 9591704        | 8      | 8     | 0.0% | 9591715 | 13    | 13    | 0.0% | 9591727 | < 5       | < 5      | 0.0%        |            |            |      |
| Pr | 9591704        | 3.78   | 3.62  | 4.3% | 9591715 | 1.30  | 1.22  | 6.3% | 9591727 | 0.18      | 0.18     | 0.0%        |            |            |      |
| Rb | 9591704        | 54.6   | 54.8  | 0.4% | 9591715 | 12.5  | 12.4  | 0.8% | 9591727 | 0.4       | 0.4      | 0.0%        |            |            |      |
| S  | 9591704        | 0.64   | 0.61  | 4.8% | 9591715 | 0.12  | 0.12  | 0.0% | 9591727 | 0.11      | 0.11     | 0.0%        |            |            |      |
| Sb | 9591704        | 0.87   | 0.80  | 8.4% | 9591715 | 0.5   | 0.5   | 0.0% | 9591727 | < 0.1     | < 0.1    | 0.0%        |            |            |      |
| Sc | 9591704        | 11     | 11    | 0.0% | 9591715 | 7     | 7     | 0.0% | 9591727 | < 5       | < 5      | 0.0%        |            |            |      |
| Si | 9591704        | 30.3   | 30.4  | 0.3% | 9591715 | 28.0  | 29.8  | 6.2% | 9591727 | 4.76      | 4.70     | 1.3%        |            |            |      |
| Sm | 9591704        | 2.78   | 2.52  | 9.8% | 9591715 | 1.1   | 1.1   | 0.0% | 9591727 | 0.1       | 0.1      | 0.0%        |            |            |      |
| Sn | 9591704        | 2      | < 1   |      | 9591715 | 1     | < 1   |      | 9591727 | < 1       | 1        |             |            |            |      |
| Sr | 9591704        | 262    | 262   | 0.0% | 9591715 | 69.1  | 71.7  | 3.7% | 9591727 | 58.6      | 60.2     | 2.7%        |            |            |      |
| Та | 9591704        | < 0.5  | < 0.5 | 0.0% | 9591715 | < 0.5 | < 0.5 | 0.0% | 9591727 | < 0.5     | < 0.5    | 0.0%        |            |            |      |
| Tb | 9591704        | 0.36   | 0.34  | 5.7% | 9591715 | 0.14  | 0.14  | 0.0% | 9591727 | < 0.05    | < 0.05   | 0.0%        |            |            |      |
| Th | 9591704        | 4.63   | 4.53  | 2.2% | 9591715 | 0.4   | 0.4   | 0.0% | 9591727 | 0.1       | < 0.1    |             |            |            |      |
| Ti | 9591704        | 0.217  | 0.212 | 2.3% | 9591715 | 0.18  | 0.18  | 0.0% | 9591727 | < 0.01    | < 0.01   | 0.0%        |            |            |      |
| TI | 9591704        | < 0.5  | < 0.5 | 0.0% | 9591715 | < 0.5 | < 0.5 | 0.0% | 9591727 | < 0.5     | < 0.5    | 0.0%        |            |            |      |
| Tm | 9591704        | 0.179  | 0.185 | 3.3% | 9591715 | 0.07  | 0.07  | 0.0% | 9591727 | < 0.05    | < 0.05   | 0.0%        |            |            |      |
| U  | 9591704        | 1.50   | 1.48  | 1.3% | 9591715 | 0.18  | 0.17  | 5.7% | 9591727 | 0.11      | 0.15     |             |            |            |      |
| V  | 9591704        | 70     | 70    | 0.0% | 9591715 | 49    | 50    | 2.0% | 9591727 | < 5       | < 5      | 0.0%        |            |            |      |
| W  | 9591704        | 1      | 1     | 0.0% | 9591715 | < 1   | < 1   | 0.0% | 9591727 | < 1       | < 1      | 0.0%        |            |            |      |
| Υ  | 9591704        | 11.3   | 10.9  | 3.6% | 9591715 | 4.92  | 4.83  | 1.8% | 9591727 | 2.1       | 2.1      | 0.0%        |            |            |      |
| Yb | 9591704        | 1.3    | 1.3   | 0.0% | 9591715 | 0.5   | 0.5   | 0.0% | 9591727 | 0.1       | 0.1      | 0.0%        |            |            |      |
| Zn | 9591704        | 40     | 37    | 7.8% | 9591715 | 31    | 31    | 0.0% | 9591727 | < 5       | < 5      | 0.0%        |            |            |      |
| Zr | 9591704        | 140    | 146   | 4.2% | 9591715 | 86.8  | 82.9  | 4.6% | 9591727 | 1.90      | 1.85     | 2.7%        |            |            |      |

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: FIRST COBALT CORP

ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

|           |        |        |            | (201-3     | 378) So | dium P | eroxid       | e Fusion   | - ICP-C | ES/ICP | -MS Fi | nish |  |  |
|-----------|--------|--------|------------|------------|---------|--------|--------------|------------|---------|--------|--------|------|--|--|
|           |        | CRM #1 | (ref.SY-4) |            |         | CRM #2 | (ref.Till-2) |            |         |        |        |      |  |  |
| Parameter | Expect | Actual | Recovery   | Limits     | Expect  | Actual | Recovery     | Limits     |         |        |        |      |  |  |
| Al        | 10.95  | 10.22  | 93%        | 90% - 110% | 8.47    | 8.11   | 96%          | 90% - 110% |         |        |        |      |  |  |
| As        |        |        |            |            | 26      | 25     | 97%          | 90% - 110% |         |        |        |      |  |  |
| Ва        | 340    | 323    | 95%        | 90% - 110% | 540     | 514    | 95%          | 90% - 110% |         |        |        |      |  |  |
| Ве        | 2.6    | 3.3    | 127%       | 90% - 110% | 4.0     | 4.1    | 104%         | 90% - 110% |         |        |        |      |  |  |
| Ca        | 5.72   | 5.4    | 94%        | 90% - 110% | 0.907   | 0.906  | 100%         | 90% - 110% |         |        |        |      |  |  |
| Ce        | 122    | 123    | 101%       | 90% - 110% | 98      | 106    | 108%         | 90% - 110% |         |        |        |      |  |  |
| Со        | 2.8    | 2.5    | 90%        | 90% - 110% | 15      | 15     | 100%         | 90% - 110% |         |        |        |      |  |  |
| Cs        | 1.5    | 1.6    | 104%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Cu        | 7      | 8      | 112%       | 90% - 110% | 150     | 150    | 100%         | 90% - 110% |         |        |        |      |  |  |
| Dy        | 18.2   | 18.5   | 102%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Er        | 14.2   | 14.8   | 105%       | 90% - 110% | 3.7     | 4.1    | 110%         | 90% - 110% |         |        |        |      |  |  |
| Eu        | 2.0    | 1.8    | 90%        | 90% - 110% | 1.0     | 1.2    | 122%         | 90% - 110% |         |        |        |      |  |  |
| Fe        | 4.34   | 4.06   | 94%        | 90% - 110% | 3.77    | 3.7    | 98%          | 90% - 110% |         |        |        |      |  |  |
| Ga        | 35     | 36     | 103%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Gd        | 14     | 15     | 105%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Hf        | 10.6   | 11     | 103%       | 90% - 110% | 11      | 10     | 90%          | 90% - 110% |         |        |        |      |  |  |
| Но        | 4.3    | 4.4    | 103%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| K         | 1.37   | 1.34   | 98%        | 90% - 110% | 2.55    | 2.44   | 96%          | 90% - 110% |         |        |        |      |  |  |
| La        | 58     | 57     | 98%        | 90% - 110% | 44      | 46     | 105%         | 90% - 110% |         |        |        |      |  |  |
| Li        | 37     | 39     | 106%       | 90% - 110% | 47      | 48     | 103%         | 90% - 110% |         |        |        |      |  |  |
| Lu        | 2.1    | 2.1    | 98%        | 90% - 110% | 0.6     | 0.5    | 90%          | 90% - 110% |         |        |        |      |  |  |
| Mg        | 0.325  | 0.304  | 94%        | 90% - 110% | 1.1     | 1.1    | 97%          | 90% - 110% |         |        |        |      |  |  |
| Mn        | 836    | 774    | 93%        | 90% - 110% | 780     | 745    | 96%          | 90% - 110% |         |        |        |      |  |  |
| Мо        |        |        |            |            | 14      | 14     | 101%         | 90% - 110% |         |        |        |      |  |  |
| Nb        | 13     | 13     | 100%       | 90% - 110% | 20      | 19     | 97%          | 90% - 110% |         |        |        |      |  |  |
| Nd        | 57     | 57     | 100%       | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Ni        | 9      | 9      | 95%        | 90% - 110% | 32      | 33     | 103%         | 90% - 110% |         |        |        |      |  |  |
| Pb        | 10     | 10     | 96%        | 90% - 110% | 31      | 31     | 100%         | 90% - 110% |         |        |        |      |  |  |
| Pr        | 15.0   | 14.6   | 98%        | 90% - 110% |         |        |              |            |         |        |        |      |  |  |
| Rb        | 55     | 53     | 97%        | 90% - 110% | 144     | 149    | 104%         | 90% - 110% |         |        |        |      |  |  |
| Sb        |        |        |            |            | 0.8     | 0.7    | 89%          | 90% - 110% |         |        |        |      |  |  |



Quality Assurance - Certified Reference materials AGAT WORK ORDER: 18B392096

PROJECT: FLD-033

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

#### CLIENT NAME: FIRST COBALT CORP

### ATTENTION TO: FRANK SANTAGUIDA JASON RICKARD

| Sc |       |       |      |            | 12    | 12    | 100% | 90% - 110% |  |  |  |  |
|----|-------|-------|------|------------|-------|-------|------|------------|--|--|--|--|
| Si | 23.3  | 22.1  | 95%  | 90% - 110% | 28.4  | 28.1  | 99%  | 90% - 110% |  |  |  |  |
| Sm | 12.7  | 12.5  | 99%  | 90% - 110% | 7.4   | 7.6   | 103% | 90% - 110% |  |  |  |  |
| Sn | 7.1   | 7.9   | 111% | 90% - 110% |       |       |      |            |  |  |  |  |
| Sr | 1191  | 1138  | 96%  | 90% - 110% | 144   | 140   | 97%  | 90% - 110% |  |  |  |  |
| Та | 0.9   | 1     | 110% | 90% - 110% | 1.9   | 1.7   | 91%  | 90% - 110% |  |  |  |  |
| Tb | 2.6   | 2.7   | 105% | 90% - 110% | 1.2   | 1.1   | 93%  | 90% - 110% |  |  |  |  |
| Th | 1.4   | 1.2   | 88%  | 90% - 110% | 18.4  | 17.6  | 96%  | 90% - 110% |  |  |  |  |
| Ti | 0.172 | 0.158 | 92%  | 90% - 110% | 0.527 | 0.498 | 95%  | 90% - 110% |  |  |  |  |
| Tm | 2.3   | 2.3   | 100% | 90% - 110% |       |       |      |            |  |  |  |  |
| U  | 0.8   | 0.8   | 104% | 90% - 110% | 5.7   | 5     | 87%  | 90% - 110% |  |  |  |  |
| V  | 8     | 8     | 96%  | 90% - 110% | 77    | 77    | 101% | 90% - 110% |  |  |  |  |
| W  |       |       |      |            | 5     | 5     | 93%  | 90% - 110% |  |  |  |  |
| Y  | 119   | 119   | 100% | 90% - 110% | 40    | 40    | 99%  | 90% - 110% |  |  |  |  |
| Yb | 14.8  | 15.4  | 104% | 90% - 110% |       |       |      |            |  |  |  |  |
| Zn | 93    | 93    | 100% | 90% - 110% | 130   | 124   | 95%  | 90% - 110% |  |  |  |  |
| Zr | 517   | 570   | 110% | 90% - 110% | 390   | 399   | 102% | 90% - 110% |  |  |  |  |



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

## **Method Summary**

CLIENT NAME: FIRST COBALT CORP AGAT WORK ORDER: 18B392096

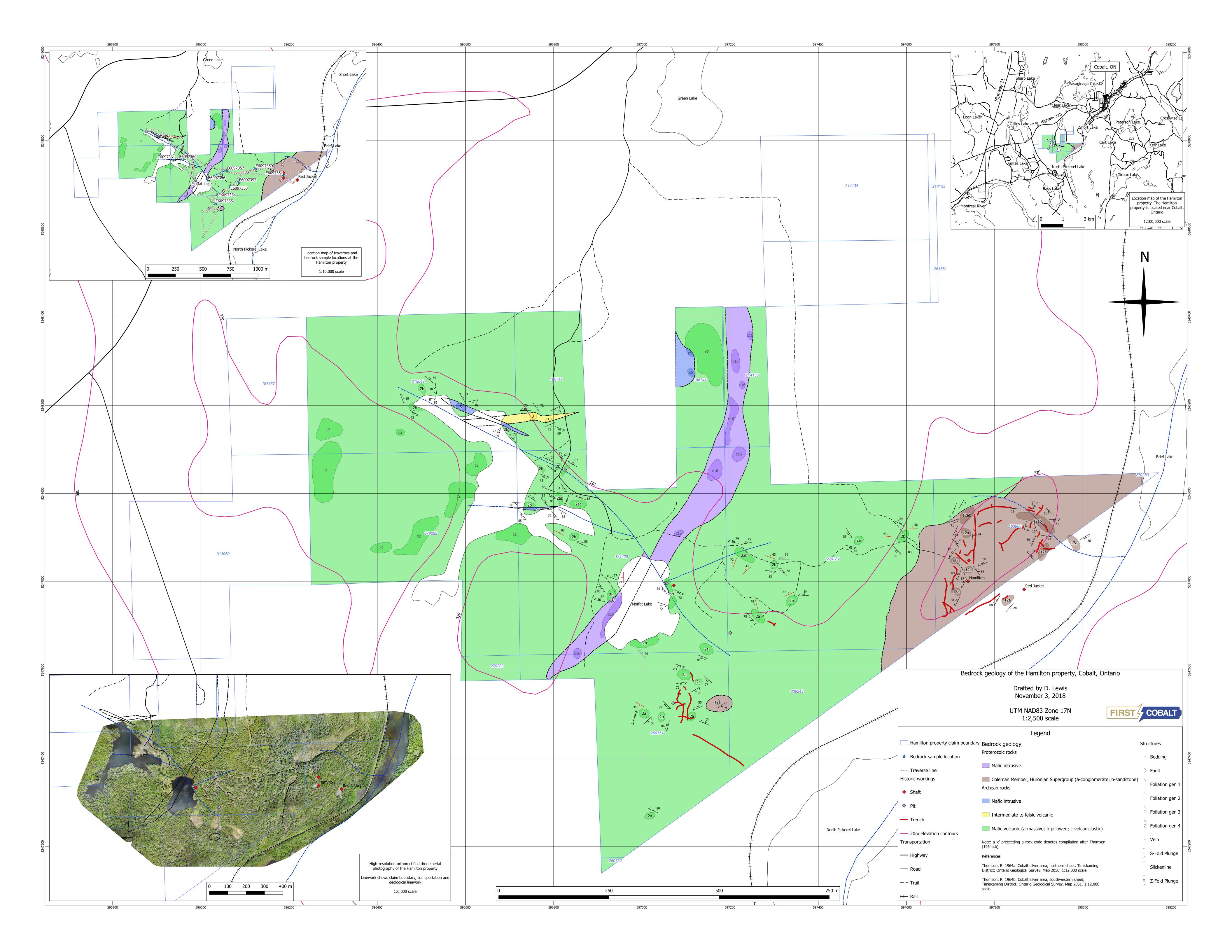
PROJECT: FLD-033 ATTENTION TO: FRANK SANTAGUIDA JASON

SAMPLING SITE: SAMPLED BY:

| PARAMETER           | AGAT S.O.P     | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE |
|---------------------|----------------|----------------------|----------------------|
| Solid Analysis      |                |                      |                      |
| Sample Login Weight | MIN-12009      |                      | BALANCE              |
| Ag                  |                |                      | ICP/MS               |
| AI                  | MIN-200-12001  |                      | ICP/OES              |
| As                  | MIN-200-12001  |                      | ICP/MS               |
| В                   | MIN-200-12001  |                      | ICP/OES              |
| Ва                  | MIN-200-12001  |                      | ICP/OES              |
| Ве                  | MIN-200-12001  |                      | ICP/OES              |
| Bi                  | MIN-200-12001  |                      | ICP-MS               |
| Ca                  | MIN-200-12001  |                      | ICP/OES              |
| Cd                  | MIN-200-12001  |                      | ICP-MS               |
| Се                  | MIN-200-12001  |                      | ICP-MS               |
| Co                  | MIN-200-12001  |                      | ICP/MS               |
| Cr                  | MIN-200-12001  |                      | ICP/OES              |
| Cs                  | MIN-200-12001  |                      | ICP-MS               |
| Cu                  | MIN-200-12001  |                      | ICP/OES              |
| Dy                  | MIN-200-12001  |                      | ICP-MS               |
| Er                  | MIN-200-12001  |                      | ICP-MS               |
| Eu                  | MIN-200-12001  |                      | ICP-MS               |
| Fe                  | MIN-200-12001  |                      | ICP/OES              |
| Ga                  | MIN-200-12001  |                      | ICP-MS               |
| Gd                  | MIN-200-12001  |                      | ICP-MS               |
| Ge                  | MIN-200-12001  |                      | ICP-MS               |
| Hf                  | MIN-200-12001  |                      | ICP-MS               |
| Но                  | MIN-200-12001  |                      | ICP-MS               |
| ln .                | MIN-200-12001  |                      | ICP-MS               |
| K                   | MIN-200-12001  |                      | ICP/OES              |
| La                  | MIN-200-12001  |                      | ICP-MS               |
| Li                  | MIN-200-12001  |                      | ICP/OES              |
| Lu                  | MIN-200-12001  |                      | ICP-MS               |
| Mg                  | MIN-200-12001  |                      | ICP/OES              |
| Mn                  | MIN-200-12001  |                      | ICP/OES              |
| Мо                  | MIN-200-12001  |                      | ICP/MS               |
| Nb                  | MIN-200-12001  |                      | ICP-MS               |
| Nd                  | MIN-200-12001  |                      | ICP-MS               |
| Ni                  | MIN-200-12001  |                      | ICP/OES              |
| P                   | MINI 000 40004 |                      | ICP/OES              |
| Pb                  | MIN-200-12001  |                      | ICP/MS               |
| Pr                  | MIN-200-12001  |                      | ICP-MS               |
| Rb                  | MIN-200-12001  |                      | ICP/MS               |
| S                   | MIN-200-12001  |                      | ICP/OES              |
| Sb                  | MIN-200-12001  |                      | ICP-MS               |
| Sc                  | MIN-200-12001  |                      | ICP/OES              |
| Si<br>C             | MIN-200-12001  |                      | ICP/OES              |
| Sm                  | MIN-200-12001  |                      | ICP-MS               |
| Sn C-               | MIN-200-12001  |                      | ICP/MS               |
| Sr<br>T-            | MIN-200-12001  |                      | ICP-OES              |
| Ta                  | MIN-200-12001  |                      | ICP-MS               |
| Tb                  | MIN-200-12001  |                      | ICP-MS               |
| Th                  | MIN-200-12001  |                      | ICP-MS               |



5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com


## **Method Summary**

CLIENT NAME: FIRST COBALT CORP AGAT WORK ORDER: 18B392096

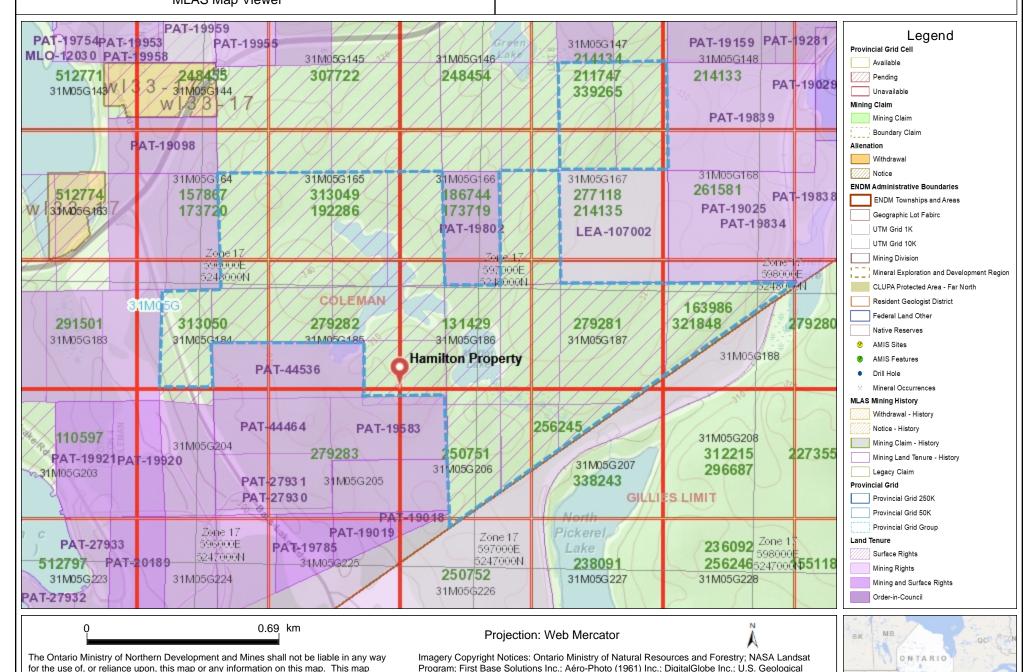
PROJECT: FLD-033 ATTENTION TO: FRANK SANTAGUIDA JASON

SAMPLING SITE: SAMPLED BY:

| PARAMETER | AGAT S.O.P    | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE |
|-----------|---------------|----------------------|----------------------|
| Ti        | MIN-200-12001 |                      | ICP/OES              |
| TI        | MIN-200-12001 |                      | ICP-MS               |
| Tm        | MIN-200-12001 |                      | ICP-MS               |
| U         | MIN-200-12001 |                      | ICP-MS               |
| V         | MIN-200-12001 |                      | ICP/OES              |
| W         | MIN-200-12001 |                      | ICP-MS               |
| Υ         | MIN-200-12001 |                      | ICP-MS               |
| Yb        | MIN-200-12001 |                      | ICP-MS               |
| Zn        | MIN-200-12001 |                      | ICP/OES              |
| Zr        | MIN-200-12001 |                      | ICP-MS               |
| Pass %    |               |                      | BALANCE              |






### MINISTRY OF NORTHERN DEVELOPMENT AND MINES | MLAS Map - Hamilton Property MLAS Map Viewer

Scale 1:20 000

.WI

IA NE

SD



Survey.

© Queen's Printer for Ontario, 2019

should not be used for: navigation, a plan of survey, routes, nor locations.

|                     |                     |                                |                                    | Units         |               | MNDM COST CATEGORIES   |                             |                             |                    |                                    |            |            |  |  |  |  |
|---------------------|---------------------|--------------------------------|------------------------------------|---------------|---------------|------------------------|-----------------------------|-----------------------------|--------------------|------------------------------------|------------|------------|--|--|--|--|
| WORKTYPE            | PERSONNEL           | ROLE                           | DATES OF FIELD WORK                | Days/Man-days | Rate/unit     | \$Supervision & Labour | \$Contractors & Consultants | \$Supplies&Rental Equipment | \$Food and Lodging | \$Transport to work site (Ontario) | \$Assaying | \$Shipping |  |  |  |  |
| Supervision         | Jason Rickard       | Supervising Geologist          | 1 day                              | 1 5           | 800.00        | \$ 800.00              |                             |                             |                    |                                    |            |            |  |  |  |  |
| Data/GIS            | Dave Lewis          | Data Geologist                 | Oct 20,21,23,28,29;Nov2-4          | 7 \$          | 700.00        | \$ 4,900.00            |                             |                             |                    |                                    |            |            |  |  |  |  |
| Structural Mapping  | Dave Lewis          | Structural mapper              | Nov 3,2017, June 15,16,17,20, 2018 | 5 \$          | 700.00        | \$ 3,500.00            |                             |                             |                    |                                    |            |            |  |  |  |  |
| Structural Mapping  | Remi Germain        | Assistant                      | 1 day 2017 (Nov 3 2017)            | 1 5           | 450.00        |                        | \$450.00                    |                             |                    |                                    |            |            |  |  |  |  |
| Structural Mapping  | Russell Johnson     | Assistant                      | 5 days 2018 (June 15,16,17,20)     | 5 \$          | 280.00        | \$ 1,400.00            |                             |                             |                    |                                    |            |            |  |  |  |  |
| Truck Rental 5 days | \$1                 | 120/day in incl. truck rental, | fuel, insurance, repairs           | 5 \$          | 120.00        |                        |                             |                             |                    | \$ 600.00                          |            |            |  |  |  |  |
| Accom/Meals         | \$100/day           | incl. house rental, heat, hyd  | Iro, groceries, restaurant meals   | 18 \$         | 100.00        |                        |                             |                             | \$ 1,800.00        |                                    |            |            |  |  |  |  |
| 11 samples at \$28  |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    | \$ 308.00  |            |  |  |  |  |
| UAV Survey          |                     |                                |                                    |               |               |                        | \$ 10,912.86                | \$ 2,271.28                 |                    |                                    |            |            |  |  |  |  |
| B. AL               |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | O <sub>S</sub> ,    |                                |                                    | \$            | 26,942.14     | \$ 10,600.00           | \$ 11,362.86                | \$ 2,271.28                 | \$ 1,800.00        | \$ 600.00                          | \$ 308.00  |            |  |  |  |  |
| EQ.                 | 4                   |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | Supervision and Labour         |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | May 2018 Invoice    | \$ 15,229.25                   |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | June 2018 Invoice   |                                | \$ 3,788.76                        | 5             |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | July 2018 Invoice   | \$ 8,357.50                    |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | \$ 40,418.00                   | \$ 8,412.15                        | 5             |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | Total area of surve | * * *                          | 43                                 |               | of Total Area |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | property survey (ha)           | 11                                 |               | 27%           |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | property survey (ha)           |                                    | 9             | 7%            |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | property survey (ha)           | 25                                 |               | 58%           |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | Area of Glen prope  | erty survey (ha)               | 3                                  | 3             | 8%            |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     | ervision and Labour            | \$ 10,912.86                       |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     | Hamilton UAV Sup    | plies and Rentals              | \$ 2,271.28                        | 3             |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |
|                     |                     |                                |                                    |               |               |                        |                             |                             |                    |                                    |            |            |  |  |  |  |