

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Prospecting Report on the Davis Property

Davis Township, Sudbury Mining Division

Figure 1: 1m Stockwork vein in outcrop (118/84), R318907

Andrew McLellan February 3, 2020

Table of Contents

1.0 Summary	4
2.0 Location and Access	4
3.0 Property Description	5
4.0 Historical Work & Regional Historical Gold Mines	6
5.0 Regional Geology	8
6.0 Property Geology	9
7.0 Geophysics – Airborne Magnetics	10
8.0 Prospecting Surveys	11
9.0 Geochemistry Results	16
10.0 Conclusion and Recommendations	18
List of Figures	
Figure 1: 1m Stockwork vein in outcrop (118/84), R318907	1
Figure 2: Location Map	4
Figure 3: Property Map	5
Figure 4: Location of the Cobalt Embayment (Potter 2009)	8
Figure 5: Property Geology Map	9
Figure 6: Vertical Magnetic Gradient nT/m – Ontario Geological Survey 1999	10
Figure 7: Prospecting Map	11
Figure 8: Trench and Rock Type Map	12
Figure 9: R318903 - shaft rubble - grey quartz mineralization	13
Figure 10: Shaft 4m x 7m - R318901 (left pink ribbon), R318902 (right pink ribbon)	13
Figure 11: 13-15cm quartz vein by marsh (325/70) R318905-06	14
Figure 12: 1m Stockwork vein in outcrop (118/84), R318907	14
Figure 13: 1m Stockwork vein mineralization	15
Figure 14 1m Stockwork vein channel	15
Figure 15: Geochemical Profile of Davis Grab Samples	16
List of Tables	
Table 1: Mining Claim Descriptions	5
Table 2: MacDonald Gold Mines 2019 Grabs Sample Comparison	17

Appendixes

Appendix A: Daily Log	19
Appendix B: Expense Summary	20
Appendix C: Grab Sample Descriptions	21
Appendix D: Geochemical Results – Elements in Alphabetical Order	22
Appendix E: Elements Ordered from Highest to Lowest Average	24
Appendix H: References	25
Appendix I: Statement of Qualifications	26
Appendix J: Assay Certificates	28

1.0 Summary

The prospecting surveys carried out on the Davis property were by Jacques Robert and Andrew McLellan. The surveys were completed in two phases. The first phase was completed over five days in the summer of 2018 on July 31st, August 6, 16, 25, and 26, and the second phase was completed over one day on October 5, 2019. During the first phase a quartz vein was delineated on surface for a strike length of 123 metres. Eight grab samples were taken and seven were sent to the lab for geochemical analysis. The grab sample results were as high as 1.91 % Cu, 14.5 ppm Ag, 0.255 ppm Au, 8225 ppm Ni, 6 ppm Co, and 58 ppm Zn. During the second phase the exposed quartz vein on surface was channeled perpendicular to strike to observe in the mineralization and geology.

2.0 Location and Access

The Davis property is located in the eastern portion of Davis Township; approximately forty kilometres east of Sudbury (see Figure 2 below). The property can be accessed by road. Driving directions from Sudbury are as follows: take Hwy 17 50km east to Markstay-Warren, turn left onto to Hwy 535/Boundary Road. Then travel north on Hwy 535/Boundary Road for 23 km. After crossing the old railway tracks turn left stay on road for 2km and turn right at the Y in the road. The Davis property is in 1 km. This road transects the middle of the Davis property.

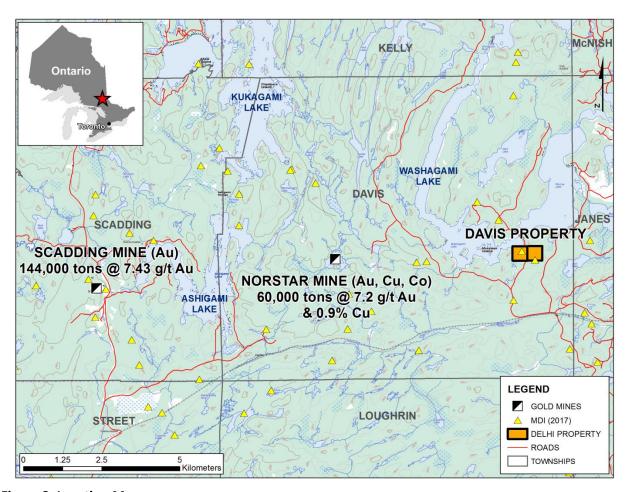


Figure 2: Location Map

3.0 Property Description

The Davis property is comprised of 2 single cell mining claims in Davis Township, Sudbury Mining Division (see Figure 3 below). The mining claims ownership is 100% held by 9640355 Canada Corp. Table 1 below provides a description of the mining claims.

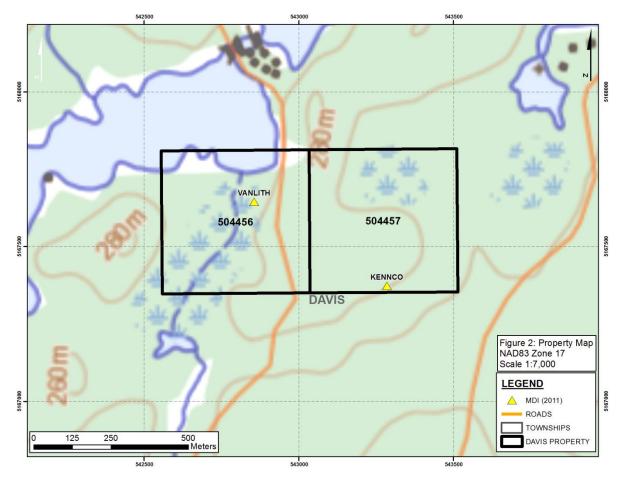


Figure 3: Property Map

Table 1: Mining Claim Descriptions

Tenure Number	Title Type	Township	Ownership
504456	Single Cell Mining Claim	DAVIS	(100) 9640355 CANADA CORP.
504457	Single Cell Mining Claim	DAVIS	(100) 9640355 CANADA CORP.

4.0 Historical Work & Regional Historical Gold Mines

Pre 1953 – Vanlith shaft/pit sunk. No documentation was found on when it was completed.

1953 – A ground magnetometer survey was completed over the property area by Bonaventure Uranium Mines Ltd. The grid spacing for the survey was 300 feet. A magnetic reading was taken every 100 feet along the lines with a Wolfson magnetometer.

1955-56 – Alba completed one diamond drill one in mining claim 504457 and three short drill holes at the Vanlith showing in mining claim 504456. The one drill hole (S-13A) was 300 feet and intersected sediments. At the Vanlith showing DH 10 was drilled to a depth of 45 feet and intersected gabbro, greywacke and disseminated chalcopyrite, DH 11 was abandoned, and DH 12 was drilled to a depth of 26 feet and intersected gabbro, greywacke, and a blue quartz vein with chalcopyrite blebs. No geochemistry results are available.

1970 – In 1970 electromagnetic, magnetic, and prospecting surveys were completed over the Davis property area by Idrex Exploration Ventures. Three small geophysical grids were surveyed with 100 foot spacing with geophysical readings taken every 50 feet. A McPhar M-500 Fluxgate magnetometer was used for the magnetic survey and Ronka EM 16 unit was used for the VLF survey. One of the small grids was over the Vanlith shaft/pit area. The geophysical surveys showed no significant magnetic or electromagnetic response in this area. Mineralization was documented while completing the geophysical surveys.

1981 – Silverside Resources Inc. in 1981 completed ground geophysical surveys and a soil sampling program. A grid was cut with 200 foot line spacing. Geonics EM-16 unit was used for the electromagnetic survey and MF-1 fluxgate magnetometer was used for the magnetic survey. The geophysical results revealed a well-defined east-west trending wide conductive zone along the south contact of a magnetic anomaly. A portion of this anomaly is located on the Davis property and was labeled anomaly "A." The soil sampling was carried out along the same lines used for the geophysical surveys. The samples taken every 50 feet over the conductive anomalies and were analyzed for Cu, Au, and Ag. The samples taken over the anomaly "A" showed higher Au values. Elevated Au results coinciding with anomaly "A" suggests this is an excellent exploration target.

1986 – At the Vanlith shaft/pit area prospector G. Vanlith completed a power/manual stripping and a trenching program with a portable gas plugger.

1987 – G. Vanlith continued to strip and trench the Vanlith showing area. Grab samples from the trenches were as high as 3.1 g/t Au.

1988 – At the Vanlith showing area Mr. Vanlith completed more stripping and trenching in the gossan areas along the gabbro and sediment contact. See Figure 8 for a map of the trenches and pits completed over the showing area. Grab samples at the trenches yielded as high as 1.2 g/t Au. Mr. Vanlith notes that better gold grades occur in rocks with chalcopyrite and pyrite.

1990 – G. Vanlith stripped two outcrops in the southern portion of mining claim 504456. No grab samples were documented.

Scadding Gold Mine

The Scadding Gold Mine is located 13.3 kilometres west of the Davis Property, see Figure 2. In 1984 the East-West Zone and North Zone were mined by two open pits for a total of 24,000 tons at 6.82 g/t Au. From September 1987 to March 1988 120,000 tons at 7.54 g/t Au was mined from the Intermediate Zone by underground operations. The ore was stockpiled on site. In 1990 the ore was processed on site by a 170 tons per day mill. The gold mineralization at the Scadding Mine occurs in smaller chlorite rich zones within a 100-300 metres long by 30-50 metres wide breccia zone. The mineralization is associated with chloritized, carbonate-rich, argillaceous siltstones near the base of the Serpent Formation. The most abundant sulphide in the East-West Zone was arsenopyrite while pyrite dominates the Intermediate Zone. (Ontario Geological Survey 1991)

Norstar Gold Mine

The Norstar Gold Mine is located 5.6 kilometres west of the Davis Property, see Figure 2. For four months the Norstar mine was put into production in 1987. A total of 63,000 tons of ore at 0.9% Cu and 7.19 g/t Au was mined and milled to produce 990,000 lbs. of Cu and 10,600 oz. Au. The ore zone is 30 metres long and 8 metres wide and consists of brecciated argillite intruded by a matrix of quartz, carbonate, pyrite, chalcopyrite, and arsenopyrite. Gowganda Formation clasts in the sulphide breccia are strongly chloritized and contain fine-grained disseminated arsenopyrite and pyrite. The breccia zone is associated with the gabbro and argillite contact. (Ontario Geological Survey 1991)

5.0 Regional Geology

The Davis property is located in the southern portion of the Precambrian aged (2450 – 2220 Ma) Cobalt Embayment (see Figure 7 below). The Cobalt Embayment is a ~60,000 km2, irregular domain of Huronian-age siliciclastic sedimentary rocks that unconformably overlies the Archean basement rocks of the Abitibi Greenstone Belt. The lower Huronian sedimentary rocks were likely deposited in a rift setting, whereas the upper formations represent a passive margin succession dominated by siliciclastic sediments. The Huronian and Archean rocks are intruded by Early Proterozoic sills and dykes of Nipissing Diabase with an age of 2220 Ma. Nipissing Diabase unit has a composition of olivine tholeiitic and are interpreted as the intrusive portion of an eroded continental flood basalt sequence. Regional-scale fault systems cross-cut both the Archean and Huronian rocks. (Potter 2009)

The Huronian sedimentary rocks were subjected to subgreenschist-facies metamorphism producing chlorite and muscovite porphyroblasts in the eastern region of the embayment and pyrophyllite in the central part of the embayment. The timing of the subgreenschist-facies metamorphism is sometime between 2220 Ma and 1747 Ma. (Potter 2009)

The younger olivine-diabase of the Sudbury dyke swam intruded the Precambrian rocks. The age of the Sudbury dyke swarm is 1238 +/- 4 Ma. (Potter 2009)

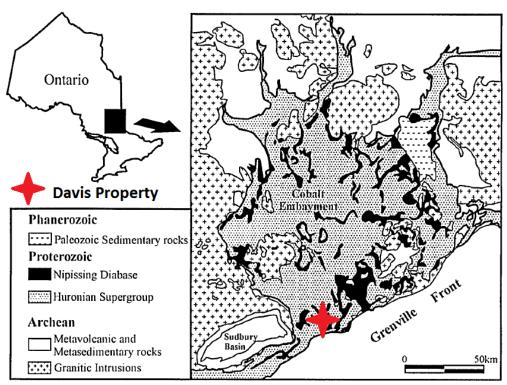


Figure 4: Location of the Cobalt Embayment (Potter 2009)

6.0 Property Geology

A Nipissing Diabase sill/dyke cuts through the central portion on the property. This sill/dyke hosts mineralization occurrences to the west of the property and is located slightly north of the historical Norstar Mine, see Figure below. This dyke/sill intrudes the argillite unit of the Huronian sediments. On the property the Vanlith Au, Cu, Ni occurrence is located at the Nipissing Diabase and sediment contact. Chalcopyrite and pyrrhotite mineralization has been documented at this showing. (Thomson & Card 1963)

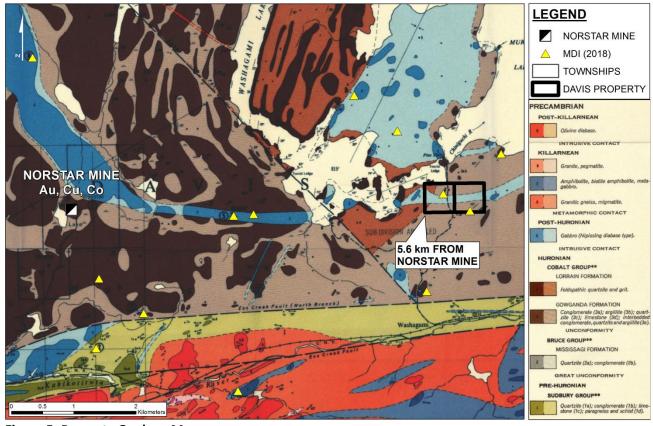


Figure 5: Property Geology Map

The Huronian Supergroup sediments found on Davis property are from the Gowganda Formation. Gowganda Formation is part of the Cobalt Group and is located at the near top of the stratigraphic column. Argillite lithology of the Gowganda formation is found on the property. The argillite is fine-grained mesocratic rock with laminations with average thickness of ¼". Bedded argillite outcrop was observed north of the Vanlith showing. (Thomson & Card 1963)

The Nipissing Diabase rock unit is an intrusive quartz gabbro of Keweenawan age. Generally, the diabase is melanocratic, medium to coarse-grained gabbro. In thin section, it is composed of calcic andesine, pyroxene, magnetite, biotite, and lesser amounts of sulphides, apatite and quartz. Quartz veins and stockworks are common in the gabbro, especially near the gabbro/sediment contact. These veins can contain carbonates, sulphides, and gold. Brecciation can be found along the gabbro/sediment contact like observed at the Norstar mine as well. (Thomson & Card 1963)

7.0 Geophysics – Airborne Magnetics

Figure 6 below illustrates the vertical magnetic gradient (nT/m) of the Davis property area. The airborne magnetic data was downloaded from Geology Ontario and displayed using the ArGIS Geosoft extension. The Norstar mine located 5.6 kilometers west of the Davis property is beside a magnetic high anomaly. The Vanlith showing on the Davis property is beside a magnetic high anomaly as well. The southern portion of this magnetic high anomaly coincides with a wide electromagnetic VLF conductive anomaly and elevated Au in the soil. Faults were interpreted based on the magnetic data. (Ontario Geological Survey 1999)

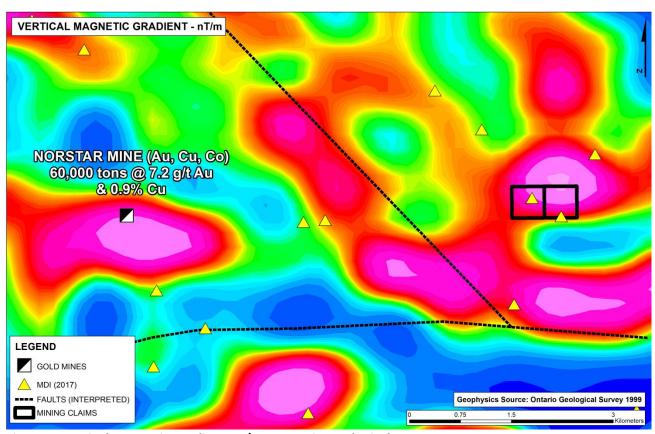


Figure 6: Vertical Magnetic Gradient nT/m - Ontario Geological Survey 1999

8.0 Prospecting Surveys

The prospecting surveys were carried out in two phases. The first phase was completed in the summer of 2018 on July 31st, August 6, 16, 25, and 26, and the second phase was completed on October 5, 2019. During the first phase Andrew McLellan prospected mining claims 504456 and 504457 for a total of 5 days. Eight grab samples were taken from mining claim 504456. During the second phase Andrew McLellan and Jacques Robert prospected mining 504456 and cut a channel at the quartz vein outcrop where R318907 was taken the previous year. The purpose of cutting the channel was to observe the mineralization and geology.

The map below (Figure 7) illustrates the prospecting traverses and grab samples taken. Each prospecting day is represented by a coloured traverse line. October 5, 2019 was not plotted because the GPS unit was not brought into the field. The main focus of that day was around grab sample R318907.

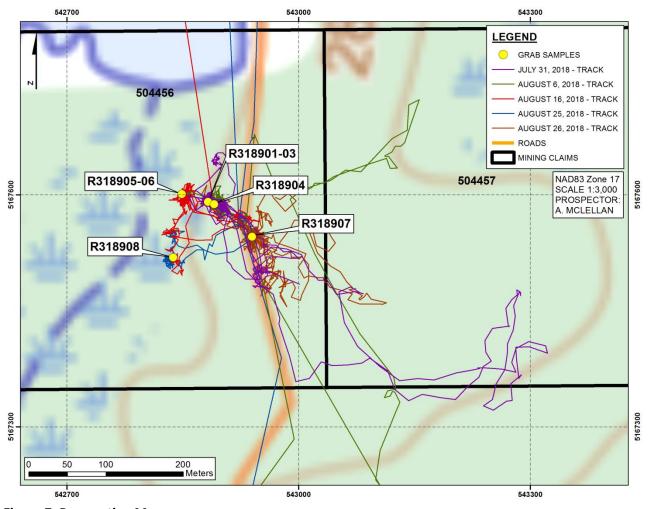


Figure 7: Prospecting Map

Figure 8 on the next page has the observed trenches, pits, quartz veins, and rock types plotted on a map.

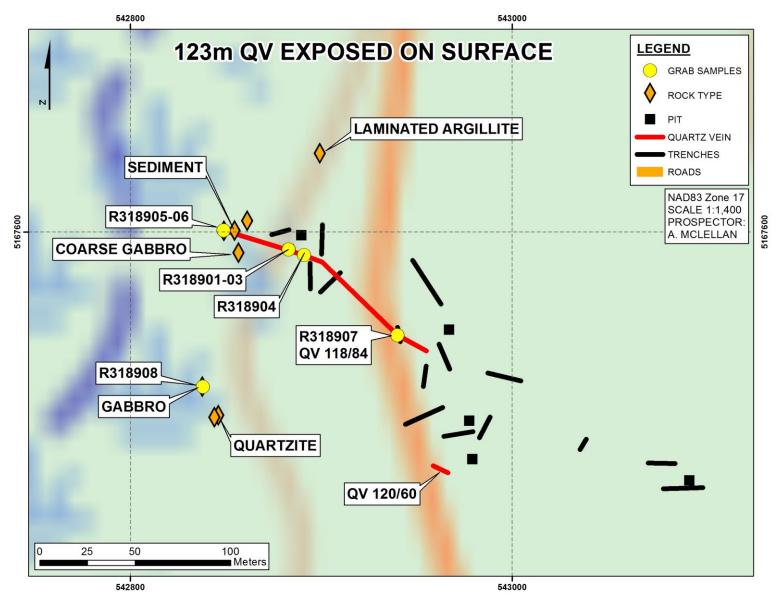


Figure 8: Trench and Rock Type Map

Seven of the eight samples were sent to the lab for geochemical analysis. One of the samples taken was rubble from the Vanlith shaft/pit, see Figure 9 below. The rest of the samples were taken from outcrops. The samples are representative of the quartz vein material or the mineralized host rock. R318908 was taken from the mineralized gabbro unit exposed at surface. Individual grab sample descriptions can be found in Appendix C.

Figure 9: R318903 - shaft rubble - grey quartz mineralization

During the first phase of prospecting the Vanlith showing was located and surrounding area was prospected. The Vanlith shaft/pit is roughly 4m x 7m and located on west of the road, see Figure 10 below. Cold air was felt when close to the working which indicates it may more likely be a shaft than a pit. Abundant malachite was observed in the outcrop with the pink ribbons. The quartz vein here was exposed at the surface for 123 meters, see Figure 8.

Figure 10: Shaft 4m x 7m - R318901 (left pink ribbon), R318902 (right pink ribbon)

Fifty meters west of the shaft/pit the same vein is explosed in oucrop by the marsh, see Figure 11 below. Two grab samples were taken at this location.

Figure 11: 13-15cm quartz vein by marsh (325/70) R318905 (quartz vein), R318906 (sediment to right)

Roughly fifty meters southeast the Vanlith shaft/pit the same vein was found explosed in outcrop, see Figure 12 below. The stockwork vein is roughly one meter wide. One grab sample was taken at this location, R318907.

Figure 12: 1m Stockwork vein in outcrop (118/84), R318907

During the second phase the same outcrop in Figure 12 was revisited. To oberserve the geology and mineralization better the vein was channelled perpendicular to strike. The stockwork vein is striking 118

degrees and dipping 84 degrees. The stockwork quartz vein is white with grey mineral filling in fractures. The vein also contains host rock inclusions and trace chalcopyrite. The hanging wall and footwall rock units are slightly magnetic greywacke. The footwall contains trace mineralzation and a gossan/alteration zone along the vein contact. The alternation zone alteration can be oberserved in Figure 13 and 14. The red colour suggests it has be hemaitized. Blebby chalcopyrite, arsenopyrite, carbonate, malachite, and 1 cm quartz veinlets were identified in the alteration zone.

Figure 13: 1m Stockwork vein mineralization

Figure 14: 1m Stockwork vein channel

9.0 Geochemistry Results

Seven samples were sent in for Au fire assay and Aqua Regia ICP-OES geochemical analysis. Over limit Cu samples were rerun with ore grade ICP-OES. The samples were analyzed by ALS in Sudbury. The ICP-OES geochemical analysis included 36 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn).

The following paragraph describes the methodology used for creating the geochemical profile of the grab samples (Figure 17). Results given in percent (%) units were converted to parts per million (ppm). The following elements were removed because all the results were below detection limit or very close to it: B, Hg, Be, Bi, La, Th, Tl, U, and W. All of the below detection limit results were given a value half of their detection limit. For each element the maximum, minimum, and mean were calculated. The remaining elements were ordered from the highest mean to the lowest mean. In this order the element means were plotted in the chart below (Figure 17). The data table of the samples can be viewed in Appendix E. Red cells represent maximum values and dark green cells represent lowest values.

The grab sample results were as high as 1.91 % Cu, 14.5 ppm Ag, 0.255 ppm Au, 8225 ppm Ni, 6 ppm Co, and 58 ppm Zn.

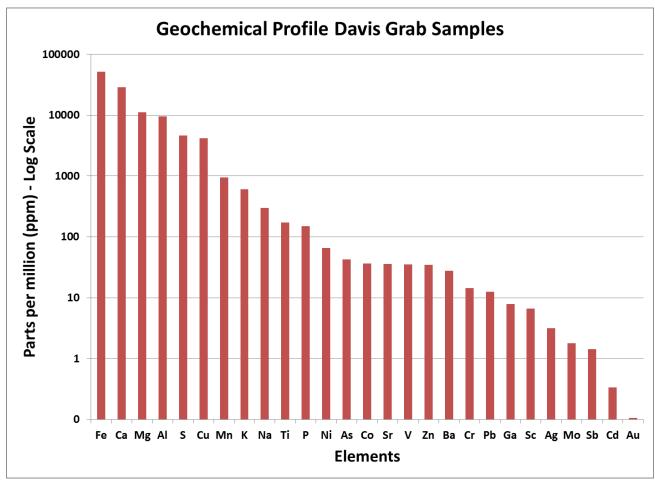


Figure 15: Geochemical Profile of Davis Grab Samples

Currently, MacDonald Gold Mines owns the property that surrounding the Davis property. They are suggesting they have an Iron Oxide Copper Gold system on their property. This is based on their geochemical results and observed mineralization. In the table below, MacDonald Gold Mines grab sample results from their December 16, 2019 news release were averaged and compared to Davis property's averaged grab sample results. The Davis property grab sample average was similar to MacDonald Gold Mine grab sample average with elevated Au, Ag, Cu, Co, and Ni results. This suggests that Davis property may be part of the same potential IOCG system on MacDonald Gold Mine's property.

Table 2: MacDonald Gold Mines 2019 Grabs Sample Comparison

	Gold (ppm)	Silver (ppm)	Copper (ppm)	Cobalt (ppm)	Nickel (ppm)
MacDonald Gold Mines Grab Samples December 16, 2019 News Release	0.37	0.76	2063.13	304.26	470.61
Davis Property	0.11	3.16	4193.00	36.71	65.14

10.0 Conclusion and Recommendations

The prospecting program at the Davis property successfully delineated a quartz vein exposed on surface for strike length 123 meters. The program consisted of collecting 8 grab samples and channeling a quartz vein outcrop. Trenches, pits, quartz veins and rock types were also mapped. Seven of the grab samples were sent in for geochemical analysis. The grab sample results were as high as 1.91 % Cu, 14.5 ppm Ag, 0.255 ppm Au, 8225 ppm Ni, 6 ppm Co, and 58 ppm Zn. The geochemical results are similar to the property's neighbor (MacDonald Gold Mines) December 16, 2019 News Release grab samples results, elevated in Au, Ag, Cu, Co, and Ni. The channeling was done to document the mineralization and geology of the 1 meter stockwork quartz vein exposed in outcrop.

In this region Nipissing Diabase dykes can be associated with stockwork quartz veins hosting carbonates, sulphides, and gold. This Nipissing Diabase dyke/sill found on the Davis property is the same one that is found at the Norstar mine 5.6 kilometres to the west. This dyke/sill has the potential to be host to some economic mineralization found on the Davis property. (Thomson & Card 1963)

The Norstar and Scadding Gold Mines located west of the Davis property are both associated with soda metasomatism alternation. There ore zones are chlorite rich pipe-like brecciated bodies containing a matrix of quartz, carbonate, and sulphides. These types of ore bodies can have a small exposure on surface can could be easily missed. Albitization and chlorite alteration in outcrop could be used as an exploration vector to this type of ore body. (Ontario Geological Survey 1991)

The following are recommendations for future exploration

- 1. Prospecting and sampling south of the historical Vanlith workings, the electromagic conductive anomaly "A" area in NE portion of 504457, along strike of the Vanlith workings to the east and to the west across the marsh.
- 2. Ground VLF survey with 20 meter line spacing will delineate disseminated sulphides, shear zones, breccia bodies, contacts, and silicified zones. In 1981 a VLF survey was completed over the Davis property area and delineated a well-defined wide conductive body trending east-west and dipping north. The 1981 survey line spacing was 200 feet (61 metres) so a closer spaced gridded survey over this anomaly will define the conductive body better. If an EM-16 receiver is used for the survey and the data is processed using VLF2DMF Inversion Software the resistivity results can be interpreted down to 150 meters. In addition, an exploration permit is also not required for a VLF survey because grid lines do not need to be cut.

Sincerely,

Andrew Douglas McKillop McLellan

February 2, 2019

Appendix A: Daily Log

Date	Daily Activities
July 31, 2018	- Mobilized to Davis Property
	- Prospecting surveys in mining claims 504456 and 504457
	- Took three grab samples in mining claim 504456
	- Demobilized back to Sudbury
	(A. McLellan)
August 6, 2018	- Mobilized to Davis Property
	- Prospecting surveys in mining claims 504456 and 504457
	- Took one sample in mining claim 504456
	- Demobilized back to Sudbury
	(A. McLellan)
August 16, 2018	- Mobilized to Davis Property
	- Prospecting surveys in mining claims 504456
	- Took two grab samples in mining claim 504456
	- Demobilized back to Sudbury
	(A. McLellan)
August 25, 2018	- Mobilized to Davis Property
	- Prospecting surveys in mining claims 504456
	- Took one sample in mining claim 504456
	- Demobilized back to Sudbury
	(A. McLellan)
August 26, 2018	- Mobilized to Davis Property
	- Prospecting surveys in mining claims 504456 and 504457
	- Took one sample in mining claim 504456
	- Demobilized back to Sudbury
	(A. McLellan)
October 4, 2019	- Mobilized to Sudbury from Timmins
	(J. Robert)
October 5, 2019	- Mobilized to Davis Property
	- Prospecting surveys in mining claim 504456
	- Demobilized back to Sudbury and Timmins
	(J. Robert, A. McLellan)

Appendix B: Expense Summary

Phase I July - August 2018	km	Assessment Credit
Transporation - \$0.50 per km		
A. McLellan - Sudbury to Davis Property (170km round trip)	850	\$425.00
ATV for four days x \$150 per day		\$600.00
Fieldwork - 5 day grassroots exploration		
\$500 per day x 200% incentive x 1 person		\$5,000.00
Phase II October 2019	km	Assessment Credit
Transporation - \$0.50 per km		
J. Robert - Porcupine to Sudbuy	620	\$310.00
A. McLellan - Sudbury to Davis Property	170	\$85.00
Fieldwork - 1 day grassroots exploration		
\$500 per day x 200% incentive x 2 people		\$2,000.00
Mobilization from Timmins (\$500 per day) - JR		\$500.00
Geochemical Analysis - ALS Sudbury		\$300.94
Work Report Writing, Research and Maps - 6 days x \$500		\$3,000.00
Assessment Credit Total		\$12,220.94

Appendix C: Grab Sample Descriptions

Sample No.	Date	UTM E NAD83 Z17	UTM N NAD83 Z17	Grab Sample Description
R318901	31-Jul-18	31-Jul-18 542883 5167591		Shaft 4m x 7m - 30-40 cm waxy dark grey quartz vein (105/70), gossan zone, malachite, chalcopyrite
R318902	18902 31-Jul-18 542883 5167591		5167591	Shaft 4m x 7m - alternates from quartz to sediment over 3m, gossan zone, lots of malachite, malachite in fractures, chalcopyrite
R318903	31-Jul-18	542883	5167591	Shaft 4m x 7m - float, dark grey waxy quartz, chalcopyrite, pyrite
R318904	6-Aug-18	542891	5167588	Outcrop side of hill - milky white quartz with grey lines throughout, lots of mica, pyrite and chalcopyrite
R318905	16-Aug-18	542849	5167601	Outcrop along marsh - 13-15 cm wide white quartz vein, grey fractures (325/70), 1-2cm silver massive metallic mineral
R318906	16-Aug-18	542849	5167601	Outcrop along marsh - gossan zone, sediments, trace metallic mineral
R318907	26-Aug-18	542940	5167546	Quartz vein outcrop - 100 cm quartz stockwork vein (118/84), rusty red contact sample with chalcopyrite and trace arsenopyrite, lots of malachite
R318908	25-Aug-18	542838	5167519	Outcrop - nipissing diabase, melanocratic fine grained massive gabbro with 1-3% pyrrhotite, trace chalcopyrite

Appendix D: Geochemical Results – Elements in Alphabetical Order

Sample No.	Au	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Cu	Fe	Ga	Hg
	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	ppm
	Au-AA23	ICP-OES	ICP-OES (ore)	ICP-OES	ICP-OES	ICP-OES											
R318901	0.047	4.8	0.02	8	<10	10	<0.5	<2	0.12	<0.5	5	14	4530		1.63	<10	<1
R318902	0.245	0.5	0.01	7	<10	<10	<0.5	<2	0.02	<0.5	8	24	1120		0.95	<10	<1
R318903	0.255	1.8	0.01	53	<10	10	<0.5	<2	0.61	<0.5	18	21	3860		1.53	<10	<1
R318904	0.009	0.3	0.37	66	<10	40	<0.5	<2	6.3	0.5	54	7	452		5.35	<10	<1
R318906	<0.005	<0.2	2.55	52	<10	40	<0.5	<2	4.2	<0.5	35	22	115		7.7	10	<1
R318907	0.137	14.5	0.32	105	<10	50	<0.5	<2	3.94	0.6	86	5	>10000	1.91	9.84	<10	<1
R318908	0.043	<0.2	3.44	7	<10	40	<0.5	<2	4.86	<0.5	51	7	174		9.01	20	<1
NI-1- A			_			_											

Note: Au analysis method was fire assay - AA. All other elements analysis methods were Aqua Regia ICP-OES.

Over limit Cu samples were reanalyized with ore grade ICP-OES

Samples R318901-04,R318906-08 were analyzed at ALS - Sudbury (Report Number: SD18220853)

Sample No.	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	W	Zn
	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES	ICP-OES
R318901	0.01	<10	0.01	180	2	0.03	27	20	8	0.34	<2	<1	6	<20	<0.01	<10	<10	<1	<10	25
R318902	0.01	<10	0.01	218	4	0.03	10	<10	9	0.03	<2	<1	5	<20	<0.01	<10	<10	1	<10	26
R318903	0.01	<10	0.11	199	3	0.03	25	<10	6	0.79	<2	1	8	<20	<0.01	<10	<10	1	<10	14
R318904	0.11	<10	1.77	1870	1	0.03	44	150	15	0.25	<2	7	69	<20	<0.01	<10	<10	23	<10	16
R318906	0.1	10	3.11	1315	1	0.02	94	210	28	<0.01	2	7	46	<20	<0.01	<10	<10	59	<10	51
R318907	0.07	<10	0.72	1760	1	0.04	225	250	15	1.18	<2	9	40	<20	<0.01	<10	<10	8	<10	51
R318908	0.11	10	2.09	1035	<1	0.03	31	410	6	0.64	3	21	75	<20	0.09	<10	<10	152	<10	58
Note: Au and Over limit C Samples R3	u samples	were rea	nalyized w	ith ore gr	ade ICP-C	ES				CP-OES.										

Appendix E: Elements Ordered from Highest to Lowest Average

Sample No.	Fe	Ca	Mg	Al	S	Cu	Mn	K	Na	Ti	Р	Ni	As	Со	Sr	٧	Zn	Ва	Cr	Pb	Ga	Sc	Ag	Мо	Sb	Cd	Au
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm						
R318901	16300	1200	100	200	3400	4530	180	100	300	50	20	27	8	5	6	0.5	25	10	14	8	5	0.5	4.8	2	1	0.25	0.047
R318902	9500	200	100	100	300	1120	218	100	300	50	5	10	7	8	5	1	26	5	24	9	5	0.5	0.5	4	1	0.25	0.245
R318903	15300	6100	1100	100	7900	3860	199	100	300	50	5	25	53	18	8	1	14	10	21	6	5	1	1.8	3	1	0.25	0.255
R318904	53500	63000	17700	3700	2500	452	1870	1100	300	50	150	44	66	54	69	23	16	40	7	15	5	7	0.3	1	1	0.5	0.009
R318906	77000	42000	31100	25500	50	115	1315	1000	200	50	210	94	52	35	46	59	51	40	22	28	10	7	0.1	1	2	0.25	0.0025
R318907	98400	39400	7200	3200	11800	19100	1760	700	400	50	250	225	105	86	40	8	51	50	5	15	5	9	14.5	1	1	0.6	0.137
R318908	90100	48600	20900	34400	6400	174	1035	1100	300	900	410	31	7	51	75	152	58	40	7	6	20	21	0.1	0.5	3	0.25	0.043
Max	98400	63000	31100	34400	11800	19100	1870	1100	400	900	410	225	105	86	75	152	58	50	24	28	20	21	14.5	4	3	0.6	0.255
Min	9500	200	100	100	50	115	180	100	200	50	5	10	7	5	5	0.5	14	5	5	6	5	0.5	0.1	0.5	1	0.25	0.0025
Average	51443	28643	11171	9600	4621	4193	939.57	600.00	300.00	171.43	150.00	65.14	42.57	36.71	35.57	34.93	34.43	27.86	14.29	12.43	7.86	6.57	3.16	1.79	1.43	0.34	0.11

Appendix F: References

Bergmann, H. J. Report on Geochemical Soil Sampling on Property of Silverside Resources Inc., Davis Township, ONT. Silverside Resources Inc. (1981)

Bergmann, H. J. Report on Geophysical Surveys on Properties of Silverside Resources Inc., Davis Township, ONT. Silverside Resources Inc. (1981)

Brady, M. Power Stripping and Trenching on G. Vanlith's property. (1986)

Brady, M. Geochemistry, Power Stripping and Trenching on G. Vanlith's property. (1987)

Brady, M. Geochemistry, Power Stripping and Trenching on G. Vanlith's property. (1988)

Brady, M. Power Stripping on G. Vanlith's property. (1990)

Harper, H. G. Magnetometer and Electromagnetic Survey of Selected Areas in Davis and Janes Townships, Ontario. Idrex Exploration Venture. (1970)

MacDonald, S. L. Diamond Drilling Log S-13A. Alba Exploration. (1956)

MacDonald, S. L. Diamond Drilling Log Claim No. 87180 – DDH 10-12. Alba Exploration. (1956)

Ontario Geological Survey. Single Master Gravity and Aeromagnetic Data For Ontario. GDS1036. (1999)

Ontario Geological Survey. Sudbury Mineral Occurrence Study. Open File Report 5771. (1991)

Potter, E. G. Genesis of Polymetallic Mineralization and the Metallogeny of the Paleoproterozoic Cobalt Embayment, Northern Ontario. PhD Thesis at Carleton University. (2009)

Sparford, S. L. Magnetometer Suvey. Inter-Provincial Geophysics Ltd. Bonaventure Uranium Mines Ltd. (1953)

Thomson, J. E. & Card, K. D. Geological Report No. 15 Kelly and Davis Township. Ontario Department of Mines. (1963)

Appendix G: Statement of Qualifications

Statement of Qualifications

I, Andrew Douglas McKillop McLellan of 22 Indian Road, Sudbury, Ontario, do hereby certify that I:

- am currently a Master of Science in Applied Mineral Exploration student at Laurentian University
- am a graduate of Laurentian University with a Bachelor of Science with a Concentration in Earth Science (2019).
- am a graduate of University of Western Ontario with a Bachelor of Science degree with a Honours Specialization in Geography (2008).
- have been involved and working in mineral exploration for more than 10 years in Ontario, Nova Scotia and Nunavut.
- have included in this report all relevant data derived from both private and public sources.
- have been physically on the property and have expressed personal opinions in this report.
- hold an interest in the property that is subject to this report.

Sincerely disclosed,

Andrew Douglas McKillop McLellan

February 2, 2020

I, Jacques Robert of 321 Haileybury Crescent, Porcupine, Ontario, certify that I:

- have been prospecting for the past 36 years
- was awarded the Ontario Prospector of the Year in 2013 for the discovery of the Borden Lake Gold Deposit

Appendix H: Assay Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: 9640355 CANADA CORP. 22 INDIAN RD, APT 413 SUDBURY ON P3E 2M7

Page: 1 Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 25-SEP-2018 Account: AMCBMNDN

CERTIFICATE SD18220853

Project: Davis, Playfair, Ashley

This report is for 15 Rock samples submitted to our lab in Sudbury, ON, Canada on 6-SEP-2018.

The following have access to data associated with this certificate: JACQUES ROBERT

DAVID LEFORT ANDREW MCLELLAN

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

SAMPLE PREPARATION

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	
Au-AA23	Au 30g FA-AA finish	AAS
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

To: 9640355 CANADA CORP. 22 INDIAN RD, APT 413 SUDBURY ON P3E 2M7 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25-SEP-2018 Account: AMCBMNDN

Project: Davis, Playfair, Ashley

() ()									CERTIFICATE OF ANALYSIS SD182208						20853	3	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	
R318901 R318902 R318903 R318904 R318905		0.84 1.05 2.14 1.88 Not Recvd	0.047 0.245 0.255 0.009		4.8 0.5 1.8 0.3	0.02 0.01 0.01 0.37	8 7 53 66	<10 <10 <10 <10	10 <10 10 40	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2	0.12 0.02 0.61 6.30	<0.5 <0.5 <0.5 0.5	5 8 18 54	14 24 21 7	4530 1120 3860 452	
R318906 R318907 R318908 R318909 R318910		0.69 0.88 1.17 0.98 1.67	<0.005 0.137 0.043 3.52 >10.0	12.90	<0.2 14.5 <0.2	2.55 0.32 3.44	52 105 7	<10 <10 <10	40 50 40	<0.5 <0.5 <0.5	<2 <2 <2	4.20 3.94 4.86	<0.5 0.6 <0.5	35 86 51	22 5 7	115 >10000 174	
R318911 R318912 R318913 R318914 R318915		1.73 0.97 0.53 0.70 1.45	1.020 0.716 0.008 0.144 0.086														
310912		1.45	0.000														

^{*****} See Appendix Page for comments regarding this certificate *****

To: 9640355 CANADA CORP. 22 INDIAN RD, APT 413 SUDBURY ON P3E 2M7 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25-SEP-2018 Account: AMCBMNDN

Project: Davis, Playfair, Ashley

(, , , ,									CERTIFICATE OF ANALYSIS SD182						220853		
Sample Description	Method Analyte Units LOD	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	
R318901 R318902 R318903 R318904 R318905		1.63 0.95 1.53 5.35	<10 <10 <10 <10	<1 <1 <1 <1	0.01 0.01 0.01 0.11	<10 <10 <10 <10	0.01 0.01 0.11 1.77	180 218 199 1870	2 4 3 1	0.03 0.03 0.03 0.03	27 10 25 44	20 <10 <10 150	8 9 6 15	0.34 0.03 0.79 0.25	<2 <2 <2 <2	<1 <1 1 7	
R318906 R318907 R318908 R318909 R318910		7.70 9.84 9.01	10 <10 20	<1 <1 <1	0.10 0.07 0.11	10 <10 10	3.11 0.72 2.09	1315 1760 1035	1 1 <1	0.02 0.04 0.03	94 225 31	210 250 410	28 15 6	<0.01 1.18 0.64	2 <2 3	7 9 21	
R318911 R318912 R318913 R318914 R318915																	

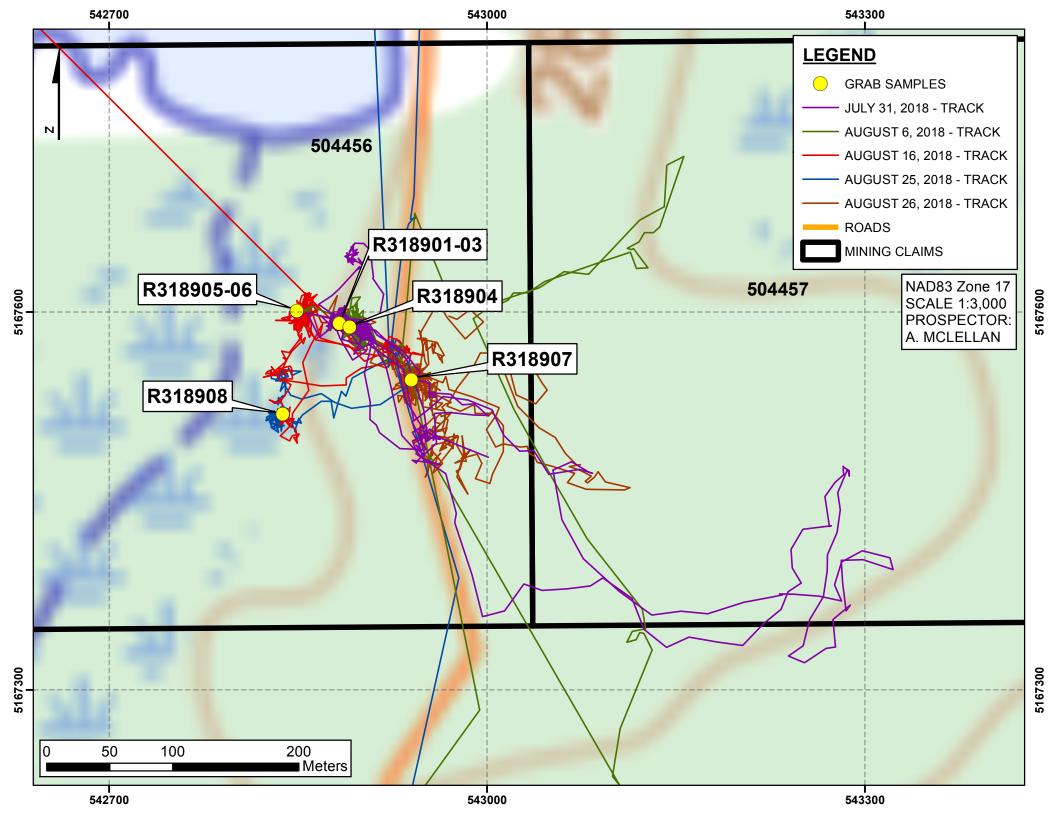
^{*****} See Appendix Page for comments regarding this certificate *****

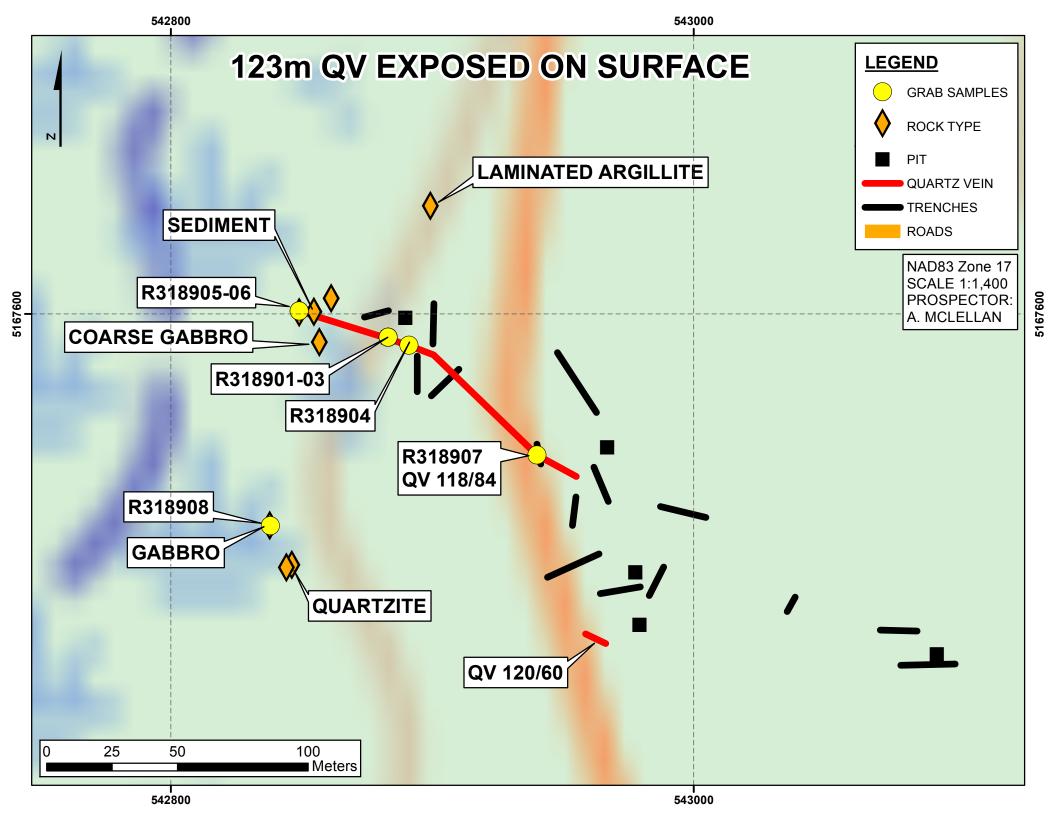
To: 9640355 CANADA CORP. 22 INDIAN RD, APT 413 SUDBURY ON P3E 2M7 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25-SEP-2018 Account: AMCBMNDN

Project: Davis, Playfair, Ashley

(, L)									С	ERTIFIC	CATE O	F ANALYSIS	SD18220853
Sample Description	Method Analyte Units LOD	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	
R318901 R318902 R318903 R318904 R318905		6 5 8 69	<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	<1 1 1 23	<10 <10 <10 <10	25 26 14 16		90.0	88.4 92.1	
R318906 R318907 R318908 R318909 R318910		46 40 75	<20 <20 <20	<0.01 <0.01 0.09	<10 <10 <10	<10 <10 <10	59 8 152	<10 <10 <10	51 51 58	1.910	92.7		
R318911 R318912 R318913 R318914 R318915													

^{*****} See Appendix Page for comments regarding this certificate *****




To: 9640355 CANADA CORP. 22 INDIAN RD, APT 413 SUDBURY ON P3E 2M7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25-SEP-2018 Account: AMCBMNDN

Project: Davis, Playfair, Ashley

CERTIFICATE OF ANALYSIS SD18220853

	CE	ERTIFICATE COMMENTS								
		LABORATORY ADD	PRESSES							
Applies to Method:	Processed at ALS Sudbury located at 135 CRU-31 CF	ıry, ON, Canada. LOG-22	PUL-31							
		RU-QC PL-21	WEI-21	102 01						
A line de Adada e de	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.									
Applies to Method:	Au-AA23 Au ME-OG46	u-GRA21	Cu-OG46	ME-ICP41						

