

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

EXPLORATION PROGRAM

ON THE CLIFFORD PROPERTY

CLIFFORD TOWNSHIP LARDER LAKE MINING DIVISION ONTARIO

L.D.S. Winter, BASc, MSc (App) Winterbourne Explorations Ltd 4 December 2019

TABLE OF CONTENTS

- 1. Introduction
- 2. Property
- 3. Location and Access
- 4. Regional and Property Area Geology
- 5. Background and Model
- 6. Previous Work on the Property
- 7. Current Work and Results
- 8. Summary and Conclusions
- 9. Proposed Program and Budget
- 10. Expenditures
- 11. References

Certificate of Qualification

Appendix 1 IP Equipment Specifications

Appendix 2 Program Expenditures Invoice

Appendix 3 Exploration Permit

Appendix 4 ALS Minerals Certificates

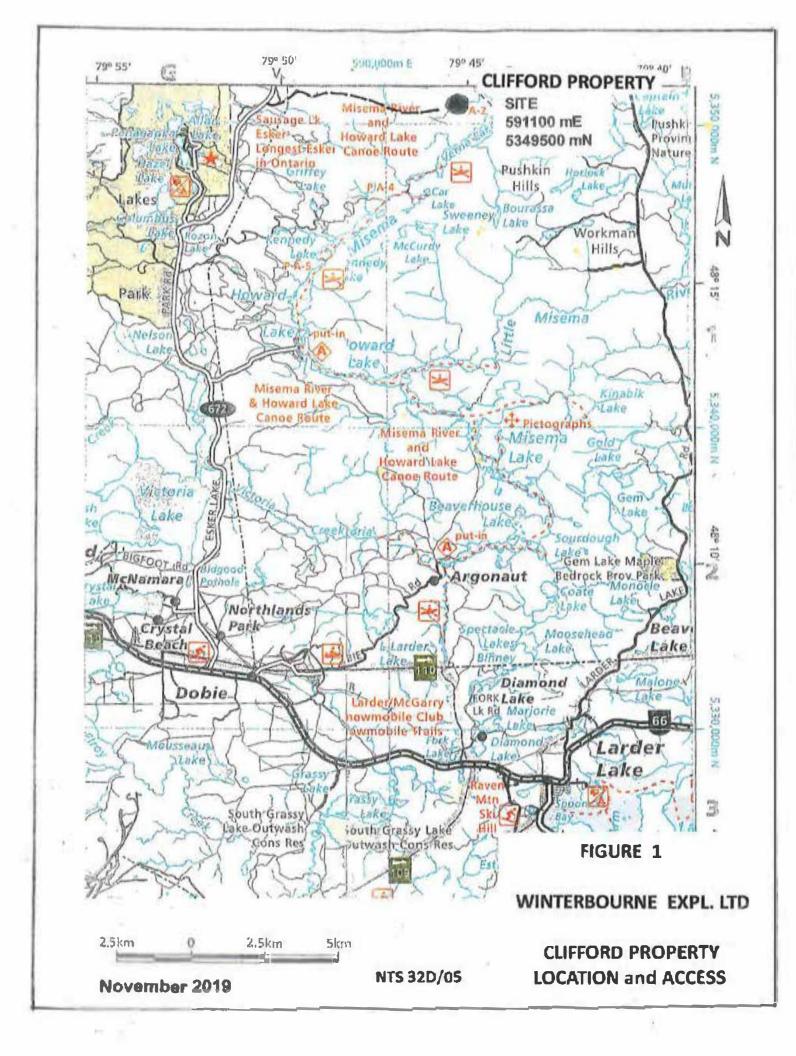
LIST OF FIGURES

- Figure 1: Location and Access
- Figure 2: Property Map Claims
- Figure 3 Regional Geology
- Figure 4 Property Area Geology
- Figure 5 Clifford Residual Magnetic Anomaly (CRMA)
- Figure 6 Property Geology and Residual Magnetic Anomaly
- Figure 7 Clifford and Ben Nevis OGS Geochemistry
- Figure 8 Clifford Property-Work Areas
- Figure 9 L12+00E IP Pseudosection
- Figure 10 Gradient IP Level 1 Chargeability
- Figure 11 Gradient IP Level 1 Resistivity
- Figure 12 Gradient IP Level 2 Chargeability
- Figure 13 Gradient IP Level 2 Resistivity
- Figure 14 Clifford Gradient IP Anomalies
- Figure 15 Sampling IP Anomaly CB

1. INTRODUCTION.

The Clifford Property is comprised of 62 contiguous MLAS mining claims/cells lecated in Clifford township, Kirkland Lake area, Ontario. The original 4 Legacy claims were staked in August 2015 and recorded on September 1, 2015. Subsequently with the introduction of the MLAS they were converted to 62 MLAS mining claims/cells. The Property is located in the southeastern part of Clifford township and the adjacent, to the east, southwestern quadrant of Ben Nevis township, 22 km north of the village of Larder Lake and 28 km northeast of Kirkland Lake, in the Larder Lake Mining Division (Figure 1)

The following report presents a review of the regional and Property area geology as well as a summary of previous exploration work and geological, geochemical and geophysical studies by the Ontario Geological Survey(OGS) Between October 8 and 12, 2018, one line of Pole-Dipole IP, L12+00E and 2 lines of Gradient IP, Lines • and 200 were completed for a total of 2.75 line-km. This report describes the work done and the results obtained


The IP Equipment Specifications and Procedures are provided in Appendix 1 and a copy of the Invoice for the IP work is provided in Appendix 2.

2. PROPERTY

The Clifford Property consists of 62 MLAS mining claims/cells as listed in Table 1 and as shown in Figures 2

3. LOCATION AND ACCESS

The Property is located in the southeast quadrant of Clifford township at UTM coerdinates, NAD 83, Zone 17, 591100mE, 5349500mN, (79[°] 45.3 W long., 48[°] – 18.1 N lat.), approximately 22 km north of the village of Larder Lake and 28 km northeast of Kirkland Lake, Ontario as shown in Figure 1.

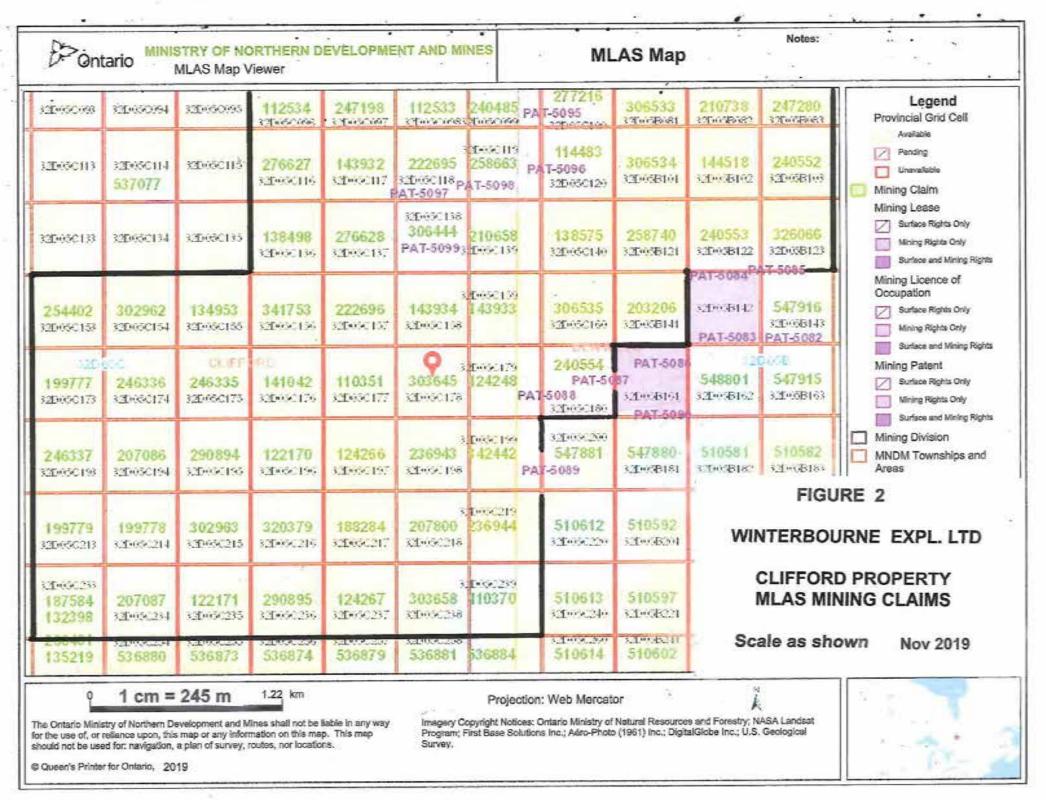


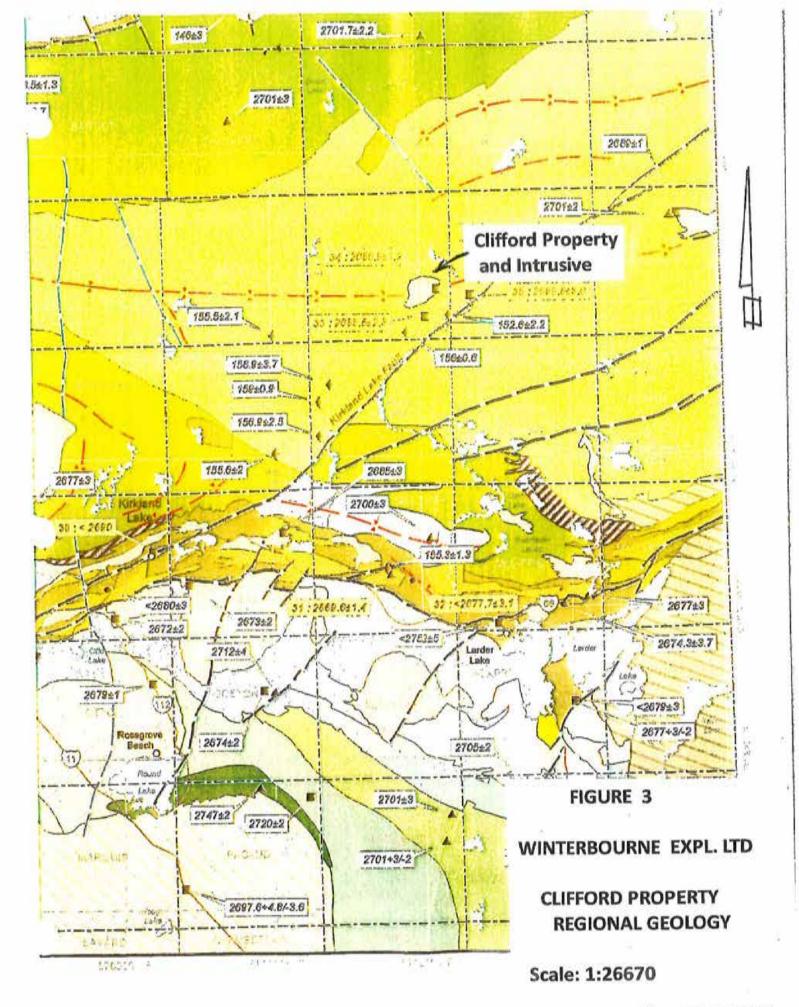
TABLE 1

CLIFFORD PROPERTY MLAS MINING CLAIMS

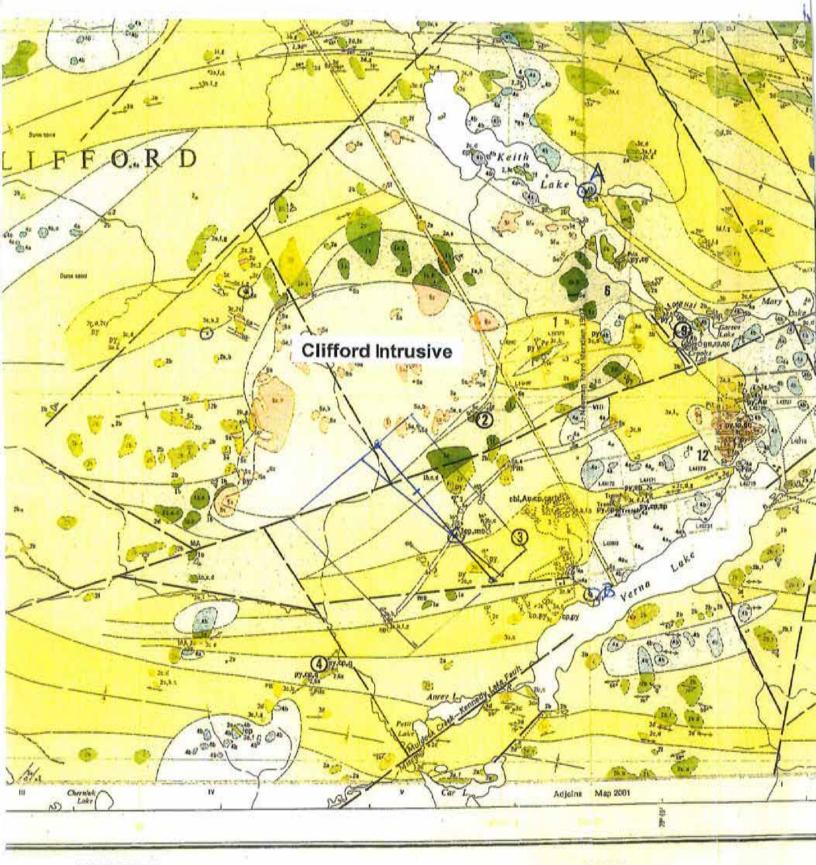
112534	247198	112533	24048 5	277216
306533	210738	247280	276627	14393 <u>2</u>
222695	258663	114483	306534	144518
240552	138498	276628	306444	210658
138575	258740	240553	326066	254402
302962	134953	341753	222696	143934
143933	306535	203206	199777	246336
246335	141042	110351	303645	124248
240554	246337	207086	290894	122170
124266	236943	342442	199779	199778
302963	320379	188284	207800	236944
187584	207087	122171	290895	124267
303658	110370			

TOTAL 62 CLAIMS/CELLS

Provincial highway 66 passes east from Kirkland Lake to Larder Lake, a distance of approximately 25 km. Approximately 13 km east of Kirkland Lake, Hwy 672 connects with Hwy 66 and leads north.. Twenty km north of Hwy 66 on Hwy 672, a bush road trends approximately east for a distance of 5 km, where it crosses the Clifford Property.


4. REGIONAL AND PROPERTY GEOLOGY

The Clifford-Ben Nevis township area is underlain by metavolcanics ,metasediments and associated intrusive units of the Archean age Blake River Group of the Abitibi Subprovince of the Canadian Superior Province. The Blake River Group is divided into 3 subgroups: the Garrison, the Misema and the Noranda with the units of the Misema subgroup underlying the Clifford-Ben Nevis area. Subaqueous andesitic flows are the dominant units in the subject property area but, basalts and rhyolites are also present with the felsic units often being pyroclastics. High level synvolcanic dykes are also present. The dominant intrusive in the area is the Clifford intrusive in the southeast quadrant of Clifford township. (Peloquin and Piercey,2005) and see Figure 3.


The Clifford Intrusive was emplaced in a domal structure which in turn is crosscut by east-northeast and north-northwest trending structures. The dominant structural trend is east-northeast to east-west. Matachewan-age, north-northwest trending dykes crosscut the area.

VMS style alteration and mineralization as well as a porphyry Cu-Au-Mo-style in the area of the Clifford stock has been recognized.

The property area geology is shown in both Figures 3 and 4.with the main supracrustal units in the area being those of the Misema subgroup of the Blake River Group. The three main metavolcanic units are, felsic volcaniclastics, intermediate volcanics and mafic to intermediate volcanics. These have been folded into a domal feature which in turn hosts the Clifford stock which is a relatively equigranular body of granodioritic to tonalitic composition. South of the Clifford stock the metavolcanic units face and dip south and there are numerous east to northeast-trending sill to dyke-like felsic intrusions which are considered to be related to the Clifford stock.

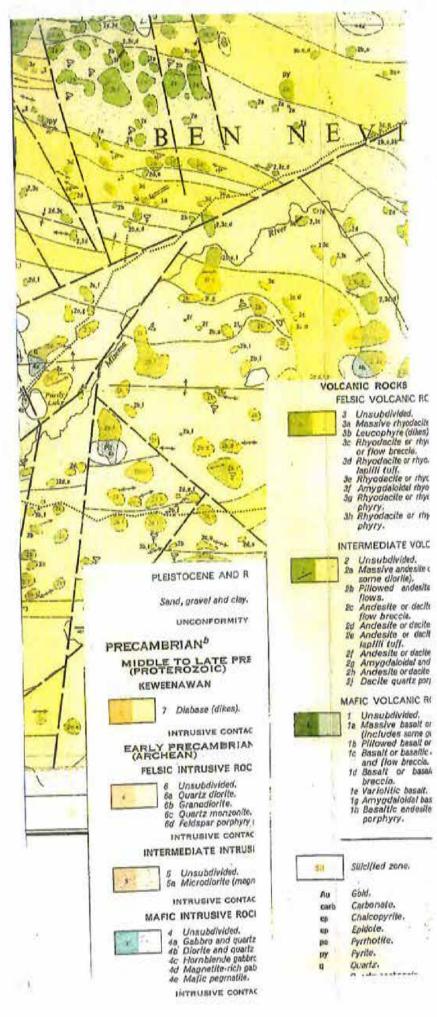
November 2019

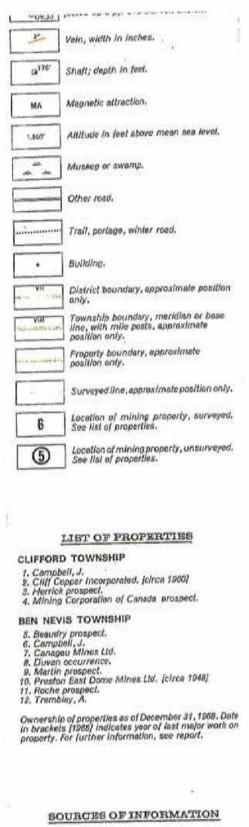
FIGURE 4

Map 2283

WINTERBOURNE EXPL. LTD

CLIFFORD AND BEN NEVIS TWPS


0


TIMISKAMING DISTRICT

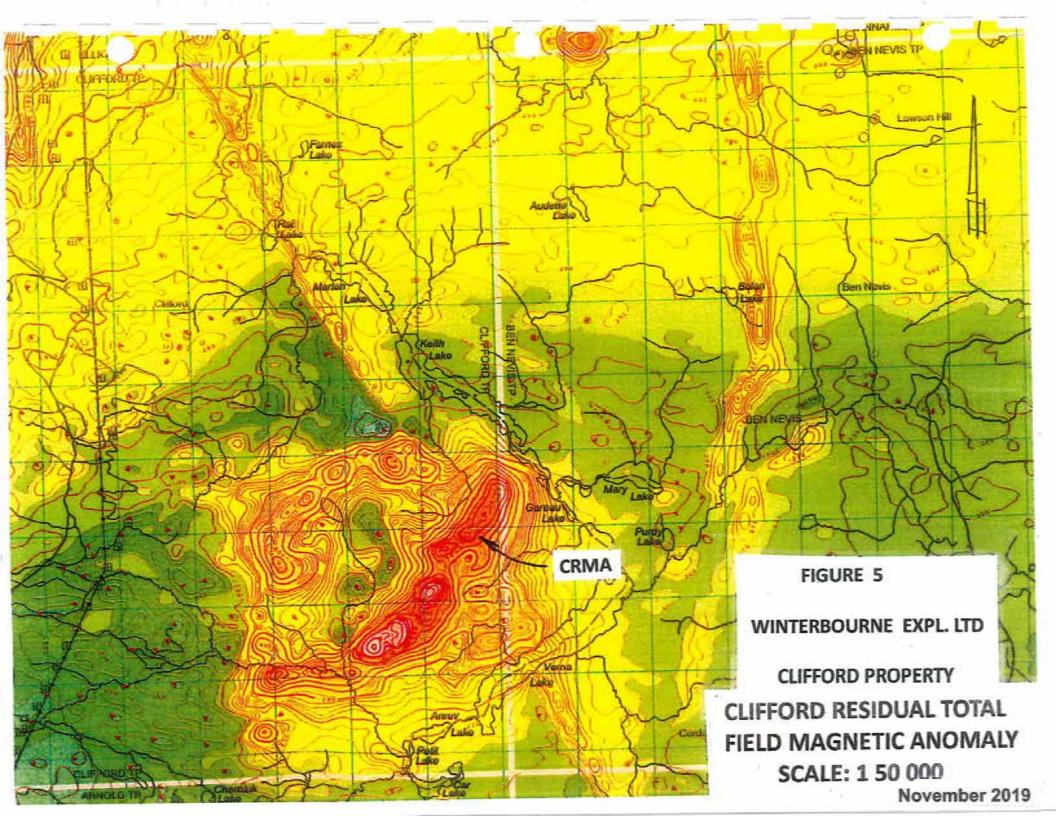
CLIFFORD PROPERTY PROPERTY AREA GEOLOGY

November 2019

' Scale 1:31,680 or 1 Inch to 1/2 Mile

Geology by L. S. Jensen and assistants, 1969. Geology in part is lied to surveyed lines.

Geological and geophysical maps of mining companies.


Geological Survey of Canada aeromagnetic map 486.

Preliminary maps, P.692 Clifford Township and P.693 Ben Nevis Township, scale 1 Inch to X mile, issued 1971.

Cartography by C. A. Love and assistants, Surveys and Mapping Branch, 1973.

Base map derived from maps of the Forest Resources Inventory, Surveys and Mapping Branch.

Magnetic declination in the area was approximately 10°50' W., 1970.

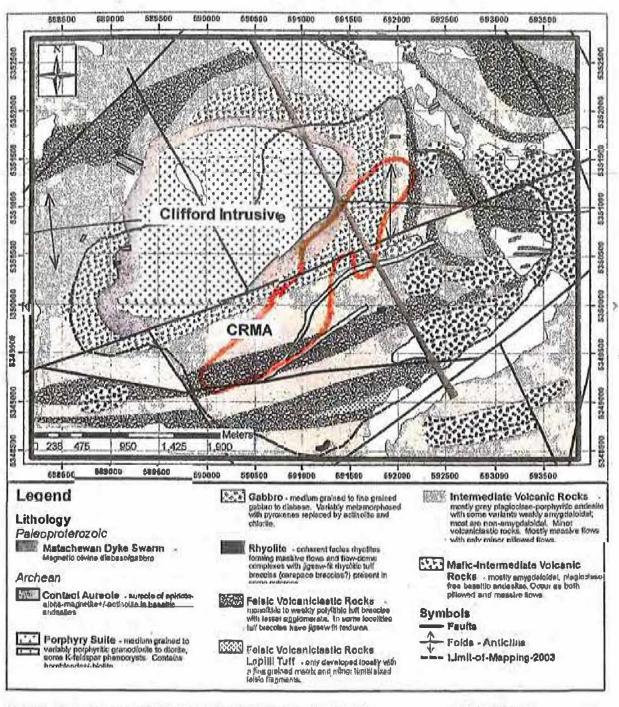


Figure 8. Geological map of Clifford Township (from MacDonald et al. 2005).

Scale as shown

November 2019

FIGURE 6

WINTERBOURNE EXPL. LTD

CLIFFORD PROPERTY PROPERTY GEOLOGY and CRMA

17

Three northeast-trending and steeply dipping faults crosscut the area. (Figure 4). One lies to the northwest and the Clifford Fault cuts through the central part of the area. To the south is the Murdoch Creek-Kennedy Lake Fault. North-northwest-trending structures are also present and in turn one of these hosts a Matachewan-age diabase dyke.

Regional metamorphism in the area is low grade with the Clifford stock showing a well developed contact metamorphic aureole in the order of 200m to 300m wide. It has a distinctive dark colouration and contains significant amounts of magnetite with albite, epidote and actinolite plus pyrite.

As part of the Discover Abitibi Initiative the Clifford area was covered by a MEGATEM II airborne survey flown in 2003. In OGS Open File Report 6163(Reed,2005) this data is correlated with ground-based gravity survey data and modeled. The Total Field Residual Magnetic Anomaly adjacent to the Clifford stock was outlined by this work (Figures 5 and 6) The Clifford Residual Magnetic Anomaly (CRMA) has a strike length in the order of 3km and appears to lie along the southeast-dipping contact of the Clifford stock. Magnetic and gravity inversions carried out by Reed (2005) indicate that the CRMA extends to depths of 3.75 km for the magnetics and 5.0 km for the gravity. A third party geophysicist engaged by Winterbourne Explorations Ltd. estimated the top of the "Causative Body" to be at a depth of 150m to 200m below surface, that the width of the body was in the order of 175m wide and that it dipped to the south at 55.

A lithogeochemical survey carried out by the OGS in Ben Nevis township to the east also sampled into the eastern part of Clifford township and this work shows a "copperin-rock" anomaly coincident with the eastern end of the CRMA.(Figures 7).

5. BACKGROUND AND MODEL

In the publication Economic Geology, Vol.88, in 1993, R. J. Fraser reported on the Lac Troilus Gold-Copper Deposit, a Possible Archean Porphyry System. This property is located in the Abitibi subprovince approximately 125 km north of Chibougamau, Quebec. At that time the deposit was described as containing 60 million tonnes in a drill indicated resource containing 2.5 million ounces gold, 3 million ounces silver and 60 000 tonnes copper.

Between 1996 and 2010, the Troilus Mine produced from an open pit over 2 million ounces gold and almost 70 000 tonnes copper. The property is currently being evaluated by

Sulliden Mining Capital and associates as an open pit/UG operation with a total indicated mineral resource of 44 million tonnes @ 1.27g/t Au and 0.12% Cu and the mineralized zone is open at depth.

The Lac Troilus alteration and mineralization are described by Fraser (1993) as follows.

- a well developed asymmetrical hydrothermal alteration and mineral assemblage is associated with the orebody
- the alteration halo is much larger than the mineralized zone with a thickness up to 400m,
- the core area of wallrock alteration is characterized by a strong potassic-rich core
- outward from the potassic core there is an increase of albite, epidote and calcite.
- The alteration zone is asymmetric and is best developed in the hangingwall.
- The wallrock alteration correlates well with the distribution of mineralization. The footwall rocks are potassium enriched and carry chalcopyrite and pyrrhotite. The hangingwall rocks are sodium enriched with abundant secondary albite and are gold-rich with pyrite and lesser chalcopyrite.
- The correlation between gold and sodium-rich minerals is much stronger than that between potassium and copper.

6. PREVIOUS WORK ON THE PROPERTY

For site locations see Figure 4 after OGS Map 2283, 1975

Work in the Clifford and Ben Nevis area dates initially from the late 1920s with work starting again following the Second World War. In 1962 Mining Corporation of Canada drilled 5 diamond drill holes at the Brazzoni Occurrence (Figure 4, # 4) based on pre-1948 and 1956. information in the Kirkland Lake Resident Geologist Office Mining Corporation carried out ground magnetic and EM surveys in 1970 and 1972.

The Ehrhart-Costelloo Occurrences -the Campbell Property- date from the 1920s (Figure 4, # 1 and # 6) and in 1958 Cliff Copper Incorporated completed 3 diamond drill holes to test chalcopyrite and gold mineralization reported in old pits. In 1960 Cliff Copper at "showing" # 2 (Figure 4) prospected an area identified in the 1940s, did geological mapping and then dropped the property.

The Herrick Prospect (# 3, Figure 4) was prospected in the late 1920s when chalcopyrite and molybdenite mineralization were identified. At that time the property was referred to as the "Brett-Tretheway Copper Prospect and/or the "Bain Copper

÷.

Discovery".where pitting and some diamond drilling was done. In 1964 Hollinger Gold Mines drilled 24 holes in this sector over an east-west distance of 1.75 km from the Clifford/Ben Nevis township line and south to Verna Lake. The results from 5 of the Hollinger drill holes are summarized below because they appear to be representative of the work in this area over a period of over 50 years. Note. All gold assays have been converted from Troy ounces per ton to grams per tonne. The deepest hole drilled was 705 ft at a 45 degree angle for a depth below surface of approximately 150m.

Hole 1 – 73-212 ft, dacite breccia, quartz, calcite,coarse to fine pyrite, specks of chalcopyrite and pyrite decreases in depth, 25 ft. – 5ft @ 26g/t Ag; 55 ft – 5ft@ 22g/t Ag: 68ft – 1ft @ 28g/tAu and 28g/t Ag; 73ft – 2ft@ 1.55g/tAu

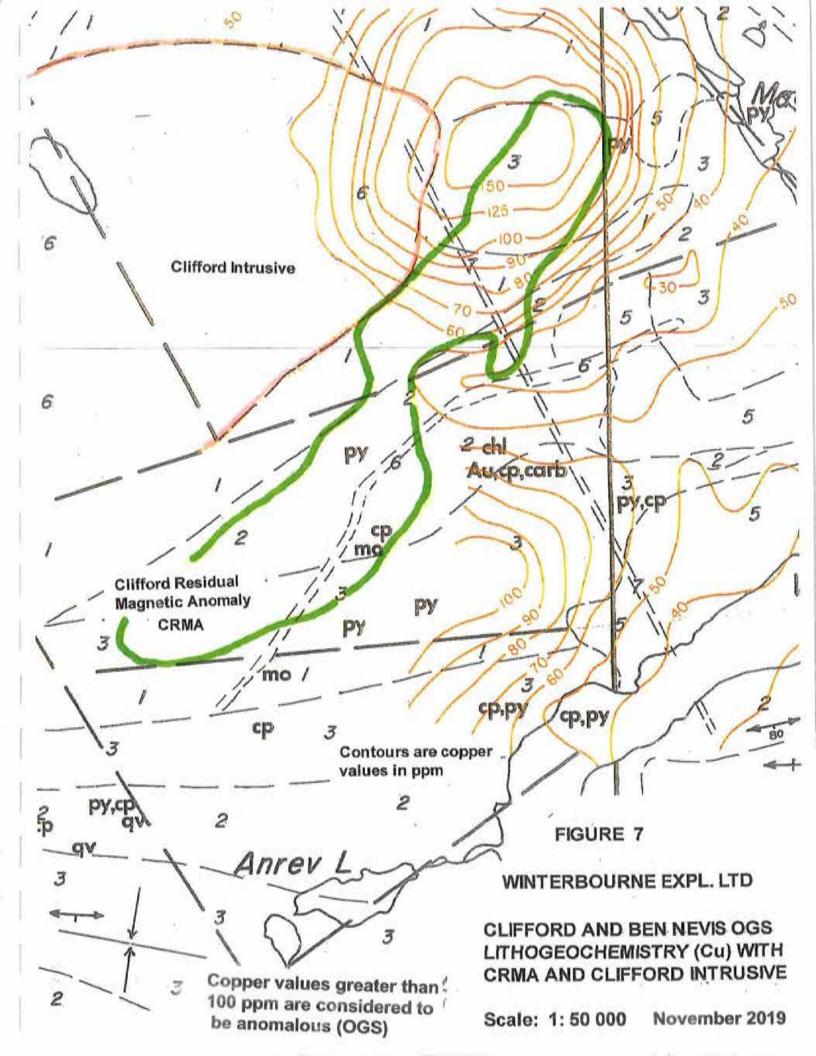
Hole 3 – Porphyritic dacite, silicified with pyrite, in plaves "heavy" to disseminated to stringers to veinlets, red to pink alteration and quartz veining. (No assays)

Hole 4 – Dacite silicified with disseminated pyrite, coarse pyrite up to 10% in places, pyrite stringers and quartz stringers, "bleaching", epidote, brick-red alteration. 590ft – 5ft@ 83g/t Au

Hole 7 – Porphyritic dacite to dacite, "trap" dykes rich in magnetite, epidote alteration, quartz-carbonate stringers, red to pink alteration, low pyrite content; 420ft – 10ft@ 1.09g/t Au

Hole 22 – Porphyritic and fragmental dacite and breccias.; at 65ft - 10 ft of disseminated chalcopyrite and also in a breccia; 200ft – 10ft@ 1.08g/t Au

Claim 919892 in the south-central part of the property is a third party claim held by Wallbridge Mining Company Limited. This claim was staked in 1987 with Wallbridge taking it over in January 2004. Wallbridge covered the claim and surrounding area with a Helicopter-Borne Magnetic Gradiometer and VLF-EM Survey in 2008 and followed up with line-cutting, magnetic and IP surveys, stripping and drilling. The results were similar to those reported by Hollinger from their drilling program in 1964, i.e., quartz veining with associated pyrite, pyrrhotite and chalcopyrite in narrow shear zones and with gold and silver values.

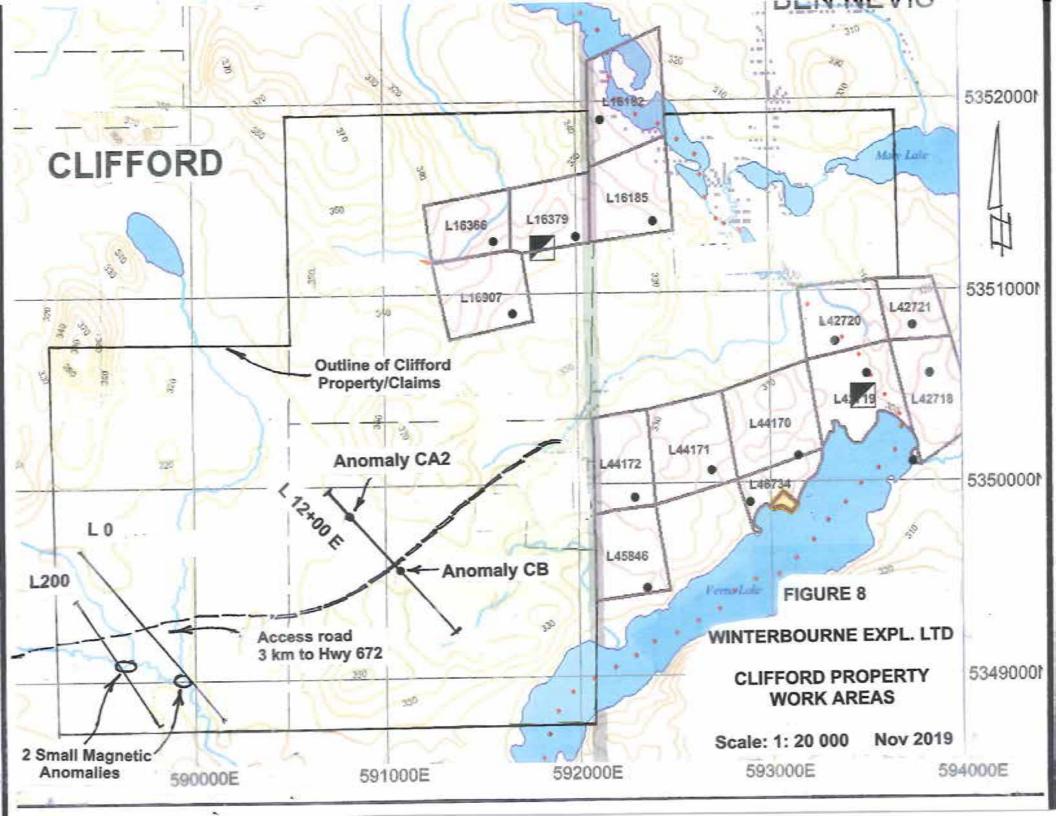

Grunsky (1986) carried out a lithogeochemical sampling program in Ben Nevis township to study the alteration and compositional variation patterns in volcanic rocks using statistical methods. The sampling "spilled-over" into the eastern part of Clifford township with the copper in rock values being shown in Figure 7. The outline of the Clifford Intrusive and the CRMA are also shown in Figure 7 with anomalous copper values, >100ppm, being present and coincident with the northeastern part of the CRMA and also along the south-central side of the anomaly.

In summary, previous work in the area of the CRMA has indicated widespread alteration with associated quartz-veining, disseminated to fracture and shear hosted pyrite stringers as well as chalcopyrite and pyrrhotite and gold, silver and copper values of economic interest. Most of the work/sampling took place along the southern edge of, and up to 1000m to the south of the location of the CRMA, which was unknown at the time the work was done. This work was basically above the hangingwall of the CRMA, which dips to the south at 55 degrees.

The Clifford Property was staked in 2015 based on a review of the literature and in particular, work by the OGS in the area and a property area visit. In OGS Open File Report, p.42 the authors state," In Clifford Township, McDonald et al (2005) recognized porphyry Cu-Au-Mo-style alteration overprinting and younger than ------". The literature review indicated many similarities in the styles of alteration and mineralization to the Lac Troilus Gold-Copper Deposit and when the location of the CRMA was superimposed on the geological map there appeared to be a relationship between the Clifford stock and the CRMA.

During late July 2015 Winterboume carried out a preliminary Soil Gas Hydrocarbon(SGH) soil sampling program with the samples being sent to Activation Laboratories, Ancaster, Ontario. Figure 8, shows the area of the SGH survey and the Gradient IP survey with the locations of the Clifford stock contact and the CRMA superimposed on it. The gold results were rated as 5 out of 6 and the copper results were rated as 4.5 out of 6 based on over 1000 case histories by Activation Labs. The SGH results were considered to be encouraging in that they showed gold and copper values associated with the CRMA with gold enriched relative to copper as in the Lac Troilus deposit. This was also consistent with the previous work in the area that showed sulphide mineralization containing gold, silver and copper values. These results were considered to be positive and 4 claims were staked in August 2015 and recorded on September 1, 2015.

Following the SGH survey and the staking of the Property in August 2015, additional prospecting and sampling, geological mapping and lithogeochemical sampling was carried out with 24 samples being collected and analyzed by Multielement-type methods. Many of


the sample sites had been stripped and/or pitted over the years and in general showed alteration and in places veining by quartz and sulphides. The host rocks appeared to be dominantly intermediate to felsic volcanics and in many stripped areas the rocks have a bleached to pale yellow-brown surface colouration. The purpose of this work was to determine the characteristics of the metavolcanics above and *in* the hangingwall of the CRMA and to compare them to those shown by the Lac Troilus gold-copper deposit. Of particular interest was the copper and Na2O content of the rocks. The geological mapping was done to provide some context for the chemical analyses..

The 12 samples collected during the prospecting and sampling program from the CRMA hangingwall area returned an average sodium(Na) content of 1.66% which translates into an average Na2O content of 4.47%. The Na2O content in the hangingwall of the Lac Troilus deposit is in the 4% to 5% range. Copper sample values with copper values ranging from less than 50 ppm to over 5000 ppm, i.e., over 0.5% Cu are also present in the hangingwall area of the CRMA.

A Gradient Induced Polarization (IP) survey was carried out over a five day period (October 18, 19 and 20 and November 27 and 28, 2017) with 5 lines of 1.5 km being surveyed for a total of 7.5 line-km. The work was carried out by Dan Patrie Explorations Ltd an experienced IP contractor and the location of the area surveyed is shown in Figure 8. and includes L12+00E. Elevated to anomalous chargeabilities occur in 3 northeast-trending zones parallel to the CRMA, 3 on the northwest footwall side and 2 on the southeastern hangingwall side (Figure 14) Anomalous chargeabilities were considered to be over 50 mV/V and up to and over 80 mV/V. In general there is a good crrelation between the anomalous gold and copper values from the Soil Gas Hydrocarbon survey and the Gradient IP anomalies.

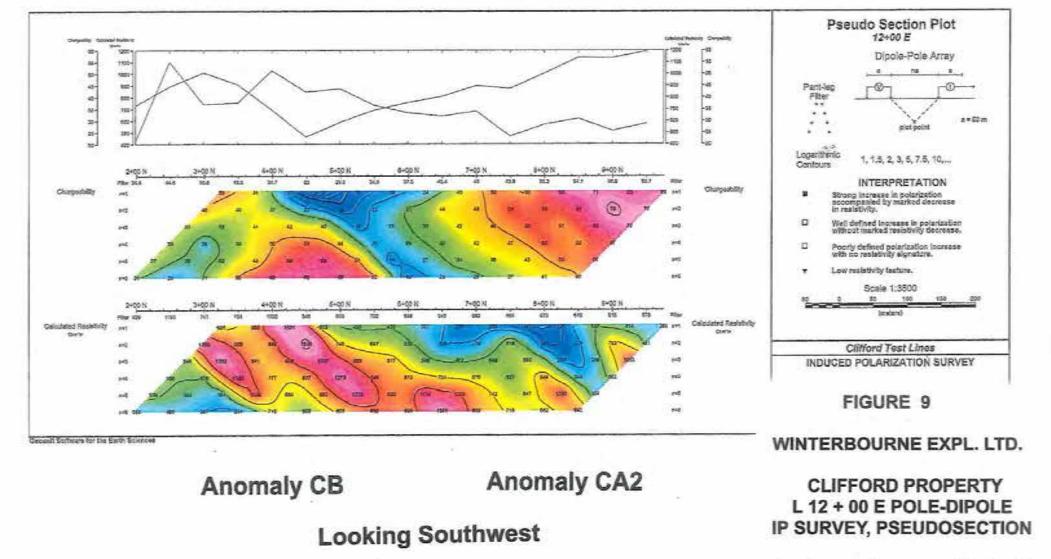
7. CURRENT WORK PROGRAM AND RESULTS

Three lines of Induced Polarization (IP) surveying, for a total of 2 750 metres 2.75 line-km were completed in the southwestern part of the Clifford Property between the 8 to 12 October 2018. The work was carried out by Dan Patrie Exploration Ltd., an experienced IP contractor. The locations of the 3 lines, L12+00E, L0 and L200 are shown in Figure 8. L12+00E was surveyed in an attempt to better define IP chargeability anomalies identified in the Gradient IP survey in October 2017 (Winter, 2019) and 2 Gradient IP lines, L0 and L200 were completed in the southwestern part of the Property to assess the area at the southwestern end of the CRMA. The L12+00E survey was completed using a Pole-Dipole array.

L12+00E was surveyed for a length of 800 metres from 2+00N to 10+00N. Both of the Gradient IP lines to the southwest were surveyed from their southern ends due to the road access to this area L0 was surveyed for a length of 1150 metres and L200 for a length of 800 metres The current electrodes were placed 500 metres beyond the ends of each line

The Clifford Property area appears for the most part to have been "clear cut" several years ago with much of the current forest cover being second growth and a typical Boreal forest mixture of spruce, and jackpine with some birch and poplar. For L12+00E, the line south of the road (5+00N) is mainly tree covered outcrop which in turn slopes south into low, wet ground hosting mainly alders. From 5+00N to 7+00N the ground is low and flat, wet to damp and covered with alders and small cedars. From here north to the end of the line it is generally low wet ground with scattered small spruce and tamarack. There is no outcrop north of the road along this line.

The southwestern part of the Property where lines 0 and 200 are located lies approximately 4 km east of Esker Lake Provincial Park and is underlain by sand to gravel outwash associated with the esker to the west Deposits of this material are readily observable along the Clifford access road, east of Hwy 672. As can be seen in Figure 8, at approximately 400 metres north of the Clifford south Property line, there is a small eastflowing stream. This stream was crossed by both lines 0 and 200. The dominant tree cover in this sector of the Property, due to the sandy soils, is jackpine.


The IP survey work was supervised by Mr Gab Roy, Smooth Rock Falls, an experienced IP operator with 6 experienced fieldmen employed by Dan Patrie Exploration.

The results of the surveying are shown in Figures 9 to 13 inclusive., with Figure 9 being a pseudosection along L12+00E and Figures 10 to 13 inclusive being plan maps of the chargeability and resistivity measurements for lines 0 and 200. Measurements of the chargeability and resistivity were taken for 2 Levels to produce the 4 maps

Two strong chargeability anomalies were identified in 12+00 at 4+50N and at 9+00N. Background chargeability values are considered to be <30mV/V with the maximum values for the zone at 4+50N being >60 mV/V and for the zone at 9+00N, over 70 mV/V. Both are over 2 times background. The anomaly at 4+50N has a well developed resistivity zone, while, unfortunately, the zone at 9+00N is at the end of the line and was incompletely measured.

Lines 0 and 200 were surveyed using a Gradient array and for these lines the chargeability and resistivity were measured at 2 levels with a = 50m and 100m. to give for each level a chargeability and a resistivity map - Figures 10 and 11 for Level 1 and 12 and 13 for level 2. Level 1 is at a depth of 35 m and Level 2 at a depth of 70 m.

For all 3 lines the chargeability and resistivity values are plotted at the mid-point of the "a" spacing. The IP Equipment Specifications are provided in Appendix 1.

minimum il non

4.7.7

1000

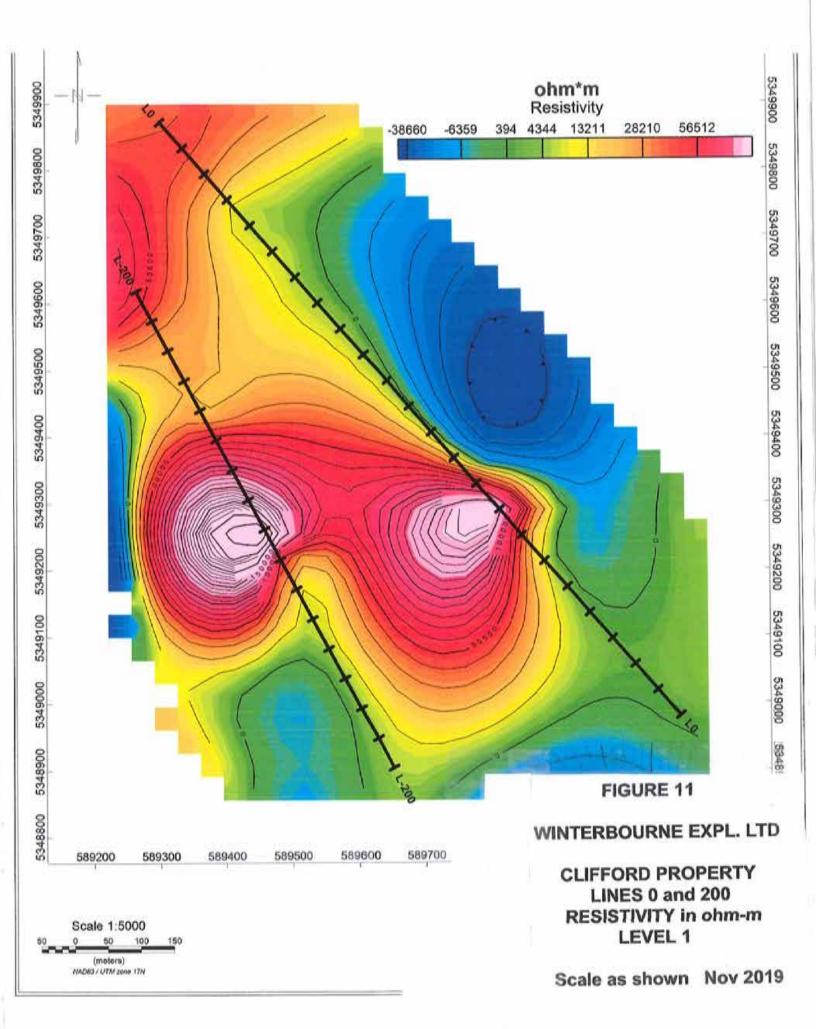
1.1

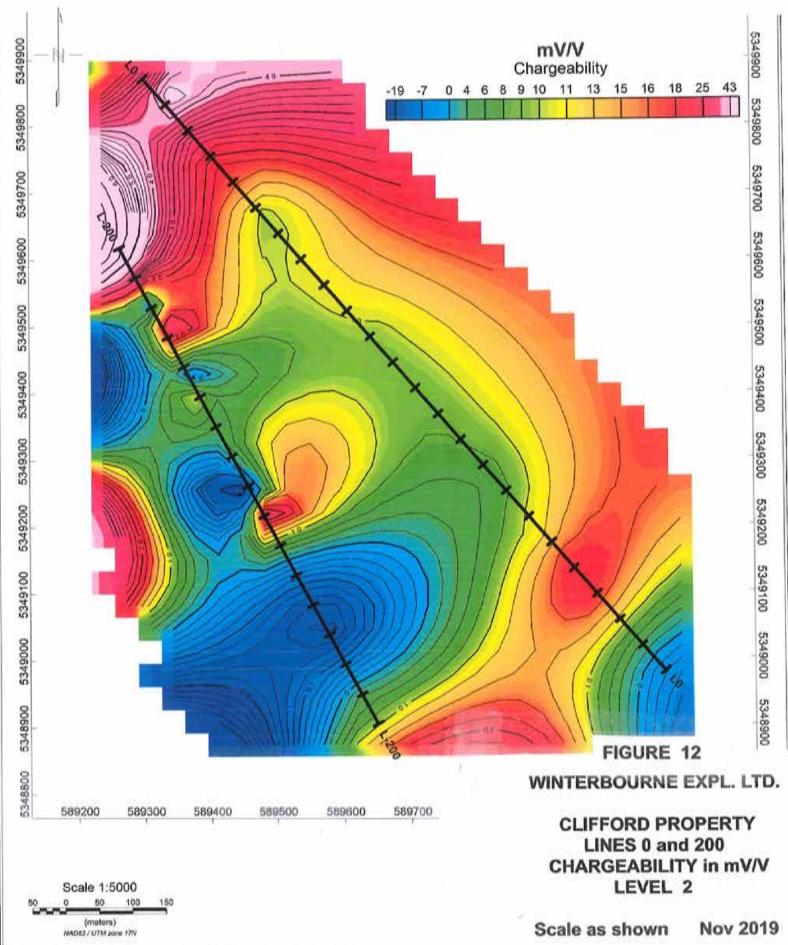
1 M 1 M 1

1.00

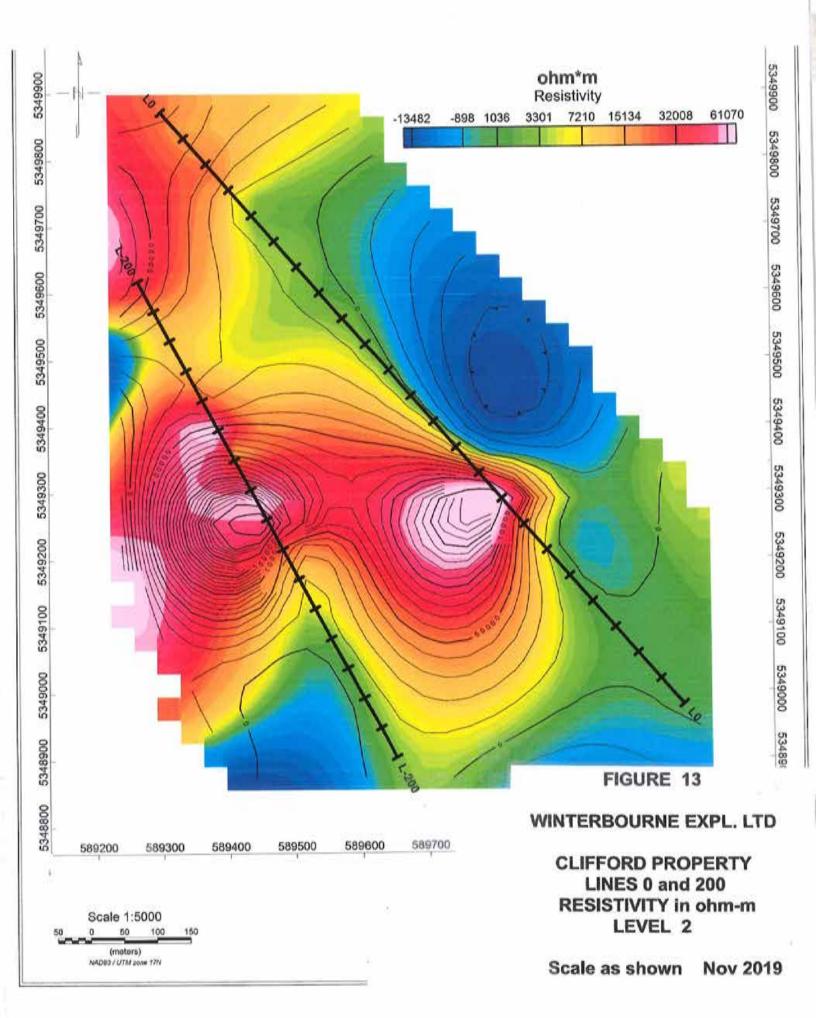
In Figure 10, the measured chargeability values for both Lines 0 and 200 are plotted and contoured for Level 1. and in Figure 11 the same is done for the measured resistivity values. Chargeability background values are considered to be <20mV/V with anomalous values >20mV/V. and to a maximum of 60 mV/V. This indicates an area of anomalous chargeabilities in the northwest sector of the Level 1 map.between Lines 0 and 200 and extending to the northwest into the adjacent property. For Level 2, Figure 12 shows that this area of anomalous chargeabilities is reduced with the only anomalous values being at the northwest end of Line 200, then extending in an arc to the northeast and then to the south ends of Lines 0 and 200. A zone of weak chargeabilities is also present at the south end of the Lines on Level 1.

For both Levels 1 and 2 there is an arcuate zone, convex to the northeast of somewhat elevated chargeabilities


The resistivity values for Level 1 show somewhat elevated values in the northwestern sector associated with the anomalous chargeabilities. In the central part of Figure 11 are two, more or less circular resistivity highs which are aligned east-west and appear to have no correlation with the chargeability values on this level and in this area. Figure 13 shows the resistivity values on Level 2 and they show a pattern very similar to those in Figure 11 - Level 1. In particular, there are 2 more or less east-west aligned, circular resistivity highs.

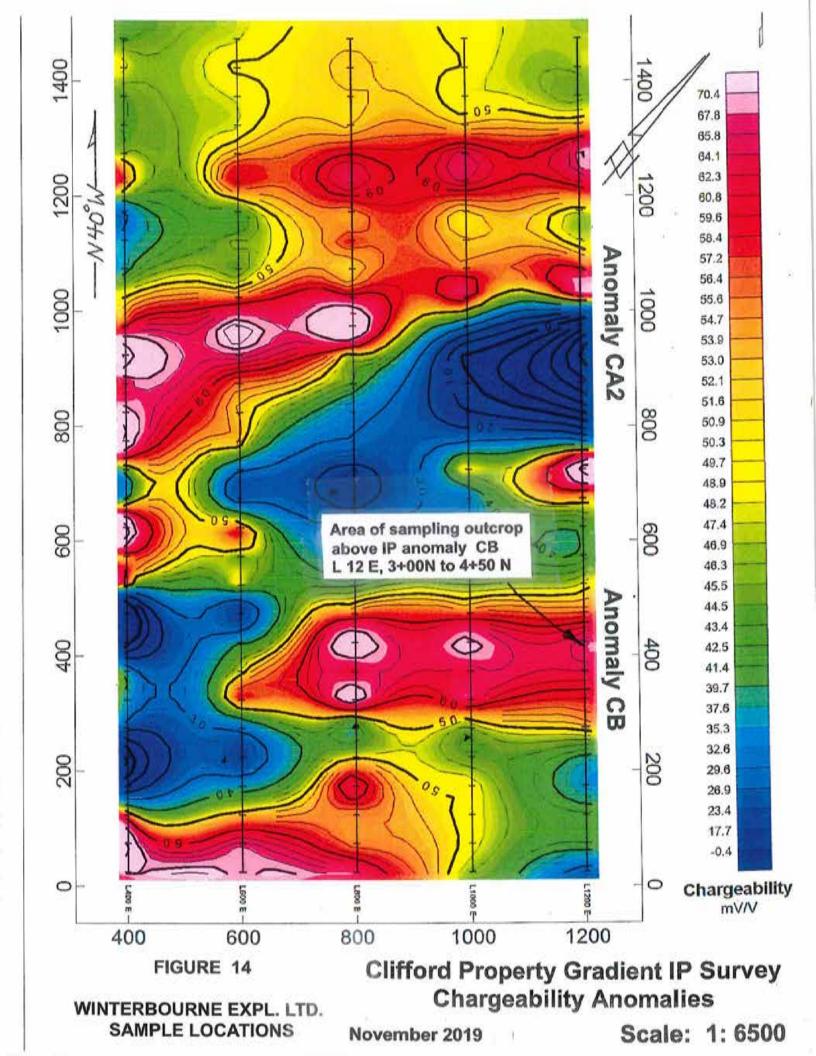

In summary, the 2 lines of IP in the western part of the Clifford Property show elevated chargeabilities in the northwestern part of the surveyed area which appears to be developing to the west into the adjacent claim group. In addition there is an arc, convex to the northeast, of elevated chargeability values, the cause of which is unknown

The resistivity values show 2 circular areas of elevated readings, aligned east west in approximately the centre of the survey area These 2 areas of elevated resistivities appear to correlate quite closely with the eastern 2 positive airborne magnetic anomalies shown in Figure 5, off the western end of the CRMA. The third small magnetic anomaly to the west appears to correlate with a small, circular, mafic to quartz diorite intrusive mapped by the OGS (Figure 4).


For the 3 IP survey lines, the results from the L12+00E, Pole-Dipole survey are by far the most interesting Here there are 2 strong chargeability anomalies, one at 4+50N, Anomaly CB and one at 9+00N, Anomaly CA2. The area of Anomaly CA2 is low and wet with no outcrop exposure so no lithogeochemical results are available for the area,however, in contrast to the south in the area of Anomaly CB, there is an area of outcrops of altered intermediate volcanics with anomalous copper, silver and gold values..

10 House Street State

Some additional work associated with the current program was prospecting and lithogeochemical sampling in the areas of Anomalies CA2 and CB along L12+00E. On the 14 August, the writer accompanied by B. Howden, Barrie, ON traveled from Sudury to the Property and spent the day prospecting for outcrops in the area of Anomaly CA2 (3.5 hours) and stripping and sampling an outcrop overlying Anomaly CB (4.0 hours)


The area of L12+00E from the road at 5+00N north to the area of AnomalyCA2 was previously described as low and flat and wet to damp. On the morning of August 14 an area approximately 500 metres in diameter and centred on L12+00E at 9+00N was prospected. An area of outcrop was located approximately 250 m to the east and on inspection was found to consist of altered intermediate to felsic volcanics, however, little sulphides were observed.

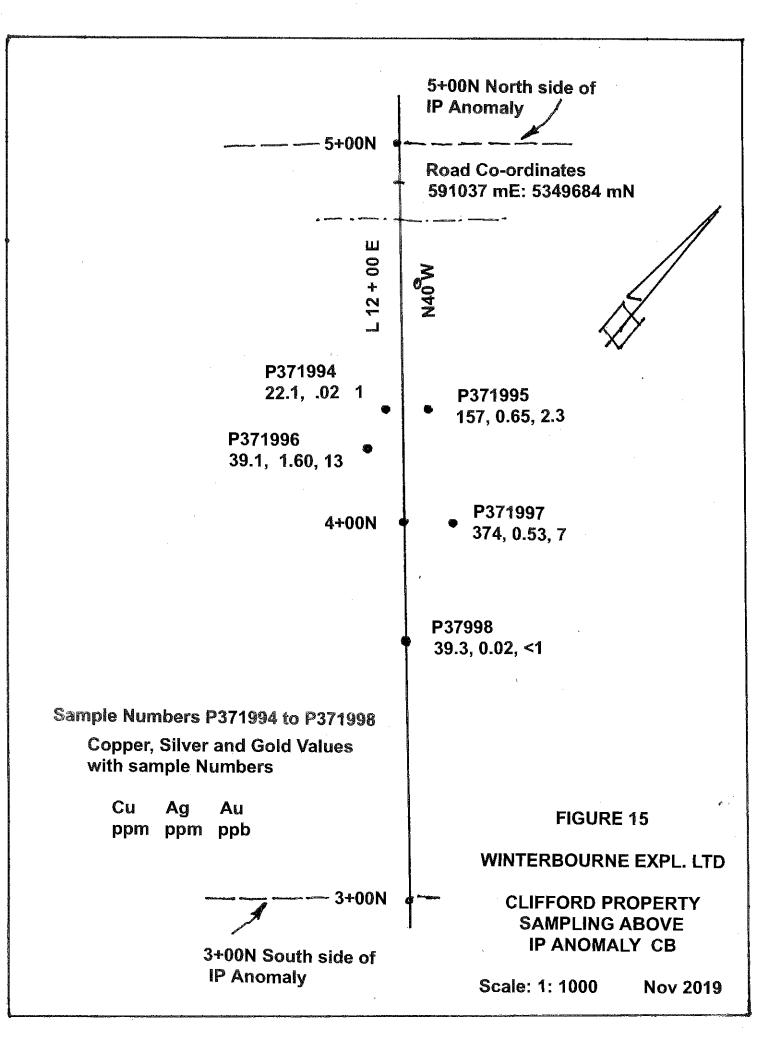

The rest of the day was spent along L12+00E from 5+00N, the road, to 2+00N. Here L12+00E crosses on the south side of the road a southwest trending ridge of altered intermediate volcanics which is mostly moss, soil and tree covered. However, as shown in Figure 15 we were able to hand strip and sample 5 areas. From these 5 stripped areas5 samples were collected and then sent to ALS Minerals for analysis All samples were analysed using a Multielement analysis and a Fire Assay Trace Gold analysis. The ALS Minerals Analysis report is provided in Appendix 2 and the sample locations, sample numbers and copper, silver and gold values are provided in Figure 15. Table 2 provides a summary of the copper, silver and gold results.

TABLE 2

Sample No	Copper (ppm)	Silver (ppm)	Gold (ppb)
P371994	23.1	0.02	1
P371995	, 157.0	0.65	2.3
P371996	37.1	1.60	13.0
P371997	374.0	0.53	7
P371998	39.3	0.02	< 1

ANOMALY CB AREA, OUTCROP SAMPLES

Five samples are not statistically significant, however, by inspection one can see that 2 copper values are greater than 100 ppm and anomalous and it would appear that 1.60 ppm silver with an associated 13 ppb gold are at least elevated. These samples between 3+70N and 4+30N, are directly above the southern side of IP chargeability anomaly CB which is centred at 4+50N on L12+00E.. Previous lithogeochemical sampling in the hangingwall of the CRMA showed enrichment in copper, silver and gold, Grunsky 1986, with 100 ppm copper being considered as anomalous.(Figure 7). Grunsky's paper also reported anomalous silver and gold values from the Clifford area.

And in summary,, the prospecting work failed to find any outcrops in the area of IP Anomaly CA2, however, the lithogeochemical sampling of the outcrop above IP Anomaly CB returned sample values indicating enrichment in copper and silver, which is considered to be positive.

8. <u>SUMMARY AND CONCLUSIONS</u>

The current work program consisted of 3 lines of Induced Polarization (IP) surveying and a day of prospecting and lithogeochemical sampling.

The IP surveying consisted of one 800 metre line (L12+00E) and 2 lines of Gradient IP (Lines 0 and 200). The survey on L12+00E indicated 2 strong IP chargeability anomalies, one at 4+50N and one at 9+00N, however the 2 Gradient IP lines in the west of the Property, in general returned little of economic interest, based on our current information.

The prospecting of Anomaly CA2 was not able to locate any outcrops in the area of this anomaly, however, lithogeochemical sampling of an outcrop ridge above the top of IP Anomaly CB returned positive results and further indicates the economic potential of the zone represented by Anomaly CB

9. PROPOSED PROGRAM AND BUDGET

To advance the Project it is proposed that 2 holes be drilled along L12+00E to attempt to determine the mineralogy of and in turn the economic potential of the 2 IP chargeability anomalies, CA2 and CB. For CA2 a 200 m long hole is proposed and for CA a 300 m long hole, for a total of 500 metres of drilling In addition, it is proposed that the area from L0+00, 1200 metres west of L12+00E to L20+00E be covered with a Pole-Dipole IP survey with N40 W lines, 1500 m long and spaced at 200 metres. This would be a total of 16 line-km of line-cutting and IP surveying The following proposed budget includes an additional 700 metres of diamond drilling.

A proposed budget for the Program is as follows.

1.	16 line-km of Pole-Dipole IP at \$ 3000 per line-km including line-cutting, data processing and mobilization and de-mobilization	\$ 50 000
2.	Diamond drilling NQ, 5 holes for a total of 1200 metres all inclusive, \$ 120 per metre	\$ 150 000
	TOTAL	\$ 200 000

An Exploration Permit covering the Clifford Property was issued to Winterbourne Explorations Ltd on the 23 November 2016 and permitted line-cutting, an IP survey and the drilling of up to 5 holes. The permit was good for 3 years and in Appendix 3 a copy is provided.

•

10. EXPENDITURES

The expenditures for the recently completed program of 3 lines of IP surveying and prospecting and lithogeochemical sampling are as follows.

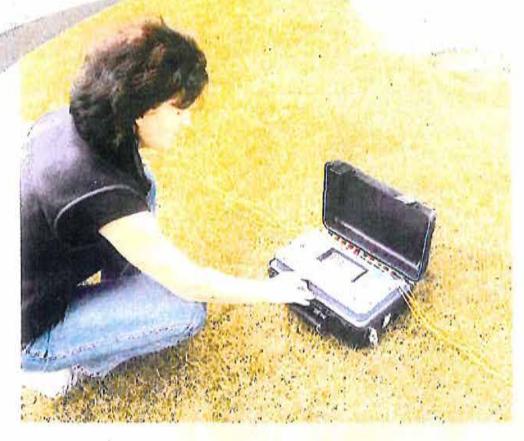
1.	1 line of Pole-Dipole IP of 800 m and 2 lines of Gradient IP (1950 m) for a total of 2.75 line-km at \$ 2 750 per line-km	\$ 7 562.00
2.	Mob and De-Mob, Sudbury to Clifford Property 2 vehicles and 7 men	1 400.00
3	Data processing	500.00
	Sub-total	\$ 9 462.00

B. Prospecting and Sampling

1.	S. Winter, 1 day at \$ 600 per day	600.00
2.	B. Howden, field assistant at \$ 250 per day	250.00
3.	Travel, Sudbury to the Clifford Property and return, 717 km @ \$ 0.50 per km	358.50
4.	ALS Minerals Invoice	321.69
5.	Report	1 700.00
	Sub-total	\$ 3 230.19
	Total Expenditure	s \$ 12 692.19

L.D.S. Winter, BASc, MSc (App) Winterbourne Explorations Ltd 4 December 2019

11. REFERENCES


- 1. Berger, B.R., 2002, Geological Synthesis of the Highway 101 Area, East of Matheson, Ontario, OGS, OFR 6091, 124p.
- 2. Byron, M., 1994, Anomalous Halos of Pathfinder Elements for Gold, Upper Canada Deposit, Kirkland Lake, Ontario, Explor. Mining Geology, Vol 3, No 2, pp 161-179
- 3. Fraser, R.J., 1993, The Lac Troilus Gold-Copper Deposit, Northwestern Quebec: A Possible Archean Porphyry System; Econ. Geol. Vol 88, pp. 1685 1699.
- Grunsky,E.C., 1986, Recognition of Alteration and Compositional Variation Patterns in Volcanic Rocks Using Statistical Analysis of Lithogeochemical Data, Ben Nevis Township Area, District of Cochrane, Ontario; OGS, OFR 5628,187p., 50 Figures, 10 Tables and 6 photos.
- 5. Jensen, L.S., 1975, Geology of Clifford and Ben Nevis Townships, District of Cochrane, OGS, Geoscience Report 132, 55p., Map 2283, 1 in = ½ mile
- MacDonald,P.J., Piercey,S.J. and Hamilton,M.A. 2005 An integrated study of intrusive rocks spatially associated with gold and base metal mineralization in the Abitibi greenstone belt, Timmins area and Clifford township: Discover Abitibi Initiative; Ontario Geol. Survey. Open File Report 6160, 210p
- 7. Peloquin, A.S. and Piercy, S.J., 2005, Geology and Base Metal Mineralization in Ben Nevis, Clifford and Katrine Townships, Discover Abitibi Initiative, OGS, OFR 6161
- 8. Reed, L.E., 2005, Gravity and Magnetic Three Dimensional (3D) Modelling: Discover Abitibi Initiative, OGS, OFR 6163, 40p
- 9. Winter, L.D.S, 2017, Early Stage Exploration Program on the Clifford Property, Clifford Township, Larder Lake Mining Division, Ontario, 18p, 18 Fig., 3 App.
- ¹⁰ Winter, L.D.S., 2019, Gradient IP Survey on the Clifford Property, Clifford Township, Larder Lake Mining Division, Ontario, 18p, 12 Fig, 3 App

APPENDIX 1

INDUCED POLARIZATION (IP) SURVEY GEOPHYSICAL SURVEY EQUIPMENT SPECIFICATIONS

ELECTRICAL METHODS

A DIVISION OF LRS

IPR-12

Induced Polarization

WWW.SCINTREKLTD.COM

Setting the Standards

IPR-12 SPECIFICATIONS

The IPR-12 IP receiver has been successfully used for many years as a mineral exploration tool, specifically for gold exploration.

induced polarization can also be used as a method for mapping hydrocarbon plumes and geotechnical applications,

1 to 8 dipoles are measured simultaneously, Inputs: 16 MΩ Input Impedance: SP Bucking: ±10 volt range. Automatic linear correction operating on a cycle by cycle basis. 50 µV to 14 V Input Vollage (Vp) Range: 0 to 300 mV/V Chargeabilly (M) Range: 60 microseconds to 2000 seconds. Tau Range: Reading Resolution of Vp, SP and M: Vp - 10 µV; SP - 1 mV; M - 0.01 mV/V Better than 1% Absolute Accuracy of Vp, Sp and M: At Input more than 100dB, Common Mode Rejection: Vp Integration Time: 10% to 80% of the current on time. IP Translent Program: Pulse selectable at 1,2,4,8,16 or 32 seconds. Programmable windows also available. 50% duty cycle. Transmitter Timing: On/off times of 1,2,4,8, 16 or 32 seconds. All dipoles measured individually in sequence, Range 0 to 2 MO, with External Circuit Test: 0,1 kΩ resolution. Circuit resistances displayed and recorded. RF filter, 10 Hz 6 polo low pass filter, statistical noise spike removal. Filtering: 1200 mV of SP; 807 mV of Vp and 30.28 mV/V of M. Internal Test Generator: For monitoring input signals; switchable to any dipole via keyboard. Analog Meler: Stores approximately 400 dipoles of information when 8 dipoles are Memory Capacity: measured simultaneously. Power Supply: Rechargeable NI-Cad D calls. More than 20 hours service at +25°C. (77°F), more than 8 hours at -30°C (-22°F) -30°C to +50°C (-22°F to 122°F) Operating Temperature: Dimensions and Weights: Console: 355 x 270 x 165 mm (14" x 10.6" x 8.5") Charger: 120 x 95 x 55 mm (4.7" x 3.7" x 2") Console: 5.8 kg (12.8 lbs.) Ballerios: 1.3 kg (2.8 lbs.) 1.1 kg (2.4 lbs.) Charger:

OPTIONS

Transmitters Software Packages Training Program

ISO 9001:2000 registered company. All specifications are subject to change without notice.

Speakingstion Sheet Part Number 748711 Ruvision 0

CANADA Seintrex 222 Baldercroft Road

Zzz Snidercroft Kosti Concurd, Ontario 1.4K 2K1 Telephone: +1 906 680 2280 Fax: +1 905 669 6403 e-mail: <u>acintex:Bacintexitd.call</u> Wabulta: www.acintrex.com

USA

Micro-g LaCoste 1401 Harizon Avenue Lafiyetta, CO 60028 Telephona: +1 303 828 3499 Faic +1 303 828 3288 e-mail: <u>Inferêncicatiacesta.com</u> Wabato: www.microgincosta.com Walcer Model TX KW10

WALCER GEOPHYSICS LTD

4 14 17 17 10 4

TRANSMITTERS

MOTOR GENERATORS GEOREELS SPEEDWINDERS ELECTRODES WIRE

RENTALS MAINTENANCE

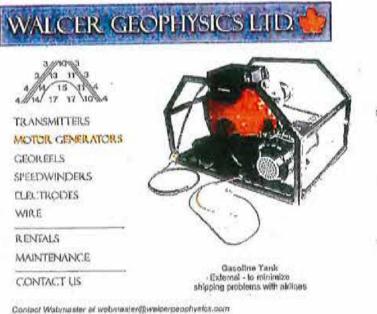
MANNER CONTRACT

CONTACT US

Contact Waternaster at webmaster@wateargeophysics.com

Voltage Input 125V line to neutral 400 Hz / 3 phase Powered by MG12, MG0 and MG12A

Output 100 - 3200V in 10 steps 0.05 - 20 Amps Tested to 10.5 kVA


Switching 1 sec., 2 sec., 4 sec., 8 sec.

Metering LED for line voltage and output current

Blze 63cm, x 54cm, x 25cm,

Weight 44 kg. Walcer Geophysics Ltd. - Motor Generators - MG-12A

Page 1 of 1

Output Self Excite / Regulated 120 / 220V AC 20 KVA Max 400 Hz / 3 phase

MG-12A

Generator Bendix Aircraft Type Very durable Forced Air Cooled

Engine 24 HP Honda Electric Start

Size 79cm, x 61cm, x 48cm.

Weight 89 kg. For each reading taken in the field, the IPR-12 Receiver calculates the chargeability and resistivity for the site. In addition to the readings taken, the electrode array and locations are also noted by the operator. The current voltage at the time of the reading is also recorded. Following the completion of the survey, the recorded chargeability and resistivity values can be downloaded from the IPR-12 Receiver to a computer with a Geosoft program and from there the chargeability and resistivity values can be plotted as maps as presented in Figures 11- 14. Mr Gab Roy supervised the field work and did the computer Work.

The IP Survey Equipment Specifications for the motor generator, transmitter and IPR-12 Receiver are provided in Appendix I. The transmitter can pulse at 1, 2, 4, 8, 16 or 32 seconds and for this survey a 2 second on and off cycle was used. During the survey, readings were generally completed within a 5 minute time interval which is normal. Chargeability readings are reported as mV/V and resitivity values as ohm-metres.

APPENDIX 2

IP SURVEY INVOICE

Withheld for client confidentiality.

APPENDIX 3

Exploration Permit

ł

.

Ministry of Northern Development and Mines

Mineral Development and Lands Branch

Ontario Government Complex – E Wing PO Bag 3060, 5520 Highway 101 East South Porcupine ON PON 1H0 Tel: (705) 235-1625 Fax: (705) 235-1660

Ministère du Développement du Nord et des Mines

Direction de l'exploitation des minéraux et de la gestion des terrains miniers

Complexe du Gouvernement de l'Ontario Aile E, Sac postal 3060, 5520 Route 101 Est South Porcupine ON PON 1H0 Tél: (705) 235-1625 Téléc: (705) 235-1660

November 23, 2016

L. D. S. Winter Winterbourne Explorations Ltd.

Dear Mr. Winter:

Re: Exploration Permit Application, PR-16-10982, KL Project Clifford & Ben Nevis Townships; Cochrane District

Attached is your exploration permit, PR-16-10692, issued pursuant to subsection 78.3(2) of the Mining Act, R.S.O. 1990, Chapter M.14. This permit is subject to the requirements of the Mining Act, Ontario Regulation 308/12, the applicable Provincial Standards for Early Exploration and any additional Terms and Conditions in the permit that are specific to your project.

Please note that the attached exploration permit is effective for a period of three (3) years. You can apply to renew your permit, which should be done well in advance of the expiry date so there will be adequate time for processing and to avoid any stoppage in exploration activities.

If there are changes to any names or addresses on the permit please advise the Ministry of Northern Development and Mines (MNDM) and an information amendment will be made to your exploration permit. If you would like to make changes to the exploration activities such as the type of activity, location of activity or scale of the work please follow the amendment process and contact MNDM for further direction.

If you have any questions or need any assistance, please do not hesitate to contact Desmond O'Connor, Mineral Exploration and Development Consultant in the South Porcupine office, at 705.235.1641 or by e-mail to Desmond.O'Connor@Ontario.ca.

Sincerely,

Robert Calhoun Director of Exploration

Enclosure: Exploration Permit

CC;

Chief Alex (Sonny) Batisse and Council, Matachewan First Nation Kayla Schram, Mineral Development Advisor, Matachewan First Nation Jason Batise, Executive Director, Wabun Tribal Council Stephanie Labelle, Mineral Development Advisor, Wabun Tribal Council Chief Joel Babin and Council, Wahgoshig First Nation

Paul McKenzie, Mineral Development Advisor, Wahgoshig First Nation Chris Sackaney, Land and Resources Manager, Wahgoshig First Nation Ginger Sackaney, Band Administrator, Wahgoshig First Nation Brian Gelinas, Wahgoshig First Nation

Chief Wayne McKenzie and Council, Timiskaming First Nation Clifton Polson, MDA and Mining Coordinator; Timiskaming First Nation Rose Thomas, Council Secretary; Timiskaming First Nation

Liliane Ethier, President Métis Nation of Ontario - Temiskaming Métis Council

Jacques Picotte, President Métis Nation of Ontario - Timmins Métis Council

Urgel Courville, President Métis Nation of Ontario - Northern Lights Métis Council

David Hamilton, President Métis Nation of Ontario - Chapleau Métis Council

Andy Lefebvre, Mineral Development Advisor, Métis Nation of Ontario Aly N. Alibhai, Director of Lands, Resources & Consultations, Métis Nation of Ontario

APPENDIX 4

ALS MINERALS CERTIFICATE

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

CERTIFICATE SD19213087

Project: Rock Samples

This report is for 5 Rock samples submitted to our lab in Sudbury, ON, Canada on 27-AUG-2019.

The following have access to data associated with this certificate:

STEWARTWINTER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS41	Ultra Trace Aqua Regia ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

CERTIFICATE OF ANALYSIS SD19213087

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	ME-MS41 Ag ppm 0.01	ME•MS43 Al % 0.01	ME-MS41 As ppm 0.1	ME-M541 Au ppm 0.02	ME-MS41 8 ppm 10	ME-MS41 Ba ppm 10	ME-MS4} Be ppm 0.05	ME-M541 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	МЕ-MS41 Со рртя 0.1
P371994 P371995 P371996 P371997 P371998		0.45 1.09 0.70 1.47 0.81	81.3	87.5 85.9	0.02 0.65 1.60 0.53 0.02	2.65 3.22 0.89 1.55 3.34	0.6 1.1 0.5 0.4 0.4	<0.02 0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	20 30 40 20 30	0.21 0.23 0.27 0.16 0.22	0.02 0.39 4.68 1.07 0.03	0.67 0.65 0.44 0.53 1.92	0.04 0.02 0.07 0.02 0.18	9.64 8.78 4.95 15.20 6.44	22.5 32.1 2.4 10.0 34.6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

CERTIFICATE OF ANALYSIS SD19213087

Sample Description	Method Analyte Units LOD	ME-MS43 Cr ppm 1	ME-MS41 Cs ppm 0.05	ME-MS41 Cu Ppm 0.2	ME-MS41 Fe % 0.01	МЕ-MS41 Ga Ррт 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-M541 in ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Լի ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05
P371994 P371995 P371996 P371997 P371997 P371998		150 145 11 35 248	0.30 0.34 0.19 0.21 0.65	22.1 157.0 39.1 374 39.3	6.04 6.45 1.90 2.88 4.80	11.60 12.40 4.62 6.65 10.15	0.07 0.13 <0.05 <0.05 0.22	0.09 0.17 0.38 0.25 0.52	<0.01 <0.01 <0.01 <0.01 0.01	<0.005 0.006 0.006 0.042 0.015	0.07 0.04 0.13 0.10 0.01	3.9 3.4 2.7 7.1 2.9	13.1 20.3 5.7 7.9 12.9	3.01 3.73 0.52 1.28 2.46	709 900 97 298 1120	8.13 2.59 29.4 59.2 0.69
					<u> </u>											

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

CERTIFICATE OF ANALYSIS SD19213087

Sample Description	Method Analyte Units LOD	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ррт 0,2	ME-MS41 P ppm 10	ME•MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01
P371994 P371995 P371996 P371996 P371997 P371998		0.02 0.02 0.02 0.03 0.03	0.35 0.28 0.80 0.27 0.18	68.4 110.5 8.6 29.6 176.5	890 840 590 450 370	1.4 1.9 26.8 1.7 1.6	3.9 2.2 5.3 4.4 6.3	0.006 0.002 0.007 0.039 0.001	0.01 0.29 0.42 0.14 <0.01	0.11 0.16 0.09 0.09 <0.05	5.3 5.7 1.4 5.3 8.4	0.3 <0.2 0.4 0.7 <0.2	0.3 0.5 1.2 0.6 0.4	19.7 20.1 6.8 23.5 19.2	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.63 1.38 0.26 <0.01
		-														
	:															
									<u></u>			·····		<u></u>		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

CERTIFICATE OF ANALYSIS SD19213087

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

												ANALIJIJ	3013213007	
Sample Description	Method Analyte Units LOD	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005	ME-MS41 Tl Pbm 0.02	ME-MS41 U ррт 0.05	ME-MS41 V Ppm I	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-M541 Zr ppm 0.5	Au-ICP21 Au ppm 0.001			
P371994 P371995 P371996 P371996 P371997 P371998		0,4 0,3 1.4 1.3 0,5	0.178 0.297 0.088 0.152 0.314	0.02 <0.02 0.03 0.03 <0.02	0.09 0.07 0.25 0.16 0.16	107 116 19 52 112	0.66 0.80 2.08 0.63 0.05	5.96 7.08 4.87 5.97 4.93	116 156 20 86 82	2.2 4.2 13.7 8.7 21.5	0.001 0.023 0.013 0.007 <0.001			
													·	
						<u></u>		<u> </u>				Anni Anni Anni Anni Anni Anni Anni Anni	*****	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

CERTIFICATE OF ANALYSIS SD19213087

	CERTIFICATE CON	MMENTS	
Gold determinations by th ME-MS41			
Processed at AL5 5udbury CRU-31 PUL-QC	located at 13S1-B Kelly Lake Road, 1 CRU-QC SPL-21	Jnit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-31
Processed at AL5 Vancouv Au-ICP21	ver located at 2103 Dollarton Hwy, N ME-MS41	orth Vancouver, BC, Canada.	
	ME-MS41 Processed at AL5 Sudbury CRU-31 PUL-QC Processed at AL5 Vancouv	ANAL [®] Gold determinations by this method are semi-quantitative due ME-MS41 Processed at AL5 5udbury located at 13S1-B Kelly Lake Road, 1 CRU-31 PUL-QC PUL-QC PUL-QC Processed at AL5 Vancouver located at 2103 Dollarton Hwy, N	LABORATORY ADDRESSES Processed at AL5 5udbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU-31 CRU-QC LOG-22 PUL-QC SPL-21 WEI-21 Processed at AL5 Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

INVOICE NUMBER 4861311

DULU				ANAL	YSED FOR		UNIT	
BILLI	NG INFORMATION		QUANTITY	CODE -	DESCRIPTION		PRICE	TOTAL
Sample Type: R Account: V Date: 1 Project: R P.O. No.: Quote:	SD19213087 Rock VINEXP 2-SEP-2019 Rock Samples Due on Receipt	C1	1 5 4.52 5 5	BAT-01 PREP-31 PREP-31 ME-MS41 Au-ICP21	Administration Fee Crush, Split, Pulverize Weight Charge (kg) - Crush, Spl Ultra Trace Aqua Regia ICP-MS Au 30g FA ICP-AES Finish	- <u></u>	37.60 8.50 0.85 28.60 18.95	37.60 42.50 3.84 143.00 94.75
ATTN:	RBOURNE EXPLORATIO	PNS LTD.				SUBTOTAL (CAD) R100938885 GST TOTAL PAYABLE (CAD)		321.69 16.08 337.77
1849 C	DRIOLE DR RY ON P3E 2W5		Pov	ment may be m	ade by: Cheque or Bank Transfer	TOTAL PAYABLE (CAD)	\$	337.7

Beneficiary Name: ALS Canada Ltd. Royal Bank of Canada ROYCCAT2 Bank: SWIFT: Vancouver, BC, CAN Address: 003-00010-1001098 Account: Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0223 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

								i	<u> </u>	CERTI					521500	· · ·
Sample Description	Method Analyte Units LOD	ME-MS41 Ag ppm 0.01	ME-MS4 i Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0,02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Со ррт 0.1	ME-M\$41 Cr ppm 1	ME-MS41 Cs ppm 0,05	ME-MS41 Cu ppm 0.2
G313-5 Target Range - Lower Upper GPP-14 Target Range - Lower Upper KIP-19 Target Range - Lower Upper MRGe008 Target Range - Lower Upper OREAS 252 Target Range - Lower Upper OREAS 684 Target Range - Lower Upper OREAS 905 Target Range - Lower Upper OREAS-45h Target Range - Lower Upper PK2 Target Range - Lower Upper PMP-18 Target Range - Lower	LOD Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound						10									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

OC CERTIFICATE OF ANALYSIS SD19213087

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

Construction Construction<									L	<u></u>			OF AN	<u> </u>		921300	
G313-5 Target Range - Lower Bound Upper Bound WP-14 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound OREAS 545 3.63 9.72 0.16 0.79 0.05 0.160 1.25 37.4 31.0 1.13 425 15.65 0.31 0.98 704 3.63 9.72 0.16 0.79 0.05 0.160 1.25 37.4 31.0 1.13 425 15.65 0.31 0.98 704 3.63 9.72 0.16 0.79 0.05 0.160 1.25 37.4 31.0 1.13 425 15.65 0.31 0.98 704 3.22 8.73 0.07 0.64 0.04 0.137 1.12 33.2 28.6 1.03 378 13.610 0.39 760 0.625 5.25 1.60 0.29 0.83 0.10 0.179 1.40 41.0 36.4 1.29 473 16.10 0.39 1.09 760 0.625 5.96 0.09 1.27 0.01 0.582 0.30 39.9 4.3 0.14 346 3.05 0.08 0.33 </th <th>Sample Description</th> <th>Analyte Units</th> <th>Fe %</th> <th>Ga ppm</th> <th>Ge ppm</th> <th>Hf ppm</th> <th>Hg ppm</th> <th>In ppm</th> <th>K %</th> <th>La ppm</th> <th>Lí ppm</th> <th>Mg %</th> <th>Mn ppm</th> <th>Мо ррпі</th> <th>Na %</th> <th>Nb ppm</th> <th>Ni ppm</th>	Sample Description	Analyte Units	Fe %	Ga ppm	Ge ppm	Hf ppm	Hg ppm	In ppm	K %	La ppm	Lí ppm	Mg %	Mn ppm	Мо ррпі	Na %	Nb ppm	Ni ppm
Target Range - Lower Bound (PP-14) Upper Bound Upper Bound (Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound Upper Bound OREAS 252 3.63 9.72 0.16 0.79 0.05 0.180 1.25 37.4 31.0 1.13 425 15.65 0.31 0.98 704 RCeO05 3.63 9.72 0.16 0.79 0.05 0.180 1.25 37.4 31.0 1.13 425 15.65 0.31 0.98 704 CREAS 25 0.07 0.58 0.10 0.173 1.40 41.0 36.4 1.29 473 16.10 0.39 1.09 760 OREAS 25 0.09 1.27 0.01 0.582 0.50 39.9 4.3 0.14 348 3.05 0.08 0.33 9.2 Target Range Lower Bound Upper Bound 3.36 5.98 0.09 1.27 0.01 0.582 0.50 39.9 4.3 0.14 348 3.05 0.08 0.33 9.2 Target Range Low								STAN	IDARDS								
	Upper CPP-14 Target Range - Lower Upper KIP-19 Target Range - Lower Upper MRCeo08 Target Range - Lower Upper OREAS 252 Target Range - Lower Upper OREAS 684 Target Range - Lower Upper OREAS 905 Target Range - Lower Upper PK2 Target Range - Lower Upper PMP-18 Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	3.22 3.96 3.36 3.14	8.73 10.80 5.98 5.45	0.07 0.29 0.09 <0.09 <0.05	0.64 0.83 1.27 1.02	0.04 0.10 0.01 <0.01	0.160 0.137 0.179 0.582 0.582	1.25 1,12 1.40 0.30 0.28	33.2 41.0 39.9 34.7	29.6 36.4 4.3 4.0	1.03 1.29 0.14 0.13	378 473 348 310	13.10 16.10 3.05 2.65	0.30 0.39 0.08 0.08 0.07	0.79 1.09 0.33 0.19	622 760 9.2 7.8

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

Analyte P Pb Rb Re S Sb Sc Se Sn Sr Ta Te Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	ME-M\$41 ME-M\$41 ME-M\$4 Th Ti Ti
Sample Description LOD 10 0.2 0.1 0.001 0.01 0.05 0.1 0.2 0.2 0.2 0.01 0.01	ррт % ррт 0.2 0.005 0.02
Lamine Exclusion Lop 10 0.2 0.1 0.01 0.05 0.1 0.2 0.2 0.21 0.01 0.01 G313-5 Target Range - Lower Bound Upper Bound STANDARDS STANDARDS STANDARDS STANDARDS KIP-19 Target Range - Lower Bound Upper Bound MKCe08 1000 1990 145.5 0.010 0.30 3.43 7.2 1.0 3.6 81.4 0.02 0.03 MCGe08 1000 1990 145.5 0.010 0.30 3.43 7.2 1.0 3.6 81.4 0.02 0.03 Target Range - Lower Bound 1000 1990 145.5 0.010 0.35 3.90 8.4 1.5 4.0 88.5 0.03 0.04 Wpper Bound 1175 162.0 0.010 0.05 1.11 1.6 2.7 1.3 13.2 <0.01 0.04 Upper Bound 230 16.1 18.2 <0.001 0.06 1.11 1.6	0.2 0.005 0.02 22.5 0.381 0.87 19.1 0.338 0.64 23.7 0.424 0.92 8.0 0.020 0.12 7.4 0.006 0.05 9.4 0.030 0.15

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

QC CERTIFICATE OF ANALYSIS SD19213087

Method Analyte ME-MS41 ME-MS41 ME-MS41 ME-MS41 ME-MS41 Au-ICP23 Sample Description Units LOD Ppm Ppm	
C313-5 Target Range - Lower Bound (Upper Bound) STANDARDS CP1-4 Target Range - Lower Bound (Upper Bound) 722 564 750 0331 0483 0.865 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

							have been seen as the second								
Method Analyte Units LOD	ME-MS41 Ag ppm 0.01	ME-MS43 Al % 0.01	ME-MS41 As ppm 0.1	ME-M541 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bì ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS4) Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-M\$41 Cr ppm 1	ME-MS41 Cs ррт 0.05	ME-MS41 Со ррт 0.2
						BL	ANKS								
Bound Bound Bound	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.1 <0.1 0.2	<0.02 <0.02 0.04	<10 <10 20	<10 <10 20	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.02 <0.02 0.04	<0.1 <0.1 0.2	<1 <1 2	<0.05 <0.05 0,10	<0,2 <0.2 0,4
						DUPL	ICATES								
Bound	0.03 0.03 0.02 0.04	0,20 0.20 0,18 0,22	242 234 226 250	<0.02 <0.02 <0.02 0.04	10 10 <10 20	90 90 70 110	0.44 0.40 0.35 0.49	0.03 0.04 0.02 0.05	>25.0 >25.0 23.7 >25.0	0.12 0.11 0.10 0.13	22.5 22.0 21.1 23.4	1.7 1.8 1.8 1.9	14 14 12 16	2.88 2.82 2.66 3.04	2.7 2.7 2.4 3.0
Bound Bound					<u></u>					··· ···	<u></u>				
Bound Bound								*****					<u> </u>		M
Bound Bound			~												
Bound Bound Bound Bound															
	Analyte Units LOD Bound	Mailyte Ag Analyte Ag ppm 0.01 Bound 0.01 Bound <0.01	Analyte Units Ag Al Dunits ppm % LOD 0.01 0.01 Bound <0.01	Mention Analyte LOD Ag Al As Whits LOD ppm % ppm 0.01 0.1 Bound Bound - <td< td=""><td>Analyte Units LOD Ag Al As Au Bound Ag Al As Au Analyte Wints Bound Bound Bound Bound Ag Al As Au Au</td></td<> <td>Maritote Units LOD Ag Al As Au B Bound Bound Bound Bound Bound <0.01</td> 0.01 0.1 0.02 10 Bound Bound Bound <0.01	Analyte Units LOD Ag Al As Au Bound Ag Al As Au Analyte Wints Bound Bound Bound Bound Ag Al As Au Au	Maritote Units LOD Ag Al As Au B Bound Bound Bound Bound Bound <0.01	Mariyte Units LOD Ag Al As Au B Ba Ba Units LOD 0.01 0.01 0.1 0.02 10 10 10 Bound Bound Bound 0.01 <0.01	Mailyte Units LOD Ag Al As Au B Ba Be Units 0.01 0.01 0.1 0.02 10 10 0.05 Bound Bound Bound Bound -0.01 -0.01 -0.01 -0.02 10 10 0.05 Bound Bound Bound -0.01 -0.01 -0.01 -0.02 -10 -10 -0.05 Bound Bound -0.02 0.02 0.02 -10 -0.02 -10 -0.05 Bound Bound -0.02 0.02 0.04 20 20 0.10 Bound Bound 0.02 0.02 242 -0.02 10 90 0.44 0.03 0.20 234 -0.02 10 90 0.49 Bound 0.02 0.18 228 -0.02 -10 70 0.35 Bound Bound	Mative Units Ag Al As Au B Ba Be Bi Units ppm % ppm ppm	Method Units Ag AJ As Au B Ba Be Bi Ca LOD 0.01 0.01 0.1 0.02 10 10 0.05 0.01 0.01 Bound Bound Bound Bound Bound Bound Bound -0.01 <0.01	Pre-thod Units Ag Al As Au B Ba Be Bi Ca Cd Ca Cd Ca Cd Ca Cd Ca Cd Ca Ca <thca< th=""> Ca Ca</thca<>	Method Units Ag Al As Au B Ba Be Bit Ca Cd Cd	Method Units (100 Ag Al As Au B Ba Be Bit Ca Cd Cd Ce Co 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.1 Bound Bound -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.1 Bound -0.01 -0.01 -0.01 -0.02 -10 -10 -0.05 -0.01 -0.01 -0.02 -0.1 Bound -0.02 0.02 0.02 0.04 20 20 -0.01 -0.01 -0.02 -0.1 Bound -0.02 0.02 2.2 0.04 2.0 10 90 0.44 0.03 >26.0 0.12 22.6 1.7 Bound 0.02 2.02 10	Method UDD Ag Al As Au B Ba Ba Ba Ba Ba Ca Cd Ca Ca	Method LOD Ag Al As Au B Ba Ba

ALS

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

Sample Description	Method Analyte Units LOD	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ррт 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0,1	ME-MS41 Mg % 0.01	ME-MS41 Mri ppm 5	ME-M541 Mo ppm 0,05	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ní ppm 0.2
							BL/	ANKS								
BLANK BLANK Target Range - Lower I Upper BLANK Target Range - Lower I Upper	Bound Bound	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.02 <0.02 0.04	<0.01 <0.01 0.02	<0.005 <0.005 0.010	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<0.1 <0.1 0.2	<0.01 <0.01 0.02	<5 <5 10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.2 <0.2 0.4
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower (Upper		0.7B 0.76 0.72 0.82	0.57 0.61 0.51 0.67	0.05 0.05 <0.05 0.10	0.06 0.06 0.04 0.08	0.02 0.02 <0.01 0.03	0.013 0.014 0.008 0.019	0.13 0.13 0.11 0.15	18,5 18,2 17,2 19,5	1.7 1.7 1.5 1.9	0.61 0.59 0.56 0.64	165 162 150 177	1.66 1.69 1.54 1.81	0.01 0.01 <0.01 0.02	<0.05 <0.05 <0.05 0.10	10.3 9.9 9.4 10.8
ORIGINAL DUP Target Range - Lower I Upper																
ORIGINAL DUP Target Range - Lower Upper					,, , , , , , , , , , , , , , , , , , ,			<u></u>								
ORIGINAL DUP Target Range - Lower I Upper								<u> </u>								
ORIGINAL DUP Target Range - Lower I Upper ORIGINAL DUP Target Range - Lower I Upper	Bound			<u> </u>												

ł

2303 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

QC CERTIFICATE OF ANALYSIS SD19213087

Sample Description	Method Analyte Units LOD	ME-MS41 P ppm 10	ME-MS41 Ръ ррт 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-M541 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	МЕ-М541 Те ррт 0.01	ME-MS41 Th ppm 0.2	ME-MS41 ⊤i % 0.005	ME-MS41 T1 ppm 0.02
					-		BL/	ANKS								
BLANK Target Range Lower	Bound	<10 <10 20	<0.2 <0.2 0.4	<0.1 <0.1 0.2	<0.001 <0.001 0.002	<0.01 <0.01 0.02	<0.05 ×0.05 0.10	<0.1 <0.1 0.2	<0.2 <0.2 0.4	<0.2 <0.2 0,4	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<0.005 <0.005 0.010	<0.02 <0.02 0.04
								ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	80 70 60 90	4.0 3.9 3.6 4.3	5.4 5.6 5.1 5.9	0,022 0.019 0.018 0.023	0.89 0.86 0.82 0.93	0.29 0.26 0.20 0.35	2,2 2,1 1,9 2,4	1.1 0.8 0.7 1.2	0.2 0.2 <0.2 0.4	662 646 621 687	<0.01 <0.01 <0.01 0.02	0.02 0.01 <0.01 0.02	2.2 2.1 1.8 2.5	<0.005 <0.005 <0.005 0.010	0.84 0.84 0.76 0.92
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper											9,77 - 999 a - 100 a -					
ORIGINAL DUP Target Range - Lower Upper										<u></u>		· · · · · · · · · · · · · · · · · · ·				
ORIGINAL DUP Target Range - Lower I Upper ORICINAL DUP Target Range - Lower I Upper	Bound															

ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

QC CERTIFICATE OF ANALYSIS SD19213087

Sample Description	Method Analyte Units LOD	ME-M\$41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-M541 Y ppm 0.05	ME-MS41 Zrı ppm 2	ME-MS41 Zr ppm 0.5	Au-lCP21 Au ppm 0.001	and the second secon	<u></u>	 - <u> </u>	
BLANK BLANK Target Range - Lower Upper BLANK Target Range - Lower Upper	Bound Bound	<0.05 <0.05 0.10	<1 <1 2	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<2 <2 4	<0.5 <0.5 1.0	ANKS 0.002 0,002 <0.001 0.002				
							DUPL	ICATES				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	1.20 1.19 1.09 1.30	6 6 5 7	0.13 0.12 0.07 0.18	18.80 18.35 17.60 19.55	31 30 27 34	2.1 2.0 1.4 2.7	:				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		<u>, , , , , , , , , , , , , , , , , , , </u>				<u> </u>	0.026 0.029 0.025 0.030				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound							0.020 0.022 0.019 0.023				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound			<u> </u>				0.014 0.013 0.012 0.015				
ORIGINAL DUP Target Range - Lower Upper ORIGINAL DUP Target Range - Lower Upper	Bound Bound			<u></u>				>10.0 >10.0 9.50 (0.001 0.002 <0.001 0.002				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

Sample Description	Method Analyte Units LOD	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As Ppm 0,1	ME-MS41 Au ppm 0.02	ME-MS41 B Ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.03	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.0S	ME-MS41 Cu ppm 0.2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES					96 Prime			
								N 300 11 401								

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

QC CERTIFICATE OF ANALYSIS SD19213087

Fage: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

Sample Description	Method Analyte Units LOD	ME-MS4} Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge Ppm 0.05	ME-MS41 Hf ppm 0,02	ME•MS41 Hg Ppm 0.01	ME-MS41 In ppm 0.005	ME-MS47 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Lí ррт 0,1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-M541 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ní ppm 0.2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES					₩1>¥ <u>—</u>		9.000g	
							,									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

A		Phone: +1	nton Hwy couver BC V7 (604) 984 02 lobal.com/	21 Fax:	+1 (604) 98 stry	4 0218			BURY ON	I P3E 2W5	;		I	PÍ	us Apper Date: 12	ndix Page SEP-201 It: WINEX
ALS)							Proj	ect: Rock QC	-	ICATE	OF AN	ALYSIS	SD1	921308	37
Sample Description	Method Analyte Units LOD	ME-MS41 P ppm 10	MÉ-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0,1	ME-M541 Re ppm 0.001	ME-MS41 S % 0.01	МЕ-МS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Та ррт 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Tí % 0.0D5	 ME-MS41 TI ppm 0.02
DRIGINAL DUP 'arget Range - Lower Upper	Bound /						DUPL	ICATES								
			<u> </u>													

ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

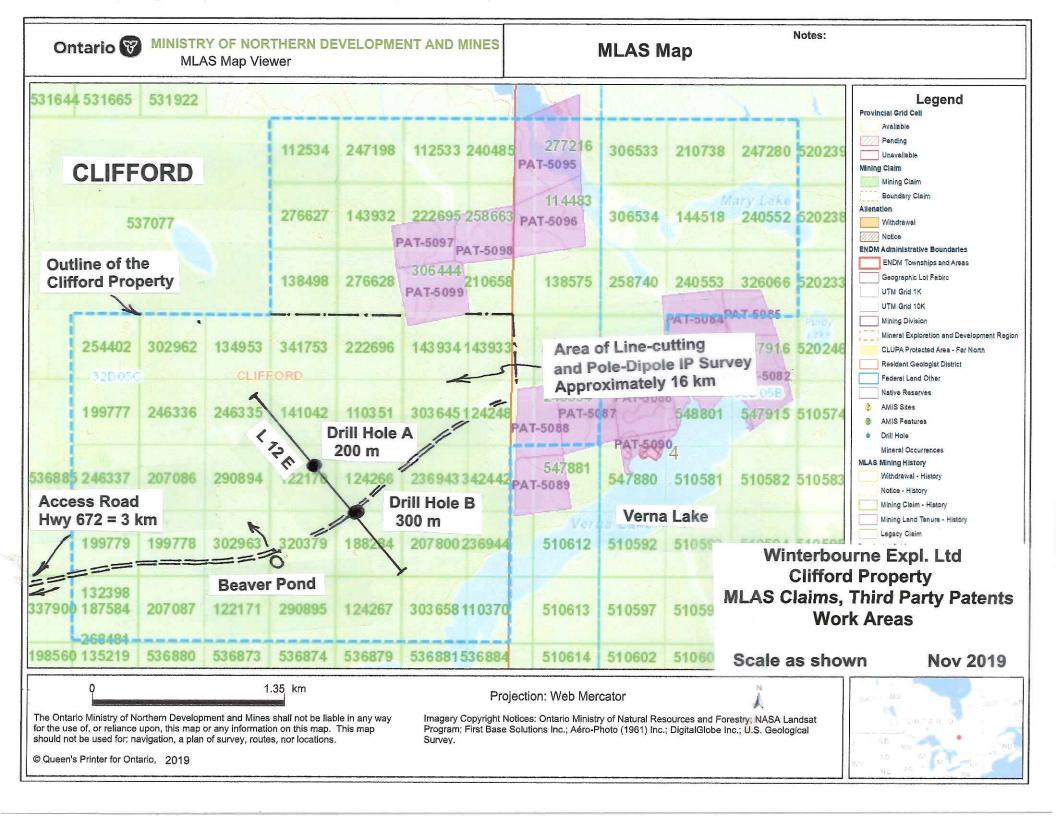
Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-SEP-2019 Account: WINEXP

Project: Rock Samples

QC CERTIFICATE OF ANALYSIS SD19213087

Method Analyte Units LOD	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Au-ICP21 Au ppm 0.001						
Bound Bound		- 000 4 cot-				DUPL	CATES <0.001 <0.001 <0.001 0.002						
	Analyte Units LOD Bound acce	Analyte U Units Ppm LOD 0.05	Analyte U V Units Ppm ppm LOD 0.05 1	Analyte U V W Units Ppm Ppm ppm LOD 0.05 1 0.05	Analyte U V W Y Units PPM PPM PPM PPM LOD 0.05 1 0.05 0.05	Analyte U V W Y Zn Units PPM PPM PPM PPM PPM LOD 0.05 1 0.05 0.05 2	Analyte U V W Y Zn Zr Units PPM PPM PPM PPM PPM PPM LOD 0.05 1 0.05 0.05 2 0.5 DUPL	Analyte U V W Y Zn Zr Au Units ppm qdm qdm qdm	Analyte U V W Y Zn Zr Au Units Ppm Ppm	Analyte U V W Y Zn Zr Au Units Ppm ppm ppm ppm ppm ppm ppm LOD 0.05 1 0.05 0.05 2 0.5 0.001 Bound	Analyte U V W Y Zn Zr Au Units PPm PPm PPm PPm PPm PPm PPm LOD 0.05 1 0.05 0.05 2 0.5 0.001 Bound	Analyte U V W Y Zn Zr Au Units ppm ppm ppm ppm ppm ppm LOD 0.05 1 0.05 0.05 2 0.5 0.001 Bound	Analyte U V W Y Zn Zr Au Units ppm ppm ppm ppm ppm ppm ppm LOD 0.05 1 0.05 0.05 2 0.5 0.001 Bound

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry


To: WINTERBOURNE EXPLORATIONS LTD. 1849 ORIOLE DR SUDBURY ON P3E 2W5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-SEP-2019 Account: WINEXP

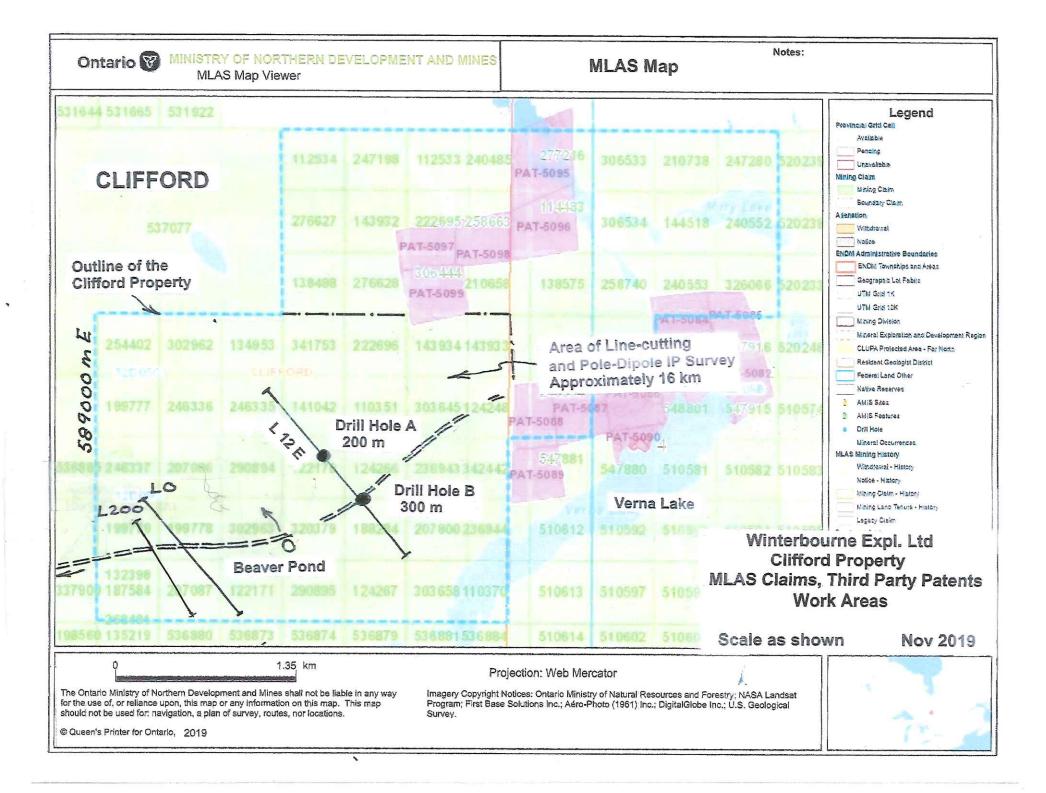
Project: Rock Samples

QC CERTIFICATE OF ANALYSIS SD19213087

		CERTIFICATE CO	MMENTS	
Applies to Method:	Gold determinations by t ME-MS41		LYTICAL COMMENTS ie to the small sample weight used (0.5g).	
Applies to Method:	Processed at ALS Sudbury CRU-31 PUL-QC	LABO / located at 1351-B Kelly Lake Road, CRU-QC SPL-21	RATORY ADDRESSES Unit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouv Au-ICP21	ver located at 2103 Dollarton Hwy, I ME-MS41	North Vancouver, BC, Canada.	

Ms. Sophie Fortin Geoscience Assessor ENDM

Re: Assessment Work Report 2758, Clifford Property


25 February 2020

Dear Sophie

The following information is in reply to your email dated 19 February 2020 and a follow-up one from Michelle Watkins dated 21 February 2020.

- 1. As per your request the 2 IP Gradient IP lines, L 0 and L 200 have been plotted on the attached claim map copy.
- 2. The UTM co-ordinates for the 5 samples are listed below

Sample Number	Easting	Northing
P371994	591072 mE	5349640 mN
P371995	591075 mE	5349624 mN
P371996	591080 mE	5349645 mN
P371997	591110 mE	5349630 mN
P371998	591120 mE	5349595 mN

