

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. Technical Report on the 2019 Prospecting and Geochemical Survey on the Hurd Lake Claims, Maun Lake Area

Thunder Bay Mining Division North West Ontario

500500 E 5590000 N UTM ZONE 16 NTS 42-L-7 Lat 50 deg. 27 min Long 86 deg. 59 min. Rand Hodgson B.Sc. B.Ed. December 1, 2019

Table of Contents

		PAGE		
Statemer	3			
Summary	,	3		
Ontario Pro	operty Location Map	4		
Regional Cl	aim Location Map	5		
Claim Map	on Provincial Grid	6		
Introduct	ion	7		
Property	Description	7		
Topograp	hy and Drainage	8		
Explorati	on History	8		
Regional	xploration History egional Geology			
Property	Geology	10		
Mineraliz	ation	11		
Conclusio	ons and Recommendations	12		
Reference	es	13		
Statemen	it of Qualifications	14		
Maps				
Map 1	Regional Geology	15		
Map 2	Detail Map of New Athona Occurrence	16		
Мар З	Prospecting traverses, geology, sample Locations – Scale 1: 4000 – back pocket	36		

Table of Contents continued

		PAGE
Plates		17
Plate 1	New Athona trench 3	17
Plate 2	New Athona trench 4	18
Plate 3	East of New Athona breccia	19
Plate 4	South of New Athona breccia	20
Appendices		21
Appendix 1	Sample Locations and Descriptions (end of this document)	21
Appendix 2	Daily Work Report Descriptions (end of this document)	22
Appendix 3	Assay Certificate – SGS Report # 21422 – August/2019	23
Appendix 4	Assay Certificate – SGS Report # 22116 – October/ 2019	30
Appendix 5	Assay Certificate – SGS Report # 22178 – October/2019	
	– sample #'s 33-35 only	33
Appendix 6	Proposed Regional Grid for Ground IP and Soil Surveys	35

Summary of work done

- 2 man days compiling past work done from EMDM files
- 2 man days manual stripping and trenching at New Athona Occurrence
- 16 man days reconnaissance prospecting on the claims

Summary

The Hurd Lake property was the focus of a detailed prospecting and mapping program with selective geochemical follow-up. Objectives of this work were to re-investigate the New Athona copper – silver-gold occurrence, map the geology on the claim group surrounding Hurd Lake, and prospect for new mineralization. The New Athona Occurrence was re-visited and mapped and sampled. No new mineral occurrences were identified during this prospecting survey. The property remains prospective for gold and massive sulfide mineralization under extensive overburden-particularly in the southeastern quadrant of the group.

Ontario Property Location Map

Regional Claim Location Map

Claim Map on Provincial Grid

Introduction

This report describes a prospecting and geochemical sampling survey carried out on a 175 hectare group of claims surrounding Hurd Lake which is located in the Maun Lake Area, Thunder Bay Mining Division, North-western Ontario. The survey was conducted by Rand Hodgson and Wilson Hodgson, both residing at 287 Swanston Ave, Peterborough, On., during the periods July 14 – 22, 2019 and August 31 – September 01, 2019. It was carried out using combined pace and compass traversing with GPS support. Traverse lines were generally directed north-west and south-east with 100 meter separation. Deviation from this pattern was allowed. Twenty-five rock samples were analyzed for gold using routine fire assay methodology. Fifteen of those samples were also assayed for silver, copper, and whole rock analyses. Results are submitted in the Appendix and located on the sample location map (scale 1: 4000). Samples are described and GPS located. All co-ordinates are from UTM Zone 16.

Property Description, Location and Access

The Hurd Lake property is situated on the north side of the north-east arm of O'Sullivan Lake, approximately 37 km. NNW of Nakina, Ont. Access to the property is by road from Nakina to O'Sullivan Lake and then by boat across the lake. The property consists of a single block of 8 MLAS claim units in the Maun Lake Area. The area of the block is approximately 175 hectares. Hurd Lake is fully enclosed within the claim block.

Claim registration numbers: 239827, 325321, 222054, 325322, 178464, 279790, 103461, 103460.

Provincial Grid numbers: 42L07L161, 162, 181, 182, 201, 202, 221, 222.

The claims are registered in the name of Rand Hodgson, Client #145101 – address 287 Swanston Ave., Peterborough, Ontario.

Topography and Drainage

The Claim group is dominated by Hurd Lake which lies entirely within its boundaries and dominates the west-central part. Creeks enter and depart the lake in a north-westerly direction; following closely the inferred route of the regional Hurd Lake fault. Relief around the lake shoreline is generally low but then quickly rises about 25 meters in all directions. Outcrop is poor along the lake shore, increasing to about 20-30 % south and west of the lake. The east side of the lake is dominated by a huge poplar ridge without outcrop. The north-eastern part is also lacking outcrop under swamp which is continuous up to Peterson Lake. North-west of the lake the relief is higher, with two prominent outcrop ridges composed of primarily basalt pillow lavas.

Exploration History

The area has been mapped by the Geological Survey of Canada (Wilson and Collins, 1904) and the Ontario Geological Survey (Stott, 1984) as well as early mapping by the Ontario Department of Mines (Hopkins, 1916; Kindle, 1929; Moorehouse, 1955)

Gold and copper were first discovered in the O'Sullivan Lake area in the 1920's, centred on showings on the Osulak Peninsula and northeast of the lake, resulting in a staking rush after WW II, when Osulak Mines started to sink a shaft and carry out underground development. Since that time, several operators have attempted to resurrect the property. The most recent, Mining Corp. of Canada, removed 90,000 tons of 0.33 oz./ton gold. Since 1950, both gold and base metal exploration has been undertaken throughout the O'Sullivan Lake belt with limited success.

In the immediate area of the Hurd Lake property, the New Athona Mines copper-silver-gold occurrence, located 200 m. south of Hurd Lake, was investigated by means of 9 drill holes in 1955. The showing consists of 2 mineralized fracture zones in brecciated felsic volcanics containing massive pyrite, arsenopyrite, chalcopyrite, bornite accompanied by quartz sericite schists and small QFP intrusions. No strike length was determined.

About 400 m. east of the claims an unknown operator drilled about 4 holes into what is referred to as the Megan-Hurd gold occurrence. The drill target was a narrow sulfide –rich shear zone in felsic volcanic. Assays up to 14 gpt were reported in an extensive shear zone with strike exposed for 100 meters. The Warren copper-nickel occurrences, located north-east of the property has been the focus of intermittent activity since the 1950's. Historical exploration activity has resulted in significant polymetallic occurrences being discovered – confirming the mineral potential of the area.

Regional Geology

The Hurd Lake property is situated within the Kowkash Greenstone Belt, a fairly typical north-east trending greenstone sequence consisting of a mafic to felsic transition, younging to the north, intercalated with intermediate-felsic and chemical metasediments (chert, iron formation). The interflow sediments are mainly tuffs, tuff breccias and siliceous metasediments, which carry locally massive iron and copper sulfides, with lesser sphalerite magnetite and arsenopyrite. The greenstones are locally intruded by syngenetic and postgenetic tectonic sills and dykes-gabbro, diabase and quartz-feldspar porphyry. Metamorphic grade is generally lower greenschist facies.

Structurally, the Kowkash belt has been faulted in a north-east trending strikeslip fashion, resulting locally in strongly sheared, highly schistose volcanic units. Government airborne geophysics suggest fault offsets of greater than 600 meters as well as stratabound magnetic highs. A regional fault – the Hurd Lake fault – passes through the belt in a northeasterly direction.

Property Geology

There is a very large post-tectonic granitic intrusion centred on the east side of Hurd Lake. It has been sized by government maps at about 900 meters NS by 500 meters EW. Its presence is confirmed in outcrop on the lake shore but its easterly extent is unconfirmed in overburden. There is no evidence of this large scale intrusion at the eastern edge of the property where mafic volcanics were identified.

South and east of the pluton there is a northeasterly trending sequence of brecciated, mineralized felsic volcanics intercalated with small amounts of mafic volcanics and quartz-feldspar porphyry intrusions. Occasionally narrow lensoidal or sill-like gabbroic intrusions locally interfinger with the volcanic. Chemical metasediments-chert and iron formation – have been identified within this unit in several locations, mostly off the property to the east. This unit is poorly exposed on the property due to significant overburden on claims 279790, 103460, and further east. There is, however, enough evidence in the vicinity of the New Athona occurrence as well as off the property to the east, to infer a continuity of the mineralized unit linking these two in the south-east quadrant of claim 279790. The mafic/intermediate rocks occur as andesitic-dacitic flows and pillow lavas with tops to the north. Alteration minerals observed include chlorite, carbonate in the mafics and sericite in the felsics. Small quarts – feldspar porphyry intrusives are common in the vicinity of the Athona gossan on claim 103460 south of Hurd Lake – as they are proximal to the Hurd Lake Pluton.

South-west of Hurd Lake there is a large plateau-like outcropping of very homogenous pale grey rhyolitic flows. These flows are extensive, uniform, and non-mineralized.

Mineralization

The New Athona copper-silver-gold occurrence was relocated at GPS UTM 500450 E 5588960 N (zone 16) The showing is situated near the edge of the Hurd Lake Pluton, a large post-tectonic granitic pluton to the northeast. It is possible that the close proximity of this intrusion could be responsible for the brecciation and mineralization in the rhyolite at the occurrence itself. The rhyolite has been shattered by a north-east trending fault which has resulted in a brittle kink folds. The mineralized rhyolite is exposed in a series of five parallel northwest trending trenches for a total strike length of 130 meters. Width of the fractured mineralized zone averages 10 – 15 meters but pinches to the south-west and disappears under overburden to the north-east along strike. Sulfide content varies from 2 – 25 % and includes chalcopyrite, pyrite, arsenopyrite, with carbonate and sericite alteration. There is quartz-feldspar porphyry veining parallel to and within the mineralized zone. Twenty rock samples were taken at various locations within the 5 trenches and assayed for gold. Fifteen were further assayed for silver, copper, and whole rock analysis see detailed map for sample locations. Although these samples do not represent a true continuous channel sample, they were taken from within the trenches in a gossan zone estimated to be about fifteen (15) meters thick. They averaged 0.4 gpt Au, 19 gpt Ag, and 0.95% Cu over 15 samples. These results are very similar to the results of assays from the 1955 New Athona Mines Ltd. drilling which estimated 0.5% Cu across 16 meters with a 300,000 ton resource estimate. The gossan zone is open in both directions under overburden. It is also important to mention an anomalous high value of 56 gpt Au taken from this occurrence in a previous visit (Hodgson, 2016).

This high value, coupled with previous reports of 900 ppb in rhyolites 500 meters along strike to the south-west (Smith 1991) and known gold mineralization to the northeast indicates a potential high grade gold enriched horizon which needs to be assessed further from a regional perspective.

Conclusions and Recommendations

The model proposed for gold exploration on the property is valid. All gold values on the claims are associated with a northeast trending brecciated mineralized felsic volcanic unit which is inferred to extend continuously to the southwest and northeast from the New Athona under extensive overburden. This zone has been identified in the vicinity of the Megan-Hurd Occurrence located 200 meters east of the claims on claim 306795. Here it is highly mineralized up to 5% sulfides in brecciated felsic and mafic volcanics with sericite, chlorite, and carbonate alteration. The unit appears to be a fault breccia and has been identified to be up to 700 meters thick. This zone and the anomalous gold value of 900 ppb located 500 meters southwest from the New Athona occurrence should be further investigated by means of ground IP and soil geochem. surveys.

References

- New Athona Mines Ltd., 1955 drill log report, File #42 L 07 NW 0011
- Parker, J.R. and Stott, G.M. 1998 Precambrian Geology, O'Sullivan Lake Area
 O.G.S map p 3377
- Moorhouse, W.W.1956 Geology of the O'Sullivan lake Area O.D.M Annual report 1955
- Mason, J., White, Gerry 1986 Gold Occurrences, Prospects and Depostis of the Beardmore – Geraldton Area O.G.S. Open File Report 5630
- Smith, Michael, Technical Report on the Hurd Lake Property, O'Sullivan Lake Area O.P.A.P. # OP91-043 M.N.D.M file #42L07N.W.8040-63.6249 Maun Lake
- Nelson, Cullen, Clark Exploration Consulting Assessment Report on the Aurum Property of Superior Canadian Resources Inc. 2005. M.N.D.M assessment file #2.30942
- Hodgson, R, 2017, Technical Report on the Hodgson Claims, Maun Lake Area.
 AFRO # 2.58421

Statement of Qualifications

I, Rand Hodgson, of 287 Swanston Ave., Peterborough, Ont., do hereby state:

- That I have been a consulting geologist practicing my profession from the above address since 2016, and have been actively engaged in mineral exploration since 1977.
- 2) That I hold a B. Sc. (Earth Science) from the University of Waterloo (1977)
- That I am the author of the report on the Hurd Lake property, and thatI personally supervised and carried out the field program.
- 4) That the data contained in the report is true to the best of my knowledge.

1/1.

Rand Hodgson B.Sc. November 2019

Maps

Map 1 Regional Geology with Property Boundary

Map 3 Prospecting Traverses, Geology, Sample Locations

Scale 1: 4000 – back pocket

Plates

Plate 1 New Athona trench 3

Appendices

Appendix 1 Sample Locations and Descriptions

All locations from UTM Zone 16

SGS	– Assay report # 21422 – Aug 16 2019.
R-22	– 500435 E 5590309 N – mafic schist, carb, no sulfide.
R-23-	– 500400 E 5589806 N – coarse grained granulated felsic rock (mylonite?) on shoreline.
Samples A ²	-A20 located on the New Athona 1:1000 detailed map – centred on

500400 E 5588950 N – Appendix # 4?

- A 1 Grey quartz feldspar porphyry (QFP) intrusive
- A 2 Mafic volcanic 5% py, cpy.
- A 3 Massive cpy in mafic volcanic.
- A 4 Massive po. In mafic volcanic
- A 5 Massive cpy.in mafic volcanic.
- A 6 Massive py,cpy in mafic volcanic
- A 7 Chip composite of gossan material
- A 8 Massive py,cpy in felsic volcanic
- A 9 Pit 5 semi-massive py in mafic volcanic.
- A 10 Massive cpy, bornite, in felsic volcanic.
- A 11 Loose gossan material trench 3
- A12 –
- A 13 Felsic volcanic, massive cpy, bornite, trench 3.
- A 14 Mafic volcanic, 5% py pit A
- A 15 "– pit B
- A 16 Quartz vein trench 4.
- A 17 Grey QFP minor py.
- A 18 Grey QFP no sulfides
- A 19 Rhyolite with minor py, trench 2.
- A 20 High grade chip sample trench 4.

Samples 33-35 from SGS report 22178 – Oct.11 2019

S 33 - 501235 E 5589740 N - mafic volcanic, 1% py.
S 34 - " - mafic pillow lava, 1% py.
S 35 - 501225 E 5589585 N - mafic pillow lava, 1% py. Daily Report of Work - 2019

Appendix 2 Daily Report of Work – 2019

Note – Prospecting traverses located on 1:4000 map

- July 14 Fly in to Hurd Lake
- July 15 Trenching and sampling New Athona occurrence samples A1-20
- July 16 Prospecting south-east of Hurd Lake no sample due to overburden.
- July 17 Prospecting traverse east of Hurd Lake poplar ridge no samples
- July 18 Prospecting southwest of Hurd Lake no samples
- July 19 Prospecting traverse north of Hurd Lake sample R 22.
- July 20 Prospecting/mapping Hurd Lake shoreline sample R 23
- July 21 Prospecting traverse along creek north-east of Hurd Lake no sample
- July 22 Fly out to Nakina.
- Aug.31 Prospecting north-west from Walkup Creek no sample in overburden and swamp.
- Sept. 1 Prospecting west from Walkup Creek. samples 33-35 from SGS report 22178 Aug./19
- Sept. 2 Travel to Peterborough
- Sept 3 De-mobilization

Appendix 3 Assay Certificate – SGS Report # 21422 – August/2019

		o na torica s agirog		Com	tificate of Am	ohuoio	
				Cer	Incate of An	alysis	
				vvor Dene	K Order : LK19	01378	
)ate: /	ugust 16, 20	19		Гкеро	rt File No.: 000	0021422]	
o: Ra	nd Hodgsor	1			P.O. No	.: Whitefish Exlport	ation
W	nite Fish Exp	1			Project No	.: -	
18	5 CONCESS	ION ST	GEOCHEM L	AKEFIELD	Samples	s: 22	
PC	BOX 4300				Pages	: Page 1 to 5	
LA	KEFIELD O	N KOL 2	HO			(Inclusive of Cov	er Sheet)
Method	s Summary						
No. Of S	Samples	Method	Code	Description			
22		G_WGH	179	Weighing of s	amples and reporting	of weights	
22		G_PRP	89 A303	Weigh, Dry, to Ore Grade Au	3kg, Crush 75% -2m	m, Split to 250g, Ρι ι	Ilverize to 85% -75µm
5		GE ICF	290A	ICP-OES afte	Na2O2 fusion	I	
5		GE_AA	S12E	@ Ag by AAS	after Aqua Regia dige	est, 2g Vol 50	
torage	Pulp & Reje	ect					
PULP S							
	OT OT UT OF		•				
omme	<u>its:</u>						
					Certified By :	Bruth	+ 2phin
						Brett Pi Project Coo	pher rdinator
	SGS Minerals s	Services (becific tests	(Lakefield) is acc s as indicated or	credited by Standards In the scope of accredit	Council of Canada (SCC) a ation to be found at http://	and conforms to the red /www.scc.ca/en/program	quirements of ISO/IEC 17025 for ms/lab/mineral.shtml
	ter:	L.N.R.	= Listed not rece	ived	I.S. =	Insufficient Sample	
eport Foo		n.a.	= Not applicable		=	No result	
eport Foo		and the second sec	= Composition of	this sample makes det	ection impossible by this mi	ethod	
eport Foo		M after a	result denotee e	pe to ppin conversion,	were subcentracted		
aport Foc		M after a Methods r	result denotes p narked with an a	sterisk (e.g. *NAA08V)	were subcontracted		a da
eport Foo		M after a Methods r Elements	nesult denotes p marked with an a marked with the	sterisk (e.g. *NAA08V) @ symbol (e.g. @Cu) o	lenote assays performed us	sing accredited test meth	lods
aport Foc	nt is issued by the nnification and jur	M after a Methods r Elements Company ur sdiction issue	result denotes p marked with an a marked with the nder its General Co as defined therein.	sterisk (e.g. *NAA08V) @ symbol (e.g. @Cu) c nditions of Service accessi	lenote assays performed us	erms-and-Conditions.aspx.	Attention is drawn to the limitation of

Final : LK1901378 Order: Whitefish Exlporation Report File No : 0000021422

Page 2 of 5

report i lie No.: 0000	JUZ 1422								
E	Element	WtKg	Au	AI	As	Ba	Be	Ca	C
	Method	G_WGH79	GO_FAA303	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90
0	Det.Lim.	0.001	5	0.01	30	10	5	0.1	1
	Units	kg	ppb	%	ppm	ppm	ppm	%	pp
R22		0.974	12	N.A.	N.A.	N.A.	N.A.	N.A.	N.,
R23		1.438	10	N.A.	N.A.	N.A.	N.A.	N.A.	Ν.
A01		1.005	566	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A02		1.193	416	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A03		0.454	273	8.34	<30	101	<5	5.1	<
A04		0.960	22	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A05		0.984	462	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A06		1.243	101	7.60	<30	119	<5	3.5	<
A07		0.937	397	8.64	<30	67	<5	5.7	<
A08		1.202	162	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A09		1.082	614	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A10		0.930	441	8.41	<30	123	<5	6.2	<
A11		1.550	334	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A12		1.140	512	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A13		0.773	387	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A14		0.908	28	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A15		1.200	243	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A16		0.477	780	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A17		0.360	32	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A18		0.772	6	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A19		0.975	88	N.A.	N.A.	N.A.	N.A.	N.A.	N.
A20		0.702	69	7.26	<30	59	<5	2.3	<
*Rep A07			299						
*Rep A20				7.42	<30	59	<5	2.3	<

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isfare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

SGS

Final : LK1901378 Order: Whitefish Exlporation Report File No.: 0000021422

Page 3 of 5

	Element	Co	Cr	Cu	Fe	к	La	Li	M
	Method	GE_ICP90A	GE_ICP90						
	Det.Lim.	10	10	10	0.01	0.1	10	10	0.0
	Units	ppm	ppm	ppm	%	%	ppm	ppm	
R22		N.A.	N.4						
R23		N.A.	N.A						
A01		N.A.	N.A						
A02		N.A.	N.A						
A03		45	290	15553	10.4	1.1	<10	37	4.1
A04		N.A.	N.A						
A05		N.A.	N.A						
A06		47	275	1513	7.91	1.3	<10	32	3.6
A07		69	272	16447	12.4	0.7	<10	40	4.7
A08		N.A.	N.A						
A09		N.A.	N.A						
A10		17	303	19079	11.1	1.1	<10	44	4.9
A11		N.A.	N.A						
A12		N.A.	N.A						
A13		N.A.	N.A						
A14		N.A.	N.A						
A15		N.A.	N.A						
A16		N.A.	N.A						
A17		N.A.	N.A						
A18		N.A.	N.A						
A19		N.A.	N.A						
A20		26	279	5560	8.83	0.5	<10	55	4.1
*Rep A20		27	280	5608	9.08	0.5	<10	54	4.0

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

SGS

Final : LK1901378 Order: Whitefish Exlporation Report File No.: 0000021422

Page 4 of 5

report no mono oot	A C C Am 1 - T Km K	na							
	Element	Mn	Mo	Ni	P	Pb	Sb	Sc	S
	Method	GE_ICP90A	GE_ICP90						
	Det.Lim.	10	10	10	0.01	20	50	5	5
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	pp
R22		N.A.	N.,						
R23		N.A.	N.,						
A01		N.A.	N.						
A02		N.A.	N.						
A03		1097	<10	98	0.03	<20	<50	46	<
A04		N.A.	N.						
A05		N.A.	Ν.						
A06		891	<10	95	0.02	<20	<50	38	<
A07		1311	<10	137	0.04	<20	<50	43	<
A08		N.A.	N.						
A09		N.A.	N.						
A10		1405	<10	50	0.02	<20	<50	49	<
A11		N.A.	N.						
A12		N.A.	N.						
A13		N.A.	N.						
A14		N.A.	N.						
A15		N.A.	N.						
A16		N.A.	N.						
A17		N.A.	N.						
A18		N.A.	N.						
A19		N.A.	N.						
A20		874	<10	72	0.03	<20	<50	37	<
*Rep A20		884	<10	75	0.03	<20	<50	38	<

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

SGS

Final: LK1901378 Order: Whitefish Exlporation Report File No.: 0000021422

Page 5 of 5

1									
	Element	Sr	Ti	V	w	Y	Zn	Si	@/
	Method	GE_ICP90A	GE_AAS1						
	Det.Lim.	10	0.01	10	50	5	10	0.1	0
-	Units	ppm	%	ppm	ppm	ppm	ppm	%	
R22		N.A.	N.						
R23		N.A.	N						
A01		N.A.	N.						
A02		N.A.	N.						
A03		124	0.51	266	<50	15	345	20.6	33
A04		N.A.	N						
A05		N.A.	N						
A06		81	0.43	221	<50	11	92	26.2	4.
A07		130	0.49	268	<50	16	401	18.3	29
A08		N.A.	N						
A09		N.A.	N						
A10		150	0.53	302	<50	19	297	19.3	34
A11		N.A.	N						
A12		N.A.	N						
A13		N.A.	N						
A14		N.A.	N						
A15		N.A.	N						
A16		N.A.	N						
A17		N.A.	N						
A18		N.A.	N						
A19		N.A.	N						
A20		91	0.42	232	56	11	156	23.7	1:
*Rep A20		93	0.43	237	<50	12	160	24.3	
*Rep A20									12

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

	JUGA WADDAN CHORDAN	Certif	icate of Ana	alveie
		Work (order : K190	13784
		Report	File No : 0000	0221161
ate: October 08, 2	2019	Inchort		
o: Rand Hodgson White Fish Exp COD SGS MIN 185 CONCESS PO BOX 4300 LAKEFIELD C	n SI IERALS - GEOCHEM LAI SION ST DN KOL 2H0	KEFIELD	P.O. No.: Project No.: Samples: Received: Pages:	Whitefish Exploration - 10 Sep 16, 2019 Page 1 to 5 (Inclusive of Cover Sheet)
Methods Summary				
<u>lo. Of Samples</u> 0 0	Method Code GE_ICP90A GE_AAS12E	Description ICP-OES after Na @ Ag by AAS aft	a2O2 fusion er Aqua Regia diges	st, 2g Vol 50
ULP STORAGE EJECT STORAGE			Certified By :	Bratt Pipher Project Coordinator
SGS Mineral s	s Services (Lakefield) is accre pecific tests as indicated on th	dited by Standards Cou ne scope of accreditatio	ncil of Canada (SCC) ar n to be found at http://w	nd conforms to the requirements of ISO/IEC 17025 for www.scc.ca/en/programs/lab/mineral.shtml
	L.N.R. = Listed not receive n.a. = Not applicable	d	I.S. = =	nsufficient Sample No result
eport Footer:	TINIT O	s sample makes detection	n impossible by this met notes ppm to % convers	hod ion
port Footer:	*INF = Composition of thi M after a result denotes ppb	to ppm conversion, % de		
port Footer:	*INF = Composition of thi <i>M</i> after a result denotes ppb Methods marked with an aste Elements marked with the @	to ppm conversion, % de risk (e.g. *NAA08V) were	subcontracted	an energiated test moth and
s document is issued by the	*INF = Composition of thi <i>M</i> after a result denotes ppb Methods marked with an aste Elements marked with the @ Company under its General Condit indiction javae defined therein	to ppm conversion, % de risk (e.g. *NAA08V) were symbol (e.g. @Cu) deno ions of Service accessible a	subcontracted e assays performed usin http://www.sgs.com/en/Ten	ng accredited test methods ms-and-Conditions.aspx. Attention is drawn to the limitation of

SGS

Final : LK1901378A Order: Whitefish Exploration Report File No.: 0000022116

Page 2 of 5

Element	AI	As	Ba	Be	Ca	Cd	Co	Cr
Method	GE_ICP90A							
Det.Lim.	0.01	30	10	5	0.1	10	10	10
Units	%	ppm	ppm	ppm	%	ppm	ppm	ppm
A04	7.21	<30	218	<5	3.0	<10	67	253
A08	8.32	<30	128	<5	6.7	<10	39	314
A09	8.51	<30	63	<5	7.0	<10	25	269
A11	7.93	<30	66	<5	3.7	<10	27	257
A12	7.46	<30	62	<5	5.5	11	65	287
A14	7.26	<30	367	<5	6.2	<10	36	246
A15	6.97	<30	49	<5	8.1	<10	17	290
A16	5.02	143	28	<5	8.2	<10	78	204
A17	7.91	<30	97	<5	2.8	<10	<10	183
A19	6.82	<30	181	<5	2.0	<10	<10	179
*Rep A12	7.43	<30	59	<5	5.5	10	64	266
*Std RTS-3A	4.93	<30	111	<5	2.1	<10	136	178
*BIk BLANK	<0.01	<30	<10	<5	<0.1	<10	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Final : LK1901378A Order: Whitefish Exploration Report File No.: 0000022116

Page 3 of 5

Element	Cu	Fe	к	La	Li	Mg	Mn	Мо
Method	GE_ICP90A							
Det.Lim.	10	0.01	0.1	10	10	0.01	10	10
Units	ppm	%	%	ppm	ppm	%	ppm	ppm
A04	1126	11.6	2.6	<10	42	3.74	845	<10
A08	7116	8.49	1.0	<10	24	4.46	1270	<10
A09	11522	9.66	0.5	<10	28	4.80	1391	<10
A11	6493	8.60	0.6	<10	43	4.18	1081	<10
A12	19360	9.40	0.4	<10	21	3.29	1015	63
A14	562	8.76	2.1	<10	21	3.75	1293	<10
A15	261	8.16	0.4	<10	13	3.94	1359	<10
A16	2263	4.34	0.2	<10	28	2.09	671	<10
A17	757	3.13	0.4	11	14	1.35	376	<10
A19	3249	3.27	0.8	13	18	1.18	258	<10
*Rep A12	18825	9.27	0.4	<10	20	3.25	997	60
*Std RTS-3A	2387	20.5	0.4	<10	15	2.42	1559	<10
*BIk BLANK	<10	<0.01	<0.1	<10	<10	<0.01	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or sources from which the sample(s) isare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

SGS

Final : LK1901378A Order: Whitefish Exploration Report File No.: 0000022116 Page 4 of 5

		Berner and the second s							
	Element	Ni	P	Pb	Sb	Sc	Sn	Sr	Ti
	Method	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A
	Det.Lim.	10	0.01	20	50	5	50	10	0.01
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%
A04		168	0.01	<20	<50	37	<50	69	0.41
A08		77	<0.01	<20	<50	43	<50	131	0.49
A09		78	<0.01	<20	<50	42	<50	126	0.49
A11		126	0.02	<20	<50	41	<50	113	0.46
A12		156	<0.01	<20	<50	30	<50	135	0.36
A14		130	0.01	<20	<50	40	<50	178	0.44
A15		103	0.02	<20	<50	30	<50	135	0.37
A16		122	<0.01	<20	<50	24	<50	89	0.25
A17		48	0.03	<20	<50	11	<50	317	0.23
A19		32	0.02	<20	<50	8	<50	157	0.19
*Rep A12		151	<0.01	<20	<50	29	<50	128	0.35
*Std RTS-3A		75	0.03	208	<50	15	236	43	0.36
*BIk BLANK		<10	<0.01	<20	<50	<5	<50	<10	< 0.01

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

SGS

Final : LK1901378A Order: Whitefish Exploration Report File No.: 0000022116

Page 5 of 5

	Element	V	w	Y	Zn	Si	@Ag
	Method	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_AAS12E
	Det.Lim.	10	50	5	10	0.1	0.3
	Units	ppm	ppm	ppm	ppm	%	g/
A04		255	<50	14	106	24.6	1.38
A08		275	<50	12	242	21.2	16.0
A09		273	<50	15	274	20.3	26.8
A11		255	85	13	171	24.2	13.3
A12		207	<50	12	569	22.7	33.5
A14		249	<50	15	85	24.2	0.83
A15	×	227	<50	12	91	25.1	0.46
A16		163	<50	8	96	27.4	4.72
A17		82	<50	7	50	>30.0	1.17
A19		60	<50	<5	90	>30.0	4.81
*Rep A12		203	<50	11	581	22.4	
*Std RTS-3A		134	<50	15	2958	18.6	
*BIk BLANK		<10	<50	<5	<10	<0.1	
*Rep A04							1.47
*Std OREAS-930							9.10
*BIK BLANK							<0.30
The restored in the second	and the second	and a second	construction and a second s	Construction of the second	And and a support of the support of	and state	

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be proscuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

			Cortificate of Analysis
			Work Order : LK1901662
Data	October 11	2010	[Report File No.: 0000022178]
Date.	Rand Hodgeo	2013	BO No - Magan Group 2019
White Fish Expl			Project No.: -
COD SGS MINERALS - GEOCHEM LAKEFIELD 185 CONCESSION ST PO ROY 400		RALS - GEOCHEM LAK	KEFIELD Samples: 28
		SION ST	Received: Sep 3, 2019
	LAKEFIELD (ON KOL 2H0	(Inclusive of Cover Sheet)
Meth	ods Summary		
No. (Of Samples	Method Code	Description
28		G_WGH79 G_PRP89	Weighing of samples and reporting of weights Weigh, Drv. to 3kg. Crush 75% -2mm. Split to 250g. Pulverize to 85% -75um
28		GO_FAA303	Ore Grade Au, FAS, AAS, 30g-10ml
5 5		GE_ICP90A GE_AAS12E	ICP-OES after Na2O2 fusion @ Ag by AAS after Agua Regia digest, 2g Vol 50
Stora	ac: Pulp & Rei	iect	
PULF	P STORAGE	:	
REJE	ECT STORAGE		
Comr	ments:		
			Porth appen
			Certified By :Brett Pipher
			Certified By : Brett Pipher Brett Pipher Project Coordinator
	SGS Minerai s	is Services (Lakefield) is accred specific tests as indicated on th	Certified By : Brett Pipher Project Coordinator
Report	SGS Mineral s	Is Services (Lakefield) is accred specific tests as indicated on th L.N.R. = Listed not received n.a. = Not applicable	Certified By : Brett Pipher Project Coordinator edited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml ed I.S. = Insufficient Sample - = No result
Report	SGS Mineral s	Is Services (Lakefield) is accred specific tests as indicated on the L.N.R. = Listed not received n.a. = Not applicable *INF = Composition of this	Certified By : Brett Pipher Project Coordinator Brett Pipher Project Coordinator Setted by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml ed I.S. = Insufficient Sample - = No result is sample makes detection impossible by this method
Report	SGS Mineral s	Is Services (Lakefield) is accred specific tests as indicated on the specific tests as indicated on the L.N.R. = Listed not received n.a. = Not applicable *INF = Composition of this Mather a result denotes pbt 1 Methods marked with an aster	d I.S. = Insufficient Sample - No result is sample makes detection impossible by this method to popm conversion, % denotes ppm to % conversion
Report	SGS Minera S	Is Services (Lakefield) is accred specific tests as indicated on the specific tests as indicated on the L.N.R. = Listed not received n.a. = Not applicable "INF = Composition of this M after a result denotes ppb the Methods marked with an aster Elements marked with the @ s	Additional and the second s
Report This doc	SGS Mineral s Footer: cument is issued by th indemnification and ju	Is Services (Lakefield) is accred specific tests as indicated on the specific tests as indicated on the L.N.R. = Listed not received n.a. = Not applicable "INF = Composition of this M after a result denotes ppb t Methods marked with an aster Elements marked with the @ s the Company under its General Conditi viridiction issues defined therein.	Certified By : Brett Pipher Project Coordinator Project Coordinator Brett Pipher Project Coordinator ed 1.5. = Insufficient Sample - = No result is sample makes detection impossible by this method to pop monversion, % denotes ppm to % conversion erisk (e.g. *NAA08V) were subcontracted : symbol (e.g. @Cu) denote assays performed using accredited test methods itos of Service accessible at http://www.sas.com/en/Terms-and-Conditions.aspx . Attention is drawn to the limitation of

SGS	

Final: LK1901662 Order: Megan Group 2019 Report File No.: 0000022178

Page 2 of 6

Element Method	WtKg G_WGH79 0.001 kg	Au GO_FAA303 0.01 ppm	AI GE_ICP90A 0.01 %	As GE_ICP90A 30 ppm	Ba GE_ICP90A 10 ppm	Be GE_ICP90A	Ca GE_ICP90A 0.1 %	Cd GE_ICP90A 10 ppm
Units						ppm		
Sample 08	0.438	0.03	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 09	0.630	1.75	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 10	0.370	8.93	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 11	1.015	0.04	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 12	0.910	0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 13	0.747	0.02	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 14	0.593	< 0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 15	0.675	0.37	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 16	0.728	0.21	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 17	0.923	0.35	5.53	54	812	<5	0.2	<10
Sample 18	0.487	0.05	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 19	0.604	0.03	7.69	78	481	<5	1.4	<10
Sample 20	0.559	0.05	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 21	0.759	< 0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 22	0.468	0.03	7.59	48	69	<5	4.6	<10
Sample 23	0.714	0.07	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 24	0.754	0.02	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 25	0.549	0.02	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 26	0.439	< 0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 27	0.529	0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 28	0.549	9.92	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 29	0.971	< 0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 30	0.664	< 0.01	4.34	156	192	<5	4.5	<10
Sample 31	0.714	1.73	8.74	3691	641	<5	<0.1	<10
Sample 32	0.982	8.56	N.A.	N.A.	N.A.	N.A.	N.A.	N.A
Sample 33	0.691	0.04	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 34	0.906	<0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Sample 35	0.785	< 0.01	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Std RTS-3A			4.95	<30	114	<5	2.1	11
*Std SY-4			10.6	<30	336	<5	5.7	<10
Rep Sample 15		0.40					1	
*Std OREAS-217		0.35					1	
Std OREAS-503D		0.68						
Bik BLANK		<0.01						
Rep Sample 31		1	8.90	3724	650	<5	0.1	<10
'BIk BLANK		< 0.01						
Std OREAS-217		0.33						

Hurd Lake Samples

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no lability with regard to the origin or source from which the sample(s) isfare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be proscuted to the fullest extent of the law .

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Appendix 6 Proposed Grid for Ground IP and Soil Sample Survey

