

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2018 DIAMOND DRILLING REPORT HIGHWAY ZONE DAYOHESSARAH LAKE AREA WHITE RIVER, ONTARIO

NTS 42C/ 10, 11, 14 and 15

Latitude 48°48' N, Longitude 85°10' W

Dates Work Performed September 25th 2018 to October 18th, 2019

for

Harte Gold Corporation 8 King Street East Suite 1700 Toronto, Ontario M5C 1B5

TABLE OF CONTENTS

1.0	Introduction
2.0	Property Location and Description
2.1	Location and Access
2.2	Description of Mining Claims3
2.3	Physiography and Vegetation3
3.0	Historical Work4
4.0	Geological Setting11
4.1	Regional Geology11
4.2	Property Geology13
5.0	Mineralization15
5.1	Sugar Zone15
5.2	Wolf Zone16
6.0	Diamond Drilling16
6.1	Sample Collection, Preparation, Analyses and Security16
6.2	Laboratory Methods17
6.3	2018 Drilling21
6.4	Results21
7.0	Conclusions and Recommendations
8.0	Costs
9.0	References
10.0	Statement of Qualifications

LIST OF FIGURES

Figure 1 - Property Location
LIST OF TABLES
Table 1 – Highway Zone - Summary of Costs.22Table 2 – Highway Zone - Cost per Claim.23Table 3 – Highway Zone - DDH Program Cost Summary.24Table 4 – Highway Zone - Analytical Cost Summary.24
APPENDICES
Appendix A – Claims List
Appendix B – Highway Zone – 2018 Drill Logs
Appendix C – Highway Zone – 2018 Drill Hole Cross Sections
Appendix D – Highway Zone – 2018 Drill Hole Plans
Appendix E – Highway Zone – 2018 Actlabs Assay Certificates
Appendix F – Highway Zone – 2018 Actlabs Invoices
Appendix G – Highway Zone - 2018 Chibougamau Invoices

Executive Summary

Between September 25th, 2018 and October 18th, 2018 Harte Gold Corporation performed a 4-hole, 1591.4-meter diamond drill program at the Highway Zone. This zone is located within the Sugar Zone property ("the Property") which is located in the Dayohessarah Lake area, north of White River, Ontario. One drill rig (HC-150-16) was supplied by Chibougamau Diamond Drilling Ltd to perform drilling for all 4 holes.

The Highway Zone is located along the southern-arm of the Sugar Zone property (Figure 2); approximately 22km southwest of the Sugar Zone Mine Site. The intent of the Highway Zone drill program was to drill test VLF anomalies in the area.

A total of \$180,748 was spent on this drill program which included costs such as drilling, assay and salaries, etc. The average cost per meter was \$122.00.

The Sugar Zone property is located in the Dayohessarah Greenstone Belt ("DGB"). This greenstone belt is part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton. The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. The DGB has an active history of exploration dating back to 1969 when Canex Aerial Exploration Ltd. drilled three holes on the property. Exploration ramped up after the discovery of Hemlo, when Pezamerica Resources commenced geophysics and drilling.

In 1998, Harte Gold Corp. entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte subsequently entered into a Joint Venture agreement with Corona Gold Corporation.

1.0 Introduction

The Highway Zone is one of several gold-bearing zones identified on Harte Gold's Sugar Zone property (Figure 2). The Sugar Zone Mine Site is comprised of the Sugar Zone and Middle Zone deposits. The property is located in the Dayohessarah Greenstone Belt ("DGB"). This greenstone belt is part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton.

This report will summarize and discuss the results of the diamond drill program conducted between September 25th 2018, to October 18th 2018 by Harte Gold Corp. The drill report was written from October 15th to October 18th, 2019.

All Highway Zone holes were drilled on claims permitted by Exploration Permits PR-18-11273.

All UTM coordinates are in NAD 83, Zone 16U projection.

2.0 Property Location and Description

2.1 Location and Access

The Sugar Zone property is situated approximately 25 km northeast of the Town of White River (Trans-Canada Highway No. 17) and 60 km east of the Hemlo gold camp. The property is approximately equidistant from Sault Ste. Marie to the south-east and Thunder Bay to the west (Figure 1). The overall property encompasses NTS zones 42C/ 10, 11, 14 and 15 and the gold mineralized occurrences are exposed at Latitude 48°48' north, Longitude 85°10' west. The

property covers parts of the Odlum, Strickland, Gourlay, Tedder, Hambleton, Cooper, Nameigos, Abraham and Bayfield Townships, and falls within the Sault Ste. Marie Mining Division.

The property can be accessed via a series of logging roads and drill trails extending north from the community of White River. Access is also available by way of float plane, based in White River via Dayohessarah Lake or Hambleton Lake, and by helicopter based in Wawa or Marathon.

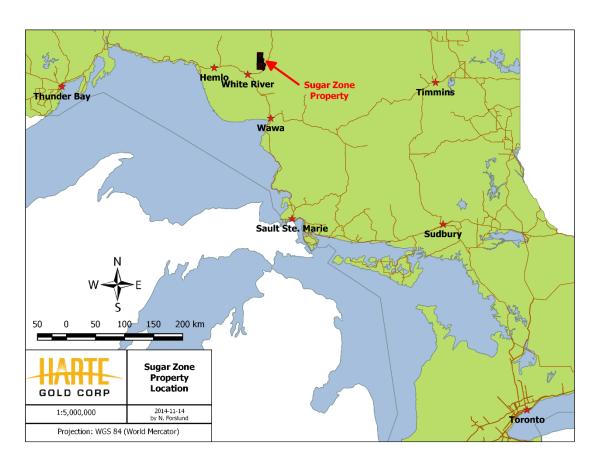


Figure 1 - Property Location

The western and southern portions of the property are accessible via a series of logging roads controlled by White River Forest Products Limited. Road No. 100 extends north from the western end of White River. Road No. 200 intersects Road No. 100 approximately 20 km from Highway 17 and provides access to the western and southern portions of the property. Road No. 300 intersects Road No. 100 approximately 36 km from Highway 17 and provides access to the very northern portion of the property. Road No. 305 intersects Road No. 300 approximately 6 km from Road No. 100 and provides access to northern and eastern parts of the property. Road access to within 400 m of the Sugar Zone is available via a small road heading south and southwest from Road No. 305 for 8.8 km. From there, access to the Sugar Zone is available via all-terrain or tracked vehicles in the summer, and snowmobiles, tracked vehicles and trucks in the winter. The distance from White River to the Sugar Zone is approximately 60 km by road.

Areas surrounding Dayohessarah, Hambleton, Strickland and Pike Lakes are designated by the Ontario Ministry of Natural Resources as 'Restricted Access'. Locked gates on Road No. 200

and Road No. 305 control vehicular access in order to prevent access to remote lodge operations on two lakes. Permits are required for road access to most of the Sugar Zone property for mineral exploration purposes.

Access to the Highway Zone is from White River east along Highway 631 for 14.5 km from which a series of logging roads and dozer-made trails were used to access each drill site.

2.2 Description of Mining Claims

The Sugar Zone property consists of four mining leases comprising 1467.26 hectares, including 69 boundary cell claims, 43 single cell claims, 197 multi-cell claims. Harte Gold also has an option to earn a 100% interest in the Halverson property subject to certain terms and conditions. The Halverson property consist of 12 boundary cell claims and 4 single cell claims. (Appendix A). All claims of the Sugar Zone property are held in the name of Harte Gold Corp., except for those of the Halverson property which are held in the name of Lloyd Joseph Halverson and are subject to an option agreement. The property boundaries, claim lines, and location of the Highway Zone are shown in Figure 2.

There are two mining alienations which border parts of Harte's current claim block. The largest (W-LL-C1521) lies to the east of the current claim area and shortly borders claim 4260617 on the east, and Hwy 631 on the west. The second alienation (No. 2847) lies completely within Harte's current claim block, west of Dayohessarah Lake. Surface rights are held by the Crown and timber cutting rights are held by White River Forest Products Ltd.

In 1998, Harte Gold Corp. (Harte) entered into an option agreement on most of the unpatented mining claims comprising the Sugar Zone property, including the Sugar Zone. Harte Subsequently entered into a Joint Venture agreement with Corona Gold Corp.

The original claims are subject to a 3.5% net smelter royalty ("NSR"). The Joint Venture participants, namely Corona (51%) and Harte (49%), have the option of acquiring 1.5% of the 3.5% NSR for \$1.5 million, in proportion to their respective interest and have, in addition, the right of first refusal on the remaining 2.0% NSR.

Harte and Corona entered into an Option Agreement (the "Corona Option") dated May 28, 2010, entitling Harte to acquire Corona's 51% interest in the Sugar Zone Joint Venture upon completion of certain conditions. Effective March 10, 2010, Harte became the Operator of the Sugar Zone Joint Venture for as long as the Corona Option remained in good standing. Harte completed all required conditions and as of May 23, 2012 acquired Corona's 51% interest to became the 100% owner and operator of all of the claims which were previously part of the Sugar Zone Joint Venture.

2.3 Physiography and Vegetation

The climate is northern boreal, with short hot summers and cold, snowy winters. Some field operations, such as drilling, can be carried out year-round while other operations, such as prospecting and mapping, can only be carried out during the late spring, summer and early autumn months.

The temperatures can range from -35°C in the winter to +30°C in the summer; though the mean temperatures are around -20°C to +20°C. Rainfall is about 727 mm annual average, with the wettest month being September (120 mm average). Snow is abundant, often reaching several

metres with December and January having the heaviest snowfall (about 80 cm). Snow is on the ground by late October and the ice begins to thaw on the lakes by April.

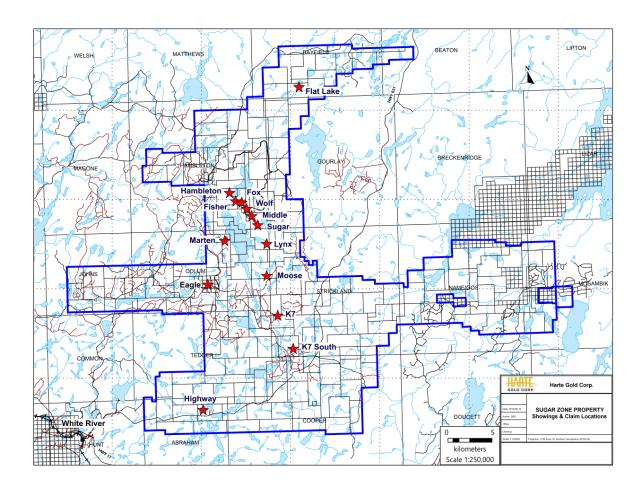


Figure 2 - Claim Position and Showings

The topography on the property varies from moderate to rugged, with lake levels generally at 390 m above sea level, and occasional hills up to 480 m elevation. The overburden is generally between 0 to 20 m deep on the property, with occasional boulderer terrain, and normally approximately 2 to 3 m overlying the Sugar Zone. Vegetation is boreal, with jack pine, fir, poplar and birch occupying dry uplands and cedar, tamarack and spruce growth on more poorly drained terrain.

3.0 Historical Work

Exploration for gold and base metals has been conducted on the Dayohessarah property since 1969. After over 10 years of very little work, exploration started to pick up on the property again in 1983, after the discovery of the Hemlo Gold camp. A complete timeline of mineral exploration on the DGB is presented below.

1969 Canex Aerial Exploration Ltd. drilled three diamond drill holes in the vicinity of the mafic/ultramafic intrusives and flows near the north end of Dayohessarah Lake. Results include an intersection of 0.326% Ni and 0.08% Cu over 5 ft. in metagabbroic rocks.

1983-1986 Pezamerica Resources Limited conducted an exploration program which included an airborne Mag and EM survey that outlined thirty-one (31) geophysical anomalies in the area. Twenty-four (24) of these anomalies were investigated by Teck Exploration on behalf of Pezamerica. Teck Exploration drilled nine airborne geophysical targets based on coincidental soil gold anomaly trends. In all cases, the airborne anomalies were explained by pyrite/pyrrhotite rich horizons within felsic volcanics. Hole PZ-6 returned appreciable amounts of sphalerite mineralization (0.47% Zn over 2.8 feet). None of the assayed core returned significant gold values.

1989 Lac Minerals performs a 920 line-km helicopter-borne magnetic-electromagnetic and VLF-EM survey over the White River property which includes the Harte Gold's Highway Zone. A weak airborne anomaly is detected to the west of Harte Gold's Highway Zone.

1990 Most of the DGB is staked by a prospecting syndicate.

Lac Minerals follows-up the airborne survey with a 44-hole overburden drilling program within two lakes which occur within Harte Gold's Highway Zone area.

1991 The property is optioned from the prospectors by Hemlo Gold Mines Inc. Initial prospecting uncovered the gold-bearing Sugar Zone deposit. Based on bedrock exposure and trenching, the Sugar Zone was traced for 750 m, and a ground IP survey outlined the Sugar Zone structure extending for 1,500 meters.

Lac Minerals follows-up the results of the 44-hole overburden drill program conducted in 1990 with one diamond drill hole which is located approximately 200m west of Harte Gold's HZ-18-01 drill hole. The source of the conductor was determined to be graphite and pyrrhotite.

1993 Hemlo Gold conducted a preliminary diamond drill program to test the Sugar Zone for economic gold mineralization. A grid was cut with a 6-km baseline and tie-lines ranging in spacing between 100 m and 1,000 m. Six diamond drill holes were completed totaling 800 m. All drill holes intersected significant gold mineralization in the Sugar Zone. A small trenching program is initiated on the Sugar Zone.

Placer Dome Canada Ltd. performs a 2256 line-km airborne radiometric survey over the White River area which includes Harte Gold's Highway Zone.

1994 Hemlo Gold proceeds with initial geological mapping, prospecting and a follow-up drill program. Fifteen diamond drill holes are completed on the property, totaling 2,416 m. Eight of the drill holes intersected the Sugar Zone. An I.P. survey is completed over the southern portion of the property, and a Mag survey is completed over the entire grid. After the exploration program, the property was returned to the prospecting syndicate who initially staked the ground, due to legal reasons.

1998-1999 Most of the property is optioned from the prospector's syndicate. The mining claims were subject to a Joint Venture agreement between Corona Gold Corporation (51%) and Harte Gold Corp. (49%). Corona was the operator. The initial 313 claims are subject to a 3.5% net smelter royalty ("NSR"), and the Joint Venture participants have the option to acquire 1.5% of the 3.5% NSR for \$1.5 million, and have the right of first refusal on the remaining 2.0% NSR.

Corona carries out an extensive exploration program. The existing grid was rehabilitated and new grid lines established east of Dayohessarah Lake. In total, 96.1 km of grid lines with 100 m

spacing oriented at 320° azimuth are cut over the Sugar Zone area. An oriented soil sampling program is carried out on the grid, as well as mapping and sampling. Prospecting was limited to the Sugar Zone and extensions of the Sugar Zone to the south and to the north. A surface power trenching program is conducted on parts of the Sugar Zone and six trenches were excavated, washed, channel sampled and mapped in detail. A detailed Mag-VLF and reconnaissance gradient I.P. survey is performed on the property.

A diamond drilling program totaling 9,937 m of NQ core in 53 holes is completed, mostly into and around the Sugar Zone. The drill holes cover 3 km of strike length, and intersect the zone at approximately 50 m spacing at shallow depths. A secondary purpose of the program was to follow-up low grade mineralization encountered in previous drilling by Hemlo Gold and to test previously untested/poorly tested I.P. anomalies west of the Sugar Zone and east of Dayohessarah Lake.

Preliminary Mineral Resource estimates of the Sugar Zone mineralization in the 12000 N to 13100 N area were prepared, based on the drilling program noted above. Another estimate was made, using revised and refined criteria and polygonal methods, in the spring 1999, following additional data evaluation (Drost et Al, 1998).

2003-2004 Corona conducts a diamond drilling program totaling 7,100 m in 26 holes. The drill program mostly intersects the Sugar Zone and is successful in its purpose of expanding the strike and dip extent of the zone, as well as increasing the level of confidence in the continuity of mineralization by in-fill drilling.

2004 Corona conducts another diamond drilling program totaling 3,588 m in 11 holes. The program is successful in increasing the mineralization extent of the Sugar Zone, as well as increasing the defined Sugar Zone depth to a vertical depth of 300 m. A new Mineral Resource estimate was completed.

2008 A helicopter airborne geophysical survey was flown over the property by Fugro Airborne Surveys Corp., under contract from Corona. The survey used a DIGHEM multi-coil, multi-frequency electromagnetic system along with a high sensitivity cesium magnetometer. A total of 1,917 line-km was flown. It was recommended by Dave Hunt P.Geo. that compilation of historic exploration data on the remainder of the property be followed by a program of reconnaissance mapping and prospecting to evaluate the Fugro airborne conductor axes on the ground, as well as to identify additional target areas extending both north and south of existing Sugar Zone mineralization and elsewhere on the property.

2009 During March, Corona undertook a drilling program totaling 2,020 m in 10 holes. The purpose of the program was to test airborne electromagnetic conductors, magnetic anomalies, induced polarization chargeability anomalies and geologically defined possible extensions to the north and the south of the known Sugar Zone mineralization.

During July to September, a prospecting, reconnaissance geological mapping and channel sampling program was undertaken on geophysical targets outlined by the Fugro airborne geophysical anomalies. Highlights included sampling of a float rock (Peacock Boulders) returning a value of 87.80 g/t Au, as well as grab samples from quartz veining east of the Sugar Zone returning values of 30.40 and 9.04 g/t Au.

2010 Harte Gold Corp. initiated its first drilling program. During March, a diamond drill program totaling 2,097.31 m in 12 holes, two of which were aborted before reaching the Sugar Zone. The program was successful in locating a high-grade area of the Sugar Zone located near surface and directly under a series of surface trenches. The drill program was also successful in determining that the Sugar Zone has significant mineralization below 300 m depth.

Ground IP is completed over a grid totaling 20,475 meters. Chargeability from the survey outlines a potential zone north of the Peacock Boulder discovery of 2009. 5 Trenches totaling 1,850 square meters were completed over and around the newly discovered Wolf Zone.

A total of 5,387.94 m of diamond drilling totaling 33 drill holes was completed on the newly discovered Wolf Zone. Results outlined a small, high grade zone with a strike length up to 600 m and a depth up to 250 meters.

2011 Between May and June 2011 two more grids totaling 60,800 meters were completed over the fold nose near the north end of the Sugar Zone property, on the west side of Hambleton Lake. Follow up ground IP was completed on the grids by JVX Geophysical Surveys. A small 5,200-meter grid was also cut, and ground IP completed on the west side of Dayohessarah Lake, in an attempt to outline a Gossan Zone.

A Bore Hole survey was completed In August 2011 on eleven deep drill holes in the Sugar Zone. The Bore Hole survey outlined several conductors in the area. An airborne VTEM survey was completed at the end of August by Geotech Ltd. The survey covered the entire property and outlined 5 large moderate to strong conductive areas of interest. The most exciting result of the survey was a potential copper-nickel ore body below the surface, under the komatiite volcanics at the northern end of Dayohessarah Lake.

There were two main drill programs in 2011. The first was on the Sugar Zone, between February 11 to April 13, and again between July 17 and November 24, 2011, and totaled 7,885.74 meters of diamond drilling in 27 drill holes. The drilling was designed to expand the resource estimate both at depth, and to upgrade inferred resource to indicated resource. The second drill program targeted IP anomalies on the Fold Nose grid. A total of 3,430.93 meters were drilled in 15 diamond drill holes. Most IP anomalies were explained by sedimentary layers, and no significant intercepts were observed.

2012 In April 2012, Geotech Ltd. carried out a helicopter borne geophysical survey over the Sugar Zone property. The program was completed as an extension of the airborne VTEM survey conducted in 2011 which totaled 302 line-km of data over the northern parts of Dayohessarah Lake and western parts of Hambleton Lake and the shoreline. The 2012 program totaled 1,153 line-km of data essentially covering the rest of the Dayohessarah Greenstone Belt.

In an effort to understand the source of the Peacock boulders, thin sections of three Peacock boulder samples were sent to Pleason Geoscience for analysis. The boulders returned assay values of 87.30 g/t Au, 52.80 g/t Au and 37.20 g/t Au. It was noted that the mineralogy and microtextures of the samples were similar to gold-bearing zones at the Hemlo and Musselwhite gold camps.

Between October 30, 2012 and November 2, 2012 four mechanical trenches were made along the surface exposure of the Sugar Zone. The purpose of the trenches was to expose enough

high-grade material from the Lower Zone of the Sugar Zone for a reasonably representative blasting program. The total area of the trenches is 1,799 square meters.

During the period January 21, 2012 to July 29, 2012 a total of 6,283.92 meters were drilled in 12 diamond drill holes targeting the Sugar Zone. The drilling was carried out by Major Drilling Group International Inc. The purpose of the diamond drilling program was to expand the current Mineral Resource Estimate of the Sugar Zone at vertical depths below 400 m, and to test the continuity, grade and width of the zone at 1,000 m vertical depth. The program was successful in defining Au mineralization in both the Upper and Lower Zones with significant assay results ranging from 0.56 g/t Au to 162 g/t Au.

An additional 2 drill holes targeted an IP north-east of Dayohessarah Lake. These exploration holes totaled 375 meters and did not return any significant gold values.

Two holes totaling 333 meters were drilled targeting an extension of the Wolf Zone. No significant assays were returned.

2013 Exploration in the 2013 season included a short prospecting program, where 46 samples were taken and analyzed for Au using fire assay. Two samples returned Au values of 10.2g/t and 0.73 g/t.

Four holes were drilled on the Halverson Zone, totaling 1103.28m These holes targeted Cu-Ni mineralization discovered in 2011 by a VTEM survey.

An additional 17 diamond drill holes totaling 1356m were drilled to decrease the spacing between holes in a high-grade portion of the Sugar Zone Lower Zone (called Jewelry Box). Significant intervals from this program ran from 2.77 g/t Au to 28.5 g/t Au over widths from 0.35m to 8.27m.

Harte Gold continued moving forward with the permitting and optimization of the advance exploration 70,000 tonne bulk sample at the Sugar Zone. Confirmation drilling at the Jewelry Box Zone (JBZ) returned significant high-grade gold assays and enabled Harte Gold to re-design the bulk sample target areas in order to test this high-grade portion of the Sugar Zone deposit. The JBZ lies close to surface and can be developed quicker and more cost effectively.

Harte Gold also completed road construction to provide highway access to the property and survey work associated with taking certain of the Sugar Zone property mining claims to lease. Harte Gold is also in the process of negotiating contract mining and off-site milling agreements.

Harte Gold completed a regional exploration program and Induced Polarization (IP) survey with the objective of finding the source of the high-grade Peacock Boulders which returned gold values up to 87 g/t. Drill targets have been identified and are scheduled to be drilled during the summer of 2014.

2014

Harte Gold continued to advance the Sugar Zone "Advanced Exploration and Bulk Sample Project" during 2014. Efforts focused on completing the permitting associated with the amended closure plan, completing the road to the portal site and overall optimization of the mining plan developed in the 2012 Preliminary Economic Assessment.

Additional confirmation drilling at the Jewelry Box Zone (JBZ), the target area for the bulk sample, returned significant high-grade gold assays providing additional confirmation to mining contractors developing bids for the project.

2014 was a busy year of exploration, Induced Polarization and magnetometer surveys were conducted over a majority of the core mining claims and generated numerous drill targets. Follow up ground proofing and drill programs identified the Wolf Zone as the source of the high-grade Peacock Boulders and lead to the discovery of the Contact Zone, where a sericite schist was found to have Hemlo-style geochemistry and anomalous gold as well as a third mineralized zone known as the Footwall Zone and located 50 meters east of the Sugar Zone deposit.

During 2015 Harte Gold completed additional exploration drilling that extended the Sugar Zone deposit 300 meters south of its previously defined boundary.

Harte Gold completed additional construction work on the site access road linking the Sugar Zone deposit to Highway 631 and completed the lease application process for certain mining claims that comprise the Sugar Zone property. The leases cover the Sugar Zone deposit and immediately surrounding area and are a requirement for commercial production.

2015

2015 was a pivotal year for Harte Gold as efforts to move the project ahead during a challenging mining market finally culminated in October with the first portal blast at the Sugar Zone. Since October the ramp was advanced to over 850 meters in length and begun shipping ore to Barrick Gold for custom milling from ore developed on the 375 level.

With production under our bulk sampling program well underway, the commercial permitting process has begun. This process is expected to take 12-18 months which may coincide well with completion of the bulk sample program. During the intervening period, the plan is to continue with underground development which would include the ramp, underground infrastructure including ventilation and setting up stopes to be ready for mining.

The commercial production target is 600 tonnes/day. Milling options are currently being studied and a tailings facility will form part of our permit application so that an on-site milling facility can eventually be built.

Harte gold initiated a significant geophysical program between the Sugar Zone and the Wolf Zone. The Contact Zone where Hemlo-style mineralization has been found in sericite schists up to 45 meter wide and the Gossan Zone located on the west side of Dayohessarah Lake will be a focus for future exploration.

2016

2016 was a very busy year for Harte Gold as mining was in full swing with ore being delivered to Barrick Gold Corporation's Hemlo mill throughout the year.

Exploration efforts both near-mine and regionally are progressing at an aggressive pace with 6 drill rigs now working at the Sugar Zone and the newly discovered Middle Zone and the Wolf Zone. It is expected that the next resource update will include resources at the Middle Zone which could be incorporated into an updated mine plan and Technical Report.

2017

At the Sugar Zone deposit four drill rigs are actively completing infill and step-out drilling to move resources to the Measured, Indicated and Inferred categories. Infill drilling at the Sugar Zone upper 500 meters is now complete and work on an updated resource statement is underway. Step-out drilling targeting resource extensions at a depth below 500 meters is currently underway to extend the down-dip extension to 1,000 meters targeting Inferred resources. Step-out drilling at the Sugar Zone has returned significant intersections to the north within a previously undrilled area. This work has brought Sugar Zone mineralization to within 300 meters of the Middle Zone, further suggesting potential convergence of both zones

Drilling at the Middle Zone continues with three drill rigs active. Drilling has returned some excellent results including intersections of 13.02 g/t gold over 4.50 meters in hole WZ-17-79W and 13.68 g/t gold over 7.02 meters in hole SZ-17-86W. Hole WZ-17-92 confirms mineralization continues north of the Gabbro intrusion towards the Wolf Zone. One drill rig is being mobilized to test mineralization north of the Gabbro intrusion.

A property-wide MAG and HTEM survey has been completed and results interpreted. The MAG has been instrumental in outlining the geologic structures on the property and combined with the HTEM survey, has identified five new significant anomalies on the property. The strongest conductor is on the west side of the property and is hosted at the contact of a volcanic and sedimentary unit, now referred to as the "Eagle Zone".

Early drilling at the Wolf, Lynx and Fisher Zones has demonstrated on-strike continuity of mineralization. Further definition of these areas will be enhanced using down-hole geophysics to better define potential mineralized structures and refine drill targets.

IP geophysics and soil sampling completed over the summer at the Marten Zone have identified areas to be drilled. Historical grab samples have returned anomalous gold, lead and zinc within the target area.

Technica Group Inc. completed the 30,000 tonne Phase 1 Commercial Production program. Five development sills are now developed in this area and is ready to begin long-hole drilling and mining of the stopes in the late spring to match the commissioning of the mill. Technica is now completing the upgrades of the underground power and ventilation critical for the start of commercial production.

Civil works for the mill began in Q2 as well as site preparation of the tailings management facility. The outer wall footings of the mill are completed, erection of walls is underway to prepare for the mill building shell and foundation work is well under way. It is expected the mill building will be fully erected by year end. Most equipment has been ordered and has begun arriving at site.

Harte Gold initiates a 14.9 km VLF survey over 12 reconnaissance grid lines on the Highway Zone.

2018

A Mineral Resource Estimate dated February 15, 2018 contains an Indicated Mineral Resource Estimate of 2,607,000 tonnes grading 8.52 g/t for 714,200 ounces of contained gold and an Inferred Mineral Resource Estimate of 3,590,000 tonnes, grading 6.59 g/t for 760,800 ounces of contained gold, using a 3.0 g/t Au cut-off. The Company also completed a Preliminary Economic

Assessment with an effective date of March 31, 2018, outlining 80,700 ounces of annual average gold production at an All-In Sustaining Cash Cost ("AISC") of US\$708/oz Au over an 11-year mine life.

All commercial production permits were issued in September. Process plant construction and transition to grid power were completed in September. First gold production was announced in mid-October. Gold doré bars are being produced through the gravity circuit and a high-grade concentrate is being produced through the flotation recovery circuit for offsite processing.

Official Mine Opening which was attended by the Premier of Ontario and Minister of Energy, Northern Development and Mines occurred October 24th, 2018. The Company bought down the royalty on the Sugar Zone property from 3.5% to 2.0% effective October 31, 2018.

Process plant commissioning was completed in early November. Since that time the Company has increased throughput to achieve the initial targeted rate of 575 tpd.

Sill development is on-going and long-hole stoping between the 140 and 155 levels off the Sugar Zone South ramp has begun. Results of the first production stope blast achieved expectations.

Underground development continues at the Sugar Zone North and South ramps. During September, the average advance rate of 8 meters per day was ahead of plan. The installation of critical underground infrastructure to support ventilation, power and pumping has been completed. In addition, the mine return air ventilation fan was successful installed and the transition to grid power for most site power requirements substantially completed. Redpath is ramping up its underground mine personnel to achieve targeted ore sill development rates. Harte Gold's current permits allow for underground mining and mill processing rates of 550 tpd and 575 tpd respectively. Harte Gold will apply to increase both categories to 800 tpd in Q1 2019.

Near Mine Exploration infill drilling at the Sugar and Middle Zones for 2018 has concluded. Approximately 62,000 meters was drilled with a focus on the upgrade of Inferred Mineral Resources to the Indicated category. The drill program was successful and is expected to improve overall modelled grade of the Resources. Results will be factored into an updated NI 43-101 Mineral Resource Estimate targeted for early 2019. Step-out drilling underway will continue to mid-December. Approximately 30,000 meters has been drilled to-date, targeting extension of known mineralization at the Sugar, Middle and Wolf Zones, as well as discovery of new potential zones of mineralization like the Fox Zone. Information provided from the Company's downhole IP program completed in August has been successful identifying several drill targets, including a chargeability anomaly currently being drilled to test the convergence of the Middle and Wolf Zones. Downhole geophysics has been a highly successful tool used in the past; earlier work led to the deep Sugar Zone discovery at a depth of 1,000 meters. The Company has also started deep drilling at the Sugar Zone, approximately 1,500 meters below surface and 500 meters below the current extent of Inferred Mineral Resources, illustrated below. The intent of deep drilling is to test continuity of mineralization down dip and to potentially follow up with further downhole IP to develop deep drilling targets.

Harte Gold completes a 14.9 km VLF survey over 12 reconnaissance lines at the Highway Zone. This is followed-up by a 4-hole, 1591.4 meter diamond drill program forms the basis of this report.

4.0 Geological Setting

4.1 Regional Geology

The DGB is situated between two larger greenstone belts; the Hemlo Greenstone Belt to the west and the Kabinakagami Greenstone Belt to the east. These greenstone belts are part of the larger, east trending Schreiber-White River Belt of the Wawa Subprovince of the Superior Craton (Figure 3). The Late Archean DGB trends northwest and forms a narrow, eastward concave crescent. The belt is approximately 36 km in length and varies in width from 1.5 to 5.5 km. Principal lithologies in the belt are moderately to highly deformed metamorphosed volcanics, volcaniclastics and sediments that have been enclosed and intruded by tonalitic to granodioritic quartz-porphyry plutons.

The greenstone belt is bordered to the east by the Strickland Pluton and to the west by the Black Pic Batholith. The Danny Lake Stock borders the south-western edge of the DGB. The Strickland Pluton is characterized by a granodioritic composition, quartz phenocrysts, fine grained titanite, and hematitic fractures. The Black Pic Batholith is similar to the Strickland Pluton, but locally more potassic. The Black Pic Batholith also contains interlayers of monzogranite. The Danny Lake Stock is characterized by hornblende porphyritic quartz monzonite to quartz monzodiorite (G. M. Stott, 1999).

The DGB has been metamorphosed to upper greenschist to amphibolite facies. The Strickland Pluton seems to have squeezed the greenstone belt and imposed upon it a thermal metamorphism. Most of the mafic volcanics are composed primarily of plagioclase and hornblende. Almandine garnets are widely observed in the clastic metasediments and locally, along with pyrope garnets, in the mafic volcanics (G.M. Stott, 1996a,b,c).

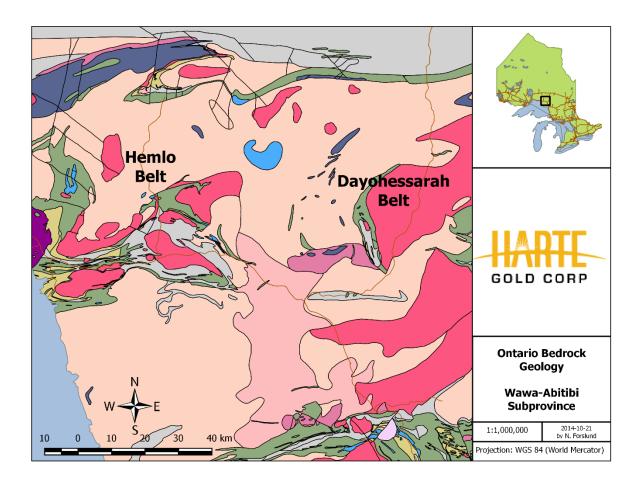


Figure 3 - Regional Geology

Alteration throughout the belt consists of diopsidation, albitization, weak magnesium biotization, weak carbonatization and moderate to strong silicification which accompanied the emplacement of the porphyry dykes/sills and quartz veining.

The belt has been strongly foliated, flattened and strained. Deformation seen in the supracrustal rocks has been interpreted to be related to the emplacement of the Strickland Pluton. Strongly developed metamorphic mineral lineations in the supracrustal rocks closely compare with the orientations of the quartz phenocryst lineations seen in the Strickland Pluton. This probably reflects a constant strain aureole imposed by the pluton upon the belt (G.M. Stott, 1996a,b,c). The strain fabric is best observed a few hundred meters from the Strickland Pluton in the Sugar Zone, which has been characterized as the most severely strained part of the belt. The Sugar Zone is defined by sets of parallel mineralized quartz veining, quartz flooding of strongly altered wall-rock, thin intermediate porphyry lenses and dykes/sills parallel to stratigraphy and foliation, and gold mineralization.

Foliations and numerous top indicators define a synclinal fold in the central portion of the belt. The synclinal fold has been strongly flattened and stands upright with the fold hinge open to the south and centered along Dayohessarah Lake.

4.2 Property Geology

Near Dayohessarah Lake, the belt is dominated by a basal sequence of massive to pillowed mafic volcanics, commonly with ellipsoidal, bleached alteration pods, overlain by intermediate tuff and lapilli tuff. The tuffaceous units rapidly grade upwards to a sedimentary sequence consisting of greywacke and conglomerates derived from volcanics, sediments and felsic intrusive sources (G. M. Stott, 1996a,b,c). Several thin, continuous cherty sulphide facies iron formations are found in the mafic volcanic sequence. Spinifex textured komatiitic flows stratigraphically underlie the main sedimentary sequence and can be traced around the north end of Dayohessarah Lake. Also, at the north end of Dayohessarah Lake, mafic and ultramafic sills and stocks underlie the komatiites (Figure 4).

Several fine to medium grained, intermediate feldspar porphyry dykes/sills have intruded and swarmed the belt. Swarming of the intermediate porphyry dykes is more intense east of Dayohessarah Lake. Stott has interpreted the porphyry sills and associated porphyry bodies to be related to the Strickland Pluton. A smaller granitic quartz porphyry body containing some sulphide mineralization is located northwest of Dayohessarah Lake. The porphyritic texture of the dykes/sills is often nearly, or completely, obliterated by the degree of foliation in the greenstone belt, or by the degree of shear in the Sugar Zone. These intermediate dykes/sills vary in abundance across the property, but increase in regularity within, and around, the Sugar Zone. There is also a consistent, weak pervasive silicic alteration in the intermediate intrusives, as well as consistently trace amounts of very fine-grained disseminated pyrite.

The major linear structure recognized on the property is the Sugar Deformation Zone ("SDZ"), which trends northwest-southeast for approximately 3.5 km and dips southwest between 65° and 75°. The SDZ appears to be spatially related to the Strickland Pluton and is a complex system with strain intensities varying from strongly deformed-pillow mafic volcanics to undeformed massive mafic flows to anastomosing linear areas. Stratigraphically-conformable porphyritic intermediate intrusions swarm through the SDZ. Both the mafic volcanics and the intermediate intrusives exhibit moderate linear fabrics along with hydrothermal alteration (i.e., silicification).

In general, the north-westerly striking, south-westerly dipping stratigraphy hosting the gold mineralized portions of the Sugar Zone can be subdivided into the following units:

- Hanging Wall Volcanics;
- Upper Zone (Sugar Zone mineralization);
- Interzone Volcanics;
- Lower Zone (Sugar Zone mineralization);
- Footwall Volcanics

The Hanging Wall, Interzone and Footwall volcanic horizons consist predominantly of massive and pillowed basalt flows generally striking northwest and dipping at an average angle of 64° to the southwest. Coarse to very coarse grained, locally gabbroic-textured phases form a significant component of the Hanging Wall mafic volcanic package. It is believed that these phases represent thick, slowly-cooled portions of the massive mafic flows, as they commonly grade into

Figure 4 - Property Geology

finer grained, more recognizable basaltic flows, and eventually even pillow flows. In much of the area which drilling on the Sugar Zone was carried out, a distinctive, very coarse grained mafic volcanic flow was observed consistently about 15 m stratigraphically above the Upper Zone.

Other than this unit, specific mafic flows, as well as intermediate porphyry units, are nearly impossible to interpret/distinguish between holes.

The Upper and Lower zones range in thickness from 1.5 to 10 m, strike at 140° and dip between 65° and 75° with minor undulations.

The auriferous Wolf Zone lies in the northern extent of the SDZ, but drilling between the two zones indicates that the zones are complexly separate from each other. Like the Sugar Zone, the Wolf Zone is north-north-westerly striking and south-westerly dipping. Unlike the Sugar Zone, there is only one gold mineralized zone, and not two or more parallel zones.

A northerly-striking, sub-vertically dipping, dark grey-black, diabase dyke intrudes the older rock types in the greenstone belt, and crosscuts the SDZ. The diabase obliterates the SDZ when it is encountered. The diabase dyke is aphanitic around the edges and, where thick enough to do so, grades to a coarse-grained euhedral rock in the middle of the dyke. The dyke exhibits very coarse-grained greenish quartz-epidote phenocrysts up to 3 cm across throughout. The dyke is weakly pervasively magnetic. A very small amount of lateral movement of the zones has been interpreted locally on either side of the dyke, suggesting that very minor dyke-related faulting has occurred. There are at least two more diabase dykes on the property. They strike at 35 degrees across the northern portion of the belt. These dykes are up to 40 m across, and are similar in appearance and mineralogy to the dyke that cuts through the Sugar Zone.

Other than the diabase, the youngest intrusive rocks observed on the property are white to pale grey, fine grained to medium grained and occasionally pegmatitic felsite dykes. The dykes generally consist of varying amounts of plagioclase, quartz and muscovite. These generally thin dykes strike northeast and where they intersect the SDZ, they completely wipe out the zone. These dykes are undeformed and clearly postdate the mineralization and deformation events.

5.0 Mineralization

5.1 Sugar Zone

The auriferous Upper and Lower zones of the Sugar Zone lie within the SDZ. They are defined as highly strained packages consisting of variously altered mafic volcanic flows, intermediate porphyritic intrusions and boudinaged auriferous quartz veins. The two zones range in true thickness from about 1.5 to 10 m, and are separated by 20 to 30 m of barren mafic volcanics. A high-grade section of the Lower zone between lines 13+000N and 12+900N has been the focus of a bulk sample study and is referred to as the Jewelry Box.

Each zone is made up of one or more porphyritic intrusions, flanked by altered basalt and hosting stratigraphically conformable quartz veins. Alteration within the mafic volcanic portions of the zones consists primarily of silicification (both pervasive and as quartz veining), diopsidation and biotization. The porphyry units of the zones exhibit biotite and silica alteration as well, but no diopside alteration.

The Upper and Lower zones appear geologically consistent both down dip and along strike. The Lower Zone has consistently larger widths, as well as mostly consistently higher grades of gold mineralization, however both the width and the gold grade within each zone seem to follow the same trends across the zone. That is to say, that where the Upper Zone exhibits larger widths and higher gold grades, the Lower Zone also exhibits larger widths and higher gold grades. The zones are observed on surface to pinch and swell over distances of 50 m or more.

Gold mineralization mostly occurs in quartz veins, stringers and quartz flooded zones predominantly associated with porphyry zones, porphyry contact zones, hydrothermally altered basalts and, rarely, weakly altered or unaltered basalt within the Upper and Lower zones.

Fine to coarse grained specks and blebs of visible gold are common in the Sugar Zone quartz veins, usually occurring within marginal, laminated or refractured portions of the veins. The visible gold itself is often observed to be concentrated within thin fractures, indicating some degree of remobilization. Quartz veins and floods also contain varying amounts of pyrrhotite, pyrite, chalcopyrite, galena, sphalerite, molybdenite and arsenopyrite. The presence of galena, sphalerite and/or arsenopyrite is a strong indicator of the presence of visible gold. Pyrite, chalcopyrite and, rarely, molybdenite form a minor component of total sulphides and do not appear to be directly related to the presence of gold mineralization.

Other mineralized zones have been observed between, above and below the Sugar Zone Upper and Lower zones, in diamond drilling. Most of these intercepts are believed to be quartz veining originating in either the Upper or Lower zone, that have been diverted from the sheared part of the zone, up to 30 m from the main bodies of mineralization. One of these zones is the historically discovered Zoe Zone, which has been recently renamed the Lynx Zone, which lies east of the southern end of the Sugar Zone.

5.2 Highway Zone

Based on the drilling conducted by Harte Gold at the Highway Zone the area is underlain predominantly by wide intervals of mafic tuff which are interbedded with more narrow intervals of massive mafic flows, ultramafic flows (talc/chlorite altered), intermediate tuffs, greywacke and conglomerate which are frequently intruded by wide to narrow intervals of mainly pegmatite and lessor diabase, granite, diorite and granodiorite dykes and sills.

The mafic tuffs (1H) are fine grained, dark grey, banded to highly fractured with weak to moderate chlorite and potassic alteration and locally up to 1% pyrite-pyrrhotite. The massive mafic flows (1A) are fine to medium grained, dark grey to dark green, massive, weakly chloritic with locally trace pyrite/pyrrhotite. The talc/chlorite altered ultramafic flows (1UT) are fine grained, dark grey, moderately foliated, moderate to highly magnetic and strongly chloritic and talc altered with minor fracture-controlled sericite and no sulphides. The intermediate tuffs (2E) are fine to medium grained, grey-purple, weakly banded to foliated with weak biotite banding, weak fracturecontrolled sericite weak silicification and up to 1% disseminated pyrite/pyrrhotite. The greywackes are fine to medium grained, grey-green-purple, massive to weakly laminated with weak chlorite and silicification and locally moderate potassic alteration and trace pyrite. The conglomerate (3C) is coarse grained, pale pink-grey, with abundant >5mm rounded to sub-rounded white clasts surrounded by a finer light grey-pink groundmass. The conglomerate is not altered and has no visible sulphides. The pegmatites (4E) are coarse to very coarse grained, pink and composed of mainly pink feldspar and lessor amounts of smokey quartz and biotite with weak to moderate quartz flooding and minor fracture-controlled chlorite, epidote and sericite and no sulphides. The diabase (7A) are fine to medium grained, grey-dark green-black, massive to highly fractured, weak to moderately magnetic with local moderate chlorite alteration and no sulphides. The granite (5A) is medium to coarse grained, pink and composed of mainly pink feldspar and lessor amounts of smokey quartz with weak fracture-controlled sericite and no sulphides. The diorite (6A) is fine to medium grained, dark grey and host weak to moderate disseminated biotite, needly amphibole and fracture-controlled sericite-epidote alteration and no sulphides. The granodiorite (5B) is fine to medium grained, light to dark grey with weak to moderate disseminated biotite and needly amphibole and quartz-carbonate stringers.

6.0 Diamond Drilling

6.1 Sample Collection, Preparation, Analyses and Security

NQ drill core is placed in core boxes by drillers. All drill core was delivered to the core processing facility in White River, Ontario where it undergoes geotechnical and geological logging by the geotechnician and geologist. The following describes the core logging process:

- The core is oriented in the box with the saddle pointing downhole, and rock quality data (RQD) is collected from each 3m run.
- The geotechnician marks out 1.0m intervals with a blue China marker and prepares a box list stating the length of core in each box. Aluminum tags are made and stapled to the end of each box.
- Core is photographed dry and wet.
- The geologist logs the geology of each hole, paying close attention to lithologies, alteration, structures, veining and mineralization.
- Sample collection begins with the marking of sample intervals with a red China marker by the geologist. The sample is given a sample tag. Sample intervals range from 50cm to 1.5m, and are taken not to cross major lithology boundaries. Standards and blanks are alternately inserted every 10th sample for QAQC.
- The core is cut with a Vancor diamond core saw by the geotechnician, and placed back in the box. Half core samples are taken from the box and bagged individually. The technician always takes the back half of the core for shipping, while the front half stays in the box.
- The individually bagged samples are placed in rice bags and delivered to Actlabs in Thunder Bay, Ontario. Samples are delivered either in person by Harte Gold staff, or by Grevhound Bus.
- Core is stored in racks in a locked fenced in yard at the core processing facility in White River, Ontario.

6.2 Laboratory Methods

Sample Preparation

Samples arrive at Actlabs at 217 Round Blvd, Thunder Bay, Ontario, where they are received and documented. Once the samples arrive in the laboratory, Actlabs will ensure that they are prepared properly.

As a routine practice with rock and core, the entire sample is crushed to a nominal minus 10 mesh (1.7 mm), mechanically split (riffle) to obtain a representative sample and then pulverized to at least 95% minus 150 mesh (106 microns).

All of Actlabs steel mills are now mild steel and do not induce Cr or Ni contamination. Quality of crushing and pulverization is routinely checked as part of their quality assurance program. All

equipment is cleaned using quartz and air from a compressed air source. Blanks, sample replicates, duplicates, and internal reference materials (both aqueous and geochemical standards) are routinely used as part of Actlabs quality assurance program.

Crush (<7kg) up to 90% passing 2mm, riffle split (250g) and pulverize (mild steel) to 95% passing 105u. Cleaner sand included

1A2 - (1A2-30 or 50) Au Fire Assay - AA

Fire Assay Fusion

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at 850°C, intermediate 950°C and finish 1060°C with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at 950°C to recover the Ag (doré bead) + Au.

AA Finish

The entire Ag dore bead is dissolved in aqua regia and the gold content is determined by AA (Atomic Absorption). AA is an instrumental method of determining element concentration by introducing an element in its atomic form, to a light beam of appropriate wavelength causing the atom to absorb light. The reduction in the intensity of the light beam directly correlates with the concentration of the elemental atomic species. On each tray of 42 samples there is two blanks, three sample duplicates and 2 certified reference materials, one high and one low (QC 7 out of 42 samples). We generally rerun all gold by fire assay gravimetric over 3,000 ppb to ensure accurate values

Code 1A2 (Fire Assay-AA) Detection Limits (ppb)

Element	Detection	Upper
Element	Limit	Limit
Au	5	5,000

1A3 - (1A3-30 or 50) - Au Fire Assay - Gravimetric

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at 850°C, intermediate 950°C and finish 1060°C with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and

the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at 950°C to recover the Ag (doré bead) + Au.

Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

Code 1A3 (Fire Assay-Gravimetric) Detection Limits (g/mT)

Element	Detection Limit	Upper Limit			
Au	0.03 (30 g)	10000			
	0.02 (50 g)				

1A4 and 1A4-1000 - Au Fire Assay-Metallic Screen

Metallic Screen

A representative 500 g split (1,000 g for Code 1A4-1000) is sieved at 100 mesh (149 micron) with fire assays performed on the entire +100 mesh and 2 splits on the -100 mesh fraction. The total amount of sample and the +100 mesh and -100 mesh fraction is weighed for assay reconciliation. Measured amounts of cleaner sand are used between samples and saved to test for possible plating out of gold on the mill. Alternative sieving mesh sizes are available but the user is warned that the finer the grind the more likelihood of gold loss by plating out on the mill.

Fire Assay

A sample size of 5 to 50 grams can be used but the routine size is 30 g for rock pulps, soils or sediments (exploration samples). The sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at 850°C, intermediate 950°C and finish 1060°C with the entire fusion process lasting 60 minutes. The crucibles are then removed from the assay furnace and the molten slag (lighter material) is carefully poured from the crucible into a mould, leaving a lead button at the base of the mould. The lead button is then placed in a preheated cupel which absorbs the lead when cupelled at 950°C to recover the Ag (doré bead) + Au.

Au is separated from the Ag in the doré bead by parting with nitric acid. The gold (roasting) flake remaining is weighed gravimetrically on a microbalance. Two splits on the -150 micron fraction are weighted and analyzed by fire assay with a gravimetric finish. A final assay is calculated based on the weight of each separated fraction and obtained Au values.

Code 1A4 (Fire Assay-Metallic Screen) Detection Limits (g/mT)

Element	Detection Limit
Au	0.03

<u>Ultratrace 6 - "Near Total" Digestion - ICP and ICP/MS</u>

Ultratrace 6 combines the 4-acid digestion (HF, HClO₄, HNO₃ and HCl) with analysis by ICP and ICP/MS. Resistate minerals are not digested.

"Near Total" Digestion - ICP Portion

A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids, heated using precise programmer controlled heating in several ramping and holding cycles which takes the samples to incipient dryness. After incipient dryness is attained, samples are brought back into solution using aqua regia.

With this digestion, certain phases may be only partially solubilized. These phases include zircon, monazite, sphene, gahnite, chromite, cassiterite, rutile and barite. Ag greater than 100 ppm and Pb greater than 5000 ppm should be assayed as high levels may not be solubilized. Only sulphide sulfur will be solubilized.

The samples are then analyzed using a Varian ICP. QC for the digestion is 14% for each batch, 5 method reagent blanks, 10 in-house controls, 10 samples duplicates, and 8 certified reference materials. An additional 13% QC is performed as part of the instrumental analysis to ensure quality in the areas of instrumental drift.

"Near Total" Digestion - ICP/MS Portion

Additional elements are determined by ICP/MS on the multi-acid digest solution above. The samples are diluted and analyzed on a Perkin Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. One blank is run for every 40 samples. In-house control is run every 20 samples. Digested standards are run every 80 samples. After every 15 samples, a digestion duplicate is analyzed. Instrument is recalibrated every 80 samples.

Extraction of each element by 4-Acid Digestion is dependent on mineralogy. Sulphide sulphur and soluble sulphates are extracted.

Code Ultratrace-6 Elements and Detection Limits (ppm)

Element	Detection	Upper	Reported
Ag	0.05	100	ICP&ICP/MS
Al	0.01%	10%	ICP
As	0.1	10,000	ICP/MS
Ва	1	5,000	ICP/MS
Be	0.1	1,000	ICP/MS
Bi	0.02	2,000	ICP/MS
Ca	0.01%	50%	ICP
Cd	0.1	1,000	ICP/MS
Се	0.1	10,000	ICP/MS
Co	0.1	500	ICP/MS

Element	Detection	Upper	Reported
Na	0.01%	3%	ICP
Nb	0.1	500	ICP/MS
Nd	0.1	10,000	ICP/MS
Ni	0.5	5,000	ICP/MS
Р	0.001%	10%	ICP
Pb	0.5	5,000	ICP/MS
Pr	0.1	1,000	ICP/MS
Rb	0.2	5,000	ICP/MS
Re	0.001	100	ICP/MS
S+	0.01%	20%	ICP

Cr	1	5,000	ICP/MS	Sb	0.1	500	ICP/MS
Cs	0.05	100	ICP/MS	Sc	1	-	ICP
Cu	0.2	10,000	ICP/MS	Se	0.1	1,000	ICP/MS
Dy	0.1	5,000	ICP/MS	Sm	0.1	100	ICP/MS
Er	0.1	1,000	ICP/MS	Sn	1	200	ICP/MS
Eu	0.05	100	ICP/MS	Sr	0.2	1,000	ICP/MS
Fe	0.01%	50%	ICP	Та	0.1	1,000	ICP/MS
Ga	0.1	500	ICP/MS	Tb	0.1	100	ICP/MS
Ge	0.1	500	ICP/MS	Te	0.1	500	ICP/MS
Gd	0.1	5,000	ICP/MS	Th	0.1	500	ICP/MS
Hf	0.1	500	ICP/MS	Ti	0.0005%	ı	ICP
Hg	10 ppb	10,000	ICP/MS	TI	0.05	500	ICP/MS
Но	0.1	1,000	ICP/MS	Tm	0.1	1,000	ICP/MS
In	0.1	100	ICP/MS	J	0.1	10,000	ICP/MS
K	0.01%	5%	ICP	V	1	1,000	ICP/MS
La	0.1	10,000	ICP/MS	W	0.1	200	ICP/MS
Li	0.5	400	ICP/MS	Υ	0.1	10,000	ICP/MS
Lu	0.1	100	ICP/MS	Yb	0.1	5,000	ICP/MS
Mg	0.01%	50%	ICP	Zn	0.2	10,000	ICP/MS
Mn	1	10,000	ICP	Zr	1	5,000	ICP/MS
Мо	0.1	10,000	ICP/MS				

6.3 2018 Drilling

Four diamond drill holes totalling 1591.4 meters were drilled into the Highway Zone area during the 2018 program. The intent of the 2018 program was to drill test VLF anomalies identified in the area.

The drill logs, plans and cross sections for all holes are presented in Appendix B, Appendix C and Appendix D, respectively.

6.4 Results

A total of 176 core samples were collected and 184 analyses were performed for gold by fire assay AA, gravimetric or metallic method. Any sample following an AA finish with a value of over 3 g/t and 10 g/t gold were re-assayed by gravimetric finish and screen metallic assay, respectively.

All of the samples were shipped to Actlabs in Thunder Bay, Ontario.

No significant gold values were returned from any of the Highway Zone holes.

Detailed assay results can be found in the Drill Logs attached in Appendix B and drill certificates from Actlabs can be found in Appendix E. Actlabs invoices are found in Appendix F. Chibougamau Diamond Drilling Ltd. invoices are in Appendix G.

7.0 Conclusions and Recommendations

Between September 25th 2018, to October 18th 2018, Harte Gold Corporation performed a four-hole, 1591.4-meter diamond drill program in the Highway Zone area. Based on the lack of gold values received at the Highway Zone area, no further drilling is warranted at this time.

8.0 Costs

A total of \$180,748 was spent during the Highway Zone drill program. Costs and cost distribution per claim are summarized in Tables 1, 2, 3 and 4.

Table 1 – Highway Zone - Summary of Costs

Activity		Units		Cost per Unit			Total	%
Drilling (4 holes)	1,591	meters	@	\$90.40	per meter	\$	143,863	79.6%
Planning/Supervision	24	days	@	\$692.28	per day	\$	16,615	9.2%
Drill Geologist	24	days	@	\$285.56	per day	\$	6,853	3.8%
Core Cutter	24	days	@	\$220.00	per day	\$	5,280	2.9%
Assays	176	samples	(6)	\$18.25	per sample	\$	2,704	1.5%
Gas	608	km	@	\$0.50	per km	\$	304	0.2%
Room - Supervisor	24	days	@	\$89.00	per day	\$	2,136	1.2%
Room - Geologist	24	days	@	\$89.00	per day	\$	2,136	1.2%
Report Writing	3	days	@	\$285.56	per day	\$	857	0.5%
Total Drill Cost						\$180,748		100.0%
_					Ave. \$/m	\$	113.61	

Table 2 – Highway Zone - Cost Per Claim

Claim #	531082	531086	
Total Meters/Claim	462	1129.4	1,591
% of Total Meterage/Claim	29.0%	71.0%	100.00%
Activity	\$/Claim	\$/Claim	Total Cost
Drill Cost	\$41,765	\$102,098	\$143,863
Planning/Supervision	\$4,823	\$11,791	\$16,615
Drill Geologist	\$1,990	\$4,864	\$6,853
Core Cutter	\$1,533	\$3,747	\$5,280
Assay Cost	\$785	\$1,919	\$2,704
Gas	\$88	\$216	\$304
Room - Supervisor	\$620	\$1,516	\$2,136
Room - Geologist	\$620	\$1,516	\$2,136
Report Writing	\$249	\$608	\$857
_			
Total Cost/Claim	\$52,473	\$128,275	\$180,748

Table 3 – Highway Zone - DDH Program Cost Summary

HIGHWAY ZONE DDH PROGRAM COST SUMMARY

DDH & Cost Item	Invoice Cost	Total Meters	Invoice #	Claim #	m/Claim
HZ-18-01					
NW casing	\$187.50	3			462
NQ drilling	\$30,055.50	459			
Reflex tests	\$1,400.00		1		
Waterline					
Material left in hole	\$4,445.00		24123	531082	
Man/Machine hours	\$2,267.00		24124		
Handling cost	\$552.00				
Excavator rental					
Reflex rental					
APS Rental					
Total Cost for hole	\$38,907.00				
Total Meters	462				
Cost Per Meter	\$84.21				

DDH & Cost Item	Invoice Cost	Total Meters	Invoice #	Claim #	m/Claim
HZ-18-02					
NW casing	\$187.50	3			
NQ drilling	\$33,268.00	501			
Reflex tests	\$1,400.00				
Waterline			24124		
Material left in hole	\$5,910.00		24124	531086	504
Man/Machine hours	\$1,787.50		24169	331000	304
Handling cost	\$245.50		24109		
Excavator rental					
Reflex rental	\$2,650.00				
APS Rental					
Total Cost for hole	\$45,448.50				
Total Meters	504				
Cost Per Meter	\$90.18				

DDH & Cost Item	Invoice Cost	Total Meters	Invoice #	Claim #	m/Claim
HZ-18-03					
NW casing	\$187.50	3			
NQ drilling	\$20,198.25	319.4			
Reflex tests	\$800.00				
Waterline					
Material left in hole	\$1,145.00		24169 24170	531086	319.4
Man/Machine hours	\$6,040.00			551060	
Handling cost	\$1,242.75				
Excavator rental					
Reflex rental					
APS Rental					
Total Cost for hole	\$29,613.50				
Total Meters	319.4				
Cost Per Meter	\$92.72				

DDH & Cost Item	DDH & Cost Item Invoice Cost To		Invoice #	Claim #	m/Claim
HZ-18-04					
NW casing	\$1,140.00	18			
NQ drilling	\$18,336.00	288			
Reflex tests	\$820.00				
Waterline				531086	306
Material left in hole	\$1,840.00		24171		
Man/Machine hours	\$6,880.00		24219		
Handling cost	\$872.00				
Excavator rental					
Reflex rental					
APS Rental					
Total Cost for hole	\$29,888.00				
Total Meters	306				
Cost Per Meter	\$97.67				

Total Cost of 2018 Program	\$143,857.00
Total Meters of 2018 Program	1591.4
Average Cost/m	\$90.40

Table 4 – Highway Zone - Analytical Cost Summary

DDH#	Certificate #	RX1-1-T (\$7/sample)	1A2 (\$8/sample)	1A3 (\$8/sample)	1A4 (\$40/sample)	UT-6	125% Rush	Subtotal Cost	Claim #
	A18-14333	12	12					\$180.00	
HZ-18-01	A18-14724	14	14					\$210.00	531082
	A18-14725	30	31					\$458.00	
HZ-18-02	A18-14887	45	47					\$691.00	531086
ΠZ-10-02	A18-15234	12	14					\$196.00	331060
HZ-18-03	A18-15432	30	32					\$466.00	531086
HZ-18-04	A18-15487	33	34					\$503.00	531086
	Total	176	184					\$2,704.00	

Total number of Analyses	184
Total Analytical Cost	\$2,704.00
Ave. \$/Sample	\$15.364

9.0 References

Hunt, D.S., 2009. Report on the Summer 2009 exploration program on the Sugar Zone project. Internal report prepared for Corona Gold Corporation and Harte Gold Corp.

Laarman, J.E., 2014. Report on the Summer 2014 Geologic Mapping. Internal report prepared for Harte Gold Corp.

Middleton, R.S., Forslund, N.R., Laarman, J., 2015. 2014 Report on Diamond Drilling at the Sugar Zone Property, Dayohessarah Lake Area, White River, Ontario – Part 2. Internal Report for Harte Gold Corp., January 2015.

Ramsay, J. G. 1980. The crack-seal mechanism of rock deformation. Nature 284, 135-139.

Shegelski, R.J., 2014. Depositional history, structural geology and timing of gold mineralization of the Sugar Zone gold property, Dayohessarah Lake area, White River, Ontario. Internal Report for Harte Gold, September 2014, 21p.

Stein, H.J, Markey, R.J. and Morgan, J.W., 2000. Robust Re-Os Molybdenite Ages for the Hemlo Au Deposit, Superior Province, Canada. Journal of Conference Abstracts, v.5, p955.

Stott, G.M., 1996a. Precambrian Geology of Dayohessarah Lake Area (North half), Ontario Geological Survey, Preliminary map no. 3309.

Stott, G.M., 1996b. Precambrian Geology of Dayohessarah Lake Area (Central area), Ontario Geological Survey, Preliminary map no. 3310.

Stott, G.M., 1996c. Precambrian Geology of Dayohessarah Lake Area (South half), Ontario Geological Survey, Preliminary map no. 3311.

10.0 Statement of Qualifications

I, Andrew Wehrfritz, hereby certify that:

I am presently employed by Harte Gold Corporation as an Exploration Geologist.

I am a graduate of the University of Waterloo (B.Sc. Hons. Earth Science), 2011 and a graduate of The University of Waterloo (M.Sc. Earth Sciences), 2016.

I have personal knowledge of the work carried out on the property as described in this report,

I have no personal interest in the property.

Dated this 31st day of October 2019 at White River, Ontario.

A. Webspitz

Andrew Wehrfritz, M.Sc., GIT

I, David B. Stevenson, of 2217 Lacewood Drive, Thunder Bay, Ontario, P7K 1C4 hereby certify that:

I am presently employed by Harte Gold Corporation as their Chief Exploration Geologist.

I am a graduate of the University of New Brunswick, B.Sc. (Hons. Geology), 1981 and a graduate of Queen's University, M.Sc. (Minex), 1998.

I have practiced my profession as a geologist for over 35 years in various provinces and territories across Canada as well as Norway.

I am a member in good standing of the Association Professional Geoscientists of Ontario.

I have personal knowledge of the work carried out on the property as described in this report,

I have no personal interest in the property.

Dated this 31stth day of October, 2019 at Thunder Bay, Ontario.

David B. Stevenson, M.Sc., P.Geo.

Schedule "A" Sugar Zone Mining Leases

Claim #	Twp.	Issued	Anniversary	Area (Ha.)	Reserve		Lease #	Rights	PIN	Reg'd Plan	
						T					
1069332	HAMBLETON	01-Jun-15	31-May-36	393.38	\$3,828		CLM514	MR+SR	31054-0003	Pts. 1-9, 1R-13011	
1069333	HAMBLETON				\$7,320	Lease	CLM514	MR+SR	31054-0004		
1069343	HAMBLETON				\$3,989		CLM514	MR+SR	31054-0005		
1069344	HAMBLETON					Lease	CLM514	MR+SR, MRO	31054-0006		
1069345	HAMBLETON				\$3,729		CLM514	MR+SR, MRO			
1069346	HAMBLETON				\$3,621		CLM514	MR+SR			
1182993	HAMBLETON				\$1,519		CLM514	MR+SR			
1232640	GOURLAY					Lease	CLM514	MR+SR, MRO			
1235595	HAMBLETON				\$3,263		CLM514	MR+SR, MRO			
1069327	HAMBLETON	01-May-15	30-Apr-36	282.67	\$3,932		CLM515	MR+SR, MRO	31053-0001	Pts. 1-9, 1R-13039	
1069328	HAMBLETON				\$6,981		CLM515	MR+SR			
1069329	HAMBLETON				\$28,415		CLM515	MR+SR			
1069330	HAMBLETON				\$6,199		CLM515	MR+SR			
1069331	HAMBLETON				\$7,819		CLM515	MR+SR			
1069334	HAMBLETON				\$5,851		CLM515	MR+SR			
1069335	HAMBLETON				\$5,914		CLM515	MR+SR			
1069336	HAMBLETON				\$32,451		CLM515	MR+SR			
1069337	HAMBLETON				\$7,427		CLM515	MR+SR, MRO			
1069338	HAMBLETON				\$1,426		CLM515	MR+SR, MRO			
1069339	HAMBLETON				\$4,461		CLM515	MR+SR, MRO			
1069340	HAMBLETON				\$6,587		CLM515	MR+SR			
1069341	HAMBLETON				\$39,482		CLM515	MR+SR			
1069342	HAMBLETON				\$120,283		CLM515	MR+SR			
1069347	HAMBLETON				\$343,207		CLM515	MR+SR			
1069348	HAMBLETON				\$8,049		CLM515	MR+SR, MRO			
1069349	HAMBLETON				\$3,569		CLM515	MR+SR, MRO			
1069350	HAMBLETON				\$7,532		CLM515	MR+SR, MRO			
1135498	HAMBLETON				\$930,312		CLM515	MR+SR			
1182994	HAMBLETON				\$1,458,826		CLM515	MR+SR			
4270162	HAMBLETON	04.34		a=0.00	0.5	Lease	CLM515	MR+SR	84.000.0004	D: 111 1D 10000	
937770	ODLUM	01-May-15	30-Apr-36	279.83	\$174	Lease	CLM516	MR+SR	31078-0001	Pts. 1-11, 1R-13038	
1043803	ODLUM					Lease	CLM516	MR+SR, MRO			
1043811	ODLUM					Lease	CLM516	MR+SR, MRO			
1043812	ODLUM					Lease	CLM516	MR+SR, MRO			
1069356	ODLUM					Lease	CLM516	MR+SR			
1069357	ODLUM					Lease	CLM516	MR+SR, MRO			
1069358	ODLUM					Lease	CLM516	MR+SR, MRO			
1069363	ODLUM					Lease	CLM516	MR+SR, MRO			
1069364	ODLUM					Lease	CLM516	MR+SR, MRO			
1069365	ODLUM				\$200	Lease	CLM516	MR+SR, MRO			
1069372	ODLUM					Lease	CLM516	MRO			
1069373	ODLUM				¢102	Lease	CLM516	MR+SR, MRO			
1069374	ODLUM				\$102	Lease	CLM516	MR+SR, MRO			
1078250	ODLUM				0.45	Lease	CLM516	MR+SR, MRO			
1078251	ODLUM					Lease	CLM516	MR+SR, MRO			
1078252	ODLUM				\$1,388		CLM516	MR+SR, MRO			
1135499	HAMBLETON				\$741,876		CLM516	MR+SR			
1194337	HAMBLETON				\$1,719		CLM516	MR+SR			
1194340	ODLUM	01 M 15	20 4 26	E11 20		Lease	CLM516	MR+SR, MRO	21077 0001	Dt- 1 0 1D 12010	
937771	ODLUM	01-May-15	30-Apr-36	511.38		Lease	CLM517	MR+SR	31077-0001	Pts. 1-8, 1R-13019	
937772	ODLUM				\$174	Lease	CLM517	MR+SR			
1043806	ODLUM					Lease	CLM517	MR+SR, MRO			
1043807	ODLUM				6000	Lease	CLM517	MR+SR			
1043808	ODLUM					Lease	CLM517	MR+SR, MRO			
1043809	ODLUM				\$1	Lease	CLM517	MR+SR, MRO			
1043810	ODLUM				£110 400	Lease	CLM517	MRO			
	HAMBLETON HAMBLETON				\$113,438		CLM517	MR+SR MR+SP MRO			
1069353	HAMBLETON ODLUM				\$1,000			MR+SR, MRO			
					\$10,426		CLM517				
1069355	ODLUM				\$30,262		CLM517	MR+SR			
1069366	ODLUM				\$9,613		CLM517				
1069367	ODLUM				\$66,094		CLM517				
1069368	ODLUM					Lease	CLM517				
1069369	ODLUM					Lease	CLM517				
1069370 1069371	ODLUM ODLUM					Lease	CLM517				
						Lease	CLM517	MR+SR, MRO MR+SR, MRO			
1140638	STRICKLAND					Lease	CLM517				
1140639	STRICKLAND STRICKLAND					Lease Lease	CLM517				
1140640							CLM517	MR+SR MP+SP			
1140641	STRICKLAND STRICKLAND					Lease	CLM517	MR+SR MP+SP			
1140642						Lease	CLM517	MR+SR MP+SP			
1140643						Lease	CLM517	MR+SR			
	STRICKLAND					Lease	CLM517	MR+SR			
1140645	STRICKLAND					Lease	CLM517	MR+SR MP+SP			
1140646	STRICKLAND STRICKLAND					Lease	CLM517	MR+SR MP+SP			
1140647						Lease	CLM517	MR+SR MP+SP			
1140658 1140659	STRICKLAND STRICKLAND					Lease Lease	CLM517	MR+SR MR+SR			
1140659	STRICKLAND					Lease	CLM517	MR+SR MR+SR			
1140000	JINICKLAND		1467.30		\$30b	Lease	CLM517	NIX+SK			
			1467.26								

Schedule "B" Sugar Zone - Claims

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Work Required	Total Reserve
OSAMBIK	125756	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
OSAMBIK	293144	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
OSAMBIK	153728	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
OSAMBIK	276267	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
OSAMBIK	226382	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	170250	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	336697	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	221060	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	274244	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
1OSAMBIK	118071	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	117527	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
IOSAMBIK	273605	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
AMEIGOS	219128	Boundary Cell Mining Claim		\$200	\$0
	286341		2020-01-08		
AMEIGOS		Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	322925	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	173870	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	117345	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	220366	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	208950	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	102955	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	227074	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	189153	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	170921	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	266283	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	155027	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	267591	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	170388	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	287639	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	125817	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	286384	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	189186	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	125769	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	274252	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS					
	102956	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	102957	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	286342	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	286343	Boundary Cell Mining Claim	2020-01-08	\$200	\$0
AMEIGOS	225048	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
AMEIGOS	159665	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
AMEIGOS	104062	Boundary Cell Mining Claim	2020-01-09	\$200	\$0
AMEIGOS	344511	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	141005	Boundary Cell Mining Claim	2020-02-16	\$200	\$1,339
AMEIGOS	281507	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
	-				
AMEIGOS	122945	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	238950	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	319552	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	282751	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	157827	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	134919	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	290157	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	151061	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	133689	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	186239	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	302908	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	186333	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	150356	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
AMEIGOS	186240	Boundary Cell Mining Claim	2020-02-16	\$200	\$0
DLUM	205218	Boundary Cell Mining Claim	2019-06-20	\$200	\$0
DLUM	236538	Boundary Cell Mining Claim	2019-06-20	\$200	\$0
DLUM	323310	Boundary Cell Mining Claim	2019-06-20	\$200	\$0
DLUM	113014	Boundary Cell Mining Claim	2019-06-20	\$200	\$0
DLUM	308490	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	199956	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	137166	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	156716	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	112652	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	142645	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	155301	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
DLUM	168606	Boundary Cell Mining Claim	2019-12-23	\$200	\$0
BRAHAM	531086	Multi-cell Mining Claim	2020-01-18	\$9,600	\$0
BRAHAM	531081	Multi-cell Mining Claim	2020-02-22	\$10,000	\$0
BRAHAM	531082	Multi-cell Mining Claim	2020-02-22	\$9,600	\$0
BRAHAM	531083	Multi-cell Mining Claim	2020-02-22	\$9,600	\$2,428
BRAHAM,COOPER	531087	Multi-cell Mining Claim	2020-01-18	\$9,600	\$0
BRAHAM,COOPER	531084	Multi-cell Mining Claim	2020-03-10	\$9,600	\$0
BRAHAM,COOPER,TEDDER	531096	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
BRAHAM,TEDDER	531094	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
	531095	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0

ABRAHAM,TEDDER	531048	Multi-cell Mining Claim	2020-02-22	\$9,000	\$0
BRAHAM,TEDDER	531080	Multi-cell Mining Claim	2020-02-22	\$9,600	\$0
AYFIELD	531235	Multi-cell Mining Claim	2019-12-22	\$8,000	\$74
AYFIELD	531236	Multi-cell Mining Claim	2019-12-22	\$8,000	\$0
AYFIELD	531237	Multi-cell Mining Claim	2019-12-22	\$8,000	\$0
AYFIELD	531238	Multi-cell Mining Claim	2019-12-22	\$9,200	\$0
AYFIELD	531239	Multi-cell Mining Claim	2019-12-22	\$1,600	\$0
AYFIELD,GOURLAY	531233	Multi-cell Mining Claim	2019-12-22	\$10,000	\$0
AYFIELD,GOURLAY	531234	Multi-cell Mining Claim	2019-12-22	\$8,000	\$0 \$0
	_				
AYFIELD,GOURLAY,HAMBLE		Multi-cell Mining Claim	2019-12-22	\$9,600	\$0
AYFIELD,HAMBLETON,MAT	_	Multi-cell Mining Claim	2019-12-17	\$8,000	\$0
OOPER	531139	Multi-cell Mining Claim	2020-01-09	\$9,200	\$0
OOPER	531112	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
OOPER	531163	Multi-cell Mining Claim	2020-01-09	\$6,000	\$0
OOPER	531115	Multi-cell Mining Claim	2020-01-10	\$9,200	\$0
OOPER	531116	Multi-cell Mining Claim	2020-01-10	\$9,600	\$0
OOPER	531117	Multi-cell Mining Claim	2020-01-10	\$10,000	\$2,829
OOPER	531118	Multi-cell Mining Claim	2020-01-10	\$10,000	\$0
OOPER	531085	Multi-cell Mining Claim	2020-03-10	\$9,600	\$0
OOPER	531088	Multi-cell Mining Claim	2020-03-10	\$9,600	\$0
OOPER	531089	Multi-cell Mining Claim	2020-03-10	\$8,000	\$0
OOPER	531090	Multi-cell Mining Claim	2020-03-10	\$9,600	\$2,410
	531090				
OOPER		Multi-cell Mining Claim	2020-03-10	\$9,600	\$0
OOPER	531092	Multi-cell Mining Claim	2020-03-10	\$9,600	\$8
OOPER	531093	Multi-cell Mining Claim	2020-03-10	\$10,000	\$0
OOPER	531113	Multi-cell Mining Claim	2020-03-10	\$10,000	\$0
OOPER	531114	Multi-cell Mining Claim	2020-03-10	\$10,000	\$2,309
OOPER,STRICKLAND	531166	Multi-cell Mining Claim	2020-01-09	\$800	\$0
OOPER,STRICKLAND	531119	Multi-cell Mining Claim	2020-01-10	\$8,000	\$0
OOPER,STRICKLAND	531120	Multi-cell Mining Claim	2020-01-10	\$6,000	\$0
OOPER,STRICKLAND	531121	Multi-cell Mining Claim	2020-01-10	\$6,400	\$0
OOPER,STRICKLAND	531164	Multi-cell Mining Claim	2020-01-10	\$7,200	\$0
		_			
OOPER,STRICKLAND	531165	Multi-cell Mining Claim	2020-04-21	\$5,200	\$0
OOPER,STRICKLAND,TEDDE		Multi-cell Mining Claim	2020-01-09	\$6,800	\$0
OOPER,TEDDER	531151	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
OOPER,TEDDER	531111	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
OOPER,TEDDER	531097	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
OOPER,TEDDER	531100	Multi-cell Mining Claim	2020-01-09	\$9,600	\$0
OURLAY	531220	Multi-cell Mining Claim	2019-12-03	\$9,600	\$2,964
OURLAY	531225	Multi-cell Mining Claim	2019-12-03	\$9,600	\$891
OURLAY	531229	Multi-cell Mining Claim	2019-12-03	\$10,000	\$4,154
OURLAY	531231	Multi-cell Mining Claim	2019-12-03	\$10,000	\$7,260
OURLAY	531232	Multi-cell Mining Claim	2019-12-22	\$9,600	\$0
OURLAY,HAMBLETON	531219	Multi-cell Mining Claim	2019-11-20	\$9,200	\$2,615
OURLAY,HAMBLETON	531224	Multi-cell Mining Claim	2019-12-03	\$9,600	\$1,774
OURLAY,HAMBLETON	531226	Multi-cell Mining Claim	2019-12-03	\$10,000	\$2,337
OURLAY,HAMBLETON	531230	Multi-cell Mining Claim	2019-12-03	\$8,800	\$4,898
OURLAY,HAMBLETON	531243	Multi-cell Mining Claim	2019-12-03	\$10,000	\$2,913
OURLAY,HAMBLETON	531241	Multi-cell Mining Claim	2019-12-17	\$9,600	\$6,343
OURLAY,HAMBLETON,STRI	CI 531222	Multi-cell Mining Claim	2019-12-03	\$6,200	\$0
OURLAY,STRICKLAND	531221	Multi-cell Mining Claim	2019-12-03	\$10,000	\$0
AMBLETON	531254	Multi-cell Mining Claim	2019-06-13	\$9,600	\$6,152
AMBLETON	531255	Multi-cell Mining Claim	2019-06-13	\$10,000	\$6,288
AMBLETON	531256	Multi-cell Mining Claim	2019-06-13	\$10,000	\$8.118
AMBLETON	531258	Multi-cell Mining Claim	2019-06-13	\$4,800	\$3,900
AMBLETON	531269	Multi-cell Mining Claim	2019-06-13	\$1,200	\$0
AMBLETON	531214	Multi-cell Mining Claim	2019-07-20	\$2,400	\$243,686
AMBLETON	531228	Multi-cell Mining Claim	2019-12-03	\$6,000	\$1,879
AMBLETON	531264	Multi-cell Mining Claim	2019-12-17	\$9,600	\$850
AMBLETON	531244	Multi-cell Mining Claim	2019-12-17	\$10,000	\$0
AMBLETON	531245	Multi-cell Mining Claim	2019-12-17	\$9,600	\$0
AMBLETON	531246	Multi-cell Mining Claim	2019-12-17	\$9,600	\$0
AMBLETON	531247	Multi-cell Mining Claim	2019-12-17	\$9,600	\$0
AMBLETON	531210	Multi-cell Mining Claim	2019-12-23	\$6,800	\$4,399
AMBLETON	531249	Multi-cell Mining Claim	2019-12-23	\$1,200	\$0
AMBLETON	531257	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0
AMBLETON AMBLETON	531268	Multi-cell Mining Claim	2019-12-23	\$4,000	\$0
NAME OF TAXABLE PARTY.	531212	Multi-cell Mining Claim	2019-12-31	\$7,200	\$58,751
	531215	Multi-cell Mining Claim	2019-12-31	\$3,600	\$213,133
AMBLETON	531216	Multi-cell Mining Claim	2019-12-31	\$1,000	\$546,949
AMBLETON	331210	Marilet and Materian Clatica	2019-12-31	\$2,200	\$471,385
AMBLETON AMBLETON	531217	Multi-cell Mining Claim			
AMBLETON AMBLETON AMBLETON		Multi-cell Mining Claim	2019-12-31	\$1,800	\$110,673
AMBLETON AMBLETON AMBLETON AMBLETON	531217 531218	Multi-cell Mining Claim			
AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON	531217 531218 531227	Multi-cell Mining Claim Multi-cell Mining Claim	2020-04-21	\$5,600	\$1,553
Ambleton Ambleton Ambleton Ambleton Ambleton Ambleton	531217 531218 531227 531248	Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim	2020-04-21 2020-04-21	\$5,600 \$10,000	\$1,553 \$0
AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON	531217 531218 531227 531248 531265	Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim	2020-04-21 2020-04-21 2020-04-21	\$5,600 \$10,000 \$10,000	\$1,553 \$0 \$0
AMBLETON	531217 531218 531227 531248 531265 531266	Multi-cell Mining Claim	2020-04-21 2020-04-21 2020-04-21 2020-04-21	\$5,600 \$10,000 \$10,000 \$5,600	\$1,553 \$0 \$0 \$0
AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON AMBLETON	531217 531218 531227 531248 531265	Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim	2020-04-21 2020-04-21 2020-04-21	\$5,600 \$10,000 \$10,000	\$1,553 \$0 \$0

531208 531206 530313 530314 530315 530316 530317 531017 531018 530318	Multi-cell Mining Claim	2019-12-31 2020-04-26 2019-06-20 2019-06-20 2019-06-20 2019-06-20	\$5,200 \$8,200 \$6,400 \$6,400 \$7,200	\$578 \$419,784 \$4,084 \$3,989 \$8,147
530313 530314 530315 530316 530317 531017 531018 530318	Multi-cell Mining Claim	2019-06-20 2019-06-20 2019-06-20 2019-06-20	\$6,400 \$6,400 \$7,200	\$4,084 \$3,989
530314 530315 530316 530317 531017 531018 530318	Multi-cell Mining Claim	2019-06-20 2019-06-20 2019-06-20	\$6,400 \$7,200	\$3,989
530314 530315 530316 530317 531017 531018 530318	Multi-cell Mining Claim	2019-06-20 2019-06-20 2019-06-20	\$6,400 \$7,200	\$3,989
530315 530316 530317 531017 531018 530318	Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim	2019-06-20 2019-06-20	\$7,200	
530316 530317 531017 531018 530318	Multi-cell Mining Claim Multi-cell Mining Claim Multi-cell Mining Claim	2019-06-20		
530317 531017 531018 530318	Multi-cell Mining Claim Multi-cell Mining Claim		\$10,000	\$7,432
531017 531018 530318	Multi-cell Mining Claim	2019-06-20	\$7,200	\$1,858
531018 530318		2019-06-20	\$9,600	\$10,643
530318	Multi call Mining Claim			
•	Multi-cell Mining Claim	2019-06-20	\$10,000	\$1,750
	Multi-cell Mining Claim	2019-06-20	\$7,200	\$3,955
531019	Multi-cell Mining Claim	2019-06-20	\$9,600	\$3,654
531020	Multi-cell Mining Claim	2019-06-20	\$10,000	\$1,750
531287	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
531348	Multi-cell Mining Claim	2020-01-09	\$8,800	\$0
532869	Multi-cell Mining Claim	2020-04-10	\$8,000	\$0
531286	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
531288	Multi-cell Mining Claim	2020-01-09	\$8,400	\$0
531347	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
531349	Multi-cell Mining Claim	2020-01-09	\$6,400	\$0
	-			\$0
_	-			\$6,473
_				\$2,377
				\$4,097
_				
_				\$5,623
_				\$8,195
				\$0
	Multi-cell Mining Claim	2020-01-09		\$0
531285	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
531351	Multi-cell Mining Claim	2020-01-09	\$9,600	\$0
531352	Multi-cell Mining Claim	2020-01-09	\$10,000	\$0
531332	Multi-cell Mining Claim	2020-02-16	\$9,600	\$0
531333	Multi-cell Mining Claim	2020-02-16	\$4.800	\$0
	-			\$0
			. ,	\$0
	-			\$0
				\$0
				\$0
				\$0
531346	Multi-cell Mining Claim	2020-02-16		\$2,096
531331	Multi-cell Mining Claim	2020-04-11	\$7,600	\$0
531281	Multi-cell Mining Claim	2020-04-11	\$10,000	\$0
531282	Multi-cell Mining Claim	2020-04-11	\$9,600	\$0
531289	Multi-cell Mining Claim	2020-04-11	\$5,600	\$0
531276	Multi-cell Mining Claim	2020-02-22	\$10,000	\$0
531279	Multi-cell Mining Claim	2020-02-22	\$4,000	\$0
				\$0
				\$2,167
	-		. ,	\$7,963
				\$6,270
	-			
				\$4,018
	-			\$38,911
				\$1,713
	Multi-cell Mining Claim		1 -7	\$151
531182	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0
531199	Multi-cell Mining Claim	2019-12-23	\$800	\$0
531200	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0
531202	Multi-cell Mining Claim	2019-12-23	\$9,200	\$416
531203	Multi-cell Mining Claim	2019-12-31	\$7,000	\$1,479
531204	Multi-cell Mining Claim	2019-12-31	\$3,800	\$0
	Multi-cell Mining Claim			\$66,972
				\$0
	-			\$0
	Ü			\$4,323
	-			\$4,323
	-			
				\$0
	-			\$0
531022	-	2019-06-20		\$8,157
531023	Multi-cell Mining Claim	2019-06-20	\$9,600	\$5,911
531027	Multi-cell Mining Claim	2019-12-23	\$9,600	\$0
531154	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0
	-			\$0
				\$0
				\$0
	-			
	-			\$0
	-			\$0
	-	2019-11-16		\$0
531180	Multi-cell Mining Claim	2019-11-16	\$9,200	\$0
	531286 531288 531347 531349 531340 531342 531343 531283 531284 531285 531351 531352 531332 531333 531334 531336 531337 531345 531345 531346 531345 531281 531282 531283 531284 531345 531346 531347 531281 531282 531283 531280 531295 531024 531025 531026 531182 531200 531202 531203 531204 531205 531183 531198 531275 531184 531197 53	531286 Multi-cell Mining Claim 531288 Multi-cell Mining Claim 531347 Multi-cell Mining Claim 531349 Multi-cell Mining Claim 531340 Multi-cell Mining Claim 531340 Multi-cell Mining Claim 531342 Multi-cell Mining Claim 531343 Multi-cell Mining Claim 531284 Multi-cell Mining Claim 531285 Multi-cell Mining Claim 531286 Multi-cell Mining Claim 531332 Multi-cell Mining Claim 531332 Multi-cell Mining Claim 531333 Multi-cell Mining Claim 531332 Multi-cell Mining Claim 531333 Multi-cell Mining Claim 531334 Multi-cell Mining Claim 531335 Multi-cell Mining Claim 531336 Multi-cell Mining Claim 531337 Multi-cell Mining Claim 531338 Multi-cell Mining Claim 531340 Multi-cell Mining Claim 531341 Multi-cell Mining Claim 531245 Multi-cell Mining Claim 531266<	\$31286 Multi-cell Mining Claim 2020-01-09 \$31347 Multi-cell Mining Claim 2020-01-09 \$31349 Multi-cell Mining Claim 2020-01-09 \$31349 Multi-cell Mining Claim 2020-01-09 \$31340 Multi-cell Mining Claim 2019-06-13 \$31341 Multi-cell Mining Claim 2019-06-13 \$31342 Multi-cell Mining Claim 2019-06-13 \$31343 Multi-cell Mining Claim 2019-06-13 \$31344 Multi-cell Mining Claim 2019-06-13 \$31283 Multi-cell Mining Claim 2020-01-09 \$31284 Multi-cell Mining Claim 2020-01-09 \$31285 Multi-cell Mining Claim 2020-01-09 \$31286 Multi-cell Mining Claim 2020-01-09 \$31332 Multi-cell Mining Claim 2020-01-09 \$31333 Multi-cell Mining Claim 2020-02-16 \$31333 Multi-cell Mining Claim 2020-02-16 \$31333 Multi-cell Mining Claim 2020-02-16 \$31334 Multi-cell Mining Claim 2020-02-16 \$31335<	

STRICKLAND	531273	Multi-cell Mining Claim	2019-11-16	\$10,000	\$0
STRICKLAND	531274	Multi-cell Mining Claim	2019-11-16	\$10,000	\$0
STRICKLAND	531275	Multi-cell Mining Claim	2019-11-16	\$8,400	\$0
STRICKLAND	531278	Multi-cell Mining Claim	2019-11-16	\$800	\$0
STRICKLAND	531195	Multi-cell Mining Claim	2019-12-03	\$8,800	\$3,651
STRICKLAND	531167	Multi-cell Mining Claim	2019-12-03	\$8,400	\$6,945
STRICKLAND	531170	Multi-cell Mining Claim	2019-12-03	\$9,200	\$1,763
STRICKLAND	531176	Multi-cell Mining Claim	2019-12-03	\$10,000	\$4,122
STRICKLAND	531179	Multi-cell Mining Claim	2019-12-03	\$8,400	\$0
STRICKLAND	531181	Multi-cell Mining Claim	2019-12-03	\$9,600	\$0
STRICKLAND	531185	Multi-cell Mining Claim	2019-12-03	\$9,600	\$5,886
STRICKLAND	531196	Multi-cell Mining Claim	2019-12-03	\$8,800	\$0
STRICKLAND	531223 531272	Multi-cell Mining Claim	2019-12-03	\$7,400	\$3,197
STRICKLAND STRICKLAND	531272	Multi-cell Mining Claim	2019-12-03	\$1,200	\$0 \$0
STRICKLAND	531160	Multi-cell Mining Claim	2020-02-22 2020-02-22	\$8,400	\$0
TRICKLAND	531277	Multi-cell Mining Claim Multi-cell Mining Claim	2020-02-22	\$8,400 \$7,200	\$0 \$0
TRICKLAND	531157	Multi-cell Mining Claim	2020-02-22	\$10,000	\$0 \$0
STRICKLAND, TEDDER	531156	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0 \$0
TRICKLAND, TEDDER	531169	Multi-cell Mining Claim	2020-04-21	\$8,800	\$200
TRICKLAND, TEDDER	531103	Multi-cell Mining Claim	2020-04-21	\$8,800	\$200
EDDER	531031	-	2019-12-23	\$9,600	\$0 \$0
EDDER	531153	Multi-cell Mining Claim Multi-cell Mining Claim	2019-12-23	\$8,800	\$0 \$0
EDDER	531155	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0 \$0
EDDER	531172	Multi-cell Mining Claim	2019-12-23	\$10,000	\$0 \$0
EDDER	531079	Multi-cell Mining Claim	2020-01-09	\$9,200	\$0 \$0
EDDER	531046	Multi-cell Mining Claim	2020-01-09	\$8,800	\$346
EDDER	531046	Multi-cell Mining Claim	2020-01-09	\$9,600	\$0
EDDER	531098	Multi-cell Mining Claim	2020-01-09	\$9,600	\$0 \$0
EDDER	531099	Multi-cell Mining Claim	2020-01-09	\$9,600	\$0
COOPER	531126	Single Cell Mining Claim	2020-01-09	\$400	\$0
MOSAMBIK	273604	Single Cell Mining Claim	2020-01-09	\$400	\$0
MOSAMBIK	188477	Single Cell Mining Claim	2020-01-09	\$400	\$0
MOSAMBIK,NAMEIGOS	265657	Single Cell Mining Claim	2020-01-09	\$400	\$0
MOSAMBIK,NAMEIGOS	344618	Single Cell Mining Claim	2020-01-09	\$400	\$0 \$0
NAMEIGOS	335993	Single Cell Mining Claim	2020-01-08	\$400	\$0
NAMEIGOS	208958	Single Cell Mining Claim	2020-01-08	\$400	\$0
NAMEIGOS	220373	Single Cell Mining Claim	2020-01-08	\$400	\$0
NAMEIGOS	102261	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	127131	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	229063	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	154316	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	103256	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	118285	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	219164	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	276303	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	125852	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	170953	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	286410	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	189211	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531316	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531309	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	118287	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531304	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	170954	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531290	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531291	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531292	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531293	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531294	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531295	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531296	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531297	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531298	Single Cell Mining Claim	2020-01-09	\$400	\$0
IAMEIGOS	531299	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531300	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531301	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531302	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531305	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531306	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	531317	Single Cell Mining Claim	2020-01-09	\$400	\$0
NAMEIGOS	514033	Single Cell Mining Claim	2020-04-11	\$400	\$0
NAMEIGOS	514035	Single Cell Mining Claim	2020-04-11	\$400	\$0
STRICKLAND	110507	Single Cell Mining Claim	2019-12-03	\$200	\$0

Schedule "C" Halverson Property

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date	Work Required	Total Reserve
4281896	ODLUM	136581	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	334503	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	255919	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	237877	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	220822	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	220821	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	209284	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	209282	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	201257	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	171296	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	142560	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	136582	Boundary Cell Mining Claim	2021-02-06	\$200	\$0
4281896	ODLUM	324599	Single Cell Mining Claim	2021-02-06	\$400	\$0
, 4281896	ODLUM	255918	Single Cell Mining Claim	2021-02-06	\$400	\$0
, 4281896	ODLUM	255917	Single Cell Mining Claim	2021-02-06	\$400	\$223
4281896	ODLUM	209283	Single Cell Mining Claim	2021-02-06	\$400	\$0

Appendix B – Highway Zone – 2018 Drill Logs

Hole Number: HZ-18-01

Drill Rig: HC-150-16

Claim Number:

	LALI			Drill Rig:			HC-15	00-16		
G	OLD (ORP		Claim Number:						
	Location		רווויים	ole Orientation	Dates D	rilled:	Start	Date:	End	Date:
	Surface		ח וווזט	ole Orientation	Dates D	rillea:	Sept-25	ith-2018	Sept 28th 2018	
NAD87	UTM Zone	16N	Azimuth: 180		Drill Contractor:		Forages Chibougamau Ltée			
Easting		9220								
Northing		6086	Dip:	50	Dates L	ogged:		Date:		Date:
Elevation(m)	nal Pick up	50					Sept-25	6th-2018	Oct-0	3-2018
	UTM Zone		Depth(m):	462.00	Logge	er 1:		Andrew	Wehrfritz	
Easting					Logge	er 2:				
Northing			Core Size:	NO	Logge	er 3:				
Elevation(m)			Core Size:	NQ		l ob:			labo	
Casir	ng				Assay	Lab:		Act	labs	
							Dip T	ests		
	Purpose of Hole				Depth (m)	Az.	Dip	Mag	Notes	Az Uncor.
Purpose o			n of the Highv	vay Zone	18.0	180.9	-51.1	56789		188.5
					48.0	181.5	-51.1	56383		189.1
					81.0	181.9	-51.1	56257		189.5
					111.0	181.6	-51.0	56266		189.2
					141.0	181.9	-50.9	56242		189.5
Resu	lts			ured zone from 272 to ated sulphides;	174.0	180.5	-50.7	56239		188.1
nesu.			eration along f		204.0	181.6	-49.3	55977		189.2
					234.0	180.1	-49.0	56099		187.7
					264.0	180.9	-48.6	56128		188.5
					294.0	181.7	-48.3	56088		189.3
					324.0	182.3	-47.9	56073		189.9
					360.0	182.8	-47.6	56085		190.4
Commo	Comments				390.0	182.7	-47.2	56291		190.3
					423.0	47.6	-46.5	26654		55.2
					426.0	182.5	-46.5	56078		190.1
					462.0	183.9	-45.8	55932		191.5
Azir	muth corre	cted to 7.6	degrees west	declination						
						j l				

BHID	FROM_M	го_м	LENGTH_M F	ROCK_CODE ROCK	COMMENTS
HZ-18-01	0	3	3 (CAS Casing	Casing
				_	fg to mg, dark grey unit with a predominately felsic composition and massive texture. Mineral composition appears to be predominately feldspar then quartz with
					occasional light green alteration halos surrounding healed fractures. A portion of the quartz in the unit appears to be from quartz flooding. Occasional white
					streaks across the unit; potentially elongated clasts? Approx25% finely disseminated py throughout. Fractures are rusted in colour due to close proximity to
HZ-18-01	3	4.75	1.75	A Greywacke	surface. Minor foliation.
HZ-18-01	4.75	40.55	35.8 4	•	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and biotite. Evidence of quartz flooding
					fg to mg, dark grey unit with a predominately felsic composition and massive to clastic. Mineral composition appears to be predominately fg feldspar then quartz
					with mg white felsic clasts suspended throughout. A large portion of the clasts have been potastically altered to a light pink. Dark to light green alteration halos
HZ-18-01	40.55	42.5	1.95	A Greywacke	surrounding healed fractures. No significant foliation. Narrow sections of pegmatite pop in and out of unit as well.
112 10 01	40.55	72.3	1.55	or cywaeke	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and biotite. Light green to dark green healed fractures
HZ-18-01	42.5	51	8.5 4	E Pegmatite	intermittently throughout (ep, chl). Narrow sections of greywacke pop in and out of the unit. Quartz appears to have flooded in
112 10 01	72.3	31	0.5	r cgmatte	fg to mg, dark grey unit with a predominately felsic composition and massive to clastic. Mineral composition appears to be predominately fg feldspar then quartz
					with mg white felsic clasts suspended throughout. A large portion of the clasts have been potastically altered to a light pink. Dark to light green alteration halos
HZ-18-01	51	55	4 3	A Greywacke	surrounding healed fractures. No significant foliation.
HZ-10-U1	31	33	4 3	A Greywacke	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and biotite. Light green to dark green healed fractures
U7 10 01	55	60.75	5.75 4	F Dogmatite	
HZ-18-01	33	00.75	5.75	E Pegmatite	intermittently throughout (ep, chl). Narrow sections of greywacke pop in and out of the unit. Quartz Flooding
					fg to mg, dark grey to pale pink unit with a predominately felsic composition and massive to clastic. Mineral composition appears to be predominately fg feldspar
					then quartz with mg white felsic clasts suspended throughout. A large portion of the clasts have been potastically altered to a light pink. Dark to light green
117 40 04	60.75	66.22	F 47 0		alteration halos surrounding healed fractures. No significant foliation. Small amounts of blebby py)approx5%) throughout the unit and several areas of blebby
HZ-18-01	60.75	66.22	5.47	SA Greywacke	magnetite.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and biotite. Light green to dark green healed fractures
					composed of epidote and chlorite intermittently throughout. Light green epidote staining in some areas. Brecciated textures from 108 to 112 associated with
HZ-18-01	66.22	122	55.78	E Pegmatite	fragments of pegmatite surrounded with chlorite, ep and other dark green minerals. Highly broken core from 113 to 117.
					cg, pale pink and grey felsic unit. Unit is composed predominately of cg (>5mm) rounded to sub rounded white clasts surrounded in a finer light grey and pink
					felsic groundmass. Frequent rust coloured healed fractures intersect the unit throughout at random orientations. Light green to grey lineations intersect the unit
HZ-18-01	122	136.3	14.3	C Conglomerate	at approx. at 60 degrees tca; (bedding planes?).
					fg, dark grey to green highly fractured mafic unit with a light green banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed
HZ-18-01	136.3	146.5	10.2 1	.H Mafic Tuff	predominately of mafic minerals with a low to moderate amount of chlorite and potassic alteration.
					mg, grey and dark green highly fractured unit (20+ fractures/meter) unit composed predominately of mafic minerals (amp and pyroxenes) and plagioclase. No
HZ-18-01	146.5	160.5	14 7	'A Diabase	foliation. Low to moderate magnetism. Fault Gauge from 160 to 160.5.
					fg, dark grey to green highly fractured (20+ fractures / meter) mafic unit with a light green banded texture; occasional pink felsic intrusions intersect the unit. Unit
					is composed predominately of mafic minerals with a low to moderate amount of chlorite and potassic alteration. Minor amounts of silicification from 163 to 166
HZ-18-01	160.5	174.87	14.37	.H Mafic Tuff	associated with minor amounts of sulphides (<1%)
					cg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Light green to dark green healed fractures intermittently
HZ-18-01	174.87	176.2	1.33 4	E Pegmatite	throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
HZ-18-01	176.2	181.13	4.93 1	.H Mafic Tuff	minerals with a low to moderate amount of chlorite and potassic alteration.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Light green to dark green healed fractures
HZ-18-01	181.13	182.23	1.1 4	E Pegmatite	intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
HZ-18-01	182.23	195.18	12.95 1	.H Mafic Tuff	minerals with a low to moderate amount of chlorite and potassic alteration.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Light green to dark green healed fractures
HZ-18-01	195.18	210.6	15.42	E Pegmatite	intermittently throughout (ep, chl). Highly fractured (10+ fractures/meter). Small component of mafics (fg biotite)
				_	fg, dark grey to green mafic unit with a subtle lighter green banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of
HZ-18-01	210.6	212.9	2.3 1	.H Mafic Tuff	mafic minerals with a low to moderate amount of chlorite and potassic alteration. Frequent light green randomly oriented hairline healed fractures.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	212.9	217.7	4.8	E Pegmatite	green healed fractures intermittently throughout (ep, chl) and well as narrow sections of mafics subunits. Small concentration of disseminated sulphides (<<1%)
				-6	fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
HZ-18-01	217.7	219.4	1.7 1	.H Mafic Tuff	minerals with a low to moderate amount of chlorite and potassic alteration. Frequent light green randomly oriented hairline healed fractures.
	-17.7			Mane ran	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	219.4	221.6	2.2 4	E Pegmatite	green healed fractures intermittently throughout (ep, chl) and well as narrow sections of mafics subunits.
115 10-01	419.4	221.0	۷.۷	- reginative	Breen nearest nectares intermittently unroughout (ep, em) and wen as narrow sections of mailes subunits.

					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions and greywacke units intersect the unit. Unit is composed
					predominately of mafic minerals with a low to moderate amount of chlorite and potassic alteration. intermittent light green randomly oriented hairline healed
HZ-18-01	221.6	239.15	17.55 1H	Mafic Tuff	fractures. Very small amounts of disseminated sulphides intermittently (<<1%).
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	239.15	241.9	2.75 4E	Pegmatite	green healed fractures intermittently throughout (ep, chl) and well as narrow sections of mafics subunits. intermittent dark grey to green healed fractures.
					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions and greywacke units intersect the unit. Unit is composed
					predominately of mafic minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented
HZ-18-01	241.9	244.74	2.84 1H	Mafic Tuff	hairline healed fractures.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	244.74	246.25	1.51 4E	Pegmatite	green healed fractures intermittently throughout (ep, chl) and well as narrow sections of mafics subunits. intermittent dark grey to green healed fractures.
					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
HZ-18-01	246.25	251.85	5.6 1H	Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	251.85	253.6	1.75 4E	Pegmatite	green healed fractures intermittently throughout (ep, chl) and well as narrow sections of mafics subunits. intermittent dark grey to green healed fractures.
					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
					minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
HZ-18-01	253.6	270.8	17.2 1H	Mafic Tuff	High degree of fracturing from 254.5 to 258 (20+ fractures/meter) Minor amounts of disseminated sulphides (<<1%). Minor amounts of silicification.
					cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	270.8	273.6	2.8 <mark>4E</mark>	Pegmatite	green healed fractures intermittently throughout (ep, chl). Intermittent dark grey to green healed fractures.
					fg, dark grey to green mafic unit with a subtle banded (pale pink and green in colour) texture; occasional pink felsic intrusions units intersect the unit as well as
					narrow sections of greywacke. Unit is composed predominately of mafic minerals and feldspar with a moderate to high amount of chlorite, epidote and potassic
					alteration. High degree of fracturing (20+ fractures per meter) from 273 to 278m. Foliation undulates in sections. minor amounts of disseminated sulphides in
HZ-18-01	273.6	294.95	21.35 1H	Mafic Tuff	areas of the unit (<1%).
					fg to mg, grey to pale pink unit with a predominately felsic composition and massive texture. Mineral composition appears to be predominately fg feldspar then
					quartz with mg pink stained felsic clasts suspended throughout, biotite speckled throughout. A large portion of the unit has been potastically altered to a light
HZ-18-01	294.95	296.3	1.35 3A	Greywacke	pink. Dark to light green alteration halos surrounding healed fractures. No significant foliation.
					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
					minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Quartz stringers intermittently run parallel to foliation. Minor amounts of
	2000	2245	20.0		hematite disseminated within some quartz stringers. Hematite also visible in some sections of pegmatite. Some sections contain up to .5% disseminated
HZ-18-01	296.3	334.6	38.3 1H	Mafic Tuff	sulphides.
					fg to mg, dark grey to pale pink unit with a predominately felsic composition and massive texture. Mineral composition appears to be predominately fg feldspar
117 10 01	224.6	227.00	2.46.24	Carringalia	then quartz with mg pink stained felsic clasts suspended throughout. A large portion of the unit has been potastically altered to a light pink. Frequent narrow
HZ-18-01	334.6	337.06	2.46 3A	Greywacke	sections of mafic tuff throughout. No significant foliation.
					fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions intersect the unit. Unit is composed predominately of mafic
117 10 01	337.06	340.4	2 24 411	Mad: - Tff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
HZ-18-01	337.06	340.4	3.34 1H	Mafic Tuff	Frequent narrow sections of greywacke throughout.
HZ-18-01	340.4	342.76	2.36 <mark>4E</mark>	Dogmatita	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
HZ-18-U1	340.4	342.76	2.36 4E	Pegmatite	, , , ,
U7 10 01	242.76	350	7 24 14	Mafia Tuff	fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
HZ-18-01	342.76	330	7.24 1H	Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
U7 10 01	350	251.25	1 25 45	Dogmatita	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	350	351.35	1.35 4E	Pegmatite	green healed fractures intermittently throughout (ep, chl).
HZ-18-01	351.35	352.9	1.55 1H	Mafia Tuff	fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
HZ-10-U1	331.33	332.3	1.33 111	Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures. cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	352.9	354.3	1.4 <mark>4</mark> E	Dogmatito	
112-10-01	332.9	534.5	1.4 40	Pegmatite	green healed fractures intermittently throughout (ep, chl). fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
HZ-18-01	354.3	358.64	4.34 1H	Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
112-10-01	334.3	330.04	4.34 111	ivialic rull	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	358.64	359.3	0.66 <mark>4E</mark>	Pegmatite	green healed fractures intermittently throughout (ep, chl).
112-10-01	336.04	333.3	0.00 45	regiliatite	fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
HZ-18-01	359.3	362.15	2.85 1H	Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.

		-			
U7 10 01	362.15	364	1 05	4F Dogmatita	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	302.15	304	1.85	4E Pegmatite	green healed fractures intermittently throughout (ep, chl). fg, dark grey to green mafic unit with a subtle banded texture; occasional pink felsic intrusions units intersect the unit. Unit is composed predominately of mafic
HZ-18-01	364	372.13	8.13	1U Mafia Tuff	
HZ-18-U1	304	3/2.13	0.13	1H Mafic Tuff	minerals and feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented hairline healed fractures.
U7 10 01	272 12	272.2	1 17	AF Dogmatita	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	372.13	373.3	1.17	4E Pegmatite	green healed fractures intermittently throughout (ep, chl).
117 10 01	373.3	274.7	1.4	1.0	fg to mg, dark grey to dark green unit, composed primarily of mafics ranging from fine grained to medium grained; massive texture. Finer rained feldspar
HZ-18-01	3/3.3	374.7	1.4	1A Massive Fl	surrounding mafics in areas. Gabbroic texture in areas. cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	374.7	375.9	1.7	4F Dogmatita	
HZ-18-U1	3/4./	3/3.9	1.2	4E Pegmatite	green healed fractures intermittently throughout (ep, chl). fg to mg, dark grey to dark green unit, composed primarily of mafics ranging from fine grained to medium grained; massive texture. Finer rained feldspar
UZ 10 01	375.9	377.42	1 52	1A Massive Fl	
HZ-18-01	3/3.9	3//.42	1.52	TA MINISSIVE FI	
117 10 01	277.42	200.05	2.42	45 Danuatita	cg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	377.42	380.85	3.43	4E Pegmatite	green healed fractures intermittently throughout (ep, chl).
117.40.04	200.05	202.0	2.05	26 6	mf to cg black, white and light grey unit with a black banded texture. Unit is composed predominately of feldspar and quartz with banded biotite throughout.
HZ-18-01	380.85	382.9	2.05	3C Conglome	
					fg, dark grey to green mafic unit with a strong banded texture. Unit is composed predominately of mafic minerals with white feldspar banding and light green
117.40.04	202.0	200.2	6.2	411 NA-C- T (C	banding. Rounded white feldspar (pyroclasts?)in areas with moderate to strong amounts of strain. Narrow sections of epidote alteration intermittently
HZ-18-01	382.9	389.2	6.3	1H Mafic Tuff	throughout associated with small amounts of quartz and pyrite (<<1%). 4 millimetric sized grains of magnetite at 387.8
117.40.04	200.2	402.42	42.02	45 D	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to
HZ-18-01	389.2	403.13	13.93	4E Pegmatite	dark green healed fractures intermittently throughout (ep, chl).
117.40.04	402.42	406.46	2.22	4.4	fg to mg, dark grey to dark green unit, composed primarily of mafics ranging from fine grained to medium grained; massive texture. Finer grained feldspar
HZ-18-01	403.13	406.46	3.33	1A Massive Fl	<u> </u>
117 10 01	406.46	400.13	2.00	45 Danuatita	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to
HZ-18-01	406.46	409.12	2.66	4E Pegmatite	dark green healed fractures intermittently throughout (ep, chl).
117 10 01	400.13	417.2	0.10	1.0	fg to mg, dark grey to dark green unit, composed primarily of mafics ranging from fine grained to medium grained; massive texture. Finer grained feldspar
HZ-18-01	409.12	417.3	8.18	1A Massive Fl	
117 10 01	417.2	420.0	2.5	EA Coonite	mg to cg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and black biotite. Light green to dark green healed
HZ-18-01	417.3	420.8	3.5	5A Granite	fractures intermittently throughout (ep, chl).
117 10 01	420.0	425	4.2	1.0	fg to mg, dark grey to dark green unit, composed primarily of mafics ranging from fine grained to medium grained; massive texture. Finer grained feldspar
HZ-18-01	420.8	425	4.2	1A Massive Fl	
117.40.04	425	422.2	0.2	411T	fg, dark grey mafic unit with moderate to high magnetic properties. Narrow randomly oriented black magnetic streaks throughout the unit. Quartz wisps and
HZ-18-01	425	433.3	8.3	1UT Ultramafic	Talc/(stringers occasionally. Minor to moderate foliation. Two pyrite stringers at 430m.
117.40.04	422.2	420.60	F 20	EA 0	mg to cg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to dark
HZ-18-01	433.3	438.68	5.38	5A Granite	green healed fractures intermittently throughout (ep, chl). Four blebs of magnetite at 434.3.
					fg, dark grey and white mafic unit with a massive and soapy texture. Unit is very highly alternated and very soft as a result; majority of the minerals are alteration
117.40.04	420.60	446.0	7.62	411T	minerals; talc, serpentine, chlorite with lesser amounts of other mafic minerals. High degree of fracturing and some lost core at 443m due to the soft nature of the
HZ-18-01	438.68	446.3	7.62	101 Oltramatic	Talc/(core.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to
HZ-18-01	446.3	449.7	3.4	4E Pegmatite	dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey and white mafic unit with a massive and soapy texture. Unit is very highly altered and very soft as a result; majority of the minerals are alteration
HZ-18-01	449.7	452.48	2.78	101 Ultramafic	Talc/(minerals; talc, serpentine, chlorite with lesser amounts of other mafic minerals. High frequency of fracturing (>15/meter).
117.40.01	450.45		0.5-	45 0	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of mafics as well. Light green to
HZ-18-01	452.48	462	9.52		dark green healed fractures intermittently throughout (ep, chl).
HZ-18-01	462	462	0		EOH

BHID	AREA	LAB	COA NUMBER	DATE SHIPPED	DATE RECEIVED	SAMPLE_TYPE	FROM_M	TO_M	LENGTH_M	SAMPLE_NUMBER	Au Final	Au PPB
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	60.75	61.5	0.75	785064	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	61.5	62	0.5	785065	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	62	63	1	785066	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	63	64	1	785067	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	64	65	1	785068	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	65	66.22	1.22	785069	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	OREAS 210			0	785070	5.36	5360
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	163	164	1	785071	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	164	165	1	785072	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	165	166	1	785073	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	166	167	1	785074	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14333	02-Oct-18	17-Oct-18	Assay	167	167.66	0.66	785075	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	296.3	297.2	0.9	785076	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	297.2	298	0.8	785077	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	298	299	1	785078	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	299	300	1	785079	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Blank			0	785080	0.014	14
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	300	301	1	785081	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	301	302	1	785082	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	302	303	1	785083	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	303	304	1	785084	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	304	305	1	785085	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	305	306	1	785086	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	347.83	348.2	0.37	785087	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	348.2	349	0.8	785088	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	349	350	1	785089	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	OREAS 215			0	785090	3.53	3530
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	350	350.75	0.75	785091	0.007	7
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	272	273	1	785092	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	273	273.6	0.6	785093	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	273.6	274	0.4	785094	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	274	275	1	785095	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	275	276	1	785096	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	277	278	1	785097	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	278	279	1	785098	0.0025	< 5
HZ-18-01	· · · · · · · · · · · · · · · · · · ·	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	279	280	1	785099	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Blank			0	785100	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	280	281	1	785101	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	281	282	1	785102	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	282	283	1	785103	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	283	283.6	0.6	785104	0.0025	< 5

HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	382	382.9	0.9	785105	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	382.9	384	1.1	785106	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	384	385	1	785107	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	385	385.82	0.82	785108	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	385.82	387	1.18	785109	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	OREAS 216			0	785110	6.56	6560
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	387	388	1	785111	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	388	389.2	1.2	785112	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	420.8	421.8	1	785113	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	421.8	422.4	0.6	785114	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	422.4	423.4	1	785115	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	423.4	424	0.6	785116	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	424	425	1	785117	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14724	09-Oct-18	23-Oct-18	Assay	425	426	1	785118	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Assay	276	277	1	785119	0.0025	< 5
HZ-18-01	Highway Zone	Actlabs	A18-14725	09-Oct-18	23-Oct-18	Blank			0	785120	0.0025	< 5

Hole Number: HZ-18-02

Drill Rig: HC-150-16

				_						
G	DLD (CORP		Claim Number:						
	Location		D-:II II	ala Orientation	Datas D	willod.	Start	Date:	End	Date:
	Surface		Drill H	ole Orientation	Dates D	rillea:	Sept 28 2018		Oct-9th-2018	
	ed Coordina UTM Zone		Azimuth:	180	Drill Con	tractor:	Fo	orages Chibo	ougamau Lt	tée
Easting	639	9618								
Northing	538	6033	Dip:	-50	Dates L	ngged:	Start	Date:	End	Date:
Elevation(m)	4	50				- 55 - 1	Oct 3r	d 2018	Oct-9t	:h-2018
	nal Pick up UTM Zone		Depth(m):	504.00	Logge	er 1:		Andrew	Wehrfritz	
Easting			. , ,		Logge	er 2:				
Northing			Core Size: NQ		Logge	er 3:				
Elevation(m)					Assay	Lab:		Act	labs	
Casir	ng							,		
							Dip T	ests		
					Depth (m)	Az.	Dip	Mag	Notes	Az Uncor.
Purpose o	Purpose of Hole		xploration of the Highway Zone			175.8	-49.7	56657		183.4
					48.0	175.5	-49.5	56334		183.1
					78.0	175.6	-49.7	56285		183.2
					111.0	184.0	-49.3	56080		184.4
				on occurred >400m as	141.0	175.7	-48.3	55817		183.3
Resu	lts	intermedia		v iron formations also	171.0	3.4	-48.9	81611		11
		amounts o	f sulphides w	sulphides. Lesser ithin the 98-120m	201.0	176.6	-48.0	55832		184.2
		range of th	ie noie.		231.0	174.7	-47.4	55943		182.3
					261.0	175.8	-46.4	55854		183.4
					291.0	176.0	-46.0	55842		183.6
					321.0	174.6	-44.9	55861		182.2
					351.0	176.5	-44.3	55731		184.1
Commo	ents				381.0	176.3	-44.0	55797		183.9
					414.0	175.1	-42.9	55758		182.7
					444.0	174.4	-42.1	55832		182
							-41.6	55544		183.8
			4	As Posts						
Aziı	muth corre	cted to 7.6	degrees west	aeclination						

BHID	FROM_M	то_м і	LENGTH_M ROCK_COD	E ROCK	COMMENTS
HZ-18-02	0	2.5	2.5 OVB	Overburden	
					fg to mg, grey to green unit with a slight purple hue in areas, slight laminated texture. Thin bands of mg sericite throughout
					surrounded by a fg groundmass intermediate in composition. Minor amounts of sulphides (py) disseminated throughout (~.2%).
HZ-18-02	2.5	9.3	6.8 3A	Greywacke	Orange weather stained fractures in the first 3 meters of the unit.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
					mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl). Highly fractured section from 32 to
HZ-18-02	9.3	66.05	56.75 <mark>4E</mark>	Pegmatite	37m (20+ fractures per meter.). Hematite staining in certain areas. py bleb at 15.2m.
***************************************					fg, dark grey to green mafic unit with a subtle banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar with a low to moderate amount of chlorite and potassic alteration. Intermittent light green randomly oriented
					hairline healed fractures. Highly silicified grey to pale purple unit from 67.22 to 68 with a banded texture (Iron formation).
HZ-18-02	66.05	68	1.95 <mark>1H</mark>	Mafic Tuff	Alternating bands of narrow mafics (iron formation?) associated with up to 2% sulphides (py) in this subunit.
					fg to mg unit with a massive to porphyritic texture. Unit is intermediate in composition and predominately massive in texture but
HZ-18-02	68	69.6	1.6 <mark>6E</mark>	Intermediate Dyke	does contain some faint, millimetric sized, mildly elongated/strained, feldspar phenocrysts; (potentially a feldspar porphyry?)
112 10 02	00	05.0	1.0 OL	intermediate byke	fg, dark grey to green mafic unit with a subtle banded texture; bands occasionally undulate. Unit is composed predominately of
					mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic alteration. Intermittent light
					green randomly oriented hairline healed fractures. A few narrow sections of pegmatite intersect the unit. Highly quartz flooded
					and bleached sections from 75.5 to 75.7, 78 to 78.9, and 79 to 79.1 associated with epidote and disseminated py (approx. 1-2 % in
HZ-18-02	69.6	94.1	24.5 1H	Mafic Tuff	these sections.) Quartz vein at 81.24 to 81.32 with <1% disseminated py.
112 10 02	03.0	34.1	24.5	Walle Fall	fg to mg unit with a massive to porphyritic texture. Unit is intermediate in composition and predominately massive in texture but
					does contain some faint, millimetric sized, mildly elongated/strained, feldspar phenocrysts; (potentially a feldspar porphyry?). Mild
					potassic alteration . Unit contains narrow sections of mafics. Narrow sections of metasediments with approx. 1% disseminated py
HZ-18-02	94.1	101.45	7.35 <mark>6E</mark>	Intermediate Dyke	from 98.67 to 99.12.
112 10 02	34.1	101.45	7.33 02	intermediate byke	fg, dark grey to green mafic unit with a subtle banded texture; bands occasionally undulate. Unit is composed predominately of
					mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic alteration. Intermittent light
					green randomly oriented hairline healed fractures. A few narrow sections of pegmatite intersect the unit. Minor amounts of blebby
HZ-18-02	101.45	111.6	10.15 1H	Mafic Tuff	py at 108m. Bleached section with increased alteration at 107m.
112 10 02	101.45	111.0	10.13	Walle Fall	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
					mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl). Highly fractured section from 117 to
HZ-18-02	111.6	120.85	9.25 <mark>4E</mark>	Pegmatite	120.85 (>15 fractures/meter).
112 10 02	111.0	120.03	J.25 TL	reginative	mg, dark grey to black mafic unit with moderate magnetic properties. Mafic Dyke?. Highly fractured throughout majority of the unit
HZ-18-02	120.85	126	5.15 <mark>7A</mark>	Diabase	(>20 fractures/meter). An approximately 25cm wide section of fault gauge at 125m.
112 10 02	120.03	120	3.13 //	Diabase	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	126	128.7	2.7 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
10 02		12017		. cgditte	fg, dark grey to green mafic unit with a subtle banded texture; bands occasionally undulate. Unit is composed predominately of
					mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic alteration. Intermittent light
					green randomly oriented hairline healed fractures. Highly silicified grey, banded unit from 129.24 to 129.74 with up to .5%
HZ-18-02	128.7	139	10.3 <mark>1H</mark>	Mafic Tuff	disseminated py. Blocky core with a high frequency of fractures (>5/meter) from 129 to 132m.
112 10 02	120.7	133		Walle Fall	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	139	140.85	1.85 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
112 10 02	133	140.03	1.03 41	reginatite	fg, dark grey to green mafic unit with a subtle banded texture. Unit is composed predominately of mafic minerals with lesser
HZ-18-02	140.85	142.15	1.3 1H	Mafic Tuff	amounts of feldspar and a low to moderate amount of chlorite and potassic alteration. Blocky core.
		100 -			mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	142.15	186.9	44.75 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl). Highly blocky core from 150 to185m.
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Some bands are stained
HZ-18-02	186.9	197.5	10.6 1H	Mafic Tuff	pink/red due to alteration. Red and green healed fractures intermittently throughout.
					mg to vcg, pink to red felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small
HZ-18-02	197.5	202.14	4.64 <mark>4E</mark>	Pegmatite	component of mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
HZ-18-U2	197.5	202.14	4.b4 <mark>4</mark> L	regmatite	component of matics as well. Light green to dark green healed fractures intermittently throughout (ep, chi).

					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Some bands are stained
					pink/red due to alteration. Red and green healed fractures intermittently throughout. Blocky core from 202.14 to 207m. High
HZ-18-02	202.14	218.57	16.43 1H	Mafic Tuff	degree of red staining from 207 to 212
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	218.57	225	6.43 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Some bands are stained
HZ-18-02	225	236.4	11.4 <mark>1H</mark>	Mafic Tuff	pink/red due to alteration. Red and green healed fractures intermittently throughout.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
					mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl). Blocky core with a high frequency of
HZ-18-02	236.4	241.7	5.3 <mark>4E</mark>	Pegmatite	natural fractures (20+ per meter) from 237m to 242m
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Some bands are stained
					pink/red due to alteration. Red and green healed fractures intermittently throughout. Py stringer at 260.2. Unit becomes more
					intermediate in composition from 262.95 to 265 with an increase in feldspar and biotite concentration; slight silicification in areas,
HZ-18-02	241.7	305.5	63.8 <mark>1H</mark>	Mafic Tuff	possibly a metaseds subunit?
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	305.5	308.6	3.1 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	308.6	318	9.4 <mark>1H</mark>	Mafic Tuff	pegmatite intersect the unit regularly
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	318	319.87	1.87 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	319.87	335.3	15.43 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	335.3	336.6	1.3 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep. chl).
				· ·	fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	336.6	341.54	4.94 <mark>1H</mark>	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	341.54	342.68	1.14 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	342.68	349.9	7.22 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
112 20 02	5 .2.00	3.5.5	7.22	mano ran	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	349.9	350.95	1.05 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
112 20 02	5 1515	330.33	1.00	. egatite	fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	350.95	378.44	27.49 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
10 02	330.33	3,0.44	27.43 111	Walle Full	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	378.44	379.59	1.15 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
112 10 02	370.74	313.33	1.13 46	r eginatic	fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	379.59	388.18	8.59 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
112 10-02	313.33	300.10	0.33 111	IVIGITE TUIT	populate intermittently universional occasional nation sections of greywacke also intersect the unit.

HZ-18-02	388.18	391.3	3.12 <mark>4E</mark>	Pegmatite	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
ΠZ-16-UZ	300.10	391.3	3.12 45	reginatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
117 10 02	201.2	2040	2.6.411	NA-6:- T. 44	composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	391.3	394.9	3.6 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
40.02	204.0	200.0	4.7.45	B 171 -	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	394.9	396.6	1.7 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
	205.5		6.46.411		composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	396.6	402.76	6.16 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
			2 - 4 - 4 -	- ···	mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	402.76	405.5	2.74 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	405.5	413	7.5 <mark>1H</mark>	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	413	415.4	2.4 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently throughout (ep, chl).
					fg, dark grey to green mafic unit with a light green and pink banded texture. Unit is composed predominately of mafic minerals with
					lesser amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding is
					composed predominately of stained feldspar. Red and green healed fractures intermittently throughout. Narrow sections of
HZ-18-02	415.4	424	8.6 1H	Mafic Tuff	pegmatite intermittently throughout. Occasional narrow sections of greywacke also intersect the unit.
					fg to mg grey unit with a slight purple hue and foliated to banded texture . Unit has an intermediate composition and is composed
					predominately of feldspar with biotite disseminated throughout; other mafics are also disseminated in portions of the unit.
					Millimetric to centimetric white feldspar fragments with moderate to strong degrees of strain/elongation throughout. Silicification is
					evident from 429 to 430. Iron formation subunit from 430.9 to 432. >1% disseminated sulphides throughout the majority of the
HZ-18-02	424	434.05	10.05 <mark>2E</mark>	Intermediate Tuff	unit. Narrow sections of pegmatite intersect the unit intermittently throughout.
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding in some areas is
					composed predominately of stained feldspar. Narrow sections of pegmatite intermittently throughout. Minor amounts of
HZ-18-02	434.05	437.31	3.26 1H	Mafic Tuff	disseminated sulphides associated with epidote banding in some areas (<1% overall)
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-02	437.31	441.87	4.56 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding in some areas is
					composed predominately of stained feldspar. Narrow sections of pegmatite intermittently throughout. Minor amounts of
HZ-18-02	441.87	446.35	4.48 1H	Mafic Tuff	disseminated sulphides associated with epidote banding in some areas (<<1% overall)
					fg to mg grey unit with a slight purple hue and foliated to banded texture . Unit has an intermediate composition and is composed
					predominately of feldspar with biotite disseminated throughout; other mafics are also disseminated in portions of the unit.
					Millimetric to centimetric white feldspar fragments with moderate to strong degrees of strain/elongation throughout. Silicification is
					evident from 452.5 to 453 and 455.3 to 455.9. Approximately 1% disseminated sulphides throughout the majority of the unit.
HZ-18-02	446.35	461.73	15.38 <mark>2E</mark>	Intermediate Tuff	Narrow sections of pegmatite intersect the unit intermittently throughout.
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Pink banding in some areas is
					composed predominately of stained feldspar. Narrow sections of pegmatite intermittently throughout. Minor amounts of
					disseminated sulphides associated with epidote banding in some areas (<1% overall); py stringer at 461.75 as well as disseminated
HZ-18-02	461.73	466.8	5.07 <mark>1H</mark>	Mafic Tuff	sulphides in the subsequent 20 cm.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
	466.8	472.6	5.8 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.

					fg, dark grey mafic unit with moderate magnetic properties. Unit is composed predominately of mafic minerals with a very high
					degree of biotite alteration as well as talc and serpentine. Narrow blue randomly oriented serpentine filled healed fractures
HZ-18-02	472.6	478.95	6.35	1UT Ultramafic Talc/Chlorite Altered	intermittently throughout. First 60 cm of the unit is almost entirely biotite. Foliation difficult to determine
					fg, dark grey to green mafic unit with a light green banded texture. Unit is composed predominately of mafic minerals with lesser
					amounts of feldspar. Light green banding is composed of predominately chlorite and some epidote. Narrow sections of pegmatite
HZ-18-02	478.95	484.9	5.95	1H Mafic Tuff	intermittently throughout.
					mg to cg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Light green to dark green
HZ-18-02	484.9	504	19.1	5A Granite	healed fractures intermittently.
HZ-18-02	504	504	0		EOH

BHID	AREA	LAB	COA NUMBER	DATE SHIPPED	DATE RECEIVED	SAMPLE_TYPE	FROM_M	TO_M	LENGTH_M	SAMPLE_NUMBER	Au Final	Au PPB
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	2.5	3	0.5	785121	0.007	7
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	3	4	1	785122	0.007	7
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	4	5	1	785123	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	5	6	1	785124	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	6	7	1	785125	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	7	8	1	785126	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	8	9	1	785127	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	9	9.3	0.3	785128	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	9.3	10.3	1	785129	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	OREAS 210				785130	5.51	5510
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	66.27	67.22	0.95	785131	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	67.22	68	0.78	785132	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	68	69	1	785133	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	75.09	76	0.91	785134	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	76	77	1	785135	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	77	78	1	785136	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	78	78.9	0.9	785137	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	78.9	79.9	1	785138	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	79.9	81	1.1	785139	0.008	8
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Blank				785140	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	81	82	1	785141	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	82	83	1	785142	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	128.7	129.24	0.54	785143	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	129.24	129.74	0.5	785144	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	129.74	130.2	0.46	785145	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	98	98.67	0.67	785146	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	98.67	99.12	0.45	785147	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	99.12	100	0.88	785148	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	423	424	1	785149	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	OREAS 215				785150	3.4	3400
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	424	425	1	785151	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	425	426	1	785152	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	426	427	1	785153	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	427	428	1	785154	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	428	429	1	785155	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	429	430.2	1.2	785156	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	430.2	430.9	0.7	785157	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	430.9	432	1.1	785158	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	432	433	1	785159	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Blank			0	785160	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	433	434.05	1.05	785161	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	434.05	435	0.95	785162	0.0025	< 5

HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	435	436	1	785163	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	436	436.52	0.52	785164	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	436.52	437.31	0.79	785165	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	450	451	1	785166	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-14887	11-Oct-18	31-Oct-18	Assay	451	452	1	785167	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	452	453	1	785168	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	453	454	1	785169	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	OREAS 216				785170	6.42	6420
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	454	455	1	785171	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	455	456	1	785172	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	456	456.48	0.48	785173	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	461	461.73	0.73	785174	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	461.73	462.5	0.77	785175	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	462.5	463	0.5	785176	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	463	464	1	785177	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	480	481	1	785178	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	481	482	1	785179	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Blank				785180	0.0025	< 5
HZ-18-02	Highway Zone	Actlabs	A18-15234	16-Oct-18	02-Nov-18	Assay	482	483	1	785181	0.0025	< 5

Hole Number: HZ-18-03

Drill Rig: HC-150-16

		11 -		Drill Rig:	HC-150-16						
G	DLD (ORP		Claim Number:							
1	Location		Deill U	ole Orientation	Dates D	rillod:	Start	Date:	End	Date:	
	Surface		Dillin	ole Orientation	Dates L	rinea:	Oct-8-2018		Oct-12-2018		
	ed Coordina UTM Zone		Azimuth:	180	Drill Con	tractor:	Fo	rages Chibo	ougamau Lt	:ée	
Easting	639	9746									
Northing	538	5678	Dip:	-50	Dates L	ogged:	Start	Date:	End	Date:	
Elevation(m)							Oct-9	-2018	Oct-1	3-2018	
	nal Pick up UTM Zone		Donth/m):	319.40	Logge	er 1:		Andrew \	Wehrfritz		
Easting			Depth(m):	313.40	Logge	er 2:		Geoff P	odrucky		
Northing			Core Size:	NO	Logge	er 3:					
Elevation(m)			Core size:	NQ	Λ	Lab:		A c+	ahs		
Casir	ng			Assay Lab:				Act	aus		
							Dip T	ests			
				Depth (m)	Az.	Dip	Mag	Notes	Az Uncor.		
			xploration of the Highway Zone; a follow up o a VLC anomaly in the area.			179.1	-49.8	56251		186.7	
					51.0	179.6	-49.8	55663		187.2	
					81.0	179.6	-49.6	55667		187.2	
					114.0	180.3	-49.3	55710		187.9	
					144.0	179.9	-49.3	55358		187.5	
Resu	lts				174.0	179.6	-49.0	55815		187.2	
					204.0	178.0	-48.6	55691		185.6	
					234.0	177.6	-48.4	55764		185.2	
					264.0	185.4	-48.0	53120		193	
					294.0	186.1	-47.7	55853		193.7	
Commo	ents	Andrew Lo	gged up to 82	m							
Aziı	muth corre	cted to 7.6	degrees west	declination							

BHID	FROM_M TO	0_M I	LENGTH_M ROCK_CODE	ROCK	COMMENTS
HZ-18-03	0	0.29	0.29		OVB
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz and a small
HZ-18-03	0.29	19.66	19.37 <mark>4E</mark>	Pegmatite	component of mafics. Light green to dark green healed fractures intermittently.
					fg, dark grey to dark green mafic unit with a light green banded texture; bands occasionally undulate. Unit is composed
					predominately of mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic
					alteration. Light green banding is composed of epidote and chlorite. Intermittent light green randomly oriented hairline healed
HZ-18-03	19.66	25.66	6 <mark>1H</mark>	Mafic Tuff	fractures. Sand filled fracture at 20.8. Minor sections of pegmatite from 22 to 23.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-03	25.66	29.44	3.78 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.
					fg, dark grey to dark green mafic unit with a light green banded texture; bands occasionally undulate. Unit is composed
					predominately of mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic
					alteration. Light green banding is composed of epidote and chlorite. Intermittent light green randomly oriented hairline healed
HZ-18-03	29.44	33.62	4.18 1H	Mafic Tuff	fractures. Intermittent narrow sections of pegmatite throughout.
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
					mafics as well. Light green to dark green healed fractures intermittently. Some sections appear more granitic than pegmatitic.
HZ-18-03	33.62	43.43	9.81 <mark>4E</mark>	Pegmatite	Few sections of mafics from 42 to 43m.
					fg, dark grey to dark green mafic unit with a light green banded texture; bands occasionally undulate. Unit is composed
					predominately of mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic
					alteration. Light green banding is composed of epidote and chlorite. Intermittent light green randomly oriented hairline healed
HZ-18-03	43.43	45.18	1.75 1H	Mafic Tuff	fractures. Narrow sections of pegmatite throughout.
	000000000000000000000000000000000000000				mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-03	45.18	48.34	3.16 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.
					fg, dark grey to dark green mafic unit with a light green banded texture; bands occasionally undulate. Unit is composed
					predominately of mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic
					alteration. Light green banding is composed of epidote and chlorite. Intermittent light green randomly oriented hairline healed
HZ-18-03	48.34	53.55	5.21 1H	Mafic Tuff	fractures. Foliation steepens (70 degrees tca).
					mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-03	53.55	55.1	1.55 <mark>4E</mark>	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.
					fg, dark grey to dark green mafic unit with a light green banded texture; bands occasionally undulate. Unit is composed
					predominately of mafic minerals with lesser amounts of feldspar and a low to moderate amount of chlorite and potassic
					alteration. Light green banding is composed of epidote and chlorite. Intermittent light green randomly oriented hairline healed
HZ-18-03	55.1	60.19	5.09 1H	Mafic Tuff	fractures. Narrow sections of pegmatite throughout.
					fg, dark grey mafic unit with moderate magnetic properties. Unit is composed predominately of mafic minerals with a very high
					degree of biotite alteration as well as talc and serpentine. Narrow blue or green randomly oriented serpentine/chlorite filled
					healed fractures intermittently throughout. Foliation difficult to determine. High degree of biotite alteration from 61.3 to 61.8m.
					overall alteration and magnetism decreases gradationally with depth. Frequent centimetric wide sections of granite/pegmatite
HZ-18-03	60.19	69.2	9.01 1UT	Ultramatic Talc/	(intersect the unit from 66 to 69.
	50.0				mg to vcg, pink felsic unit composed predominately of pink feldspar with lesser amounts of Smokey quartz. Small component of
HZ-18-03	69.2	84.31	15.11 4E	Pegmatite	mafics as well. Light green to dark green healed fractures intermittently.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (70 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate patchy chlorite and patchy to fracture-controlled epidote alteration. Bands are locally undulated. 1% mm-cm scale
			4.00.411		quartz carb stringers/veinlets, mostly parallel to fabric. Local 1 mm wide fractures, filled with carbonate and epidote, cutting core
HZ-18-03	84.31	85.54	1.23 1H	Mafic Tuff	at various angles. 2% cm-scale minor pegmatite dykes observed. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
LUZ 40 00	05.54	06.74	4.2.45	Dtit.	plagioclase with some quartz. Weak disseminated biotite and needly amphibole. 5-10% minor cm-scale intervals of mafic tuff
HZ-18-03	85.54	86.74	1.2 <mark>4E</mark>	Pegmatite	observed. Local 1-2 mm wide fractures, filled with quartz-carbonate, cutting core at various angles. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (70 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate patchy chlorite and patchy to fracture-controlled epidote alteration. Bands are locally undulated. 1% mm-cm scale
117 10 00	06.74	00.37	2 52 411	Mafia Tuff	quartz carb stringers/veinlets, mostly parallel to fabric. Local 1 mm wide fractures, filled with carbonate and epidote, cutting core
HZ-18-03	86.74	90.27	3.53 <mark>1H</mark>	Mafic Tuff	at various angles. 3-5% cm-scale minor pegmatite dykes observed. Sharp lower contact.

					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar, plagioclase with some quartz. Weak disseminated biotite and needly amphibole. 5% minor cm-scale intervals of mafic tuff
HZ-18-03	90.27	91.45	1.18 <mark>4E</mark>		observed. Local 1-2 mm wide fractures, stained by hematite, cutting core at various angles, proximal to lower contact. Sharp lower contact.
				, and the second	Dark grey, fine-grained mafic tuff. Weak to moderate foliation (75 deg TCA) defined by fine-grained mafic minerals. Moderate
					fracture-controlled epidote and weak banded chlorite alteration. Bands are locally undulated. 2% mm-cm scale quartz carb
					stringers/veinlets, mostly parallel to fabric. Local 1 mm wide fractures, filled with carbonate and epidote, cutting core at various
HZ-18-03	91.45	95.49	4.04 <mark>1H</mark>	Mafic Tuff	angles. 5-10% cm-scale minor pegmatite dykes observed. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak disseminated biotite and needly amphibole. 2% minor cm-scale intervals of mafic tuff
HZ-18-03	95.49	104.11	8.62 <mark>4E</mark>	Pegmatite	observed. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (70 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate bands of chlorite alteration. Bands are locally undulated. 1-2% mm-cm scale quartz carb stringers/veinlets, mostly
HZ-18-03	104.11	106.72	2.61 1H	Mafic Tuff	parallel to fabric. 5-10% cm-scale minor granodiorite dykes observed. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak disseminated biotite and needly amphibole, biotite-amphibole also occuring of undulating
HZ-18-03	106.72	114.61	7.89 <mark>4E</mark>	Pegmatite	bands. 5% minor cm-scale intervals of silicified and sericitized mafic tuff observed. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (65 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate bands of chlorite alteration. Bands are locally undulated. 3-5% mm-cm scale quartz carb stringers/veinlets, cutting core
HZ-18-03	114.61	115.95	1.34 1H		at various angles and locally undulating. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak disseminated biotite and needly amphibole, biotite-amphibole also occuring of undulating
HZ-18-03	115.95	164.89	48.94 4E	Pegmatite	bands. 1-2% minor cm-scale intervals of mafic tuff observed. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (50 deg TCA) defined by fine-grained mafic minerals and bands of
					alteration. Moderate pervasive silicification and pervasive to patchy biotite alteration concentrated in second half of the unit.
		455.00			Weak to moderate bands of chlorite alteration. Bands are locally undulated. 5-10% mm-cm scale quartz carb stringers/veinlets,
HZ-18-03	164.89	166.23	1.34 1H	Mafic Tuff	mostly parallel to fabric. Trace to locally 1% disseminated and blebby pyrite. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (60 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate bands of chlorite and disseminated biotite alteration. Bands are locally undulated. 3-5% mm-cm scale quartz carb
117 10 02	100 22	172.02	7.7.111		stringers/veinlets, cutting core at various angles and locally undulating.3-5% minor cm-scale pegmatite dykes observed. Sharp
HZ-18-03	166.23	173.93	7.7 1H	Mafic Tuff	lower contact. Dark grey, fine- to medium-grained massive diorite with 30-35% fine-grained mafic minerals. Weak to moderate disseminated
					biotite and needly amphibole and fracture-controlled sericite-epidote alteration throughout unit. 5% cm-scale minor pegmatite
HZ-18-03	173.93	179.92	5.99 <mark>6A</mark>	Diorite	dykes observed. Minor pegmatite dyke on sharp lower contact.
112-10-03	173.33	173.32	3.33 0A		Dark grey to grey, fine-grained massive ultramafic. Moderate pervasive talc with weak to moderate pervasive chlorite and
HZ-18-03	179.92	184.99	5.07 1UT		disseminated biotite alteration. Strongly magnetic. 3% minor cm-scale pegmatite dykes observed. Sharp lower contact.
112 10 03	173.32	104.55	3.07		Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak disseminated biotite and needly amphibole with weak fracture-controlled sericite-epidote
HZ-18-03	184.99	194.59	9.6 <mark>4E</mark>	Pegmatite	alteration throughout unit. 1-2% minor cm-scale intervals of ultramafics observed. Sharp lower contact.
112 20 00	20.133	255	3.0	•	Pink grey, medium-grained massive granite. Weak to moderate disseminated biotite and needly amphibole alteration throughout
HZ-18-03	194.59	200.03	5.44 <mark>5A</mark>		unit. 1-2% minor mm-cm scale intervals of ultramafics throughout unit. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak disseminated biotite and needly amphibole with weak fracture-controlled sericite-epidote
HZ-18-03	200.03	203.13	3.1 <mark>4E</mark>	Pegmatite	alteration throughout unit. 2-3% minor cm-scale intervals of ultramafics observed. Sharp lower contact.
				=	Pink grey, medium-grained massive granite. Weak to moderate disseminated biotite and needly amphibole with weak fracture-
					controlled sericite alteration throughout unit. 2% minor mm-cm scale intervals of ultramafics throughout unit. 1% mm-cm scale
HZ-18-03	203.13	205.88	2.75 <mark>5A</mark>	Granite	quartz-carb stringers cutting core at various angles. Minor granodiorite dyke on lower broken contact.

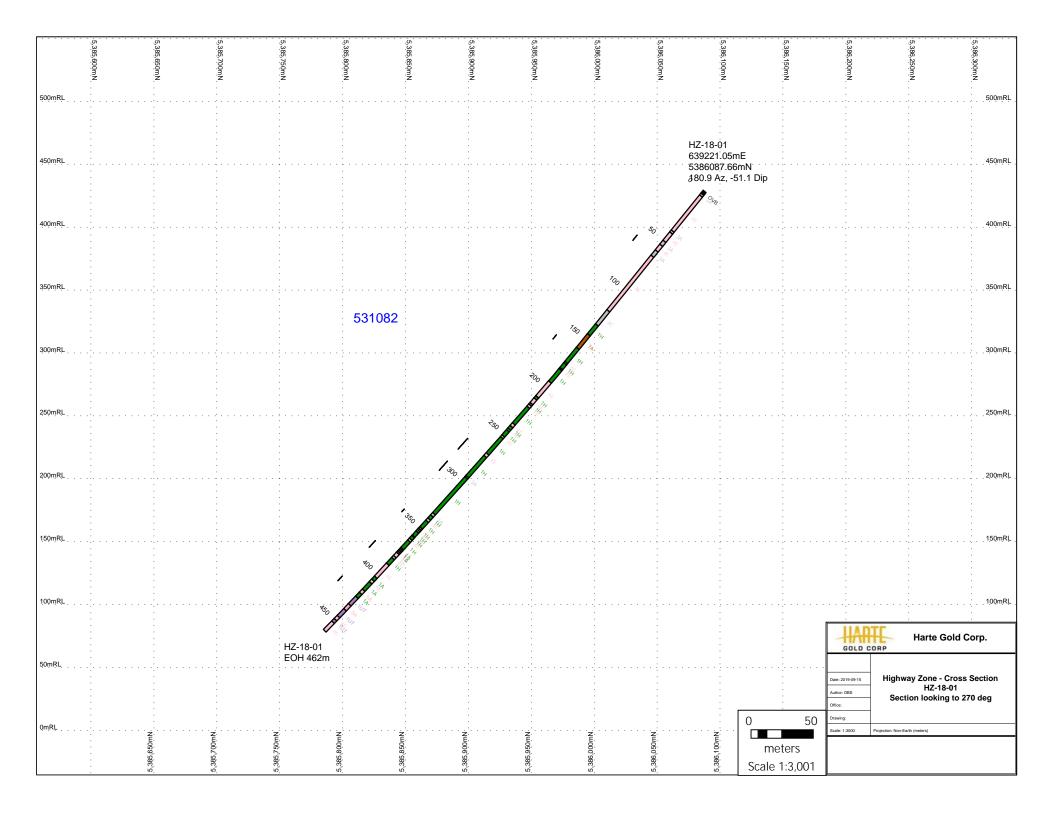
					Major fault zone, mostly healed with some active faults (approximately 60 deg TCA) composed of dark grey to grey, fine-grained
					massive ultramafic. Moderate gouge throughout. Strong fracture-controlled epidote, moderate to strong pervasive talc with weak
					to moderate pervasive chlorite, fracture-controlled serpentine and disseminated to patchy biotite alteration. Blue mineral
					(resembles epidote but is blue) observed locally in fractures. Strongly magnetic. 1-2% minor cm-scale xenoliths of mafic tuff
HZ-18-03	205.88	225.8	19.92 FZ		observed. Gradational lower contact.
112-10-03	203.88	223.0	13.32 12		Dark grey to grey, fine-grained massive ultramafic. Moderate to strong pervasive chlorite with weak to moderate pervasive talc,
HZ-18-03	225.8	227.82	2.02 1UT		patchy silicification and disseminated biotite alteration. Locally weakly magnetic. Sharp lower contact.
112 10 03	223.0	227.02	2.02		Dark grey, fine-grained massive diabase. Weakly magnetic, locally moderately magnetic. Weak to moderate fracture-controlled
HZ-18-03	227.82	230.95	3.13 <mark>7A</mark>		epidote alteration throughout unit. No plagioclase glomerphyres present. Core is weakly broken. Broken lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (60 deg TCA) defined by fine-grained mafic minerals. Moderate to
					strong patchy to undulating bands of biotite from 230.95-233.00m. Weak to moderate bands of chlorite and disseminated biotite
					alteration. Mm-scale fractures throughout unit filled with sericite and cutting core at various angles. Bands are locally undulated.
					1-2% mm-cm scale quartz carb stringers/veinlets, cutting core at various angles. Trace to 1% disseminated and blebby pyrrhotite,
HZ-18-03	230.95	238.74	7.79 <mark>1H</mark>	Mafic Tuff	usually occuring in patches. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole with weak fracture-controlled
					sericite-epidote alteration throughout unit. 5% minor cm-scale intervals of mafic tuffs observed. 5% minor cm-sacle intervals of
HZ-18-03	238.74	244.67	5.93 <mark>4E</mark>	Pegmatite	granite dykes observed. Sharp lower contact.
					Dark grey to grey to pink grey, medium-grained massive granite. Weak to moderate disseminated biotite and needly amphibole
					with weak fracture-controlled sericite-epidote alteration throughout unit. 3-5% minor cm scale pegmatite dykes throughout unit.
HZ-18-03	244.67	246.5	1.83 <mark>5A</mark>	Granite	1% mm-cm scale quartz-carb stringers cutting core at various angles. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole with weak fracture-controlled
					sericite-epidote alteration throughout unit. 40% cm-scale intervals of granite with same composition and alteration as major unit.
HZ-18-03	246.5	256.33	9.83 4E		1-2% mm-cm scale quartz-carb stringers, cutting core at various angles. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (65 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate bands of chlorite and disseminated biotite alteration. Mm-scale fractures throughout unit filled with sericite-epidote or
					carbonate and cutting core at various angles. Bands are locally undulated. 1-2% mm-cm scale quartz carb stringers/veinlets,
117 10 02	256.33	258.48	2.15 1H		cutting core at various angles. 1% disseminated and blebby pyrrhotite/pyrite, usually occuring in patches and rarely as stringers.
HZ-18-03	250.33	258.48	2.15 18		Sharp lower contact. Park grounds ground pink groun modium, groined massive grapite. Weak to moderate discominated histite and needly amphibale.
					Dark grey to grey to pink grey, medium-grained massive granite. Weak to moderate disseminated biotite and needly amphibole with weak fracture-controlled sericite-epidote alteration throughout unit. 3-5% mm-cm scale quartz-carb stringers cutting core at
HZ-18-03	258.48	259.48	1 5A		various angles. Sharp lower contact.
112-10-03	230.40	233.40	1 34		Dark grey, fine-grained mafic tuff. Weak to moderate foliation (65 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate bands of chlorite and disseminated biotite alteration. Mm-scale fractures throughout unit filled with sericite-epidote or
					carbonate and cutting core at various angles. Bands are locally undulated. 1-2% mm-cm scale quartz carb stringers/veinlets,
					cutting core at various angles. Trace to 1% disseminated and blebby pyrrhotite/pyrite, usually occuring in patches. Sharp lower
HZ-18-03	259.48	262.77	3.29 1H		contact.
					Dark grey to grey, fine-grained massive ultramafic. Moderate pervasive talc with weak to moderate pervasive chlorite and
HZ-18-03	262.77	266.52	3.75 1UT		disseminated biotite alteration. Strongly magnetic. 3% minor cm-scale pegmatite dykes observed. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole with weak fracture-controlled
					sericite-epidote alteration throughout unit. 20-25% cm-scale interval of mafic tuff on bottom contact. 1-2% mm-cm scale quartz-
HZ-18-03	266.52	269.1	2.58 <mark>4E</mark>	Pegmatite	carb stringers, cutting core at various angles. Sharp lower contact.
					Dark grey to grey, fine-grained massive ultramafic. Moderate pervasive talc with weak to moderate pervasive chlorite and
HZ-18-03	269.1	271.53	2.43 <mark>1UT</mark>	Ultramafic Talc/(disseminated biotite alteration. Strongly magnetic. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole with weak fracture-controlled
					sericite-epidote alteration throughout unit. 1-2% mm-cm scale quartz-carb stringers, cutting core at various angles. Irregular,
HZ-18-03	271.53	275.36	3.83 <mark>4E</mark>	Pegmatite	silicified lower contact.

					Dark grey, fine-grained mafic tuff. Difficult to measure any foliation due to silicification and alteration. Moderate pervasive
					, ,
					silicification, patchy alkali feldspar with weak to moderate bands of chlorite and disseminated biotite alteration. Mm-scale
					fractures throughout unit filled with sericite-epidote or carbonate and cutting core at approximately 20-40 deg TCA. Bands are
HZ-18-03	275.36	277.61	2.25 11	H Mafic Tuff	locally undulated. 1-2% mm-cm scale quartz carb stringers/veinlets, cutting core at various angles. Sharp lower contact.
					Major fault zone, mostly healed with some active faults (approximately 35-40 deg TCA) composed of dark grey to grey, fine-
					grained massive ultramafic. Moderate gouge throughout. Strong fracture-controlled epidote, moderate to strong pervasive talc
					with weak to moderate pervasive chlorite, fracture-controlled serpentine and disseminated to patchy biotite alteration. Blue
HZ-18-03	277.61	282.78	5.17 FZ	Z Fault Zone	mineral (resembles epidote but is blue) observed locally in fractures. Strongly magnetic. Sharp lower contact.
					Dark grey, fine-grained massive diabase. Weakly magnetic, locally moderately magnetic. Weak to moderate fracture-controlled
HZ-18-03	282.78	299.66	16.88 <mark>7</mark> /	A Diabase	epidote alteration throughout unit. No plagioclase glomerphyres present. Core is weakly broken. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole alteration throughout unit. 25-30%
HZ-18-03	299.66	301	1.34 <mark>4</mark> 1	Pegmatite	minor cm-scale intervals of granite observed. Sharp lower contact.
					Dark grey, fine-grained mafic tuff. Weak to moderate foliation (65 deg TCA) defined by fine-grained mafic minerals. Weak to
					moderate pervasive silicification, bands of chlorite and disseminated biotite alteration. Mm-scale fractures throughout unit filled
					with sericite or carbonate and cutting core at various angles. 1-2% mm-cm scale quartz carb stringers/veinlets, cutting core at
HZ-18-03	301	302.4	1.4 1	H Mafic Tuff	various angles. 1-2% minor cm-scale pegmatite dykes observed. Sharp lower contact.
					Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali feldspar,
					plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole with fracture-controlled sericite
HZ-18-03	302.4	319.4	17 <mark>4</mark> 1	Pegmatite	alteration throughout unit. 10-15% minor cm-scale intervals of mafic tuff observed. Weakly broken core. End of hole.
HZ-18-03	319.4	319.4			ЕОН

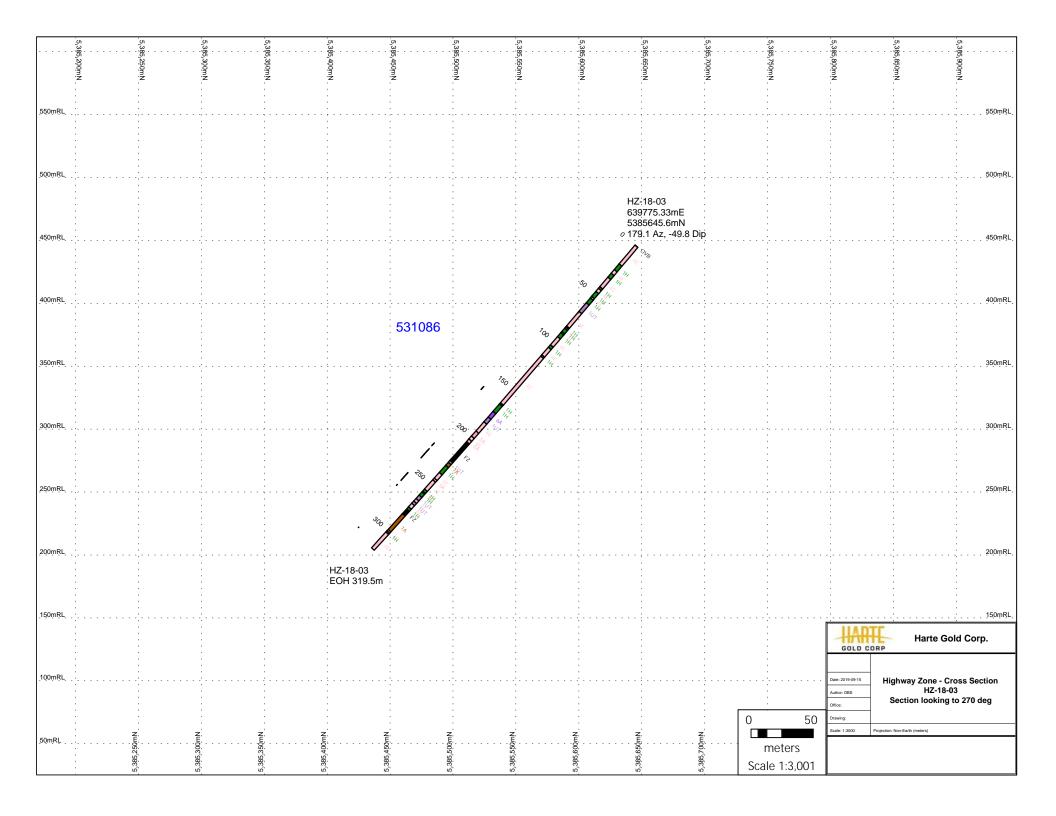
BHID	AREA	LAB	COA NUMBER	DATE SHIPPED	DATE RECEIVED	SAMPLE_TYPE	FROM_M	TO_M	LENGTH_M	SAMPLE_NUMBER	Au Final	Au PPB
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	163.89	164.89	1	785182	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	164.89	165.53	0.64	785183	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	165.53	166.23	0.7	785184	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	166.23	167.23	1	785185	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	223.82	224.82	1	785186	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	224.82	225.8	0.98	785187	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	225.8	226.7	0.9	785188	0.005	5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	229.95	230.95	1	785189	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	OREAS 210			,	785190	5.38	5380
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	230.95	231.95	1	785191	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	231.95	232.95	1	785192	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	232.95	233.95	1	785193	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	233.95	234.95	1	785194	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	234.95	235.95	1	785195	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	235.95	236.95	1	785196	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	236.95	237.95	1	785197	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	237.95	238.74	0.79	785198	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	238.74	239.74	1	785199	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Blank				785200	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	255.33	256.33	1	785201	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	256.33	257.33	1	785202	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	257.33	257.87	0.54	785203	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	257.87	258.48	0.61	785204	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	258.48	259.48	1	785205	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	259.48	260.48	1	785206	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	260.48	261.48	1	785207	0.0025	< 5
HZ-18-03	Regional		A18-15432	18-Oct-18	31-Oct-18	Assay	261.48	262.12	0.64	785208	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	262.12	262.77	0.65	785209	0.0025	< 5
HZ-18-03	U		A18-15432	18-Oct-18	31-Oct-18	OREAS 215				785210	3.43	3430
HZ-18-03	Regional			18-Oct-18	31-Oct-18	Assay	262.77	263.77	1	785211	0.0025	< 5
HZ-18-03	Regional			18-Oct-18	31-Oct-18	Assay	268.13	269.1	0.97	785212	0.0025	< 5
HZ-18-03	Regional	Actlabs	A18-15432	18-Oct-18	31-Oct-18	Assay	314	314.5	0.5	785213	0.0025	< 5

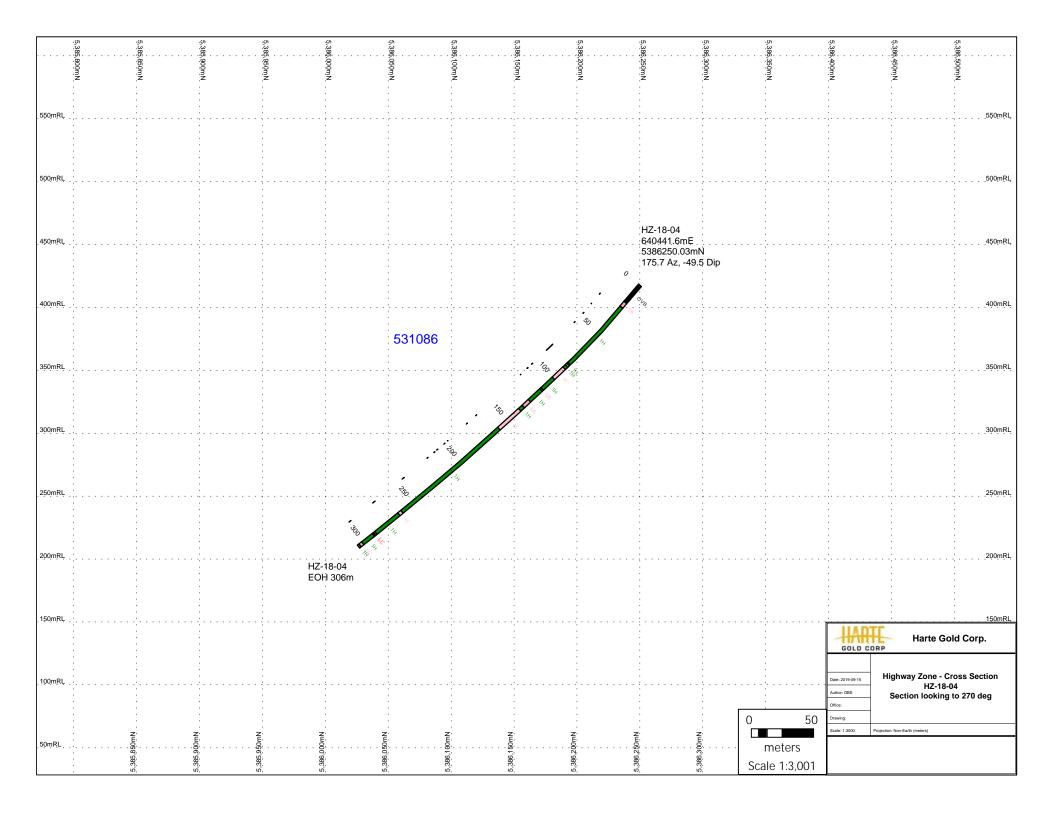
Hole Number: HZ-18-04

Drill Rig: HC-150-16

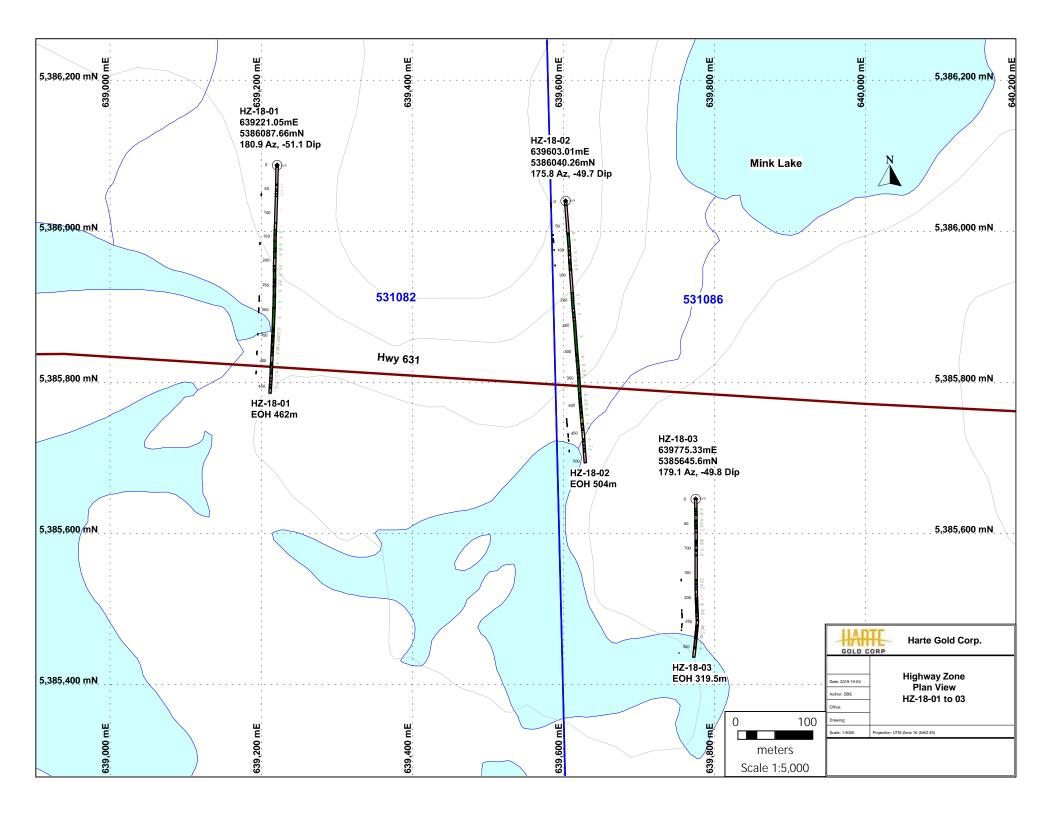

		1115		Drill Rig:	HC-150-16					
G	DLD (OORP	\	Claim Number:						
1	Location		Deill U	ole Orientation	Dates D	rillod:	Start	Date:	End	Date:
	Surface		Dillin	ole Orientation	Dates	illieu.	13-Oct-2018		17-Oct-2018	
NAD87	ed Coordina UTM Zone	16N	Azimuth:	176	Drill Con	tractor:	Fo	rages Chibo	ougamau Lt	tée
Easting)444								
Northing		6253	Dip:	-50	Dates L	ogged:		Date:		Date:
Elevation(m)	4 nal Pick up	00					14-Oc	t-2018	18-Oc	t-2018
	UTM Zone		Depth(m):	306.00	Logge	er 1:		Geoff P	odrucky	
Easting					Logge	er 2:				
Northing			Core Size:	NO	Logge	er 3:				
Elevation(m)			Core Size:	NQ	A			A .=#	labo	
Casir	ng		Cemer	nted	Assay	Lau:	Actlabs			
							Dip T	ests		
			xploration of the Highway Zone ; a follow up a VLC anomaly in the area.			Az.	Dip	Mag	Notes	Az Uncor.
Purpose o						175.7	-49.5	55995		183.3
					63.0	178.7	-45.7	55680		186.3
					96.0	179.3	-43.4	56144		186.9
					126.0	178.8	-42.9	55988		186.4
					156.0	177.8	-42.1	55925		185.4
Resul	lts	_	ant mineraliza g mafic tuffs a	ntion intersected. nd pegmatite	186.0	177.4	-41.7	55781		185
		present.			216.0	178.6	-40.1	55886		186.2
					246.0	178.9	-39.5	55962		186.5
					276.0	179.1	-39.0	55711		186.7
					306.0	178.6	-38.0	55965		186.2
Comme	onte									
Comme	ents									
Azir	muth corre	cted to 7.6	degrees west	declination						
			<u>.</u>							

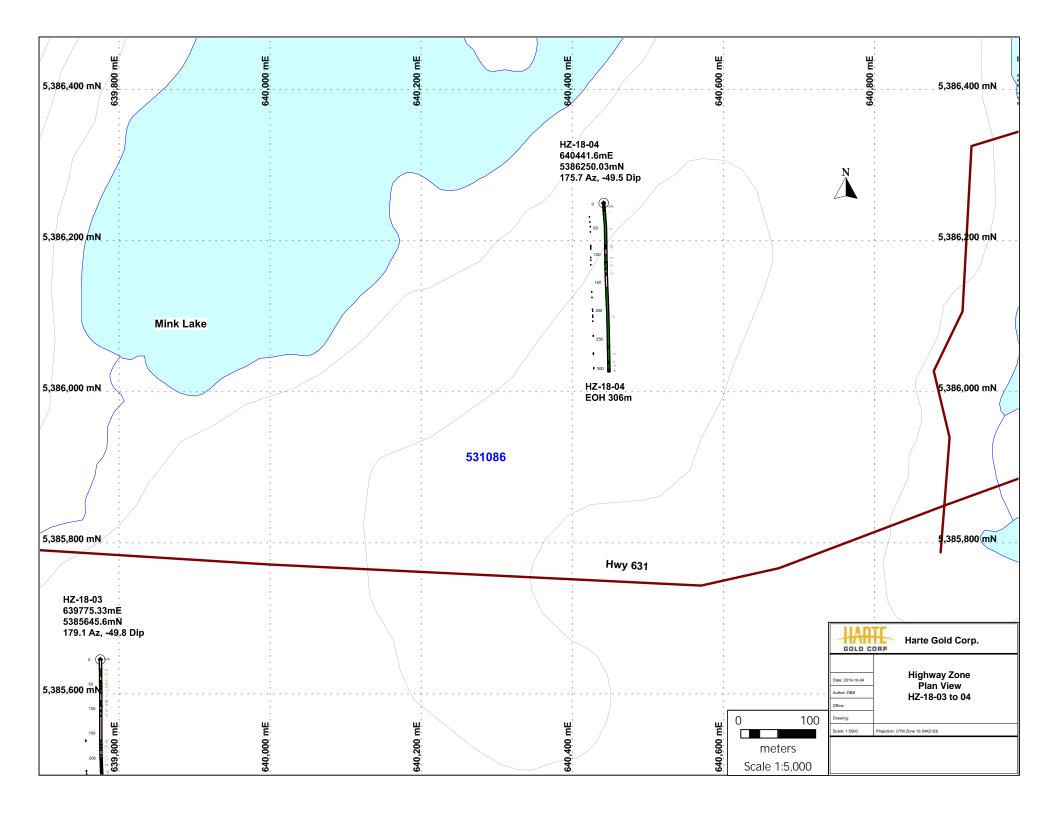
BHID	FROM_M	то_м	LENGTH_M	ROCK_CODE	ROCK	COMMENTS
HZ-18-04	0	18	18	CAS	Casing	
U7 10 04	10	22.0	4.0	ED.	Cranadiarita	Light grey to dark grey, fine- to medium-grained massive granodiorite. 25-30% fine-grained mafic minerals. Weak to moderate disseminated biotite and needly amphibole. 2-3% cm-scale quartz-carb stringers, cutting core at various angles.
HZ-18-04	18	22.8	4.8	28	Granodiorite	Sharp lower contact. Dark grey, fine-grained, banded mafic tuff. Moderate foliation (60-70 deg TCA) defined by fine-grained mafic minerals and
						banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Weak to
						moderate patchy to banded chlorite-sericite alteration throughout unit. 3% mm-cm scale quartz carb stringers/veinlets,
						mostly parallel to fabric. 2% cm-scale minor granodiorite dykes observed. Trace disseminated pyrrhotite throughout unit.
HZ-18-04	22.8	84.03	61.23	1H	Mafic Tuff	Sharp lower contact.
						Dark grey to purplish-grey to pinkish-grey, fine-grained, banded mafic tuff. Moderate foliation (70 deg TCA) defined by fine-
						grained mafic minerals and banded alteration. Moderate pervasive silicification, patchy alkali feldspar and weak to
						moderate banded chlorite-sericite alteration throughout unit. 1-2% fine disseminated pyrite throughout unit. Sharp lower
HZ-18-04	84.03	85.29	1.26	1H	Mafic Tuff	contact.
						Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali
117.40.04	05.20	06.04	4.55	45	D	feldspar, plagioclase with some quartz. Weak to moderate disseminated biotite, disseminated garnet and needly amphibole
HZ-18-04	85.29	86.84	1.55	4E	Pegmatite	throughout unit. Sharp lower contact. Park ground a purelish ground profile to the first state of the first
						Dark grey to purplish-grey to pinkish-grey, fine-grained, banded mafic tuff. Moderate foliation (75 deg TCA) defined by fine-grained mafic minerals and banded alteration. Moderate to strong pervasive silicification, moderate patchy alkali feldspar
						and weak banded chlorite-sericite alteration throughout unit. Trace fine disseminated pyrite throughout unit. Sharp lower
HZ-18-04	86.84	89.49	2.65	1⊔	Mafic Tuff	contact.
112-10-04	00.04	65.45	2.03	- 111	ivianc run	Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali
						feldspar, plagioclase with some quartz. Weak to moderate disseminated biotite, disseminated garnet and needly amphibole
						throughout unit. 5% minor cm-scale intervals of silicified mafic tuffs. Brecciated appearance from 99-101.2m with moderate
HZ-18-04	89.49	101.2	11.71	4E	Pegmatite	to strong fracture-controlled epidote alteration. Irregular lower contact.
					J	
						Dark grey to purplish-grey to pinkish-grey, fine-grained, banded mafic tuff. Moderate foliation (65 deg TCA) defined by fine-
						grained mafic minerals and banded alteration. Moderate to strong pervasive silicification (locally strong patches of
						silicification), moderate patchy alkali feldspar, fracture-controlled to patchy epidote and weak to moderate banded chlorite-
						sericite alteration throughout unit. Trace disseminated pyrite throughout unit. 2-3% minor cm-scale pegmatite dykes
						observed. Some minor cm-scale sections resemble a cherty iron formation, but difficult to determine contacts due to
HZ-18-04	101.2	113.59	12.39	1H	Mafic Tuff	alteration. Local mm-cm scale off-set fractures observed. Sharp lower contact.
						Light grey to dark grey, fine- to medium-grained massive granodiorite. 25-35% fine-grained mafic minerals. Weak to
HZ-18-04	113.59	114.76	1.17	5B	Granodiorite	moderate disseminated biotite and needly amphibole. Sharp lower contact.
						Dark grey, fine-grained, banded mafic tuff. Moderate foliation (65 deg TCA) defined by fine-grained mafic minerals and
						banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Weak to
						moderate patchy silicification with patchy to banded chlorite-sericite alteration throughout unit. 1-2% mm-cm scale quartz carb stringers/veinlets, mostly parallel to fabric. 2-3% cm-scale minor granodiorite dykes observed. Trace disseminated
HZ-18-04	114.76	127.29	12.53	14	Mafic Tuff	pyrite throughout unit. Sharp lower contact.
112-10-04	114.70	127.29	12.33	111	ivialic ruli	Pink grey, medium-grained massive granite. Moderately foliated defined by fine-grained mafic minerals and banded
						alteration. Weak to moderate disseminated biotite and needly amphibole with patchy to banded iron staining and alkali
						feldspar alteration throughout unit. 2-3% minor cm scale pegmatite dykes throughout unit. 3-5% mm-cm scale quartz-carb
HZ-18-04	127.29	133.94	6.65	5A	Granite	stringers, mostly parallel to fabric and stained red. Sharp lower contact.
HZ-18-04	127.29	133.94	6.65	5A	Granite	


-				Dark grey, fine-grained, banded mafic tuff. Moderate foliation (65 deg TCA) defined by fine-grained mafic minerals and
				banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Weak to
				moderate patchy silicification with patchy to banded chlorite-sericite alteration throughout unit. 1-2% mm-cm scale quartz
				carb stringers/veinlets, mostly parallel to fabric. 2-3% cm-scale minor granodiorite dykes observed. Trace disseminated
133.94	137.88	3.94	1H Matic Tutt	pyrite throughout unit. Sharp lower contact.
				Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali
				feldspar, plagioclase with some quartz. Weak to moderate disseminated biotite, disseminated garnet and needly amphibole
137.88	160.15	22.27	4E Pegmatite	throughout unit. Brecciated appearance from 160-160.15m on irregular lower contact.
				Dark grey, fine-grained, banded mafic tuff. Moderate foliation (65-70 deg TCA) defined by fine-grained mafic minerals and
				banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Weak to
				moderate patchy silicification with patchy to banded chlorite-sericite with weak patchy epidote alteration throughout unit.
				Alteration increases to moderate from 196-219m. Silicification becomes pervasive at approximately 219m. Banded
				alteration inscreases to moderate-strong with weak patchy garnet locally from 240-261.81m. 2% mm-cm scale quartz carb
				stringers/veinlets, mostly parallel to fabric. 1% cm-scale minor granodiorite and pegmatite dykes observed. Trace
160.15	261.81	101.66	1H Mafic Tuff	disseminated pyrite throughout unit.
				White to light grey with some dark grey, medium- to very coarse-grained, massive pegmatite. Composed of white to light
261.81	264.82	3.01	4E Pegmatite	grey feldspar and quartz. Moderate medium- to coarse-grained flakey black biotite. Sharp lower contact.
			ű	
				Dark grey, fine-grained, banded mafic tuff. Moderate foliation (75 deg TCA) defined by fine-grained mafic minerals and
				banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Moderate
				pervasive silicification with patchy to banded chlorite-sericite with weak fracturte-controlled epidote alteration throughout
				unit. 2-3% mm-cm scale quartz carb stringers/veinlets, mostly parallel to fabric. 3-5% cm-scale minor granodiorite and
264.82	288 37	23 55	1H Mafic Tuff	pegmatite dykes observed. Trace disseminated pyrite throughout unit. Weakly broken core throughout unit.
				Lost core due to blockage in the core barrel.
200.57		1.03	2031 2012	Light grey to pinkish-grey to dark grey, medium- to very coarse-grained, massive pegmatite. Composed of mostly alkali
				feldspar, plagioclase with some quartz. Weak to moderate disseminated biotite and needly amphibole throughout unit.
290	291	1	AF Pegmatite	Brecciated appearance on broken lower contact.
230	231		4L reginatite	brecciated appearance on broken lower contact.
				Dark grey, fine-grained, banded mafic tuff. Moderate foliation (75 deg TCA) defined by fine-grained mafic minerals and
				banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Moderate
				pervasive silicification with patchy to banded chlorite-sericite-epidote with fracturte-controlled epidote or carbonate
				· · · · · · · · · · · · · · · · · · ·
201	201.7	10.7	111 Maria Tuff	alteration throughout unit. 2% mm-cm scale quartz carb stringers/veinlets, mostly parallel to fabric. 3-5% cm-scale minor
291	301.7	10.7	TH Mancium	pegmatite dykes observed. Trace disseminated pyrite throughout unit. Moderately broken core throughout unit.
				Pink grey, medium-grained massive granite. Weak to moderate disseminated biotite and needly amphibole with patchy to
				pervasive iron staining and alkali feldspar alteration throughout unit. 3-5% minor cm scale intervals of magic tuff throughout
301.7	304.34	2.64	5A Granite	unit. Sharp lower contact.
				Dark grey, fine-grained, banded mafic tuff. Moderate foliation (70 deg TCA) defined by fine-grained mafic minerals and
				banded alteration. Some sections look similar to massive flow, could be a sequence of tuffs and mafic flow. Moderate
				pervasive silicification with patchy to banded chlorite-sericite-epidote with fracturte-controlled epidote or carbonate
				alteration throughout unit. Locally some minor iron staining occurring as patches or bands. 1-2% mm-cm scale quartz carb
				stringers/veinlets, mostly parallel to fabric. 3-5% cm-scale minor pegmatite dykes observed. 1 mm wide, mm-cm scale offset
304.34	306		1H Mafic Tuff	fracture cutting core at various angles and filled with epidote-sericite.
	264.82 288.37 290 291 301.7	137.88 160.15 160.15 261.81 261.81 264.82 288.37 288.37 290 290 291 291 301.7 301.7 304.34	137.88 160.15 22.27 160.15 261.81 101.66 261.81 264.82 3.01 264.82 288.37 23.55 288.37 290 1.63 290 291 1 291 301.7 10.7 301.7 304.34 2.64	137.88 160.15 22.27 4E Pegmatite 160.15 261.81 101.66 1H Mafic Tuff 261.81 264.82 3.01 4E Pegmatite 264.82 288.37 23.55 1H Mafic Tuff 288.37 290 1.63 LC Lost Core 290 291 1 4E Pegmatite 291 301.7 10.7 1H Mafic Tuff 301.7 304.34 2.64 5A Granite


BHID	AREA	LAB	COA NUMBER	DATE SHIPPED	DATE RECEIVED	SAMPLE_TYPE	FROM_M	TO_M	LENGTH_M	SAMPLE_NUMBER	Au Final	Au PPB
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	25.35	26.35	1	785214	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	36	37	1	785215	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	45.5	46.5	1	785216	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	57	58	1	785217	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	83.08	84	0.92	785218	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	84	84.6	0.6	785219	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Blank			į	785220	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	84.6	85.29	0.69	785221	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	85.29	86.14	0.85	785222	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	86.14	86.84	0.7	785223	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	86.84	87.25	0.41	785224	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	87.25	87.93	0.68	785225	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	87.93	88.93	1	785226	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	88.93	89.49	0.56	785227	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	89.49	90.49	1	785228	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	105	106	1	785229	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	OREAS 216				785230	6.71	6710
	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	110	111	1	785231	0.021	21
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	118	119	1	785232	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	166	167	1	785233	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	176	177	1	785234	0.0025	< 5
HZ-18-04	. •	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	196.77	197.77	1	785235	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	200	201	1	785236	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	208	209	1	785237	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	211	212	1	785238	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	218	219	1	785239	0.0025	< 5
	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Blank				785240	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	243	244	1	785241	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	244	245	1	785242	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	273	274	1	785243	0.0025	< 5
HZ-18-04		Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	274	275	1	785244	0.0025	< 5
HZ-18-04	_	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	275	276	1	785245	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	298	299	1	785246	0.0025	< 5
HZ-18-04	Regional	Actlabs	A18-15487	19-Oct-18	20-Nov-18	Assay	299	300	1	785247	0.0025	< 5

Appendix C – Highway Zone - 2018 Drill Hole Cross Sections





Appendix D – Highway Zone - 2018 Drill Hole Plans

Appendix E – Highway Zone - 2018 Actlabs Assay Certificates

Innovative Technologies

Date Submitted: 02-Oct-18
Invoice No.: A18-14333
Invoice Date: 17-Oct-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

54 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT **A18-14333**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
783176	17	
783177	< 5	
783178	17	
783179	< 5	
783180	< 5	
783181	6	
783182	6	
783183	< 5	
783184	< 5	
783185	8	
783186	< 5	
783187	11	
783188	148	
783189	3780	3.93
783190	5400	
783191	3570	3.68
783192	176	
783193	71	
783194	73	
783195	13	
783196	19	
783197	56	
783198	12	
783199	102	
783200	< 5	
783201	12	
783202	167	
783203	21	
783204	9	
783205	< 5	
787084	< 5	
787085	< 5	
787086	10	
787087	< 5	
787088	< 5	
785064	< 5	
	+	-
785065 785066	< 5	
785066	< 5	
785067	< 5	
785068	< 5	
785069	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
785070	5360	
785071	< 5	
785072	< 5	
785073	< 5	
785074	< 5	
785075	< 5	
785057	< 5	
785058	< 5	
785059	< 5	
785060	< 5	
785061	< 5	
785062	< 5	
785063	< 5	

QC

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA-
00540 040 /5		GRA
OREAS 216 (Fire Assay) Meas		6.72
OREAS 216 (Fire		6.66
Assay) Cert		0.00
OREAS 254 Meas	2520	
OREAS 254 Cert	2550	
OREAS 254 Meas	2420	
OREAS 254 Cert	2550	
OREAS 229 (Fire	2000	12.3
Assay) Meas		12.0
OREAS 229 (Fire		12.1
Assay) Cert		
OREAS 217 (Fire	332	
Assay) Meas		
OREAS 217 (Fire	338	
Assay) Cert		
OREAS 217 (Fire	330	
Assay) Meas	000	
OREAS 217 (Fire Assay) Cert	338	
783185 Orig	7	
783185 Dup	8	
783191 Orig	-	3.74
783191 Dup		3.62
783195 Orig	12	3.02
783195 Dup	14	
	5	
783205 Orig		
783205 Dup	< 5	
785073 Orig	< 5	
785073 Dup	< 5	
785059 Orig	< 5	
785059 Split PREP DUP	< 5	
785063 Orig	< 5	
785063 Dup	< 5	
Method Blank		< 0.03
	-	

Innovative Technologies

Date Submitted: 09-Oct-18
Invoice No.: A18-14724
Invoice Date: 23-Oct-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

29 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT **A18-14724**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
783206	14
783207	193
783208	7
787117	< 5
787118	< 5
787119	17
787120	< 5
787121	< 5
787122	8
787123	< 5
787124	< 5
787125	< 5
787126	< 5
787127	< 5
787128	11
785105	< 5
785106	< 5
785107	< 5
785108	< 5
785109	< 5
785110	6560
785111	< 5
785112	< 5
785113	< 5
785114	< 5
785115	< 5
785116	< 5
785117	< 5
785118	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2520
OREAS 254 Cert	2550
787123 Orig	< 5
787123 Dup	< 5
785109 Orig	< 5
785109 Dup	< 5
Method Blank	< 5
Method Blank	< 5

Innovative Technologies

Date Submitted: 09-Oct-18
Invoice No.: A18-14725
Invoice Date: 23-Oct-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

31 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT **A18-14725**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
785076	< 5
785077	< 5
785078	< 5
785079	< 5
785080	14
785081	< 5
785082	< 5
785083	< 5
785084	< 5
785085	< 5
785086	< 5
785087	< 5
785088	< 5
785089	< 5
785090	3530
785091	7
785092	< 5
785093	< 5
785094	< 5
785095	< 5
785096	< 5
785097	< 5
785098	< 5
785099	< 5
785100	< 5
785101	< 5
785102	< 5
785103	< 5
785104	< 5
785119	< 5
785120	< 5
	•

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2520
OREAS 254 Cert	2550
OREAS 217 (Fire	319
Assay) Meas	
OREAS 217 (Fire	338
Assay) Cert	
785085 Orig	< 5
785085 Dup	< 5
785095 Orig	< 5
785095 Dup	< 5
785119 Orig	< 5
785119 Dup	< 5
Method Blank	< 5
Method Blank	< 5

Innovative Technologies

Date Submitted: 11-Oct-18
Invoice No.: A18-14887
Invoice Date: 31-Oct-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

47 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-14887

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
785121	7
785122	7
785123	< 5
785124	< 5
785125	< 5
785126	< 5
785127	< 5
785128	< 5
785129	< 5
785130	5510
785131	< 5
785132	< 5
785133	< 5
785134	< 5
785135	< 5
785136	< 5
785137	< 5
785138	< 5
785139	8
785140	< 5
785141	< 5
785142	< 5
785143	< 5
785144	< 5
785145	< 5
785146	< 5
785147	< 5
785148	< 5
785149	< 5
785150	3400
785151	< 5
785152	< 5
785153	< 5
785154	< 5
785155	< 5
785156	< 5
785157	< 5
785158	< 5
785159	< 5
785160	< 5
785161	< 5
785161 785162	< 5
, 55102	+ ``

Results Activation Laboratories Ltd. Report: A18-14887

	_
Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
785163	< 5
785164	< 5
785165	< 5
785166	< 5
785167	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2500
OREAS 254 Cert	2550
OREAS 254 Meas	2520
OREAS 254 Cert	2550
OREAS 217 (Fire Assay) Meas	328
OREAS 217 (Fire Assay) Cert	338
OREAS 217 (Fire Assay) Meas	328
OREAS 217 (Fire Assay) Cert	338
785127 Orig	< 5
785127 Dup	< 5
785131 Orig	< 5
785131 Dup	< 5
785145 Orig	< 5
785145 Dup	< 5
785162 Orig	< 5
785162 Dup	< 5
785166 Orig	< 5
785166 Dup	< 5
Method Blank	< 5

Innovative Technologies

Date Submitted: 16-Oct-18
Invoice No.: A18-15234
Invoice Date: 02-Nov-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

39 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-15234

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyta Cymhal	۱۸
Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
787129	< 5
787130	6200
787131	26
787132	5
787133	< 5
787134	< 5
787135	1010
783223	< 5
783224	< 5
783225	< 5
783226	< 5
783227	< 5
783228	< 5
783229	< 5
783230	6470
783231	< 5
783232	< 5
785168	< 5
785169	< 5
785170	6420
785171	< 5
785172	< 5
785173	< 5
785174	< 5
785175	< 5
785176	< 5
785177	< 5
785178	< 5
785179	< 5
785180	< 5
785181	< 5
787136	59
787137	54
787138	13
787139	< 5
787140	< 5
787141	5
787142	< 5
787143	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2420
OREAS 254 Cert	2550
OREAS 254 Meas	2410
OREAS 254 Cert	2550
OREAS 217 (Fire Assay) Meas	336
OREAS 217 (Fire Assay) Cert	338
OREAS 217 (Fire Assay) Meas	322
OREAS 217 (Fire Assay) Cert	338
783224 Orig	< 5
783224 Dup	< 5
785172 Orig	< 5
785172 Dup	< 5
785181 Orig	< 5
785181 Dup	< 5
787140 Orig	< 5
787140 Dup	< 5
Method Blank	< 5

Innovative Technologies

Date Submitted: 18-Oct-18
Invoice No.: A18-15432
Invoice Date: 31-Oct-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

32 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay-

Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT **A18-15432**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
785182	< 5
785183	< 5
785184	< 5
785185	< 5
785186	< 5
785187	< 5
785188	5
785189	< 5
785190	5380
785191	< 5
785192	< 5
785193	< 5
785194	< 5
785195	< 5
785196	< 5
785197	< 5
785198	< 5
785199	< 5
785200	< 5
785201	< 5
785202	< 5
785203	< 5
785204	< 5
785205	< 5
785206	< 5
785207	< 5
785208	< 5
785209	< 5
785210	3430
785211	< 5
785212	< 5
785213	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2490
OREAS 254 Cert	2550
OREAS 217 (Fire	340
Assay) Meas	
OREAS 217 (Fire	338
Assay) Cert	
785198 Orig	< 5
785198 Dup	< 5
785202 Orig	< 5
785202 Dup	< 5
785213 Orig	< 5
785213 Dup	< 5
Method Blank	< 5
Method Blank	< 5

Innovative Technologies

Date Submitted: 19-Oct-18
Invoice No.: A18-15487
Invoice Date: 20-Nov-18

Your Reference: Exploration/Prospecting

Harte Gold Corp.

8 King Street East
Suite 1700
Toronto Ontario M5C 1B5

ATTN: Vice President George Flach

CERTIFICATE OF ANALYSIS

34 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay-Harte Gold Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT **A18-15487**

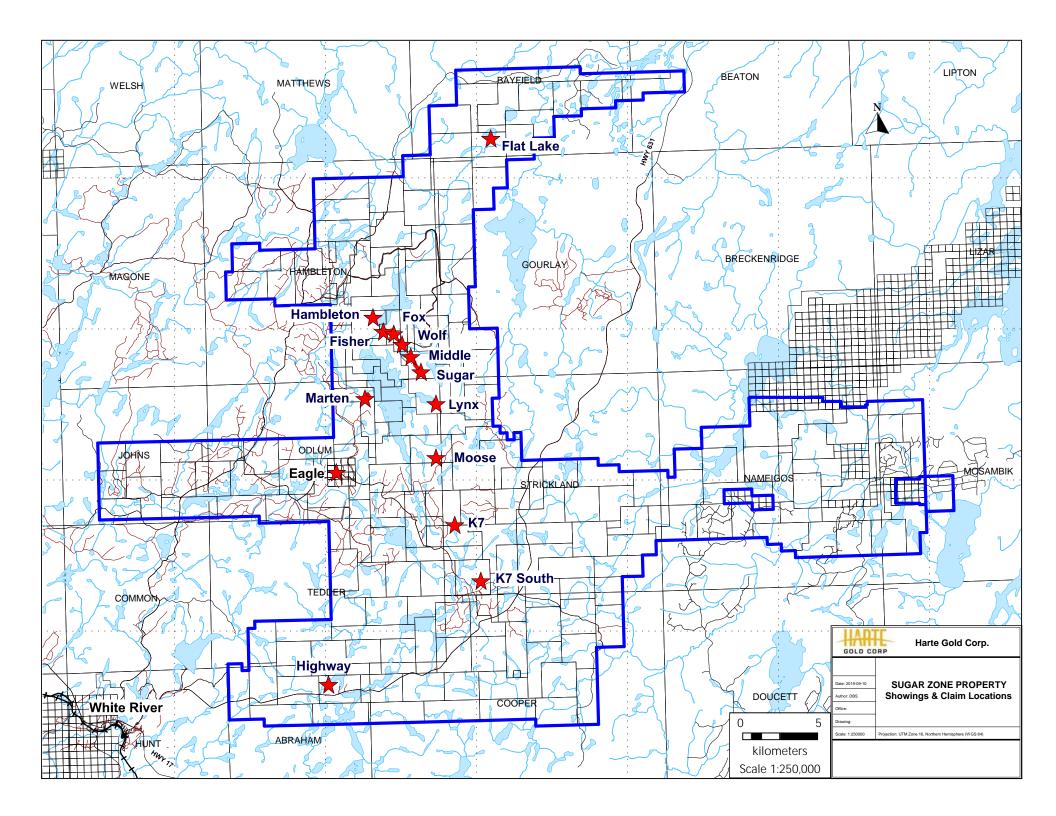
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control


ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
785214	< 5
785215	< 5
785216	< 5
785217	< 5
785218	< 5
785219	< 5
785220	< 5
785221	< 5
785222	< 5
785223	< 5
785224	< 5
785225	< 5
785226	< 5
785227	< 5
785228	< 5
785229	< 5
785230	6710
785231	21
785232	< 5
785233	< 5
785234	< 5
785235	< 5
785236	< 5
785237	< 5
785238	< 5
785239	< 5
785240	< 5
785241	< 5
785242	< 5
785243	< 5
785244	< 5
785245	< 5
785246	< 5
785247	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 254 Meas	2480
OREAS 254 Cert	2550
Oreas 221 (Fire	1040
Assay) Meas	
Oreas 221 (Fire	1060
Assay) Cert	
785223 Orig	< 5
785223 Dup	< 5
785233 Orig	< 5
785233 Dup	< 5
785243 Orig	< 5
785243 Dup	< 5
Method Blank	< 5
Method Blank	< 5

Appendix F – Highway Zone - 2018 Actlabs Invoices

Appendix G – Highway Zone - 2018 Chibougamau Invoices

