Ontario 8

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

Assessment Report on the Rockstone Project VLF Survey

Prepared for
1401358 Ontario Inc
194 Raynard Road, Thunder Bay, ON
P7G 1K7

NTS MAP SHEETS 52A/05

Prepared by
Brent Clark P.Geo
Clark Exploration and Consulting Inc.
January 2020

Table of Contents

1.0 SUMMARY 1
2.0 LOCATION AND ACCESS 4
3.0 REGIONAL GEOLOGY 4
4.0 PROPERTY GEOLOGY 6
5.0 EXPLORATION HISTORY 7
6.0 VLF PROGRAM 11
7.0 VLF DATA COLLECTION 13
8.0 CONCLUSIONS AND RECOMMENDATIONS 14
8.0 REFERENCES 15
10.0 CERTIFICATE AND QUALIFICATIONS 17
APPENDIX I 18
APPENDIX II 20
APPENDIX III 31
APPENDIX IV 32
Figure 1: Rockstone Property Location Map 2
Figure 2: Rockstone Property Claim Map 3
Figure 3: Rockstone Property and Regional Geology 5
Figure 4: Rockstone VLF Stations 12

1.0 SUMMARY

The Rocktsone Property (the "Property") report was prepared for 401385 Ontario Inc (the "Company"). Clark Exploration Consulting of Thunder Bay, Ontario was contracted by 1401385 Ontario Inc. to conduct a VLF program to follow up work on the property to reevaluate the potential for economic base metal and graphite mineralization. The program was 7 days in duration and carried out between September $18^{\text {th }}$ to October 2nd 2019. The exploration program involved VLF surveying along GPS survey line while utilizing a VLF EM-16 unit. The survey consisted of 10.02 km of VLF survey lines was successful in identifying several potential anomalous zones. The VLF data should be utilized with historic geophysical data to aid in further base metal exploration efforts

Drilling of geophysical anomalies in 2012 by Greencastle Resources targeting Cu-Zn VMS mineralization encountered $0.82 \% \mathrm{Zn}, 0.15 \%$ Cu over 24 metres hosted in graphitic argillite which has also been evaluated for graphitic carbon (Cg).

The mining claims that comprise the Property are located 55 km west of Thunder Bay and 20 km southwest of Kakabeka Falls (Figure 1). The property is situated in the Marks and Adrian township within NTS map sheets 52A/05 in the Thunder Bay Mining Division. The Property is comprised of 27 cells totalling 834 hectares. The claims are shown in Figure 2 and are listed in Appendix I. The total work requirements for the claims is $\$ 15,200$ annually.

Figure 1: Rockstone Property Location Map

Figure 2: Rockstone Property Claim Map

2.0 LOCATION AND ACCESS

The Rockstone Project is located approximately 45 km west of Thunder Bay Ontario, within NTS map sheets 52A/05 in the Marks Township within the Thunder Bay Mining Division of Ontario. The property is located approximately 45 kilometres west of the city of Thunder Bay, Ontario. The city of Thunder Bay has a population of 110,000 and provides support services, equipment, and skilled labour for both the minerals exploration and mining industry. Rail, national highway, port and international airport services are also available out of Thunder Bay.

From Thunder Bay, the property can be reached by travelling west on Highway 11/17 and then west on Highway 590 which is just past the town of Kakabeka Falls, Ontario. Follow Highway 590 for approximately 12 kilometres to the Adrian Lake Road. The property can be directly accessed via Adrian Lake Road.

3.0 REGIONAL GEOLOGY

The area around the Property is underlain by Neoarchean rocks of the Shebandowan Greenstone Belt, within the Wawa Subprovince of the Superior Province and by PaleoMesoproterozoic rocks of the Southern Province. (Rogers and Berger, 1995). The Shebandowan Greenstone Belt is fault-bounded to the north by metasedimentary and felsic intrusive rocks of the Quetico Subprovince and is overlain to the south by Paleoproterozoic metasedimentary rocks of the Animikie Group also known as the Gunflint and Rove Formations (Figure 3) (Bajc 1999). The Neoarchean rocks of the Shebandowan Greenstone Belt are composed mainly of ultramafic, mafic, intermediate and felsic metavolcanic rocks. Related intrusive rocks include peridotite, gabbro, felsic porphyries, and clastic and chemical metasedimentary rocks (Rogers and Berger, 1995). The supracrustal rocks are divided into two assemblages based on morphology, composition, structure and metamorphism which correlate with the Greenwater and Shebandowan assemblages described in the work of Carter (1990) (Berger and Rogers 1995).

The Greenwater assemblage is commonly associated with volcanogenic and magmatic base metal mineralization (Corfu and Stott 1998) whereas the deformation and magmatic events in the Shebandowan assemblage are temporally associated with gold mineralization (Stott and Schnieders 1983; Jobin-Bevans, Kelso and Cullen 2006).

Figure 3: Rockstone Property and Regional Geology

4.0 PROPERTY GEOLOGY

The Rockstone Property sits within the eastern portion of the Shebandowan Greenstone Belt (Rogers and Berger, 1995). and is underlain primarily by supracrustal rocks of the Greenwater assemblage of metavolcanics and associated metasediments (Figure 3).

The rocks types found within the property boundary include; mafic, ultramafic, intermediate metavolcanics, coarse clastic metasedimentary rocks, dacitic and andesitic flows, tuffs and breccias, felsic to intermediate metavolcanics, alkaline metavolcanic rocks, and metasedimentary rocks comprised of: conglomerate, arkose, arenite, wacke, sandstone, siltstone, and graphitic argillite. There is a fault running northwest - southeast through the property and there are two iron occurrences within the property boundary. Portions of the property are also underlain by mafic intrusive rocks (Bajc, 1999).

5.0 EXPLORATION HISTORY

1957: New Fortune Mines drilled one hole of 145 ft . on an outcrop of magnetite iron formation on what is now claim 240669, 286581, 240671, and 190752 of the Property and intersected 80 ft . of 30.82% iron. No other elements were assayed for. (AFRI\# 52A05SW0021)

1961: Hanna Mining Company conducted a detailed magnetometer survey and geological mapping covering parts of claims 324567, 196330, 240668, 220556, 127870, 122999, 105848, 240669, 286581, 171848, 108805, 334928, 240671, and 190752 on the Property. The survey was conducted as a follow up to the previous work by New Fortune Mines in order to better define the iron formation, and the survey outlined a narrow, folded band of iron formation. (AFRI\# 52A05SW0005)

1962: Hanna Mining Company completed another magnetometer and geological survey in the area, this time further east on claims 190751, 155787, 171776, 307299, 220557, 324481, 155789, and 240670 on the Property. The survey identified two amin anomalous areas in which the magnetic intensity is sufficiently strong to be caused by iron formation. (AFRI\# 52A05NW0010)

1967: Antioch Investments completed a magnetic and electromagnetic survey on two blocks covering claims 105848, 240669, 334928, 240671 and claims 155787, 307299, 324481, 240670 on the property. The author concluded that the magnetic data indicated the presence of banded iron formation with high magnetite content in both grids. (AFRI\# 52A05SW0004)

1996: Cumberland Resources Ltd. conducted a soil geochemistry survey on a grid which was mostly on claims 250958, 240668, 220556, 127870, 122999, 105848, 240669, 171848, 108805, 334928, 240671, 286581, and 19052 of the current Property. The grid consisted of 12 km of line, and a total of 174 B -horizon soil samples were collected at 50 m intervals and analyzed by the ICP method for 32 elements. The results were described as being inconclusive, with the best anomaly being achieved from zinc. A continuous zinc anomaly with values ranging from 100 to 288 ppm extends for 2000 m on the west end of the grid, with background values for zinc on the property said to be less than 40 ppm (McCrindle 1996). Further work was recommended, including mapping and, where possible, lithogeochemical and assay sampling in order to try to determine the cause of the soil anomalies. (AFRI\# 52A05NW0005)

1997: Cumberland Resources Ltd. conducted magnetic and electromagnetic surveys (VLF and Max-Min II+) over a 9.9 km grid that covered the area of the soil geochemistry anomaly outlined the previous year and described above. The magnetic survey was interpreted as defining magnetite rich iron formations toward the eastern part of the survey, while the Max-Min II+ survey did not locate any conductive trends, but did produce readings in the eastern part of the grid consistent with the presence of strong magnetite iron formations (Middaugh 1997). (AFRI\# 52A05NW0022)

2000: Falconbridge Ltd conducted a humus sampling program on their Marks-Adrian Property. The geochemical sampling program consisted of 112 humus samples collected from 18 km of traverse lines with samples being taken every 400 m . Three samples returned an average of 300 ppm Zn with the highest begin 428ppm (SA31643). Most of the work was conducted further west of the current property. (AFRI\# 52A05NW2013)

2001: Whalen Resources Ltd. conducted a program of digging test pits and trenches south of the current Property. A total of 34 test pits were dug at least 7 m deep to try to locate bedrock, and where bedrock was exposed a $2-3 \mathrm{~m}$ trench was dug until the overburden got too deep. Four trenches were dug of varying length for a total length of approximately 170 m . The trenching showed that the area was underlain by deformed mafic pillowed volcanic, though only one trench exhibited mineralization, with $\sim 1 \%$ fine grained disseminated pyrite in a siliceous, altered, mafic volcanic (Spence 2001). No samples were taken during the program. (AFRI\# 52A005NW2018)

2004: GLR Resources Inc. performed an airborne time domain electromagnetic (TDEM) geophysical survey which covered parts claims 335528,324567 , and 127870 at the west side of the current Property. However, the flight lines are further west. (AFRI\# 52A05NW2027)

2007: Sabina Silver Corporation conducted a versatile time domain electromagnetic (VTEM) geophysical survey over a large property, which included all 1401385 Ontario's current Property. This survey was subsequently used as the basis for the 2012 diamond drilling program by Greencastle.

2012: Using an airborne VTEM and magnetic survey carried out by Sabina Silver Corp. over the Rockstone property in 2007, Greencastle reviewed a number of the VTEM anomalies using the Maxwell plate modeling method by Geotech Ltd. and selected four separate, potential base metal volcanogenic massive sulphide (VMS) targets to be tested by diamond drilling. A total of 916 meters were drilled in four holes on these targets. It should be noted that two of the holes drilled in 2012 (GC-12-03 and 04) are no longer on the current Property.

Table 2. Greencastle 2012 Drill Hole Summary

Hole Number	Easting	Northing	Length (\mathbf{m})	Dip	Azimuth
GC-12-01	291260	5364780	201	-45	42.5
GC-12-02	290260	5365599	261	-45	66
GC-12-03*	291208	5368638	192	-45	65
GC-12-04*	288210	5365180	262	-45	215

*Note: Hole GC-12-03 and GC-12-04 is not located on the current Property.
The best intersection was found in drill hole GC-12-01 between 60.5 m and 84.5 m which returned $0.82 \% \mathrm{Zn}, 0.15 \% \mathrm{Cu}$ over 24 metres within a graphitic argillite unit. The unit is thinly bedded graphite-rich, very fine grained, dark grey to black in colour. The mineralization occurs within a brittle brecciated zone with angular clasts ranging in size from $3 \mathrm{~mm}-5 \mathrm{~cm}$ (syntectonic breccia). Mineralization occurs within the white carbonate/quartz matrix to the clasts as stringers and pods of pyrite+pyrrhotite (1-5\%) with lesser reddish brown sphalerite and chalcopyrite. The pulps from this 24 m interval were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure.

In GC-12-04, two weakly mineralized zones were identified: $0.32 \% \mathrm{Zn}$ over 2.5 m from 177.8 m to 180.3 m and $0.15 \% \mathrm{Zn}$ over 20.2 m from 182.3 to 202.5 m.

In September 2012, Greencastle contracted Crone Geophysics to conduct 3D Borehole Pulse Electromagnetic Surveys on the four holes and again interpreted the results using the Maxwell plate modelling method. This work identified several anomalous conductive features which should be re-evaluated for further exploration

2014: Greencastle Resources contracted SGS to conduct metallurgical testing to determine the economic validity of the graphite intersections in the 2012 drilling program. A 22.7 kg sample was used for the test work and a batch flotation program was then undertaken to focus on the possibility of producing a final flotation concentrate grading treater then $90 \% \mathrm{C}(\mathrm{t})$, at the coarsest grind possible. The highest carbon grade achieved was $65.3 \% \mathrm{C}(\mathrm{t})$ and it was determined that at this point in time with current technology this deposit would be deemed as unviable to process, as the gangue material are too intertwined with the graphite at such a fine grain sizes to be economically viable to liberate. (AFRI\#20013185)

- In 2014, a small VLF survey was carried out in the vicinity of hole GC-12-01 in an attempt to detect possible extensions to the graphitic conductor identified in that hole. The survey results were interpreted by M. St-Pierre (P.Geophysicist), who concluded that no definite lateral extension of the graphitic zone was apparent in the VLF data, but a strong, persistent trend defined in the southwest portion of the survey area could be caused by graphitic mineralization. He recommended that the VLF survey be extended to the southwest, and that readings be taken at 12.5 m spacing instead of the 25 m spacing used in the original survey (St-Pierre 2014).

6.0 VLF PROGRAM

Clark Exploration and Consulting personnel carried out a VLF survey for 1401385 Ontario Inc on their Rockstone Property located in Marks and Adrian Township in the Thunder Bay Mining Division. The program was seven (7) field days and carried out between the dates of September $18^{\text {th }}$ to October $2^{\text {nd }}, 2019$. The VLF survey was carried out along pre-planned GPS lines which varied from 850 to 1375 metres at two different orientations, lines 1 to 4 were north-south, and lines 1A to 6A were at 037 degrees. The two different orientations were used in the northern part of the property to see if the conductive zones could be correlated with the different line orientations.

The VLF EM-16 unit was used to carry out the VLF measurements. The survey consisted of ten lines totaling 10.02 km with an azimuth of 000 and 037 degrees. The VLF survey lines were chosen to best cover the anomalies that were intersected in the drilling conducted in 2012 by Greencastle Resources.

The VLF survey lines were completed while using a handheld Garmin 64s. Each VLF station was located based on points that were laid out prior to the survey at 25 metre spacing. Transmitter NAA (Cutler, Maine) was read using the Geonic VLF-EM-16 at each station and the data recorded in a notebook.

Figure 4: Rockstone VLF Stations

7.0 VLF DATA COLLECTION

VLF EM-16 Receiver \# 13686

VLF Transmitter: NAA 24.0 kHz Cutler, ME, USA
VLF Survey Direction: 000 and 037
Parameters of Measurement: In-phase and Quadrature components of vertical magnetic field as a percentage of horizontal primary field. (Tangent to tilt of angle and ellipticity). The transmitter NRK was to the west.

The VLF data was collected as follows for each survey line:

- Each station was created prior to the survey along the desired azimuth and navigated to using the handheld Garmin 64S GPS Unit.
- VLF data was for station NAA was recorded into a notebook (InPhase and Quadrature)
- The data was transcribed into a spreadsheet containing the location data for each station.

Table 1: Example of VLF Field Data

Line 4	NAA - Inphase	NAA- Quad	Notes
231	0	-35	Poplar
230	-2	-15	Poplar
229	0	-15	Poplar

8.0 CONCLUSIONS AND RECOMMENDATIONS

The VLF program carried out between September $18^{\text {th }}$ and October $2^{\text {nd }}, 2019$ consisting of 10.02 km of VLF survey lines was successful in identifying several potential anomalous zones along the VLF survey lines. The VLF data should be utilized along with historic geophysical data to aid in further base metal exploration efforts on the property.

The previous work done on the Property to date has indicated the presence of low grade copper-zinc volcanogenic massive sulphide (VMS) mineralization. The 2012 drilling by Greencastle drill tested three of the airborne conductive targets and confirmed that the geology over the general area has potential for base metal VMS mineralization since moderate Zn -Cu mineralization ($0.82 \% \mathrm{Zn}, 0.15 \%$ Cu over 24 metres) was encountered in one hole, while all holes encountered graphitic argillite rock units within a sequence of intermediate to felsic metavolcanics. The pulps from this 24 m interval were subsequently analysed for carbon as graphite and returned 25% graphite over the 24 m section, using the graphitic carbon by LECO analytical procedure.

Down-hole pulse EM surveys of each hole suggest several off-hole conductive targets which require follow-up evaluation and possible testing as part of a future phase of drilling in the area to identify a potential larger source of VMS mineralization. Assuming that these drill intersections potentially represents base metal mineralization remobilized into a distal-type setting, then a number of the clusters of AEM conductors near the currently tested drill targets within the Property boundaries should be considered for further exploration for proximal-type VMS mineralization.

An initial exploration program of ground geophysics, mapping and sampling is recommended to evaluate the Property. The ground geophysics will be comprised of magnetic and electromagnetic surveys on cut lines. Due to the lack of outcrop and known complexity of folding and deformation of the supracrustal rocks, the magnetic survey will help define the geological stratigraphy and structure. The electromagnetic survey will be used to better refine the VTEM anomalies in preparation for diamond drilling. The mapping and sampling will assess the geological environment around the conductive zones and assist in defining stratigraphic and structural setting of potential drill targets.

8.0 REFERENCES

Bagrianski, A. 2004. Report on Helicopter-Borne Time Domain Electromagnetic Geophysical Survey, for GLR Resources Inc. AFRI 52A05NW2027

Bajc, A.F. 1999. Results of Regional Humus and Till Sampling in the Eastern Part of the Shebandowan Greenstone Belt, Northwestern Ontario, Ontario Geological Survey Open File Report 5993.

Bosschart, R. A, 1967: Report on Magnetic and Electromagnetic Surveys Marks Township, Thunder Bay Mining Division Northwestern Ontario on behalf of Antioch Investments Limited. AFRI 52A05SW0004.

Bottrill, T.J. 2003. Technical report on the Stares-Calvert project, Adrian, Aldina, Marks, and Sackville townships, Shebandowan Belt, Thunder Bay District, Ontario, prepared for RJK Explorations Ltd. and GLR Resources Inc. by Bottrill Geological Services; RJK Explorations Ltd., NI 43-101 Technical Report, filed September 22, 2003 with SEDAR®

Burton, G.B. and Chamois, P. 2002. Report on Geophysical Surveys, Twist Lake Property, Adrian Township, NTS 52A/5. AFRI 52A05NW2025

Carter, M.W. 1990. Geology of Goldie and Horne Townships, Ontario Geological Survey Open File Report 5720.

Chamois, P. 2002. Report on Diamond Drilling, Twist Lake Property, Adrian Township, NTS 52A/5. AFRI 52A05NW2024

Corfu, F. and Stott, G.M. 1998. Shebandowan greenstone belt, western Superior Province: U/Pb ages, tectonic implications, and correlations; Geological Society of America Bulletin, v.110, p.1467-1484.

Galley, A.G., Hannington, M.D. and Jonasson, I.R.2007. Volcanogenic Massive Sulphide Deposits in Goodfellow, W.D., ed., Mineral Deposits of Canada: Geol. Assoc. of Canada, Min. Depts. Div., Spec. Pub. No. 5. pp 141-161.

Jobin-Bevans, S., Kelso, I. and Cullen, D. 2006. NI 43-101 Technical report on the Tower Mountain gold deposit, Conmee Township, northwestern Ontario, Canada for ValGold Resources Ltd., 95p.

Lodge, R.W.D, Ratcliffe, L.M. and Walker, J.A. 2014. Geology and Mineral Potential of Sackville and Conmee Townships, Wawa Subprovince; in Summary of Field Work and Other Activities 2014, Ontario Geological Survey, Open File Report 6300, p. 91 to 9-17.

McCrindle, W. 1996. Soil Geochemistry Survey, Marks Township Property, Thunder Bay Mining Division, Ontario; for Cumberland Resources Ltd. AFRI 52A05NW0005

Middaugh, R.D. 1997. Geophysical Report, Marks Township Project, NTS 52-A-5 for Cumerland Resources Ltd. AFRI 52A05NW0022

New Fortune Mines 1957. Diamond drill log and section. AFRI 52A05SW0021
Rogers, M.C. and Berger, B.R. 1995. Precambrian Geology, Adrian, Marks, Sackville, Aldina and Duckworth Townships; Ontario Geological Survey, Report 295, 66p.

St-Pierre, M. 2014. Discussion of Results from VLF Survey Carried out by Clark Exploration Consulting Inc., Greencastle Resources Inc., Rockstone Property; internal report for Greencastle.

Siemieniuk, S. 2013. Report on Downhole Geophysics and Drill Core Re-Logging on Greencastle Resources Ltd. Rockstone Property. AFRI 20000007993.

Spence, I. 2001. Trenching Report for Whalen Resources Ltd., Marks Township Property , Northwestern Ontario, Concession VI Lot 5,6. AFRI 52A05NW2018

St-Pierre, M. 2014. Discussion of Results from VLF Survey Carried out by Clark Exploration Consulting Inc., Greencastle Resources Inc., Rockstone Property; internal report for Greencastle.

Stott, G.M. and Schnieders, B.R. 1983. Gold mineralization in the Shebandowan belt and its relation deformation patterns; in The geology of gold in Ontario, Ontario Geological Survey, Miscellaneous Paper 110, p.181-193.

Toews, R. and Hunt, D.S. 2008. Geophysical Report for Sabina Silver Corporation, Helicopter-Borne Versatile Time Domain Electromagnetic (VTEM) Survey, 2007; on the Rockstone Project. AFRI 20004517

Wilton, D. 1999. Zinc-Lead-Copper VMS Deposits, Part 1; in The Northern Miner, January 11-17, 1999.

Winston, R.L. 1961. Report on Magnetometer Survey for Hanna Mining Company. AFRI 52A05SW0005

Winston, R.L. 1961. Port Arthur Iron Ore Corporation, Adrian-Conmee Group, Conmee Township, Port Arthur Mining Division; Magnetometer Survey by the Hanna Mining Company. AFRI 52A05NE0017

10.0 CERTIFICATE AND QUALIFICATIONS

Brent Clark
941 Cobalt Crescent
Thunder Bay, Ontario
Canada, P7B 5Z4

Telephone: 807-622-3284, Fax: 807-622-4156
CERTIFICATE OF QUALIFIED PERSON
I, Brent Clark, do hereby certify that:

1. I graduated with the degree of Honours Bachelor of Science (Earth Sciences) from Carleton University, Ottawa, Ontario in 2014.
2. "Assessment Report" refers to the report titled "Assessment Report on the Rockstone Property"
3. I am a registered Professional Geologist (P.Geo) with the Professional Geoscientists of Ontario (Membership \#3188).
4. I have worked as a Geologist for 5 years since my graduation from university.
5. I have had no other prior involvement with the mineral Property that forms the subject of this Technical Report.
6. As of the date of this certificate, and to the best of my knowledge, information and belief, the Assessment Report contains all scientific and technical information that is required to be disclosed to make the Assessment Report not misleading.

Dated this $8^{\text {th }}$ day of January 2020.
SIGNED
"Brent Clark"

Brent Clark, P.Geo

APPENDIX I

Rockstone Project Claim List

TENURE NUMBER	Cell Type	Status	ANNIVERSAR	EXTENSION	HOLDER	Township	Work Required
155787	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	400
155788	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	200
155789	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
171776	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
190752	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
190751	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	400
220556	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	200
220557	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
240669	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
240670	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
240671	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
286581	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
307299	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
324480	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	200
324481	Single Cell Mining Claim	Active	2019-09-01 0:00	2020-02-01 0:00	(100) KENNETH ROBERT KUKKEE	MARKS	400
250958	Single Cell Mining Claim	Active	2020-04-14 0:00		(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	200
250959	Single Cell Mining Claim	Active	2020-04-14 0:00		(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	400
108805	Single Cell Mining Claim	Active	2020-05-06 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
122999	Single Cell Mining Claim	Active	2020-05-06 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
196330	Single Cell Mining Claim	Active	2020-05-06 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
105848	Single Cell Mining Claim	Active	2020-09-01 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
240668	Single Cell Mining Claim	Active	2020-09-01 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	200
334928	Single Cell Mining Claim	Active	2020-09-01 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
127870	Single Cell Mining Claim	Active	2020-09-07 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
171848	Single Cell Mining Claim	Active	2020-09-07 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
324567	Single Cell Mining Claim	Active	2020-09-07 0:00		(100) KENNETH ROBERT KUKKEE	MARKS	400
335528	Single Cell Mining Claim	Active	2020-09-07 0:00		(100) KENNETH ROBERT KUKKEE	ADRIAN,MARKS	400

APPENDIX II

VLF Raw Data Line Profiles

Line 4 - VLF - RAW

-50

24

Line 1A - Marks VLF - RAW

Line 2A - VLF - RAW

Line 5A - VLF - RAW

-30

APPENDIX III

EM16 Specifications

EM16 SPECIFICATIONS

MEASURED QUANTITY	Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticityj.
SENSITIVITY	Inphase: $\pm 150 \%$
	Quad-phase: $\pm 40 \%$
RESOLUTION	$\pm 1 \%$
OUTPUT	Nulling by audio tone. Inphase indication from mechanical inclinometer and quadphase from a graduated dial.
OPERATING FREQUENCY	$15-25 \mathrm{kHz}$ ($15-30 \mathrm{kHz}$ optional) VLF Radio Band. Station selection done by means of plug-in units.
OPERATOR CONTROLS	ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.
POWER SUPPLY	6 disposable 'AA' cells.
DIMENSIONS	$53 \times 21.5 \times 28 \mathrm{~cm}$
WEIGHT	Instrument: 1.8 kg Shipping: 8.35 kg

CAUTION:

```
EM16 inclinometer may be damaged
by exposure to temperatures
below - 30 % C. Warranty does
not cover inclinometers damaged
by such exposure.
```

MEASURED QUANTITY

SENSITIVITY

RESOLUTION
OUTPUT

OPERATING FREQUENCY

OPERATOR CONTROLS

POWER SUPPLY
DIMENSIONS
WE I GHT

Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticityj.

Inphase: $\quad \pm 150 \%$
Quad-phase: $\pm 40 \%$
$\pm 1 \%$
Nulling by audio tone. Inphase indication from mechanical inclinometer and quadphase from a graduated dial.
$15-25 \mathrm{kHz}$ ($15-30 \mathrm{kHz}$ optional) VLF Radio Band. Station selection done by means of plug-in units.

ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.

6 disposable 'AA' cells.
$53 \times 21.5 \times 28 \mathrm{~cm}$
Instrument: 1.8 kg
Shipping: 8.35 kg

EM16 inclinometer may be damaged by exposure to temperatures below $-30^{\circ} \mathrm{C}$. Warranty does not cover inclinometers damaged by such exposure.

APPENDIX IV
Operating Manual for EM16 VLF-EM

OPERATING MANUAL

for
EM16 VLF-EM

GEONICS LIMITED

1745 Meyerside Dr. Unit 8 Mississauga, Ontario Canada L5T 1 C6

OPERATING MANUAL
 for EM16 VLF-EM

INDEX
Page
Instrument Specifications 1
Photograph showing labeled controls 2
Section 1: Principles of Operation 3
Section 2: Selection of Transmitter 14
Section 3: VLF Transmitter Information and Schedules 15
Section 4: Field Procedure 19
(I) Orientation ξ Taking a Reading 19
(II) The Inclinometer Dials 19 19
(III)Plotting the Results 21 21
Section 5: Interpretation 22
Section 6: Miscellaneous Notes and Servicing 32
Section 7: Modelling Experiments 34 by Rogowsky and Bowes
Section 8: Reprints
(I) "Five Years of Surveying with the 40
VLF-EM Method" Paterson \& Ronka
(II) "VLF Mapping of Geological Structure: 51
GSC Paper 76-25 by Telford, King and Becker(III)"Contouring of VLF-EM Data: D.C. Fraser,68Geophysics, Vol.34, No.6, Dec. 1969

EM16 SPECIFICATIONS

MEASURED QUANTITY	Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticityj.
SENSITIVITY	Inphase: $\pm 150 \%$
	Quad-phase: $\pm 40 \%$
RESOLUTION	$\pm 1 \%$
OUTPUT	Nulling by audio tone. Inphase indication from mechanical inclinometer and quadphase from a graduated dial.
OPERATING FREQUENCY	$15-25 \mathrm{kHz}$ ($15-30 \mathrm{kHz}$ optional) VLF Radio Band. Station selection done by means of plug-in units.
OPERATOR CONTROLS	ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.
POWER SUPPLY	6 disposable 'AA' cells.
DIMENSIONS	$53 \times 21.5 \times 28 \mathrm{~cm}$
WEIGHT	Instrument: 1.8 kg
	Shipping: 8.35 kg

CAUTION:
EM16 inclinometer may be damaged by exposure to temperatures below $-30^{\circ} \mathrm{C}$. Warranty does not cover inclinometers damaged by such exposure.

FIG. I EM IG

PRINCIPLES OF OPERATION

The VLF-transmitting stations operating, for communications with submarines have a vertical antenna. The Antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. (See Figures $3 \& 4$). This equipment measures the vertical components of these secondary fields.

The EMl6 is simply a sensitive receiver covering the frequency band of the VLF-transmitting stations with means of measuring the vertical field components.

The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal.

The signal from one of the coils (vertical axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentage. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90°. This coil is normally parallel to the primary field, (See instrument Block Diagram - Figure 2).

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-angle is an accurate measure of the vertical real-component, and the compensation $\pi / 2-s i g n a l$ from the horizontal coil is a measure of the quadrature vertical signal.

Some of the properties of the VLF radio wave in the ground are outlined by Figures 4 thru 9.

ACCOMPANYING NOTES FOR FIGURES $2-9$
FIGURE 2 is the block diagram of the EM16. The diagram is self-explanatory. Both the coils (reference and signal coil) are housed in the lower part of the handle. The directions of the axis of the coils are as follows: The reference coil axis is basically horizontal and is kept more or less parallel to the primary field during measurement. The signal coil is at right angles to the reference coil and its axis is, of course, vertical.

The signal amplifier has the two inputs, one connected to the signal coil and one to the reference channel. By tilting the coils, the operator minimizes the signal from the signal (vertical axis) coil. Any remaining signal is reduced to zero by the quadrature control in the reference channel. The signal amplifier has zero output

FIGURE 2 Continued...
when both input signals are equal in amplitude and phase. Thus, the setting of the quadrature control for minimum output from the receiver indicates the relative amount of the quadrature signal of the vertical coil. The measured value does not depend on the absolute value of the signal, only the relative values are measured.

FIGURE 3 shows the proper planning of survey in relation to the direction of strike and primary field, direction of survey lines etc.

FIGURE 4 explains the time delay (phase lag) \varnothing of travelling electromagnetic wave above and in the conductive ground. The amplitude of the wave in the ground is also attenuated.

FIGURE 5 shows on the left the physical direction of the primary (H_{X}) and secondary (H_{z}) field vectors in relation to conductive ground and target. The location of secondary current distribution in the target is shown schematically. We see that most current concentration is in the upper edge of the good conductor. The return secondary current is more spread due to the diminishing primary field in the conductive rock. On the right, the time vectors show the retarded phase of H_{x} in the target and the phase advance of the secondary field H_{z} compared to H_{X}. We must remember that the H_{z} will have additional phase lag when it penetrates back towards the surface.

This figure shows a positive real component of the H_{z} while the quadrature remains negative.

FIGURE 6 This graph shows the primary field attenuation in nepers, relative amplitude and phase lag in radians of the primary field as function of depth and conductivity of the ground. This graph is for 20 kHz .

FIGURE 7 shows the maximum obtainable amplitude H_{z} from a sphere or horizontal cylinder as a function of the radius-to-depth ratio. The schematic on the left shows the depth determination for the spherical or cylindrical target.

FIGURE 7 Continued...

The equation for the phase shift and attenuation of the primary field in conductive material, where $\sigma / \varepsilon \omega \gg 1$ is as follows:

$$
\begin{aligned}
\alpha=\beta=/ \frac{\omega \mu \sigma}{2} \quad \text { where } \alpha & =\text { attenuation, nepers } / \mathrm{m} \\
\beta & =\text { phase lag, radian } / \mathrm{m} \\
\omega & =2 \pi \mathrm{f} \\
\mu & =\text { magn. permeability }=4 \pi \times 10^{-7} \\
\sigma & =\text { mhos } / \mathrm{m}
\end{aligned}
$$

FIGURE 8 This graph gives the amplitude and phase shift of the field (in conductive media) as function of skin depth, $\delta=1 / \alpha$.

This equation gives the skin-depth in meters for certain conductivity and frequency. Normalize this to one, and the graph in Figure 8 gives the amplitude and phase shift of the wave at any relative depth.

FIGURE 9 The vertical field from a long wire source is plotted here. A vertical semi-infinite sheet target would be simulated this way. In practice it hardly works accurately due to the spread of the secondary current in the target because of the finite conductivity and the attenuation and phase shift of the primary field as function of depth.

Planning of survey
FIG. 3

Directional vectors

$$
\begin{aligned}
& H_{x}=\text { primary field } \\
& H_{2}=\text { sec. field, vert. } \\
& \text { component }
\end{aligned}
$$

Time vectors

Conductive target in conductive medium

$$
\text { FIG. } 5
$$

Long cylinder or sphere in horizontal field $H_{x}=1$
Depth $z=116 \Delta x$ for cylinder, $z=\Delta x$ for sphere
$\sigma=\infty$

Maximum available anomaly from a sphere and cylinder

Primary field in conductive rock. Depth, phase shift,
amplitude FIG. 8

SELECTION OF THE STATION
The magnetic field lines from the station are at right angles to the direction of the station. Always select a station which gives the field approximately at right angles to the main strike of the ore bodies or geological structure of the area you are presently working on. In other words, the strike of geology should point to the transmitter. (See Figure 3). Of course, $\pm 45^{\circ}$ variations are tolerable in practice.

Tuning of the EM16 to the proper transmitting station is done by means of plug-in units inside the receiver. The instrument takes two selector-units simultaneously. A switch is provided for quick switching between these two stations.

To change a plug-in unit, open the cover on top of the instrument, and insert the proper plug. (Figure l0) Close the cover and set the selector switch to the desired plug-in.

On the following pages is a variety of information on the most commonly used (i.e. reliable) VLF Transmitters including transmission frequency, geographical location and their scheduled maintenance periods.

VLF Transmitter Information

NORMAL MAINTENANCE PERIODS:

```
GBR 1000 to 1400 UT each Tue.
NAA 1200 to 2000 UT, testing 2000 to 2200 UT each Mon. (if holiday falls on
        Mon., maintenance will performed preceding Fri.), may be off 1800 to
        2000 UT Thu.
NAU 1200 to 2000 UT each Wed.
NDT 2300 to 0900 UT first Thu.-Fri. of month, 2300 to 0700 UT all other Thu.-Fri.
NLK 1600 to 2400 UT each Thu. (1500 to 2300 UT during daylight saving time)
NPM 1800 to 0400 UT last Wed.-Thu. of month, 1800 to 0200 UT all other Wed.-Thu.
NSS No`Ionger in operation.
NWC 0000 to 0800 UT each Mon. (if holiday falls on Mon., maintenance will be
        performed Tue.), may be off 0000 to 0400 UT Tue. (Wed. if holiday falls on
        Mon.)
```

For further information the U.S. Naval Observatory, Time Service Division, Washington, D.C. may be contacted at (202) 653-1525.

VLF STATION INFORMATION

Station	Frequency	Location	Co-ordinates	Kw
FU0	15.1	Bordeaux, France	00W48-44N65	500
GBR	16.0	Rugby, England	01W11-52N22	750
JXZ	16.4	Helgeland, Norway	13E01-66N25	350
NAA	24.0	Cutler, Maine	67W17-44N39	1000
NAU	28.5	Aguada, Puerto Rico	67W11-18N23	100
JJI	22.2	Ebino City Japan	$130^{\circ} \mathrm{E} 46^{\prime}-32^{\circ} \mathrm{No} 5^{\prime}$	500
NLK	24.8	Seattle, Washington		234 600
NPM	21.4	Lualualei, Hawaii	158W09-21N25	600
NWC	22.3	N.W. Cape, Australia	114E09-21S47	1000
UMS	17.1	Moscow, Russia	37E01-55N49	1000

Notes:

1. Use of NAU (Puerto Rico) 28.5 kHz requires factory modification of VLF instrument.
2. In the event that an EM16 unit is being returned to Geonics for:

- modification of frequency range to include NAU, 28.5 kHz , or
- addition of the 16 R resistivity attachment,
please ensure that all station plug-ins are also returned, for proper calibration.

GEOGRAPHIC USE OF VLF STATIONS

The following list of plug-ins are the standard plug-in crystals provided with the EM16 for the various areas listed throughout the world.

Europe : FUO GBR JXZ NAA UMS
North America
North : NAA NLK : GBR
West \& Alaska : NAA NLK \because NPM
$\begin{array}{ll}\text { Midwest } & : \text { NAA NLK } \\ \text { East } & \text { : NAA NLK } \\ \text { GBR }\end{array}$ South : NAA NLK NAU

Mexico \& Central America : NAA NAU NLK NPM

South America

North : GBR NAA NAU
West : GBR NAA NAU NPM
Asia
East : JJI NWC UMS
Central : FUO UMS
Japan : JII NPM NWC
$\begin{array}{cl}\text { Australia } & : \\ \text { East } & \text { NWC NPM JJI }\end{array}$
Africa
North : NAA NWC FUO GBR UMS
West : NAA NWC FUO GBR UMS
Centra1 : NAA NWC FUO GBR UMS
East
South
: NAA NWC FUO GBR UMS NWC
: NAA NWC (FUO GBR UMS 10% noise)

FIELD PROCEDURE

Orientation \& Taking a Reading
The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the handle. (Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines. (Fig.12) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the inclinometer by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.

The dials inside the inclinometer are calibrated in positive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs. 13 \& 14) The instrument is so calibrated that when approaching the conductor, the angles are positive in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS

The right-hand scale is the in-phase percentage(ie. Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100 . See the conversion graph on the following page.

The left-hand scale is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station along the slope of the terrain.

Page 20

(1) Open both eyes.
(2) Aim the hairline along the slope to the next station to about your eye level height above ground.
(3) Read on the left scale directly the distance necessary to measure along the slope to advance 100 (ft) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS

For easy interpretation of the results, it is good practice to plot the actual curves directly on the survey line map using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969)pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VLF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data.

The VLF primary field's magnetic component is horizontal. Local conductivity inhomogeneities will add vertical components. The total field is then tilted locally on both sides of a local conductor. This local vertical field is not always in the same phase as the primary field on the ground surface. The EM16 measures the in-phase and quadrature components of the vertical field.

When the primary field penetrates the conductive ground and rock, the wave length of the wave becomes very short, maybe only few tens of meters, depending on conductivity and frequency. At the same time the wave travels practically directly downwards. The amplitude of the field also decreases very fast, completely disappearing within one wavelength. The macnetic field remains, however, horizontal.

Figure 16 shows graphically the length and phase angle of the primary field penetrating into a conductive material.

The phase shift in radians per meter and the attenuation in nepers per meter ($1 / \mathrm{e}$) is:

$$
\beta=\alpha=\left[\frac{\omega \mu \sigma}{2}\right]^{\frac{1}{2}} \quad \text { where } \quad \begin{aligned}
\omega & =2 \pi \mathrm{f} \\
\mu & =\mu_{0} \mu_{\mathrm{r}}=4 \pi \times 10^{-7} \\
\sigma & =\text { conductivity } \\
& \text { mho/m }
\end{aligned}
$$

Figure 16 also reminds us of the fact that all secondary fields have a small (or large in poor conductors) positive phase shift in the target itself due to its resistive component, and that the secondary fields have another negative phase shift while penetrating back to surface from the upper edge of the target.

The targets are located somewhere in the depth scale (phase shift scale in this case): Suppose we have a semi-infinite vertical sheet target starting from the surface. Figure 17 shows that the total integrated primary field inphase and quadrature flux has a value of +0.5 and - 0.5 respectively.

These two charts can be used to analyze the inphase and quadrature readings taken on both sides of the target. If one knows the actual conductivity of the overburden and the rock, the task is easier. Because of the many variables involved the precise analysis is usually impossible.

The most frequently encountered and easily solved problem is, however, the separation of surface conductors from the more interesting ones at depth. This is easily done by observing the negative quadrature signals compared to the usually positive or zero ones from the surface targets. See the sample profiles in Figures 18 and 19. This way we can often tell if we have a more interesting sulfide target under a swamp for example.

PHASE SHIFTS IN CONDUCTIVE MEDIUM

OVERBURDEN, DOWNWARD TRAVEL
ROCK FROM OVERBURDEN TO THE
CENTER OF TARGET
$\not \subset 3$ SHIFT IN TARGET, FINITE CONDUCTIVITY 84 SECONDARY FIELD IN OVERBURDEN AND \varnothing_{5} TOTAL OF aLL \varnothing_{1} TO \varnothing_{4}

Fig. 16

Another use for the quadrature polarity is in the tracing of a fault or a shear zone. Normally these weak conductors give a fair amount of positive (the quadrature follows the in-phase polarity) quadrature. When we have a local sulfide concentration in these structures, we get a negative quadrature response.

All the interpretation is made easier by other indications of the depth to the target. The horizontal distance between the maximum positive and negative readings is about the same as the actual depth from the ground surface to the centre of the effective area of the conductive body. This point is not the centre of the body, but somewhat closer to the upper edge.

Theoretically, the depth 'h' of a spherical conductor with radius 'a' equals Δx where Δx is the horizontal distance between the maximum points of the vertical field H_{z} (Fig. 20a). The radius of the sphere is given by

$$
a=1.3 \mathrm{~h} 3, \mathrm{H}_{\mathrm{z}}(\max)
$$

For a cylindrical conductor the depth ' h ' equals $1.16 \Delta x$ and the radius of the cylinder is given by

$$
a=1.22 \mathrm{~h} \quad \mathrm{H}_{\mathrm{z}}(\max) .
$$

In these equations $H_{z}=1$ means 100% on the instrument dial. The determination of the depth is generally more reliable than the estimation of the actual dimension a. The real component of H_{z}, which we should use in these calculations, decreases proportionally for a poorer conductor and with the depth in conductive material.

One can also draw some conclusions about the dip and shape of the upper area of the conductor by observing the smaller details of the profile. See the modelling curves.

A vertical sheet type conductor, if it comes close to the surface, gives a sharp gradient of large amplitude and slow roll-off on both sides. (Fig. 2nt. \& 20c).

Horizontal sheets should give a single polarity on the edge of it, and again the opposite way on the other edge. (Fig.20f)

When looking at the plotted curves, one notices that two adjacent conductors may modify the shape of the anomalies for each one. In cases like this, one has to look for the steepest gradients of the vertical (plotted) field, rather than for the actual zero-crossings. Forget the word "crossover". Look for the centres of slopes on the in-phase for location of targets. See Figures 20 d and 20 e .

As with any EM, the largest and best conductors give the highest ratio of in-phase to quadrature components. In VLF however, the surrounding conductive material influences the results so much that it is almost an irrelevant statement except in a few cases. Also in practice most of the ore bodies are composed of different individual sections, and therefore one cannot use the in-phase/quadrature ratio as the sole indicator of the conductivity-size factor. In other words the characteristic response curves are flat, much flatter than with modelling.

MISCELLANEOUS NOTES

1) It has been shown in practice that this instrument can be used (in proper areas) also underground ir mines. The rails and pipes may cause background variations. It was found in one mine even at 1400 foot level, that the signal strength was good. By taking readings at two directions at each station, one could obtain a very good indication about the location of the ore pockets in otherwise difficult geology.
2) On the other hand a thick layer of conductive clay can suppress the secondary field to a negligibly small value.
3) In mountainous areas one can expect a smooth rolling background variation. However, the actual sharper anomalies induced by conductive mineral zones can be usually easily recognized. Background variations can be effectively removed by standard numerical filtering procedures to emphasize local anomalies. +
4) Faults and shear-zones can give anomalies, * but not without a reason: There must be conductivity associated with them. Reverse quadrature may indicate sulfide deposits in these structures.

SERVICING

Changing the batteries is done by removing the cover and changing the penlight batteries one by one. Please notice the polarities marked on each individual cell. To test the condition of the batteries, turn the instrument on, press the push-button on the front panel. There should be a whistling sound in the loudspeaker if the batteries are in useable condition. If the sound is not heard, the battery voltage may be low, or the battery holders may be dirty or faulty.

* Telford, King and Becker, "VLF Mapping of Geological Structure".
+ D.C. Fraser, "Contouring of VLF-EM Data".

It may be occasionally necessary to clean the contacts of the plug-in unit. For this, use a clean rag that is very slightly moistened with oil. The oily rag is good also for the battery terminals.

If any repairs are necessary, we recommend that the instrument be shipped to Geonics Limited for a thorough check-up and testing with proper measuring instruments.

GEONICS LIMITED

EM 16	MODEL EXPERIMENTS
Contributed by	T.P. Rogowsky and W. A. Bowes of Martin, Sykes and Associates. Steamboat Springs, Colorado. We wish to thank them for their permission to use the very illustrative results.
Target:	28 gage zinc plated roofing sheet, 6×48 feet, above .ground.
Ground:	The area was covered by 2.5 ft . of conductive soil on top of gravel and clay. The area was found to be free of anomalies.
Readings:	The graphs show the view (cross section) to North. Readings towards right (East). Primary field is East-West. The instrument was moved along the zero-line except where shown as a separate sloping line (side of a hill). The quadrature component was negligibly small except where shown in the graphs.
Station:	WHVL, 20 kHz
Scale:	$\begin{aligned} & 1 \text { sq. }=2 \text { feet } \\ & 1 \text { sq. }=10 \% \end{aligned}$

GEONICS LIMITED

2 Thorncliffe Park Drive, Toronto 17. Ontario, Canada. Telephone: 425-1821 Area Code 416

"FIVE YEARS OF SURVEYING WITH

 THE VLF - E.M. METHOD"By
Norman R. Paterson
and
Vaino Ronka

PRESENTED AT THE 1969 ANNUAL INTERNATIONAL MEETING SOCIETY OF EXPLORATION GEOPHYSICISTS

untropuction

The tede of usinq radio siftal: for electromagnetic prospeeting is not now; measurements of attemation and polarization were made by Hack in 1908 and reldman in 1933 (1) In vantous geological stituations. Eve and keyes (21 mrasured siqnal strength in the vicinity of senveral orebodies. Anomatous tidio behaviour has offen heen moted nfar large conductive bodies.

Radio-frequency E.M. mothods using qround-transportable tansmitters were memployed in the 1930, and. to a lessnr extent, as recenty as 1960. for both pmsperting and ncolagical mapping. Because of the relatively high trequenctes employed, the method suffered from poor penetration ond diffeulty in disertminating between hodies of different conductivitues. In North Amertea the method was Abindoned in fivour of low-frequency E.M. For neariy sil prospecting applications.

In Europe, the use of radie-frequency methods continued underground, for mapping coal-seams and for exploring in the veinity of base-metal orem modies. The Russians (3) have been succerssful in applying radio shadow bodies. The Russians (3) have been successiul in applying radio shadow
techniques in ditl-hotes for roiline explosation and mapping of sulphide bodies to considerable depths st frequenctes up to 1000 kHz . felow the overburden layer, attemuation in most rocks, even at these frequencles, is quite low.

Onsplte these and other activities, radio-frequency methods wwre not accepted tor routine surface or althorme exploration until Geonicas Litaited introdiced " "passive" Instrument working in the Whrange (15-25 kHz) In 1964. Poworiful milleary radio tranamitters aituated convenientiy around the ginbe provided the primary E.M. signal.

Successfin surveys were camied out with this instrument in 1965. By the end of 1966 the method was in wldespread u*e, and in 1967 severel simllar mystems were introduced or under development. Al least two airbornf verntons were tested in 1968. By 1969 alrbome and/or ground instruments wera being manufactured by more than ilve North Amertean firms.

In this poper we describe brielly the theory and applicalion of the method. we aution the principle of operation of the Geonics E.M. $=16$ instrument (4), and we present some field resuls which have been chosen to illustrate certain features of the data that are helpfil in interpretation.

THEORy
The vir methad
 orated by onncucting bociles in the grownd whem suhbected us x mimatri. . N
 ing in the frequency tange 400 to $\$.000 \mathrm{~Hz}$. AFMAG ts a "pasit: " minthexi.
 measurable signals in the 30 to 500 Hz ranqe.
 from powerful milhtary rado transmitters th the primary siansla. Fiatio hows the approkimate location and stonal range of the main transmitt-r: working in the 15 to 25 kHz indin band, Frequenctes and power culputs of these and other stations are Ilsted below.

Sution	Lexation	Frequency $\mathrm{k} k \mathrm{H} \pi$	Radiated nower (kw)
IDO	Rome, luly	27.2	50
LPZ	Mare Grande, Buenos Aires	23.6	72.1
EXX	Malabit, Java	18.98	162
ROR	Gorki, Russiu	17.0	315
UFT	Sainic Assise, Paris, France	20.7	60.8
UMS	Moscow, Russix	17.1	200
NAA	Culer, Mainc. U.S.A.	17.8	1000
NLIXNPG	Imm Creek, Wish, U.S.A.	18.6	300
NPM	Lumbuici, Hawail, U.S.A.	21.4	300
NWC	Nort West Cape. Australia	22.3	1000
WWVL	Fort Colline, Colo, U.S.A.	20.0	4
GBR	Rugby, England	16.0	500

The radiation from these transmitters contains both electrie and magnetic com ponents and tevels in throe moces: skywave, spacewaw and groundwave. At the large diatances we are concemed with, we receive mainly the skywave wave-guided by the innomphere and eath surtace. The matyetic component is the one of main interest to us, at beneath the ground surfoce if carrien the bulk of the signal energy, and it offerw certaln advantages in practical fletd measurement.

Figure 2 illustrates the behaviour of the magnetic field from a distant, vertical vadto antenna. The field is poisrized roughly cyindrically about the antenna the vector assuming an attitude roughly paraliel to the average ground surface. (At large distances rectangular comporents can the assumed.)

 distireted lom in uhase and dremetiont. The brhaviour of the field near the groumbatir tnterfisee has beren described by Norion (S): tis elfect on VLI measuremeatis ts undoy study at the preame ume.

Attegualon and Phase Shitt
 primary magnetic lield suffers both attenuation (nepars) and phase shift (radians) roughly equal to

$$
\sqrt{\frac{\sin t}{2}} \text { meters }^{-1}
$$

where

$$
\begin{aligned}
\omega & =\text { angular frequency } \\
\mu & =\text { magnetic permeabitity in hencys/m } \\
\omega & =\text { electrical conductivity in mhos } / m \\
\epsilon & =\text { delectric constant in farads/m. }
\end{aligned}
$$

At a frequency of 20 kHz , and at the free-apace permeablity of 1.26×10^{-6} henrys/m, we obtain:

$$
\begin{aligned}
& \text { Attenuation }=.29 \text { nepers } / \mathrm{m} \\
& \text { Phase } 5 \text { htft }=-.29 \text { radians } / \mathrm{m}
\end{aligned}
$$

At the "*kln depth" : primary tield amplitude is reduced 1 neger to $1 / 0$ of tis *trength at ground surface, and the field has suffered a negative phate-shift of iredtan.
In relatively nonmconductive rocks ($\sigma=10^{-3}$ mhoi/m) we obtain a wkin depth of about 100 meters, and a phase-shift of about 0.01 radians/m.

Attenuation and phase-shlft at a range of rock and soll conductivilies are shown In Figuse 3. two things are ovident from these grophs:

1. Attemation is a limiting factor in the use of the vif method In areas of conductive overburden or moderately conductive country rocks (beat in mind that the secondary telds from buried conductors are further attenuated in their passage upward to the meaturting instrument).
2. The primary field cougling with burled conductors will be shifted appreciably in phase, even in rocks of relatively low conductivity (and the secondary tields meatured at surfoce will be phase-shifted approximately twice as much).

Attemastion is a factor that cannot be overcome and must be kept in mind constantly in applying the VLF E.M. method.

Phase-shift can bowever be of wory real velue in distinguishing conchuctors lying at depth from those confined to the near-iurface.

The Polarization Elllpse

Meanurements of the aecondary fleld are nomally made in the VIF method by eamparing signols'in the verticsi and horizontel directions. Stnce the primary tield ts nearly horimantal, we theroby obstin a rough meas ure of secondary fleld strength: we can aino determine approximate the phase of the secondar field with respest to the primary.
examine the polarizstion ellipate.
Askume the primary field \mathbf{H} to ba horizoneal and of zero phase angle:
$|\mathrm{H}| \mathrm{macos} \mathrm{C}$
Let the secondary field at the same point in space be regresented by:
$|\Delta \mathrm{H}|-\Delta \mathrm{H} \cos (\omega t+\phi)$
where ϕ represents positive or megative phase-shift.
And let \triangle I be incined upward tin the plane of H by the angle α.
The component: of H ond ΔH in the x (horizontai) and y (vertical) ditections are:

$$
\begin{aligned}
& H_{x}=H \cos \omega t \\
& H_{y}=0 \\
& \Delta H_{x}=\Delta H \cos (\omega t+\phi) \cos \alpha \\
& \Delta H_{y}=\Delta H \cos (\cot +\phi) \sin \alpha
\end{aligned}
$$

Summing these obtain:

$$
\begin{aligned}
C_{x}(t) & =H \cos \omega t+\Delta H \cos (\omega t+\phi) \operatorname{com} \alpha \\
& =X \cos (\omega t+\phi) \\
C_{y}(1) & =H \cos (\omega t \cdot \phi) 2 \ln (\omega) \\
& =Y \cos (\omega t \cdot \phi)
\end{aligned}
$$

- 5 -
where $\quad \phi^{\prime}=\tan ^{-1} \frac{\Delta H \cos \alpha \operatorname{in} \phi}{H+\Delta H \cos \alpha \cos \phi}$
By eliminating t, wa can derive (6) an expresmion for the locus of citl the resultant of the primary and secondary flelds:

here $\delta=\phi^{\prime}$ -

This is the equation of an elifse whose minor axis is inclined to the vertical by the angle θ where:

$$
\tan 2 \theta=\frac{2 X X \cos \delta}{X^{2}-Y^{2}}
$$

Evidently the resultant field rotates in space, varying in magnitude as it goes so as to describe an "ellipse of polarization".
The ratio b/a of minor to major axes (ocentricity) of the elifpse increases a becomes larger, and con therafore be used to obtain a rough measure of his uadul quantity. If \triangle if is much smalier than HI , the eccentricity becomes:

$$
\begin{equation*}
\epsilon=\frac{\Delta H \sin \alpha \sin \phi}{H} \tag{1}
\end{equation*}
$$

while the inclination of the ellipse reduces to

$$
\begin{equation*}
\theta=\tan ^{-1}\left[\frac{\Delta H}{H} \sin o \cos \phi+\left(\frac{\Delta H}{H}\right)^{2} \frac{\sin 2 x \sin \phi}{2}\right] \tag{2}
\end{equation*}
$$

In the spacial case where $\phi=0$ the ellipse raduces to a straight ine, of inelinntion:

$$
\theta=\tan ^{-1} \frac{\Delta H}{H} \sin \alpha
$$

At the point where $\alpha=0$ and both primary and secondary fields are horizontal, both the ratio and the fncilnation are zero.

It is important to note that the sigm of the eccentricity changes as the phase angle goes trom positive to negative. The significance of this can be seen from an examination of profiles of and ϕ in the presence of ayindrical secondary field about a hortzontal hine source of current (Figure 6) lying at a depth d below the grownd.

figure

We mey write:

$$
\begin{align*}
& \alpha=\tan ^{-1}-x / d \tag{3}\\
& \Delta \mathrm{H} / \mathrm{H} \boldsymbol{\alpha} \frac{1}{\sqrt{x^{2}+\mathrm{d}^{2}}} \\
& \alpha \frac{\cos \alpha}{d}
\end{align*}
$$

which we may also write:

$$
\begin{equation*}
(\Delta \mathrm{H} / \mathrm{H})_{\mathrm{g}}=(\Delta \mathrm{H} / \mathrm{H})_{0} \cos \alpha \tag{4}
\end{equation*}
$$

Let us consider two cases, representing (i) a good conductor lying in a weakly conductive ground; (II) a very poor conductor lying in non-condtrettve ground or on the ground surface.
(1) In this case ϕ wil be negative, as the phtrary and secondary fields will be delayed in their passage through the ground.
Let $\phi=-45^{*}$ and
let $(\Delta \mathrm{H} / \mathrm{H})_{0}=0.2$
The profiles in Flgure 7 show the form of the elilpse of poidrization. Inclination θ reaches its maximum of tan-1 0.0625 at approxdmately $x=-d$ and its minimum at $x=4$, values going fram positive to nequstve in the direction of the primary field H.

Ecentricity E has lts maximum and minimum of ± 0.0706 at approximately the samo points, but values are of the opposite sense,
(II)

In thas case ϕ will be weakly positive, as the phase angle of the secondary fletd from a discrete conductor below the plane of meaurement will be positive with respect to the primary field at the same polint.
a. Let $\phi=+10^{\circ}$ and
let ($\Delta \mathrm{H} / \mathrm{Ft})_{\circ}=0.2$
The proftles in Figure 8 are similar to those in Case (I), only the eccentricity now has the same sense as the inlination. This is consistent with the sense of the expression for eceentriedty (equation (1)) as it is affeoted by the sign of the phase angle ϕ

Page

FIGURE 7

flgure s

Efecticotaximuth

So far haw considerad onty primary and weoondary fielde in the tane varticel plane: In practice this ti woldom the cu* wo we muot examtre the effec of varying the horimontal engle $\%$ (amimuth) of the wecondiry fteld relative to the primary.

 ation onily ulighty for kow asoondary fild atrengths

$$
0-\tan ^{-1}\left[\frac{\Delta_{H}}{H} \quad \sin \alpha \cos \phi+\left(\frac{\Delta H}{H}\right)^{2} \frac{\sin 2 \alpha \cos \psi \sin \phi}{2}\right]
$$

in the profite in meamured in the dinection of the primary field, equation ()) becowes:

$$
x=\tan ^{-1}-\frac{x \cos \psi}{d}
$$

Equation (4) is unaffected, though it must bo romombered that ($\Delta \mathrm{H} / \mathrm{H}$) will be reduced mougtly in proportion to cost for wheet- or ribbon-ilike ondictors.

The net wffect of varying the azimuth of the secondary fiald ta to strotech out the anomaly elther side of ite crosis-over and to reduce the strengith of both the inclination and eccentricity values roughly in proportion to cos ψ. The reduction of the inclination values will be nilghely tef: in the cato of nogative phame anglea than for poritive phace anoles.

METHOD OF OFRRATION

General

It in apparent from the wbove that the Vif polarization ellipae in the vielnity of an olectrical conducter ts to some extimit charactenitic of the propertles of che canductor: actinution and the eccentry ond phaie of the primary and mecondary teldi. Lat us exmint this more ciosaly.

For relatively small secondary Aeld strengthe equation (3) noduces to

$$
\begin{gathered}
0-\tan ^{-1} \frac{\Delta_{H}}{H} \min x \text { cos } \phi \\
\left.=\tan ^{-1} \frac{\Delta_{H y}}{H} \text { (real }\right)
\end{gathered}
$$

Incicating that the tangant of the inclination fand hence the inclination itself. for wmall angles) is nearty proportional to the 1atal component of the secondary Eield, measured in the vertical direction.
The error in this approndmately increases for harye mecondary tialds, reaching approximately 10 f for ($\Delta \mathrm{H} / \mathrm{A})_{o}=0.5$.

The aecentrictry ϵ exprassed in equation (1). oan be writeen as

$$
\epsilon-\frac{\Delta_{H}}{H} \text { (quadrature) }
$$

showing a direet proportionality to the guactrature componant of the vertical encondary tietd. The approximation inherent in this expresition leads to small errors at large meoondary tieid ztrangths.
 to uted to represent these quantities within acceptable limits.

Princtele of E.M.-16

Mr. Vainc Ronka ueed the above relathonohip: in the design of the furst VLF instrument, the Geonic: E.M.-16 (4).

The instrument has two recalving colls: the zigmal cal with a normaliy verucal orif: and the reference coll with a honzontal axdi. Exch coll is tuned to the

same primary signal by mmana of plug-in eryutal modulet, but ach has a separate amplifier. To abtain a reading the instrumant is operated in the manner hown in figura 11. In tha digure in in amumod that the primary fleld in porallel to the aurvey ifne; the "mation" refore to the tranamittor location,

The direction of the primary Aald if firet detarmined by hoiding the mignal coil horizontal (Figurs ina) and orienting the inetrument for minimum coupling. This le detected by a minimum audible mignal in the loud-apeaker mounted on the console.

The instrument is then heid vertically with its raference coll in a direction at Aght angles to the tranamitter location (figure 11b), at which peint it is recelving the full effect of the primary field.

The operator then rotates the instrument (rigures 11c, d) in the vertical plane until a minimum signal is registered. At this point the signal coul is oriented long the minor axda of the ellipac of polarization, and the tit angte of the instrument is the angle of incilnation of the elifpse. The tangent of the til angle is therefore an approximstion to the ratio of the real component of the vertical secondary fteld to the horizontal primary feld. The E.M.-16 registers both the tit angle in degrees and the tangent of the aogle, oxpressed in percent

Holding the instrument steady in the mindmum direction the operstor then rotates he "quadrature" knob with his left hand (Figures 11c, d). until the best slgmal minimum is obtained. Through this adjustment a proportion of the volitege in the reference coll (after first shifting ita phase 90*) is used to compenaate the voltage in the signal coll. The calibration of the knob registers the peromitage of tha reference signal used in the compensution, therety providing a direct meaurement of the nato or the shgmal strengths in the two receiver colla. As we cuet quadrature component of the vartical secondary Fiald to the horizontai primary tield.

Proflles recorded wth the E.M.-16 rwamble closely thowe in Figures $7=9$ with the ordinates exprested in percent x x ther than tractions.

- 12 -

2. Anomalies tend to be generated by conductivity changes in the overburden, or at the overburden/bedrock interface. These may be difficult to recomize from amomalles due to conductors within the bedrock.
3. Since the frequency te $h \mathrm{hgh}$, the response factor of meny geological conductors (nciuding onebodies) ts above the range where appreclable quadrature effects are generated. Phase-shifts are more usually asmocdated with the effects of conduetuve ground on the primary and secondary signals, (gee Figure 3). Quadrature measurements cannot often be used to assist in discriminating betwoen geological conductors
of higher and lower contactivities.

Because of restrictions 2 and 3 , it is often odvisable to fallow up the v.f survey with one or mome profles by the horiwontel loop E.M. or other diseriminatory method, befars costly drthung is corried out.

pata Reduction and intempatation

Because VF anomaliew ara produced by such a wide range of geol oylical effects, profines tend to be "cluthered", and the interpreter may need some assistance in distinguishing trends and clasitying groups and pattems. This may be done by digitizing the deta and performing fitering, trend analysis and cross-correiation.
Fraser (7) has developed a simple tachntque of filtering and differentiating itt angle profilies that can be applied effectively in the fiefd or office for rapid geological correlation and interpretation. By averaging pairs of stations and taking aepth of intersween palra separated by a distance that is appoptate and parkcur flections fincluding crose may be plote who "his wions * and smooth or accentur in accordance with the tepth to the anomaly source. An axample of the application in accordance with the dopth to the momaly

VLF interpnetntion has been mainly qualitstive to dath, though theoretical work in being done currently at several centres. Simple rules-ot-thumb are easy to develop, based on the assumption of a plane, horizontal. primary theld. For a smell, spherical body, depth to centre is approximateiy
$d=\Delta x_{i}$ where $\triangle x^{\text {is }}$ the horizontal
distance between points of maxd-
mum and mintrum inclination
and radius is approxdmately

$$
r=1.3 \mathrm{~d} \sqrt[3]{\tan ^{-1} \theta \max }
$$

For a thin cylinder, depth to centre is approxdmately

$$
d=0.86 \Delta x
$$

and radus is approxtmately

$$
15=1.22 d \sqrt{\tan ^{-1} \theta \text { max. }}
$$

Field Operation and Agollcations

The E.M.- 16 and other VLF ground E.M. Instruments share the same advantages in finld oporstions

1. They are IIght (2-3 1bi .) and excenedingly portable.
2. They need no tranmitter, further reducing complexity. cost, ond oparating personnel the instrument is norm mally opereted by one mami.
3. Resdings are extremely rapid, as signals are stronq and nulls clear and un-wavering within the recommended operating range of transmitters
4. Power consumption is neglighble (one set of "penite" batterles generally tasts well over a month).
5. The operation is so simpte that unakthed personmel can be tratned as operators in a matter of hours.

From a geological point of view the following advantages are pertinent

1. The method is capable of a large depth of exploration in non-conduetive toeks (see Figure 3).
2. The relatively high fraquency provides high response factors for bodies of quite amall dimenstons. Relintive. y "disconnected" suiphide ores have been found to produce neasurable VLr sienals.
3. For the tame feason, poor conductorm such as sheared contacts, breceld zones, natrow faults, alteration zone and poroxim how wops normally produce vir ancmailes. The method can therefore be uned effectively for geological mapping.
4. The method man be used without difficuty in mountainous trratn, theugh if the ground is conductive the profle will terrain, though tif the ground is conductuve the profie will
be distorted in the direction of the ground surface. This can often be recognized and/or ramoved semi-quantitatively.

There are relstively fow difadventeges to the mathod, and none from an operating atandpaint.

1. In conductive ground the depth of exploration is severely imited (ate Figure 3).

From Figures 7-9 it can be seen that for a line source, depth is approxmately

$$
\Delta=\frac{\Delta x}{2}
$$

This model approxdmates the ateoply dipping sheet, or half-plane.

EISLD BXAMELES

Figures 12(1) to 12 (8) show examples of VLF E.M. profiles over a variety of bedrock conductors, and have been felected to fllustrute some of the important features of the method. All of the drill holes in these examples were drilled to test the V.F anomalles.

Fxampla 1211 Denton Townshtp. Ontario
The in phase (reat component) profile shows the asymmetry typleal of a relatuvely iat dip. The peaks occur roughly 7S feet from the inflection point, which is consistent with a conductor depth of about 50 feet. The quadrature profle shows a wesk, positive inflection, suggesting that the body is a very poor conduetor, and that overburden is relatively non-conduetive.

Example i2i2l Timmins, Ontario
These are fainty typlcal profiles, showing a positive inphase cross-over and a negative quadrature anomaly. The conductor here is reiatlvely massive and wide; the overburden is $70-80$ feet thick and moderately conductive (-10×10^{-3} mhos $/ \mathrm{m}$). The shape of the in-phese gests a contribution from the overburcen itself. The quactrature anomaly is caused slmost entirely by the quadrature anomal
conducung body.

Example 12(3) Mississippl Lesid Distrlet
The profules show a number of anomalies, of which oniy one has been drtlied. Depth in this case is 250 feet. which is consistent with the depth derived from a sphere model using the adjacent peaks on elther proflle. The conducting body is probably diserete and flat-lying.

The relatively strong quadrature component suggests modarately conductive country rocks, in the range typical of ilmestones and dolomites.
. 14 -

The body itself is probaliy s poor conductor, though at VLF trequencies it ciearly generates a rospectable secondary field.

Example 1214) Gooderham, Ontario
The scale of this figure in more comprassed than the others. but two or possibly three conductors are clearly indicated. The lefthand anomaly in typleal of a good cons. The rifhthend anomely is sugcestive of a very wet conductor alio close to surface. This tea not bee triled, but low tregsency E.M, and it surveys oontim that ti is probably poarly connected. The central con ductor looks like an overburden effect.

Example 12351 Coppermine River, N.W.T.
This is a very typical anomaly for the area, where extensive VLF surveys have been carred out to map faults and brecela zones. The weak, negative quadreture response indicates that the fault zone is a moderate conductor. This is confirmed by I.P. survey and drilling. Chiortization and hamatization in and adjacent to the fault may contribute to the conductivity.

Exempie 12(6) Windsor, Nova Scotia
The ecuntry rooks here are moderately conductive and it is surprising that more quadrature response is not obtalned possibly the main anomaly is caused by oonductive matertal lying close to aurisce. It would be interssting to dral deep of the known ore-zone

Example1207 Tudhope and Bryce Townships, Ontario
This example ia incluced malnly to show the quadrature reaponse that oan be produced from a good conductor even a shallow depth in relatively non-conductive rocks. The quactature profle also reflecta the dip of the conductor.

15a

(5) ᄅ! 3ษก9リン

(ร) द) 3ynots

GOODERHAM, ONT.

REFERENCES

1. Heiland, C.A.; "Geophysical Exploration"; Prentice Hall, New York, 1946; pp.816-818.
2. Eve, A.S. and Keyes, D.A.; A.I.M.E. Tech.Pub. No. 316.
3. Popov, A.A. and Frish, V.F.; "Subsurface Exploration with Radio Waves": U.N.O. Interregional Siminar on New Methods for Mineral Exploration, Moscow, July 1967.
4. Geonics Ltd.; "E.M.-16 Operating Manual"; 2 Thorncliffe Park Drive, Toronto 17, Ontario.
5. Norton, K.A.; "The Propagation of Radio Waves over the Surface of the Earth and in the Upper Atmosphere"; Proc. I.R.E., Vol.25, No.9, September 1937, p. 1203.
6. Grant, F.S. and West, G.F.; "Interpretation Theory in Applied Geophysics"; McGraw-Hill Book Co., New York etc., 1965; pp.482-484.
7. Fraser, D.C.; "Contouring of VLF-E.M. Data"; GEOPHYSICS (in process).

GEONICS LIMITED

GEOLOGICAL SURVEY

PAPER 76-25

VLF MAPPING OF GEOLOGICAL STRUCTURE

W.M. TELFORD
W.F. KING
A. BECKER

CONTENTS

Page
Abstract/Résumé v
Foreword 1
Introduction 1
Theory 2
Vertical magnetic field variations 2
Surface impedance variations 7
Instrumentation 8
Measurement of magnetic field tilt and ellipticity 8
Measurement of complex wave impedance 9
Field work 9
Gloucester Fault 9
Smoky Creek Fault 11
Conclusion 12
References 12
Illustrations
Figure 1. Two-dimensional fault with strike length infinite in y-direction: insert shows E polarization vectors 1
2. Subsurface current fow (Ey, relative amplitude distribution) at 10 kHz in the structure of Figure 1 2
3. Theoretical profiles of $\mathbf{H}_{\mathbf{x}}, \mathrm{H}_{\mathbf{z}}$ and $\boldsymbol{\Delta}_{\mathbf{z}-\mathrm{x}}$ over structure of Figure 2 2
4. Tilt and ellipticity profiles for $d / 6=1 / 10,0$ for the structure of Figure 2 3
5. Total field, $\left|\mathrm{H}_{\mathbf{z}} / \mathrm{H}_{\mathbf{x}}\right|$, profiles over the structure of Figure 2 with $d / 6=0,1 / 30,1 / 10,1 / 3$ 3
6. Peak amplitude of total field plotted against $\log K_{C R}$ for structure of Figure 2. No overburden. 4
7. Peak amplitude of total field plotted against $\log \mathbf{K}_{\mathbf{C R}}$ and $\log \mathrm{K}_{\mathrm{OC}}$. for $\mathrm{d} / 6=1,1 / 3,1 / 10,1 / 30$ and structure of Figure 2 4
8. Theoretical profiles of Pa_{a} and ϕ over structure of Figure 2 for $\mathrm{d} / 6=0.1 / 30,1 / 10,1 / 3$ 5
9. Variations of amplitude $\left|\mathrm{pa}_{\mathrm{a}} / \rho_{1}\right|$ and phase ϕ for two-layer earth with resistive basement (after Cagniard (1953)) 5
10. Geology and aeromagnetic contours, Leitrim area 6
11. VLF in-phase and quadrature profiles, Leitrim area 7
12. VLF total field profiles, Leitrim area 8
13. Apparent conductivity $\left(\sigma_{a}\right)$ and phase (ϕ) profiles on lines $20+00 \mathrm{~N}, 10+00 \mathrm{~S}$, and $40+50 \mathrm{~S}$. Leitrim area 9
14. Airborne VLF and traverse line. Smoky Creek fault area, Lake Abitibi-Noranda area 10
15. VLF total field, and $P_{\text {a }}$ profiles line A3. Smoky Creek fault 10

VLF MAPPING OF GEOLOGICAL STRUCTURE

Abstract

Field measurements with the EM16 instrument, in several areas definitely confirm the usefulness of the VLF method for mapping shallow geological structure. Results obtained across a portion of the Gloucester fault southeast of Ottawa indicate that this technique is particularly suitable in areas where the geology is simple. The field results generally agree rather well with theoretical model data. The latter, however, indicates that mapping with the EM16 alone produces little quantitative information, although the relative positions of the high and low resistivity beds are generally clear. For this reason, it is desirable to supplement the EM16 data occasionally with surface impedance measurements to obtain apparent resistivities on both sides of the contact. This is especially true where it is suspected that the observed anomaly is caused by an accident in the bedrock topography rather than by the opposition of beds of differing resistivity.

Résumé

Des mesures, sur terrain, avec l'appareil EM16 confirment l'utilité de la méthode TBF comme outil de cartographie des structures géologiques peu profondes. Les résultats obtenus a travers la faille de Gloucester au sud-ouest d'Ottawa indiquent que cette technique s'odapte très bien au problème posé dans des situations géologiquement simples.

Les résultats de terrain concordent très bien avec les calculs théoriques. Cependant ceur-ci démontrent qu'il est difficile d'obtenir des informations quantitatives d̀ partir des mesures EM16 seules. Afin d'obtenir des résistivités apparentes des deux cotés du contact. on doit compléter les mesures EM16 avec des mesures de l'impédance de surface. Ceci est surtout vrai dans des cas où l'on soupconne que l'anomalie est tié \& un accident topographique de la roche en place plutot que par une opposition des lits de resistivite differente.

VLE ELAYP:NG OF GEOLOGICAL STRUCTURE
W. M. Telford ${ }^{\mathbf{1}}$, W. E. King ${ }^{2}$ and A. Becker ${ }^{3}$

Foreword

This paper is a summary of the work done by W. F. King while working under the direction of Dr. A. Becker as a graduate assistant for the Geological Survey of Canada. during the summers of 1969 and 1970. The data described form part of his M. Sc. Thesis dissertation, worling under thesis supervisor, Prof. W. M. Telford, Department of Mining Engineering and Applied Geophysics. McGill University. This paper is aroduct of the application of new geophysical techniques being adapted to the geological mapping misaion of the Electrical Methods Section, Resource Geophysics and Geochemistry Division. Geological Survey of Canada.

L.S. Collett,
Head, Terrain Geophysics Program.
Resource Geophysics and Geochemistry Division

INTRODUCTION

It has long been observed that electromagnetic plane waves propagating along the earth's surface are locally distorted by near-surface discontinuitites in electrical resistivity. In such cases the horizontal magnetic field components normally present induce in the ground a non-uniform eddy current distribution which results in an anomalous vertical magnetic field component. In the

Figure 1. Two-dimensional fault with strike length infinite in y-direction: insert shows E polarization vectors.

[^0]extra low frequency range (ELF) this phenomenon is readily observable near coastlines (Weaver, 19€3) while in the audiofrequency range (AFMAG) the effec! was first observed by Shaw (oral comm. . 1961) in th. vicinity of faults and shear zones. More recent f. Collett and Bell (1971) have discussed how the AF:4A: method can serve as a useful tool in structural mepp:ng. Finally at very low frequencies (VLF) i.e. in the $10-20 \mathrm{kHz}$ range the effect of geological structure has been observed by Becker (1967), Fraser (1969) and Patterson and Ronka (1971).

These effects were explained theoretically by Weaver (1963) who obtained closed form solutions for plane waves incident on a semi-infinite conducting medium divided by a vertical discontinuity into two regions of different resistivity. Weaver's calculations were later confirmed experimentally by Dosso (1976) on a laboratory scale model. Both authors forecast a sharp increase in vertical magnetic field component near an electrical discontinuity. This quantity exhibits a maximum value at the discontinuity and decreases gradually to zero away from it.

The rate of decrease is a function of the electrical properties of the material on either side of the discontinuity, being greater on the conductive side. More recently this problem was studied by Geyer (197 ? a, s) who found that the spatial variation of the vertical component was strongly influenced by the dip of the interface.

The purpose of the present study was to examine in some detail the variation exhibited by the field components of a plane electromagnetic wave in the vicinity of a fault. In particular we have elected to study the variation in the vertical magnetic component and in the surface wave impedance across the discontinuity. As will be shown later. in the results section, we were fortunate! to be able to perform the measurements in relatively simple geological environments so that a good comparison could be made between our theoretical predictions of electromagnetic field behaviour and the observed variations.

Figure 2.
Subsurface current flow ($\mathrm{E}_{\mathbf{y}}$. relative amplitude distribution) at 10 kHz in the structure of Figure 1.

Figure 3. Theoretical profiles of $\mathrm{H}_{\mathrm{z}} \cdot \mathrm{H}_{\mathrm{z}}$ and Δ_{z-x} over atructure of Figure $\frac{\mathbf{2}}{}$.

THEORY

Vertical magnetic field variationa

A number of authors (Jones and Price, 1970). Swift (1971) have discussed the mathematical basis for the distortion of an electromagnetic plane wave over a vertical discontinuity separating two half-spaces of different conductivity, with and without an overburden layer above. For a remote natural EM source the direction of E. the electrical and H. the magnetic horizontal vectors is random with respect to the co-ordinate system shown in Figure 1. These vectors, however. may be resolved into components parallel and normal to the contact. The appropriate Maxwell equations thus become:

$$
\begin{aligned}
& \frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}=j \omega_{0} H_{y} \\
& \frac{\partial H_{y}}{\partial z}=-\sigma E_{x} \quad \begin{array}{c}
\text { for E normal to strike } \\
\text { (H polarization) }
\end{array} \\
& \frac{\partial H_{y}}{\frac{\partial x}{\partial z}=\sigma E_{z}} \\
& \frac{\partial E_{y}}{\partial x}=-j \omega \mu_{0} H_{z} \quad \\
& \frac{\partial E_{y}}{\partial z}=j \omega_{0} H_{x} \quad \begin{array}{l}
\text { for E parallel to atrike } \\
\text { (E polarization) }
\end{array} \\
& \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=o E_{y} \quad
\end{aligned}
$$

Figure 4. Tilt and ellipticity profiles for $\mathbf{d} / \delta=1 / 10,0$ for the structure of Figure 2.

$\xrightarrow{\text { Ho0Rm }} 1$

Figure 5. Total field. $\left|\mathrm{H}_{2} / \mathrm{H}_{\mathrm{x}}\right|$. profiles over the structure of Figure 2 with $\mathrm{d} / 6=0,1 / 30,1 / 10,1 / 3$.

The E polarization is particularly convenient for the VLF method, which messures H_{2} and $\mathrm{H}_{\mathbf{x}}$. It is customary, where possible, to select a remote station whose H_{x} vector is roughly parallel to the survey lines, that is. the station location is more or less parallel to strike.

The VLF source field. propagating parallel to the earth surface and refracted vertically downward at the ground interface, thus provides H_{x} and E_{y} components ; approximately in the appropriate direction. The ground current flow may be readily illustrated by calculating with the aid of numerical techniques (Swiff. 1967: Madden and Swift. 1969: Ku et al. . 1973) the actual subsurface electric field distribution for a given geological situation.

Figure 2 shows the subsurface current flow (actually the E_{y} field amplitude distribution) at 10 kHz in the structure of Figure 1 with an overburden of $100 \Omega \mathrm{~m}$. 5 m thick and the contact separating beds of 1000 and $10000 \Omega \mathrm{~m}$. Since the skin depth ($\delta=500 \sqrt{\mathrm{p} / t}$) for $100 \Omega \mathrm{~m}$ and 10 kHz is about 50 m . the EM wave is not greatly attenuated in the overburden. Use is made of the ratio d / δ, where d is overburden thickness, since it involves all the significant overburden parameters.

Theoretical profiles of $\mathrm{H}_{\mathrm{x}}, \mathrm{H}_{\mathbf{z}}$ and Δ_{z-x} over the same structure, are illustrated in Figure 3. As the fault is approached from the left (conductive side) the horizontal magnetic field increases to a maximum. falla sharply to a minimum as the contact is crossed and then increases slowly to background value as the traverse proceeds to the right. The slope is always steeper on the conductive side of the contact, although increasing overburden thickness and/or conductivity reduces the profile amplitude considerably. For very small values of d / δ the background value of H_{x} is actually larger on the conductive side than at large distances to the right.

The H_{z} field shows a peak directly over the contact which decays to zero on the flanks. Again the slope is steeper on the conductive side and the peak amplitude is controlled by d/6. In the bottom profile, the phase variation. Δ. between H_{z} and H_{X} is roughly an inverted image of the vertical magnetic field, with a minimum of 32° above the contact and a more or less linear increase on both sides. the steep slope again appearing over the conductive bed. When $\mathrm{d} / \delta=0$ the phase shift is zero

Figure 6. Peak amplitude of total field plotted against log $\mathbf{K}_{\mathbf{C R}}$ for atructure of Figure 2. No overburden.

Figure 7. Peak amplitude of total field plotted againat $\log K_{C R}$ and $\log K_{O C}$. for $d / \delta=1,1 / 3,1 / 10$, 1/30 and structure of Figure 2.
at the contact; as this ratio increases, the cusp persists, although its phase increases.

Because $\mathrm{H}_{\mathbf{Z}}$ and H_{x} differ in phase in the vicinity of a conductive discontinuity, the resultant EM wave is elliptically polarized (Heiland, 1940; King. 1971; Paterson and Ronka, 1971). The wave tilt θ (inclination of the major axis with respect to the horizontal) and ellipticity r (ratio of minor to major axes) of the ellipse are given by:

$$
\begin{gathered}
\tan 2 \theta=\frac{2 R \cos \Delta}{1-R^{2}} \\
r^{2}=\frac{1+R^{2}-\sqrt{\left(1+R^{2}\right)^{2}-4 R^{2} \sin ^{2} \Delta}}{1+R^{2}+\sqrt{\left(1+R^{2}\right)-4 R^{2} \sin ^{2} \Delta}}
\end{gathered}
$$

where $\Delta=\phi_{z}-\phi_{x}$ the phase difference between vertical and horizontal field components, and, $R=\mid H_{2} / H_{3 d}$ is their amplitude ratio. With a little manipulation and assuming that H_{X} is considerably larger than H_{z}, which is generally the case, these relations become:
$\tan \theta=\mathbf{R} \cos \Delta$

$$
r=R \sin \Delta
$$

Figure 8. Theoretical profiles of Pa_{a} and ϕ over structure of Figure 2 for $d / 6=0,1 / 30,1 / 10,1 / 3$.

In this case it is useful to note that the total normalized vertical field can be directly calculated from the measurements from:

$$
\mathbf{R}^{2}=\tan ^{2} \theta+r^{2}
$$

The parameters θ and r are related to "in-phase" and "quadrature" components of the secondary magnetic field (see section on instrumentation). Profiles of tilt and ellipticity, for $\mathrm{d} / \delta=1 / 10$ and zero (no overburden) are shown in Figure 4. The polarization ellipses at several stations along the traverse are included in the latter profile. Directly above the contact, if the value of Δ is zero, the ellipse degenerates to a straight line whose slope is $\mathrm{H}_{\mathbf{z}} / \mathrm{H}_{\mathbf{x}}$ -

Clearly the overburden has a pronounced effect on both the tilt and ellipticity profiles. Figure 5 illustrates this point further, where the total vertical secondary field H_{2}, expressed as a percentage of the primary field, is plotted for increasing values of d/6.

Two additional parameters may be employed to determine maximum response over the contact. These are K_{CR}, the ratio of resistivities in the conductive and resistive beds and $K_{O C}$. the ratio of overburden reaiativity to the resistivity of the more conductive
bed. When $\mathrm{d} / \delta=0$, the maximum total field response is controlled by K_{CR} only; this is shown in Figure 6. where $\left|\mathrm{H}_{\mathrm{z}} / \mathrm{H}_{\mathbf{x}}\right| \max$ is plotted against $\log \mathrm{K}_{\mathrm{CR}}$. Figure 7 displays total field values for variable K_{OC} as well as K_{CR}, corresponding to d/6 ratios of $1 / 30$. $1 / 10,1 / 3$ and 1 . When $d / 6=0$, the peak response will be 50% for any $K_{C R}=1 / 10$ ($10 \Omega m$ vs $100 \Omega \mathrm{~m}$. $1000 \Omega \mathrm{~m}$ vs $10000 \Omega \mathrm{~m}$, etc.) ; it should be noted. however, that the profile widths will be different. This will also be true for other values of d / δ when K_{CR} and K_{OC} are fixed.

From the foregoing discussion it is clear that. in areas where the overburden resistivity is large compared to rock resistivity or where $\mathrm{d} \approx 0$, it would be possible to use the H_{2} méasurements to determine the structure parameters from the $\left|\mathrm{H}_{\mathbf{2}} / \mathrm{H}_{\mathbf{x}}\right|$ max ratio, from the skewness of the profile, and from the profile width. A conductive overburden, however, affects these quantities greatly and other techniques are required. In general, we may summarize the behaviour of EM field components over a vertical fault as follows:

1. The total field response is an asymmetric peak over the fault and decays more rapidly on the more conductive side.
2. The in-phase component of the secondary vertical magnetic field is also an asymmetric peak above the fault and decays more rapidly on the more conductive side.

Figure 9. Variations of amplitude $\left|\rho_{\mathrm{a}} / \rho_{1}\right|$ and phase ϕ for two-layer earth with resistive basement (after Cagniard (1953)).

Figure 10. Geology and aeromagnetic contours, Leitrim area.
3. The quadrature component displays a local minimum over the fault, the response being broader than that of the in-phase. The minimum becomes less pronounced with increasing depth of overburden.
4. Both in-phase and quadrature response decrease with increasing depth of overburden. The quadrature response becomes greater than that of the in-phase when the overburden thickness is more than approximately one-half a skin depth.
5. In-phase and quadrature response increase with increasing resistivity contrast across the fault.
6. Anomaly width decreases with increasing frequency. for a given resistivity contrast.

Surface impedance variations

Another method which can be useful for the mapping of lateral discontinuities involves the simultaneous measurement of E_{y} and H_{x} as in magnetotellurics (Collett and Becker, 1968). The surface impedance, Z . is the ratio of these two quantities and defines the "apparent resistivity" for the underlying terrain via

$$
p_{a}=\frac{1}{\mu \omega}|z|^{2} \quad \text { in MKS units. }
$$

Usually, Z is a complex quantity because E_{y} and H_{x} are not in phase with each other. Thus Figure 8 shows theoretical profiles for the apparent resistivity and the phase difference between E and H across the original contact of Figures 2 to 6 for the $d / 6$ ratios used previously. It is again apparent that increasing depth of overburden influences the results by decreasing values of both Pa_{a} and $\$$ on each side of the contact, while smoothing the profile slope directly over it.

Although the variation in the apparent resistivity near the contact can only be calculated numerically. the values of this quantity and the accompanying phase difference, remote from the fault, can be computed analytically. Variations of amplitude $\left|\rho_{\mathrm{a}}\right|$ and phase ϕ for a two-layer earth - that is, the overburden layer remote from the fault - are shown in Figure 9. These are the standard master curves developed by Cagniard (1953), reproduced only for a conductive upper layer. Although magnetotelluric sounding normally involves measurement of horizontal orthogonal E and H fields over a range of frequencies, it is posaible. by assuming a resistive bedrock, to estimate the overburden parameters from this master chart even when IPal and $\$$ have been determined only at a single frequency in the field.

Figure 11. VLF in-phase and quadrature profiles, Leitrim area.

INSTRUMENTATION

Measurement of magnetic field tilt and ollipticity

The Geonics EM16 VLF receiver has been described elmewhere (King. 1971; Patereon and Ronka, 1971: Phillips and Richards, 1975). At least two other instrumenta - the Scintrex SCOPAS and Crone RADEM are also deaigned to measure properties of the polarization ellipse over the same frequency range. With the EM16 a minimum signal is obtained in the receiver by aligning the instrument receiver axes with the major and minor axes of the field polarization ellipse. At this tilt angle, the voltages induced in the two receiver coils are exactly in quadrature with each other and may be directly compared by adding a 90° phase shift to one of them. This comparison is made with the use of the "quadrature" dial which then allows a direct reading of the ellipticity. As indicated previously the tilt angle reading, in percent, is associated with the "in-phase" component of the secondary vertical field and the ellipticity is associated with the "quadrature" component of the same quantity.

In order to avoid ambiguity in profile ploting and interpretation, some aign convention must be maintained during field surveys. From the equations for E-polarization involving $\mathbf{H}_{\mathbf{z}}$ and $\mathrm{H}_{\mathbf{x}}$ in the previous section, we find that:

$$
\frac{H_{z}}{H_{x}}=-\frac{\partial E_{y} / \partial x}{\partial E_{y} / \partial z}
$$

Thus the value of $\tan \theta$ may be positive or negative. depending on the sign of $\mathrm{aE}_{\mathbf{y}} / \partial \mathrm{x}$; since E_{y} is larger on the resistive side of the lault, the x-gradient will be positive if the traverse proceeds from the conductive aide and vice versa. For consiatency the following azimuth orientation was maintained during field work.

For traverses approximstely east-west (north-south). the operator faces east (north) as nearly as possible. depending on the transmitter aximuth, to make measurements. while dipangles to the east (north) are reckoned positive. With this convention, both in-phase and quadrature values are positive when the resistive bed lies to the west (south) for an east-west (north-south) traverse, while a negative response indicates the resistive bed is east (north).

Figure 12. VLF total Iield profilea, Leitrim area.

Measurement of complex wave impedance

The Westinghouse Georesearch Model C-602 VLF Wave Impedance Meter was used for measuring Pa_{a} and ϕ. A Geonics EM16R unit, unavailable at the titne, is equally suitable for this purpose. Both employ the magnetotelluric method, with a horizontal axis coil to detect the \boldsymbol{H}_{x} magnetic field component and a 10 m dipole, consisting of two electrodes driven into the ground, for the E_{y} orthogonal electric field. Both are null instruments. With the Westinghouse meter the p_{a} and ϕ values are read off graphs supplied with the instrument. Its frequency range is $\mathbf{1 0 - 6 0} \mathbf{k H z}$. The EM16R is a modified form of the EM16, whose frequency range is about $15-25 \mathrm{kHz}$; ressstivity and phase readings are obtained from dial readings at null signal.

FIELD WORK

Gloucester Fault

The principal test area for field work was in the vicinity of Leitrim, near Ottawa, where the Gloucester fault strikes roughly southeast for some 30 miles. The map in Figure 10 includes some geology and aeromagnetic contours. Beds of Carlsbad shale form the north side of the contact, adjoining Oxford limestones in the northwest half, while March and Nepean sandstones occupy the southeast portion (Wilson, 1946).

Aeromagnetic contours indicate very little susceptibility contrast betwcen these formations. The fault trace determined by geological mapping is a smooth line; that outlined by the VLF Survey differs only in detail in some areas. This is a nearly vertical dip-slip fault downthrown to the northesst and displaced

Figure 13. Apparent conductivity (σ_{a}) and phase ($\$$) profites on lines $20+00 \mathrm{~N}, 10+00 \mathrm{~S}$, and $40+50 \mathrm{~S}$. Leitrim area.

A brief description of the various formations and their reaistivity is tabulated below (Andrieux written comm. . 1971):

Formation

Carlsbad

March	SS-dolomite layers	-
Nepean	SS-siliceous cemented	1500-3000
Ottawa	Limestone, shale-SS layers	2000-3000
Oxford	Thick dolomite with some ls	5000
Rockcliffe- St. Martin	Shale + SS levels: Is + sh + dolomite	low?

VLF profiles showing in-phase and quadrature response over this area are displayed in Figure 11 and those for the total field (R) in Figure 12. Line spacing was about 500 feet on average and the traverses, approximately normal to the fault. were generally one mile long. As indicated, the lines strike east-northeast; the Cutler Maine transmitter, NAA (17.8 kHz) which is about $\mathbf{4 0 0}$ miles due east of the area. was used for the entire survey. Although a VLF transmitter located apprommately north or south of Ottawa would have been more suitable. the Cutler station provided the best signal for this area. Readings were taken facing north. Station spacing varied from 50 feet near the fault to $\mathbf{2 0 0}$ feet remote from it.

Figure 14, Airborne VLF and traverse line, Smoky Creek fault area, Lake Abitibi-Noranda area.

Figure 15. VLF total field, and p_{a} profiles line A3. Smoky Creek fault.

The data displayed in Figure 11 provide excellent examples of the vertical contact between beds of contrasting resistivity. Nearly all the profiles show a pronounced anomaly where the Gloucester fault is expected to occur, consisting of asymmetric in-phase and quadrature peaks with the steeper slope to the northeast, corresponding to the more conductive bed. The quadrature anomalies, which are generally broader, fiatter and of smaller amplitude than the in-phase, also have a characteristic local minimum or cusp (e.g. Lines $24+50 \mathrm{~N}, 0+00,14+00 \mathrm{~S}, 19+00 \mathrm{~S}, 25+50 \mathrm{~S}, 41+00 \mathrm{~S} .47+00 \mathrm{~S}$. $50+005,72+00 S, 83+00 \mathrm{~S})$ coinciding more or less with the in-phase maximum on many profiles.

There is another distinct anomaly about 2000 feet east of the Gloucester fault between lines $21+00 \mathrm{~S}$ and $65+505$. Both in-phase and quadrature peaks are negative, the latter displaced slightly to the west of the in-phase on several lines, notably $60+50 S$. The steeper slope is on the southwest. Slight quadrature cusps are evident on lines $40+505,45+005$ and $50+005$. These data define a second contact with the resistive bed to the northeast.

A third anomaly still farther east appars between lines $32+005$ and $60+50 S$. Here the peaks are positive and the asymmetry indicates the resistive bed is on the southwest side of the contact. The quadrature response is larger than the in-phase on several lines. This feature. which is about 1300 feet east of the second contact on line $32+005$, appears to merge with it to the southeast. On line $60+505$ the separation has decreased to about 800 feet. producing a crossover type of response due to the proximity of the positive and negative peaks.

The total field profiles of Figure 12, although they contain less information than Figure 11. probably give a clearer picture of the three contacts discussed above. since the anomalies are all positive and there is less clutter.

Wave impedance profiles carried out on lines $\mathbf{2 0 4 0 0 N}$, $10+005$ and $40+505$ are shown in Figure 13. Here we have plotted the apparent conductivity (reciprocal of apparent resistivity) and ϕ the phase difference from 45°. On line 20400 N there is one pronounced break for both parameters. approximately at $36+00 \mathrm{~W}$. The kenerally low apparent conductivity 4-2 millimhos/m west of this station rises sharply and remains greater than 20 millimhos per metre for the eastern portion of the traverse. The phase angle between E_{y} and H_{x} increases abruptly at the same point and there is a difference of $15^{\circ}-20^{\circ}$ betwoen the average values ether side of it. These results agree qualitatively with the theoretical profiles of Figure 8. that is. the more conductive bed on the ast produces a larger phase angle than on the resistiveside. unless the structure. outcrops. In this case the fact thit the phase angle on the condictive sude exceeds 45° sorms mindicate the presence of a resistive overburden on that side.

The profule from 10400 S exhbits the same properties as the one from $20+00 \mathrm{~N}$. the contact being at $15+00 \mathrm{~W}$. Although the phase break is not as pronounced here. the difference between the average values of east and west sections is about 15°. Comparing all four profiles with Figures 11 and 12 . it is clear that the fault is located within 50 feet in all cases.

Three contacts are indicated in the σ_{A} and ϕ profiles for line $40+50 S$, near stations $6+00 \mathrm{E}, 29+00 \mathrm{E}$ and $44+50 \mathrm{E}$. These results correlate well with EML6 profics in Figures 11 and 12, where peaks appear at $5+50 \mathrm{E}, 29+00 \mathrm{E}$ and $44+00 \mathrm{E}$, corresponding respectively to the Gloucester and the two additional faults discussed previously. All the previous remarks concerning lines 20 N and $10 S$ apply here as well.

It is to be noted that the geological section derived by Wilson (1946), which is also shown in Figure 13. agrees with the position of the fault as indicated by the VLF measurements. It does not. however, suggest the presence of the other two features farther to the east.

Summing up. the correlation between field results and theory is excellent. In particular. there does not appear to be any anomalous conductivity associated with the faults themselves, such as exhibited by graphite and water-filled shear zones. In Figure 12 the trace of the Gloucester fault as mapped by the VLF
survey wanders somewhat irom its location determined geologically by Wilson (1946). The variation, however. is generally within 500 feet.

The wave impedance measurements located all the contacts within 50 feet of their positions found in the tilt angle survey, which is roughly the error in the pace and compass traverses employed. The apparent conductivities of the Carlsbad and Oxford formations obtained by shese measurements. about 15 und 3 millimhos/m respectively, do not represent true formation resistivities, because of the presence of overburden. The fact that the phase variations, in the vicinity of Gloucester fault, do not agree with the theoretical profiles in detail is probably due to irregularities in the overburden and/or multilayer beds on both sides of the contact.

Detection of the two faults east of the Gloucester fault indicate a resistive zone in the Carlsbad Shale (see Fig. 13. line $40+50 \mathrm{~S}$ between $29+00$ and $44+00 \mathrm{E}$) which cannot be due to a change in the bedrock terrain. since both overburden and shale resistivities are comparatively low. The resistive block may be Ottawa limestone, locally uplifted from below the Carisbad: outcrops of this formation are found northwest of Leitrim.

Smoky Creek Fault

Further field tests were carried out over the Smoky Creek fault in the vicinity of Lake Flavrian, several miles northwest of Noranda. Quebec. The fault strikes southeast for about 20 miles in the area. The geological map for the area indicates granodiorite on both sides. that is. there is no contrast in lithology across the contact. This feature was indicated by an early airborne AFMAG survey (Sutherland, 1967) and more recently : by an airborne VLF Barringer RADIOPHASE survey (Becker and McNeil. 1969). The field situation is shown in Figure 14 which indicates the position of one VLF profile (line A3) with respect to the fault and the airborne anomalies.

EMI6 total field profiles, together with the corresponding apparent resistivity prófile are shown in Figure 15 for line A3. Here. the Smoky Creek fault is located at station $15+50 \mathrm{~N}$. marked by extremely high (100%) total field peak and a very abrupt increase in resistivity from $100 \Omega \mathrm{~m}$ to $60 \mathrm{~J} 0 \Omega \mathrm{~m}$. The steep slope of the EM 16 profiles is also consistent with the more conductive zone on the south side.

DC resistivity shallow depth soundings were carried out in an attempt to clarify the EMI6 results. These Indicate that the thickness of the overburden is at least 57 feet at $7+50 \mathrm{~N}$. 43 feet at $13+50 \mathrm{~N}$. but 6 feet or less at $16+50 \mathrm{~N}$. This abrupt change in depth of a conductive ($<100 \Omega \mathrm{~m}$) layer - essentially a ateep contact between overburden and resistive bedrock - is the source of the anomaly. Possibly the fault itself, supposedly located at $15+50 \mathrm{~N}$, is responsible for the bedrock step, although there is no evidence to support this. Thus the VLF and $\rho_{\text {a }}$ profiles, aithough characteristic of a contact between two beds of different resistivity, appear to be the reflection of a sudden change in the depth of overburden.

CONCLUSION

The field results deacribed in this report agree very well with the theory of VLF response over a vertical contact between beds of contrasting resistivity, covered by a uniform layer of overburden. Thus the method is a useful qualitative supplement to field geology in mapping such structures. Subsequent work in the Ottawa Valley and St. Lawrence Lowlands (Williams, 1976) has confirmed this.

REFERENCES

Becker. A.
1967: Radio-wave mapping of ground conductivity anomalies; in Report of Activities, Part A; Geol. Surv. Can. , Paper 67-1A, p. 130-131.

Becker, A. and McNeil, J. D.
1969: Explanatory notes, Noranda Radiophase Survey; Published by Quebec Department of Natural Resources.

Cagniard, L.
1953: Basic theory of the magneto-telluric method of geophysical prospecting; Geophysics, v. 18, p. 605-635.

Collett, L. S. and Becker, A.
$\begin{aligned} \text { 1968: } & \text { "Radiohm Method for Earth Resistivity } \\ & \text { Mapping"; Canadian Patent No. 795, } 919 .\end{aligned}$
1968: "Radiohm Method for Earth Resistivity
Collett, L. S. and Bell. C.K.
1971: AFMAG use in geological interpretation; Can. Min. Metall. Bull. , v. 64. p. 39-47.

Dosso, H. W.
1966: Analogue model measurements for electromagnetic variations near a coastline: Can. J. Earth Sci., v. 3, p. 917-936.

Fraser, D. C.
1969: Contouring of VLF-EM data; Geophysics. v. 34, no. 6. p. 958-967.

Geyer, R.G.
1972a: Transient electromagnetic response near a fault zone; Geophys. Prospect. . v. 20, p. 829-846.

1972b: The effect of dipping contact on the behaviour
1972b: The effect of dipping contact on the behaviour
of the electromagnetic field; Geophysics, v. 37, p. 337-350.

Heiland, C. A.
1940: Geophysical Prospecting, chap. 10. Prentice-Hall, New York.

In areas where there are abrupt changes in depth of overburden. however, the VLF data may be misleading. as described in the survey of the Smoky Creek fault. Similar sudden lateral changes in overburden resistivity, although no examples are given here, would doubtless have the same effect. At present shallow seismic and resistivity sounding are the only geophysical methods available to clarify such situations: both are slow and relatively expensive. Obviously a simple and rapid technique for mapping bedrock terrain and estimating overburden resistivity is very desirable. not only in connection with the type of survey described here, but in many other applications as well.

Jones, F. W. and Price, A. T.
1970: Perturbations of alternating geomagnetic fields by conductivity anomalies; Geophysc. J. R. Astron. Soc., v. 20, p. 317-334.

King, $\boldsymbol{\text { w. }}$ F.
1971: Studies of geologic structures with the VLF method; unpubl. M.Sc. thesis, McGill Univ. . Montreal.

Ku, C.C. . Hsieh, M.S. . and Lim, S.H.
1973: The topographic effect in electromagnetic fields: Can. J. Earth Sci. . v. 10. p. 645-656.

Madden. T. R. and Swift. C. M., Jr.
1969: Magneto-telluric studies of the electrical conductivity structure of the Crust and Upper Mantle; in The Earth's Crust and Upper Mantle; Geophysc. Monograph. 13. (ed. P.J. Hart), p. 469-479; Am. Geophys. U. Weshington, D. C.

Paterson, N. R. and Ronka, V.
1971: Five years of surveying with the VLF EM Method: Geoexploration, v. 9. p. 7-26.

Phillips. W.J. and Richards, W.E.
1975: A study of the effectiveness of the VLF Method for the location of narrow-mineralized fault zones; Geoexploration. v. 13. p. 215-226.

Sutherland, D.B.
1967: AFMAG for EM mappins; in Mining and Groundwater Geophys.; (ed. L. W. Morley). Geol. Surv. Can. Econ. Geol. Rep. 26, p. 228-237.

Swift, C. M. . Jr.
1967: A Magneto-telluric investigation of an electrical conductivity anomaly in the Southwestern United States; unpubl. Rh.D. thesis, M.I.T., Cambridge, Mass.

1971: Theoretical magneto-telluric and Turam Response from 2-dimensional inhomogeneities. Geophysics, v. 36. p. 38-52.

Weaver. J. T.

1963: The electromagnetic field within a discontinuous conductor with reference to geomagnetic micropulsations near a coastline: Can. J. Phys. v. 41. p. 484-495.

Williams. D. A.
1976: A study of the fault aystems in the St. Lawrence Lowlands and Ottawa Valley areas: Ph. D. thesis. McGill Univ. . Montreal. (in prep.)

Wilson. A.E.

1946: Geology of the Ottawa-St. Lawrence Lowlands. Ontario and Quebec: Geol. Surv. Can. . Mem. 241.

CONTOURING OF VLF-EM DATA

By

D.C. Fraser

Reprinted From
GEOPHYSICS
Vol. XXXIV, No. 6, December 1969

CONTOURING OF VLF-EM DATA \dagger

D. C. FRASER*

Prospecting for conductive deposits with ground VLF-EM instruments has received considerable impetus with the recent development of lightweight receivers. The large geologic noise component, which results from the relatively hightransmitted frequency, has caused some critics to avoid use of the technique. Those who routinely perform surveys with a VLF-EM unit find that, in some areas, a 5-degree peak-to-peak anomaly can be significant, whereas anomalies having amplitudes in excess of 100 degrees may occur as well. Consequently, there is a dynamic range problem when presenting the results as profiles
plotted on a field map.
A data manipulation procedure is described which transforms noisy noncontourable data into less noisy contourable data, thereby eliminating the dynamic range problem and reducing the noise problem. The manipulation is the result of the application of a difference operator to transform zero-crossings into peaks, and a low-pass smoothing operator to reduce noise. Experience has shown that field personnel can routinely perform the calculations which simply involve additions and subtractions.

INTRODUCTION

VLF-EM data can be exceedingly difficult to interpret because a large geologic noise component can result from the relatively high-transmitted frequency of about $20,000 \mathrm{~Hz}$. Routine surveys can yield useless data unless special care is taken both in survey procedure and in data presentation.

The purpose of this paper is to describe the survey procedure and the method of data presentation in use by the Keevil Mining Group and to illustrate the advantages of this approach.

VLf-EM GROUND SURVEY PROCEDURE AND data treatment

The primary field

VLF-EM transmitter stations are located at several points around the globe. They broadcast at frequencies close to $20,000 \mathrm{~Hz}$, which is low compared to the normal broadcast band. The purpose of these stations is to allow governmental communication with submarines, and the low frequency allows some penetration of the conduc-
tive ocean water. Skin depth is approximately $3.6 \sqrt{P}$ meters, where P is the resistivity of a homogeneous halfspace in ohm-m, on the assumption that the frequency is $20,000 \mathrm{~Hz}$ and that the halfspace is magnetically nonpolarizable. Consequently, depth of exploration is severely restricted for overburden resistivities less than 200 ohm-m.

Since the area to be prospected normally is of considerable distance from the transmitter stations, the primary field is uniform in the area, allowing rather simple mathematics to be used in anomaly prediction and analysis.

Survey procedure and data trealment

The survey procedure first consists of selecting a transmitter station which provides a field approximately parallel to the traverse direction, i.e., approximately perpendicular to the expected strike of a conductor. The following points relate to the method of data treatment.

1. Readings should be taken every 50 ft , as will be shown below.
2. Transmitter stations should not be changed

[^1]for a given block of ground, to avoid distortion in the contour presentation. Hence, fillin lines should be run with the same transmitter station as other lines in the block. The field direction of this station should be shown on the data map.
3. List the dip angle data in tabular form, as follows:
a) list in the direction of north (top of paper) to south, or from west to east;
b) designate south or east dips as negative; and
c) perform calculations as shown in Table 1.
Thus, the filtered output or contourable quantity simply consists of the sum of the observations at two consecutive data stations subtracted from the sum at the next two consecutive data stations. The theoretical basis for this procedure will be described below.
4. The right-hand column (filtered data) is
${ }^{1}$ This paper assumes that data is recorded as for the Crone Radem which defines a north-dipping field as a south "dip" on the instrument. This convention was chosen because a south reading is interpreted as arising from a conductor to the south.
suitable for contouring. Normally, negative values are not contoured since, being caused by dip angle flanks, they do not aid interpretation but only confuse the picture. The positive values generally are contoured at 10-unit intervals, and the zero contour is shown only when it brackets an anomaly. In quiet areas, 5 -unit contours may be meaningful.

Example

Figure 1 presents dip-angle data, according to the Crone convention, in the vicinity of the Temagami mine of Copperfields Mining Corporation Limited in Ontario. This figure illustrates that several conductors are present yielding large dip angles. A complex pattern has resulted which requires some thought to interpret properiy.

Figure 2 presents the filtered data in contoured form where only the $\mathbf{0 , 2 0}$, and 40 contours are shown for simplicity. The conductor pattern is immediately apparent, even to exploration personnel untrained in VLF-EM interpretation. The three anomalies correlate with a zone of nearly massive pyrite and two brecciated fault zones. Depth to bedrock is 15 ft .

In practice, all the data of Figures 1 and 2 are

Table 1. Example of calculations

Fracer

Frg. 1. Dip-angle data in the vicinity of the Temagami mine. The arrow defines the VLF-EM primary field direction from the transmitter at Seattle, Washington.
placed on a single map. The above example illustrates that this very simple one-dimensional filtering scheme yields a practical and effective approach to VLF-EM data handling.

The filter improves the resolution of anomalies, thereby making them easier to recognize. An inflection on the dip profile from a conductor subordinate to a larger one yields a positive peak, thereby emphasizing the presence of such a conductor. Figure 3 illustrates this effect where nine lines were run over an SP (self-potential) anomaly in the Temagami area. The dip-angle anomaly is very poorly resolved due to the regional south dips produced by an areally large conductor to the south of the map area. The contoured VLF-EM data yields a clearly defined anomaly which was located over the negative center of the SP.

THE RILTER AND ITS EERECT ON ANOMALIES

The filter operalor

The filter operator was designed to meet the
following criteria:

1. It must phase shift the dip-angle data by 90 degrees so that crossovers and inflections will be transformed into peaks to yield contourable quantities.
2. It must completely remove dc and attenuate long spatial wavelengths to increase resolution of local anomalies.
3. It must not exaggerate the station-tostation random noise.
4. It must be simple to apply so that field personnel can make the calculations without difficulty.
The first two criteria are met by using a simple difference operator, i.e.

$$
M_{2}-M_{1}
$$

where M_{1} and M_{2} are any two consecutive data points.

The third criterion is met by applying a smoothing or low-pass operator to the differences, i.e.

Fig. 2. Filtered data computed from the map of Figure 1.
$\frac{1}{4}\left(M_{2}-M_{1}\right)+\frac{1}{2}\left(M_{3}-M_{2}\right)+\frac{1}{4}\left(M_{4}-M_{3}\right)$,
where M_{1}, M_{2}, M_{3}, and M_{4} are any four consecutive data points. The filtered output then is

$$
\begin{aligned}
\frac{1}{4}\left(M_{2}-M_{1}\right)+ & \frac{1}{2}\left(M_{3}-M_{2}\right)+\frac{1}{4}\left(M_{4}-M_{3}\right) \\
& =\frac{1}{4}\left[M_{3}+M_{4}-M_{1}-M_{2}\right] .
\end{aligned}
$$

The final criterion is enhanced by eliminating the constant, so that the plotted function becomes

$$
f_{2,3}=\left(M_{3}+M_{4}\right)-\left(M_{1}+M_{2}\right)
$$

which is plotted midway between the M_{2} and M_{3} dip-angle stations.

This filter has its frequency (wavenumber) response displayed in Figure 4, for a station spacing of 50 ft . Its characteristics are as follows:

1. All frequencies are shifted by 90 degrees.
2. Noise having a wavelength equal to the station spacing and dc hias are completely removed.
3. Maximum amplitude occurs for wavelengths of 250 ft , or five times the station spacing.
The frequency (wavenumber) response of the filter is shown for a station spacing of 50 ft , because this is the most suitable spacing for defining sulfide bodies within a few hundred feet of surface. This will be demonstrated below.

The dike model

A conducting dike in a VLF-EM field will produce a secondary induction field from eddy currents maintained in it by the primary field. These eddy currents will tend to flow in such a manner as to form line sources concentrated near the outer edges of the dike since the field is uniform (Figure 5a). This dike may be replaced by a loop of wire of dimensions traced out by the main current concentration in the dike. The secondary ficld geometry of the loop and dike then will be practically identical, as has been shown by Fraser (1966), Parry (1966), and Parry ct al (1965). This

Frc. 3. Dip-angle (upper map) and filtered data (lower map) over a small grid in the Temagami area. The arrow defines the VLF-EM primary field direction from the transmitter at Balboa, Panama.
allows a mathematical model of a dike to be constructed because the field from a line source is known.

For brevity, only a dike which is large in depth extent and in length will be considered herein. Only the top line source of Figure 5 a will contribute to the measured dip angles because the other current line sources are very far away.

The horizontal $H s_{x}$ and vertical $I I s_{z}$ secondary fields are (Figure 5b)

$$
\begin{aligned}
H s_{x} & =k H_{0} \frac{z}{x^{2}+z^{2}} \\
H s_{x} & =k H_{0} \frac{x}{x^{2}+z^{2}}
\end{aligned}
$$

where k is a positive constant having the dimension of length and is related to the conductivity and dimensions of the dike, and where H_{0} is the primary VLF-EM strength at the dike. The measured dip angle is

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left[\frac{H_{i_{i}}}{H s_{x}+H_{0}}\right] \\
& =\tan ^{-1}\left[\frac{k x}{k z+x^{2}+z^{2}}\right] .
\end{aligned}
$$

Model dip profiles can be computed for various depths ε only by assuming a value for k.

As a means of testing the effect of the filter operator, a single k value was chosen to yield a

Fig. 5. (a) A sheet in a uniform primary feld will have maximum current concentrated near its edges. (b) A line source, corresponding to the upper current concentration in (a), yields a secondary magnetic field of cylindrical shape.
maximum dip angle of 35 degrees when depth z to top of dike (or line source) was 100 ft . Figure 6 illustrates the dip angle and filtered profiles for this case for a station spacing of 50 ft and for several depth values.

The following are the main characteristics of these dike and filtered anomalies:

1. Peak-to-peak angles vary from 93 degrees for $z=50$ ft to 25 degrees for $z=500 \mathrm{ft}$. Filtered peaks vary from 118 degrees for $z=50 \mathrm{ft}$ to 8 degrees for $z=500 \mathrm{ft}$. Thus, the filter amplifies near-surface anomalies and attenuates deep-source anomalies. There is neither amplification nor attenuation when z is 100 ft .
2. On the basis of anomaly resolution and usual noise levels, dip angle data can detect dikelike conductors in a resistive medium to a
depth of 500 ft , while filtered data can detect such bodies to a depth of 300 ft . Conductors in the upper 200 ft generally will be more easily recognized on the filtered data.

VLF-EM data commonly is measured at $100-$ ft intervals in Canada. A change in the sample interval from the 50 ft recommended herein to 100 ft causes the passband curve of Figure + to shift to the left, such that the peak is at 2×10^{-3} cpf rather than $4 \times 10^{-3} \mathrm{cpf}$. Similarly, the anomaly curves of Figure 6 remain correct in shape provided all distance dimensions are doubled. Consequently, detection of conductors to a depth of 500 ft , when utilizing the filter operator, might appear facilitated by use of a $100-\mathrm{ft}$ station interval rather than a $50-\mathrm{ft}$ interval. However, anomalies from near-surface conductors will have poorly defined waveforms for a 100 -ft

Frc. 6. Dip-angle (dashed) and filtered (solid) curves for model dike and sphere for several depths of burial, where z is depth to top of dike and to center of sphere.
data station interval, and will alias as deeper conductors. This "geologic noise" will somewhat confuse the contoured output. Generally, a comparison of the 50 -ft data station dip angle profiles with the contoured filtered output suffices to indicate approximate depth to source and to allow recognition of sources deeper than 300 ft .

As an aside, some geophysicists have claimed that a reasonable dike model depth estimate can be obtained directly as half the distance between dip angle peaks, because the vertical field $H s_{n}$ peaks at $x= \pm \mathrm{z}$. However, this formula is not applicable to dip-angle data, as can be seen by the dike curves of Figure 6. For this example, the formula provides erroneous depth estimates of $150,200,325,425$, and 625 for true depths of 50 , $100,200,300$, and 500 ft .

The sphere model

A conducting sphere in a VLF-EM field will produce an anomaly according to equations in Ward (1967). For a traverse directly over a sphere having its center at depth z, and run in the direction of the primary field H_{0}, the anomaly is,

$$
\begin{aligned}
& H s_{x}=k H_{0} \frac{\left(2 x^{2}-z^{2}\right)}{\left(x^{2}+z^{2}\right)^{5 / 2}} \\
& H s_{z}=k H_{0} \frac{3 x z}{\left(x^{2}+z^{2}\right)^{5 / 2}},
\end{aligned}
$$

where k is a positive constant which saturates at $R^{3} / 2$, where R is the sphere radius, and where quadrature is ignored. The measured dip angle as a function of station location x is (where x is zero directly over the sphere center),

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{H s_{z}}{H s_{x}+H_{0}}\right) \\
& =\tan ^{-1}\left[\frac{3 k x z}{k\left(2 x^{2}-z^{2}\right)+\left(x^{2}+z^{2}\right)^{5 / 2}}\right] .
\end{aligned}
$$

Model dip profiles can be computed for various depths z only by assuming a value for k. The sphere curves of Figure 6 assume a saturated k value for a sphere radius of 50 ft . Obviously, a sphere having its center at a depth of greater than twice its radius generally will not be detectable. However, the filter operator aids in the recognition of a spherical conductor because it amplifies the anomaly, for the small sphere sizes
usually encountered in nature, assuming data spacing is 50 ft .

TOPOGRAPHC EFEECT

Whittles (1969) recently described a topographic effect which may arise when surveying with VLF-EM in mountainous regions. The spatial wavelengths which result from the phenomenon he describes are greatly attenuated by the filter and generally do not appear on the contoured maps. Whittles advocates the use of first derivatives to remove the topographic effect. The filter operator described herein uses the first difference (i.e., the discrete first derivative) as one of its components.

ADDITIONAL APPLICATIONS

The simplicity of the calculations allows practical application of the filter to any form of ground geophysical data which yields zero-crossings over tragets, such as vertical loop EM and Afmag. However, it is difficult to justify the use of the filter on vertical loop EM data because neither dynamic range of anomalies nor geologic noise is large. In Afmag, utilization of the filter is not recommended because of the varying direction of the primary field.
Airborne VLF-EM systems, which measure parameters yielding zero-crossings over targets, are being marketed. If the data were collected on magnetic tape, a computer could be used to apply the filter, thereby allowing contouring of the data. However, in this situation more sophisticated filter operators should be employed.
If the filter is to be applied to data other than ground VLF-EM, the sample interval should be selected to ensure that the passband of the filter is correct relative to the frequency components of the anomalies sought.

conclusions

A consideration of geologic noise and conductor shapes illustrates that VLF-EM data should be collected at $50-\mathrm{ft}$ intervals, and that the described filter operator should be employed. The filtered data, when contoured, provides a data presentation which simplifies interpretation. The filter also amplifies anomalies from near-surface, highly conducting ore pods which is an important feature in several mining districts such as at Tribag and Temagami, both in Ontario, and in Louvicourt Township of Quebec.

REFERENCES

Iraser, D. C., 1966, Rotary field electromagnetic prospecting: Ph.D, thesis, Univesity of California at Berkeley.
Parry, J. R., 1966, A theoretical and experimental investigation of finite dikes in a uniform electromagnetic field: M.Sc. thesis, University of California at Berkeley.

- Fraser, D. C., and Ward, S. H., 1965. Investi-
gation of finite dikes in a uniform electromagnetic field: Presented at the 35th Annual International SEG Meeting, Dallas, Texas.
Ward, S. H., 1967, Electromagnetic theory for geophysical applications, in Mining Geophysics, Vol. II: Tulsa, SEG, p. 80.
Whittles, A. B., 1969, Prospecting with radio frequency EM-16 in mountainous regions: Western Miner, February 1969, p. 51-56.

[^0]: ${ }^{1}$ Department of Geophysics. McGill University. P.O. Box 6070. Station A. Montreal H3C 3G1. Canada 2 ${ }^{2}$ Chevron Standard Company Ltd. . 400 5th Ave. S.W. Calgary. Alberta
 ${ }^{3}$
 ${ }^{3}$ Managing Director, IREM-MERI, P. O Box 6079. Station A. Montreal II3C 3A7. Canada

[^1]: \dagger Manuscript received by the Editor April 24, 1969; revised manuscript received August 18, 1969.

 * Keevil Mining Group Limited, Geophysical Engineering \& Surveys Limited, Teck Corporation Limited, Toronto, Ontario, Canada.
 Copyright © 1970 by the Society of Exploration Geophysicists.

