

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report of Stripping on the Mote Aggregate Property 2019

Garrow Township, Sudbury Mining Division

Prepared by: M. Gaudreau, 2020-04-16

Contents

MOTE AGGREGATE PROPERTY	2
INTRODUCTION	2
LOCATION & ACCESS	2
PROPERTY TENURE	2
PREVIOUS WORK	4
GEOLOGY	5
Regional Geology	5
General Geology of the Stripped Areas	5
DESCRIPTION OF STRIPPED AREAS	
Stripped Area 1 - June 17, 2019	
Stripped Area 2 – June 24, 2019	
Stripped Area 3 - June 14, 2019	
Stripped Area 4 - June 14, 2019	
SAMPLES	14
Sample Descriptions & Analytical Results	15
CONCLUSIONS & RECOMMENDATIONS	
REFERENCES	
APPENDIX- ASSAY CERTIFICATES	
APPENDIX- INVOICES	

MOTE AGGREGATE PROPERTY

INTRODUCTION

On July 4th, 2019, M. Gaudreau travelled to North Bay where he and D. Fudge continued by truck to the Mote Aggregate Property (Property). The intent of work described in this report is the examination, sampling and mapping of four (4) recently stripped areas. The stripping commenced on June 10th, 2019 and was completed on June 24th, 2019. Excavator floated off site on July 15, 2019. The stripping program intent was to further evaluate the property potential as an aggregate source. The predominant rock type at all four stripped areas is a metamorphosed to lower amphibolite facies guartz-muscovite gneiss with accessory minerals of minor tourmaline crystals and variable thickness mica rich layers of muscovite to biotite. The foliation includes random boudin quartz lenses which may contain minor and disseminated hematite within and along the bedding in the strike direction of the beds. The micaceous guartzites vary in both colour and mica content, the most distinct, being an olive-green or pink colour. The colours are produced by a combination of variable micaceous minerals with iron-rich impurities (hematite) in the guartz and feldspar. The stripping program was successful in the ongoing evaluation process. Permit PL-000024.

LOCATION & ACCESS

The Property is accessed by paved road along highway #63 in a northeasterly direction from North Bay to a point 13 km past the intersection with Highway #533. Turn left on McConnell Lake access road and continue northwest to coordinate NAD83, Zone 17 633122E, 5175160N, turn west onto forest road and travel 4 km to stripped area at 629511E and 5174243N.

PROPERTY TENURE

Township	Cell Claim Number	Recording Date	Due Date	Bdy. Cell	Percent	Work Required
GARROW	127058	2018-04-10	2019-10-14	N	100	\$200
GARROW	127059	2018-04-10	2019-10-14	N	100	\$200
GARROW	323629	2018-04-10	2019-10-14	N	100	\$200
GARROW	171641	2018-04-10	2019-10-14	N	100	\$400
GARROW	229057	2018-04-10	2019-09-28	N	100	\$400
GARROW	221088	2018-04-10	2019-09-28	N	100	\$200
GARROW	276297	2018-04-10	2019-09-28	N	100	\$400
GARROW	288341	2018-04-10	2019-09-28	N	100	\$400
GARROW	307373	2018-04-10	2019-09-08	Y	100	\$200
GARROW	127774	2018-04-10	2019-09-28	Y	100	\$200
GARROW	175150	2018-04-10	2019-09-28	Y	100	\$200

SUDBURY Mining Division – Gary Mote and Glen Joseph Mote, 2019 Property claims

GARROW	287138	2018-04-10	2019-09-08	Y	50/50	\$200
GARROW	127345	2018-04-10	2019-09-08	Y	50/50	\$200
GARROW	229056	2018-04-10	2019-09-28	Y	50/50	\$200
GARROW	295271	2018-04-10	2019-09-08	N	100	\$400
GARROW	324551	2018-04-10	2019-09-08	N	100	\$400
GARROW	335507	2018-04-10	2019-09-08	N	100	\$400
GARROW	173993	2018-04-10	2019-09-08	N	100	\$400
GARROW	155842	2018-04-10	2019-09-08	Y	50	\$200
GARROW	104725	2018-04-10	2019-09-08	Y	50	\$200

Legacy claims include 4226738, 4226737 and 4244269.

Figure 1: Mote Aggregate Property - Ontario Key Location Map

Ontari	O MINISTRY MLAS	OF NORTHERN Map Viewer	DEVELOPMENT	AND MINES	Mote Aggre	egate Prope	rty Note Aggr	egate Property		
245419	31L11K149	31L11K150	Z0991171K151	31L11K152	391E11K153	31L11K154	3 4. 1. 14 1,55	Legend		
31L11K148 31L11K168	31L11K169	31L11K170	31730001 31L11K17W . MC	1 831171111172 AUSLAN	31L11K173	31L11K174	631000E 5175000N 31L11K175	Provincial Grid Cell Available Unavailable Unavailable Unavailable Mining Claim Mining Claim Allenation Allenation		
Surke Lake 31L11K188	31L11K189 127058	31L11K190 323629	31L11K191 221088	307373 127774 31L11K102 S4220737 S43	31L11K193 295271	31L11K194 173993	311111115	Withdrawal Noice ENDM Administrative Boundaries ENDM Tormships and Areas Geographic Lct Pabre UTM Kird 11K UTM Kird 11K		
31L11K208	28000E 74000N 31L11K209 S422 127059 31L11K W S 1 4	5738 71641 	629000E 5174000N 31C11K211 276297 54226737	287138 17515054 84226737 31L111K212	2006 / 600000 5134034213 5124551 54244269 0 & g g 2 P &	155842 106911 84244289 \$30044 m ^{314,11K214}	20ne 17 95100E 313998495 229925	Mining Division Mining Division ULUPA Protected Area - Far North CLUPA Protected Area - Far North Residen Geologist Division Faderal Land Other Native Reserves Mining Sites Automatics Sites		
31111K228	GARROW 31L11K229	31 L11k250 229057	31L11K231 288341	54220737 5.4 127345 229056 31L11K232	31L11K233 335507	54244269 104725 2885215300 31L11K24	31L11K235 1480 146095 53004487	AMIS Features Drill Hole Mineral Occurrences MLAS Mining History Windrawal - History Moles - History Mining Chinn - History		
31L11K248	Zone 17 28000E 173000N 31L11K249	31L11K250	Zone 17 629000E 5173000N 31L11K251	31L11K252	Zóne 17 530000E 217392004k253	31L11K254 229926	Zone 17 6310466255 612299944	Mining Land Tenure - History Legecy Claim Provincial Grid 250K Provincial Grid 250K Provincial Grid 50K Provincial Grid 50K Land Tenure		
31L11K268	31L11K269	31L11K270	31L11K271	31L11K272	31L11K273	31L11K274 315330	31L11K275 140695	Surface Rights Mining Rights Mining Rights Mining and Surface Rights Order-in-Council		
0 0.88 km Projection: Web Mercator The Oritario Ministry of Northern Development and Mines shall not be liable in any way should not be used for: navigation, a plan of survey, routes, nor locations. Imageny Copyright Notices: Ontario Ministry of Natural Resources and Forestry; NASA Landsatt Program; First Base Solutions Inc.; Aéro-Photo (1961) Inc.; DigitalGlobe Inc.; U.S. Geological Survey.										

Figure 2: Mote Aggregate Property Claim Map 2018 -2019

PREVIOUS WORK

The general area has been the subject of intermittent exploration focused on development of decorative stone since the early 1970's. Most local work has been focused on exploration and production from McLaren's Bay Mica and Callander Industries located 2km to the North West along the strike.

The legacy claims were staked for G. Mote and recorded between September 2007 and October 2008.

G. Mote completed a mechanical stripping program on the property in the summer of 2009 on claim 4226738 to assess suitability of the bedrock for decorative stone. Report of Work S4226738 was filed with the Assessment Office of the Ministry of Northern Development Mines and Forestry. The Report of Work recommended a bulk sampling program. Mechanical Stripping was completed under the Aggregate Act.

Fudge & Associates completed a bulk sample and filed report 20009881, dated September 2011, the work was completed on claim 4226738. Mote completed a mechanical stripping program on the larger property encompassing the wester most claims in the summer of 2012 to assess suitability of bedrock for decorative stone.

Fudge & Associates completed claim line refurbishment on unpatented claims 4226737 and 4244269 in April 2017.

GEOLOGY

Regional Geology

O.G.S. Map 2361 shows mining Claim S 4226738 to be underlain by quartzofeldspathic gneiss. An unpublished report in 1991 by E. Bassa, Staff Geologist with the Ministry of Northern Development and Mines, Titled North Bay - Thorne Building Stone Inventory described the area as: "The rocks metamorphosed to a lower amphibolite facies and contain appreciable amounts of mica. In places mica rich bands impart a strong somewhat variable foliation in the rock. This foliation commonly acts as a plane of weakness for splitting the stone. Grain size within these rocks' ranges from microscopic flakes to larger 0.8 cm flakes adjacent to crosscutting quartz veins. Other minerals include common subhedral quartz and feldspar grains that range in size from 0.1 cm to 0.4 cm. micaceous quartzite varies both in colour and mica content. Quartz veins occur in abundance and commonly contain coarse specular hematite. These rocks have been identified as middle Precambrian (Grenville) muscovite and quartzose gneisses derived from orthoquartizites and sub-arkose and aluminous clay stones..."

Other minerals observed include biotite, feldspar and minor amounts of hematite. The stone is characterized by a distinctive olive green colour. Quality determining properties include; colour, abundance of mica, grain size, uniformity and joint spacing.

General Geology of the Stripped Areas

In general, outcrop exposed in the four (4) stripped areas displayed typical banding although less pronounced than that found in the McLarens Bay Quarry some 2 km north west. The green muscovite and biotite bands impart a variable foliation in the rock. Where observed, quartz veins display rolled or boudinized structure to form irregular "clots" up to 10 cm in length. Quartz "clotting" is abundant in places and carries minor amounts of hematite. Where well developed foliation occurs, it acts as a plane of weakness for splitting the stone and where absent or less evident, broken rock displays an irregular fracture pattern. The stone is characterized by a distinctive olive green colour or satin black within the biotite rich bands. Quality determining properties include colour, abundance of mica, grain size, uniformity and joint spacing.

Picture: Example of grey and green banding between metamorphosed bedded orthoquartzite from hematite and muscovite mica at Stripped Area 2.

Picture: Example of boudin textured quartz vein at Stripped Area 2.

DESCRIPTION OF STRIPPED AREAS

Stripped Area 1 - June 17, 2019

Metamorphosed orthoquartzite with boudinage quartz veins, very micaceous, hematite between bedding (85°-90° dip south). The stripped area is approximately 25 meters in length and 5 - 10 meters in width. The stripping has taken advantage of the natural slope face and is beside the existing forest access road. Tourmaline crystals were found in one quartz vein in the central part of the stripping and only found in one location. Aggregate samples GARROW-2019-01 and GARROW-2019-02 were taken randomly across the slope face and bed. Some red hematite staining occurs only spotty and occasionally. No grains of any size larger than 4 mm were observed in the sample material.

Stripped Area 2 – June 24, 2019

Metamorphosed orthoquartzite with boudinage quartz veins, very micaceous, hematite between bedding (85°-90° dip south) striking approximately 120°. The stripped area is approximately 40 meters in length and up to 20 meters in width. The stripping has taken advantage of the natural "plateau" area and is a short distance to the forest access road. A sample GARROW-2019-03 was taken at

the north end of the stripped area. Graphicly meandering metamorphosed bedding with a tinge of green and light to dark grey bands throughout. In the places on broken faces the micaceous nature of the rock emits a sparkle reflection. No grains of any size larger than 4 mm were observed in the sample. Boudinage quartz veins stand out dramatically which have randomly infilled between bed layers.

Picture taken facing southward at the entrance to stripped area. The trees at all sites are a mix of coniferous and deciduous, predominantly pines of varying types.

Stripped Area 3 - June 14, 2019

Stripped Area 3 and Stripped Area 4 were completed on the same day. The exposed rock is best described as a metamorphosed orthoquartzite with boudinage quartz veins. This site has some minor bedding differences. Although still very micaceous with green muscovite and hematite between bedding (85°-90° dip south) there is a predominant and "clean" with of approximately 15 meters that are baron of quartz veins or other accumulated oddities. Interesting that the quartz crystals within the matrix are stretched although there appears to less foliation. Then on the west side in contact with centimeter thick beds of very micaceous (>80%) highly altered muscovite mica.

The stripped area is approximately 40 meters in length and 20 meters in width. The stripping has taken advantage of the natural slope face and is beside the existing forest access road. Tourmaline crystals were found in one quartz vein in the central part of the stripping and only found in one location. An aggregate sample GARROW-2019-04 was taken randomly across the slope face. Some red hematite staining occurs only spotty and occasionally. No grains of any size larger than 4 mm were observed in the samples.

Stripped Area 3, looking south with several broken pieces for further testing.

Photo looking northward from Stripped Area 3. Note the 0.5 meter sized rock pile of material pulled back and piled for additional testing at a later date.

Stripped Area 4 - June 14, 2019

Stripped Area 4 is situated north, across the road from Stripped Area 3. Both areas were stripped on the same day. The rock is best described as a metamorphosed orthoquartzite with boudinage quartz veins, very micaceous, hematite between bedding (85°-90° dip south). The stripped area is approximately 22 meters in length and 5 meter average width. The road to the stripping is a short distance to the existing forest access road. One-centimeter pink feldspar crystals were found in one quartz vein at the north end of the stripping and at only one location. An aggregate sample GARROW-2019-05 was taken randomly across the north face. Boudin quartz veins are prominent as well as much more common and red hematite staining occurs in many locations intermixed with very micaceous beds.

This area appears to have a much more mica variation but no "green" and more commonly biotite and much less hematite. Of all the sites this area appears to be more chaotic in nature, meaning the bedding is not competent in nature due to the high mica content. Foliation of the bedding has a much more passive look as well. A cut sample at this location would most likely fail numerous test that require a competent nature.

Photo of Stripped Area 4, looking north. The dimensions of the stripping were measured and placed on the photo for easy identification.

SAMPLES

5 samples were collected from Stripped Area 1 through Stripped Area 4. The samples were delivered to AGAT laboratories in Sudbury for multi-element analysis, Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish.

Stripped Area 1 - Samples GARROW-2019-01 and GARROW-2019-02 Stripped Area 2 - Sample GARROW-2019-03 Stripped Area 3 - Sample GARROW-2019-04 Stripped Area 4 - Sample GARROW-2019-05

Map Point	Easting NAD 83 Northing NAD 83		Sample #	Rock Type						
	UTM Zone 17	UTM Zone 17								
1	629517	5174214	GARROW-2019-01	Orthoquartzite						
2	629502	5174228	GARROW-2019-02	Orthoquartzite						
3	629406	5174248	GARROW-2019-03	Orthoquartzite						
4	629612	5174266	GARROW-2019-04	Orthoquartzite						
5	629608	5174307	GARROW-2019-05	Orthoquartzite						

See attached assay certificate.

July 4, 2019 Google Earth Image of track log to stripped areas and sample locations.

Google Earth – Track, sample, and stripped locations on claims 281359, 277394 and 143338.

Sample Descriptions & Analytical Results

GARROW-2019-01 Photo below taken at NAD83 Zone 17 629517E, 5174214N. Rock Description: Metamorphosed micaceous orthoquartzite, very micaceous on bedding planed, grey hematite between bedding, fine grained, non-magnetic.

GARROW-2019-02 Photo below taken at NAD83 Zone 17 629502E, 5174228N. Rock Description: Metamorphosed micaceous orthoquartzite, very micaceous on bedding planed, grey hematite between bedding, fine grained, non-magnetic.

GARROW-2019-03 Photo below taken at NAD83 Zone 17 629406E, 5174248N. Rock Description: Highly metamorphosed micaceous orthoquartzite, very micaceous on bedding planed, grey hematite between bedding, fine grained, non-magnetic.

GARROW-2019-04 Photo below taken at NAD83 Zone 17 629612E, 5174266N. Rock Description: Metamorphosed massive orthoquartzite, some beds are very micaceous with grey hematite otherwise fine grained and non-magnetic.

GARROW-2019-05 Photo below taken at NAD83 Zone 17 629608E, 5174307N. Rock Description: Highly metamorphosed and very micaceous orthoquartzite, with feldspar interbeds including grey hematite between bedding planes and fine to medium grained, non-magnetic.

Photos

Photo of mobilizing LS-4300 Linkbelt excavator on site June 10, 2019 and off site on July 15, 2019.

Photo of LS-4300 Linkbelt excavator on site.

 \bigcirc Equipment used - 15 - 4300 Linkbett excavator Weight 40 tons, width 11 St Delivered to site June 10/2019 June 12/2019 - Opened up existing trail the was accessable by 4-wheeler only Excavator is 11 At wide. Overgrown with 2" to 4" White Birch + Aspen Some smaller Red + White Pine Moved most trees + stumps with 134300 Olen with chain sow limber some small pine + cleaned up Birch + HoppAspen Glen 9 hrs. @ # 23.00 Gary 9 hris @ 25.00 Excerctor Ht hrs. @

- Finish opening trail in - Small out crop showing - covered with moss - Dug down the sides moving small pine and birch trees - Removed up to 3 of over builden to view out crop B ane 13/2019 - Fome structure as showing on Oten - 3 hrs. @ 23. 00 Gen - 8 hrs. @ 23. 00 Gart - 8 hrs. @ 25. 00 Excavator - 113 hrs. @ - Opened more frail in - Deep drop off beside trail - Dug fill from sides to fill in and previde trail to rock face - Lot of loose rock from centuries of freeze June 14/2019 tripped over 3 - Level off, and cleaned moss and frees - Colour + structure tooked good Glen - 9 Brs. @ 23.00 Gary - 9 Brs. @ 25.00 Excavator - 5 @

Bune 17/2019 - cleaved trail on to next out crop - small a mount of overburden - some small trees - outcrop has similar type stone as other outcrops Stripped area & Glen - 8 hr. @ 23.00 Gary - 8 hr. @ 25.00 Fx cavator-3 hr. @ - ? June 24/2019 - cleared trail to stripped area 2 - small pine regrowth main - large full the outerop - moss covered to smaller trees - dyg down the access side of outerop to determine amount of oxferburden stripped area 2 In area Hen - 8 hrs @ 23,00 Gary - 3 prs. @ 25.00 Excautor - H hr. @ --? Pick-up - I trips @ 160 Km round trip

CONCLUSIONS & RECOMMENDATIONS

Exposed rock show significantly less parallel foliation than rock from McLarens Bay Mica and may be less suitable for splitting. Dependent on jointing and fracture patterns the more massive rock may be suitable for quarrying as dimension stone blocks. The abundance of green mica and black biotite both which "sparkle" when exposed to sunlight should make it an attractive dimension or landscape product.

Reference by: Fudge & Associates

REFERENCES

- An unpublished report in 1991 by E. Bassa, Staff Geologist with the Ministry of Northern Development and Mines, Titled North Bay - Thorne Building Stone Inventory
- 2. Google Earth Pro 7.3.2.5776

APPENDIX- ASSAY CERTIFICATES

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON, ON ATTENTION TO: Marc Gaudreau PROJECT: AGAT WORK ORDER: 19T492426 SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician DATE REPORTED: Jul 25, 2019 PAGES (INCLUDING COVER): 15

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 19T492426 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Marc Gaudreau

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Jul 1	4, 2019		DATE RECEIVED: Jul 12, 2019	DATE REPORTED: Jul 25, 2019	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
GARROW-2019-01 (348377	7)	0.334			
GARROW-2019-02 (348378	3)	0.359			
GARROW-2019-03 (348379	9)	0.498			
GARROW-2019-04 (348380))	0.602			
GARROW-2019-05 (34838	1)	0.530			
		_			
		=			
		-			

Comments: RDL - Reported Detection Limit Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

-Sherin Houssa

Certificate of Analysis

AGAT WORK ORDER: 19T492426 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

DATE RECEIVED: Jul 12, 2019 DATE REPORTED: Jul 25, 2019 SAMPLE TYPE; Rock Analyte: Ag Al As B Ba Be Bi Ca Cd Ce Co Cr Cs Co Sample ID (AGAT ID) RDL: 1 0.01 5 20 0.5 5 0.1 0.05 0.00 0.00 0.001 0.1 0.5 0.005 0.00 0.005 0.00 0.001 0.001 0.001 0.005 0.02 0.1 0.5 0.000 0.003 0.01 1.1 0.001 0.1 1.1 0.001 0.1 1.1 0.001 0.1 1.1 0.031 0.1 1.1 0.031 0.1 1.0 0.035 0.2 2.37 1.8 0.0411 0.3 c4 4.8 c5 c20 1.28 c5 c0.1 c0.05 c0.2 2.3.4 2.1 0.030 0.5 c4 c4 c5 160 538 c5 0.2 0.13				(20	1-378) S	odium P	eroxide	Fusion -	ICP-OE	S/ICP-MS	S Finish					
Analyte: Ag Al As B Ba Be Bi Ca Cd Ce Co Cr Cs Ci Sample ID (AGAT ID) RDL: 1 0.01 5 20 0.5 5 0.1 0.05 0.2 0.1 0.5 0.1 0.05 0.2 0.1 0.5 0.1 0.05 0.2 0.1 0.5 0.1 0.05 0.2 0.1 0.5 0.0 0.2 1.1 0.05 0.2 1.1 0.05 0.2 1.1 0.031 0.1 1.1 GARROW-2019-03 (348377) <1 1.2.89 <5 <20 118 <5 <0.1 <0.05 <0.2 23.7 1.8 0.041 0.3 <4 GARROW-2019-03 (348379) <1 4.46 <20 27.7 <5 <0.1 <0.05 <0.2 30.9 1.7 0.039 0.8 1 GARROW-2019-04 (348380) <1 2.08 <5 <0.2 0.13 <0.2 41.8 2.3 0.032 2.8 5 <0.2 0.13	DATE SAMPLED: Jul	14, 2019		l	DATE REC	EIVED: Jul	12, 2019		DATE REPORTED: Jul 25, 2019 SAMP					PLE TYPE: Rock		
Unit: ppm % ppm ppm ppm ppm ppm ppm % ppm		Analyte:	Ag	Al	As	В	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cs	Cu
Sample ID (AGAT ID) RDL: 1 0.01 5 20 0.5 5 0.1 0.05 0.2 0.1 0.5 0.005 0.1 1 GARROW-2019-01 (348377) <1 1.96 <5 <20 113 <5 <0.1 <0.05 <0.2 17.6 1.1 0.031 0.1 11 GARROW-2019-02 (348378) <1 2.89 <5 <20 118 <5 <0.1 <0.05 <0.2 23.7 1.8 0.041 0.3 <dd><dd><dd><dd><dd><dd><dd><dd><dd></dd></dd></dd></dd></dd></dd></dd></dd></dd>		Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
GARROW-2019-01 (348377) -1 1.96 -5 -20 153 -5 -0.1 -0.05 -0.2 17.6 1.1 0.031 0.1 11 GARROW-2019-02 (348378) -1 2.89 -5 -20 17.8 -0.05 -0.2 23.7 1.8 0.041 0.3 -45 GARROW-2019-02 (348378) -1 4.46 -5 -20 277 -5 -0.1 -0.05 -0.2 53.4 2.1 0.030 0.5 -4 GARROW-2019-03 (348378) -1 4.46 -5 -20 128 -5 -0.1 -0.05 -0.2 30.9 1.7 0.039 0.8 17 GARROW-2019-05 (348381) -1 4.98 -5 100 538 -5 0.2 0.13 -0.2 41.8 2.3 0.032 2.8 -6 GARROW-2019-05 (348381) -1 4.98 -5 100 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
GARROW-2019-02 (348378) <1	GARROW-2019-01 (3483	377)	<1	1.96	<5	<20	153	<5	<0.1	<0.05	<0.2	17.6	1.1	0.031	0.1	12
GARROW-2019-03 (348379) <1	GARROW-2019-02 (3483	378)	<1	2.89	<5	<20	118	<5	<0.1	<0.05	<0.2	23.7	1.8	0.041	0.3	<5
GARROW-2019-04 (348380) <1	GARROW-2019-03 (3483	379)	<1	4.46	<5	<20	277	<5	<0.1	<0.05	<0.2	53.4	2.1	0.030	0.5	<5
GARROW-2019-05 (348381) <1	GARROW-2019-04 (3483	380)	<1	2.08	<5	<20	128	<5	<0.1	<0.05	<0.2	30.9	1.7	0.039	0.8	11
	GARROW-2019-05 (3483	381)	<1	4.98	<5	160	538	<5	0.2	0.13	<0.2	41.8	2.3	0.032	2.8	g

Certified By:

-Sherin Houss

Certificate of Analysis

AGAT WORK ORDER: 19T492426 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

			(20	1-378) S	odium P	eroxide	Fusion -	ICP-OE	S/ICP-MS	S Finish					
DATE SAMPLED: Jul	14, 2019]	DATE REC	EIVED: Jul	12, 2019		DATE	REPORTED): Jul 25, 20)19	SAM		Rock	
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
GARROW-2019-01 (3483	377)	1.16	0.78	0.27	0.67	3.80	1.26	<1	2	0.25	<0.2	0.55	9.0	<10	0.12
GARROW-2019-02 (3483	378)	2.02	1.39	0.40	0.93	5.40	1.93	<1	2	0.43	<0.2	0.92	11.6	<10	0.22
GARROW-2019-03 (3483	379)	2.97	1.74	0.82	1.31	9.89	3.59	<1	4	0.60	<0.2	1.94	27.7	<10	0.27
GARROW-2019-04 (3483	380)	1.87	1.30	0.39	0.55	4.51	1.87	<1	5	0.41	<0.2	1.05	16.1	<10	0.21
GARROW-2019-05 (3483	381)	3.37	2.22	0.48	1.43	9.26	3.02	2	5	0.70	<0.2	3.50	16.1	<10	0.38

-Sherin Houss

Certificate of Analysis

AGAT WORK ORDER: 19T492426

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

			(20	1-378) S	odium P	eroxide	Fusion -	ICP-OE	S/ICP-MS	S Finish					
DATE SAMPLED: Jul	14, 2019		l	DATE RECI	EIVED: Jul	12, 2019		DATE REPORTED: Jul 25, 2019 SAMPLE TYPE: Ro					Rock		
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
GARROW-2019-01 (3483	377)	0.04	40	14	4	8.0	6	<0.01	<5	2.11	12.2	<0.01	0.1	<5	42.7
GARROW-2019-02 (3483	378)	0.04	35	27	5	10.4	7	<0.01	<5	2.73	27.6	<0.01	<0.1	<5	39.5
GARROW-2019-03 (3483	379)	0.05	34	14	8	23.9	6	<0.01	5	6.29	55.2	<0.01	0.2	<5	37.4
GARROW-2019-04 (3483	380)	0.08	52	24	5	13.1	8	<0.01	<5	3.63	34.9	<0.01	0.3	<5	42.6
GARROW-2019-05 (3483	381)	0.49	241	15	9	15.4	7	0.04	10	4.10	120	<0.01	0.1	6	37.0
				I											

-Sherin Houss

Certificate of Analysis

AGAT WORK ORDER: 19T492426 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Marc Gaudreau

			(20	1-378) S	odium P	eroxide	Fusion -	ICP-OES	S/ICP-MS	S Finish					
DATE SAMPLED: Jul	14, 2019		I	DATE REC	EIVED: Jul	12, 2019	DATE REPORTED: Jul 25, 2019					SAMPLE TYPE: Rock			
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Y	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
GARROW-2019-01 (3483	377)	1.4	1	32.1	<0.5	0.19	3.5	0.09	<0.5	0.12	0.78	12	<1	7.1	0.8
GARROW-2019-02 (3483	378)	1.9	<1	16.3	<0.5	0.32	3.7	0.12	<0.5	0.21	1.03	13	<1	13.0	1.5
GARROW-2019-03 (3483	879)	4.1	1	53.5	0.5	0.52	7.0	0.12	0.7	0.27	1.10	17	<1	16.3	1.8
GARROW-2019-04 (3483	80)	2.2	<1	16.0	<0.5	0.30	3.2	0.07	<0.5	0.20	1.10	6	<1	11.5	1.4
GARROW-2019-05 (3483	881)	3.0	2	32.1	0.6	0.53	7.6	0.14	0.6	0.34	1.68	11	<1	18.3	2.4
		-													
			Ē												

-Sherin Houss

Certified By:

Page 6 of 15

AGAT	Laboratories	AGAT WORK O PROJECT:	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-0599 FAX (905)501-0589						
CLIENT NAME: MISC AGAT CLIENT ON		ATTENTION TO: Marc Gaudreau							
	(201-378) Sodiu	m Peroxide Fusio	n - ICP-OES/ICP-MS Finish						
DATE SAMPLED: Jul 14, 2019	DATE RECEIVED): Jul 12, 2019	DATE REPORTED: Jul 25, 2019	SAMPLE TYPE: Rock					
Analyte: Zn	Zr								
Unit: ppm	ppm								
Sample ID (AGAT ID) RDL: 5	0.5								
GARROW-2019-01 (348377) <5	66.7								
GARROW-2019-02 (348378) 5	90.8								
GARROW-2019-03 (348379) 6	131								
GARROW-2019-04 (348380) 7	179								
GARROW-2019-05 (348381) 17	160								

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT Toronto (unless marked by *)

-Sherin Mousse

Certified By:

5623 McADAM ROAD

A C	T B	Laboratories	AGAT WORK	te of Analysis ORDER: 19T492426	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 bttp://www.agatubs.com						
CLIENT NAME: MISC AGAT	CLIENT ON		ATTENTION TO: Marc Gaudreau								
	Sieving - % Passing (Crushing)										
DATE SAMPLED: Jul 14, 2019		DATE RECEIVED: 、	Jul 12, 2019	DATE REPORTED: Jul 25, 2019	SAMPLE TYPE: Rock						
Analyt	e: Pass %										
Uni	t: %										
Sample ID (AGAT ID) RD	.: 0.01										
GARROW-2019-01 (348377)	75.32										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT Toronto (unless marked by *)

-Sherin Houss

	G		Laboratories	- Certifica AGAT WORK - PROJECT:	te of Analysis ORDER: 19T492426	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 bttp://www.agatbas.com						
CLIENT NAME: MISC	AGAT CL	IENT ON			ATTENTION TO: Marc Gaudreau							
Sieving - % Passing (Pulverizing)												
DATE SAMPLED: Jul 1	4, 2019		DATE RECEIVED:	Jul 12, 2019	DATE REPORTED: Jul 25, 2019	SAMPLE TYPE: Rock						
	Analyte:	Pass %										
	Unit:	%										
Sample ID (AGAT ID)	RDL:	0.01										
GARROW-2019-01 (348377	7)	87.35										

Comments: RDL - Reported Detection Limit

Analysis performed at AGAT Toronto (unless marked by *)

-Sherin Houss

Quality Assurance - Replicate AGAT WORK ORDER: 19T492426 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish													
		REPLIC	ATE #1			REPLIC	ATE #2						
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD					
Ag	348377	< 1	< 1	0.0%	348388	< 1	< 1	0.0%					
Al	348377	1.96	1.97	0.5%	348388	8.00	7.71	3.7%					
As	348377	< 5	< 5	0.0%	348388	< 5	< 5	0.0%					
В	348377	< 20	< 20	0.0%	348388	< 20	< 20	0.0%					
Ва	348377	153	150	2.0%	348388	302	302	0.0%					
Be	348377	< 5	< 5	0.0%	348388	< 5	< 5	0.0%					
Bi	348377	< 0.1	< 0.1	0.0%	348388	< 0.1	< 0.1	0.0%					
Са	348377	< 0.05	< 0.05	0.0%	348388	5.62	5.27	6.4%					
Cd	348377	< 0.2	< 0.2	0.0%	348388	< 0.2	< 0.2	0.0%					
Ce	348377	17.6	19.0	7.7%	348388	61.2	58.9	3.8%					
Co	348377	1.1	1.1	0.0%	348388	41.7	41.5	0.5%					
Cr	348377	0.031	0.0320	1.6%	348388	< 0.005	< 0.005	0.0%					
Cs	348377	0.1	0.1	0.0%	348388	1.0	0.93	3.2%					
Cu	348377	12	9	28.6%	348388	19	19	0.0%					
Dy	348377	1.16	1.14	1.7%	348388	6.84	6.77	1.0%					
Er	348377	0.78	0.724	7.3%	348388	3.69	3.66	0.8%					
Eu	348377	0.27	0.30	10.5%	348388	2.64	2.60	1.5%					
Fe	348377	0.67	0.686	2.4%	348388	11.0	10.3	6.6%					
Ga	348377	3.80	3.87	1.8%	348388	24.8	24.5	1.2%					
Gd	348377	1.26	1.30	3.1%	348388	8.48	8.34	1.7%					
Ge	348377	< 1	< 1	0.0%	348388	2	2	0.0%					
Hf	348377	2	2	0.0%	348388	6	6	0.0%					
Но	348377	0.25	0.245	2.4%	348388	1.32	1.30	1.5%					
In	348377	< 0.2	< 0.2	0.0%	348388	< 0.2	< 0.2	0.0%					
к	348377	0.55	0.55	0.0%	348388	0.83	0.815	1.8%					
La	348377	9.0	9.8	8.5%	348388	27.6	26.4	4.4%					
Li	348377	< 10	< 10	0.0%	348388	16	16	0.0%					
Lu	348377	0.12	0.112	6.9%	348388	0.47	0.46	2.2%					
Mg	348377	0.04	0.04	0.0%	348388	2.01	2.07	2.9%					
Mn	348377	40	39	2.5%	348388	1670	1610	3.7%					
Мо	348377	14	15	6.9%	348388	3	3	0.0%					

CLIENT NAME: MISC AGAT CLIENT ON

Quality Assurance - Replicate AGAT WORK ORDER: 19T492426 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Nb	348377	4	4	0.0%	348388	22	21	4.7%				
Nd	348377	8.0	8.60	7.0%	348388	36.5	35.3	3.3%				
Ni	348377	6	7	15.4%	348388	19	20	5.1%				
Р	348377	< 0.01	< 0.01	0.0%	348388	0.24	0.230	3.8%				
Pb	348377	< 5	< 5	0.0%	348388	< 5	< 5	0.0%				
Pr	348377	2.11	2.29	8.2%	348388	8.10	7.80	3.8%				
Rb	348377	12.2	12.4	1.6%	348388	34.1	32.9	3.6%				
S	348377	< 0.01	< 0.01	0.0%	348388	0.13	0.13	0.0%				
Sb	348377	0.1	0.1	0.0%	348388	0.2	0.2	0.0%				
Sc	348377	< 5	< 5	0.0%	348388	25	24	4.1%				
Si	348377	42.7	42.8	0.2%	348388	21.9	20.5	6.6%				
Sm	348377	1.4	1.49	4.8%	348388	8.2	8.1	1.2%				
Sn	348377	1	1	0.0%	348388	2	3					
Sr	348377	32.1	31.8	0.9%	348388	313	294	6.3%				
Та	348377	< 0.5	< 0.5	0.0%	348388	1.4	1.4	0.0%				
Tb	348377	0.19	0.19	0.0%	348388	1.23	1.20	2.5%				
Th	348377	3.5	3.7	5.6%	348388	4.5	4.4	2.2%				
Ti	348377	0.09	0.09	0.0%	348388	1.86	1.73	7.2%				
ТІ	348377	< 0.5	< 0.5	0.0%	348388	< 0.5	< 0.5	0.0%				
Tm	348377	0.12	0.109	7.1%	348388	0.50	0.484	3.7%				
U	348377	0.78	0.799	2.4%	348388	1.29	1.28	0.8%				
V	348377	12	12	0.0%	348388	217	219	0.9%				
W	348377	< 1	< 1	0.0%	348388	< 1	< 1	0.0%				
Y	348377	7.1	6.83	3.9%	348388	34.9	33.8	3.2%				
Yb	348377	0.8	0.74	6.5%	348388	3.2	3.13	1.9%				
Zn	348377	< 5	< 5	0.0%	348388	103	99	4.0%				
Zr	348377	66.7	73.8	10.1%	348388	245	245	0.0%				

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19T492426 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

	(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish												
		CRM #1	(ref.SY-4)			CRM #2 (I	ef.WMG-1a	ı)					
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits					
Ag					3.03	3.14	103%	90% - 110%					
AI	10.95	10.88	99%	90% - 110%	4.75	4.71	99%	90% - 110%					
As					5.99	6.54	109%	90% - 110%					
Ва	340	336	99%	90% - 110%	216	218	101%	90% - 110%					
Be	2.6	2.9	110%	90% - 110%									
Ca	5.72	5.65	99%	90% - 110%	10.06	9.81	97%	90% - 110%					
Ce	122	114	94%	90% - 110%									
Co	2.8	2.5	89%	90% - 110%	191	209	110%	90% - 110%					
Cr					0.0804	0.078	97%	90% - 110%					
Cs	1.5	1.4	96%	90% - 110%									
Cu	7	8	115%	90% - 110%	7120	7245	102%	90% - 110%					
Dy	18.2	18	99%	90% - 110%	2.291	2.288	100%	90% - 110%					
Er	14.2	14.2	100%	90% - 110%									
Eu	2.0	1.84	92%	90% - 110%									
Fe	4.34	4.23	97%	90% - 110%	12.71	12.42	98%	90% - 110%					
Ga	35	35	99%	90% - 110%									
Gd	14	14	102%	90% - 110%									
Hf	10.6	11	104%	90% - 110%									
Ho	4.3	4.2	97%	90% - 110%									
к	1.37	1.36	99%	90% - 110%	0.1021	0.1033	101%	90% - 110%					
La	58	54	92%	90% - 110%	8.47	7.88	93%	90% - 110%					
Li	37	38	102%	90% - 110%									
Lu	2.1	2	97%	90% - 110%									
Mg	0.325	0.299	92%	90% - 110%	7.41	7.24	98%	90% - 110%					
Mn	836	781	93%	90% - 110%									
Мо					2.49	2.32	93%	90% - 110%					
Nb	13	13	100%	90% - 110%									
Nd	57	55	97%	90% - 110%	9.41	9.34	99%	90% - 110%					
Ni	9	8	89%	90% - 110%	2480	2491	100%	90% - 110%					
Р					0.0731	0.0794	109%	90% - 110%					
Pb	10	10	104%	90% - 110%									

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19T492426 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

Pr	15.0	13.9	93%	90% - 110%								
Rb	55	52	95%	90% - 110%								
S					3.43	3.39	99%	90% - 110%				
Sc					21.33	21.56	101%	90% - 110%				
Si	23.3	23.1	99%	90% - 110%	18.27	17.65	97%	90% - 110%				
Sm	12.7	12.2	96%	90% - 110%	2.211	2.227	101%	90% - 110%				
Sn	7.1	7.8	110%	90% - 110%								
Sr	1191	1231	103%	90% - 110%	39.0	35.9	92%	90% - 110%				
Та	0.9	0.8	88%	90% - 110%								
Tb	2.6	2.6	101%	90% - 110%								
Th	1.4	1.3	90%	90% - 110%	1.07	1.15	108%	90% - 110%				
Ti	0.172	0.164	95%	90% - 110%	0.419	0.402	96%	90% - 110%				
Tm	2.3	2.2	94%	90% - 110%								
U	0.8	0.8	104%	90% - 110%								
V	8	7	92%	90% - 110%	158	169	107%	90% - 110%				
Y	119	115	97%	90% - 110%	12.67	12.86	102%	90% - 110%				
Yb	14.8	14.5	98%	90% - 110%								
Zn	93	87	93%	90% - 110%	112	108	97%	90% - 110%				
Zr	517	563	109%	90% - 110%								

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT:

AGAT WORK ORDER: 19T492426

SAMPLING SITE:		SAMPLED BY:	LED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Solid Analysis							
Sample Login Weight	MIN-12009		BALANCE				
Ag	MIN-200-12049		ICP-MS				
AI	MIN-200-12001/MIN-200- 12049		ICP/OES				
As	MIN-200-12049		ICP-MS				
В	MIN-200-12001/MIN-200- 12049		ICP/OES				
Ва	MIN-200-12001/MIN-200- 12049		ICP/OES				
Ве	MIN-200-12001/MIN-200- 12049		ICP/OES				
Bi	MIN-200-12049		ICP-MS				
Са	MIN-200-12001/MIN-200- 12049		ICP/OES				
Cd	MIN-200-12049		ICP-MS				
Се	MIN-200-12049		ICP-MS				
Со	MIN-200-12049		ICP-MS				
Cr	MIN-200-12001/MIN-200- 12049		ICP/OES				
Cs	MIN-200-12049		ICP-MS				
Cu	MIN-200-12001/MIN-200- 12049		ICP/OES				
Dy	MIN-200-12049		ICP-MS				
Er	MIN-200-12049		ICP-MS				
Eu	MIN-200-12049		ICP-MS				
Fe	MIN-200-12001/MIN-200- 12049		ICP/OES				
Ga	MIN-200-12049		ICP-MS				
Gd	MIN-200-12049		ICP-MS				
Ge	MIN-200-12049		ICP-MS				
Hf	MIN-200-12049		ICP-MS				
Но	MIN-200-12049		ICP-MS				
In	MIN-200-12049		ICP-MS				
к	MIN-200-12001/MIN-200- 12049		ICP/OES				
La	MIN-200-12049		ICP-MS				
Li	MIN-200-12001/MIN-200- 12049		ICP/OES				
Lu	MIN-200-12049		ICP-MS				
Mg	MIN-200-12001/MIN-200- 12049		ICP/OES				
Mn	MIN-200-12001/MIN-200- 12049		ICP/OES				
Мо	MIN-200-12049		ICP-MS				
Nb	MIN-200-12049		ICP-MS				
Nd	MIN-200-12049		ICP-MS				
Ni	MIN-200-12001/MIN-200- 12049		ICP/OES				
Р	MIN-200-12001/MIN-200- 12049		ICP/OES				
Pb	MIN-200-12049		ICP-MS				
Pr	MIN-200-12049		ICP-MS				

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SAMPLING SITE: AGAT WORK ORDER: 19T492426

SAMELING SITE.		SAMFLED DT.							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Rb	MIN-200-12049		ICP-MS						
s	MIN-200-12001/MIN-200- 12049		ICP/OES						
Sb	MIN-200-12049		ICP-MS						
Sc	MIN-200-12001/MIN-200- 12049		ICP/OES						
Si	MIN-200-12001/MIN-200- 12049		ICP/OES						
Sm	MIN-200-12049		ICP-MS						
Sn	MIN-200-12049		ICP-MS						
Sr	MIN-200-12001/MIN-200- 12049		ICP/OES						
Та	MIN-200-12049		ICP-MS						
ТЬ	MIN-200-12049		ICP-MS						
Th	MIN-200-12049		ICP-MS						
Ті	MIN-200-12001/MIN-200- 12049		ICP/OES						
ТІ	MIN-200-12049		ICP-MS						
Tm	MIN-200-12049		ICP-MS						
U	MIN-200-12049		ICP-MS						
V	MIN-200-12001/MIN-200- 12049		ICP/OES						
w	MIN-200-12049		ICP-MS						
Y	MIN-200-12049		ICP-MS						
Yb	MIN-200-12049		ICP-MS						
Zn	MIN-200-12001/MIN-200- 12049		ICP/OES						
Zr	MIN-200-12049		ICP-MS						
Pass %			BALANCE						

Don T. Fudge Principal Fudge & Associates International 160 Bryan Road North Bay, Ontario P1C 1C2 Telephone; 705 494 0890 Fax; 705 494 0890

Don is an industrial minerals consultant providing comprehensive regulatory and technical services to both private industry and governments to meet their aggregate permitting and ongoing regulatory compliance needs as well as base and precious metals exploration services Specializing in the field of non- metallic minerals, working with the Mining Act and the Aggregate Resources Act, Don offers innovative and cost effective programs.

Don's roles and responsibilities to clients include:

- Mineral deposit exploration and site selection;
- Development and execution of Aggregate Resources Act Permit and Licence Applications;
- Applications under Part 7 of the Ontario Mining Act.
- Mining Claims Administration
 - Assessment Reporting
 - Mining Leases
- Ongoing regulatory compliance;
 - o ARA
 - Mining Act
- Public relations plans;
- Media relations;
- Monitoring new legislation which directly affects the licensing and operation of mineral extraction in the Province of Ontario;
- Compliance monitoring, and reporting for operating sites;

With over 40 years of experience in permitting and licensing and as a surficial geologist/ prospector in the Province of Ontario Don focuses on development of regulatory compliant mining operations for his clients. He provides all-inclusive "turn -key" solutions to the aggregate, construction and mining industry.

Don's extensive industry experience in aggregate development provides a breadth of understanding necessary to complete development and/or exploration programs. These

Don T Fudge CURRICULUM VITAE

aggregate studies are typically completed prior to the acquisition/purchase, of lands for the extraction of aggregate or for road building material requirement for highway construction. Clients are interested in understanding the quality and quantity of aggregate and with highway construction specific location as well as permitting/licensing issues. Don's studies provide an assessment of the aggregate material as well as other potential development constraints.

EDUCATION

1968 – 1971 Diploma of Business Administration- Cambrian College of Applied Arts – North Bay, Ontario 1972 Undergraduate Studies, Geology – Carleton University, Ottawa, Ontario

EXPERIENCE

1982: Present – Fudge & Associates - President
1980 – 1982: Ontario Ministry of Natural Resources
N.E Region, Mining Lands Administrator
1973 – 1979: Geophysical Engineering & Surveys Limited
Crew Chief: Area Program Manager
1971 - 1973: Department of Energy Mines and Resources, Ottawa
Research Officer

SELECTED AGGREGATE PROJECT EXPERIENCE

Aggregate Resources Act Applications / Amendments

The Provincial Standards that support the Aggregate Resources Act set out specific requirements for an aggregate permit or licence application. Don has gained extensive experience in all aspects of designing the essential application ranging from site plan design to assessment of component studies along with design and execution of media relations and public consultation plans.

Partial Project List:

Leo Alarie and Sons Limited (Aecon Mining Inc.)

- Armstrong Quarry Category 11
- Hillsport Quarry Category 11
- Agrium Quarry (2) Category 11
- Montcalm Nickel Pit Category 9

Don T Fudge CURRICULUM VITAE

- Enid Pit Category 9
- 12 additional sites

Ontario Ministry of Natural Resources

• Polar Bear Provincial Park Pit (2) – Category 10

Aecon Construction & Materials Ltd.

• Antrim Quarry – Category 15 Wayside Permit

Avalon Rare Metals Inc.

• Warren Township Calcium Feldspar – Category 11

Callander Industries

- Garrow Dimension Stone Category 11
- McAuslan Dimension Stone Category 11

Notes: **Gerrow Township Mote 2019** Stripping

Legend **Provincial Grid Cell** Available Pending Unavailable **Mining Claim** Mining Claim Boundary Claim Alienation Withdrawa Notice **ENDM Administrative Boundaries** ENDM Townships and Areas Geographic Lot Fabirc Stripped Area 4 UTM Grid 1K UTM Grid 10K GARROW-2019-05 Mining Division Mineral Exploration and Development Region CLUPA Protected Area - Far North Road Resident Geologist District Federal Land Other Native Reserves GARROW-2019-04 AMIS Sites 8 AMIS Features Stripped Area 3 Drill Hole ☆ Mineral Occurrences MLAS Mining History Withdrawal - History Notice - History Mining Claim - History Mining Land Tenure - History Legacy Claim Provincial Grid Provincial Grid 250K Provincial Grid 50K Provincial Grid Group Claim 127774 Land Tenure Surface Rights Mining Rights Mining and Surface Rights Order-in-Council

Projection: Web Mercator

Imagery Copyright Notices: Ontario Ministry of Natural Resources and Forestry; NASA Landsat Program; First Base Solutions Inc.; Aéro-Photo (1961) Inc.; DigitalGlobe Inc.; U.S. Geological

