

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report on IP Survey, McKinnon Deposit, Hawkins Gold Property Hawkins Township, Sault Ste. Marie Mining Division, Ontario

Claims 221162, 258345, 119091, 156307, 222501, 325733, 340738, 277690, 338113 UTM WGS84 Zone 16U 715175 mE 5430115 mN; Lat 48° 59' 11" N Long 84° 03' 32" W NTS 42C16 - Kabinakagami Lake

> For: Pavey Ark Minerals Inc. Client number 411465

Prepared By: Richard Sutcliffe, P.Geo. (Client number 225603) 130 Foxridge Drive, Ancaster, ON, L9G 5B9

February 6, 2020

Executive Summary

This assessment report documents a time domain OreVision[®] Induced Polarization (IP) Survey covering 11.075 km. The survey covered 12 north south grid lines each 900 m long at 100 m spacing over part of the McKinnon Gold Deposit on the Hawkins Property. The work was conducted on 9 contiguous claims numbered 221162, 258345, 119091, 156307, 222501, 325733, 340738, 277690, 338113 located in Hawkins Township, Sault Ste. Marie Mining Division, Ontario. The claims are part of a larger contiguous property in Derry, Hawkins, Walls, Minnipuka, Legge and Puskuta Townships that is registered to Pavey Ark Minerals Inc. The work was carried out for 5003754 Ontario Ltd. a private company that has an option agreement with Pavey Ark Minerals Inc.

The Property is located 80 km south-southwest of Hearst, Ontario and is directly accessed by route 583 and the Caithness logging road system that extends south from the Trans-Canada Highway 11 at Hearst. The field work for this report by Abitibi Geophysics of Val d'Or, Quebec, took place between January 24 to 27, 2020. The total assessment expenditure is \$33,097. The work was completed under Exploration Plan PL-19-000016.

The McKinnon Property contains gold mineralization associated with the Puskuta deformation zone, a steeply dipping dextral, transcurrent structure that on a regional scale bounds the south side of the Kabinakagami Lake greenstone belt and extends for approximately 60 km to the southeast through Hawkins, Walls, Minnipuka and Puskuta Townships. The McKinnon Property has been sporadically explored for gold beginning with the discovery of the Taylor Prospect in 1923 in Hawkins Township close to the ACR tracks. The Shenango Gold Mine operated in Hawkins Township from 1935 to 1941 and is located on the McKinnon Property. Exploration work on the Property by Falconbridge in 1983 to 1986 included 79 drill holes for a total of 14,200 m and extensive surface trenching. This drilling and trenching defined an auriferous shear zone with values of 0.5 to 4.0 g/t Au over 4 to 30 m widths along a 3.7 km trend.

In the current program, Abitibi Geophysics completed the IP survey on a grid previously cut by A-Star Prospecting of Thunder Bay. The attached logistical report (Appendix 2) provides details of the instrumentation and survey parameters. IP pseudosections for each of the 12 lines, plus chargeability and resistivity maps are included with this submission.

IP chargeability data show a response to known gold mineralization and associated sericitesilica-pyrite alteration. This is shown on the chargeability map with an east trending response that is present on most lines and approximately 75 m north of the base line.

Table of Contents

Executive Summary

Table of Contents

- 1.0 Introduction
- 2.0 Location and Access
- 3.0 Claim Holding and Property Disposition
- 4.0 Previous Work
- 5.0 Geology
- 6.0 IP Survey
- 7.0 Conclusions and Recommendations
- 8.0 References
- 9.0 Statement of Qualifications

List of Figures

- Figure 1 Location of McKinnon Deposit, Hawkins Property
- Figure 2 Grid Layout, Hawkins Property

List of Tables

Table 1Summary of Previous Exploration on the Hawkins Property

List of Appendices

- Appendix 1 Table of Hawkins Property Claims
- Appendix 2 OreVison Logistics Report
- Appendix 3 Expenditures

<u>Maps</u>

- Map 1. Hawkins Township Claim Map, Scale 1:20,000, February 2020
- Map 2. Hawkins Project Resistivity Scale 1:5,000 February 2020
- Map 3. Hawkins Project Chargeability Scale 1:5,000 February 2020
- Map 4 to 15. Hawkins Project IP pseudosections, Scale 1:2,500, February 2020

1.0 Introduction

This assessment report documents a time domain OreVision[®] Induced Polarization (IP) Survey covering 11.075 km. The survey covered 12 north south grid lines each 900 m long at 100 m spacing over part of the McKinnon Gold Deposit on the Hawkins Property. The work was conducted on 9 contiguous claims numbered 221162, 258345, 119091, 156307, 222501, 325733, 340738, 277690, 338113 located in Hawkins Township, Sault Ste. Marie Mining Division, Ontario. The claims are part of a larger contiguous property in Derry, Hawkins, Walls, Minnipuka, Legge and Puskuta Townships that is registered to Pavey Ark Minerals Inc. The work was carried out for 5003754 Ontario Ltd. a private company that has an option agreement with Pavey Ark Minerals Inc.

The Property is located 80 km south-southwest of Hearst, Ontario and is directly accessed by route 583 and the Caithness logging road system that extends south from the Trans-Canada Highway 11 at Hearst. The field work for this report by Abitibi Geophysics of Val d'Or, Quebec, took place between January 24 to 27, 2020. The total assessment expenditure is \$31,797. The work was completed under Exploration Plan PL-19-000016.

2.0 Location and Access

The Hawkins Property and McKinnon gold deposit are located 80 km south-southwest of Hearst, Ontario (Figure 1). The Project is directly accessed by route 583 and the Caithness logging road system that extends south from the Trans-Canada Highway 11 at Hearst. The logging road system is maintained all year.

At approximately 10.5 km south of Hearst on route 583, the Project is accessed by turning left onto the Caithness Road. At approximately 70 km south on the Caithness Road, a right turn on the Oba Road provides access to the McKinnon Deposit by continuing west on Oba Road for 26.1 km to the intersection with Irving Road and turning left (south) on Irving Road and then continuing on the Irving road for 3.2 km past CNR tracks, toward the junction with Poulin road. The McKinnon Property is accessed by a trail that extends south from the Irving Road 400 m east of the Poulin Road junction. Total road distance from highway 11 at Hearst to the McKinnon Property on 583/Caithness/Oba/Irving route is approximately 110 km.

Figure 1. Location of McKinnon Deposit, Hawkins Property

Source: Google Earth 2019

3.0 Claim Holdings and Property Disposition

As of February 6, 2020, the Hawkins Property is comprised of 424 contiguous claims covering approximately (10,362 ha) that span Derry, Hawkins, Walls, Minnipuka, Legge, and Puskuta Townships (Appendix 1). The claims are registered in the name of Pavey Ark Minerals Inc., a private Ontario company. A claim map is provided as Map 1. The work was performed on claims 9 contiguous claims numbered 221162, 258345, 119091, 156307, 222501, 325733, 340738, 277690, 338113 on the McKinnon Gold Deposit in central Hawkins Township. The work was performed for 5003754 Ontario Ltd., a private company that has an option on the Property.

4.0 Previous Work

The Hawkins Property in the area of Hawkins Township has been sporadically explored for gold beginning with the discovery of the Taylor Prospect in 1923 in Hawkins Township close to the ACR tracks. The Shenango Gold Mine operated in Hawkins Township from 1935 to 1941 and is located on the McKinnon Property. Boissoneault (2004) reports that the Shenango Mine produced 66.2 ounces of gold from 2,430 tons of mineralization between 1937 and 1941. Claims covering the McKinnon Deposit were initially staked by Mr. Donald McKinnon in 1997,

based on having similar geological characteristics to the Hemlo gold deposits located 140 km to the southwest.

A summary of exploration in Hawkins Township based on the report by Boissoneault (2004) is provided in Table 2. This table is divided into 3 geographic areas. These include: the eastern part of Hawkins township in the vicinity of the Taylor Prospect (on legacy claim 4267268); the central part of the township in the vicinity of the past-producing Shenango Mine (on legacy claim 1229071); and the western part of the township in the vicinity of the Goldfield's showing (on legacy claim 4266187).

Table 2. Summary of Exploration in Hawkins Township					
Date	Performed By:	Work Performed:	Results:		
Taylor Prospect (le	egacy claim 4267268)				
1925-1929	G. Taylor	Stripping, trenching, sampling	Uncovered 3 quartz veins, gold panned		
1929-1935	Hawkins Mining Syndicate	Stripping, trenching, bulk sampling (2000 lb)	Uncovered 7 quartz veins 30.5 g/t Au over 0.30 m; 5.1 g/t Au from test pit		
1935	Hollinger Gold Mines	Prospecting, diamond Drilling	31.31 g/t Au over 6.1 m, no other documentation		
1935-1945	Mintor Gold Mines	Prospecting, channel Sampling	No documentation		
1960	International Nickel Co.	Diamond drilling	No documentation		
1972-1974	Magi Gold Mines Ltd. (fiche: Hawkins; 0015-0018)	Induced polarization and magnetic surveys, 3 diamond drill holes (907 feet)	Minor finely disseminated sulfides		
1979-1980	St. Josephs Exploration Ltd. (fiche: Hawkins; 0012, 0013)	Magnetometer, VLF, HLEM Surveys	5 VLF anomalies, very weak HLEM anomalies		
1980-1981	Sulpetro Minerals Ltd.: (fiche: Hawkins; 0011)	Geological survey, surface sampling	Encouraging assay values, highest value 20.91 g/t Au (no width reported)		
1983-1986	Falconbridge Exploration Ltd. (fiche: Hawkins; 0035)	Geochemical and geophysical surveys, trenching, diamond drilling (79 holes for 14,200 m)	Defined auriferous shear zone with values of 0.5 to 4.0 g/t Au over 4 to 30 m widths		
1999-2004	Don McKinnon (WP Hawkins-2)	Trenching, stripping, ground geophysics, diamond drilling (1 hole 217 m)	Presently claim 1229072, exposed wide alteration zone		
Shenango Mine (le	egacy claim 1229071)				
1935-1937	Shenango Mining Co.	Trenching (1000 ft.), channel sampling, exploration shaft (52 ft. deep), adit (90 ft.), open cut mining, diamond drilling (2500 ft.)	Assays average 0.140 oz./ton over 5 ft. wide and 400 ft. of strike length		
1937-1941	Shenango Mining Co.	Diamond drilling (400 ft.), trenching, production shaft (135 ft.)	Reported assay results underground; 0.14 oz./ton over 30 ft., 0.18 oz./ton over 20 ft. 0.22 oz./ton over 15 ft. 0.17 oz./ton over 8 ft.		

1945	Shenango Mining	Clean up operation at mill	Recovery of 35.87 ounces of
	Co. (fiche: Hawkins; 0019)		gold and 5 ounces of silver
1979-1981	St. Josephs Exploration	Ground geophysics including	Samples taken from muck pile
	Ltd. (fiche: Hawkins; 0012,	I.P., geological mapping and	returned assays of: 7.54 g/t,
	0013)	sampling	6.69 g/t, 52.4 g/t
1983-1986	Falconbridge Exploration	Geochemical and	Defined auriferous shear zone
	Ltd. (fiche: Hawkins; 0021-	geophysical survey (I.P.),	with values of 0.5 to 4.0 g/t Au
	0035)	trenching, diamond drilling	over 4 to 30 m widths
2000-2004	Don McKinnon	ground geophysics, stripping,	Presently claim 1229072,
	(WT Hawkins-30)	trenching, Diamond drilling	exposed wide alteration zone
		(2 holes; 214 meters)	
Goldfields and Joh	nstone-Barnes Showings	•	·
1939	Johnstone and Barnes	Trenching, sampling,	Gold occurrence discovered,
		presently claim 4266186	reported assay of 0.24 oz./ton
			over35 ft.
1975	Rio Tinto Canadian (fiche:	Ground geophysics, diamond	No available results
	Hawkins; 0010)	drilling (2 holes; 902 ft.)	
1986	Hawk Resources (fiche:	Ground geophysics,	South of McKinnon Property,
	Hawkins; 0042, WT2,	geochemistry, diamond	results discouraging
	WT16, WT19)	drilling (20 holes; 6151 ft.)	
1986-1989	Goldfields Canadian	Geology, sampling, diamond	Results incorporated in Aurlot
	Mining Ltd. (fiche:	drilling (13 holes; 1780 ft.)	Exploration Ltd., 1989 report
	Hawkins; WT 11, WT20,		below
	WT21)		
1989	Aurlot Exploration Ltd.	Geology, sampling,	Channel sample assays
	(fiche: Hawkins; WT13,	geochemistry, airborne	reflected results; 1.31 oz./ton
	WT17, WT18)	geophysics, stripping,	over 3 ft., 0.74 oz./ton over5
		trenching,	ft., 0.42 oz./ton over 2 ft., 0.40
			oz./ton over2 ft., 0.21 oz./ton
			over5 ft., 0.11 oz./ton over2 ft.
			presently claim 4266187
Source: Boissoneau	lt 2004	I	

Exploration work on the McKinnon Property by Falconbridge in 1983 to 1986 included 79 drill holes for a total of 14,200 m and extensive surface trenching. This drilling and trenching defined an auriferous shear zone with values of 0.5 to 4.0 g/t Au over 4 to 30 m widths along a 3.7 km trend (Morrison, 1985). Pavey Ark has a complete set of Falconbridge drill records with sample numbers, sample intervals and assay results for the drill holes and surface trenching.

The Ontario Geological Survey (2015) released results of a helicopter mounted Geotech VTEM plus magnetic and electromagnetic surveys flown at 200 m line spacing that covered Hawkins Township and adjacent townships.

In 2016, Pavey Ark Pavey Ark re-excavated 7 former Falconbridge trenches and exposed the McKinnon gold deposit over a strike length of approximately 600 m. Pavey Ark submitted 42 grab samples for gold assay from the trenches. The highest sample contained 4.35 g/t Au with 7 samples reporting over 1 g/t Au. Also in 2016, Pavey Ark resampled Falconbridge drill core samples and submitted 70 samples for assay that replicated the original Falconbridge assay intervals. Additionally, 6 certified reference standards and 4 blanks were submitted for QA/QC

purposes. The re-assay program was successful in confirming significant gold values in the Falconbridge drill core. The program has validated the historical assays as being acceptable for use in a NI43-101 resource estimate and provided a QA/QC program with certified reference materials, duplicates and blanks.

Sunvest Minerals Inc. optioned the property from Pavey Ark in late 2016 and drilled 13 holes for a total of 1,624 m on the McKinnon deposit in early 2017. The best intercept in the program was in hole HW-17-13 that intersected 1.72 g/t Au over a width of 16.0 meters, including a higher-grade interval from 71.0-meter depth of 4.28 g/t Au over 4.3 m.

In October 2019, Pavey Ark reported results of 29 channel samples each of 1.0 m length from an area of stripped outcrop exposing the McKinnon Gold Deposit. Most of the samples were from a 23.0 m long channel that provides continuous exposure from the hangingwall amphibolite in the north through to the tonalite footwall of the McKinnon Deposit. Channel sample assay values ranged from Nil to 1.03 g/t Au with 6 samples reporting over 0.5 g/t Au.

5.0 Geology

The McKinnon Deposit contains gold mineralization associated with the Puskuta deformation zone, a steeply north dipping dextral, transcurrent fault structure that on a regional scale bounds the south side of the Kabinakagami Lake greenstone belt and extends for approximately 60 km to the southeast through Hawkins, Walls, Minnipuka and Puskuta Townships (Leclair, 1990; Wilson, 1993). LeClair and Sullivan (1991) report a U-Pb titanite age of 2,665 Ma for mylonite related to the Puskuta Deformation zone.

In Hawkins Township the Property is underlain by predominately Archean rocks of the Kabinakagami Lake greenstone belt and by Archean granodiorite to tonalite plutons. The Archean rocks are intruded by Proterozoic diabase dikes of the Hearst swarm. The area was originally mapped by Maynard (1929) with more recent mapping by Wilson (1993).

Wilson (1993) describes mafic to intermediate metavolcanic rocks as the dominant rock type in the Kabinakagami greenstone belt. In Hawkins Township, these rocks are strongly foliated and of amphibolite metamorphic grade. Felsic metavolcanic rocks are locally observed in Hawkins Township. Wilson (1993) describes quartz porphyry, and to a lesser extent, quartz-feldspar porphyry, sills and dikes as a prominent feature in western Hawkins Township. The dikes and sills are light grey to white on their weathered surfaces and contain up to 15 percent, 5 mm to 15 mm opalescent quartz eyes in a siliceous fine grained groundmass.

In central Hawkins Township, Wilson (1993) describes the gold showings as occurring in quartz veins at the strongly sheared northern contact of the tonalite intrusion with mafic metavolcanic rocks. Gold is associated with well-developed sericite-silica-pyrite alteration in sheared host rocks.

6.0 IP Survey

This assessment report documents a time domain OreVision[®] Induced Polarization (IP) Survey covering 11.075 km. Abitibi Geophysics completed the IP survey on a grid previously cut by A-Star Prospecting of Thunder Bay. The survey covered 12 north south grid lines each 900 m long at 100 m spacing

The attached logistical report (Appendix 2) provides details of the instrumentation and survey parameters. IP pseudosections for each of the 12 lines, plus chargeability and resistivity maps are included with this submission.

The grid has a 2.0 km baseline oriented at 090° relative to grid north. The grid lines are oriented at 000° (grid north). Grid lines are at 100 m spacing and pickets at 25 m. Grid cutting was previously done in October 2019. BL 5050 E is located at 715050 mE 5430000 mN (NAD83 16U). The grid layout is shown in Figure 2. In the IP survey the easternmost 12 lines were surveyed.

Figure 2. Grid Layout, Hawkins Property

The field work for this report by Abitibi Geophysics of Val d'Or, Quebec, took place between January 24 to 27, 2020.

7.0 Conclusions and Recommendations

The IP chargeability data show a response to known gold mineralization and associated sericitesilica-pyrite alteration. This is shown on the chargeability map with an east trending response that is present on most lines and approximately 75 m north of the base line. This program suggests that additional IP surveying along strike is warranted.

9.0 References

Boissoneault, J.R., 2004, Technical Report on the Don McKinnon Property, for Baltic Resources Inc., August 17, 2004, 25 p.

Lahti, H. R. 1989, Report on the Hawkins Property, Hawkins Township, Ontario, for Aurlot Exploration Ltd., November 15, 1989, AFRI 42C16NE8216.

Leclair, A.D., Ernst, R.E., and Hattori, K. 1993. Crustal scale auriferous shear zones in the central Superior province, Canada. Geology, v. 21, pp. 399-402.

Maynard, J.E. 1929, Oba Area, District of Algoma, Ontario Department of Mines, Annual Report 1929, v. 38, pt. 6, pp. 114-125.

Morrison I.R. (1984) Trenching Program on the Gervais Option, Oba Property, 1984, NTS: 42C 16. Internal Report for Falconbridge Limited, Winnipeg, Manitoba.

Ontario Geological Survey, 2015. Airborne magnetic and electromagnetic surveys, colour-filled contours of the residual magnetic field and electromagnetic anomalies, Kabinakagami Lake area; Ontario, Geological Survey, Map 82 754, scale 1:50 000.

Rogers, G.P. (1987) Falconbridge Limited Diamond Drill Report, Gervais Option, 1986-1987, NTS: 42C 16. Internal Report for Falconbridge Limited, Winnipeg, Manitoba.

Wilson, A.C., 1993, Geology of the Kabinakagami Lake Greenstone Belt, Ontario Geological Survey, Open File Report 5787, 80 p.

10.0 Statement of Qualifications

I, Richard H. Sutcliffe, of 130 Foxridge Drive, Ancaster, Ontario, do hereby certify that:

I am a graduate of University of Toronto (B.Sc. Geology, 1977, M.Sc Geology 1980), and a graduate of University of Western Ontario (Ph.D. Geology, 1986) and I have been practising my profession as a geologist since.

I am a member with the Association of Professional Geoscientists of Ontario (#852). I have direct knowledge of the exploration work performed for this assessment and I am indirectly the owner of the claims on which the work was performed to define drill targets.

Signed

"R.H. Sutcliffe"

Richard H. Sutcliffe, Ph.D., P.Geo. February 6, 2020 Ancaster, Ontario

Appendix 1. Hawkins Property Claims	(as of Feb 6, 2020)
-------------------------------------	---------------------

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date
4280496	LEGGE	268416	Single Cell Mining Claim	2019-11-04
4280496	LEGGE	119866	Single Cell Mining Claim	2019-11-04
4280496	LEGGE	103402	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	326980	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	298365	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	243909	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	223734	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	183919	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	177891	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	158361	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	158360	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	119033	Single Cell Mining Claim	2019-11-04
4280497	LEGGE	119032	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	312895	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	293494	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	288322	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	190152	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	172731	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	172730	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	172729	Single Cell Mining Claim	2019-11-04
4280498	LEGGE	117537	Single Cell Mining Claim	2019-11-04
4280499	LEGGE	336706	Single Cell Mining Claim	2019-11-04
4280499	LEGGE	276281	Single Cell Mining Claim	2019-11-04
4280499	LEGGE	127758	Single Cell Mining Claim	2019-11-04
4280500	LEGGE	324353	Single Cell Mining Claim	2019-11-04
4280500	LEGGE	288323	Single Cell Mining Claim	2019-11-04
4280500	LEGGE	276280	Single Cell Mining Claim	2019-11-04
4280498	LEGGE,MINNIPUKA	175134	Single Cell Mining Claim	2019-11-04
4280500	LEGGE,MINNIPUKA	336705	Single Cell Mining Claim	2019-11-04
4280500	LEGGE,MINNIPUKA	155714	Single Cell Mining Claim	2019-11-04
4280500	LEGGE,MINNIPUKA	127757	Single Cell Mining Claim	2019-11-04
4280500	MINNIPUKA	324352	Single Cell Mining Claim	2019-11-04
4280500	MINNIPUKA	288321	Single Cell Mining Claim	2019-11-04
4280500	MINNIPUKA	155713	Single Cell Mining Claim	2019-11-04
4280500	MINNIPUKA	127756	Single Cell Mining Claim	2019-11-04
4280495	LEGGE	243868	Single Cell Mining Claim	2019-11-07
4280495	LEGGE	177835	Single Cell Mining Claim	2019-11-07
4280495	LEGGE,PUSKUTA	339365	Single Cell Mining Claim	2019-11-07
4280495	LEGGE,PUSKUTA	279180	Single Cell Mining Claim	2019-11-07

4280495	LEGGE,PUSKUTA	223711	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	338671	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	329796	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	251086	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	243060	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	199061	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	186902	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	177027	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	158336	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	131180	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	122987	Single Cell Mining Claim	2019-11-07
4280351	PUSKUTA	118996	Single Cell Mining Claim	2019-11-07
4280352	PUSKUTA	282885	Single Cell Mining Claim	2019-11-07
4280352	PUSKUTA	253714	Single Cell Mining Claim	2019-11-07
4280352	PUSKUTA	122988	Single Cell Mining Claim	2019-11-07
4280352	PUSKUTA	119843	Single Cell Mining Claim	2019-11-07
4280352	PUSKUTA	103375	Single Cell Mining Claim	2019-11-07
4280495	PUSKUTA	231180	Single Cell Mining Claim	2019-11-07
4280495	PUSKUTA	223693	Single Cell Mining Claim	2019-11-07
4280495	PUSKUTA	164445	Single Cell Mining Claim	2019-11-07
4280495	PUSKUTA	118995	Single Cell Mining Claim	2019-11-07
4280783	WALLS	337201	Single Cell Mining Claim	2019-12-21
4280783	WALLS	194572	Single Cell Mining Claim	2019-12-21
4280783	WALLS	175057	Single Cell Mining Claim	2019-12-21
4280783	WALLS	123204	Single Cell Mining Claim	2019-12-21
4280784	WALLS	234528	Single Cell Mining Claim	2019-12-21
4280784	WALLS	161689	Single Cell Mining Claim	2019-12-21
4280784	WALLS	118935	Single Cell Mining Claim	2019-12-21
4280785	WALLS	307939	Single Cell Mining Claim	2019-12-21
4280785	WALLS	228635	Single Cell Mining Claim	2019-12-21
4280786	WALLS	343679	Single Cell Mining Claim	2019-12-21
4280786	WALLS	312908	Single Cell Mining Claim	2019-12-21
4280786	WALLS	226138	Single Cell Mining Claim	2019-12-21
4280786	WALLS	218815	Single Cell Mining Claim	2019-12-21
4280787	WALLS	306897	Single Cell Mining Claim	2019-12-21
4280787	WALLS	203527	Single Cell Mining Claim	2019-12-21
4280787	WALLS	173456	Single Cell Mining Claim	2019-12-21
4280788	WALLS	261801	Single Cell Mining Claim	2019-12-21
4280788	WALLS	235947	Single Cell Mining Claim	2019-12-21
4280788	WALLS	160584	Single Cell Mining Claim	2019-12-21
4280788	WALLS	130422	Single Cell Mining Claim	2019-12-21
4280789	WALLS	188151	Single Cell Mining Claim	2019-12-21
4280789	WALLS	142201	Single Cell Mining Claim	2019-12-21

4280789	WALLS	136169	Single Cell Mining Claim	2019-12-21
4269930	MINNIPUKA	342326	Single Cell Mining Claim	2020-02-08
4269930	MINNIPUKA	216785	Single Cell Mining Claim	2020-02-08
4269930	MINNIPUKA	216784	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	342369	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	304126	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	304125	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	283941	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	254901	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	235927	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	235926	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA	142186	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA, WALLS	254902	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA, WALLS	236782	Single Cell Mining Claim	2020-02-08
4269932	MINNIPUKA, WALLS	188129	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	340723	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	328300	Claim Boundary Cell Mining	2020-02-08
4266806	PUSKUTA	280543	Claim	2020-02-08
4266806	PUSKUTA	280542	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	269782	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	269781	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	245256	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4266806	PUSKUTA	233072	Claim Boundary Cell Mining	2020-02-08
4266806	PUSKUTA	233071	Claim	2020-02-08
4266806	PUSKUTA	225079	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	185247	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	179218	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	159705	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	159704	Single Cell Mining Claim	2020-02-08
4266806	PUSKUTA	119341	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4242116	WALLS	297111	Claim Boundary Cell Mining	2020-02-08
4242116	WALLS	278488	Claim	2020-02-08
4242116	WALLS	277700	Single Cell Mining Claim	2020-02-08
4242116	WALLS	259653	Single Cell Mining Claim	2020-02-08
4242116	WALLS	243167	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4242116	WALLS	230474	Claim	2020-02-08
4242116	WALLS	230473	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4242116	WALLS	222512	Claim	2020-02-08

4242116	WALLS	192604	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4242116	WALLS	176599	Claim	2020-02-08
4242116	WALLS	163714	Single Cell Mining Claim	2020-02-08
4242116	WALLS	129190	Single Cell Mining Claim	2020-02-08
4242116	WALLS	118470	Single Cell Mining Claim	2020-02-08
4242116	WALLS	118469	Single Cell Mining Claim	2020-02-08
4242116	WALLS	104518	Single Cell Mining Claim	2020-02-08
4269931	WALLS	215886	Single Cell Mining Claim	2020-02-08
4269931	WALLS	186602	Single Cell Mining Claim	2020-02-08
4269931	WALLS	180546	Single Cell Mining Claim	2020-02-08
4269931	WALLS	167133	Single Cell Mining Claim	2020-02-08
4269931	WALLS	161082	Single Cell Mining Claim	2020-02-08
4269931	WALLS	122591	Single Cell Mining Claim Boundary Cell Mining	2020-02-08
4269931	WALLS	122590	Claim	2020-02-08
4260021		1000	Boundary Cell Mining	
4269931	WALLS	122588	Cialm Single Cell Mining Claim	2020-02-08
4269931	WALLS	118843	Single Cell Mining Claim	2020-02-08
4269932	WALLS	126152	Single Cell Mining Claim	2020-02-08
4269932	WALLS	136152	Single Cell Mining Claim	2020-02-08
4283665	HAWKINS	337407	Single Cell Mining Claim	2020-03-08
4283665	HAWKINS	325046	Single Cell Mining Claim	2020-03-08
4283665	HAWKINS	276969	Single Cell Mining Claim	2020-03-08
4266806	PUSKUTA	245255		2020-03-08
4266806	PUSKUTA	225078		2020-03-08
4266806	PUSKUTA	1/921/		2020-03-08
4283661	PUSKUTA	339268	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	329870	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	299846	Single Cell Mining Claim Boundary Cell Mining	2020-03-08
4283661	PUSKUTA	299845	Claim	2020-03-08
4283661	PUSKUTA	263183	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	251190	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	243159	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	214488	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	214487	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	214486	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	195957	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	184436	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	184435	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	161932	Single Cell Mining Claim	2020-03-08
4283661	PUSKUTA	111730	Single Cell Mining Claim	2020-03-08
1229071	HAWKINS	229144	Single Cell Mining Claim	2020-06-06

1229071	HAWKINS	221163	Single Cell Mining Claim	2020-06-06
1229071	HAWKINS	156306	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	336802	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	324948	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	295736	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	258344	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	221162	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	156307	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	127859	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	102325	Single Cell Mining Claim	2020-06-06
1229072	HAWKINS	102324	Single Cell Mining Claim	2020-06-06
4267269	HAWKINS	297432	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	262340	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	250292	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	242285	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	176179	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	147572	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS	130877	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS,WALLS	328402	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS,WALLS	289229	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS,WALLS	245858	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS,WALLS	215125	Single Cell Mining Claim	2020-06-22
4267269	HAWKINS,WALLS	119427	Single Cell Mining Claim	2020-06-22
4267270	WALLS	289230	Single Cell Mining Claim	2020-06-22
4267270	WALLS	281139	Single Cell Mining Claim	2020-06-22
4267270	WALLS	245859	Single Cell Mining Claim	2020-06-22
4267270	WALLS	233162	Single Cell Mining Claim	2020-06-22
4267270	WALLS	185344	Single Cell Mining Claim	2020-06-22
4267270	WALLS	160312	Single Cell Mining Claim	2020-06-22
4267270	WALLS	121841	Single Cell Mining Claim	2020-06-22
4267270	WALLS	104183	Single Cell Mining Claim	2020-06-22
4267270	WALLS	104182	Single Cell Mining Claim	2020-06-22
4267270	WALLS	104007	Single Cell Mining Claim	2020-06-22
1229071	HAWKINS	337457	Single Cell Mining Claim	2020-06-25
1229071	HAWKINS	296421	Single Cell Mining Claim	2020-06-25
1229071	HAWKINS	241982	Single Cell Mining Claim	2020-06-25
1229072	HAWKINS	276375	Single Cell Mining Claim	2020-06-25
1229072	HAWKINS	258345	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	327034	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	298415	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	268464	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	243960	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	231744	Single Cell Mining Claim	2020-06-25

4267268	HAWKINS	158410	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	119091	Single Cell Mining Claim	2020-06-25
4267268	HAWKINS	103453	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	337458	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	296420	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	241983	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	229800	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	229799	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	221837	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	128519	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	128518	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	119637	Single Cell Mining Claim	2020-06-25
4272109	HAWKINS	104365	Single Cell Mining Claim	2020-06-25
4265576	LEGGE	263024	Single Cell Mining Claim Boundary Cell Mining	2020-07-02
4265576	LEGGE	263023	Claim	2020-07-02
4265576	LEGGE	184204	Single Cell Mining Claim	2020-07-02
4265576	LEGGE	108933	Single Cell Mining Claim	2020-07-02
4265575	LEGGE,MINNIPUKA	279507	Single Cell Mining Claim	2020-07-02
4265575	LEGGE,MINNIPUKA	243034	Single Cell Mining Claim	2020-07-02
4265575	LEGGE,MINNIPUKA	177009	Single Cell Mining Claim	2020-07-02
4265575	LEGGE,MINNIPUKA	177008	Single Cell Mining Claim	2020-07-02
4265576	LEGGE,MINNIPUKA	213074	Single Cell Mining Claim	2020-07-02
4265576	LEGGE,MINNIPUKA	120199	Single Cell Mining Claim Boundary Cell Mining	2020-07-02
4265576	LEGGE,MINNIPUKA	120198	Claim	2020-07-02
4265571	MINNIPUKA	252771	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	233261	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	225251	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	178685	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	178684	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	149412	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA	133490	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	310900	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	303582	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	292182	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	283380	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	283379	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	277552	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	255008	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	235925	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	216783	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	207198	Single Cell Mining Claim	2020-07-02

4265572	MINNIPUKA	200379	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	176443	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	156990	Single Cell Mining Claim	2020-07-02
4265572	MINNIPUKA	135057	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	337476	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	337475	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	277582	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	242524	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	242523	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	242522	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	229822	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	222366	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	222365	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	176444	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	176442	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	163062	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	129054	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	119669	Single Cell Mining Claim	2020-07-02
4265573	MINNIPUKA	104384	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	335913	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	315000	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	277159	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	277158	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	260513	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	248501	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	240445	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	204522	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	174269	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	159785	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	139723	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	139722	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	112072	Single Cell Mining Claim	2020-07-02
4265574	MINNIPUKA	112071	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	317078	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	262556	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	195861	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	195860	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	183818	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	183817	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	161824	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	161823	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	147732	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	131154	Single Cell Mining Claim	2020-07-02

4265575	MINNIPUKA	131033	Single Cell Mining Claim	2020-07-02
4265575	MINNIPUKA	131031	Single Cell Mining Claim	2020-07-02
4265576	MINNIPUKA	317564	Single Cell Mining Claim	2020-07-02
4265576	MINNIPUKA	298086	Single Cell Mining Claim	2020-07-02
4265576	MINNIPUKA	298085	Single Cell Mining Claim	2020-07-02
4265576	MINNIPUKA	184203	Single Cell Mining Claim	2020-07-02
4265576	MINNIPUKA	131032	Boundary Cell Mining Claim Boundary Coll Mining	2020-07-02
4265576	MINNIPUKA	120197	Claim	2020-07-02
4265571	MINNIPUKA, WALLS	233262	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA, WALLS	164631	Single Cell Mining Claim	2020-07-02
4265571	MINNIPUKA, WALLS	164630	Single Cell Mining Claim	2020-07-02
4265571	WALLS	180545	Single Cell Mining Claim	2020-07-02
4265571	WALLS	122589	Single Cell Mining Claim	2020-07-02
4270206	HAWKINS	338837	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	279182	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	277548	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	277547	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	268377	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	261026	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	243874	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	243873	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	223696	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	183888	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	177840	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	177839	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	177838	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	158320	Single Cell Mining Claim	2020-08-10
4270206	HAWKINS	118998	Single Cell Mining Claim	2020-08-10
4278951	HAWKINS	281072	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	269827	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	269826	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	251933	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	251932	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	159736	Single Cell Mining Claim	2020-09-22
4278951	HAWKINS	119375	Single Cell Mining Claim	2020-09-22
4280461	DERRY, HAWKINS	280536	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	327015	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	298390	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	258958	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	231725	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	231724	Single Cell Mining Claim	2020-10-07

4280457	HAWKINS	231723	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	231722	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	165001	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	165000	Single Cell Mining Claim	2020-10-07
4280457	HAWKINS	119583	Single Cell Mining Claim	2020-10-07
4280458	HAWKINS	340738	Single Cell Mining Claim	2020-10-07
4280458	HAWKINS	277690	Single Cell Mining Claim	2020-10-07
4280458	HAWKINS	222501	Single Cell Mining Claim	2020-10-07
4280458	HAWKINS	163699	Single Cell Mining Claim	2020-10-07
4280458	HAWKINS	119350	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	289017	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	289016	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	276989	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	156415	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	156414	Single Cell Mining Claim	2020-10-07
4280459	HAWKINS	128476	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	338113	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	338112	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	325733	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	278476	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	222502	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	192591	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	192590	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	192589	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	176585	Single Cell Mining Claim	2020-10-07
4280460	HAWKINS	176584	Single Cell Mining Claim	2020-10-07
4280461	HAWKINS	233062	Single Cell Mining Claim	2020-10-07
4280461	HAWKINS	119317	Single Cell Mining Claim	2020-10-07
4280461	HAWKINS	104079	Single Cell Mining Claim	2020-10-07
4266186	DERRY, HAWKINS	336750	Single Cell Mining Claim	2020-10-30
4266186	DERRY, HAWKINS	324394	Single Cell Mining Claim	2020-10-30
4266186	DERRY, HAWKINS	295675	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	324395	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	258302	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	241251	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	229082	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	191194	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	175174	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	155754	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	127803	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	117578	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	117577	Single Cell Mining Claim	2020-10-30
4266186	HAWKINS	102276	Single Cell Mining Claim	2020-10-30

4266186	HAWKINS	102275	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	338780	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	327675	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	324955	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	279132	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	269118	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	224441	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	120580	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	120579	Single Cell Mining Claim	2020-10-30
4266187	HAWKINS	118610	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	288424	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	288423	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	288422	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	279134	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	279133	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	278368	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	278367	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	260953	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	243323	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	241312	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	177269	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	129838	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	119495	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	119494	Single Cell Mining Claim	2020-10-30
4266188	HAWKINS	102333	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	289195	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	281097	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	271044	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	271043	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	233127	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	233126	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	185304	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	166359	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	121299	Single Cell Mining Claim	2020-10-30
4266189	HAWKINS	104149	Single Cell Mining Claim	2020-10-30
4265571	WALLS	165725	Single Cell Mining Claim	2020-10-30
4266190	WALLS	260334	Single Cell Mining Claim Boundary Cell Mining	2020-10-30
4266190	WALLS	260333	Claim Boundary Cell Mining	2020-10-30
4266190	WALLS	224495	Claim Boundary Cell Mining	2020-10-30
4266190	WALLS	179137	Claim	2020-10-30
4266190	WALLS	165723	Single Cell Mining Claim	2020-10-30

WALLS	120639	Single Cell Mining Claim	2020-10-30
WALLS	104009	Single Cell Mining Claim	2020-10-30
WALLS	104008	Single Cell Mining Claim	2020-10-30
HAWKINS	534372	Single Cell Mining Claim	2020-11-07
HAWKINS	534367	Single Cell Mining Claim	2020-11-07
HAWKINS	534366	Single Cell Mining Claim	2020-11-07
HAWKINS	534365	Single Cell Mining Claim	2020-11-07
MINNIPUKA	534394	Single Cell Mining Claim	2020-11-08
WALLS	563966	Single Cell Mining Claim	2021-11-07
WALLS	569314	Single Cell Mining Claim	2022-01-13
WALLS	569313	Single Cell Mining Claim	2022-01-13
WALLS	569312	Single Cell Mining Claim	2022-01-13
	WALLS WALLS WALLS HAWKINS HAWKINS HAWKINS MINNIPUKA WALLS WALLS WALLS	WALLS 120639 WALLS 104009 WALLS 104008 HAWKINS 534372 HAWKINS 534367 HAWKINS 534366 HAWKINS 534365 MINNIPUKA 534394 WALLS 563966 WALLS 569314 WALLS 569313 WALLS 569312	WALLS120639Single Cell Mining ClaimWALLS104009Single Cell Mining ClaimWALLS104008Single Cell Mining ClaimHAWKINS534372Single Cell Mining ClaimHAWKINS534367Single Cell Mining ClaimHAWKINS534366Single Cell Mining ClaimHAWKINS534365Single Cell Mining ClaimHAWKINS534365Single Cell Mining ClaimMINNIPUKA534394Single Cell Mining ClaimWALLS569314Single Cell Mining ClaimWALLS569313Single Cell Mining ClaimWALLS569313Single Cell Mining Claim

INDUCED POLARIZATION SURVEY- CONFIGURATION

OREVISION IP

LOGISTICS REPORT

PREPARED FOR P5003754 ONTARIO LTD.

HAWKINS PROJECT

HEARST AREA, ONTARIO, CANADA FEBRUARY 2020

1

Abitibi Geophysics, Head Office 1740, Sullivan road, suite 1400 Val-d'Or, QC, Canada, J9P 7H1 Phone: 1.819.874.8800 Fax: 1.819.874.8801 info@ageophysics.com

Ref: 20N009

TABLE OF CONTENTS

1.	Research Objectives	1
2.	Implemented Solution	3
Appe	endix A: Fieldwork Site	9
Арре	endix B: Technical Specifications	12
Appe	endix C: Data Processing and Deliverables	14

LIST OF TABLES

Table 1. Quality Statistics – OreVision [®]	14
Table 2. Maps Produced	17

LIST OF FIGURES

ł
ļ
5
5
3
11 7
)
l
2
3

1. RESEARCH OBJECTIVES

The current geophysical campaign has been carried out on the Hawkins Gold Project, located in the Hawkins Township, of the Sault Ste. Marie Mining Division, Ontario. The property itself is located approximately 50 km southeast of Hornepayne, Ontario.

Gold mineralization in the region is associated with the steeply north-dipping Puskuta deformation zone, bounded to the north by the Kabinakagami Lake greenstone belt, and extending for approximately 60 km to the southeast, through Hawkins, Walls, Minnipuka and Puskuta Townships. Exploration drilling in 2016 found an intercept of 1.72 g/t Au over a width of 16.0 meters, including a higher-grade interval from 71.0 meter depth of 4.28 g/t Au over 4.3 m.

The region has been sporadically explored for gold since the 1920's and is host to the Shenango Gold Mine, which operated in Hawkins Township from 1935 to 1941. There has been prior drilling in the region by Falconbridge in the 1980's, with drilling and trenching defining a mineralized shear zone over a 3.7 km trend.

Figure 1. Simplified geology of the Hawkins Project with gold showing and IP grid overlain *Taken from Ontario Geological Survey Public data*

The dominant rock type is the mafic to intermediate metavolcanics of the Kabinakagami greenstone belt. At Hawkins, the rocks are strongly foliated and metamorphosed (amphibolite facies). Quartz porphyry sills and dikes are present throughout the township.

The sheared tonalite unit located centrally in Hawkins Township separates the two units of metavolcanics rocks and occurs along the south side of the Puskuta shear zone. The tonalite unit is host to sulphide clots, consisting of pyrite and chalcopyrite, along with quartz.

A geophysical campaign consisting of an Induced Polarization survey was carried out to further assist in locating zones amenable to gold mineralization associated with sulphides in a quartz rich environment.

NOTE: Geological information obtained from "Assessment Report on Channel Sampling, McKinnon Deposit, Hawkins Gold Property Hawkins Township, Sault Ste. Marie Mining Division, Ontario", by Richard Sutcliffe, P.Geo. (Client number 225603).

2. IMPLEMENTED SOLUTION

The time domain IP technique energizes the ground by injecting a 50% duty cycle alternating square wave through a pair of current electrodes ($C_1 C_2$). The IP effect is measured during the off-time as a residual decreasing voltage at the potential electrodes ($P_1 P_2$). IP chargeability responses are a measure of the amount of disseminated metallic sulfides in the subsurface rocks. Unfortunately, there are other rock materials that give rise to IP effects, including graphitic rocks, clays and some metamorphic rocks (serpentinite for example). Also, from the IP measurements, the apparent (bulk) resistivity of the ground is calculated from the input current and the measured primary voltage.

To sum up, two parameters are measured using the IP method:

- Chargeability: Soil capacity to hold electrical charges. In fact, the metallic grains act like small battery cells that charge and discharge according to the cycle of electrical pulses in the ground. In order to produce an anomaly, grains do not need to be connected together, unlike electromagnetic (EM) methods.
- Resistivity: Degree of difficulty of the electric current to circulate in the basement. In the absence of a solid metallic conductor, the resistivity will be largely dependent on the porosity of the rocks. The following geological phenomena will act on the resistivity of the rock formations:

Decrease	<u>Increase</u>
Clay weathering	Carbonatization
Fracturing	Silicification
Shear	Sericitisation
Metamorphism	Compaction
Dissolution	Metamorphism

Induced polarization surveys are therefore very useful in mineral exploration to detect:

- Occurrences of disseminated sulphides (as low as 0.5%) to which gold, silver, copper, molybdenum, etc. can be associated.
- Semi-massive to massive, non-conductive clusters (rich in sphalerite, silicified or electrically discontinuous).
- Massive clusters that do not offer good coupling to EM fields (vertical cylinder or small volume cluster).

The power of the technique can, however, be greatly diminished or influenced, to a large degree, by the rock materials nearest the surface (or, more precisely, nearest the measuring electrodes), and the interpretation of conventional IP data have often been uncertain. This is because stronger responses that are located near surface such as conductive overburden cover could mask a weaker one that is located at depth.

The OreVision[®] approach has filled this gap while offering many other advantages over conventional methods:

- Increased penetration of conductive overburden
- Depth of investigation 2 to 4 times higher
- Maintains resolution near the surface
- Increased definition of vertical source extension

Figure 2. Pseudosections of the conventional IP survey (left) versus the OreVision® survey (right).

Figure 3. Synthetic model of conventional IP response over a shallow body (top) versus the OreVision[®] response (bottom).

A conventional IP survey allows the detection of the roof of this body buried at 50 m depth (vertical section from above). OreVision[®] also allows us to define the vertical extension (bottom section). Increasing the depth of investigation is not done at the expense of a loss of resolution.

- Detection of one underlying source to another
- Redundancy provides comprehensive coverage
- 3D data inversion delivers accurate drill targets

Figure 4. Synthetic model of the OreVision[®] response of a shallow body sitting stratigraphically above a deep body.

OreVision[®] can detect a very deep source even below another source.

This development has been achieved thanks to the following technological advances:

Demonstration of the efficiency of increasing the factor "n" versus the spacing "a" to see deeper (Figure 5). For a body buried at 200 m depth, the top section shows the inefficiency of spacing "a" = 200 m. The middle section shows a very weak response, under the normal noise level, with a spacing "a" = 100 m. The bottom section shows that this same body is easily detected with a spacing "a" = 25 m.

Figure 5. Synthetic models of conventional IP response over a deep body (top and middle) versus the OreVision[®] response (bottom).

Proof that to see more deeply, it is preferable to keep the spacing "a" small and increase the factor "n" in order to maintain the focus of the sensitivities.

- Development of a special 24-conductor cable with triple electrical insulation that ensures faultless measurements.
- Electronic switch (up to 240 channels) for automatic addressing of measuring electrodes, without dialing or connection errors (Figure 6).

Figure 6. Receiver ElrecPRO and SwitchPRO 240 from IRIS Instruments, automatically performing a series of several thousand compliance tests.

- Development by our partner IRIS Instruments of a powerful transmitter (13 A) while being transportable by a single operator.
- Optimization of the current injection method to maximize the signal-to-noise ratio.
- Optimization of field operations allowing productivity similar to that of conventional approaches at a comparable price.
- Implemented on a cloud platform, a powerful algorithm allows us to perform 3D inversions with less approximation than conventional solutions.

Abitibi Geophysics carried out an induced polarization survey using its proprietary OreVision[®] technology as commissioned by 5003754 Ontario Ltd. An "a" spacing of 25 m and an "n" spacing of 1 to 20 were used.

Respectfully submitted, Abitibi Geophysics Inc.

Pam Coles, P.Geo., Chief Geophysicist PGO # 2612

PC/jg

APPENDIX A: FIELDWORK SITE

Project ID	Hawkins Project (Our reference: 20N009)
CLIENT ADDRESS	5003754 Ontario Ltd. 298 Waverly Road, Toronto, ON, M4L 3T5 Ph. (416) 509-5385
CLIENT REPRESENTATIVE	Eric Owens, Ph.D., P.Geo.,
CLAIM OWNER	Pavey Ark Minerals Inc. 130 Foxridge Drive, Ancaster, ON, L9G 5B9 Ph. (905) 304-4499
LOCATION	Hawkins Township, Ontario, Canada Located at latitude 48° 59' 5.9'' N, longitude 84° 3' 45.8'' W NAD83 / UTM zone 16N: 714 891 mE, 5 429 943 mN NTS sheet: 42C/16
NEAREST SETTLEMENT	Hornepayne: Approximately 50 km northwest of the survey area

- E 6	0027		^		10	1 -
51	10.57	34	UN	IAF	KIO.	

Access	From Hearst, the survey area is accessible via ON-583 S. From there, the survey grid is reached via side and logging roads.
CULTURAL FEATURES	No cultural features were observed on the survey grid.
GEOMORPHOLOGY	The survey grid is located in a region of moderate topographic relief, mostly covered in forest. Elevations range from approximately 340 m to 400 m, above sea level. Hydrographically, a few small lakes, creeks and swamps are found in the surrounding area and may be extending within the survey grid.
Security and Environment	As part of the Abitibi Geophysics Inc. EHS program, crew members received first aid training and are provided with the safety equipment and specialized training for the induced polarization technique. No incidents were reported during this project.
Survey grid	The OreVision [®] survey covered 12 lines (L 49+50E to L 60+50E) ranging in length from 900 m to 925 m and spaced every 100 m.
Land Tenure	The OreVision [®] survey encompasses the 9 claims as listed below and shown in Figure 8. <i>221162, 258345, 119091, 156307, 222501, 325733, 340738, 277690, 338113</i>
Coordinate system	Local datum: NAD 83 Projection type: Universal Transverse Mercator (UTM) Zone: 16N

Figure 8. Mineral claims and OreVision® survey coverage over the Hawkins Project.

APPENDIX B: TECHNICAL SPECIFICATIONS

Type of survey	OreVision® Time D "a" = 25 m / "n" = 1	oomain Resistivity / Induced Polarization to 20
Personnel	Guillaume Gauthier, Zacharie Hénault, Philipe Guy, Pascalin Fournier, Francis Millaire, Carole Picard, Tech Pam Coles, P.Geo., Catherine Phaneud,	Crew chief and Rx operator Field assistant Field assistant Field assistant Field assistant Field assistant , Plotting QC, Processing and Report P.Geo., Final quality control
DATA ACQUISITION	January 24 th to 27 th ,	2020
SURVEY COVERAGE	11.075 km	
IP TRANSMITTERS (TX)	IRIS Instruments T Maximum output: Power supply: Electrodes: Resolution: Waveform: Pulse duration:	IPIX , s/n: 2 and 9 up to 2.2 kW or 13 A or 1800 V Honda 2000 VA shape memory alloy 1 mA on output current display bipolar square wave with 50% duty cycle 1 second $+ I = 1 s \rightarrow + I$
	 	4 s I

Figure 9. Transmitted signal across C1 – C2.

□ IP RECEIVERS (RX)

IRIS Elrec-PRO with integrated SwitchPRO: s/n 478, 479 and 480 Electrodes: shape memory alloy

V_P Primary voltage measurement:

- ♦ Input impedance: 100 MΩ 1 µV
- ∻ Resolution:
- ∻ Typical accuracy: 0.2%

M_a Apparent chargeability measurement:

- \diamond Resolution: 0.01 mV/V
- Typical accuracy: ∻ 0.4%
- ♦ Linear sampling mode: 20-time slices (M₁ to M₂₀)
- ♦ All gates are normalized with respect to a standard decay curve for QC in the field.

Figure 10. Linear windows (1 s pulse).

□ APPARENT RESISTIVITY CALCULATION

$$\rho_a = 2 \cdot \pi \cdot \frac{V_p}{I} \cdot n \cdot (n+1) \cdot a \quad (\Omega \cdot m)$$

Cumulative error: 5% max, mainly due to chaining accuracy.

APPENDIX C: DATA PROCESSING AND DELIVERABLES

QUALITY CONTROL
(RECORDS AVAILABLE UPON
REQUEST)

Before the survey:

- Transmitter and motor generator were checked for maximum output using calibrated loads.
- ✓ Receiver was checked using the Abitibi Geophysics SIMP™ certified and calibrated V_P and M_a signal simulator.

During data acquisition:

- ✓ Rx and Tx cable insulation were verified every morning.
- ✓ Data was reviewed using Prosys II[®] allowing a daily, thorough monitoring of data quality and survey efficiency.
- ✓ Sufficient pulses were stacked: a minimum of 8 pulses for every reading.
- ✓ A minimum of 6 current electrodes and saltwater were used at each station.

At the Base of Operations:

- ✓ Field QCs were inspected and validated.
- ✓ Each IP decay curve was analyzed with our proprietary Geosoft GX, *InteractiveAnomaly*[®]. The gates that were rejected were not included in the calculation of the plotted M_a.

The first step in processing OreVision[®] data is quality control. To ensure consistent and efficient quality control Abitibi Geophysics has developed *InteractiveAnomaly*[®]. This Geosoft GX analyses the normalized decay curve for each reading within the data set. Only readings that successfully pass quality control will be used to calculate the final chargeability. Following this automated procedure, the apparent resistivity and apparent chargeability pseudosections are reviewed and further manual QC is conducted.

QUALITY STATISTICS

Table 1. Quality Statistics – OreVision®

Hawkins Project	
Average contact resistance across R_X dipole (P_1 - P_2)	7.17 kΩ
Average injected current to T_X dipole (C_1 - C_2)	1218 mA
Average V_p measured across R_x dipole (P_1 - P_2)	717.9 mV
Observed windows found to fit a pure electrode polarization relaxation curve	99.9 %
Average deviation of the validated, normalized windows with respect to the mean chargeabilities.	0.02 mV/V

□ VOXI 3D INVERSION Quality control (QC) performed on the collected OreVison[®] data validated 99.9% of the recorded readings. The validated data were inverted using VOXI DC-IP 3D software from Geosoft to recover the apparent resistivity and chargeability values. This software is capable of inverting 3D apparent resistivity and chargeability volumes using a regular grid of surface electrodes.

The software generates a model consisting of rectangular prisms (blocks) and applies a number of features for optimising the least-squares routine for faster completion on large datasets.

For this project, the modelled mesh block was divided by $53 \times 175 \times 31$ rectangular cells (active cells) of 25 m in easting (X), 6.25 m in northing (Y), and 6.25 m in depth (Z downward). This modeling area was overlain by topographical data and 10 padding cells were added on either side of the x and y axes. The 540 930 cells below the surface defined the model, and the inverse problem was therefore formalized by inverting the 6087 data points to recover the resistivity and chargeability values in those cells.

The resistivity and IP models both converged after 6 and 3 iterations, respectively.

□ *LIMITATIONS OF THE 3D INVERSION TECHNIQUE* Inversions cannot create information that is not already in the raw data set (pseudosections), i.e., the limitations of the technique and array that was used will still prevail. However, noise is efficiently rejected, near-surface effects are easily identified and complex responses, such as two adjoining sources, a wide body or a dipping geological contact, are well resolved.

> In the absence of hard constraining data about the subsurface geometry of the mineralization and considering the nonuniqueness of the geophysical inversion methods, any recovered electrical distribution is only one of an infinite number of possible distributions that could explain the observed data.

METAL FACTOR	The Metal Factor has been calculated from the recovered resistivity / chargeability dataset as follow: (chargeability / $\sqrt{resistivity}$) x 1000.
	It highlights regions of low resistivity and high chargeability which are amenable to hosting disseminated sulphides associated with gold in sheared or faulted environments, and/or semi-massive to massive sulphide occurrences. Although the Metal Factor can be helpful in the search for conductive and chargeable zones, it should be interpreted with caution, particularly in areas with moderate background chargeability and variable resistivity, as conductive zones with moderate background chargeability may yield a high. The resistivity and chargeability data should always be consulted prior to drawing any conclusions from the Metal Factor. The Metal Factor <i>Maps</i> (8.4) display the results of this calculation.
Gold INDEX	From the recovered resistivity / chargeability dataset acquired from the VOXI DC-IP inversion, the Gold Index has been calculated as follow: (Chargeability ² x Resistivity / 1000).
	This highlights regions of high resistivity and chargeability which are amenable to hosting disseminated sulphides associated silicified/carbonatized alteration zones. Although the Gold Index can be helpful in the search for resistive and chargeable zones, it should be interpreted with caution, particularly in areas with moderate background chargeability and variable resistivity as a resistive zone with moderate background chargeability may yield a high. The resistivity and chargeability data should always be consulted prior to drawing any conclusions from the Gold Index. This technique does not highlight conductive, chargeable zones that may also be of interest. The Gold Index is included with the vertical sections for each line.
	The Gold Index Maps (8.6) display the results of this calculation.

|--|

Map Number	Description									
	OreVision [®] Survey									
	Hawkins									
12 Plates	Vertical Sections with calculated Gold Index	1:5000								
Lines 49+50E to 60+50E	Colour Apparent Resistivity & Chargeability Pseudosections									
8.2_300	Inverted Resistivity at an Elevation of 300 m (Ohm-m)	1:5000								
8.2_250	Inverted Resistivity at an Elevation of 250 m (Ohm-m)	1:5000								
8.2_200	Inverted Resistivity at an Elevation of 200 m (Ohm-m)	1:5000								
8.3_300	Inverted Chargeability at an Elevation of 300 m (mV/V)									
8.3_250	Inverted Chargeability at an Elevation of 250 m (mV/V)									
8.3_200	Inverted Chargeability at an Elevation of 200 m (mV/V)	1:5000								
8.4_300	Calculated Metal Factor at an Elevation of 300 m	1:5000								
8.4_250	Calculated Metal Factor at an Elevation of 250 m	1:5000								
8.4_200	Calculated Metal Factor at an Elevation of 200 m	1:5000								
8.6_300	Calculated Gold Index at an Elevation of 300 m	1:5000								
8.6_250	Calculated Gold Index at an Elevation of 250 m	1:5000								
8.6_200	Calculated Gold Index at an Elevation of 200 m	1:5000								

Our Quality Control System requires every final map to be inspected by at least two qualified persons before being approved and included within a final report.

Appendix 3. Expenditures

Item	Units	Unit Cost	Subtotal	HST	Total
Geologist					
R. Sutcliffe, Supervision, reporting – January 22, Feb 6, 2020	2 days	\$650/day	\$1,300.00	169.00	\$1,469.00
Contractor Services					
Abitibi Geophysics – IP survey			\$31,797.20	4,133.64	\$35,930.84
TOTAL EXPENDITURES			\$33,097.20	4,302.64	\$37,399.84

42F01B16642F01B	167 42F01	I B168 42	2F01B169	42F01B170	42F01B171	42F01B172	42F01B173	42F01B174	42F01B175	42F01B176	42F01B177	42F01B 78	42F01B179	42F01B180	42F01A161 -	42F01A162	42F01A163	42F01A164	42F01A165	42F01A166	42F01A167	42F01A168	42F01A169	42F01A170	42F01A171	42F01A172	42H01A173	Zone 16 716000E 543700031 42701A174	42F01A175	Zone 16 717000 E 8280300176	42F01A177	Zone 16 7180005 543700005 543700005
42F01B18642F01B	Zone 16 1994000 E42F01 5436000 N	18188 42	2F01B189 705 5436	e 16 0 (#201B190 3000N	42F01B191	Zappf0f98192 706000E	42F01B193	42501.8184 707000 E	42F01B195	42F01B196	42F01B197	42F01E198	42F01B199	42F01B200	42F01A181	42F01A182	42F01A183	42F01A184	42F01A185	42F01A186 BA EAST	42F01A187	42F01A188	42F01A189	42F01A190	42F01A191	42F01A192	42F01A193	42F01A194	42F01A195	42F01A196	42F01A197	42F01A178 42F01A199
RY 42F01B20642F01B	207 42F01	18208	2F01E209	42F01B210	42F01B211	42F01B212	42F01B 42F01B213	5436000N 42F01B214	42F01B215	5436000N	42P01B217	709000 543600 42F01B218	42F01 B219	20 710 543 HAW KIN 42F01B220	ne 16 0000E 6000N IS 42F01A201	42F01A202	Zone 16 711000E 5436000N 42F01A203	42F01A204	Zone 16 712000E 5436000N 42F01A205	42F01A206	Zone 16 713000E 5436000N 4 42F01A207	12F.01 A 42F01A208	2000 42F014209	N 42F01A210	Zone 7150 42F01A254360	16 00E 00042F01A212	42F01A213	Zone 16 71000051A214 4360001	42F01A 42F01A215	2HAWKINS 7420004216 5436000N	42F01A217	42F01A198
42F01B22642F01E	22010 = 16 42F01	B228 42	2F01E229	A2F01B230	42F01B231	4 4 4 4 4 4 4 4 4 4 4 4 2701 B232 4 7		42F01B234	42F01B235		≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ ≝ 42F01B237	42F01 B238	42F01 B239	42F01B240	42F01A221	42F01A222	42F01A223	42F01A224	42F01A225	42E01A226	42F01A227	42F01A228	42F01A229	42F01A230	42F01A231	42F01A232	42F01A233	42F01A234	42F01A235	42501A236	42F01A237	42101A218
42F01B24642F01B	435000N 247 42F0	B248 42	2F01B249	00E 00N 42F01B250	42F01B251	42F01B252	42F01B253	Zcne 16 707000E 543500014 42F01B254	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	Zone 16 708000E 543 5900 M4 42F01 B256	42F01.B257	Zone 16 709000 5435000 42F01B258	N 42F01B259	Z:00 7100 42F01B2 0 ¹³⁵⁰	e 16 000E 000 <u>\$</u>2E01A241	42F01A242	20ne 16 11000E 4355(20)1A243	42F01A244	Zone 16 74299916245 5435000 N	± ± 42́F01A246	42709515 5435000N	42F01A248	42F01A249	42F01A250	42F01A251	42F01A252	42F01A253	42F01A254	42F01A255	42F01A256	42F01A257	42F01A238 42F01A259 42F01A258
42F01B24642F01B	247 42F01	IB248 42	2F01 B249	42F01B250	42F01B251	42F01B252	42F01B253	42F01B254	42F01B255	42F01B256 42F01B276	42F01B257	42F01 B258	42F01B259	42F01E250	42F01A241	42F01A242	42F01A243	42F01A244	42F01A245	42F01A246	42F01A247	42F01A248	42F01A249	42F01A250	42F01A251	42F01A252	42F01A253	42F01A254	42F01A255	42F01A256	42F01A257	42F01A259 42E01A258 42E01A279
	Ene 16 14000 E 34000 N		Zone 1 70 5000 543 400	16 2 DE 12		Zone 16 06000 E 434000 N		Zone 16, 4 4 707000E 5434000M		2 Zne 10 2 Zne 10 5434000N		Zone 16 709000 E 5434000 N		Zone 71000 543400	16 0E 10N	Zi 0 17202	me 16 1000E	1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	121017200	Zone 16		2 200-10	THE OTHER				12 01/12/1	S	5		42F01A278
	28 <i>F</i> 42F0	18288 42	2016289	42F01B290	42101 8291	42F01B292	42101 8293	42F018234			42F01B297	42F01B298	42F01B299	42F01E300	42F01A201-	42401.8.202	10002201A283		5433960614-280	42H01A280	54340000187	RFWSta	1105134000N	42F01A280	42F01A234e16 7150001 5434000	9 42F01A292 E N	42H01A293 Zou 716 543	42-01A244 ne 16 0000E 4000N	4201A295	42F01A296 Zone 16 /17000E 434000N	42HUTA297	42F0TA299
42F01B306 42F01B	307 42F01	I B308 42	2F01B809 Zone 16 705000 5433000	42F01B310	42F01 B311 70 70	42F01B312 me 16 6000E 33000N	42F01B313 42F01B	42F01B314 250=10 707000E 433000N	142F01B315	42F01B316 Zone 16 708000E	42F01B317	42F01B318	42F01 B319	42F01 8320	42F01A301	42F01A302	42F01A303	42F01A304	42F01A305	42F01A306	42F01A307	42F01A308	42F01A309	42F01A310	42F01A311	42F01A312	42F01A313	42F01A314	42F01A315	42F01A316	40 ^{42F01A317}	42F01A319 42F01A318 42F01A318 42
42F01B326.42F01B	327 42F01	18328 42	2F01E829	42F01B330	42F01B331	42F01B332	42F01B333	42F01B334	42F01B335	42F01B336	421018337	4215078853811	42F01B339	42F019398000	E IN 42F01A321	42F01A32211 5433	000 42F01A323	42F01A324	Cong 4601A325	42R01A326	2525016327 713000E 5433000N	42F01A328	42F01A329 2cne 16 714000E 5433000N	42F01A330	42F01/4331 Zone 16 71 5000 E 5433000 N	42F01A332	42F01A333 2500 7460 54330	42F01A334 16 00 E 000N	42F01A335	42F01A336 05 10 7000E 38000 N	42F01A337	42F01A339 42F01A338 2ne 16 1\$000 E 13000 N
42F01B34642F01B	347 42F01 ∋ 16 00E	18348 42	2F01 3349 Zone 16 705000E	42F01B350	42F01,8351 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	42F01B352	42F01B353	42F01B354	42P01B355	42F01B356	42F01B357	42F01B358	42F01B359	42F01 B360	42F01A341	42F01A342	42F01A343	42F01A344	42F01A345	42F01A346	-42701A347	42F01A348	42F01A349	42F01A350	42F01A351	42F01A352	42F01A353	42F01A354	42F01A355) 42F01A356	42F01A357	42F01A359 42F01A358
42F01B36642F01B	367 42F01	I B368 42	2F01B369	42F01B370	42F01B3 (1	000N 42F01B372			42F01B375)	2010 16 4 708000 E 545500 H976 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	42F01B377	Z509,16 427019278 45432000 N	42F01B379	42F017508 16 543 2000 F	42F01A361	42F01A36 2ne 71100 54320	16 42F01A363 00 E 00 N	42F01A364	42F01A365 2000 E 2000 N =	42F01A366	42F01A367 Zone 16 713000E 5432000N	42F01A368	42F01A369 Zone 16 714900E 5432000N	42F01A370	42ED1A371 -Zone 16 715000E 5432000N	42F01A372	42F01A373 Zone 71600	42F01A374	42F01A375	42F01A376	42F01A377	42F01A379 42F01A378
42F01B38642F01B	387 42F01	I B388 42	2F01B389	42F01B390	42F01B391	42F01B392	42F01B393	42F01E394	42F01B395	42F01B396	42F01B397	42F01B398	42F01B399	42F01B400	42F01A381	42F01A382	42F01A383	42F01A384	42F01A385	42F01A386	42F01A387	42F01A388	42F01A389	42F01A390	42F01A391	42F01A392	42F01A393	42F01A394	42F01A395	42F01A396	42F01A397	2001 2000N 42F01A399 42F01A398
42C16J006 42C16J	0E)0N 007 42GH	5,008 42	2200 16 705000E 22 5101200N	_42C16J010	Zone 70600 42C16J84810	160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42C 16J013 70	ne 16 700 92C16J014 (1000N	42C16J015	Z:05 () 703 () E J016 5431000 N	42C16J017	423146.J018 709000 E 5431000 N	42016,019	420 16.0020 2010 16 7 10000 E 543 10000N	42C161001	42C16)002 Zone 1 711000 543100	42C16I003 6 E 0N	42C161004 Zon 71.2 5431	42C161005	42C161006	42C161007	42C161008	42C161009	Li426060H6at Lake	42C161011	420161012	420151013	42C161014	42C161015	42C161016	42C16I017	42C 161019 42C161018
42C16J028 42C16J)27 42C1(5.J0.28 4.2	2016J029	42C16J030	42C16J031	42C16J032	42C 16J033	42C16J034	42C16J035	42C16J036	42C16J037	42C16J038	42C16J039	42016,0040	42C161021	534372 420161022	11 9637 42016 023	128519 42C161024	128518 420161025	104365 420161026	337457 42C1610 <i>2</i> 7	156306 42C161028	5431000N 102324 42C161029	258344 42C161030	(715000E) 5431000N 32 4948 42C161031	276375 420161032	2006 10 7160001 5431000 231744 420 61033	103453 42C161034	Zone 71700 2984-5 4310 42C161035	16 0E 00N <mark>158410</mark> 42C161036	200 7 180 	a 16 000 E 000 N 10 4182 42C161038 2 8 922 9
Zcoe 1 704000 42C16J046555160	EN7 42C1	5J048 42	Zone 16 20 795998 E 5430000 N	420163050	42C16 543000	6 16 016 016 016 016 016 016 016 016 016	42C16J053 200 707/ 5430	e 1 &2C16J054 000E 000N	42016J055	Zon 42 616J055 03000 E 430000 N	42C16J057	42C16J058 Zone 16 709000E 5420000N	42C16.059	2 43873 425-18-080 710000E	158320 42016/041	177838 42C161042 Zone 16	277547 42C16l043	22 97 99 42C 1610 44 Zone	296420 42C16I045	337458 42C161046	2 41 982 42C16I047	229144 42C161048	295736 42C161049	127859 42C161050	221162 420161051	2 583 45 420 16 10 52	119091 420161053	327034 42C161054	268464 420161055	2 43 960 42C161056	147572 42C161057	18 5344 420161058 2 458 58
42016J066 42016J	067 42010	5,068 42	2C16J069	42C16J070	42016,0071	42C16J072	42C16J073	42C16J074	42016J075	42C16J076	53 4365 42C16J077	534366 42C16J078	53 43 67 42C16J079	545000014 183888 42C16J080	118998 42C16061	243874 420161062	277548 42C16l063	221837 42C161064	01E 00N 241983 42C161065	7 54 22 98 00 42C161066	296421 30000 296421 42C161067	221163 42C161068	Zone 16 714000 E 5430000 N 33 68 02 42C16 1069	102325 420161070	Zone 16 715000E 5430000b 150307 42C161071	222501 42C161072	Zone 16 716000E 325770090N 420161073	338112 42C161074	Zone 1 1765 43000 42C 16 075	6 E 192589 	176179 71800 42016/07/543900	16 0E 121841 00142C161078
42C16J085-54250001)87 42C1(5,088 4.2	20210-0389 765000E 5429006N	42C16J090	42C16,091 16 706000E	42C16J092	288422 42C 16J093:08	119494 ¹⁶ 42C16J094 0E	102333 42016J095	166359 ne48016J096	233126 42016J097	281097 42016,098 Zone 16	119375 42016,0099	269826 42016J100	177839 420161081	279182 420161082	156415 420161083	156414 420161084	128476 420161085	11 9583 42C161086	231723 42C161087	231722 42C161088	2 983 90 42C161089	32 701 5 42C161090	340738 420161091	277690 420161092	338113 420161093	222 502 42C161094	278476 420161095	130877 420161096	262340 42C161097	289230 420161098
RY 280536 1040 42C16J	79 233 107 4201	062 1 5J108 42	1 19317 2016J109	120579 42016J110	269118 42C16J111	32 4955 42C16J112	288424 42C16J113	288423 42C16J114	241312 42C16J115	271044 42C16J116	104149 42C16J117	709000E 5429000 N 271 043 42C16 J118	159736 42C16J119	2009 16 5429000 N 2 51932 42016 J1 20	223696 42C16H01	2009-16 711000E 5429000N 268377 42216/102	289017 42C16I103	2cne 1 712000 542900 276989 42C161104	E Lak N 289016 42C161105	Zok 713 ar 2.58958 420161106	e 16 000 E 000 N 16500 1 42C161107	231725 42C161108	Zone 16 14000E 42900 95000 42C161109	231724 420161110	Zone 16 7150005 42000110 42010111	163699 42016/112	Zone 16 175565E 4250900N	192591 42C161114	192,590 16 420181170008	242285 42C16I116	250292/2014 42016/11/718000	215125 WALL% 245859 E 42C161118
32 43 9 4 _{Zc} 1,2 7,8 704251 8J	03 191 127 42010	194 2 5J128 4¥	2 583 02 或形式 1/29	155754 42C16J130	224441 42018-8316	279132 42C16J132	243323 42016,133	278367 42016J134	119495 42016J135	289195 42C16J136	233127 42C16J137	269827 42C16J138	251933 42C16J139	281072 42C16J140	261026 42016/121	177840 420161122	338837 420161123	420161124	420161125	420161126	42C161127	42C161128	42C161129	42C161130	42016/131	42C16/132	42C16H33	420161134	^当 业 42C161135 ^业	42C161136	42010/	11 32 8402 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
336750 2412	51 117	577 1	102275	175174 42016.1150	706000E 5423000H 327675 42016.051	118610 42016.1152	279133 42016/1153	6 E 9N 177269 420161154	20 542 129838 42016 185	e-161/ 	121299 42018 U157	09000 E 123000 N 42C16J1 58	42C16J159	Zone 16 710000E 5428000 N 42C16J160	42016/141	Zone 16 711000E 5428000N 42C101142	-420161143	Zone 16 712000E 42C1\$#G990001	420161145	42C1611	16 00E 42C161147	42C161148	cne 16 (40 €42C161149 23000 N	42C161150	Zane: 18/1151 715000E	42C16/152	225151153 7.16000F	42C16H54	42C 16/155 Zone 16	420161156	42016/157	42C16H38 42C16H59
295675 3243	95 -117	578 1	102276	229082	120580	338780	278368	260953	279134	4201651126	42C16J177	42C16J178	42016,1179	42C16J180	42016/161	42C161162	42C16I163	420161164	42C161165	420161166	420161167	42C161168	42C161169	42C161170	42C16I171	420161172	5428000N 42C16N73	420161174	42C161175	420161176	42C16 177	42C16H58 42C16H79
42C16J186 42C16J	187 4201	5J168 42 Zo 701 542 5J188 42	22:16J169 Cone 16 05000 E 22:000 N 22:16J189	42C16J170 42C16J190	42C16J171 Zone 16 706000E 5427000N	42C16J172 42C16J192	42C16J173 Zcoe 16 7070008 5427000 276969	42016J174	42C16J175 2008 7080 54270 337407	16 00E 00N 42C16J196	20 701 42016J197	ne-16 2000E 7000N 42C16J198	G u 11	Lake Zone 16 710000E 54322918U200	42016/181	Zone 16 711000E 442/84872	42016/183	Zone 16 420 15/25990 E	42C16I185	42C16(1500	16 42C161187	42C161188 Zor	3 40 ne 11 2 2 1 6 11 8 9	42016/190	420,161191	42C16l192	42C16/193	42C161194	420161195	42C161196	420161197	42C16H78
42016.1206.42016.1	207 4201	5,1208 42	2C16J209	42016,1210	42016-1211	42016,1212	42C16J193 42C16J	42C16J194	42C16J195	42016,1216	42016.1217	42016,1218	42016,1219	42016,1220	42016(201	420161202	42016(203	5427000N	420161205	420161206	420 420	214 542 161 42C161208	000E 7000N 42C16(209	420161210	2006 10 715000E 5427000N 42C161211	420161212	Zone 16 716000E 542700011 42C16/213	420161214	Zone 16 717000E 6427000N	42C16	Zone 16 718000 5422000N	420161198-
Zone 16 704000E 5425000N		Z:0. 7050 54260	ne 16 5000 E 5000 N		Zone 16 706000E 5425000N		Zcne 16 707000E 5426000N		Zope 20000	6 IE	Z20	e 16		Zone 1612 11 11		Zanadhaa										340		380		MIXED FORE:		420161218
12010J22642C16J	42010	1228 42	2. 103229 2. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5	42010J230	42016J231	42016J232	42016J233	420103234	42.16.1286.000	+2016J236	42010328 6428	000149-10-1238	42016J239	5425000N		5425000 N	4/20101223	42.2019/245 71.2000E 5425000N	42.181225	42016 (226 Zone 16 7/30008 \$425000	42016122/ N	420161228 Zone 7140 54250	420161229 16 000E	420161230	42.161231 Zone 16 15000E 426000N	+2016/232	420161233 Zone 16 716000E 5426000 N	420161234	Zone 16 717000E 5426000N	360	Zine 16 718000E 5425000N	420161239
42C 16J 246 42C16J 25ne 16 704008E 5425000N	4201	5J248 42 Zone 70500	e 16 000E	42C16J250	42C16J251	42C16J252	42016J253 Zone 16	42C16J254	42C16J255	42C16J255		42C16J258	42C16J259	42C16J260	42C16I241	42C161242	420161243	42C161244	42C161245	42C161246	420161247	42C161248	420161249	42C161250	420161251	42C16I252	42C161253	420161254	42C161255	42C161256	420161257	42C 161259 42C 161258
42C16J26642C16J	267, 42010	5J268 42	2C 16J269	-42C16J270	5485980291	42C16J272	426 推动部分	42C16J274	42C163298000 5425000 #	42C16J276	42016J2770900 542500	1042C16J278 001	42C16J279 2 7 54	2cne4 85:16J280 10000 E 425000 N	42C161261	42C161262 Zone 16 711000E 5425000N	42C16I263	42C 161264 Zcoe 16 7 1 2000E 5425000N	420161265	42C161266 Zone 16 713000E 9425000N	420161267	42C161258 Zane 714000 542500	42C161269 16 1E 0N	42C161270	42C16I271 ne 16 5000E 25000N	42C16I272	42C16I273	42C161274	42C161275 Zene-16 717000E	420161276	420161277	42C 161279 42C 161278
42016J28642016J	287 42C10	5J288 42	16	42C16J290	42C16J291	42C16J292	42016J293	42C16J294	42C15J295	42C16J296	42C16J297 ns Lake	42C16J298	42C16J299	42C16J300	42C161281	42C161282	42C16I283	42C161284	420161285	420161286	42C161287	42C16/288	42C161289	42C161290	420161291 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	420161292	42C161293	42C161294	5425000 N 42C161295	420161296	425425999N	42C 161299 42C 161298
704000E 42016J	307 42C1	42ne 1 705000 542400	0E 33116.309	42016,310	Zone 16 7002000000011 5424000N	42016,812	427060419 7000000 54240000N	42016J314	42C 62104516 703000E 5424000N	42C16J316	42C16J317 2000 709000 5424000	6 42C16J318 E ()N	42C16.B19 740 542	42C16J320 me_16 0000E 24000N	420161301	42C16B02 Zone 16 711000E 424000N	42016 303	42C161304 Zone 16 712000E 5424000N	42C161305	420161306 Zone 16 713000E	42C161307	42C16 308	420161309	42C16B10	42C16I311	42C16B12	42C161313	42C16B14	42C161315	42C16I316	42C16I317	42C 16 B 19 42C 16 B 18
42C16J32642C16J	42010	5,328 42	2016.3329	42C 16J330	42016,331	42016,332	42016J333	42016J334	# 42016J335	42C16J336	42C16J337	42C16.338	42016.839	42016,1340	420161321	42C16B22	420161323	42C 16 13 24	420161325	42C161326	42C161327	8424000 42C161328	N 42C161329	420161330	42C16B31	42C161332	16000E 1240894461833	420161334	2cne 16 717000E 542 35019(835	42C161336	Zone 16 420981997 5424000N	42C 16 13 39 42C 16 13 38
42016 p46 42016J	4201	5.J348 Zone 42 705000E 54230001	13C16J349 -	42C16J350	42C16J351 Zame 16 706000E 5423000N	42016,3352	42C16J353 Zane 16 707000 E 5423000 N	42016J354	42016J355 Zone 16 708000E 5423000N	42C16J355	42C16J357	42016,358	42016.359 Zon 7100	42016,3360	42C161341	42C16B42	42C16I343	42C161344	42C161345	420161346	420161347	420161348	42C161349	420161350	422 161351	42C161352	420161353	42C161354	420161355	420161356	42C161357	42C 16 13 59 42C 16 13 58
⊄2C16J36642C16J	367 42C10	5,368 3 40 42	22:16.3369	42C16J370	42C16J371	42C16J372	42016J373	42C16J374	42C16J375	42C16J376	42C16J377	42016,378	42C16-3379	42016,380	42016361	42C161362	420161363	71 2000E 5423000 N 42C 16 1364	42C161365	2009-16 713000E 5423000N 42C16I366	42C161367	Zone 16 714000 E 423000 N	420161369	420161771230	16 00E 00N 42C161371	42C16B72	06 16 50005C161373 3000N	42C161374	250e 16 717 966 161375 5423000 N	42C161376	420(51977 718000E 5428000N	42C 16 1379 42C 16 1379
422349J38642C16J 704000E 5422000N	387 42C10	5,388 _{Zone} 1642 705000E 5422000M	2C16.389	42C16J390	-42C16J391 2ene 16 06000E	42C16J392	42C16J393 Zone 16 7070005	42C16J394	42C16J395	42C16J396	42C16J397	42016,398	42016,599	42C16J400	42C161381	42C161382	420161383	42C161384	420161385	42C16J386	42C16 38Ak	0 ⁴² C16 388	420161389	42C16.390	420161391 二型型量量。 二型型型型	420161392	420161393	42C161394	42C161395	42C161396	42C161397	42C 16 1399 42C 16 1398 ³ 10
42C16G 42C16G006	007 42C16	5G008 42	2C16G009	42C16G010	42C16G011	42C16G012	6422000N 42C160 42C16G013	42C16G014	708000E 5422000N 42C16G015	42C16G016	42C16G017	420180018	Zone 71000 42C16G61920	16 00 E 00 N <u>42C 16G0 20</u>	23 711 42C16H001542	ne 16 1000E 20 6/20 16 H00 2	42C16H003	Zone 16 71 22095H004 5422000N	42C16H005	474586 1006 5422000 N	42C16 H007	42C16 H008	A kron 42C16H009	Lakes 42C16H010	42C16H011	42C16H012	42C16H013	42C16H014	42C16H015	42C16H016 42C16H	420168017	42C15H019

Those wishing to stake mining claims should consult with the Provincial Mining Recorders' Office of the Ministry of Northern Development and Mines for additional information on the status of the lands shown hereon. This map is not intended for navigational, survey, or land title determination purposes as the information shown on this map is compiled from various sources.

Completeness and accuracy are not guaranteed.

N

Additional information may also be obtained through the local Land Titles or Registry Office, or the Ministry of Natural Resources and Forestry. The information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northern Development and Mines web site.

© Queen's Printer for Ontario, 2016

Ontario 😵

Ontario Ministry of Northern Development and Mines Mining Lands Claim Map

Township Unknown Mining Division

Land Registry Unknown MNRF District Office Wawa

Scale: 1:20,000

Map Datum: NAD 83

Date / Time of Issue: Wed Dec 18, 22:34:03 EST 2019

Administrative Districts

4.00 km

Projection: Web Mercator

