

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 SURFACE SAMPLING PROGRAM EAST BULL LAKE OPTION GRID METALS CORP.

Boon Township SUDBURY MINING DIVISION, ONTARIO NTS 48J/08 NE

Submitted by: Paul Davis, P. Geo. (ON) On behalf of : Grid Metals Corp. 3335 Yonge St., Suite 304 Toronto, Ontario, M4N 2M1

February 6th, 2020

SUMMARY

This report describes the spring 2019 Surface Sampling Program (44 samples) completed by Grid Metals Corp on the company's 100% held East Bull Lake Property located 80km west of the City of Greater Sudbury Ontario.

The East Bull Lake Property overlies the large (~22x4km) Proterozoic-aged (2.44-2.49Ga) East Bull Lake Intrusion ("EBLI"). The Complex host numerous sulphide showings hosting important copper, nickel, platinum, and palladium ("Cu-Ni-PGM") mineralized zones.

The stratigraphy of the Complex is divided into the Marginal, Lower, Main, and Upper Series. The Upper and Main Series are composed pre-dominantly of Gabbronorite, the Lower Series is mostly Anorthosite and the Marginal Series at the base of the Intrusion is a mixed inclusionbearing unit of gabbronorite, anorthosite, gabbros, and footwall lithologies. The EBLI is cut by several generations of late diabase dykes.

Contact-type PGE-rich disseminated sulphide mineralization is erratically distributed throughout the Lower Series and underlying Marginal Series and is best developed near the footwall contact of the Complex. Individual zones locally contain up to 10% sulphide, but typical abundances are up to 1% and rarely exceed 2% and grab samples range up to 16,500ppb Pt+Pd.

Structurally-controlled mineralization occurs in several high strain zones that transect the EBLI. The Parisien Lake Deformation Zone ("PLDZ") is the best example, where pods of semi-massive to massive sulphides occur. Disseminated sulphides are rare in the Main and Upper Series, and when present are typically pyrrhotite-rich with lower PGM tenors.

The 2019 surface sampling program targeted areas around the recently acquired claims to the east of the Kid-Parisien Lake PGM Zones to confirm the previously reported anomalous PGM mineralization and the previously identified Central Zone, infilling recently exposed outcrop related to logging activity between the historic trenching and surface sampling. Surface grab samples were taken within prospective units located along strike of the known PGM mineralization.

A total of 27 samples were taken as part of the surface sampling program. Results of the surface sampling confirmed the presence of PGM mineralization associated with the units within the Parisien Lake Deformation Zone. Table 2 summarizes the results of the surface sampling program below. Anomalous PGM mineralization, >0.40 ppm Au+Pd+Pt was identified in 5 of the 27 samples taken with 2 samples reporting over 3.0 ppm Au+Pd+Pt. The Pd:Pt ratio indicates a range of 2.4 to 8.7.

A total of 17 samples were taken as part of the surface sampling program. Results of the surface sampling failed to extend the known PGM mineralization and all of the samples showed no, or only weakly anomalous PGM Mineralization (Figure 8). Table 3 summarizes the results of the surface sampling program below.

Recommendations include taken larger samples to mitigate any nugget affects that may be present in the low sulphide, PGM zones; bulk sampling of the known showings to better understand the overall distribution of PGM mineralization and closely spaced diamond drilling to determine the trend and continuity of the PGM zones.

TABLE OF CONTENTS

SUMN	/ARY	i
1.0	INTRODUCTION	3
1.1	Location, Access, and Physiography	3
1.2	Claim Status	2
2.0	GEOLOGY	11
3.0	PREVIOUS WORK	13
4.0	2019 SURFACE SAMPLING PROGRAM	15
4.1	Sampling Program	15
4.2	Sampling Program Results	16
5.0	CONCLUSION and RECOMMENDATIONS	19
6.0	EXPENDITURES	20
7.0	REFERENCES	21
8.0	STATEMENT OF QUALIFICATIONS	22

LIST OF FIGURES

	Location Map	Figure 1:
	Property Location Map	Figure 2:
Error! Bookmark not defined.	PDLZ Sample Location Map	Figure 3:
Лар11	Central Zone Sample Location Ma	Figure 4:
Error! Bookmark not defined.	Property Geology	Figure 5:
Error! Bookmark not defined.	EBLI Stratigraphy	Figure 6:
Assay Results and Geology Map Error! Bookmark	PDLZ Surface Sample Location, A	Figure 7: not defin

Figure 6: Central Zone Surface Sample Location, Assay Results and Geology Map..... Error! Bookmark not defined.

LIST OF TABLES

- Table 1: EAST BULL LAKE PROPERTY: CLAIMS STATUS FEBRUARY 5, 2020
- Table 2: ACTIVE EXPLORATION: CLAIMS STATUS
- Table 3: Parisien Lake Deformation Zone 2019 Surface Sample Program Assay Results
- Table 4: Central Zone 2019 Surface Sample Program Assay Results
- Table 5: Expenditure Summary

APPENDIXES

APPENDIX A: ASSAY CERTIFICATES

APPENDIX B: SAMPLE LOCATION PHOTOS

1.0 INTRODUCTION

1.1 Location, Access, and Physiography

LOCATION Long – Lat 82° 10' 00" E, 46° 26' 00" N UTM 409,400m E, 5,142,700m N (NAD83 Zone17N) NTS 48J/08 NE

The East Bull Lake ("EBL") property lies 80 km west of City of Greater Sudbury, Ontario, and 25 km north of the village of Massey, Ontario (Figure 1). Massey, Ontario was used for accommodations during the duration of this field program. All references to georeference locations within this report are based on UTM Datum NAD83, Zone 17N.

ACCESS

Access to the property is very good from Sudbury by driving west along Trans Canada Highway 17 to Massey, then north along secondary (all season gravel) Highway 533 which turns into Highway 809 at East Bull Lake Lodge (Figure 1).

Figure 1: Location Map

Access on the property can be gained via Highways 533, 810, and the Whiskey Lake Road and numerous secondary access points that include logging, drill, and ATV trails. The Parisien Lake Deformation Zone area was accessed via a southeast trending, historic gravel, logging road accessed off of Highway 810 approximately 1.4km north of the East Bull Lake Lodge. The Central Zone area was accessed via a northwest trending, operational gravel, logging road accessed off of Whiskey Lake Road approximately 18 km from the turn off from Highway 17 in Webbwood, Ontario.

Services, supplies, and accommodations are available in Massey (30 minute drive from the Lodge), Espanola (1 hour drive), and Sudbury (~2 hour drive). The main east-west line CP rail passes through Massey and a major electrical transmission line occurs immediately south of the property.

PHYSIOGRAPHY

Physiography in the western portion of the property, in the area of the 2019 sampling program, is typical of this part of the Canadian Shield – a mix of lakes and swamps, coniferous and deciduous forest, rounded, hummocky outcropping hills. The Sable River flows south, bisecting the property and is flanked by broad drift-covered plains which locally have been the focus of logging activities.

Elevations on the East Bull Lake property ranges from approximately 325m (Sable River) to over 400m on ridges and hills.

1.2 Claim Status

CLAIM STATUS

The East Bull Lake Property consisted of 357 claims (comprised of single cell mining claims and boundary claims, ~6,000 ha) in one contiguous block covering most of the East Bull Lake Intrusion Complex. All claims are in good standing and all are held 100% by Grid Metals Corp (Table 1; Figure 2).

The surface sampling program was focused on two areas and included samples taken from seven (7) active mining claims (Table 2; Figures 3 and 4).

Township / Area	Tenure ID	Anniversary Date	Township / Area	Tenure ID	Anniversary Date
BOON	103690	2020-07-02	BOON	220109	2020-06-29
BOON	105195	2020-06-29	BOON	220110	2020-06-29
BOON	105863	2020-06-29	BOON	222665	2020-07-02
BOON	107819	2020-12-15	BOON	226642	2020-07-02
BOON	109302	2020-08-22	BOON	229486	2020-07-02
BOON	109553	2020-06-29	BOON	231215	2020-06-29
BOON	113735	2020-06-29	BOON	236624	2020-07-02
BOON	120194	2020-07-02	BOON	236971	2021-01-15
BOON	120195	2020-07-02	BOON	237104	2020-06-29
BOON	120295	2020-07-02	BOON	237710	2020-07-02
BOON	120679	2020-07-02	BOON	237993	2020-06-29
BOON	123255	2020-07-02	BOON	239285	2020-07-02
BOON	129213	2020-07-02	BOON	239940	2020-09-30
BOON	129214	2020-07-02	BOON	241521	2020-06-29
BOON	130403	2020-06-29	BOON	246895	2020-06-20
BOON	130404	2020-06-29	BOON	252210	2020-07-26
BOON	130852	2020-06-29	BOON	252572	2020-08-31
BOON	130853	2020-06-29	BOON	255102	2020-06-20

TABLE 1 – EAST BULL LAKE PROPERTY: CLAIMS STATUS FEBRUARY 5, 2020 -

Township / Area	Tenure ID	Anniversary Date	Township / Area	Tenure ID	Anniversary Date
BOON	130854	2020-06-29	BOON	257249	2020-09-30
BOON	131661	2020-07-02	BOON	257250	2020-09-30
BOON	131806	2020-07-02	BOON	258128	2020-09-30
BOON	132580	2020-06-29	BOON	263324	2020-06-29
BOON	132581	2020-06-29	BOON	268566	2020-06-29
BOON	132582	2020-06-29	BOON	270805	2020-06-29
BOON	133887	2020-07-02	BOON	273207	2020-06-20
BOON	135250	2020-07-02	BOON	273208	2020-06-20
BOON	135673	2020-06-20	BOON	273729	2021-01-15
BOON	136084	2020-06-29	BOON	276578	2020-09-30
BOON	138253	2020-06-20	BOON	279213	2020-06-29
BOON	140874	2020-06-29	BOON	279216	2020-07-02
BOON	141755	2020-06-20	BOON	280871	2020-08-22
BOON	143893	2020-09-30	BOON	282540	2020-07-02
BOON	144365	2020-09-30	BOON	283420	2020-06-29
BOON	146469	2020-06-29	BOON	283421	2020-06-29
BOON	147877	2020-07-02	BOON	283422	2020-06-29
BOON	151462	2020-06-29	BOON	284039	2020-12-15
BOON	152504	2020-06-29	BOON	284648	2020-06-20
BOON	153926	2020-07-26	BOON	288651	2020-06-29
BOON	158487	2020-09-30	BOON	290605	2020-07-02
BOON	158501	2020-08-31	BOON	292305	2021-01-15
BOON	161727	2020-07-02	BOON	293864	2020-07-26
BOON	161728	2020-07-02	BOON	294071	2020-06-20
BOON	163919	2020-06-29	BOON	294072	2020-06-20
BOON	167765	2020-07-02	BOON	297911	2020-06-29
BOON	170043	2020-06-29	BOON	297912	2020-06-29
BOON	170486	2020-08-31	BOON	298685	2020-07-02
BOON	172821	2020-06-20	BOON	300091	2020-07-02
BOON	172822	2020-06-20	BOON	300632	2020-06-29
BOON	172941	2020-09-30	BOON	300633	2020-06-29
BOON	174896	2020-06-29	BOON	303669	2020-06-20
BOON	176605	2020-06-29	BOON	303670	2020-06-20
BOON	180833	2020-06-20	BOON	304647	2020-06-29
BOON	180834	2020-06-20	BOON	304648	2020-06-29
BOON	180835	2020-06-20	BOON	308883	2020-06-29
BOON	180836	2020-06-20	BOON	310065	2020-06-29
BOON	182062	2020-06-20	BOON	311566	2020-07-02
BOON	183365	2020-06-29	BOON	311590	2020-06-20
BOON	183495	2020-07-02	BOON	313218	2020-06-29
BOON	184177	2020-07-02	BOON	317904	2020-06-29

Township / Area	Tenure ID	Anniversary Date	Township / Area	Tenure ID	Anniversary Date
BOON	185562	2020-08-22	BOON	318722	2020-07-26
BOON	188297	2020-06-20	BOON	318898	2020-08-22
BOON	188298	2020-06-20	BOON	321121	2020-06-29
BOON	188311	2021-01-15	BOON	321892	2020-07-02
BOON	188588	2020-06-29	BOON	323371	2020-06-29
BOON	188840	2020-07-02	BOON	325889	2020-09-30
BOON	189965	2020-08-31	BOON	325926	2020-09-30
BOON	193643	2020-06-29	BOON	329920	2020-07-02
BOON	194415	2020-06-29	BOON	330752	2020-06-29
BOON	196519	2020-07-02	BOON	330753	2020-06-29
BOON	196791	2020-06-29	BOON	331457	2020-09-30
BOON	200493	2020-06-20	BOON	331488	2020-06-29
BOON	200928	2020-12-15	BOON	331822	2020-07-02
BOON	201519	2020-07-02	BOON	334111	2020-06-29
BOON	201520	2020-06-20	BOON	337660	2020-06-29
BOON	202613	2020-06-29	BOON	339773	2020-08-22
BOON	204797	2020-06-29	BOON	342466	2020-06-20
BOON	207817	2020-06-20	BOON	343526	2020-06-29
BOON	208036	2020-06-29	BOON	343527	2020-06-29
BOON	208037	2020-06-29	BOON	343528	2020-06-29
BOON	210638	2020-06-29	BOON	344911	2020-07-26
BOON	213089	2020-06-29	BOON	345505	2020-07-26
BOON	213090	2020-06-29	BOON	549995	2021-05-16
BOON	217921	2020-06-29	BOON	549996	2021-05-16
BOON	219197	2020-07-02	BOON	549997	2021-05-16
BOON	549998	2021-05-16	BOON,MANDAMIN	211634	2020-06-29
BOON,GEROW	111036	2020-06-29	BOON,MANDAMIN	241520	2020-06-29
BOON,GEROW	128136	2020-06-09	BOON,MANDAMIN	268565	2020-06-29
BOON,GEROW	175601	2020-06-29	BOON,MANDAMIN	308882	2020-06-29
BOON,GEROW	213759	2020-06-09	BOON,MANDAMIN	309078	2020-06-29
BOON,GEROW	240839	2020-06-09	BOON,MANDAMIN	315610	2020-06-29
BOON,GEROW	251193	2020-06-29	BOON,SHIBANANING	133886	2020-07-02
BOON,GEROW	309744	2021-06-09	BOON,SHIBANANING	148119	2020-07-02
BOON,GEROW	316454	2020-06-29	BOON,SHIBANANING	161726	2020-07-02
BOON,GEROW	328500	2020-06-29	BOON,SHIBANANING	170400	2020-07-02
BOON,GEROW	337214	2020-06-29	BOON,SHIBANANING	293287	2020-07-02
BOON,GEROW, LOCKEYER, MANDAMIN	160574	2020-06-29	BOON,SHIBANANING	330331	2020-07-02
GEROW	105184	2020-06-29	GEROW	232753	2020-06-09
GEROW	105185	2020-06-29	GEROW	237586	2020-06-29
GEROW	105813	2020-06-29	GEROW	238488	2020-06-29

Township / Area	Tenure ID	Anniversary Date	Township / Area	Tenure ID	Anniversary Date
GEROW	110840	2020-06-17	GEROW	238489	2020-06-29
GEROW	113422	2020-06-29	GEROW	239994	2020-06-15
GEROW	124603	2020-06-29	GEROW	240134	2020-06-29
GEROW	125491	2020-06-29	GEROW	247610	2020-06-29
GEROW	127242	2020-06-29	GEROW	248337	2020-06-09
GEROW	127400	2020-06-29	GEROW	251192	2020-06-17
GEROW	131756	2020-06-17	GEROW	254740	2020-06-29
GEROW	131757	2020-06-15	GEROW	256241	2020-06-29
GEROW	131758	2020-06-15	GEROW	256510	2020-06-29
GEROW	136067	2020-06-29	GEROW	256711	2020-06-15
GEROW	136068	2020-06-29	GEROW	263189	2020-06-15
GEROW	138044	2020-06-15	GEROW	269484	2020-06-09
GEROW	140175	2020-06-09	GEROW	269485	2020-06-09
GEROW	141214	2020-06-29	GEROW	269924	2020-06-15
GEROW	142657	2020-06-29	GEROW	272113	2020-06-17
GEROW	145636	2020-06-09	GEROW	275338	2020-06-29
GEROW	147372	2020-06-09	GEROW	285280	2020-06-29
GEROW	152497	2020-06-29	GEROW	285886	2020-06-29
GEROW	152498	2020-06-29	GEROW	286552	2020-06-29
GEROW	152772	2020-06-17	GEROW	287969	2020-06-09
GEROW	152773	2020-06-17	GEROW	292793	2020-06-29
GEROW	155129	2020-06-15	GEROW	292794	2020-06-29
GEROW	157265	2020-06-17	GEROW	293590	2020-06-17
GEROW	161419	2020-06-09	GEROW	294005	2020-06-17
GEROW	169102	2020-06-29	GEROW	294755	2020-06-29
GEROW	169960	2020-06-29	GEROW	295474	2020-06-09
GEROW	169961	2020-06-29	GEROW	299850	2020-06-15
GEROW	171743	2020-06-29	GEROW	301970	2020-06-17
GEROW	173249	2020-06-29	GEROW	303796	2020-06-29
GEROW	173250	2020-06-15	GEROW	304634	2020-06-29
GEROW	173251	2020-06-15	GEROW	305161	2020-06-29
GEROW	173252	2020-06-29	GEROW	305162	2020-06-29
GEROW	188068	2020-06-29	GEROW	305163	2020-06-29
GEROW	188069	2020-06-29	GEROW	306600	2020-06-29
GEROW	188572	2020-06-29	GEROW	308194	2020-06-09
GEROW	189469	2020-06-29	GEROW	308195	2020-06-09
GEROW	189735	2020-06-17	GEROW	314154	2020-06-29
GEROW	189736	2020-06-17	GEROW	314898	2020-06-09
GEROW	191431	2020-06-29	GEROW	316634	2020-06-09
GEROW	191432	2020-06-29	GEROW	317164	2020-06-15
GEROW	191433	2020-06-29	GEROW	321106	2020-06-29

Township / Area	Tenure ID	Anniversary Date	Township / Area	Tenure ID	Anniversary Date
GEROW	198117	2020-06-17	GEROW	323128	2020-06-17
GEROW	199928	2020-06-29	GEROW	323129	2020-06-15
GEROW	201624	2020-06-29	GEROW	329872	2020-06-15
GEROW	201625	2020-06-29	GEROW	329873	2020-06-15
GEROW	201870	2020-06-29	GEROW	332436	2020-06-09
GEROW	203577	2020-06-29	GEROW	333497	2020-06-17
GEROW	209736	2020-06-17	GEROW	335056	2020-06-29
GEROW	214077	2020-06-09	GEROW	335057	2020-06-29
GEROW	214490	2020-06-17	GEROW	343512	2020-06-29
GEROW	214491	2020-06-15	GEROW	343513	2020-06-29
GEROW	220028	2020-06-29	GEROW	344431	2020-06-17
GEROW	221409	2020-06-29	GEROW	344432	2020-06-17
GEROW	226172	2020-06-29	GEROW	345552	2020-06-17
GEROW	226173	2020-06-29	GEROW	345553	2020-06-15
GEROW	227856	2020-06-15	GEROW,LOCKEYER	272112	2020-06-17
GEROW,LOCKEYER	110812	2020-06-17	GEROW,LOCKEYER	305623	2020-06-17
GEROW,LOCKEYER	218232	2020-06-17	GEROW,LOCKEYER	305624	2020-06-17
GEROW,LOCKEYER	264680	2020-06-17	GEROW,LOCKEYER	312440	2020-06-17
SHIBANANING	106187	2021-01-28	SHIBANANING	244767	2021-01-28
SHIBANANING	109893	2021-01-28	SHIBANANING	245154	2020-07-02
SHIBANANING	109894	2021-01-28	SHIBANANING	246704	2021-01-28
SHIBANANING	118746	2020-07-02	SHIBANANING	247163	2021-01-28
SHIBANANING	120160	2020-12-15	SHIBANANING	256786	2020-07-02
SHIBANANING	126663	2020-07-02	SHIBANANING	258494	2020-07-02
SHIBANANING	132804	2021-01-28	SHIBANANING	272454	2021-01-28
SHIBANANING	138346	2021-01-28	SHIBANANING	277799	2020-07-02
SHIBANANING	138347	2021-01-28	SHIBANANING	280626	2021-01-28
SHIBANANING	138618	2020-07-02	SHIBANANING	294578	2020-07-02
SHIBANANING	143681	2020-07-02	SHIBANANING	299317	2021-01-28
SHIBANANING	151828	2021-01-28	SHIBANANING	300865	2021-01-28
SHIBANANING	153259	2021-01-28	SHIBANANING	301760	2021-01-28
SHIBANANING	161012	2020-07-02	SHIBANANING	302757	2021-01-28
SHIBANANING	193917	2020-07-02	SHIBANANING	317508	2021-01-28
SHIBANANING	215807	2020-07-02	SHIBANANING	319435	2021-01-28
SHIBANANING	224583	2021-01-28	SHIBANANING	333144	2020-07-02
SHIBANANING	234036	2021-01-28	SHIBANANING	339600	2021-01-28
SHIBANANING	234037	2021-01-28	SHIBANANING	341002	2021-01-28
SHIBANANING	235771	2021-01-28	SHIBANANING	341477	2020-07-02
SHIBANANING	236138	2020-07-02			

Figure 2: Property Location Map

TABLE 2 - ACTIVE EXPLORATION: CLAIMS STATUS -

East Bull Lake Property – Surface Sampling Activity (February 2019) – 100% Grid Metals Corp.

Project Area	Assay Samples Within Claim	Township / Area	Tenure ID	Anniversary Date
	AO285050	BOON	131806	2020-07-02
Central Zone	AO285034; AO285035; AO285037 to AO285040; AO285042 to AO285044	BOON	135250	2020-07-02
Claims	AO285031 to AO285033	BOON	236624	2020-07-02
	AO285045; AO285047 to AO285049	BOON	279216	2020-07-02
	AO285012 to AO285019	BOON	170486	2020-08-31
PLDZ Program Claims	AO285001 to AO285009; AO285011; AO285021 AO285029 to AO285030	BOON	188311	2021-01-15
	AO285023 to AO285028	BOON	292305	2021-01-15

Figure 3: PDLZ Sample Location Map

Figure 4: Central Zone Sample Location Map

2.0 GEOLOGY

The East Bull Lake Intrusion ("EBLI") is one of several Proterozoic-aged (2.44-2.49Ga) layered mafic intrusions that form the Huronian-Nipissing magmatic belt which transcends the southern margin of the Archean Superior Province, the Proterozoic Southern Province, and the Grenville Province. The intrusive suite includes the EBL, the May Township, the Shakespeare-Dunlop, the Drury Township, and the River Valley Intrusions. The nearby, younger (1850Ma) Sudbury Igneous Complex is un-related to the EBLI suite.

The EBLI slightly pre-dates volcanic rocks (Copper Cliff Formation rhyolite) developed at the base of the Proterozoic Huronian Supergroup. Matachewan diabase dykes (2473Ma) cut the EBLI and are only slightly younger. The EBLI Intrusive Suite, Matachewan diabase dykes, and lower Huronian Supergroup volcanic rocks are rift-related magmatism that coincided with the initial development and infill of the Huronian basin along the southern margin of the Superior craton.

The EBLI was emplaced near the contract between two Archean domains: 1) the Whiskey Lake greenstone belt to the southwest; and 2) the Ramsey-Algoma Granitoid Complex to the north, and southeast which includes the Parisien Lake syenite body along the south margin of the EBLI.

Several younger magmatic, structural, and metamorphic events post-date the EBLI complex and include: 1) Nipissing diabase (2150Ma); 2) Sudbury impact event (1850Ma); and 3) Olivine diabase (1250Ma) – the latter two cross-cut the EBLI.

Figure 5: Property Geology

LOCAL GEOLOGY

The stratigraphy of the EBLI is divided into the Marginal, Lower, Main, and Upper Series (Figures 5 and 6).

The Marginal Series is transitional from Archean footwall rocks to the Lower Series rocks and may be absent with the Lower Series in direct contact with the footwall.

The Marginal Series is sub-divided:

Border Zone – is developed as a breccia up to tens of metres thick composed of locally derived Archean footwall blocks (granite, tonalite, syenite, basalt) hosted in fine to coarse grained leucogabbro, gabbro, melanogabbro, and anorthosite.

Gabbronorite Zone – overlies the Border Zone and is typically only a few metres thick and may have developed as a chill margin to the EBLI or from late injections of mafic magma that were unable to penetrate the overlying Lower Series.

The Lower Series is composed of a lower xenolith and autolith-bearing unit (Inclusion Bearing Zone) and an overlying Anorthositic Gabbro Zone. The Lower Series hosts almost all known contact style PGE sulphide mineralization in the EBLI.

Inclusion Bearing Zone (IBZ) – occurs as either a chaotic, multi-stage breccia, or distinctive blue quartz bearing gabbro or relatively massive leucogabbro or gabbro with rare inclusions. The IBZ is typically more mafic than the overlying anorthositic gabbro.

Anorthositic Gabbro Zone (AGZ) – is a plagioclase-rich unit composed mostly of leucogabbro and anorthositic gabbro.

The Main Series is composed of three units:

Leucogabbro Zone – is composed of massive leucogabbro with poorly developed layering in the upper portion.

Rhythmically Layered Zone – is composed of gabbro and leucogabbro layers (up to tens of metres thick).

Olivine Gabbronorite Zone - comprises the upper portion of the Main Series.

The Upper Series is composed of two units:

Layered Gabbronorite Zone - is characterized by common irregular textural and modal layering

Massive Gabbronorite Zone – is composed of massive to vari-textured gabbro with grain size textural heterogeneity, pegmatoidal pods, and dendritic pyroxene masses. Similar vari-textured gabbros occur throughout the EBLI as metre-sized pods.

MINERALIZATION

Sulphide mineralization is divided into three types based on stratigraphic position, structural setting, and PGE tenor.

 Contact-type – PGE-rich disseminated sulphide mineralization is erratically distributed throughout the Lower Series and underlying Marginal Series. This mineralization is best developed in the IBZ within tens of metres of the footwall contact. However, it is erratically disseminated throughout the Anorthosite Zone and, rarely, in the overlying Leucogabbronorite Zone at a distance of up to 400m stratigraphically above the base of the intrusion. Individual zones locally contain up to 10% sulphide, but typical abundances are up to 1% and rarely exceed 2%.

The sulphides consist of finely disseminated grains and coarser blebs up to 5cm in diameter with roughly equal parts pyrrhotite and chalcopyrite that appear to have co-precipitated. Most sulphides have been re-crystallized resulting in grain size reduction

and complex intergrowths of secondary sulphides and silicates. Locally the sulphides have been re-mobilized into late fractures and veinlets. Grab samples from the IBZ range up to 16,500ppb Pt+Pd.

- 2. Structurally-Controlled hydrothermal mineralization occurs in several high strain zones that transect the EBLI. The Parisien Lake Deformation Zone is the best example, where pods of semi-massive to massive sulphide and magnetite occur in amphibolite schists. Most of the pods are pyrrhotite- and/or pyrite-rich but massive chalcopyrite has also been observed.
- **3. Disseminated Sulphides** are very rare in the Main and Upper Series, and when present are typically pyrrhotite-rich with lower PGE tenors. Anomalously high PGM concentrations (up to 1000ppb) occur in the Olivine Gabbronorite Zone cumulates.

3.0 PREVIOUS WORK

A summary of previous work is listed below.

- **1925** Douglas first government geology map of the area. The EBLI was included as part of the Whiskey Lake greenstone belt (ARM34C).
- **1943** Moore and Armstrong recognized the EBLI as a post Archean intrusion; described Cu-Ni sulphide showings trenched and sampled by Belanger and Ritchie 1km SE of East Bull Lake on the Parisien Lake Deformation Zone ("PLDZ").
- 1952 Silcross Copper Mines Ltd. --- PLDZ -- drilled 9 holes (105m) north of the PLDZ southeast end of West Lobe. Patchy cpy, po, py reported in all holes. Best Assay: 1.65% Cu; 8.81% Ni no PGE analysis.
- EI-Pen Ray Oil and Mines Ltd. Moon Lake Zone -- completed mapping, EM, drilled 14 holes (2384m, E-1 to -14) for base metal massive sulphides.
 Best Assay: 0.49% Cu and 3.93% Ni / 0.46m in hole E-6 no PGE analysis.
- **1958** Noranda PLDZ completed mapping, JEM survey targeting historic sulphide showings along the PLDZ one weak conductor recorded.
- **1962** Mining Corporation of Canada -- PLDZ completed magnetic and JEM surveys, mapping, trenching, and drilled 1 hole (122m) adjacent to previous Silcross holes. No assays reported.
- **1979** Peter Born M.Sc. thesis, Laurentian University Geology of the East Bull Lake Layered Complex, District of Algoma, Ontario.
- **1982-89** Atomic Energy of Canada Ltd. (AECL) completed mapping, stripping, ground and airborne geophysics, and drilled 4 holes (22618m, EBL-1 to -4) to assess EBLI as potential radioactive waste storage/disposal site.

Three of the 4 holes pierced through the EBLI and into the footwall rocks at depth of 770m, 770m, and 450m. These 3 holes intersected disseminated sulphides in the "Basal Anorthosite" (Lower Series). The core was later analysed for PGE's by Mustang Minerals.

1987-90 Gallo, Hauseux, and Surmacz – PLDZ and East Lobe – first PGE-focused exploration of the EBLI, completed two airborne magnetic and VLF-EM surveys, trenching. Best Assay: 1300ppb Pt, 4200ppb Pd – contact-type mineralization in trenches. Best Assay: 800ppb Pt, 3900ppb Pd, 680ppb Au, 9.4% Cu, and 5.3% Ni in remobilized semi-massive sulphides in PLDZ.

- **1990-95** OGS/Laurentian Univ. completed detailed geological, metallogenic, and petrogenic studies of the EBLI lead researcher Dave Peck. Best Assay: 5000ppb PGE.
- 1991-92 Inco Exploration completed mapping and drilled 5 holes (1512m).
 Best Assay: 200ppb Pt, 950ppb Pd, 0.57% Cu, 0.22% Ni grab sample
 Best Assay: 350ppb Pt, 3080ppb Pd, 14.7% Cu, 0.49% Ni
- **1994** Peter Chubb M.Sc. thesis Laurentian University Petrogenesis of the Eastern Portion of the Early Proterozoic East Bull Lake Intrusion
- 1995 WMC International Ltd. completed mapping, rock, soil, and till sampling.
 "Neck Zone" reported continuous zone of 5% blebby sulphides (on old Peck Grid) Best Assay: 910ppb Pt, 4450ppb Pd, 390ppb Au, 0.53% Cu, and 0.11% Ni
- **1998** Mustang Minerals acquire: 1) newly released and staked claims from Bailey, Luhta, and Orchard; 2) the Gallo et al. Property; and 3) in-fill stake to form a large continuous property.
- **1998-2000** Freewest Resources Folson Lake stake claims covering prospective Lower Series between Mustangs Folson Lake and Bullfrog grids. Discover Valhalla showing during staking. Best Assay: 1350ppb Pt, 3150ppb Pd, 230ppb Au, 0.7% Cu grab sample

Complete prospecting, blasting, geophysics, and drilled 27 holes (2902m) – all holes intersected anomalous PGE values. Best Assay – 1.96m PGE over 24m

2000 Aquiline Resources – PLDZ and SE West Lobe -- completed mapping, IP and magnetic surveys, and drilled 10 holes (1287m). Anomalous PGE values reported.

MUSTANG MINERALS

- **1998** *Moon Lake Grid* 8 holes (1198m, ME98-01 to -08) test zone over 400m strike Best Assay: 1070ppb Pt+Pd+Rh+Au / 13.5m includes 5650ppb / 1.5m (ME98-01).
- re-logged, re-sampled AECL holes EBL-1, -2, and -4 anomalous PGE values
 Bullfrog Grid mapping, magnetic and IP surveys, drilled 3 holes (ME99-09 to -11)
 Best Assay: 1170ppb Pt+Pd+Rh+Au / 6.5m (ME99-11)
- **1999-2000** Bullfrog Grid mapping showed Valhalla showing extends eastward onto Bullfrog grid Best Assay: 16500ppb PGE, many with 2000 to 10000ppb PGE – grab samples

Drilled 11 holes (ME99-12 to ME00-22) defines mineralized zone over 600m strike.

2000 Fire Tower, Peck, Folson Lake, Parisien Lake, South, and East Lobe Grids – mapping identified mineralization of the Peck, East Lobe and Parisien Lake grids. Best Assays: 3830ppb, 2090ppb, and 4980ppb Pt+Pd+Au, respectively – grabs.

> Drilling James Pond – 614m, ME00-23, -25 targeted 2 deep IP anomalies, no results. Drilling Gallo's Pond - 1207m, ME00-26, -30 intersected unmineralized Anorthosite Drilling Peck showing depth – 150m, ME00-31 hit 400ppb PGE, 0.14% Cu / 7.2m

- **2001** Falconbridge Options property from Mustang completes prospecting, mapping, trenching, ground and airborne geophysics.
- 2002 Central Zone Drilling (860m ME02-32 to -37) anomalous PGE values in all 6 holes
- **2007** *EBLI property* -- Helicopter VTEM identified several shallow to deep EM conductors.

2008 Parisien Lake Grid (PLDZ) – 6 holes (1050m, EB08-01 to -06) – intersected anomalous PGE in all 6 holes.

Best Assay: 12500ppb Pt+Pd+Au, 9.3% Cu, and 0.4% Ni / 1.1m (EB08-02).

Western Areas Options property from Mustang

- **2008** Novick Lake Grid complete Moving In-Loop EM (MLEM) and Fixed-Loop (FLEM) surveys MLEM detects two poorly defined anomalies not detected by FLEM.
- **2009** Novick Lake and Sables Grid 2 holes (810m, N1 and S1) targeting Airborne VTEM anomalies. BHEM, drilling failed to intersect any economic mineralization and did not identify the source of the VTEM anomalies.
- 2011-12 Parisien Lake and Bullfrog Grids ground TDEM geophysical surveys.
- Bull Frog, Parisien Lake, North Central and South Deep Targets 6 holes plus extension of 2 existing holes (3,171m, EB12-01 to -06; ME00-19 and 21 extensions) BHEM, 1,294 Assays on 2012 drill holes.
 Best Assays: 1.58% Cu / 0.3m (EB12-03); 15.7gpt Pd, 2.6gpt Pt / 0.3m (EB12-05) 217 Assays on Hole N1 and S1 completed in 2009 that were not previously sampled.

Drilling at Parisien Lake – Targeting TDEM anomalies and down dip extension of massive sulphides intersected in EB08-03 Drilling at Bullfrog – Targeting TDEM anomalies and extension of historic holes Drilling Deep Targets – ZTEM and Titan MT responses below 600m depth

4.0 2019 SURFACE SAMPLING PROGRAM

4.1 Sampling Program

The Parisien Lake Deformation Zone ("PLDZ") and the Central Zone areas were selected to complete additional surface sampling to expand the coverage of surface samples that were completed in from 1995 to 2001. A total of 44 samples were collected in the field using a 3lb sledge hammer and field pick. Samples were described in a field notebook, including rock type, minerals present and percentage of sulphides. The samples ranged in mass from 1kg to 2kg and were placed in a plastic sample bag labeled with the assay tag number with a duplicate of the assay tag placed inside and sealed with flagging tape. A duplicate copy of the assay tag was left at the sample location as well as a flag with the assay tag number inscribed upon it with an indelible marker. GPS locations were measured with a hand held Garmin GPS using geodetic reference system NAD83, Zone 17 and recorded in the sample tag book as well as digitally on a laptop computer at the end of each day.

A total of 27 samples were taken from the PLDZ area focused on the claims recently staked by Grid Metals Corp covering an area explored by Aquiline Resources in 2000 and 2001 that became open for staking. Previous work by Aquiline and a number of other companies in the area identified anomalous PGM mineralization in both surface samples and diamond drill holes. The objective of the surface sampling was to better understand the controls affecting the PGM mineralization and to see if the anomalous mineralization associated with the Kid Zone located approximately 600 metres to the west, extends across the recently acquired claims.

A total of 17 samples were taken from the Central Zone area focusing on filling in areas along strike of the previously identified anomalous PGM mineralization. Outcrop exposure on the Central Zone has greatly improved with the recent logging activity that cleared much of the forests covering the PGM zones identified by previous work and exposing additional outcrop throughout the area. Sampling tested areas between the previous stripped trenches and along strike to the west from the knows surface PGM mineralization.

Sampling was of a systematic, reconnaissance nature, and generally large, approximately 1 kg grab samples were collected from both mineralized and unmineralized outcrop exposures. Over the course of 4 days from October 1st to October 4th, 2019, the samples were collected by Paul Davis, P.Geo.

Samples were delivered by Paul Davis to the ALS Canada preparation facility in Sudbury and analysed at the Vancouver, British Columbia laboratory. Samples were analyzed for Cu, Ni, Pd, Pt, Au and S using Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analytical techniques. Chain of custody was maintained throughout the entire procedure. Control samples including 2 Standards, 2 Blanks, and 2 Duplicates were incorporated as part of the QA/QC sampling procedures.

4.2 Sampling Program Results

PARISIEN LAKE DEFORMATION ZONE

Surface sampling was focused along the eastern extension of the known PGM mineralization identified by Grid Metals Corp (formerly Mustang Minerals Corp) on the Parisien Lake and Kid Zones. Historic sampling completed by Aquiline Resources and the Government of Ontario indicated the presence of anomalous PGM mineralization over the newly acquired mining claims and the sampling program was designed to confirm these results and test an area to the east of the Kid Zone that was not covered by previous sampling.

A total of 27 samples were taken as part of the surface sampling program. Results of the surface sampling confirmed the presence of PGM mineralization associated with the units within the Parisien Lake Deformation Zone. Table 2 summarizes the results of the surface sampling program below. Anomalous PGM mineralization, >0.40 ppm Au+Pd+Pt was identified in 5 of the 27 samples taken with 2 samples reporting over 3.0 ppm Au+Pd+Pt (Figure 7). The Pd:Pt ratio indicates a range of 2.4 to 8.7.

Figure 7: PDLZ Surface Sample Location, Assay Results and Geology Map

Sample AO285021 was taken from a semi-massive pyrite and chalcopyrite vein associated with an area of intense deformation and assayed 2.59 ppm Pd, 0.46 ppm Pt, 0.4 ppm Au, 7.45% Cu, 0.22% Ni and 16.3% S. This sample indicates that there was some concentration of Cu and PGM's in the sulphide veining as a sample taken from the host gabbroic unit beside the vein contained only background levels of the analyzed elements. This concentration in the sulphide vein may have been related to mobility of the elements during the deformation process.

Sample #			Data	Sampled By	Description	Au	Pt	Pd	Cu	Ni	S
Sample #	UTIVIE		Date	Sampled by	Description	ppm	ppm	ppm	%	%	%
AO285001	410526	5141772	Oct 1/19	P.Davis	Syenite, pink with 10% mafics	-0.01	-0.01	-0.01	-0.002	-0.002	0.02
AO285002	410365	5141846	Oct 1/19	P.Davis	Dark green-black Gb, 1-2% Po, Cpy, f.g. to m.g.	0.06	0.14	0.5	0.105	0.053	0.21
AO285003	410399	5141806	Oct 1/19	P.Davis	Dark Gb, PLDZ, Leauco-Gb, veins of blue qtz, 2-5% diss Po, Py, Cpy	-0.01	-0.01	-0.01	0.008	0.003	0.97
AO285004	410360	5141802	Oct 1/19	P.Davis	PLDZ, 3-5% diss Pom Oy, near 3cm wide massive Py vein	0.01	0.01	0.03	0.065	0.015	0.23
AO285005	410327	5141802	Oct 1/19	P.Davis	Dark Gb, 2-4% diss Py, Po	-0.01	0.01	0.02	0.02	0.019	0.13
AO285006	410285	5141804	Oct 1/19	P.Davis	Dark Gb, 1-3% diss Po, Py	-0.01	-0.01	-0.01	0.006	0.013	0.19
AO285007	410228	5141729	Oct 1/19	P.Davis	Gb, tr-1% f.g. diss Po	-0.01	-0.01	0.01	0.005	0.053	0.01
AO285008	410223	5141739	Oct 1/19	P.Davis	Dark Gb, Aphanitic, tr-1% Po	-0.01	-0.01	-0.01	-0.002	0.003	0.01
AO285009	410234	5141745	Oct 1/19	P.Davis	Black Gb, 2-5% Py,Po, looks like part of PLDZ	-0.01	-0.01	-0.01	0.049	0.005	0.61
AO285010			Oct 1/19	P.Davis	Standard, CFRM-101	-0.01	-0.01	-0.01	-0.002	0.003	0.02
AO285011	410233	5141821	Oct 1/19	P.Davis	Salt and Pepper Gb, 20-30% mafics, tr. Py, some qtz	-0.01	0.01	0.01	0.005	0.008	0.02
AO285012	410191	5141850	Oct 1/19	P.Davis	Black Gb, f.g. to m.g., tr-3% diss Cpy, Py	0.03	0.13	0.32	0.061	0.046	0.09
AO285013	410126	5141829	Oct 1/19	P.Davis	Dark Gb, tr-Py	0.05	0.14	0.34	0.049	0.025	0.05
AO285014	410086	5141831	Oct 1/19	P.Davis	Dark green Gb, no viss sulph, has texture similar to Central Zone PGM's	-0.01	0.12	0.75	0.007	0.046	0.03
AO285015	410086	5141856	Oct 1/19	P.Davis	Dark green Anor /Gb, no viss. Sulphs	-0.01	-0.01	-0.01	-0.002	0.008	0.01
AO285016	410063	5141865	Oct 1/19	P.Davis	Green, m.g., Anor / Gb, no viss sulphs	-0.01	-0.01	-0.01	0.004	0.019	0.03
AO285017	410043	5141886	Oct 1/19	P.Davis	Dark Green, m.g. Anor / Gb, no viss. Sulphs	-0.01	0.01	0.01	0.006	0.029	0.05
AO285018	409990	5141891	Oct 1/19	P.Davis	C.G. Gb, no viss. Sulphs, rusted surface	-0.01	-0.01	0.04	0.004	0.092	0.02
AO285019	409957	5141903	Oct 1/19	P.Davis	m.g. to c.g., dark Gb, 1-2% rusty weathered sulphide	-0.01	0.01	-0.01	0.011	0.013	0.01
AO285020			Oct 1/19	P.Davis	Pulp duplicate of AO285019	-0.01	-0.01	-0.01	0.012	0.012	0.01
AO285021	410361	5141802	Oct 1/19	P.Davis	massive to semi-massive Py vein material	0.4	0.46	2.59	7.45	0.224	16.3
AO285022			Oct 1/19	P.Davis	Blank	0.19	0.56	0.59	0.896	1.15	6.68
AO285023	410505	5142110	Oct 1/19	P.Davis	m.g. to f.g., speckled Gb, no viss. Sulphide	0.01	0.03	0.15	0.258	0.035	0.54
AO285024	410524	5142064	Oct 1/19	P.Davis	Dark Gb, f.g., no viss. Sulph	-0.01	0.02	0.02	0.009	0.019	0.05
AO285025	410487	5142021	Oct 1/19	P.Davis	f.g. to m.g. Gb, no viss sulph	-0.01	0.01	0.01	0.01	0.031	0.05
AO285026	410503	5141998	Oct 1/19	P.Davis	Dark green, f.g. to m.g. Gb, no viss sulph	-0.01	0.01	0.01	0.004	0.026	0.02
AO285027	410497	5141949	Oct 1/19	P.Davis	light green Anor / Gb, tr. Disss v.f.g. Po	-0.01	0.01	0.01	0.003	0.015	0.02
AO285028	410416	5141948	Oct 1/19	P.Davis	translucent green f.g. Gb, no viss sulphs	-0.01	-0.01	-0.01	-0.002	0.007	0.04
AO285029	410527	5141903	Oct 1/19	P.Davis	translucent green f.g. Gb, no viss sulphs	0.04	0.39	3.39	0.009	0.028	0.03
AO285030	410528	5141895	Oct 1/19	P.Davis	leauco-melano Gb, f.g. to m.g., no viss sulphs	-0.01	0.01	0.01	0.013	0.013	0.04

TABLE 3– Parisien Lake Deformation Zone 2019 Surface Sample Program Assay Results -

Sample AO285029, in contrast was taken from a fine grained gabbroic unit with no visible sulphides assayed 3.39 ppm Pd, 0.39 ppm Pt, 0.04 ppm Au, 0.01% Cu, 0.03% Ni and 3.82% S. The presence of highly anomalous PGM mineralization associated with no visible sulphide within the sample demonstrates the potential of areas having significant PGM mineralization that have not be identified due to the lack of visible sulphide mineralization.

No anomalous PGM mineralization was identified in the sampling to the east of the Kid Zone on the newly acquired Grid Metal Claims.

CENTRAL ZONE

Surface sampling was designed to fill in areas of newly exposed outcrop along the Central Zone that were exposed due to recent logging activity. Samples were taken along strike of the previously trenched areas as well as along the trend to the west in an attempt to expand the extent the known PGM mineralization.

A total of 17 samples were taken as part of the surface sampling program. Results of the surface sampling failed to extend the known PGM mineralization and all of the samples showed no, or

only weakly anomalous PGM Mineralization (Figure 8). Table 3 summarizes the results of the surface sampling program below.

Figure 8: Central Zone Surface Sample Location, Assay Results and Geology Map

TABLE 4– Central Zone 201	Surface Sample Pro	gram Assay Results -
---------------------------	--------------------	----------------------

Consulta #				C	Provide the second s	Au	Pt	Pd	Cu	Ni	S
Sample #	UTME	UTMIN	Date	Sampled By	Description	ppm	ppm	ppm	%	%	%
AO285031	416474	5139671	Oct 4/19	P.Davis	Leauco Gb-Anorth, salt and pepper, light colour, no viss sulphs	-0.01	-0.01	0.01	0.002	0.01	0.02
AO285032	416591	5139665	Oct 4/19	P.Davis	salt and pepper Gb, IBZ, tr diss Po	-0.01	-0.01	-0.01	-0.002	0.02	0.02
AO285033	416524	5139698	Oct 4/19	P.Davis	translucent green, f.g, to m.g. Anorth-Gb, !BZ, trace diss Po	-0.01	-0.01	0.01	0.003	0.021	0.04
AO285034	416384	5139670	Oct 4/19	P.Davis	IBZ, rusty patches, tr. Dii Po, light coloured Gb- Anorth.	0.04	0.1	0.37	0.08	0.049	0.12
AO285035	416271	5139657	Oct 4/19	P.Davis	IBZ, rusty patches, tr-1% diss Cpy, m.g. to c.g, leauco Gb	0.02	0.08	0.27	0.056	0.049	0.05
AO285036			Oct 4/19	P.Davis	Blank	-0.01	-0.01	-0.01	-0.002	-0.002	0.02
AO285037	416224	5139667	Oct 4/19	P.Davis	m.g. to c.g. leuco Gb, 1-5% Po, Cpy, Py appears to be concentrated along fractures	0.02	0.07	0.34	0.083	0.073	0.25
AO285038	416135	5139733	Oct 4/19	P.Davis	translucent greem, m.g. Gb-Anorth, rusty patches, no viss sulphides	-0.01	-0.01	-0.01	-0.002	0.023	0.02
AO285039	416121	5139699	Oct 4/19	P.Davis	translucent green, m.g. to f.g. Anorth-Gb, no vis sulphide, rusty patches	-0.01	0.02	0.01	0.002	0.08	0.02
AO285040	416147	5139659	Oct 4/19	P.Davis	m.g. Gb, translucent green plagioclase, black Hbl, no viss sulphs	0.01	0.05	0.18	0.026	0.06	0.04
AO285041			Oct 4/19	P.Davis	Standard, CFRM-100	0.17	0.33	0.36	0.318	0.295	1.69
AO285042	416120	5139664	Oct 4/19	P.Davis	translucent green, Anorth-Gb, weathers white, no viss sulphs, m.g. to f.g., rustry fractures	0.02	0.2	0.6	0.002	0.043	0.01
AO285043	415990	5139696	Oct 4/19	P.Davis	c.g. Gb, light plag, dark mafics, tr diss Py	0.08	0.06	0.09	0.162	0.025	0.12
AO285044	415954	5139598	Oct 4/19	P.Davis	grey, f.g. to m.g., Anorth-Gb, tr Po	-0.01	0.02	0.01	0.006	0.011	0.01
AO285045	415913	5139657	Oct 4/19	P.Davis	salt and pepper, m.g. Gb, rusty fractures, no viss sulphs	-0.01	0.01	0.01	0.013	0.011	0.03
AO285046			Oct 4/19	P.Davis	Pulp duplicate of AO285045	-0.01	0.02	0.01	0.009	0.011	0.03
AO285047	415928	5139657	Oct 4/19	P.Davis	pink, potasium Alt Gb, m.g., salt and pepper, looks lik blebs of rust, no viss sulphs	-0.01	0.01	0.01	0.003	0.006	0.01
AO285048	415684	5139797	Oct 4/19	P.Davis	m.g. Gb, translucent green, rusty weathered surface, no viss sulphs	-0.01	-0.01	-0.01	0.003	0.03	0.01
AO285049	415563	5139845	Oct 4/19	P.Davis	f.g. poss diabase, trace Po, Py	-0.01	0.01	0.02	0.016	0.007	0.11
AO285050	415431	5139844	Oct 4/19	P.Davis	f.g. Gb, translucent green, no viss sulphs	0.01	0.02	0.05	0.01	0.029	0.02

5.0 CONCLUSION and RECOMMENDATIONS

Conclusions

- 1) PGM mineralization was identified in the surface sampling program on the Parisien Lake Deformation Zone confirming the historic surface results.
- PGM mineralization observed in the PDLZ appears to be associated with remobilized Py and Cpy veins and veinlets. Samples taken from the host units beside the remobilized veins contained only background to slightly anomalous PGM mineralization.
- 3) PGM mineralization was confirmed in the gabbroic units to the north of the PLDZ associated with very low sulphide contents that were not observed in the grab samples taken as part of the current program. The PGM mineralization appears to be associated with the Inclusion Bearing Zone units that extends from west to east from the Kid Parisien Lake Zone located approximately 600 metres to the west.
- 4) PGM mineralization was not observed in the surface samples taken to the east of the Kid Zone, indicating that the PGM mineralization is either offset, cut-off or extends at depth in the area of the sampling.
- 5) The surface sampling program on the Central Zone did not identify additional high grade PGM mineralization over 1 ppm Pd+Pt+Au and did not infill the higher grade zones along the trend to the west. Sampling between the previous trenching and surface samples only identified anomalous mineralization in 3 of the samples.

Recommendations

- 1) The size of the samples should be larger to increase the potential of capturing the potential mineralization associated with the low sulphide environment to reduce any impact that may be related to a nugget effect of the PGM minerals. Smaller sample sizes may inadvertently miss the PGM mineralization and/or elevate the PGM mineralization measured in the individual samples. Larger samples would provide a better representation of the overall content of the PGM mineralization contained within the individual units.
- 2) A bulk sampling program over the highly anomalous PGM mineralization identified in the historic trenching that incorporates a number of the individual samples within the trench to provide a more representative assessment of the grade of the zone and ensure that any potential nugget affect will be minimized.
- 3) Tightly spaced diamond drilling along sections covering the known surface PGM mineralization would help to identify the lateral and down dip extent of the PGM mineralization as well as provide information on the orientation and trend of the PGM zones.

6.0 EXPENDITURES

|--|

Activity		Units		Cost per Unit			Total			
Assay Analysis ¹	50	samples	@	\$62.96	/sample	=	\$3,148	20%		
Planning/Supervision	4	days	@	\$700	/day	=	\$2,800	17%		
Geologist	5	days	@	\$700	/day	=	\$3,500	22%		
Field Assistant	4	days	@	\$300	/day	=	\$1,200	7%		
Truck Rental	8	days	@	\$125	/day	П	\$1,000	6%		
ATV Rentals	7	days	@	\$125	/day	=	\$875	5%		
Room & Board	8	days	@	\$753	/day	=	\$732	5%		
Field Expenses ²	8	days	@	\$250	/day	П	\$659	4%		
Report Writing	3	days	@	\$700	\$700 /day		\$2,100	13%		
TOTAL = \$16,014 100%										
1	1 "All-In" Analytical Costs includes sample preparation, analytical analysis, administrative, etc									
2	 includes all Field Supplies & Equipment: core shed rental, core saw rental, construct benches & logging table, saw blades, all core logging & core cutting supplies, fuel for truck etc 									

Expenditures per Claim

Claim No	Number of Samples	Cost / sample		Total
131806	1	\$364	=	\$364
135250	9	\$364	=	\$3,276
170486	8	\$364	=	\$2,912
188311	13	\$364	=	\$4,731
236624	3	\$364	=	\$1,092
279216	4	\$364	=	\$1,456
292305	6	\$364	=	\$2,184
TOTAL	44	\$199.43	=	\$16,014

7.0 REFERENCES

Barwick, R.E., 2009 2009 Technical Report, East Bull Lake Property. Assessment Report

- Brisban, D., 2001 Exploration Program on the East Bull Lake Project. Assessment Report for Mustang Minerals Corp
- Brisban, D., Wood, P., Kleinboeck, K., and Lapierre, K., 2001 Geology of the East Bull Lake Intrusion and Its Contact-type PGE-Cu-Ni Mineralization. Field Trip Guidebook, Laurentian University SEG Student Chapter Workshop.
- Easton, R.M., Jobin-Bevans, L.S., and James, R.S., 2004 Geological Guidebook to the Paleoproterozoic East Bull Lake Intrusive Suite Plutons at East Bull Lake, Agnew Lake, and River Valley, Ontario. OGS Open File Report 6135.
- Foy, R., 2012 Drill Report: East Bull Lake Option Mustang Minerals Corp , Western Areas NL.

Kleinboeck, J., 2008 Diamond Drilling Program: East Bull Lake Property – Parisien Lake Grid.

- Peck, D.C., James, R.S., Prevec, S.A., and Keays, R.R., 1995 Geology, Metallogeny, and Petrogenesis of the East Bull Lake Intrusion.
- Peck, D.C., James, R.S., 1991 Geology and Platinum Group Element Sulphide Mineralization, East Bull Lake. OGS Open File Report 5813

8.0 STATEMENT OF QUALIFICATIONS

I, Paul Charles Davis, of the city of Whitby, in the province of Ontario, do certify as follows:

- 1) I am a Consulting Geologist with Paul Davis Consulting, 25 Wakem Crt, Whitby, Ontario.
- 2) I have practiced my profession since 1987 and am a registered Professional Geoscientist in the Province of Ontario (APGO # 1109).
- 3) I have worked as a Senior, Project, and Field Geologist for numerous senior and junior mining companies for 33 years 30 years in the Province of Ontario.
- 4) I am a graduate of the University of Western Ontario with B.Sc. (Honours) in Geology in 1988.
- 5) I am a Qualified Person for the purposes of NI 43-101.
- I have acted as a Consulting Geologist for Grid Metals Corp from July 15th, 2019 to Present.
- 7) I managed all field aspects of the 2019 East Bull Lake Surface Sampling Program including the taking of the samples and have verified and validated the data collected during the program.
- 8) Permission is granted by Grid Metals Corp to submit this report dated February 6th, 2020 for assessment purposes.

44 4 P. Geo. (ON) Paul Davis PAUL C. DAVIS eć. PRACTISING MEMBER **Consulting Geologist** 1109

February 6th, 2020

APPENDIX A: ASSAY CERTIFICATES

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

CERTIFICATE SD19250801

Project: East Ball Lake

This report is for 50 Rock samples submitted to our lab in Sudbury, ON, Canada on 4-OCT-2019.

The following have access to data associated with this certificate:

PAUL DAVIS

ROBIN DUNBAR

To: GRID METALS CORP. 3335 YONGE STREET, SUITE 304 TORONTO ON M4N 2M1

Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 24-OCT-2019 Account: SRI

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
LOG-21d	Sample logging - ClientBarCode Dup							
SPL-34	Pulp Splitting Charge							
LOG-23	Pulp Login - Rcvd with Barcode							
DRY-22	Drying - Maximum Temp 60C							
PUL-31	Pulverize up to 250g 85% <75 um							
CRU-32	Fine Crushing 90% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-32	Pulverize 1000g to 85% < 75 um							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP81	ICP Fusion - Ore Grade	ICP-AES
PGM-ICP27	Ore grade Pt, Pd and Au by ICP	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: GRID METALS CORP. 3335 YONGE STREET, SUITE 304 TORONTO ON M4N 2M1

Page: 2 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 24-OCT-2019 Account: SRI

Project: East Ball Lake

CERTIFICATE OF ANALYSIS SD19250801

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Ni % 0.002	ME-ICP81 S % 0.01	
A0285001 A0285002 A0285003 A0285004 A0285005		0.75 0.70 0.81 0.95 1.00	93.8	90.6 85.8	<0.01 0.06 <0.01 0.01 <0.01	<0.01 0.14 <0.01 0.01 0.01	<0.01 0.50 <0.01 0.03 0.02	<0.002 0.105 0.008 0.065 0.020	<0.002 0.053 0.003 0.015 0.019	0.02 0.21 0.97 0.23 0.13	
A0285006 A0285007 A0285008 A0285009 A0285010		1.15 0.91 1.07 1.20 0.14			<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.01 <0.01 <0.01 <0.01	0.006 0.005 <0.002 0.049 <0.002	0.013 0.053 0.003 0.005 0.003	0.19 0.01 0.01 0.61 0.02	
A0285011 A0285012 A0285013 A0285014 A0285015		1.23 2.56 0.93 1.28 0.80			<0.01 0.03 0.05 <0.01 <0.01	0.01 0.13 0.14 0.12 <0.01	0.01 0.32 0.34 0.75 <0.01	0.005 0.061 0.049 0.007 <0.002	0.008 0.046 0.025 0.046 0.008	0.02 0.09 0.05 0.03 0.01	
A0285016 A0285017 A0285018 A0285019 A0285020		1.02 1.28 1.05 1.02 <0.02			<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.01 <0.01 0.01 <0.01	<0.01 0.01 0.04 <0.01 <0.01	0.004 0.006 0.004 0.011 0.012	0.019 0.029 0.092 0.013 0.012	0.03 0.05 0.02 0.01 0.01	
A0285021 A0285022 A0285023 A0285024 A0285025		1.46 0.07 0.50 1.17 0.53			0.40 0.19 0.01 <0.01 <0.01	0.46 0.56 0.03 0.02 0.01	2.59 0.59 0.15 0.02 0.01	7.45 0.896 0.258 0.009 0.010	0.224 1.150 0.035 0.019 0.031	16.30 6.68 0.54 0.05 0.05	
A0285026 A0285027 A0285028 A0285029 A0285030		1.27 0.92 1.18 1.05 0.92			<0.01 <0.01 <0.01 0.04 <0.01	0.01 0.01 <0.01 0.39 0.01	0.01 0.01 <0.01 3.39 0.01	0.004 0.003 <0.002 0.009 0.013	0.026 0.015 0.007 0.028 0.013	0.02 0.02 0.04 0.03 0.04	
A0285031 A0285032 A0285033 A0285034 A0285035		1.08 1.57 0.96 1.77 1.98			<0.01 <0.01 <0.01 0.04 0.02	<0.01 <0.01 <0.01 0.10 0.08	0.01 <0.01 0.01 0.37 0.27	0.002 <0.002 0.003 0.080 0.056	0.010 0.020 0.021 0.049 0.049	0.02 0.02 0.04 0.12 0.05	
A0285036 A0285037 A0285038 A0285039 A0285040		0.15 1.52 1.22 1.27 0.87	94.8	86.4 92.2	<0.01 0.02 <0.01 <0.01 0.01	<0.01 0.07 <0.01 0.02 0.05	<0.01 0.34 <0.01 0.01 0.18	<0.002 0.083 <0.002 0.002 0.026	<0.002 0.073 0.023 0.080 0.060	0.02 0.25 0.02 0.02 0.04	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: GRID METALS CORP. 3335 YONGE STREET, SUITE 304 TORONTO ON M4N 2M1

Page: 3 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 24-OCT-2019 Account: SRI

Project: East Ball Lake

CERTIFICATE OF ANALYSIS SD19250801

Sample Description	Analyte Units LOD	Recvd Wt. kg 0.02	Pass2mm % 0.01	POL-QC Pass75um % 0.01	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Ni % 0.002	ME-ICP81 S % 0.01
A0285041		0.07			0.17	0.33	0.36	0.318	0.295	1.69
A0285042		1.34			0.02	0.20	0.60	0.002	0.043	0.01
A0285043		1.71			0.08	0.06	0.09	0.162	0.025	0.12
A0285044		1.68			<0.01	0.02	0.01	0.006	0.011	0.01
A0285045		1.77			<0.01	0.01	0.01	0.013	0.011	0.03
A0285046		<0.02			<0.01	0.02	0.01	0.009	0.011	0.03
A0285047		1.35			<0.01	0.01	0.01	0.003	0.006	0.01
A0285048		1.77			<0.01	<0.01	<0.01	0.003	0.030	0.01
A0285049		2.19			<0.01	0.01	0.02	0.016	0.007	0.11
A0285050		1.73			0.01	0.02	0.05	0.010	0.029	0.02

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: GRID METALS CORP. 3335 YONGE STREET, SUITE 304 TORONTO ON M4N 2M1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 24-OCT-2019 Account: SRI

Project: East Ball Lake

CERTIFICATE OF ANALYSIS SD19250801

CERTIFICATE COMMENTS								
Processed at ALS Sudbu CRU-32 LOG-22 SPL-21	LABOR ry located at 1351-B Kelly Lake Road, U CRU-QC LOG-23 SPL-34	ATORY ADDRESSES Init #1, Sudbury, ON, Canada. DRY-22 PUL-32 WEI-21	LOG-21d PUL-QC					
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME-ICP81 PGM-ICP27 PUL-31								
	Processed at ALS Sudbu CRU-32 LOG-22 SPL-21 Processed at ALS Vancou ME-ICP81	CRTIFICATE CON LADOR Processed at ALS Sudbury located at 1351-B Kelly Lake Road, U CRU-32 CRU-Q2 LOG-23 LOG-23 SPL-21 SPL-34 Processed at ALS Vancouver located at 2103 Dollarton Hwy, No ME-ICP81 PGM-ICP27	CRTIFICATE COMMENTS LACORT ADDRESSE Processed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU-32 CRU-QC DRV-22 LOG-22 LOG-23 PUL-31 SPL-21 SPL-34 WEI-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME-ICP81 PGM-ICP27 PUL-31					

APPENDIX B: SAMPLE LOCATION PHOTOS

