

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Abstract

Kyle #3 is a known Kimberlite which has 21 previous drill holes with 1733 diamonds were recovered. Little information has been previously filed for assessment work. From the two airborne surveys available one additional high priority target was identified for staking.

CJP Exploration Inc.

Kyle #3 Modelling of Historic Data

C Jason Ploeger, P.Geo. April 6, 2020

Modelling of Historic Data Kyle #3 BMA 532 854, Ontario

TABLE OF CONTENTS

1.0 Det	ails	4
1.1	Project Name	4
1.2	Client	4
1.3	Surveys Reviewed	4
1.4	Purpose	4
1.5	Dates and Personnel	4
1.6	Clients	4
1.7	Summary of Results	4
1.8	Geographic Reference	5
2 Det	ails	6
2.1	Project Name	6
2.2	Clients	6
2.3	Location	6
2.4	Access	7
2.5	Ownership	7
2.6	Property History	9
2.7	Geology	9
3 Su	rvey Work Undertaken	10
3.1	Surveys Reviewed	10
2.2	Personnel	10
2.3	Specifications and Purpose	10
3.1	Surveys Reviewed	10
3.2	Personnel	10
3.3	Specifications and Purpose	10
3.4	Results	11
3.5	Recommendations	16
3.6	Conclusions	17

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS APPENDIX B: REFERENCES

LIST OF TABLES AND FIGURES

Figure 1: Location of the Kyle #3	7
Figure 2: Mining Claims with Georeferenced Kyle #3 Model	8
Figure 3: Aeroquest Airborne Magnetometer of Kyle #3 with Drill Holes and Dike Trend	
	2
Figure 4:Tundra Airborne Magnetometer of Kyle #3 with Drill Holes and Dike Trend 1	3

Modelling of Historic Data Kyle #3 BMA 532 854, Ontario

Figure 5: Tundra Airborne Magnetometer of Kyle #3 showing Dike Striking East 1	4
Figure 6: Tundra Airborne Magnetometer of Kyle #3 Showing Additional Target to East	
	5
Figure 7: Recommended Staking in Red1	6

Table 1: Cell Claims and Claim Holder	ell Claims and Claim Holder7
---------------------------------------	------------------------------

1.0 DETAILS

1.1 PROJECT NAME

This project is known as the Kyle #3.

1.2 CLIENT

CJP Exploration Inc.

15 MacDonald St. Larder Lake, Ontario P0K1L0

1.3 SURVEYS REVIEWED

The surveys looked at for this analysis included two airborne magnetometer surveys that were located in the public record. AFRO-20009917 was an airborne magnetometer survey performed for Black Widow Resources Inc, by Tundra Airborne Surveys in 2011 while AFRO-20004431 is an airborne magnetometer and EM survey performed for Billiken Management by Aeroquest Ltd. in 2008

1.4 PURPOSE

The purpose of the modelling and reprocessing of the available historic data was to better understand the Kyle #3 kimberlite deposit. By modelling the kimberlite, possible new targets could be generated.

1.5 DATES AND PERSONNEL

The review took place between November 21, 2019 and April 6, 2020. The review took a total of 4 days and was performed by geophysicist C Jason Ploeger, PGeo.

1.6 CLIENTS

The requested review and generation of targets was performed for CJP Exploration Inc and DH Exploration Inc., who are the claim holders.

1.7 SUMMARY OF RESULTS

Kyle #3 is a known Kimberlite which has 21 previous drill holes with 1733 diamonds were recovered. Little information has been previously filed for assessment work. From the two airborne surveys available one additional high priority target was identified for staking.

1.8 GEOGRAPHIC REFERENCE

All coordinates are in NAD83 UTM Zone 16N.

2 DETAILS

2.1 PROJECT NAME

This project is known as the Kyle #3.

2.2 CLIENTS

CJP Exploration Inc.

15 MacDonald St. Larder Lake, Ontario P0K1L0

and

DH Exploration Inc.

1645 Goldmine Rd. Timmins, Ontario P4N 7C2

2.3 LOCATION

Kyle #3 is located in BMA 532 854 approximately 110km east of Webequie, Ontario. Kyle#3 covers four cell claims located within the Porcupine Mining Division of Ontario.

Modelling of Historic Data Kyle #3 BMA 532 854, Ontario

Figure 1: Location of the Kyle #3

2.4 ACCESS

The only access to the property is via helicopter.

2.5 OWNERSHIP

Claim		
Number		Holder
507477	43F04K274	50% CJP Exploration Inc. and 50% DH Exploration Inc.
507478	43F04K275	50% CJP Exploration Inc. and 50% DH Exploration Inc.
514364	43F04K295	50% CJP Exploration Inc. and 50% DH Exploration Inc.
514365	43F04K294	50% CJP Exploration Inc. and 50% DH Exploration Inc.

Table 1: Cell Claims and Claim Holder

Figure 2: Mining Claims with Georeferenced Kyle #3 Model

2.6 **PROPERTY HISTORY**

Only some of the historical information is available on the public record.

AFRI-43F04NW0001 to 43F04NW0004 1995 – KWG Resources Inc. Diamond Drilling with diamond analysis – 4 diamond drill holes

AFRI-20004431 2008 – Spider Resources and KWG Resources Inc. Airborne magnetometer and EM survey by Aeroquest

AFRI-20009917 2011 – Black Widow Exploration Inc. Airborne magnetometer survey by Tundra Airborne Surveys

Drill logs were also obtained from a 2000-2001 drill campaign. These logs are not available on the public record but were incorporated into the modelling.

2.7 GEOLOGY

Please refer to the accompanying geological report by FR Ploeger.

3 SURVEY WORK UNDERTAKEN

3.1 SURVEYS REVIEWED

The surveys looked at for this analysis included two airborne magnetometer surveys that were located in the public record. AFRO-20009917 was an airborne magnetometer survey performed for Black Widow Resources Inc, by Tundra Airborne Surveys in 2011 while AFRO-20004431 is an airborne magnetometer and EM survey performed for Billiken Management by Aeroquest Ltd. in 2008.

2.2 PERSONNEL

The historic was reviewed and reported on by C Jason Ploeger, PGeo.

2.3 SPECIFICATIONS AND PURPOSE

The objective of the modelling and reprocessing of the available historic data was to better understand the Kyle #3 kimberlite deposit. By modelling the kimberlite, possible new targets could be generated. Raw data was unavailable, therefore re-processing of the data is impossible.

The geological model used was derived by imputing the drill logs using grid locations into leapfrog. The plan was then georeferenced assuming a "perfect" historic ground

3.1 SURVEYS REVIEWED

The surveys looked at for this analysis included two airborne magnetometer surveys that were located in the public record. AFRO-20009917 was an airborne magnetometer survey performed for Black Widow Resources Inc, by Tundra Airborne Surveys in 2011 while AFRO-20004431 is an airborne magnetometer and EM survey performed for Billiken Management by Aeroquest Ltd. in 2008.

3.2 PERSONNEL

The historic was reviewed and reported on by C Jason Ploeger, PGeo.

3.3 SPECIFICATIONS AND PURPOSE

The objective of the modelling and reprocessing of the available historic data was to better understand the Kyle #3 kimberlite deposit. By modelling the kimberlite, possible new targets could be generated. Raw data was unavailable, therefore re-processing of the data is impossible.

The geological model used was derived by imputing the drill logs using grid locations into leapfrog. The plan was then georeferenced assuming a "perfect" historic ground grid and one UTM point (unknown error).

3.4 RESULTS

Two airborne magnetic surveys were located in the public record for the Kyle #3 kimberlite. There was record of a ground magnetometer survey being performed, however this report is not available. The two available reports are AFRO-20009917 and AFRO-20004431.

AFRO-20009917 an airborne magnetometer survey performed for Black Widow Resources Inc, by Tundra Airborne Surveys in 2011 while AFRO-20004431 is an airborne magnetometer and EM survey performed for Billiken Management by Aeroquest Ltd. in 2008. The 2011 survey has a better resolution; however, the 2008 survey covers a slightly larger area.

Georeferencing of the geological model of the kimberlite was done and the model superimposed on the georeferenced historical airborne magnetometer plans. Since the geological report by Frank Ploeger indicates that Kyle #3 is part of a dike system, a best fit trend was then placed on the Kimberlite Dike and interpolated along strike both east and west.

Literature indicates that the Kyle#3 pipe/dike is made up of various phases of kimberlite and some phases are barren of diamonds and some phases are enriched with diamonds. Unfortunately, there is only final diamond counts per hole available so any physical properties of each kimbelite phase is unknown.

Figure 3: Aeroquest Airborne Magnetometer of Kyle #3 with Drill Holes and Dike <u>Trend</u>

Looking westward along the trend of the kimberlite in the 2008 survey a second anomaly becomes apparent, albeit a weaker signature than that of Kyle#3. Literature indicates that the Kyle#3 pipe/dike is made up of various phase of kimberlite and some phase are barren of diamonds and some phases are enriched with diamonds. Unfortunately, there is only final diamond counts per hole available to the author.

A subparallel trend to the south also becomes apparent. This trend again appears to

Modelling of Historic Data Kyle #3 BMA 532 854, Ontario

have a weaker signature than the original Kyle #3 pipe and is off the Kyle #3 trend by approximately 10 degrees. Without any physical property information available form the Kyle #3 Kimberlite system it is difficult to determine if this represents a different Kimberlite phase. This may represent another kimberlite dike system; however, most likely represents a more regional dike or the interaction of multiple dikes.

Figure 4:Tundra Airborne Magnetometer of Kyle #3 with Drill Holes and Dike <u>Trend</u>

The Kyle #3 model georeferenced on the airborne magnetic maps, produced by Tundra Airborne Surveys, indicates a correlation between anomaly shape and the Kyle #3 kimberlite. The trend of the dike has been projected along strike to determine if there is a magnetic signature associated to the dike. Below we can see what appears to be a slight magnetic rise across a low trend. This slight rise indicates that the kimberlite dike most likely strikes east across the magnetic low into the magnetically elevated anomaly located on the east side of the airborne map. This makes this east anomaly a favorable target for an additional kimberlite

Figure 5: Tundra Airborne Magnetometer of Kyle #3 showing Dike Striking <u>East</u>

Modelling of Historic Data Kyle #3 BMA 532 854, Ontario

CJP Exploration Inc.

Figure 6: Tundra Airborne Magnetometer of Kyle #3 Showing Additional Target <u>to East</u>

3.5 RECOMMENDATIONS

I would recommend staking the 4 cells covering the eastern target.

Figure 7: Recommended Staking in Red

I would also recommend an attempt be made to locate and GPS the casings or drill pads for the drilling of Kyle #3. The area should also be investigated for any pickets that may still exist from the historic grid. This is required to more accurately georeference the Kyle #3 kimberlite.

A tightly spaced GPS integrated walkmag or drone magnetic survey should also be performed. This should cover the Kyle #3 pipe along with the dike extensions, including any newly staked claims. This would help identify the dike along strike and any potential pipes associated with the dike.

The drill logs indicate that the core was stored on site with only the sections assayed removed. The core storage should be found and examined for kimberlite. If kimberlite exists, magnetic susceptibility readings should be taken. If no kimberlite can be located in the abandoned core, I would recommend mirroring holes 2001-01 or 2001-02.

Magnetic susceptibility readings should be taken of the core and then compared with the different phases of the kimberlite and assays. This may help identify the economic parts of the kimberlite and more economical trends. With the physical property information additional targets can also be inferred.

3.6 CONCLUSIONS

Kyle #3 is a known Kimberlite which has 21 previous drill holes with 1733 diamonds were recovered. Little information has been previously filed for assessment work. From the two airborne surveys available one additional high priority target was identified for staking.

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, C. Jason Ploeger, hereby declare that:
- 1. I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- 5. I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do have an interest in the properties and securities of CJP Exploration Inc.
- 7. I am responsible for the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. President CJP Exploration Inc.

> Larder Lake, ON April 6, 2020

APPENDIX B

REFERENCES

Scott Hogg and Associates: 2011 Tundra Airborne Surveys; Heli-GT 3 Axis magnetic gradient survey, Kyle-3 property, James Bay Lowlands, Northern Ontario; (for Black Widow Exploration Inc)

Thomas, R. D.: 2004 TECHNICAL REPORT, SPIDER # 1 and # 3 PROJECTS, (JAMES BAY JOINT VENTURE) JAMES BAY, ONTARIO, SPIDER RESOURCES INC. AND KWG RESOURCES INC.; unpublished Internal report.

Ploeger, FR: 2020: RE- EVALUATION OF THE KYLE-3 KIMBERLITE DIKE for CJP Exploration & DH Exploration; (CJP Exploration & DH Exploration)

RE- EVALUATION OF THE KYLE-3 KIMBERLITE DIKE for CJP Exploration Inc. & DH Exploration Inc.

Prepared by: F. R Ploeger, BSc, PGeo January 19, 2020

TABLE OF CONTENTS

SUMMARY	3				
PROPERTY DESCRIPTION	5				
ACCESS	6				
SUMMARY OF WORK HISTORY	6				
REGIONAL AND LOCAL GEOLOGY	8				
Kimberlites	9				
SUMMARY & INTERPRETATION OF DATA	11				
REFERENCES	14				
List of Figures					
Figure 1: General Location of the Kyle-3 property.	5				
Figure 2: Location of the Kyle-3 claims.	6				
Figure 3: Geology and tectonic subdivisions of Northern Ontario. Location of the Kyle-3 claims (inset in yellow). (from Stott, 2007)	8				
Figure 4: Detailed Geology and structure of the Kyle-3 property area with respect to other kimberlite occurrences (from Stott, 2007). The red lines are interpreted as diabase dikes.	9				
Figure 5: Diamond drill location plan on a magnetic base map image. Note that the widest part of the Mag anomaly corresponds with the widest portion of the kimberlite dike intersected in holes 2001-16 and DR95-43.	12				
Figure 6: Tundra Airborne Surveys Heli-GT 3- Axis Magnetic Gradient Survey on the Kyle-3 Property of Black Widow Exploration Ltd (2011). Areas of interest are shown in dotted yellow line.	13				
List of Tables					
Table 1: Kyle 3 claims	5				
SUMMARY PROPERTY DESCRIPTION ACCESS SUMMARY OF WORK HISTORY REGIONAL AND LOCAL GEOLOGY Kimberlites SUMMARY & INTERPRETATION OF DATA REFERENCES List of Figures Figure 1: General Location of the Kyle-3 property. Figure 2: Location of the Kyle-3 property. Figure 2: Location of the Kyle-3 claims. Figure 3: Geology and tectonic subdivisions of Northern Ontario. Location of the Kyle-3 claims (inset in yellow). (from Stott, 2007) Figure 4: Detailed Geology and structure of the Kyle-3 property area with respect to other kimberlite occurrences (from Stott, 2007). The red lines are interpreted as diabase dikes. Figure 5: Diamond drill location plan on a magnetic base map image. Note that the widest part of the Mag anomaly corresponds with the widest portion of the kimberlite dike intersected in holes 2001-16 and DR95-43. Figure 6: Tundra Airborne Surveys Heli-GT 3- Axis Magnetic Gradient Survey on the Kyle-3 Property of Black Widow Exploration Ltd (2011). Areas of interest are shown in dotted yellow line. List of Tables Table 1: Kyle 3 claims Table 2: Summary of diamonds recovered from the Spider/ KWG/ Ashton drilling Table 3: Summary of 2000 Spider/ KWG drill holes not previously reported.					
Table 3: Summary of 2000 Spider/ KWG drill holes not previously reported.	12				

SUMMARY

The Kyle-3 property is located in the James Bay Lowlands approximately 110 km eastnortheast of Webequie, Ontario (Figure 1). It comprises 4 single cell mining claims, 507477-78 and 514364-65 in BMA 532,854, held jointly by CJP Exploration Inc. and DH Exploration Inc.

The area is accessible into larger lakes by bush plane equipped with floats in the summer and skis, or, in favourable weather, wheels during the winter. Helicopter access is also available from the community of Webequie and is required to get from the fixed wing base to the Kyle-3 site.

A complete summary of work, including information contained in internal reports (referenced in his report) is provided by Thomas in his 2004 technical report on the KWG and Spider Resources Inc properties in the James Bay Lowlands

Additional reports available to the writer of data in the public domain include: a helicopter- borne magnetic survey and 2 reports on the drilling of holes DR95-40- 43 by Munro (1995 &1997); analysis of the Kimberlites for diamonds by Lakefield Research Ltd in 1995; 16 holes drilled into a linear magnetic anomaly by Spider Resources Inc In 2001; compilation and interpretation of the results of ground magnetic surveys on the Kyle-3 and another property by Scott Hogg and Associates in 2006 & 2008; an airborne magnetometer survey (Heli-GT 3 Axis magnetic gradient survey) was flown in 2011 for Black Widow Exploration Inc by Tundra Airborne Surveys and reported on by Scott Hogg and Associates, however only one mag map is available from the survey report.

The geology of the area is derived from geophysical data, mapping of limited outcrops in the James Bay Lowlands, and diamond drill hole data. Generally, the basement rocks consist of Archean age metavolcanics, matasediments, dikes, and, granitic and gneissic complexes. These are overlain by Paleozoic sediments consisting of Middle to Upper Ordovician conglomeratic and calcareous sandstone, siltstone and cherty limestone, Upper Ordovician marine, platform limestones and dolomites and overlying conformable Middle Silurian carbonate sediments with minor craton derived clastic units. Finally, Upper Silurian to Lower Devonian units of dolostones and minor evaporites at the base, clastic carbonates and craton-derived red-bed sediments in the middle, and oolitic and brecciated dolostone complete the lithological sequence. The Quaternary sequence encountered in the diamond drill holes generally consists of 1 - 2 m of sandy (Wisconsin) till overlain by sand (proximal varves ?) grading upwards into clays (distal varves ?) and marine clays.

In his report, Thomas (2004) describes 3 ages of Kimberlitic intrusive activity, the most

common of which are the Carboniferous age kimberlites of the Attawapiskat Swarm. Typically, they are cone-shaped (carrot-shaped) bodies, 10s of metres to 100s of metres in diameter. In the second, of mid-Paleozoic age, the pipe does not reach the top of the bedrock surface, but terminates below 50 m of Paleozoic rock. The third agecategorized kimberlites did not penetrate the Paleozoic cover. They were emplaced during the late Precambrian and were subjected to a fairly long period of erosion prior to the deposition of the Paleozoic rocks that cover them.

The Kyle # 3 body was formed by multiple intrusions of kimberlite, some of which appear to be barren of diamonds whereas other phases contain abundant diamonds. In total, 1468 diamonds <0.425 mm in one dimension and 90 diamonds >0.425 mm in one dimension, weighing a total of 0.343 carats, were obtained from 2041 kg of kimberlite samples submitted to Lakefield Research.

The Kyle # 3 kimberlite is marked by magnetic anomaly on the ground that is 600 m long by 225 m wide elongated in the east-northeast to west- southwest direction. Twenty-one holes have been drilled into the body (Figure 5), twenty by KWG/Spider and one by Ashton. It was noted in the logs that there may be several narrow kimberlite dikelets in the walls of the main dike forming a braided dike pattern over a greater width. The central part of the dyke is marked by a distinct enlargement or blowout, approximately 65 m in maximum width.

The review of the data has identified 3 additional areas of interest: an on strike extension of the magnetic anomaly to the west; a magnetic high east of the proposed fault on strike from the known dike; and, a parallel elongated magnetic anomaly 700m south of the kimberlite dike.

It is additionally recommended that all of the available geophysical data pertaining to the Kyle-3 property is reviewed by a qualified geophysicist. It is hoped that his reinterpretation of the data will confirm the validity of the findings of this report and identify additional targets.

PROPERTY DESCRIPTION

The Kyle-3 property is located in the James Bay Lowlands approximately 110 km eastnortheast of Webequie, Ontario (Figure 1).

Figure 1: General Location of the Kyle-3 property.

It comprises 4 single cell mining claims, 507477-78 and 514364-65 in BMA 532,854, held jointly by CJP Exploration Inc and DH Exploration Inc. The claims are detailed in Table 1 and displayed on Figure 2.

Township /	Tenure		Anniversary	Tenure				
Area	ID	Tenure Type	Date	Status				
BMA 532 854	507477	Single Cell Mining Claim	2020-04-10	Active				
BMA 532 854	507478	Single Cell Mining Claim	2020-04-10	Active				
BMA 532 854	514364	Single Cell Mining Claim	2020-04-12	Active				
BMA 532 854	514365	Single Cell Mining Claim	2020-04-12	Active				
50% CJP Exploration Inc/ 50% DH Exploration Inc.								

Table 1: Kyle- 3 claims

Figure 2: Location of the Kyle-3 claims.

ACCESS

The area is accessible into McFaulds Lake by bush plane equipped with floats in the summer and skis, or, in favourable weather, wheels during the winter. Charter air service is available from Nakina, 255 km to the south-southwest, and Pickle Lake, 400 km to the west- southwest. Helicopter access is also available from the community of Webequie and is required to get from the fixed wing base to the Kyle-3 site.

SUMMARY OF WORK HISTORY

A complete summary of work, including information contained in internal reports (referenced in his report) is provided by Thomas in his 2004 technical report on the KWG and Spider Resources Inc properties in the James Bay Lowlands as follows:

"Apart from seven fixed-wing aeromagnetic surveys (Hogg, 1993, 1994a, b, c, d, e) and various claim staking campaigns, eleven field programs have been completed in the Spider # 1 area by the KWG/Spider Joint Venture: Fall 1993 (Various ground investigations) (Novak, 1993a, b; Gleeson, 1993), Spring 1994 (Heli-mag survey and diamond drilling) (McBride 1994a, b), Fall 1994 (Diamond drilling) (McBride 1994c, d), Winter-Spring 1995 (Heli-mag survey and diamond drilling) (McBride 1995; Thomas 1995a, b), Summer-Fall 1995 (Ground geophysics and diamond drilling) (Thomas 1995b, c, 1996a), Spring 1996 (Diamond drilling, ground geophysics and heli-mag) (Thomas, 1996c, 2000), Summer 1996 (Ground geophysics and diamond drilling) (Thomas, 1997a), Spring 1997 (Ground geophysics and diamond drilling) (Thomas, 1997b, c) Spring 2004 (Diamond drilling) (Thomas, 2004). Four programs have also been completed in the Spider # 3 area: Summer-Fall 1995 (staking, ground geophysics and diamond drilling) (Thomas, 1995d, 1996b), Winter 1996 (heli-mag, ground geophysics and diamond drilling) (Thomas, 1996c), Summer-Fall 1996 (stream sediment sampling, bedrock mapping and ground geophysics) (Gleeson and Thomas, 1997), and Spring 1997 (Ground geophysics and diamond drilling) (Thomas, 1997c). Between March 2001 to December 2002, De Beers has conducted several campaigns of field work which has included geochemical sampling, geophysical surveying and reverse circulation drilling as described below (Section 9.13). The reports on these programs are pending. Ashton also completed limited evaluation of three kimberlite bodies by the completion of various ground geophysical surveys and five diamond drill holes."

Reports available to the writer of data in the public domain (in addition to the Thomas report) are summarized below.

A helicopter- borne magnetic survey was flown over several areas in the James Bay Lowlands, including the Kyle-3 claim area by High Sense Geophysics in 1994 (Munro, 1996).

Munro (1997) completed 2 reports on the drilling of holes DR95-40- 43 on the Kyle-3 claims, presumably into airborne and ground- truthed magnetic targets from the 1994 surveys. All holes penetrated overburden and Paleozoic sediments before entering the basement gneisses. Kimberlite units which were intersected in all of the holes, were confined to the gneisses.

The Kimberlites were analysed for diamonds by Lakefield Research Ltd in 1995, the results of which are summarized in 2 separate reports by Munro (1997/1997). A total of 52 diamonds, including 2 macros, were recovered from the kimberlite in hole DR95-40 while an additional 104 diamonds, including 20 macros, were obtained from holes DR95-41-43.

In 2001, 16 holes (not previously filed for assessment) were drilled into a linear magnetic anomaly by Spider Resources Inc. In his technical report, Thomas (2004) indicates that all of these holes, as well as the 1995 holes, and a hole drilled by Ashton Mining of Canada, intersected kimberlite dike material.

In 2006, Scott Hogg and Associates compiled and interpreted the results of ground magnetic surveys on the Kyle-3 and another property. In 2008, the same group reported on a helicopterborne EM survey on the same areas.

Another airborne magnetometer survey (Heli-GT 3 Axis magnetic gradient survey) was flown in 2011 for Black Widow exploration Inc and reported on by Scott Hogg and Associates, however only one mag map is available from the survey report.

REGIONAL AND LOCAL GEOLOGY

The Precambrian geology of the area (Figure 3) is inferred from airborne geophysical surveys, limited diamond drilling, ground based seismic surveys and limited mapping of the outcrops mainly along the rivers (Stott, 2007). Magnetic patterns show that the basement consists of magnetically complex rocks comprising Archean volcanic and sedimentary rocks within large blocks of granite and high grade gneissic rocks of probable sedimentary derivation. Where the Precambrian rocks are overlain by Paleozoic sediments, the top 10 to 20 m of the Precambrian rocks are weathered, forming a regolith, a result of sub-aerial weathering during the late Precambrian and early Paleozoic.

b

Figure 3: Geology and tectonic subdivisions of Northern Ontario. Location of the Kyle-3 claims (inset in yellow). (from Stott, 2007)

Thomas (2004) provides a complete detailed description of the geology of the region west of Hudson Bay, including the area underlying the Kyle 3 property. The Paleozoic sediments consist of Middle to Upper Ordovician conglomeratic and calcareous sandstone, siltstone and cherty limestone, Upper Ordovician marine, platform limestones and dolomites and overlying conformable Middle Silurian carbonate sediments with minor craton derived clastic units. Upper Silurian to Lower Devonian units consist of dolostones and minor evaporites at the base, clastic carbonates and craton-derived red-bed sediments in the middle, and oolitic and brecciated dolostone at the top.

Figure 4: Detailed Geology and structure of the Kyle-3 property area with respect to other kimberlite occurrences (from Stott, 2007). The red lines are interpreted as diabase dikes.

The Quaternary sequence encountered in the diamond drill holes generally consists of 1 - 2 m of sandy (Wisconsin) till overlain by sand (proximal varves ?) grading upwards into clays (distal varves ?) and marine clays.

Thomas (2004) describes some of the major structures affecting the area as follows. The most dominant structure of Paleozoic time was the Cape Henrietta Maria Arch (Transcontinental Arch) which trends northeast-southwest across the northern part of the project area. There is some evidence that the Temiskaming Graben, or a related structure, also extends through the area and could be the cause of the sudden deepening of the Moose River Basin north of Hearst.

Kimberlites

In his report, Thomas (2004) describes 3 ages of Kimberlitic intrusive activity.

The most common are Carboniferous age kimberlites of the Attawapiskat Swarm Typically, They are cone-shaped (carrot-shaped) bodies, 10s of metres to 100s of metres in diameter, whose tops are generally eroded leaving some crater and diatreme facies material (hypabyssal facies). The hypabyssal facies is generally strongly magnetic which makes them easy to identify beneath shallow overburden using ground and airborne magnetic techniques, particularly when hosted in non-magnetic Paleozoic limestones. Since these kimberlites were eroded by the Quaternary glaciers, they can sometimes be found by tracing the glacial dispersal patterns formed in either the glacial deposits or the Holocene deposits derived from the glacial deposits. Heavy mineral concentrates, which are prepared from field samples, are examined with a microscope for the typical kimberlite indicator minerals. Dispersal patterns of the indicator minerals as well as patterns derived from stream sediment sampling were used to locate some kimberlite pipes including that of the De Beers Attawapiskat kimberlite field.

Thomas (2004) suggests that there is evidence that one of the recently discovered kimberlites near the MacFadyen Pipes of Spider/ KWG, is of mid-Paleozoic age. The pipe does not reach the top of the bedrock surface, but terminates below 50 m of Paleozoic rock. The top of the kimberlite is deeply weathered which suggest that it may be equivalent to the weathering surface of late Ordovician to early Silurian age found in the Paleozoic sequence. This presents the possibility of locating other non- outcropping kimberlites is mid-Paleozoic in age.

The third age- categorized kimberlites did not penetrate the Paleozoic cover and are much older than the MacFadyen-type described above. They were emplaced during the late Precambrian and were subjected to a fairly long period of erosion prior to the deposition of the Paleozoic rocks that cover them. To date, five of these types (Kyle-type, Thomas, 2004) of kimberlites have been identified beneath 20 to 120 m of Paleozoic and Quaternary overburden. They are composed mainly of diatreme and hypabyssal material and occur either in typical conical configurations or as dike- like intrusions with local blowouts. Where the Paleozoic cover is present, these bodies can only be found using airborne magnetic surveys with more detailed helicopter (heli-mag) or ground magnetic survey follow up.

Thomas states that the results of the 2000 and 2001 drilling programs revealed that the Kyle # 3 body was formed by multiple intrusions of kimberlite, some of which appear to be barren of diamonds whereas other phases contain abundant diamonds. In total 1468 diamonds <0.425 mm in one dimension and 90 diamonds >0.425 mm in one dimension, weighing a total of 0.343 carats, were obtained from 2041 kg of kimberlite (samples submitted to Lakefield Research for analysis- referenced in the Thomas report as Davison, 1995c,d). Furthermore, he noted that the northeastern side of the dyke was quite barren of diamonds. Table 2, taken from the Thomas report, summarizes the total diamonds recovered from all of the holes drilled to date.

Hole No	Weight of Diamonds	Weight of Sample	Average Grade	Nu	Number of Diamonds				
	(mg)	(kg)	(Ct/tonn e)	<0.5 mm	0.5-0.8 mm	>0.8mm	Total		
			_		_	_			
95-40	3.059	300.7	0	50	2	0	52		
95-41	0.268	42	0.032	8	0	0	8		
95-42	8.934	57.4	0.778	34	14	1	49		
90-43	8.869	179.2	0.247	42	4	1	47		
Ashton 95- 1B	3.274	101.8	0.16	18	1	0	19		
				<0.425	>0.425				
				mm	mm				
0000.04	40.470	447.0	0.140	070	10		202		
2000-01	12.473	417.0	0.149	370	12		202		
2000-02	5 196	430.4Z 215.17	0.194	2/1	6		200		
2000-03	0.150	/1 11	0.121	10	ő		10		
2000-04	٥ ١	12.57	0	ő	0		ő		
2000-06	1 218	355.31	0.017	39	1		40		
2000-07	9.881	608.36	0.081	287	8		295		
2000-08	0	22.48	0	0	Ō		0		
2000-09	2.259	123.63	0.091	52	12		64		
2000-10	6.913	92.62	6.913	114	14		128		
2000-11	3.068	88.35	3.068	62	7		69		
2000-12	0.022	22.81	0.01	1	0		1		
2000-13	0.009	33.2	0	1	0		1		
2000-14	4.693	12.75	1.84	12	1		13		
2000-15	0.004	26	0	1	0		1		
2000-16	5.955	412.03	0.115	188	12		200		
T-1-1-	00.000	0004 -					1700		
lotais	93.006	3601.7		n/a	n/a	n/a	1733		

Table 2: Summary of diamonds recovered from the Spider/ KWG/ Ashton drilling

SUMMARY & INTERPRETATION OF DATA

The Kyle- 3 property is located approximately at latitude 53° 12' N longitude 85° 47' W. According to Thomas (2004), the Kyle # 3 kimberlite is marked by a 270 nT magnetic anomaly on the ground that is 600 m long by 225 m wide. It is elongated in the east-northeast to west- southwest direction with the widest and strongest part of the anomaly lying towards the eastern side of the centre.

Twenty-one holes, 16 of which have not previously been filed for assessment (Table 3, Appendix 1), were drilled into the body (Figure 5), twenty by KWG/Spider and one by Ashton. All of the holes intersected kimberlite, defining the shape of the body to be a 700 m long, dike-like feature. Drilling at the east and west ends of the mag anomaly reveal that width of the core of the kimberlite dike is 6.6m and up to 3.7m, respectively. It was noted in the logs that there may be several narrow kimberlite dikelets in the walls of the main dike forming a braided dike pattern over a greater width. According to the logs, in particular KWG hole DR95-43 and KWG/ Spider hole 2001-16, and the sections provided in the 2004 report, the central part of the dyke is marked by a distinct enlargement or blowout, approximately 65 m in maximum width. This blowout corresponds with the widest section of the mag anomaly (Figures 5 & 6).

Figure 5: Diamond drill location plan on a magnetic base map image. Note that the widest part of the Mag anomaly corresponds with the widest portion of the kimberlite dike intersected in holes 2001-16 and DR95-43.

Hole ID	Grid E	Grid N	Elev	dip	azim	length
Kyle 3-2000-01	500E	675N	130	-45	180	157
Kyle 3-2000-02	500E	675N	130	-50	180	242
Kyle 3-2000-03	600E	675N	130	-50	180	182
Kyle 3-2000-04	600E	675N	130	-70	180	286
Kyle 3-2000-05	700E	675N	130	-50	180	170
Kyle 3-2000-06	400E	675N	130	-50	180	173
Kyle 3-2000-07	400E	625N	130	-65	180	283
Kyle 3-2000-08	300E	600N	130	-50	180	158
Kyle 3-2000-09	300E	600N	130	-66	180	222
Kyle 3-2000-10	300E	600N	130	-60	180	185
Kyle 3-2000-11	200E	600N	130	-50	180	158
Kyle 3-2000-12	200E	600N	130	-65	180	276
Kyle 3-2000-13	200E	600N	130	-60	180	322
Kyle 3-2000-14	100E	600N	130	-50	180	200
Kyle 3-2000-15	100E	600N	130	-55	180	203
Kyle 3-2000-16	500E	422N	130	-52	360	261

Table 3: Summary of 2000 Spider/ KWG drill holes not previously reported.

The approximate position of the kimberlite dike as interpreted from the diamond drill intersections is plotted on the Tundra 3-axis magnetic gradient plan (Figure 6). A linear magnetic low feature is interpreted as a possible NW- trending fault structure that parallels the trend of swarms of Matachewan age diabase dikes.

According to the data available to the writer, there is no drilling on the Kyle-3 property except the Spider/ KWG/ Ashton holes which define a braided kimberlite dike. The easterly and westerly limits of the dike have not been tested. Of particular interest is the magnetic anomaly on strike of the known kimberlite to the west (#1 in figure 6). The broad dimensions of this anomaly suggests that it may represent another blowout of the kimberlite dike.

In viewing the mag map, there is a broad high magnetic signature (#2 in figure 6) east of the proposed fault that is along strike of the known kimberlite dike. It appears that the dike may <u>not</u> have been offset by the fault and that the mag high may represent a kimberlite pipe with dimensions of about 400m x 200m.

A third target generated by reviewing the data is the possibility that the linear magnetic anomaly about 700m south of the known kimberlite dike drilled by KWG/ Spider (#3 in figure 6), represents a parallel kimberlite dike feature.

Figure 6: Tundra Airborne Surveys Heli-GT 3- Axis Magnetic Gradient Survey on the Kyle-3 Property of Black Widow Exploration Ltd (2011). Areas of interest are shown in dotted yellow line.

In summary, the review of the data has identified 3 additional areas of interest:

- 1) on strike extension of the magnetic anomaly to the west;
- 2) magnetic high east of the proposed fault on strike from the known dike;
- 3) parallel elongated magnetic anomaly 700m south of the kimberlite dike;

It is recommended that all of the available geophysical data pertaining to the Kyle-3 property is reviewed by a qualified geophysicist. It is hoped that his reinterpretation of the data will confirm the validity of the findings of this report and identify additional targets.

The 2000 drill hole of Spider Resources have not previously been filed and are documented and reported here for the first time. Apparently, the core was stored on site and the casings left in the ground. It is additionally recommended that the site be visited and the locations of the collars be georeferenced and the core re-examined.

REFERENCES

Scott Hogg and Associates: 2011 Tundra Airborne Surveys; Heli-GT 3 Axis magnetic gradient survey, Kyle-3 property, James Bay Lowlands, Northern Ontario; (for Black Widow Exploration Inc)

Stott, G.M.: 2007. Precambrian geology of the Hudson Bay and James Bay lowlands region interpreted from aeromagnetic data – east sheet; Ontario Geological Survey, Preliminary Map P.3598, scale 1:500 000.

Thomas, R. D.: 2004 TECHNICAL REPORT, SPIDER # 1 and # 3 PROJECTS, (JAMES BAY JOINT VENTURE) JAMES BAY, ONTARIO, SPIDER RESOURCES INC. AND KWG RESOURCES INC.; unpublished Internal report.

CERTIFICATE OF QUALIFICATION AND CONSENT

I, Frank Rainer Ploeger of the town of Virginiatown, Province of Ontario, do hereby certify:

1) That I am a Consulting Geologist and reside at 21 Waite Avenue, Virginiatown, Ontario, POK 1X0.

2) That I graduated from Queen's University at Kingston, Ontario with a Bachelor of Applied Science degree in 1973; and, that I completed 2 years of an MSc program at McMaster University in Hamilton, Ontario (1980- 1982).

3) That I am a member in good standing of the Association of Geoscientists of Ontario (#479), the Association of Professional Engineers and Geoscientists of Saskatchewan (#10852, non- practicing), the Geological Association of Canada, the Prospectors and Developers Association, and the Northern Prospectors Association. I have received a temporary permit (#2153) to practice in Quebec from the Ordre des geologues du Quebec pending acceptance by the Office quebequois de la langue francaise (OQLF).

4) That I have practiced my profession as a mineral exploration and mine geologist for a period of about 45 years.

5) This document is based on information various public documents and my personal observations during several visits to the property.

Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk.

6) I have no interest, either directly or indirectly, in the subject property or client company.

7) My written permission is required for the release of any summary or excerpt.

Frank R. Ploeger Virginiatown, Ontario March 16, 2020

					INCLINATION TESTS								
		SPIDER RES	SOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO: 2000-01		
					COLLAR	-43 deg						PAGE: 1/10)
I OCATION:	Kyle #3	GRID: Ash	nton	FLEVATION:~130m	70 m	-45 dea					PROJECT:	Spider #1	
LENGTH:157.28 m HORIZ: 500 E VERT: 675 N AZIMUTH: Grid South				140 m	-43 deg					STARTED:	March 31 200	00	
CORE SIZE	: NQ	RECOVERY:	LOGGED BY: J.G. Burns	DATE: April 7/00	213 m	-43 deg					FINISHED:	April 5 2000	
				r ····	-	5		ANA	I YTICAL RE	SULTS	_		
FROM	то		DESCRIPTION		SAMPLE	FROM	ТО	LENGTH					
0	10.67	Overburden: cored till n	pebbles include limestone area	wacke and									
•		aneiss											
		9											
10.67	30.07	Dolomite:											
		10.67-20.75: Buff colou	ured (light creamy brown) mass	sive to poorly									
		mottled	due to presence of sand and/o	or silt: fossiliferous									
		with fos	sil content increasing down ho	le.									
		@ 14.0r	m: bedding @ 45°	-									
		@ 19.0	m: subtle colour change to mid	d-arevish brown									
		20.75: bedding	/ contact sharp at 40° (sharp c	olour change)									
	20.75-30.07: mixture of mid greyish brown, brownish grey & buff coloured beds; sand &/or silty; very fossiliferous (more so in darker coloured units); poor bedding throughout 20.75-21.80 mid brownish grey												
		@ 21.80	bedding/contact irregular										
		21.80-22	2.57 buff										
		@ 22.57	bedding/contact @ 45°										
		22.57-24	1.35 mid brownish grey										
		@ 24.35	bedding/contact @ 40°										
		24.35-25	5.30 light greyish brown										
		@ 25.30	bedding/contact @ 45°										
		25.30-25	5.57 mid brownish grey										
		@ 25.57	bedding/contact @ 45°										
		25.57-26	6.05 light greyish brown										
		@ 26.05	bedding/contact irregular										
		26.05-29	9.12 mid brownish grey to light	t greyish brown mix									
	@ 29.12 bedding/contact @ 55°												
		29.12-30	0.07 mid brownish grey, very s	andy, very									
		fossilife	rous (worm burrows)										
30.0	7	Contact sharp @ 45°											
			PROJECT	: Spider #	1 - Kyle #3	1	HOLE NO	: 2000-01	PAGE 2/10)			
-------	-------	--	---------	------------	-------------	--------	-----------	-----------	-----------	---			
		SPIDER RESOURCES INC.											
EROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS					
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH							
30.07	48.80	Sandstone: massive very porous, fine to medium grained locally											
		fossiliferous, occasional pebbles											
		30.07-32.35: light yellowish grey 70% quartz sand & pebbles in a limey											
		matrix; quartz mainly clear with minor dark grey.											
		31.45-32.35 very soft, gouged @ 60°											
		(55 cm lost core)											
		32.35 contact/bedding sharp @ 40° @ a colour change											
		32.35-40.40: dark green with mid green sub-sections											
		32.35-33.0 very fossiliferous											
		33.0-40.40 soft to very soft, locally fossiliferous; possible											
		gouge @ 33.1-33.2 (55°), 35.2-35.3 (in											
		fractures(@ 50° + 35° opposite),											
		37.4-37.47 (55°), 37.58-37.65 (60°)											
		38.95-39.05 (40°)											
		40.40 contact @ 45° at top of very fine grained sandstone;											
		10 cm above contact contains fragments of unit below											
		40.40-48.84: light grey, clean quartz sandstone, massive, 2% 1mm holes											
		with calcarous filling (fossil worms?); upper 10cm very fine											
		grained											
		48.84: contact lost core											
		48.84-50.60: lost core; a few fragmets of quartz pebbles to 3.5 cm											
		recovered											
		50.60: contact ground core											

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-01	PAGE: 3/1	0
		SPIDER RESOURCES INC.								
EROM	то					ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		50.60-53.05 light to mid grey, coarse grained, massive, very friable;								
		mafics (phlogopite) increasing from 3% to 10% down								
		hole;								
		~51.1~52.1 fracture @ 0-2°								
		~52.1~52.6 gouge @ 45°								
		53.05 contact/bedding @ 35°								
		53.05-54.90 "kimberlitic" sandstone; dark brownish grey, massive;	2000-01-01	53.05	54.90					
		at least 50% mafic minerals- olivine, phlogopite &								
		possibly garnet; weakly magnetic, calcareous; generally								
		fine grained with grains of olivine to 3mm; core pitted								
		due to decomposition of olivines.								
		54.3-54.9 soft & possibly gouge								
54.9		Contact lost core								
54.9	127.05	Gneiss								
		54.90-79.05 poorly foliated granite; medium to coarse grained,								
		massive to very poorly foliated, generally brick red in								
		colour; general composition 20% quartz, 60% microcline								
		20% biotite; short sections reddish grey to black due to								
		depleted microclie & increase in quartz & biotite; core								
		moderately fractured with calcite on fractures; locally								
		core badly broken due to presence of low angle fractures.		ļ						
		@ 72.9 foliation/gneissosity @ 55°								
		75.5 contact at 30 degrees at a fracture								
		75.50-77.25 Kimberlite dyke: mid to dark brownish grey, fine grained								
		moderately carbonatized; composition mainly olivine								
		(weathered out yellowish brown) & phlogopite; minor								

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-01	PAGE 4/10)
		SPIDER RESOURCES INC.								
FROM	то	DECODIDION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		amounts of a fine grained green mineral (serpentine)								
		& a hard fine black mineral (illmenite?); core surface								
		pitted due to weathering of olivine & carbonate; rough								
		banding at 30°; minor inclusions of gneiss.								
		from 76.10-77.25 kimberlite follows a fracture weaving								
		along core								
		79.05 contact gradational - gneissosity becoming more prominent;								
		colour change to reddish grey or grey.								
		79.05-119.75 medium to coarse grained well foliated, light grey to								
		mid dark reddish grey; overall increase in quartz &								
		biotite & decrease in microcline; microcline common								
		along fracture; minor cross-cutting & conformable								
		pegmatite dykelets.								
		79.05-85.60 melange of short reddish grey & grey to								
		black sub sections								
		@ 81.10 gneissosity @ 55°								
		85.60 contact obscured by 3cm cross-cutting								
		pegmatite								
		85.60-86.45 fine to medium grained, uniform, 50%								
		quartz, 40% biotite & epidote, 10%								
		microcline								
		@ 86.45 contact sharp @ 30°								
		86.45-90.22 leucocratic, light pinkish grey, medium								
		to coarse grained, poorly banded								
		@ 90.22 contact @ 35°								
		90.22-98.05 generally medium to coarse grained, mid								
		to dark reddish grey with short grey or								
		leucocratic sections; typical composition								
		40% quartz, 30% microcline, 30% biotite;								
		trace pyrite, microcline on fractures.								
		@ 95.0 2mm kimberlite fracture @ 30°								
		@ 95.17 1mm kimberlite fracture @ 30° (@ 90°	1							
		to above)								

	SPIDER RESOURCES INC.		PROJECT	: Spider #1	1 - Kyle #3		HOLE NO:	2000-01	PAGE: 5/1	0
		SPIDER RESOURCES INC.								
FROM	то					ANAL	YTICAL RE	SULTS		
TROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		95.7-95.85 kimberlite fracture @ 15°								
		@ 98.05 contact @ 35°								
		98.05-119.75 mid to dark grey, locally pinkish due								
		to microcline on fractures; typically 60%								
		quartz, 40% biotite + epidote, short								
		leucocratic sections								
		@ 107.60 gneissosity @ 30°								
		@ 118.35 7cm white quartz "blow"								
		@ 119.05 5cm white quartz vein @ 50°; 10%								
		plagioclase, 3% biotite								
		119.75 contact at a colour change @ 30°								
		119.75-127.05 mainly greyish red, medium to coarse grained,								
		massive to very poorly gneissic; short section very								
		coarse to pegmatitic & leucocratic, mid - dark grey,								
		or very well banded								
		@ 120.75 5mm kimberlite fracture @ 30°, non-								
		magnetic composed of serpentinized olivine								
		in a serpentinized matrix								
		@ 122.35 1.5cm kimberlite fracture @ 20°								
		similar to above								
		@ 124.80 3mm serpentine fracture @ 20°								
		125.1-127.05 several calcite filled fractures, generally								
		@ 45-60°								
127.05		contact sharp @ 35°; kimberlite &/or serpentine fracture extends								
		15+cm into the gneiss above								

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-01	PAGE: 6/1	0
		SPIDER RESOURCES INC.								
FROM	TO	DECODIDION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
127.05	132.25	Kimberlite: generally mid greyish green; massive to locally	2000-01-02	127.05	132.25	5.20				
		banded (flow banded); composed of 60 % black								
		sub-angular to rounded peridotitic xenoliths from								
		<1mm to 4cm in size; matrix phlogopite rich,								
		serpentinized, carbonatized, strongly magnetic; unit								
		poor to moderately fractured with calcite & hematite								
		fractures to 3mm but generally <1/2mm; trace pyrite								
		@ 127.01 5cm chill margin								
		@ 127.65 1cm partially resorbed calcarous fragment -								
		margins phlogopite rich								
		@ 128.00 banding @ 35°								
		130.70-132.25 several <1cm calcarous clasts with								
		indistinct borders								
		@ 132.15 1cm clast of gneiss, rounded & with								
		indistinct borders								
		@ 132.15 banding @ 65°								
		132.10-132.25 chill margin								
		@ 132.20 fracture gouge 3mm @ 75°								
100.05										
132.25		contact sharp @ 75°								
100.05	100 55									
132.25	139.55	Gneiss: mainly pink and redish grey, medium to coarse grained								
		massive & poorly banded; weakly fractured with calcite								
		on fractures locally								
		@ 135.40 gneissosity @ 30°								
		136.1-136.20 serpentine fractures surrounding dyke 136.5-136.62 Kimberlite dyke: upper contact @ 70°, lower								
		@ 70°; light greyish green; 30% peridotitic								
		xenoliths to 1cm in an aphanitic matrix; minor								
		gneissic fragments, non-magnetic,								
		non-carbonatized								

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-01	PAGE: 7/1	0
		SPIDER RESOURCES INC.								
FROM	то	RECORDETION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		@ 138.50 gneissosity @ 40°								
		@ 139.25 4cm kimberlite dyke @ 20°; 10% xenoliths;								
		serpentinized fractures extend 7cm above upper								
		contact								
139.55		contact badly broken core; serpentine fractures extend 5cm above								
		contact								
139.55	154.12	Kimberlite: light greyish green to brownish grey dependent upon								
		phlogopite content; numerous clasts of both peridotite								
		& gneiss set in aphoritic serpentinized matrix; rock is								
		weakly magnetic & weakly carbonitized; weakly fractured								
		fractures filled with calcite + hematite or serpentine								
		Three types of xenoliths are recognized: 1)peridotite,								
		2)kimberlite, 3)gneiss. Peridotite clasts (macrocrysts) are								
		black, sub-angular to rounded, very fine grained and range								
		1mm to 3cm.								
		Kimberlite clasts are brownish grey, sub-angular to								
		rounded to ragged and up to 15cm in diameter. These								
		clasts contain xenoliths of peridotite set in a serpentine								
		phlogopite matrix. Some of the peridotite clasts are								
		rimmed with phlogopite & maybe disaggregate of								
		kimberlite clasts								
		Gneiss clasts are angular to sub-rounded in form, range								
		to 12cm across, often have serpentine reaction rim &								
		generally have indistinct or corroded rims.								
		All 3 xenolith types are set in a pale greyish green								
		serpentine matrix and except locally are matrix supported								
		10% peridotite clasts to 1.5cm, 20% kimberlite clasts to 15cm, 15%	########	139.55	144.1	4.55				
		gneiss clasts to 5cm								
		139.55-139.87 50% lost core; possible garnets in peridotite								
		clast @144.10m								

	SPIDER RESOURCES INC.		PROJECT	: Spider #1	- Kyle #3		HOLE NO: 2000	-01	PAGE: 8/1	0
		SPIDER RESOURCES INC.							-	
FROM	то	RECORDETION				ANAL	YTICAL RESULT	S		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		15% peridotite clasts to 1cm, 20% kimberlite clasts to 10cm, 7%	2000-01-04	144.10	150.10	6.00				
		gneiss clasts to 12cm								
		15% peridotite clasts to 1cm, 10% kimberlite clasts to 8cm, 10%	2000-01-05	150.10	154.12	4.02				
		gneiss clasts to 10cm								
		@154.00 5cm very intensely serpentinized								
		@151.30 several pea green clasts probably totally serpentized								
		peridote clasts								
154.12		contact sharp but irregular								
154.12	163.38	Gneiss: greyish red, medium to coarse grained, massive to locally								
		banded								
		Throughout there are fractures at all angles in which								
		kimberlite fluids have reacted with host gneiss. Resultant								
		fractures/veins are grey, fine grained; grains & fragments								
		display reaction rims. Over short intervals core has poor to								
		well developed brecciated texture.								
		154.12-156.10 weakly fractured, poor breccia development								
		156.10-157.30 few fractures, relatively massive gneiss								
		157.30-157.65 weakly fractured								
		157.65-157.90 well brecciated, angular gneiss fragments to 5cm								
		matrix supported								
		157.90-158.60 weakly fractured, poor breccia development								
		158.60-161.15 very poorly fractured								
		@ 159.50 gneissosity @ 65°								
		161.15-163.38 well brecciated; matrix becoming progressively more								
		kimberlitic (ie. serpentine & phlogopite rich)								
		down hole; fragments to 27cm; fragments display								
		corrosion at the rim but there is no reaction rim of								
		serpentine								
163.38		contact gradational								

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-01	PAGE: 9/1	0
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
168.38	235.15	Kimberlite								
		75% gneiss to 80cm, 3% kimberlite to 5cm, 10% peridotite to 1cm	2000-01-06	161.00	167.00	6.00				
		larger clasts - no reaction rims (spalled from wall?)								
		163.85-164.65 largest xenolith - porphyritic granite; mafics partially								
		serpentinized								
		45% gneiss to 170cm, 10% kimberlite to 10cm, 10% peridotite to 1cm	2000-01-07	167.00	173.00	6.00				
		168.35-170.05 granite gneiss xenolith - mafics slightly serpentinized								
		(last large clast with no reaction rim)								
		72.50 marked decrease in number of gneiss clasts								
		20% gneiss to 0.6m, 20% kimberlite to 10cm, 25% peridotite to 1cm	2000-01-08	173.00	179.00	6.00				
		178.4-180.0 granite gneiss xenolith; mafics partially serpentinized;								
		clast locally has brecciated appearance due to invading								
		kimberlite fluids.								
		175.40 7cm serpentinized olivine macrocryst								
		20% gneiss to 1.0m, 25% kimberlite to 8cm, 25% peridotite to 1cm	2000-01-09	179.00	185.00	6.00				
		at 184.6 1cm olivine macrocryst								
		10% gneiss to 30cm 25% kimberlite to 30cm 20% peridotite to 1cm	2000-01-10	185.00	191.00	6.00				
			2000 01 10	100.00	101.00	0.00				
		10% gneiss to 30cm, 30% kimberlite to 10cm, 10% peridotite to 5cm	2000-01-11	191.00	197.00	6.00				
		(serpentinized)								
		195.50 5cm serpentinized olivine macrocryst								
		191.1-193.0 flow banded @ 45°, very magnetic & serpentinized								
		191.10 garnets to 3mm								
		40% gneiss to 20cm, 10% kimberlite 15cm, 20% peridotite to 1cm	2000-01-12	197.00	203.00	6.00				
		peridotite clasts (serpentinized)								
		35% gneiss to 20cm, 10% kimberlite to 7cm, 25% peridotite to 3cm	2000-01-13	203.00	209.00	6.00				
		(serpentinized)								

			PROJECT	: Spider #1	- Kyle #3		HOLE NO: 2000-01	PAGE: 10/	′10
		SPIDER RESOURCES INC.							
EROM	то	DESCRIPTION		ANAL	YTICAL RESULTS				
FROIVI	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH			
		25% gneiss to 10cm, 10% kimberlite to 15cm, 40% peridotite to 5cm	2000-01-14	209.00	215.00	6.00)		
		(serpentinized)							
		Kimberlite not as disaggregated							
		213.7 peridotite xenoliths to 5m, with 5% 2mm garnets							
		60% gneiss to 2.7m, 5% kimberlite to 5cm, 30% peridotite to 2cm	2000-01-15	215.00	221.00	6.00)		
		217.95-220.65 granite xenolith; pitted; partial serpentinization of							
		mafics							
		20% gneiss to 20cm, 5% kimberlite to 10cm, 30% peridotite to 10cm	2000-01-16	221.00	227.00	6.00)	 	
		222.6 10cm peridotite xenolith with 15% 1-2mm garnet & diopside						 	
		223.2 4cm peridotite xenolith with 15% garnet & diopside							
		224.3 5cm olivine macrocryst							
		10% gneiss to 15cm, 5% kimberlite to 7cm, 40% peridotite to 1cm	2000-01-17	227.00	233.00	6.00)	 	
		(serpentinized to 230.50)							
		228.00-230.50 COLE LUDDIY							
-		TOTI 230.30 Tew griefss clasts & no kinibernite clasts							
		5% gnaiss to 5cm .0% kimberlite . 40% peridotite to 1.5cm	2000 01 18	222.00	225.15	2.15			
		(non-serpentinized)	2000-01-18	233.00	233.13	2.15			
		aneiss renaliths mainly within 30cm of contact							
235 15		contact sharp @ 40° degrees							
200.10									
235.15	263.96	Gneiss: generally light pinkish grey (short intervals mid-grey),							
		medium grained, but locally pegmatitic, poor to very well							
		banded							
		240.5 gneissosity @ 35°							
		249.5 gneissosity @ 60°							
		259.5 gneissosity @ 50°							
		262.45-263.2 3 low angle carbonate filled fracture to 2mm 5-15°							1
									1
263.96		END OF HOLE							
		Notes: 1) All casing pulled.							
		2) Cement plugs at 26 metres & 81 metres.							

	3) Tropari tests: Depth Dip Azimuth (azimuths unreliable)					
	70m -45° 200°					
	140m -43° 198°					
	213m -43° 204°					
	4) Azimuths unreliable due to magnetic attraction of the					1
	kimberlite, and not corrected for declanation.					

	SPIDER RESOURCES INC.						INCLINAT	ION TESTS	5				
	ATION: KYLE #3 IGRID: Ashton IELEVATION:				DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-02	•
					COLLAR	-50.5						PAGE: 1/7	
LOCATION: K	YLE #3	GRID: Ashte	on	ELEVATION: ~130m	70m	-51					PROJECT:	Spider 1	
LENGTH: 242	.32m	HORIZ: 500 E	VERT: 675 N	AZIMUTH: 180	140m	-50					STARTED:	April 6 2000	
CORE SIZE: N	NQ	RECOVERY:	LOGGED BY: J.G. Burns	DATE: April 15 2000	213m	-48					FINISHED:	April 15 2000)
FROM	то						•	ANAI	YTICAL RE	SULTS			
FROM	10		DESCRIPTION		SAMPLE	FROM	TO	LENGTH					
0	9.21	Overburden: muskeg, c	lay, sand & minor gravel over	lying bedrock									
9.21	27.05	Dolomite:											
		9.21-18.50 buff (light of	creamy brown) coloured, mas	sive to poorly									
		bedded,	moderately fossiliferous; mot	tled; minor sand/silt									
		fraction i	in the marix										
		@ 12.0m	bedding @ 50°										
		18.50 contact gr	round core; sharp colour char	nge with increase									
		in fossil c	content	-									
		18.50-27.05 mixture of v	various coloured sub-units; co	ntacts of sub-units									
		indicated	l are sharp whereas there may	/ be gradations									
	within the sub-units												
		18.50-18	.90 mid brownish-grey, sand	/, very fossiliferous									
		@ 18.90	contact ground core										
		18.90-22	.75 mixture of gradation of ur	nits; generally light									
			greyish brown to mid br	ownish grey,									
			moderately fossiliferous	3									
		@ 222.75	5 contact @ 55°										
		22.75-23.	.03 mid brownish grey, very f	ossiliferous, sandy									
		@ 23.03	contact @ 45°										
		23.03-26	.20 light greyish brown to buf	f; moderately									
			fossiliferous										
		@ 26.20	contact @ 50°										
		26.20-27	.05 mid brownish grey, very f	ossiliferous sandy &	_								
			becoming more sandy	rom 26.90									
27.05		contact sharp @ 45°											
27.05	41.57	Sandstone:											
		27.05-29.10 massive to	poorly bedded, calcareous, f	ossiliferous; 70%									
		white & m	ninor grey quartz in a silty ma	trix									
		29.10 contact gr	round core										
		29.10-35.75 mid to dark	c greyish green, generally mag	ssive, coarse									
		grained											

			PROJECT	: Spider #1	- Kyle #3		HOLE NO:	2000-02	PAGE: 2/7	
		SPIDER RESOURCES INC.								
FROM	то	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		29.10-29.80 very fosiliferous, dark green								
		@ 29.40 bedding @ 40°								
		29.80-33.30 massive, dark green								
		33.30-35.75 mid green								
		35.75 contact irregular @ ~55°								
		35.75~39.5 light grey medium to coarse grained, clean (<5% mafics), very								
		friable & poorly consolidated, occassional pebbles; recovery								
		very poor; 3% 1mm holes-possible worm borrows								
		35.75-36.10 fine grained, light greenish grey, poorly bedded								
		@ 36.00 bedding @ 45 [°]								
		39.5 contact lost core								
		39.50-41.57 mixture: poor core recovery; light to dark grey, coarse								
		grained; mafics vary to 30%; becoming more feldspathic								
		down hole from ~40.80								
		40.80-41.57 low angle fracture ~3mm with gouge								
		(note: no evidence of "kimberlite sandstone" as in 2000-01)								
41.57		contact lost core								
41.57	119.25	Gneiss:								
		41.57-54.50 pinkish grey, modestly banded, fine to coarse grained -								
		locally pegmatitic: composed essentially of quartz, feldspar								
		(microcline), & biotite: percentages highly variable over short								
		intervals, but average 25% quartz, 45% microcline, 30%								
		biotite; several short intervals light to mid grey of quartz,								
		biotite & minor plagioclase			_					
		41.57-42.50 weathered zone								
		@ 46.00 gneissosity @ 30°								
		54.50 contact sharp @ 50°, near orthogonal to gneissosity								

				: Spider #1	- Kyle #3		HOLE NO	: 2000-02	PAGE: 3/7	
		SPIDER RESOURCES INC.								
EDOM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM		DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		54.50-55.75 Kimberlite dyke: dark greenish grey, fine grained very								
		magnetic, very carbonatized; weakly banded (flow banded);								
		40% peridotite clasts generally less than 1mm, but up to								
		2mm, set in a very aphanitic, serpentine, carbonate,								
		phlogopite matrix; minor gneiss clasts.								
		@ 55.50 banding @ 30°								
		55.75 contact sharp @ 25°								
		55.75-70.65: gneiss - as above								
		@ 56.05 2cm kimberlite dyke a 25°								
		@ 59.30 5mm fractures altered by kimberlite fluids 30°								
		@ 60.30 gneissosity @ 20°								
		@ 61.75 ~10cm kimberlite dyke @ 40 degrees more or less								
		orthogonal to gneissosity but in the same plane								
		62.75-62.95 kimberlite alteration dykelet @ 25°								
		@ 63.30 gneissosity @ 55°								
		64.80-66.00 low angle fracture with broken core								
		@ 66.25 2cm breccia @ 25°								
		@ 69.00 gneissosity @ 25°								
		70.65-82.00 leucocratic zone 25% quartz, 60% microcline, 15% biotite,								
		pinkish to reddish grey, generally poorly banded, modestly								
		fractured with microcline on fractures.								
		@ 76.40 gneissosity @ 30°								
		82.00 colour change								
		82.00-93.95 Gneiss: leucocratic sections; light to mid-grey to reddish								
		grey; medium to coarse grained, locally pegmatitic; massive								
		to well banded; microcline on fractures; 40% quartz, 30%								
		plagioclase & microcline, 30% biotite								
		@ 85.40 gneissosity @ 5°								
		@ 90.50 gneissosity @ 20°								
		93.95 contact sharp @ 25°								
		93.95-95.30 Kimberlite: mid greenish grey, non-magnetic, very								
		carbonatized ;~20% olivine & phlogopite phenocrysts in								
		a very fine serpentinized & phlogopite matrix; gneiss								
		clasts to 10cm.								

				: Spider #1	- Kyle #3		HOLE NO	: 2000-02		PAGE: 4/7	
		SPIDER RESOURCES INC.									
FROM	то					ANAL	YTICAL RE	SULTS			
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH					
		@ 94.35 3cm tension breccia @15°									
		95.30 contact sharp @ 25°									
		95.30-98.60 Gneiss: mid to dark grey to reddish grey, coarse grained to									
		locally pegmatitic; poor to moderately banded.									
		@ 97.30 gneissosity @ 80°									
		97.50-97.75 kimberlite dyke; upper contact @ 35°, lower									
		@ 25°, both more or less orthagonal to									
		gneissosity in the same plane; 30% ovoid									
		olivine + 5% phlogopite phenocrysts to 2mm;									
		7cm gneiss clasts									
		98.60 colour change									
		98.60-119.25 leucocratic; mid to light grey to pinkish grey, poorly banded,									
		medium to coarse grained; moderately fractured, calcite &									
		microcline in fractures.									
		104.80-105.40 kimberlite dyke; upper contact @ 30°									
		lower @ 20°; greenish grey; 40% olivine &									
		10% phlogopite phenocrysts in a									
		serpentinized matrix									
		@ 116.00 gneissosity @ 40°									
		@ 118.50 gneissosity @ 50°									
		119.10-119.25 serpentine in fractures & invading gneiss									
		matrix									
119.25		contact sharp @ 50° in a plane at right angles to gneissosity									
119.25	242.32	Kimberlite: mid greenish grey, massive, strongly magnetic, weakly									
		carbonatized; weak to modestly fractured - fractures normally									
		hairline but range to 3mm filled with calcite+/- hematite; an									
		older fracture set up to 2mm wide contains serpentine &									
		locally minor asbestos.				_					
		Three clasts types are recognized set in a serpentinized matrix:	I								
			I								
L											
					1	1				1	

				: Spider #1	- Kyle #3		HOLE NO	D: 2000-02		PAGE: 5/7	,
		SPIDER RESOURCES INC.									
FROM	то	DECODIDION				ANAL	YTICAL RI	ESULTS			
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH					
		1) Gneissic: angular to sub-rounded, corroded borders, may have									
		reaction rims; range to the metre size.									
		2) Kimberlite: brownish grey, ragged edges, appear to be breaking apart,									
		contain sub-angular to rounded clasts of peridotite; matrix									
		is phlogopite & serpentine									
		3) Peridotite: black, sub-angular to sub-rounded, fine grained but									
		occassional olivines are recognizable. In places appear to									
		be disaggregates from kimberlitic clast.									
		7% gneiss to 30cm, 5% kimberlite to 5cm, 30% peridotite to 8cm but	2000-02-05	119.25	125.00	5.75					
		generally <1mm									
		119.35 flow banding @ 45°									
		10% gneiss to 30cm, 5% kimberlite to 3cm, 30% peridotite to 8cm	2000-02-06	125.00	131.00	6.00					
		126.0 fracture gouge @ 45°									
		5% gneiss to 1.5cm, 3% kimberlite to 5cm, 25% peridotite to 7cm	2000-02-07	131.00	137.00	6.00				-	
		133.7 garnets & chrome diopside									
		100/ major to 2pm 50/ kimbalite to Zom 400/ navidatite to Com	0000.00.00	407.00	4.40.00	0.00					
		10% gneiss to 3cm, 5% kimbenite to 7cm, 40% pendotite to 6cm	2000-02-08	137.00	143.00	6.00				-	
		142.75-143.50 granite xenolitin, manos serpetinized	-								
		25% gneiss to 15cm 3% kimberlite to 3cm 15% peridotite to 1cm	2000 02 00	142.00	140.00	6.00					
		145 90-146 35, gneiss xenolith	2000-02-09	143.00	143.00	0.00					
		65% gneiss to 55cm 5% kimberlite to 3cm 10% peridotite to 1cm	2000-02-10	149.00	153 10	4 10					
		149.55-151.90 pegmatitic gneiss xenolith: mafics locally serpentinized									
		153.10-156.25 granite xenolith; mafics locally serpentinized									
		30% gneiss to 80 cm, 10% kimberlite to 10cm, 10% peridotite to 1cm	2000-02-11	156.25	161.35	5.10					
		157.20-158.00 gneiss xenolith; mafiics almost entirely serpentinized									
		161.35-165.65 gneiss xenolith; mafics partially serpentinized									
								_			
			1						1		

				: Spider #1	- Kyle #3		HOLE NO: 2	2000-02	PAGE: 6/7	
		SPIDER RESOURCES INC.								
FROM	τO	DESCRIPTION				ANAL	YTICAL RES	ULTS		
TROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		25% gneiss to 85cm, 20% kimberlite to 20cm, 15% peridotite to 3cm	2000-02-12	165.35	173.00	7.65				
		168.05 1cm fracture gouge @ 45°								
		168.30-169.15 gneiss xenolith, mafics partially serpentinized.								
		40% gneiss to 15cm, 10% kimberlite to 20cm, 10% peridotite to 1cm	2000-02-13	173.00	179.00	6.00				
		25% gneiss to 25cm, 7% kimberlite to 4cm, 15% peridotite to 1cm	2000-02-14	179.00	184.75	5.75				
		194.75 196.17 groiss vanalith matics slightly corportinized					ł – – – – –			
		186 17-187 17 mixture of 25% gneiss & 75% kimberlite								
		187 17-191 75 gneiss xenolith								
		35% gneiss to 35cm, 405 kimberlite to 10cm, 10% peridotite to 2cm:	2000-02-15	191.75	197.00	5.25				
		within section, contrasting brownish colour due to phlogopite & lime green								
		due to serpentinization of selected clasts								
		194.43-194.77 gneiss xenolith, mafics slightly serpentinized								
		15% gneiss to 55cm, 25% kimberlite to 7cm, 20% peridotite to 1cm	2000-02-16	197.00	200.88	3.88				
		colour contrast as above								
		198.55-209.50 gneiss xenolith - mafics slightly serpentinized								
		200.88-209.50 gneiss xenolith								
		150/ gnoing to 20cm 150/ kimbarlite to 5cm 200/ paridatite to 15cm	2000 02 47	200 50	014.00	E 00				
		15% griefs to 2001, 15% kindenite to 501, 30% pendotite to 1501	2000-02-17	209.50	214.88	5.38				
		214.60 trace pyrite								
		214.88-218.60 gneiss xenolith: serpentinization of matics 218.00-218.60								
		20% gneiss to 30cm, 25% kimberlite to 8cm, 10% peridotite to 1cm	2000-02-18	218.60	221.00	2.40				
		20% gneiss to 70cm, 25% kimberlite to 8cm, 10% peridotite to 1cm	2000-02-04	221.00	227.00	6.00				
		222.75-223.45 gneiss xenolith								
		10% gneiss to 20cm, 15% kimberlite to 5cm, 25% peridotite to 3cm	2000-02-03	227.00	233.00	6.00				
		core pitted as if serpentinized crystals had been plucked from the core					↓		 	
		227.38 3cm olivine macrocryst					<u> </u>			
		229.10-229.30 15% dark red garnets to 5mm, plus chrome diopside to					┨────┤			
		20 85 1 5cm macrocrysts of oliving & pyroxong					╂────╂		-	
		from 230.00, core reduced to rubble when extracted from core tube					 		 	
							<u> </u>			
						1	I			1

SPIDER RESOURCES INC. ANALYTICAL RESULTS FROM TO DESCRIPTION ANALYTICAL RESULTS 10% gneiss; core reduced to rubble 2000-02-02 233.00 239.00 6.00 Image: Constraint of the constrai					- Kyle #3		HOLE NO	: 2000-02		PAGE: 7/7	
FROMTODESCRIPTIONANALYTICAL RESULTSSAMPLEFROMTOLENGTHImage: Constraint of the second s		SPIDER RESOURCES INC.									
FROM IO DESCRIPTION SAMPLE FROM TO LENGTH Image: Constraint of the state of t		DECODIDITION				ANAL	YTICAL RE	SULTS			
10% gneiss; core reduced to rubble 2000-02-02 233.00 239.00 6.00 Image: constant of the second seco	FROM TO	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH					
235.00 15cm competent piece of kimberlite core with 5-10% 1-2mm Image: Competent piece of kimberlite core with 5-10% 1-2mm red garnet & green diopside Image: Competent piece of kimberlite core with 5-10% 1-2mm		10% gneiss; core reduced to rubble	2000-02-02	233.00	239.00	6.00					
red garnet & green diopside		235.00 15cm competent piece of kimberlite core with 5-10% 1-2mm									
		red garnet & green diopside									
10% gneiss; core reduced to rubble 2000-02-01 239.00 242.32 3.32		10% gneiss; core reduced to rubble	2000-02-01	239.00	242.32	3.32					
242.32 E.O.H.	242.32	E.O.H.									
Notes: 1) Hole lost at 242.32 metres due to "squeezing", core barrel &		Notes: 1) Hole lost at 242.32 metres due to "squeezing", core barrel &									
tube left in hole.		tube left in hole.									
2) All casing removed.		2) All casing removed.									
3) Cement plugs at 21 metres and 52 metres.		3) Cement plugs at 21 metres and 52 metres.									
4) Tropari tests; Deptin Dip Azimutn (azimutni unreliable)		4) I ropari tests; Depth Dip Azimuth (azimuths unreliable)									
70m -51° 205°		70m -51° 205°									
		140m -50° 207°									
		213m -48° 205° 5) Azimuths unreliable due to magnetic attraction of the									
5) Azimuths unreliable due to magnetic attraction of the		5) Azimuths unreliable due to magnetic attraction of the									
					L						

							INCLINATI	ION TESTS	;				
		SPIDER RES	OURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-03	
					COLLAR	-50						Page 1/4	
LOCATION: 1	KYLE #3	GRID: ASH	ITON	ELEVATION: ~130m	60m	-50					PROJECT:	Spider #1	
LENGTH: 18	1.66m	HORIZ: 600 E	VERT: 675 N	AZIMUTH: 180	120m	-48					STARTED:		
CORE SIZE:	NQ	RECOVERY:	LOGGED BY: J.G. BURNS	DATE: MAY 13-14/00	181m	-49					FINISHED:		
FROM	то		DESCRIPTION					ANAL	YTICAL RES	SULTS			
TROM	10		DEGORITION		SAMPLE	FROM	ТО	LENGTH					
0.00	10.20	Overburden:											
		6.10-10.20 regolith											
		6.10-6.45	dolomite boulder										
		6.45-7.75	cemented dolomite & gneiss	pebbles; pebbles to									
		7 75 0 00	3 cm; matrix lime & sand										
		7.75-8.20	cemented sand - minor peor	DIES									
		8.20-8.55	delemite baulder										
		8 90-10 20	noorly comented pebbles &	cobbles of dolomite &									
		0.90-10.20											
10.20	28.25	Dolomite											
	10.20-15.30 light tan, massive to poorly bedded, fossiliferous			siliferous									
	15.30 contact $@$ 50 $^{\circ}$												
		15.30-19.50 light brown	, poorly bedded, fossiliferous	;									
		19.50 contact sha	arp @ 55 °										
		19.50-26.75 mainly light	t to mid greyish brown, mode	stly bedded, very									
		fossilifero	ous.										
		@ 23.25 b	bedding @ 55 °										
		26.75 contact @	2 60°										
		26.75-28.25 mid greyish	n brown, modestly bedded, ve	ery fossiliferous,									
		sandy											
28.25		Contact charp irregular											
20.25		Contact sharp - megular											
28 25	41 45	Sandstone											
20.20	11.10	28.25-29.70 medium gra	ained, clean quartz sandston	e with thin fine									
		grained b	eds: moderate to well bedde	d.									
		29.70 contact gr	ound core										
		29.70-30.50 mid to dark	grey dirty sandstone with pe	bbles/fragments of									
		clean sar	ndstone	-									
		30.50 contact sh	narp @ 45°										
		30.50-34.05 dark grey, f	fine grained dirty, poorly bed	ded, poor to non-									
		consolida	ated										
		34.05 contact @	2 40°										
	34.05-36.45 mid greenish grey, fine grained, massive												

				: SPIDER #	#1 - Kyle #3	3	HOLE NO:	2000-03	PAGE: 2/4	-
		SPIDER RESOURCES INC.								
EROM	τo					ANAL	YTICAL RES	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		 36.45 contact irregular 36.45-41.45 fine to medium to coarse grained, clean quartz, poorly consolidated, minor worm burrows, poorly bedded. 36.45-36.75 very fine grained. 								
41.45		Contact ground core								
41.45	109.8	Gneiss: granite gneiss, brick red; 15% quartz, 55% microcline, 30% mafics; massive-no banding but locally weakly foliated; local fragments/inclusionsof gneiss; moderately fractured/veined -carbonate filled 41.45-41.75 mid grey - feldspars totally weathered 41.75-42.00 kimberlite, dark brownish grey, soft strongly weathered; upper & lower contacts @ 30° but opposite to each other @ 55.50 foliation @ 65° 57.00-58.00 3cm kimberlite dyke @ 0-5°, strongly weathered @ 58.90 3mm kimberlite filled fracture @ 15° @ 59.15 3mm kimberlite filled fracture @ 15° @ 63.50 kimberlite filled fracture @ 15° 65.85-66.35 broken core due to fractures along core @ 66.90 foliation @ 50° 76.60-78.00 leucocratic 85.65-86.50 leucocratic ~ 88.00-109.80 core broken, moderately fractured at all angles; chlorite on fractures 90.25-102.50 dark reddish grey 98.20-101.00 pegmatite; quartz - feldspar - chlorite @ ~100.50 kimberlite fracture, broken core 107.95-109.80 kimberlite fracture in pegmatite								
109.80		Contact @ 40°								
109.80	154.45	Kimberlite: mid to dark brownish grey, fine grained phlogopite-serpentine matrix with 30% peridotite clasts to 5mm; 1-2mm reaction rims about gneiss clast; strongly magnetic, carbonatized; weak to moderately fractured - carbonate filled.								

		PROJECT	: SPIDER #	1 - Kyle #3		HOLE NO:	2000-03	PAGE: 3/4		
		SPIDER RESOURCES INC.								
FROM	τo					ANAL	YTICAL RE	SULTS		
TROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		25% gneiss clasts to 25 cm	2000-03-01	109.60	115.00	5.40				
		20% gneiss clasts to 30 cm	2000-03-02	115.00	121.00	6.00				
		10% gneiss clasts to 5 cm at 124.40 banding @ 45°	2000-03-03	121.00	127.00	6.00				
		<3% gneiss clasts 128.80-134.00 peridotite/olivine clasts serpentinized to olive green colour from usual black	2000-03-04	127.00	133.00	6.00				
		<3% gneiss clasts	2000-03-05	133.00	139.00	6.00				
		10% gneiss clasts to 6 cm from ~139m kimberlite taking appearance of ragged clasts	2000-03-06	139.00	145.00	6.00				
		15% gneiss clasts to 5cm	2000-03-07	145.00	151.00	6.00				
		10% gneiss clasts to 15cm	2000-03-08	151.00	154.45	3.45				
154.45		Contact sharp @ 50°; 3mm chill margin								
154.45	181.66	Gneiss								
		 154.45-169.50 mid to dark grey, medium to coarse grained locally pegmatitic over short intervals, faint to well banded @ 157.30 gneissosity @ 40° 157.90-160.00 kimberlite dyke @ 30° @ 159.90 1cm broken kimberlite dyke @ 160.05 1cm kimberlite dyke @ 20° @ 167.00 gneissosity @ 30° 160.95-161.10 kimberlite dyke @ 40° non magnetic, moderately carbonatized, fine grained 169.50-175.70 light grey to pinkish white to light pink, medium to coarse grained; for the most part leucocratic, very faint foliation 175.70 contact sharp @ 50° 175.70-181.66 mixture of leucocratic gneiss with faint foliation & well banded grey gneiss 								

			PROJECT	: SPIDER	#1 - KYLE #	#3	2000-02			4/4	
		SPIDER RESOURCES INC.									
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS	-	-	-
ТКОМ	10		SAMPLE	FROM	то	LENGTH					
		at 181.00 gneissosity @ 55°									
181.66		E.O.H.									
		Notes: 1) All casing pulled. 2) Cement Plugs @ m & m. 3) Trorari tests: Depth Dip Azimuth (Azimuths unreliable) 60m -50° 196° 120m -48° 197° 181m -49° 195° 4) Azimuths unreliable due to the magnetic attraction of the kimberlite, and not corrected for declanation.									

				INCLINAT	ION TESTS	5							
					DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-04	
					COLLAR	-70						PAGE: 1/4	
LOCATION: I	KYLE #3	GRID: ASI	HTON	ELEVATION: ~130m	85m	-70					PROJECT:	SPIDER #1	
LENGTH: 28	5.60m	HORIZ: 600E	VERT: 675N	AZIMUTH: GRID S	185m	-69					STARTED:		
CORE SIZE:	NQ	RECOVERY:	LOGGED BY: J.G. BURNS	DATE: MAY 15/2000	285m	-69					FINISHED:		
FROM	то		DESCRIPTION					ANAL	YTICAL RE	SULTS			
FROM	10		DESCRIPTION		SAMPLE	FROM	TO	LENGTH					
0.00	7.62	Overburden: 0.5m of se	emi consolidated dolomite & vo	olcanic pebbles set									
		in a lime	ey matrix										
7.62	23.20	Dolomite:											
		7.62-14.60 light tan, fo	ossiliferous										
		14.60 contact br	oken core										
		14.60-17.60 light brown	hish grey, fossiliterous, mottled										
		17.60 contact s	harp @ 80°										
		17.60-23.20 mid to dari	k brownish grey, very lossilier	ous (worm burrows);									
	minor intervals of above sub-unit. 22.65-23.20 matrix becoming sandy												
		22.00-20	5.20 matrix becoming sandy										
23 20		contact broken core											
20.20													
23.20	32.61	Sandstone:											
		23.20-~24.50 light grey	, fine to medium grained, clea	n quartz, friable									
		~24.50 contact	lost-ground core	• •									
		~24.50-27.70 dark gree	en, dirty, fine grained, poorly co	onsolidated,									
		massive	e; near top fragments of clean	sandstone									
		27.70 subtle c	olour change										
		27.70-29.55 light to m	nid green, "dirty", fine grained,	massive									
		29.55 contact	lost-ground core										
		29.55-32.61 fine to co	parse grained, massive clean	quartz, very friable;									
		conside	erable lost core, but above 32	61 a few pebbles of									
			quartz recovered.										
		29.00-7	29.85 very line grained										
32.61		contact lost - broken & l	ost core										
52.01		contact lost - broken & r											
32.61	225.60	Gneiss:											
551	0	32.61-90.55 Granite: b	prick red, massive, medium to	coarse grained.									
		weakly f	fractured; minor sections proba	able xenoliths -									
		foliated	to banded with indistinct conta	cts due to assimilation									
		32.61-~44.00 eff	ects of tropical weathering										
		32.61-33.60 we	eathered white - mafics & micr	ocline totally altered									
		33.60 c	contract gradational					1					

				: SPIDER #	1 - KYLE #	3	HOLE NO:	2000-04	PAGE: 2/4	
		SPIDER RESOURCES INC.								
FDOM	то					ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		 33.60-~40.00 dark pink to red, mafics weathered but becoming less so ~40.00-44.00 weathering mainly confined about fractures ~56.75-78.40 numerous xenoliths; granite becoming more leucocratic 78.40-90.55 leucocratic granite: light to mid pink, faintly foliated, medium to coarse grained; 20% quartz, 10% mafics 70% feldspar; minor xenoliths @ 84.00 foliation @ 50° 90.55 contact sharp @ 20° 90.55-119.35 mixture of moderately to well banded, fine to coarse grained, dark grey gneiss plus light grey to pink, fine to coarse grained, dark grey gneiss plus light grey to pink, fine to coarse grained moderately foliated leucocratic gneiss at least some of which is granite. @ 98.00 gneissosity @ 40° 119.35 contact @ 50° 119.35-124.15 mainly leucocratic granite with minor grey gneiss 123.15-123.35 quartz vein @ 65° 124.15 contact @ 75° parallel to gneissosity 124.15-138.35 mainly grey gneiss with minor short sections of pink granite 138.35 contact sharp @ 45° slightly cross-cutting gneissosity 138.35-159.65 mid pink to pinkish grey granite, minor gneiss senoliths-some partially assimilated 142.10-144.90 pegmatite - contacts irregular @ 154.60 foliation @ 60° 159.65 contact @ 45° 159.65-179.75 mainly grey gneiss with short granite sections both parallel to and cross-cutting gneissosity @ 159.65-179.75 mainly grey gneiss with short granite sections both parallel to and cross-cutting gneissosity 								

			PROJECT	: SPIDER #	1 - KYLE #	3	HOLE NO	: 2000-04	PAGE: 3/4	
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		1
			SAMPLE	FROM	то	LENGTH			───	ļ
		 179.75 contact @ 55° semi-parallel to gneissosity 179.75-225.60 mainly pale pink leucogranite with sections of considerable grey gneiss as at 191.25-196.50, 209.00- 210.65, 211.90-219.05 203.80-204.90 pegmatite 210.70-210.90 kimberlite dyke @ 25°, 2%pyrite @ 210.95 3mm kimberlite fracture 225.15-225.55 7mm kimberlite dyke curving along core axis 								
225.60		contact sharp @ 5 °								
225.60	232.05	 Kimberlite: dark brownish grey, fine grained phlogopite rich matrix with ~30% olivine phenocrysts; strongly magnetic & carbonatized; foliated @ 20-40°; considerable broken core due to fracture set @ 5-10° 								
		20% gneiss clasts to 10 cm	2000-04-01	225.60	229.00	3.40)			
		30% gneiss clasts to 0.5 m	2000-04-02	229.00	232.05	3.05	5			
232.05		contact sharp @15 degrees								
232.05	250.40	 Gneiss: mixture of 60% light to dark, medium grained, well banded, grey gneiss with 40% leucogranite gneiss; granite gneiss mainly lower in the hole @ 238.40 gneissosity @ 65° @ 245.00 gneissosity @ 60° 250.30-250.40 quartz vein @ 35° 								
250.40		contact at quartz vein @ 30°								
250.40	252.80	Kimberlite: dark brownish grey, non to weakly magnetic; core broken due to a strong carbonate fracture semi parallel to the core; (basically a very narrow dyke following along the core axis)								
		50% gneiss	2000-04-03	250.40	252.80	2.40				

	SPIDER RESOURCES INC.	PROJECT	: SPIDER #	#1 - KYLE #	3	HOLE NO:	2000-04		PAGE: 4/4		
		SPIDER RESOURCES INC.									
FROM	то	DESCRIPTION		_	_	ANAL	YTICAL RE	SULTS	-	_	
TROM	10		SAMPLE	FROM	ТО	LENGTH					
252.80		contact sharp @ 5-10°									
252.80	285.60	 Gneiss: mainly fine to medium grained, poor to well banded, light to dark grey with minor sections of poorly foliated leucogranite. @ 262.50 gneissosity @ 35° 272.95-273.50 quartz-feldspar pegmatite @ 277.50 gneissosity @ 50° 									
285.60		E.O.H.									
		Notes: 1) All casing pulled. 2) Cement plugs at & m. 3) Tropari tests: Depth Dip Azimuth (azimuths unreliable) 85m -70° 201° 185m -69° 203° 285m -69° 205° 4) Azimuths unreliable due to the magnetic attraction of the kimberlite, and not corrected for declination.									

						INCLINATI	ON TESTS						
		SPIDER RES	SOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-05	
					COLLAR	-50						PAGE: 1/4	
LOCATION: K	(YLE #3	GRID: ASH	ITON	ELEVATION: ~130m	60m	-49					PROJECT:	SPIDER #1	
LENGTH: 169	.79	HORIZ: 700 E	VERT: 675 N	AZIMUTH: GRID S	120m	-47					STARTED:		
CORE SIZE: N	NQ	RECOVERY:	LOGGED BY: J.G. BURNS	DATE: MAY 11-13/00	170m	-46					FINISHED:		
FROM	то		DESCRIPTION					ANAL	YTICAL RES	SULTS			
TROM	10		DESCRIPTION		SAMPLE	FROM	ТО	LENGTH					
0.00	9.35	Overburden: 9.14-9.35 cemented reg kimberlite in	golith; pebbles of dolomite, sar n a limey matrix	ndstone &									
9.35	29.95	Dolomite: 9.35-19.55 light tan, f content i 19.55 contact s 19.55-29.95 mixture of fossilifer @ 21.15 @ 25.40	aintly bedded, poorly fosislifer ncreasing down hole. harp @ 45° above with a light to mid brown rous, modestly bedded sub-un 5 bedding @ 45° 0 bedding @ 50°	ous but with fossil hish grey, very it									
29.95		contact sharp @ 60 ^º											
29.95	43.40	Sandstone: 29.95-31.60 mid grey to calcareo @ 31.30 31.60 contact s 31.60-32.90 mid to darl sandstor 32.90 contact lo 32.90-36.00 dark greer poorly co 36.00 contact g 36.00 contact s 38.60 contact s 38.60-43.40 fine to mee massive burrows. 38.60-39	b brownish grey, poor to moder us bedding @ 55° harp @ 45° k grey, calcareous matrix with he pebbles/fragments to 1cm ost - ground core hish grey, massive, non-calcare onsolidated radational - colour change d green, massive, fine grained harp but irregular dium to coarse grained, clean of to faintly bedded, poorly conso	rately bedded 40% light grey eous, fine grained, quartz sandstone, plidated; 1% worm									
43.40		contact lost - ground co	re										

	SPIDER RESOURCES INC.	PROJECT	: SPIDER	#1 - KYLE	#3	HOLE NO:	2000-05	PAGE: 2/4	1	
		SPIDER RESOURCES INC.								
,		1				ΔΝΙΔΙ				
FROM	то	DESCRIPTION	SAMPLE	FROM	то			30L13		
43.40	86.15	Gneiss								
43.40	86.15	Gneiss 43.40-56.60 generally mid to dark greyish red, fine to medium grained (locally pegmatitic), non to poorly banded; strongly fractured to brecciated to 54.60 with fractures at all angles; carbonate filling some fractures; "breccia veins" bleached to cream colour & non-carbonatized - matrix appears to be mainly finely crushed gneiss 56.60 contact irregular at abrupt colour change 56.60-69.60 mixture of poor to moderately banded greyish pink & dark grey gneiss; weakly fractured throughout - fractures at all angles with carbonate filling 57.80-58.60 moderately fractured @ 60.80 gneissosity @ 15° @ 63.90 5mm carbonate filled fracture @ 10° @ 65.35 5mm carbonate filled fracture @ 10° @ 65.35 5mm carbonate ishear" fracture @ 15° 65.85-66.00 kimberlite dyke; magnetic, oxidized; upper contact @ 50°, lower @ 55° @ 67.90 2cm breccia fracture @ 10° partially infilled with kimberlite 69.60-colour change 69.60-79.15 mid greyish red, medium grained, massive to poorly banded weakly fractured with carbonate filling 69.80-69.90 quartz vein @ 65° @ 73.45 5cm breccia; carbonate matrix @ 76.50 gneissosity @ 45° 79.15 abrupt colour change @ 25° 79.15 abrupt colour ch								

			PROJECT	: SPIDER #	‡1 - KYLE #	3	HOLE NO:	2000-05	PAGE: 3/4	1
		SPIDER RESOURCES INC.								
FROM	ΤO	DESCRIPTION				ANAL	YTICAL RE	SULTS		
1 Rom	10		SAMPLE	FROM	ТО	LENGTH				
86.15		contact sharp @ 40°								
86.15	89.10	 Kimberlite: dark grey, fine grained, strongly magnetic & carbonatized; 1-2mm peridotite clasts - content very variable but averages ~20%; weakly fractured - carbonate filled; 3mm chill margins at dyke contacts & about gneiss inclusions. 								
		30% gneiss clasts	2000-05-01	86.15	89.10	2.95				
89.10		contact sharp @ 50°								
89.10	169.79	Gneiss 89.10-101.90 predominantly granite gneiss: light to mid greyish pink, very poorly banded, medium to coarse grained - locally pegmatitic; ~5% fine to medium grained, modestly banded grey gneiss as inclusions since banding of grey gneiss cross cuts that of granite gneiss @ 91.00 5cm kimberlite dyke @ 60° 101.90 contact taken where dark grey gneiss becomes dominant 101.90-110.95 predominantly mid to dark grey, fine to medium grained, well banded gneiss; ~20% pink gneiss parallel to grey gneiss @ 110.70 gneissosity @ 50° 110.95 colour change 110.95-122.70 predominantly granite gneiss with ~5% grey gneiss bands & inclusions 118.15-118.45 Kimberlite dyke: mid brownish grey very fine grained; 20% peridotite clasts to 1mm, non-magnetic; upper contact @ 30°, lower @ 40° cross cutting gneissosity 122.70 grey gneiss sections becoming more prevalent 122.70-129.10 approximately 50% grey gneiss, 50% granite gneiss; gneissosity angles highly variable; granite gneiss may be either parallel to or cross-cutting grey gneiss gneissosity 129.10 colour change: decrease in grey gneiss content								

	SPIDER RESOURCES INC.	PROJECT	: SPIDER #	#1 - KYLE #	# 3	HOLE NO:	2000-05	PAGE: 4/4		
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION					YTICAL RE	SULTS		
			SAMPLE	FROM	10	LENGIH			 	
FROM 169.79	то	DESCRIPTION 129.10-134.50 granite gneiss; pinkish grey, very poorly banded, medium to coarse grained, locally pegmatitic 134.50 sharp colour change 134.50-169.79 predominantly grey gneiss, poor to moderately banded with sections of well banded pinkish gneiss; banding in both units parallel therefore originally probably sedi- ments; in both units grain size varies from fine to coarse. @ 148.50 gneissosity @ 50° @ 167.80 gneissosity @ 30° E.O.H. Notes: 1) All casing pulled. 2) Cement plugs at m & m. 3) Tropari tests: Depth Dip Azimuth (azimuths unreliable) 60m -49° 191° 120m -47° 192° 170m -46° 193°	SAMPLE	FROM	ТО	LENGTH				
		4) Azimuths unreliable due to the magnetic attraction of the kimberlite, and not corrected for declination.								

	SPIDER RESOURCES INC.							INCLINA	TION TESTS	5				
		SPIDER	RES	OURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-06	
		_	_			COLLAR	-50)				1	PAGE: 1/5	
LOCATION: H	KYLE #3	GR	ID: ASH	TON	ELEVATION: ~130m	60m	-4)				PROJECT:	SPIDER #1	
LENGTH: 173	3.29m	HORIZ: 400 E		VERT: 625 N	AZIMUTH: GRID S	120m	-4)				STARTED:		
CORE SIZE: N	NQ	RECOVERY:		LOGGED BY: J.G. BURNS	DATE: MAY 11-12/00	172m	-4)				FINISHED:		
					•	1			ANAI	YTICAL RE	SULTS			
FROM	10			DESCRIPTION		SAMPLE	FROM	ТО	LENGTH					
0.00	11.00	Overburden: re	covered	material includes loose (min	or cemented)									
		C	dolomite	(to 8cm), dark grey sandstor	ne (to 12 cm) and									
		r	minor gra	ivel size gneiss.	, , , , , , , , , , , , , , , , , , ,									
			Ū.	C C										
11.00	29.57	Dolomite:												
		11.00-21.00 lig	ht greyis	h tan, fossiliferous, local ver	/ faint bedding									
		21.00 c	ontact sh	arp @ 50° defined by subtle	colour change									
		á	as well as	s fossil content										
		21.00-29.57 lig	ht to mid	brownish grey, very fossilife	rous, numerous									
		Ň	worm bur	rows, moderately bedded										
		(@ 21.40	bedding @ 50°										
		(@ 28.40	bedding @ 50°										
			28.85-29	.57 matrix becoming progre	ssively more sandy									
29.57		contact lost - gr	ound cor	e										
20.57	43.00	Sandstone:												
23.57	+0.00	29 57-31 30 mi	d arev fi	ne arained calcareous matr	ix supporting ~50%									
		20.07 01.00 mi	niahly irre	equilar sub rounded to sub a	aular clasts to 2cm of									
			'clean" w	hite sandstone										
		31.30 c	ontact at	abrupt decrease in clast co	ntent									
		31.30-34.50 fin	e grained	d, mid to dark greenish grey	<5% clasts of									
			'clean" sa	andstone; trace pyrite										
		3	31.30-32.	70 matrix calcareous but be	ecoming less so									
		34.50 c	ontact irr	egular - marked by colour cl	nange									
		34.50-37.15 lig	ht to mid	greyish green, fine grained,	occassional worm									
		k	ourrows											
		(C	2 35.40 k	bedding @ 50°										
		37.15 cc	ontact sha	arp @ 50°										
		37.15-37.90 ve	ry fine to	fine grained, becoming coa	rser down hole									
		3	37.15-37	40 light greenish grey "mar	ker" sandstone									
		37.90 c	ontact gr	adational										
		37.90-43.00 me	edium to	coarse grained, poorly cons	olidated; light grey									
		t	o white,	"clean", ~100% quartz; faint	y bedded; ~2% worm									
		k	ourrows											

		PROJECT	: SPIDER #	1 - KYLE #3	}	HOLE NO:	2000-06	PAGE: 2/5		
		SPIDER RESOURCES INC.								
FROM	ΤO					ANAL	YTICAL RE	SULTS		
	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		@ 39.00 bedding @ 50°42.00-43.00 mid to dark grey with gneiss pebbles								
43.00		contact lost - broken & ground core								
43.00	74.20	 Gneiss: 43.00-66.80 granite gneiss: mid to dark greyish red, fine to medium grained, (locally pegmatitic); numerous breccia sections with kimberlitic matrix - clasts/fragments to 10+ cm, angular to sub-rounded, clast +/or matrix supported; kimberlite composed of irregular sub rounded olivine + peridotite clasts to 3cm (some with serpentine rims) set in a fine grained, light olive green serpentine matrix; modestly fractured with carbonate filling 44.30-44.70 "pseudo clasts" of light grey granite formed by "onion skin" weathering 66.80-74.20 massive to well banded, generally mid greyish red, poorly fractured @ 72.00 gneissosity @ 60° 								
		~50% breccia: main zones, 43.00-43.70, 44.70-45.35, 46.50-47.25, 47.50-47.85	2000-06-01	43.00	49.00	6.00				
		30% breccia: main zones, 50.70-50.90, 51.45-52.50, 52.90-53.10, 53.30-53.40, 55.15-55.40	2000-06-02	49.00	55.00	6.00				
		50% breccia: main zones, 55.80-56.05, 56.50-57.00, 57.20-57.65, 58.05-58.50, 59.05-59.20, 59.30-60.40, 60.60-61.00	2000-06-03	55.00	61.00	6.00				
		99% breccia	2000-06-04	61.00	67.00	6.00				
74.20		contact @ 50º at a breccia zone								
74.20	125.00	Kimberlite: 74.20-74.50 breccia 74.50-74.85 gneiss; mafics partially altered 74.85 contact @ 50° 74.85-76.30 kimberlite; strongly magnetic & carbonatized; 40% peridotite	2000-06-05	74.20	80.00	5.80				

	clasts to 2cm 76.0-76.3 10% gneiss clasts					
76.30	contact @ 55°					

			PROJECT	: SPIDER #	1 - KYLE #	3	HOLE NO:	2000-06	PAGE: 3/5	
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION	SAMPLE	FROM	то			SULIS		
		 76.30-76.90 40% gneiss clasts 76.90-77.60 gneiss xenolith 77.60-80.00 60% gneiss 79.40-79.50 10% "eroded" purple red garnets & green diopside crystals Mix of intervals similar to above, with numerous gneiss clasts set in	2000-06-06	80.00	86.00	6.00				
		kimberlite matrix, plus younger kimberlite dykes which contain numerous peridotite clasts but rare to few gneiss clasts. Dykes notably more magnetic. 80.00-81.95 60% gneiss clasts to 25cm 81.95 contact sharp but irregular 81.95-82.20 kimberlite dyke non-magnetic, 30% peridote clasts 82.20 contact sharp but irregular 82.20-83.45 60% gneiss clasts 83.45 contact sharp @ 30° degrees 83.45-84.45 kimberlite dyke strongly magnetic, 30% peridotite clasts; minor soft white mineral dusted in patches 84.45 contact sharp @ 50° 84.45-86.00 40% gneiss	2000-00-00	80.00	80.00	0.00				
		60% gneiss clasts to 0.6m; ~10% peridotite & olivine clasts set in a fine grained kimberlite matrix	2000-06-07	86.00	92.00	6.00				
		60% gneiss clasts to 0.5m; <5% peridotite & olivine clasts	2000-06-08	92.00	98.00	6.00				
		75% gneiss clasts to 45cm; matrix combination of kimberlite & fine gneiss	2000-06-09	98.00	104.00	6.00				
		40% gneiss clasts to 0.5m; 105.60-106.25 kimberlite dyke with internal banding @ 25° & no gneiss clasts; upper contact @ 20°, lower at a fracture @ 55°	2000-06-10	104.00	110.00	6.00				
		50% gneiss clasts to 0.65m; peridotite clasts in kimberlite to 1.5cm; sections weakly fractured with strongest parallel to core	2000-06-11	110.00	116.00	6.00				
		20% gneiss clasts to 10cm	2000-06-12	116.00	122.00	6.00				

			PROJECT	: SPIDER #	1 - KYLE #3	3	HOLE NO:	2000-06	PAGE: 4/5	
		SPIDER RESOURCES INC.								
						ΔΝΔΓ	VTICAL RE			
FROM	ТО	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
1.00		Possible 3 ages of kimberlite. #1 is represented by mid to dark, greyish brown, rounded to jagged clasts to 15cm. Within these clasts are peridotite &/or olivine clasts to 1.5cm which may contain (rarely) garnet & diopside. #2 is the matrix to the "kimberlite clasts (#1)" . It is greyish olive green in colour, very fine grained serpentine rich & hosts not only the kimberlite clasts but also peridotite & olivine clasts. The later may be the remnants of disaggregation & resorbtion of the original #1 kimberlite. Gneiss clasts are also common in the matrix. #3 are later (younger) dykes with sharp contacts to the enclosing rocks, contain no or few gneiss clasts & resemble #1 in colour, composition, grain size & peridotite/ olivine clast content. 120.40-121.40 #3 kimberlite dyke @ 35°								
		20% gneiss clasts to 5cm; 20% #1 kimberlite to 15cm	2000-06-13	122.00	125.00	3.00				
125.00		contact irregular @ ~30°								
125.00	173.29	 Gneiss 125.00-129.00 light to mid greyish red, medium grained, locally modestly banded; minor (<5%) short narrow breccias with kimberlite matrix 129.00 contact sharp @ 30° 129.00-136.00 melange of gneiss & kimberlite. Gneiss is brecciated (as opposed to occurring as xenoliths). Kimberlite occurrs as matrix to breccias, as well as narrow dykes filling fractures. Dykes probably #3. Gneiss xenoliths minor. 								
		50% gneiss 129.00-129.30 Kimberlite dyke; upper contact @ 30°, lower @ 20°	2000-06-14	129.00	133.00	4.00				
		 30% gneiss 133.20-136.00 narrow (probably 10-15cm) dyke snaking in & out along core axis; trace pyrite 136.00 contact sharp along serpentine fracture @ 20° degrees 136.00-140.15 mainly mid grey, medium grained & faintly bedded, with lesser pinkish white sections. 140.15 abrupt colour change @ 35° 	2000-06-15	133.00	136.00	3.00				

			PROJECT	: SPIDER	#1 - KYLE	#3	HOLE NC	: 2000-06	PAGE: 5/5	
		SPIDER RESOURCES INC.								
EDOM	то	DESCRIPTION				ANA	LYTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		140.15-158.40 mainly mid to dark greyish red, modestly banded, medium to coarse grained, minor grey sections, weakly fractured. @ 141.30 kimberlite fracture @ 143.50 gneissosity @ 55° 145.70-145.85 kimberlite dyke, upper contact @ 45°. lower @ 45° 146.70-147.00 broken core - kimberlite matrix @ 147.40 2cm kimberlite fracture @ 35° @ 152.30 kimberlite fracture @ 50° @ 155.00 gneissosity @ 45° 158.40 colour change parallel to gneissosity 158.40 colour change parallel to gneissosity 158.40 colour change parallel to banding @ 45° 162.00 medium to coarse grained, massive to poorly banded; pink to 160.50, pinkish grey thereafter 162.00 colour change parallel to banding @ 45° 164.50-173.29 melange: mixture of short, fine to medium grained red and light to dark grey sections. 164.50-164.85 kimberlite dyke cross cutting gneissosity & incorporating 25% gneissic bands; 35% olivine phenocrysts set in a very fine grained phlogopite rich matrix; trace pyrite. upper contact @ 30° lower @ 35° @ 167.00 2cm kimberlite dyke @ 20° @ 168.00 gneissosity @ 40° 171.20-171.65 kimberlite dyke cross cutting gneissosity (in same plane), upper contact @ 45°. lower @ 40° @ 172.00 gneissosity @ 15° @ 172.65 4cm kimberlite dyke @ 45°								
173.29		E.O.H.								
		Notes: 1) All casing pulled. 2) Cement plugs at m & m. 3) Tropari test; Depth Dip Azimuth (azimuths unreliable) 60m -49° 191° 120m -49° 195° 172m -49° 195°								

	4) Azimuths unreliable due to the magnetic attraction of the												
	kimberlite, and not corrected for declination.												
	SPIDER RESOURCES INC						INCLINAT	ION TESTS	6				
--------------	--	-------------------------------------	---	---------------------	--------	------	----------	-----------	------------	-------	-----------	-----------	--
		SPIDER RES	SOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2000-07	
					COLLAR	-65	5					PAGE:1/6	
LOCATION: A	KYLE #3	GRID: ASH	ITON	ELEVATION: ~130m	100m	-64	l I				PROJECT:	SPIDER #1	
LENGTH: 282	2.55 m	HORIZ: 400 E	VERT: 625 N	AZIMUTH: GRID S	190m	-64	l I				STARTED:		
CORE SIZE: N	NQ	RECOVERY:	LOGGED BY: J.G. BURNS	DATE:May 14-16/00	282m	-65	5				FINISHED:		
FROM	то						•	ANAI	YTICAL RES	SULTS	-		
FROM	10		DESCRIPTION		SAMPLE	FROM	TO	LENGTH					
0.00	9.00	Overburden: revovered	a material includes pebbles and	d cobbles of									
		dolomite	e, gneiss & fine grained basalt										
9.00	23.65	Dolomite:											
		9.00-16.10 light tan, n	nassive, modestly fossiliferous										
	16.10 contact - broken core; subtle colour change 16.10-18.65 light to mid brown, modestly fossiliferous, locally mottled		nge										
	16.10-18.65 light to mid brown, modestly fossiliferous, locally mottled			s, locally mottled									
	massive												
	18.65 contact lost - ground core												
	18.65-23.65 mixture of a light grey modestly bedded, very fossilifero unit, with the above unit.			very fossiliferous									
		unit, with	n the above unit.										
		@ 19.95	5 bedding @ 60 $^{\circ}$										
		22.85-23	3.65 becoming progressively r	nore sandy									
23.65		contact sharp @ 65°											
23.65	33.50	Sandstone:											
		23.65-24.25 light browr	nish grey, very calcareous, mo	destly bedded									
		24.25 contact s	sharp @ 65°										
		24.25-26.50 light to mic	d grey, calcareous, poorly con	solidated, ~40%									
		clasts of	"clean" white sandstone to 1c	m									
		26.50 contact lo	ost - ground core										
		26.50-28.95 dark grey,	very poorly consolidated, mod	lestly bedded, fine									
		grained	2.50 years first successful such shake										
		28.00-28	3.50 very line grained, probab	ly siltstone									
		20.95 CUNIACI II	negulai ab green, fine te medium grein	ad paarly baddad									
			sn green, line to medium grain	ed, poorly bedded,									
		20.80 contact in											
		30.80-33.50 medium to	coarse grained, clean guartz	sandstone									
		20.00-00.00 meululli l0 20 ՋՈ₂Չ1	1 05 very fine grained										
		00.00-01	noo vory nito granieu										
33.50		contact lost - ground co	ore										
33.50	62.60	Kimberlite:											

	SPIDER RESOURCES INC. FROM TO DESCRIPTION 33.50-34.15 unconsolidated regolith: dark green sandy matrix with clasts of clean sandstone to 2cm. 34.1535.0 34.1535.0 very strongly weathered; dark green, soft but consolidated; original kimberlite mineralogy basically destroyed. 35.00 contact gradational, taken where gneiss clasts become reddish and thus not as extensively weathered 35.0060.0 rock progressively harder but kimberlite texture & mineralogy still partially destroyed; reddish brown iron oxide stain to core; still magnetic 40% gneiss clasts to 25 cm 60% gneiss clasts to 25 cm 60% gneiss clasts to 0.6m 47.10-47.85 47.10-47.85 core very soft, broken, crumbled & highly oxidized 80% gneiss clasts to 1.1m 44.35-45.0 47.10-47.85 core very soft, broken, crumbled & highly oxidized 80% gneiss clasts to 1.1m 45.00-52.10 47.10-47.85 core very soft, broken, crumbled & highly oxidized 80% gneiss clasts to 1.3m; appearance locally that of brecciated gneiss rather than kimberlite dyke; minor gneiss clasts near contacts 50% gneiss clasts to 20cm; appearance becoming increasingly more of a breccia although sections with definite clasts still evident 57.26-57.50 62.00 157.35 Gneis		PROJECT	: SPIDER #	1 - KYLE #3		HOLE NO	: 2000-07		PAGE: 2/6	
FROM	то	DESCRIPTION		I		ANAL	YTICAL RE	SULTS	I	1	Ī
			SAMPLE	FROM	то	LENGTH					
		33.50-34.15 unconsolidated regolith: dark green sandy matrix with clasts									
		34.15-~35.0 very strongly weathered: dark green, soft but consolidated:									
		original kimberlite mineralogy basically destroyed.									
		35.00 contact gradational, taken where gneiss clasts become									
		reddish and thus not as extensively weathered									
		still partially destroyed: reddish brown iron oxide stain to									
		core; still magnetic									
		40% gneiss clasts to 25 cm	2000-07-01	33.50	39.00	5.50					
		60% gneiss clasts to 1.1m	2000-07-02	39.00	45.00	6.00					
		44.35-45.50 core very soft & weathered									
		30% gneiss clasts to 0.6m	2000-07-03	45.00	51.00	6.00					
		47.10-47.85 core very soft, broken, crumbled & highly oxidized									
		80% gneiss clasts to 1.3m; appearance locally that of brecciated gneiss	2000-07-04	51.00	57.00	6.00					
		rather than kimberlite with gneiss clasts.									
		51.00-52.10 Kimberlite dyke; minor gneiss clasts near contacts									
		50% gneiss clasts to 20cm; appearance becoming increasingly more	2000-07-05	57.00	62.00	5.00					
		of a breccia although sections with definite clasts still evident 57.25 57.50. kimbarlite duke @ 45°									
		$60.35-61.35$ kimberlite dyke (#3): upper contact @ 30° , lower @ 45°									
62.00		contact gradational									
62.00	157.35	5 Gneiss:									
		62.00-104.80 strongly brecciated; clasts are dominantly angular to sub-									
		angular, in a matrix of kimberlite & finely broken gneiss									
		60% gneiss to 15cm	2000-07-06	62.00	68.00	6.00					
		62.50-62.65 kimberlite dyke @ 45°									
		63.75-63.90 kimberlite dyke, irregular contacts, minor pyrite 64.05-64.40 kimberlite dyke, irregular contacts									
		64.70-64.85 kimberlite dyke @ 30°									

			PROJECT	: SPIDER #	1 - KYLE #3	}	HOLE NO: 2000-07	PAGE:	3/6
		SPIDER RESOURCES INC.							
EROM	то	DESCRIPTION				ANAL	YTICAL RESULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH			
		65.75-65.85 kimberlite dyke @ 50°							
		70% gneiss; main breccias: 68.00-69.20, 69.70-70.10, 70.25-74.00 74.15-74.50	2000-07-07	68.00	74.50	6.50			
		80% gneiss (actually a brick red, non-banded to poorly foliated, medium grained granite); in places kimberlite occurs as angular fragments to 5cm rather than as open space filling; main breccias: 74.80-74.85, 75.45-76.20, 77.40-77.70, 79.50-79.65, 79.75-79.90; kimberlite dyke @ 45°, 1% pyrite, no gneiss clasts.	2000-07-08	74.50	80.00	5.50			
		60% gneiss to 0.6m; 100% brecciated; kimberlite often occurs as angular apparent fragments 82.45-82.65 kimberlite dyke @ 50°, 1% pyrite	2000-07-09	80.00	86.00	6.00			
		70% gneiss to 35cm; 100% breccia; minor actual gneiss clasts; 5% apparent kimberlite fragments to 7cm	2000-07-10	86.00	92.00	6.00			
		70% gneiss to 35cm; 100% brecciated; 3% apparent kimberlite fragments to 3cm at 93.30 3cm kimberlite dyke @ 45°	2000-07-11	92.00	98.00	6.00			
		70% gneiss to 25cm; 100% brecciated; 3% apparent kimberlite fragments to 3cm at 102.50 5cm kimberlite dyke @ 50°, 2% pyrite	2000-07-12	98.00	104.80	6.80			
		104.80 contact at end of breccia							
		 104.80-157.35 mixture of brick red, medium grained, faintly foliated, quartz poor granite gneiss, and fine to coarse grained, mid to dark grey, poor to well banded grey gneiss @ 112.20 gneissosity @ 30° 115.55-118.15 ~30% kimberlite as irregular patches & dykes; non magnetic; mafics of host granite partially serpentinized. @ 119.25 broken core - kimberlite fracture @ 45° @ 119.60 foliation @ 55° @ 122.50 7cm kimberlite dyke @ 60°, semi-parallel to foliation 							

1	122.95-123.15 kimberlite dyke @ 60°					1 1
	-					

	,		PROJECT	: SPIDER #	1 - KYLE #3	}	HOLE NO	: 2000-07	PAGE: 4/6	
	SPIDER RESOURCES INC. M TO DESCRIPTION @ 124.35 irregular kimberlite fracture 127.65-128.05 tension breccia - kimberlite filling 128.05-~135.0 modestly fractured at all angles; a few fractures with kimberlite filling 128.05~135.0 modestly fractured at all angles; a few fractures with kimberlite filling @ 139.25 foliation @ 40° 141.00-142.60 50% quartz-feldspar pegmatite @ 148.00 gneissosity @ 40° 154.50-155.35 kimberlite dyke: magnetic, pitted, massive, appears weathered; fine grained matrix w 30% olivine clasts to 3mm; no gneiss clast upper contact @ 25° cross cutting gneissosity, lower contact @ 20° @ 155.50 gneissosity @ 40° 57.35 contact @ 40° opposite to & rotated ~15° from gneissosity 207.45 57.35 contact @ 40° opposite to & rotated ~15° from gneissosity 207.45 57.35 contact @ 40° opposite to a rotaged, phlogopite rich & strongly magnetic and contain black peridotite &/or serpentized olivine macrocrysts to 1cm. 25% gneiss clasts to 10cm; 25% kimberlite clasts to 15cm 20% gneiss clasts to 10cm; 25% kimberlite clasts to 25cm; weakly fractured with carbonate filling at 168.40 fracture gouge @ 30° at 168.65 fracture gouge @ 30°									
EDOM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS	<u>.</u>	<u>(</u>
FROIVI	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		 @ 124.35 irregular kimberlite fracture 127.65-128.05 tension breccia - kimberlite filling 128.05-~135.0 modestly fractured at all angles; a few fractures with kimberlite filling @ 139.25 foliation @ 40° 141.00-142.60 50% quartz-feldspar pegmatite @ 148.00 gneissosity @ 40° 154.50-155.35 kimberlite dyke: magnetic, pitted, massive, appears weathered; fine grained matrix with 30% olivine clasts to 3mm; no gneiss clasts; upper contact @ 25° cross cutting gneissosity & in a plane rotated 45° from gneissosity, lower contact @ 20° 								
		@ 155.50 gneissosity @ 40°								
157.35		contact @ 40° opposite to & rotated ~ 15° from gneissosity								
157.35	207.45	Kimberlite: fine grained, non-magnetic, mid green serpentine matrix, in which are set gneiss & kimberlite clasts. Kimberlite clasts are greyish brown, sub-rounded to ragged, phlogopite rich & strongly magnetic and contain black peridotite &/or serpentized olivine macrocrysts to 1cm.								
		25% gneiss clasts to 10cm; 25% kimberlite clasts to 15cm	2000-07-13	157.35	163.00	5.65				
		20% gneiss clasts to 10cm; 25% kimberlite clasts to 25cm; weakly fractured with carbonate filling at 168.40 fracture gouge @ 30° at 168.65 fracture gouge @ 30°	2000-07-14	163.00	169.00	6.00				
		20% gneiss clasts to 7cm; 15% kimberlite clasts to 0.1m; weakly fractured	2000-07-15	169.00	175.00	6.00				
		15% gneiss clasts to 7cm; overall colour change to greenish brown so that kimberlite clasts are no longer distinguishable; weakly fractured	2000-07-16	175.00	181.00	6.00				
		25% gneiss clasts to 0.5m; 10% kimberlite clasts to 5cm; weakly fractured	2000-07-17	181.00	187.00	6.00				
		25% gneiss clasts to 40cm; 10% kimberlite clasts to 8cm at 187.05 strong fracture @ 20°	2000-07-18	187.00	193.00	6.00				

	at 187.30 strong fracture @ 20°	/					

	SPIDER RESOURCES INC. ROM TO DESCRIPTION 35% gneiss clasts to 0.8m; mainly greenish brown kimberlite therefore few kimberlite clasts; weakly fractured 196.50-197.30 gneiss at 197.90 banding @ 55° 198.10-198.75 gneiss 25% gneiss clasts to 0.85m; mainly massive brownish matrix kimberlite; weakly fractured 199.40-200.25 gneiss 207.45 25% gneiss clasts to 0.85m; mainly massive brownish matrix kimberlite; weakly fractured 199.40-200.25 gneiss 207.45 222.00 Gneiss: grey gneiss with scattered kimberlite dykes, fractures & small patches at 208.45 5cm kimberlite dyke - irregular at 208.95 kimberlite fracture - irregular 211.30-211.65 kimberlite dyke; torownish matrix, no gneiss clasts; upper contact irregular, lower @ 60° 213.30-213.80 60% kimberlite dyke; upper contact @ 25°, lower @ 55° 214.40-215.00 kimberlite dyke; contacts @ 15°, minor gneiss clasts at 219.95 4cm kimberlite dyke; upper contact @ 25°, lower @ 55° 214.40-215.00 kimberlite dyke; upper contact @ 40°, lower @ 35° 221.00-221.30 kimberlite dyke; upper contact @ 40°, lower @ 35° 221.00-221.30 kimberlite dyke; upper contact @ 40°, lower @ 35° 221.00-221.30 kimberlite dyke; upper contact @ 40°, lower @ 45° 222.00 237.10 Kimberlite	PROJECT	: SPIDER #	1 - KYLE #3	3	HOLE NO:	2000-07	PAGE: 5/6		
FROM	ΤO					ANAL	YTICAL RE	SULTS		
TROM	10		SAMPLE	FROM	ТО	LENGTH				
		35% gneiss clasts to 0.8m; mainly greenish brown kimberlite therefore few kimberlite clasts; weakly fractured 196.50-197.30 gneiss at 197.90 banding @ 55° 198.10-198.75 gneiss	2000-07-19	193.00	199.00	6.00				
		25% gneiss clasts to 0.85m; mainly massive brownish matrix kimberlite; weakly fractured 199.40-200.25 gneiss	2000-07-20	199.00	205.00	6.00				
		10% gneiss clasts to 5cm	2000-07-21	205.00	207.45	2.45				
207.45		contact sharp @ 60°								
207.45	222.00	 Gneiss: grey gneiss with scattered kimberlite dykes, fractures & small patches at 208.45 5cm kimberlite dyke - irregular at 208.95 kimberlite fracture - irregular 211.30-211.65 kimberlite dyke; brownish matrix, no gneiss clasts; upper contact irregular, lower @ 60° 213.30-213.80 60% kimberlite dyke; upper contact @ 25°, lower @ 55° 214.40-215.00 kimberlite dyke; contacts @ 15°, minor gneiss clasts at 215.75 gneissosity @ 80° at 219.95 4cm kimberlite dyke @ 70° 220.25-220.50 kimberlite dyke; upper contact @ 40°, lower @ 35° 221.00-221.30 kimberlite dyke; upper contact @ 75°, lower @ 45° 								
222.00		contact very irregular								
222.00	237.10	Kimberlite 10% gneiss clasts to 15cm; 222.00-~227.0 brownish matrix; rock crumbly & swells with water 10% gneiss clasts; dark green matrix	2000-07-22 2000-07-23	222.00	228.00 234.00	6.00				

			PROJECT	: SPIDER #	1 - KYLE #3	3	HOLE NO	: 2000-07	PAGE: 6/6	
		SPIDER RESOURCES INC.				-		0.		
FROM	TO	DESCRIPTION				ANAL	YTICAL RE	SULTS	 	1
			SAMPLE	FROM	ТО	LENGTH				
		10% gneiss clasts to 5cm; clasts very angular	2000-07-24	234.00	237.10	3.10				
227.40		contact @ 40°								
237.10										
237.10	282.55	Gneiss mixture of grey gneiss & granite gneiss								
		238.70-239.65 kimberlite dyke, non-magnetic, no gneiss xenoliths, fine								
		to medium grained phlogophite rich matrix; 40% peridotite								
		clasts to 3mm; upper contact weaves along core for 30cm								
		and averages 20° . lower contact @ 35°								
		at 243.85 gneissosity @ 70°								
		$252.95-253.35$ kimberlite dyke @ 15° cross-cutting aneissosity								
		$254 \pm 10-254 \pm 20$ kimberlite dyke @ 25° cross-cutting gneissosity								
		at 259.80, gneissosity @ 55°								
		at 200000 ghostocolly \odot 000 at 20000 ghostocolly \odot 000 ghostocol								
		at 260.20.1 cm kimberlite dyke @ 15° cross-cutting gneissosity								
		$260.70-261.20$ kimberlite dyke @ 25° cross-cutting gneissosity								
		262.75.262.15 kimberlite duke @ 20°								
		263.45-264.35.1cm kimberlite dyke @ 20								
		fractures branch from it								
		$264.80-266.90$ kimberlite dyke @ $20-25^{\circ}$ cross-cutting								
		aneissosity: 15% aneiss xenoliths								
		$267.80-268.00$ kimberlite dyke @ 15° cross-cutting aneissosity								
		at 273.30.5cm kimberlite dyke @ 20° cross-cutting gneissosity								
		$27350-27370$ kimberlite dyke @ 20°								
		at 278.60 gneissosity @ 50°								
282.55		E.O.H.								
		Notes: 1) All casing pulled.								
		2) Cement plugs at m & m.								
		3) Tropari tests; Depth Dip Azimuth (azimuths unreliable)								
		100m -64° 191°								
		190m -64° 197°								
		282m -65° 197°								
		4) Azimuths unreliable due to the magnetic attraction of the								
		kimberlite, and not corrected for declination.	1							

						INCLINAT	TION TESTS	6				
		SPIDER RESOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2001-08	
				COLLAR	50°					PAGE 1 O	F 3	
	Kyle #3	GRID: Ashton	FLEVATION: ~130 m	14.33m	51°					PROJECTS	Spider # 1 / k	(vle # 3
LENGTH: 15	57 58 m			75 29m	50°		1			STARTED		(yio # 0
CORE SIZE	NO	RECOVERY: LOGGED BY: lim Burns	DATE: March 5/01	151 49m	48°		1			FINISHED:		
			DATE: March 0/01	101.4011			ΔΝΔ	VTICAL RE		TINIONED.		
FROM	то	DESCRIPTION		SAMPLE	FROM	ΤO						
0	11.28	Overburden: Cared peoples/cabbles of dalamite a	nd diabase			10	LENGTH					
0	11.20											
11 28	28.65	Dolomite:										
11.20	20.00	11.28 - 19.85 light creamy brown poorly bedded	fossiliferous									
		19.85 contact/bedding @45°								_		
		19.85 - 28.65 mid to dark grevish brown, well be	ded (up to 1m), verv									
	N: Kyle #3 157.58 m H ZE: NQ R 1 TO 11.28 O 28.65 D 28.65 D 28.65 C 39.40 Si 39.40 Si 39.40 Si 39.40 Si 31 37 37 37 37 150.50 G 150.50 G 150.50 G	fossiliferous: light creamy brown	interbeds.									
		@ 23.95m bedding @45°										
		26.90 - 28.65 sandy matrix										
28.65		Contact sharp @ 50°							H DIP HOLE NO: 2001-08 PAGE 1 OF 3 PROJECT:Spider # 1 / Kyl STARTED: FINISHED: L RESULTS I I <			
LOCATION: Kyl LENGTH: 157.5 CORE SIZE: NO FROM 0 11 11.28 28 28 28.65 28.65 39 28.65 39 39 40 39.40 15 39.40 15												
LOCATION: Ky LENGTH: 157. CORE SIZE: N FROM 0 11 11.28 24 28.65 39 28.65 39 28.65 39 28.65 39 39.40 19 39.40 19	39.40	Sandstone: Poorly consolidated, very porous										
		Sandstone: Poorly consolidated, very porous 28.65 - 31.40 mid to dark grey, 40 - 50% sub-angular to rounded										
		fragments of white sandstone in a dark grey silt-sand										
		matrix; poorly bedded										
		31.40 contact irregular										
		31.40 - 37.10 fine to medium grained; very poorly	v consolidated, very									
		poorly bedded; dark grey to ~34.	20, and generally mid-									
		green thereafter.										
		37.10 contact broken core										
		37.10 - 39.40 "clean" white sandstone, grain size	increasing down-hole	2001-08-02	37.10	39.40	2.30					
		from very fine to very coarse		_								
				_								
39.40		contact ground + lost core					_			_		
00.40	450.50						-			_		
39.40	150.50						-			_		
		39.40 - 40.40 extremely weathered; core broken	and disaggregated.				_					
		40.40 - 45.75 strongly weathered; original rock re	ed colour locally	_								
		recognizable	www.atharad lagal	_			_					
		45.75 - 55.50 pink gneiss, on average moderatel	y weathered - 100al									
		53.50 - 88.25 pink grapite grapics: pink to dork to	d massive normally to				+		-	+		
		well foliated (due to inclusions of	nassive normally to		+		+	+	+	+		
		arey apeics): to about 60,40m w	partially assimilated				+			+		
		concentrated along fractures & lo	cally over 5cm widths:	-			-					
		below 69.40 weathering along or	cassional fractures.		1		1	1				

	SPIDER RESOURCES INC.	PROJECT	:Spider # 1	/ Kyle # 3		HOLE NO:	2001-08	PAGE: 2/3	3	
		SPIDER RESOURCES INC.								
FDOM	то	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		SPIDER RESOURCES INC. DESCRIPTION 67.00 - 88.25 average 20% grey gneiss, increasing down the hole 88.25 contact taken at last major interval of pink gneiss 88.25 - 150.50 mainly grey gneiss with <20% pink gneiss; poorly foliated to well banded. @ 89.0, banding @ 55° @ 104.2, foliation @ 50° ~104.50 ~119.0, weak to moderate fracturing with 0.5m of Kimberlite dykes. 104.8 - 105.1 Kimberlite; 50% black peridote clasts + olivine macrocrysts to 7mm, contacts @ 30° & broken 110.65 - 110.75 Kimberlite; contacts @ 30° & broken 111.20 - 111.35 Kimberlite; contacts @ 40° & 45° @ 112.50 Zem Kimberlite; contacts @ 40° & 45° @ 112.50 Zem Kimberlite; contacts @ 40° & 45° @ 112.50 Jegmatite; contacts @ 40°; 20% gneiss clasts. 120.40 - 121.85 Pegmatite; contacts @ 40°; 20% gneiss clasts. @ 139.20 foliation @ 45° @ 145.50 banding @ 10° Weilder Marker Weilder B 20° & Wilder Weilder B 20° & Wilder Weilder B 20° & Wilder Weilder B 20° & Weilder Weilder B 20° & Solo and and 20° & Sinderlite; contacts @ 30° & 35°, & 150.50 - 151.25 contacts @ 45° & Solo and and @ 10° Weilder Weilder B 20°<								
		the hole								
		88.25 contact taken at last major interval of pink gneiss								
		88.25 - 150.50 mainly grey gneiss with <20% pink gneiss; poorly foliated								
		to well banded.								
		@ 89.0, banding @ 55°								
		$@104.2$, foliation $@50^{\circ}$								
		~104.50 ~119.0, weak to moderate fracturing with 0.5m								
		of Kimberlite dykes.								
		104.8 - 105.1 Kimberlite; 50% black peridote clasts +								
		olivine macrocrysts to 7mm, contacts @35° & 40°								
		106.05 - 106.15 Kimberlite; contacts @ 30° & broken								
		110.65 - 110.75 Kimberlite; contacts @ 30° & 25°;								
		25% peridotite & olivine to 3mm.								
		111.20 - 111.35 Kimberlite; contacts @ 40° & 45°								
		@ 112.50 2cm Kimberlite @ 45°								
		~119.0 ~135.0 weak to moderate fracturing								
		119.45 - 119.55 Kimberlite; contacts @40°; 20% gneiss								
		clasts.								
		120.40 - 121.85 Pegmatite; contacts @ 65° & 50°								
		127.40 - 131.95 Pegmatite; contacts @ 30 ° & 35 °,								
		15% gneiss in inclusions								
		@ 139.20 foliation @ 45°								
		@ 145.50 banding @ 10°								
150.50		Contact sharp @ 45°								
150.50	155.40	Kimberlite: Dark grey to black, very magnetic, strongly carbonatized; 40 -								
		50% black peridotite to 2mm.								
		1.155 m of Kimberlite as follows;	2001-08-01	150.5	155.4	4.9				
		150.50 - 151.25 contacts @45° & 50°; upper contact 5cm gouge								
		154.35 - 154.70 contacts @35°; 20% gneiss clasts								
		154.85 1.5 cm @ 30°								
		155.10 2.0 cm @ 45°								
		155.40 2.0 cm @ 30°								
									1	1
155.40	1	Contact sharp @ 30°								
	1									

	SPIDER RESOURCES INC.		PROJECT	:Spider # 1	/ Kyle # 3		HOLE NO:	2001-08	PAGE: 3/3	3
		SPIDER RESOURCES INC.								
EROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
155.40	157.58	Gneiss: grey gneiss as previously								
		@155.8m, banding @25 [°]								
157.58		E.O.H.								
		Notes: 1) Down hole surveys taken by acid test								
		2) Core telescoped; remainder stored on site								
		3) Hole plugged; @26.52 m (~16 ft cement plug)								
		@57.00 m (~ 32ft cement plug)								
									1	

						INCLINAT	TION TESTS	6				
		SPIDER RESOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2001-09	
				COLLAR	66°					PAGE 1 O	F 4	
LOCATION:	Kvle #3	GRID: Ashton	ELEVATION: ~130 m	12.19m	66°					PROJECT:	Spider #1/K	vle #3
LENGTH: 2	21.59	HORIZ: 300 E VERT: 600 N	AZIMUTH: 180°	103.63m	66°					STARTED:		
CORE SIZE	: NQ	RECOVERY: LOGGED BY: Jim Burns	DATE: Feb 16/01	221.59m	66°					FINISHED:		
							ANA	I YTICAL RE	SULTS			
FROM	то	DESCRIPTION		SAMPLE	FROM	то	LENGTH					
0	9.54	Overburden: Cored pebbles of Dolomite and Diabase		C , 								
-												
9.54	23.3	Dolomite:										
		9.54 - 20.20 light creamy brown, massive, thick be	eds, fossiliferous									
		@17.30 bedding/contact @45°										
		20.20 contact @ 55°										
		20.20 - 23.30 mid brownish-grey, very fossiliferous,	thickly bedded									
		(30cm - 2m)	· · ·									
		@ 22.45 bedding @ 60°										
23.3		contact / bedding sharp @ 55°										
23.3	34.25	Sandstone: very porous										
		23.30 - 26.30 sub angular to rounded clasts of white sandstone in a										
		dark grey silty matrix; fossiliferous to	o 24.20m									
		26.30 contact abrupt, broken core										
		26.30 - 29.55 dark grey, fine grained, poorly bedded	1									
		29.55 contact broken core										
		29.55 - 30.95 mid greyish green, fine to medium gra	ined, poorly bedded									
		30.95 contact sharp but irregular										
	_	30.95 - 34.25 mid greenish grey & fine grained, bec	oming medium				_					
		grained and white down-hole					_					
34.25		Contact broken / lost core										
							_					
34.25	147.55			-			_					
		34.25 - 43.40 granite gneiss, pink, fine to medium g	rained, weakly				_					
		foliated.					_					
		34.25 - 35.70 light grey, strong to m	ioderately weathered				_					
		35.70 - 36.90 pinkish grey, Weakly	veathering only over									
		Short Sections, of a	woothorod @ 40°									
		40.25 40.20 moderate to strongly	weathered @ 50°									
	+		weallieleu w 30	1	+		-	+	+			
	+			1	+			+				
	1				1	1	1	1		1	1	1

	SPIDER RESOURCES INC.			: Kyle #3			HOLE NO:	2001-09	PAGE: 2/4	1
		SPIDER RESOURCES INC.								
FDOM	то	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		43.40 contact gradational, taken where a mix of pink & grey gneiss								
		became obvious.								
		43.40 - 69.20 mainly pink gneiss, fine to medium grained, foliated to								
		poorly banded; lesser intervals of grey gneiss & pegmatite								
		46.15 - 46.25 strongly weathered about fractures								
		@ 50.05m; 5cm strongly weathered about a fracture								
		54.40 - 62.00 grey gneiss								
		@ 55.50 foliation / banding @ 50°								
		57.75 - 58.20 pegmatite								
		67.05 - 67.15 strongly weathered @ 65°								
		68.25 - 68.50 moderately weathered @ 65° along foliation								
		and fracture								
		68.50 - 69.00 strongly weathered								
		69.20 Contact taken where grey gneiss becomes dominant								
		69.20 - 94.25 mainly grey gneiss with lesser intervals of pink gneiss,								
		leucocratic gneiss & pegmatite								
		@ 72.50, gneissosity $@$ 55°								
		@ 84.70, gneissosity @ 50°								
		94.25 contact / gneissosity @ 45°								
		94.25 - 147.55 basically a 50/50 split of pink and grey gneiss								
		@101.40 foliation / gneissosity @ 50°								
		@112.30 foliation / gneissosity @ 50°								
		@120.80 foliation / gneissosity @ 55°								
		@130.10 foliation / gneissosity @ 60°								
		@137.10 foliation / gneissosity @ 70°								
		138.70 - 140.95 pink gneiss								
		@144.00 ~10cm patch of mafic gneiss partially resorbed								
		(by Kimberlite fluids)								
147.55		contact sharp @ 15° cross-cutting foliation + gneissosity								
147.55	149.65	Kimberlite: dark grey, strongly carbonatized, massive, moderately	2001-09-06	147.55	149.65	1.9				
		magnetic; 60% 1mm closely packed peridotite / olivine clasts					1	1		
		in a very fine grained serpentine - carbonate - phlogopite								
		matrix								

			PROJECT	: Kyle #3			HOLE NO:	2001-09	PAGE: 3/4	4
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM		DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		148.75 - 149.00 pink gneiss clast								
149.65		Contact sharp @ 20° cross cutting foliation / gneissosity								
149.65	185.6	Gneiss:								
		149.65 - 177.15 mixture of pink & grey gneiss								
		152.60 - 152.75 white quartz vein								
		@ 165.10 foliation / gneissosity @ 40°								
		177.15 below this depth, grey gneiss dominates								
		177.15 - 185.60 grey gneiss: light to mid grey, poor to moderately banded								
		178.55 - 178.95 75% kimberlite dykes @ 30° cross								
		cutting foliation / gneissosity @ 40° (in almost								
		the same plane)								
185.6		Contact sharp @ 55°								
185.6	187.55	Kimberlite: black, weakly magnetic, strongly carbonatized - carbonate								
		both pervasive & in veinlets, matrix serpentinized; gneiss								
		clasts sub-angular to sub-rounded								
		· · · · ·								
		5% gneiss to 3cm; 25% peridotite / olivine to 1mm	2001-09-01	185.6	187.55	1.95				
187.55		contact sharp @ 50°								
187.55	190.55	Gneiss: grey gneiss								
		189.75 - 189.85 kimberlite @ 60°								
190.55		contact sharp @ 35°								
190.55	212.75	Kimberlite: dark grey to dark greyish brown, weak to moderately magnetic								
		moderate to strongly carbonatized; matrix very fine grained								
		serpentine - carbonate - phlogopite; gneiss clasts with								
		reaction rims, peridotite clasts & olivine macrocrysts								
		35% gneiss to 95 cm; 20% peridotite / olivine to 3mm	2001-09-02	190.55	196	5.45				
		193.75 - 194.50 several grains of Cr diopside & 1-3 mm macrocrysts of								
		magnetite								1
		larger gneiss clasts; 191.25 - 192.00, 192.75 - 193.75, 194.45 - 194.95								
		195.75 - 197.00								

			PROJECT	: Kyle #3			HOLE NO	2001-09	PAGE: 4/4	4
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		45% gneiss to 1.7 m, 20% peridotite / olivine to 3mm	2001-09-03	196	202	6				
		larger gneiss 200.10 - 201.80								
		15% gneiss to 35cm, 30% peridotite / olivine to 1cm	2001-09-04	202	208	6				
		204.00 - 204.30 numerous <1mm pink garnets & Cr diopside grains								
		10% gneiss to 30cm 30% peridotite / olivine to 2cm	2001-09-05	208	212 75	4 75				
		@ 208.40 numerous <1mm to 1mm garnets over 10cm	2001 00 00	200	212.10					
		@ 210.50 2mm magnetite macrocrysts								
040.75	_	contact charp @ 55° cross sutting faliation/gnaicsocity @ 40°								
212.75		(almost in same plane)								
212.75	221.59	Gneiss								
		212.75 - 221.59 grey gneiss (minor pink gneiss & pegmatite)								
		@ 221.30 foliation / gneissosity @ 60°								
004 50										
221.59		Е.О.П.								
		Notes:								
		1) Down hole survey by acid tests.								
		2) Core telescoped; remainder stored on site or dumped.								
		3) Hole plugged @								

	SPIDER RESOURCES INC.						INCLINAT	ION TESTS	6				
	SPIDER RESOURCES INC. Kyle #3 GRID: Ashton ELEVATION: 85.01m HORIZ: 300 E VERT: 600 N AZIMUTH: 18 VIC PEDI/EDX HORIZ: 100 E VERT: 600 N AZIMUTH: 18				DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO	: 2001-10	
	SPIDER RESOURCES INC. N: Kyle #3 GRID: Ashton ELEVATION: 185.01m HORIZ: 300 E VERT: 600 N AZIMUTH: 1 'E: NQ RECOVERY: LOGGED BY: Jim Burns DATE: 14/02				COLLAR	-60.5					PAGE:1	OF 3	
LOCATION:	ION: Kyle #3 GRID: Ashton ELEVATION H: 185.01m HORIZ: 300 E VERT: 600 N AZIMUTH: 1 SIZE: NQ RECOVERY: LOGGED BY: Jim Burns DATE: 14/02 DM TO DESCRIPTION				9.75m	-60					PROJECT:	Spider # 1 /	Kyle # 3
LENGTH: 1	GTH: 185.01m HORIZ: 300 E VERT: 600 N AZIMUTH: E SIZE: NQ RECOVERY: LOGGED BY: Jim Burns DATE: 14/0 ROM TO DESCRIPTION 9.75 Overburden: cored pieces of dolomite & diabase		AZIMUTH: 180	154.53m	-60					STARTED:	1	,	
CORE SIZE:	NQ	RECOVERY:	LOGGED BY: Jim Burns	DATE: 14/02/2001	188.06m	-59					FINISHED:		
								ANAI	LYTICAL RE	SULTS			
FROM	10		DESCRIPTION		SAMPLE	FROM	ТО	LENGTH					
0	9.75	Overburden: cored pie	ces of dolomite & diabase										
9.75	24.85	Dolomite:											
		9.75 - 19.75 brownish	cream colour, massive to poo	orly bedded, mottled									
		(due to	sand/silt +/- fossil content); for	ssil content increasing									
		down th	ne hole.										
		@ 18.8	5m weak bedding @ 55°										
		19.75 bedding	/ contact irregular @ ~30°										
		19.75 - 24.85 mainly g	reyish brown, with creamy bro	wn interbeds; very									
		fossilife	erous with more fossils in dark	er sections; matrix									
	becoming sandy down the hole; possible worm bu @ 21.75 bedding sharp @ 55°			sible worm burrows.									
	@ 21.75 bedding sharp @ 55°												
24.85	4.85 contac		act sharp @ 60°										
24.85	34.95	Sandstone: very porous	S										
		24.85 - 27.60 mid grey	v, fossiliferous, moderately bed	Ided, porous, fine-									
		grained	d; broken pieces of white sand	Istone									
		@ 25.2	25 3cm geode						-				
		27.60 bedding	g / contact @ 70°										
		27.60 - 30.00 dark gre	enish grey, fine grained, very p	poorly bedded,									
		porous	\$										
		@ 29.5	57 minor pyrite					_	_	_	_		
		30.00 bedding	g / contact @ 65°										
		30.00 - 32.00 mid grey	vish green, fine grained, massi	ve to poorly bedded,				-			-		
		porous	<u>}</u>						-	_			
	_	32.00 bedding	g / contact irregular					-		_			
		32.00 - 32.30 light grey	y, very fine grained, massive							_			
		32.30 - 32.90 light gree	enish grey, fine grained, mass	ive, porous					_	_			
		32.90 contact											
		32.90 - 34.40 light grey	y, meaium grainea, clean, mas	ssive to poorly									
			u, porous; worm burrows										
		34.40 Contact		rained (including									
		54.40 - 54.95 light grey	y, clean, very porous, coarse g										
24.05		Contact broken core	people congiomerate at potton	1)									
34.95		Contact broken core											

			PROJECT	: Kyle #3			HOLE NO	: 2001-10	PAGE: 2/3	3
		SPIDER RESOURCES INC.								
	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
34.95	58.7	Gneiss:								
		34.95 - 35.65 extremely weathered, light grey, mafics mostly weathered								
		out								
		35.65 contact lost core								
		35.65 - 38.00 weathered gneiss, but weathering intensity decreases								
		down hole								
		38.00 contact at bottom of sustained weathering, only on								
		fractures below 38.00m								
		38.00 - 58.70 mixture of grey & pink gneiss (pink dominates) poorly to								
		well banded, locally pegmatitic								
		43.80 - 43.95 fault gouge @ 25°								
		@ 45.80 gneissosity @ 55°								
		@ 48.25 weathered fracture @ 25°								
		@ 57.15 gneissosity @ 45°								
58.7		Contact sharp @ 15°								
58.7	60.75	Kimberlite: weakly magnetic, moderately carbonatized, dark brown								
		(due to weathering), olivine weathered out - skeletal only,								
		10-15% phlogopite; 5% gneiss clasts, porous								
60.75		Contact sharp @ 15°								
60.75	153.25	Gneiss:								
		60.75 - 69.85 as for 38.00 - 58.70								
		@ 62.40 kimberlite fracture @ 15°								
		@ 63.00 5cm weathered fracture @ 45°								
		@ 67.05 2mm weathered fracture @ 25°								
		@ 68.80 gneissosity @ 60°								
		69.85 contact gradational								
		69.85 - 153.25 predominantly grey gneiss with intervals of pink gneiss,								
		leucocratic gneiss & pegmatite; generally moderately to								
		well banded, fine grained, local granite dykes; hematitic								
		fractures throughout.								
		@ 75.80 weathered fracture @ 55°								
		@ 75.95 weathered fracture @ 40°								
		@ 77.50 gneissosity @ 40°								

			PROJECT	: Kyle #3			HOLE NO:	2001-10	PAGE: 3/3	3
		SPIDER RESOURCES INC.		-					-	
FROM	то	DESCRIPTION			-	ANAL	YTICAL RE	SULTS		
	10		SAMPLE	FROM	TO	LENGTH				
		@ 86.20 gneissosity @ 50°								
		@ 93.90 gneissosity @ 50°								
		@ 100.70 gneissosity @ 35°								
		@ 110.30 gneissosity @ 55°								
		112.50 - 116.00 medium - coarse grained granite,								
		massive, weakly foliated, 30% quartz								
		50% microcline, 5% hornblende &								
		biotite								
		@ 119.50 gneissosity @ 50°								
		@ 127.20 gneissosity @ 55°								
		@ 133.30 gneissosity @ 50°								
		@ 151.60 gneissosity @ 35°								
153.25		contact sharp @ 25°								
153.25	177.60	Kimberlite: brownish grey, very fine grained matrix, modestly magnetic,								
		moderately to strongly carbonatized; variable amounts of								
		angular to sub-rounded gneiss clasts; variable amount of								
		ovoid clasts of black peridotite + green macrocrysts of olivine;								
		carbonate pervasive & in veinlets; numerous feathered								
		epidote veinlets throughout, some contain micro breccia								
		fragments +/or gouge; veinlets @ 15 - 25°								
		10% gneiss to 25cm, 30% peridotite / olivine to 1cm	2001-10-01	153.25	159.00	5.75				
		20% gneiss to 25cm, 35% peridotite / olivine to 1cm	2001-10-02	159.00	165.00	6.0				
		30% gneiss to 40cm, 15% peridotite / olivine to 0.5cm	2001-10-03	165.00	171.00	6.0				
		50% gneiss to 2.8m, 15% peridotite / olivine to 0.5cm	2001-10-04	171.00	177.60	6.6				
		gneiss 171.80 - 174.60, 175.75 - 177.00								
						_				
177.60		contact sharp @ 25°				_				
177.60	185.01	Gneiss: (continuation of grey gneiss)				_				
		177.60 - 185.01 mainly very light pink granite gneiss unit with minor grey								
	ļ	gneiss								
185.01		E.O.H.		I	_		L		 	
		1) Down hole surveys - acid tests.		ļ						
	ļ	2) Core telescoped; remainder either stored on site or dumped.		ļ						
		3) Hole plugged @								

Kvle#3
<u></u>
+
-
-
-
+
+
+
+

			PROJECT	: Kyle #3			HOLE NO:	2001-11	PAGE: 2/3	3
		SPIDER RESOURCES INC.								
FROM	то	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		46.65 - 85.40 mainly pink gneiss with lesser intervals of grey gneiss;								
		weathering mainly along fractures; longest intervals;								
		47.65 - 47.75, 49.25 - 49.30, 57.45 - 57.95, 59.60 - 59.70								
		60.00 - 60.10, 67.40 - 67.55, 81.25 - 81.50								
		46.65 - 56.90 pink granite								
		@ 53.55 5cm quartz vein @ 55°								
		72.05 - 80.00 mainly grey gneiss, poorly banded								
		85.40 contact gradational								
		85.40 - 133.65 mainly grey gneiss with lesser intervals of pink gneiss,								
		leucocratic gneiss, plus short intervals of pegmatite &								
		cross cutting granite dykes: grey gneiss moderately to								
		well banded; minor weathering along fractures;								
		microcline alteration along fractures.								
		@ 90.50 gneissosity @ 40°								
		@ 100.20 gneissosity @ 50°								
		@ 109.00 gneissosity @ 50°								
		@ 123.00 gneissosity @ 65°								
		133.05 - 140.00 moderately fractured & vuggy								
133.65		Contact sharp @ 30°								
133.65	148.20	Kimberlite: dark brownish grey, weakly magnetic, massive, modestly to								
		well carbonatized; carbonate pervasive & in veinlets; clasts of								
		gneiss (with reaction rims), peridotite clasts, & olivine								
		macrocrysts, matrix very fine grained serpentine + carbonate +								
		phlogopite:								
		gneiss clasts angular to sub-rounded to rounded, depending								
		on degree of absorption; peridotite clasts angular to								
		sub-rounded, olivine macrocrysts ovoid.								
		10% gneiss to 5cm, 20% peridotite + olivine to 1cm	2001-11-01	133.65	138.00	4.35				
		15% gneiss to 15cm, 25% peridotite + olivine to 1cm	2001-11-02	138.00	143.00	5.0				
		15% gneiss to 15cm, 30% peridotite + olivine to 1cm	2001-11-03	143.00	148.20	5.20				
		@ 145.30 1 grain green diopside; trace Py								

			PROJEC	T: Kyle #3			HOLE NO	2001-11	PAGE: 3/3	3
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION			To	ANAL	YTICAL RE	SULTS	1	
			SAMPLE	FROM	10	LENGTH				
148.20		contact sharp @ 45°								
148.20	157.89	Gneiss:								
		148.20 - 157.89 grey gneiss as for 85.40 - 133.65								
		@ 154.70 gneissosity @ 40°								
157.89		E.O.H.								
		Notes:								
		1) Dips determined by acid test.								
		2) Core telescoped remaining core stored on site.								
		3) Hole plugged @								

							INCLINAT	FION TESTS	3				
		SPIDER RES	SOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	: 2001-12	
					COLLAR	65°					PAGE : 10)F 4	
	Kyle #3	GRID. As	hton	ELEVATION: ~130m	15 24	66°					PROJECT.	Spider #1 /	Kyle #3
LENGTH: 2	76 45m				99.67	63°					STARTED	epider # 17	
CORE SIZE	• NO	RECOVERY:	LOGGED BY: Jim Burns	DATE: 17/02/2001	276 45	68°					FINISHED:		
OONE OILL		REGOVERT:		BRIE. INGEREGOT	270.10				I YTICAL RE		I INTOFILED.		
FROM	то		DESCRIPTION		SAMPLE	FROM	ТО						
0	9.40	Overburden: cored ~4 ^p	5cm of calcarous mud with di	ahase nebbles			10	LENGIN					
0	0.40												
9 40	23.35	Dolomite [.]								_			
0.10	20.00	9.40 - 15.20 light cre	amy brown, massive to poor	v bedded, modestlv									
		fossilife	erous	<i>y w w w w w w w w w w</i>									
		15.20 bedding	g / contact sharp @ 60°										
		15.20 - 23.35 generally	y mid to dark brownish grey,	very fossiliferous,									
		thickly	bedded (to 80cm); interbeds	of light creamy brown									
		dolomi	ite										
		23.35 bedding	g / contact sharp @ 50°										
			· ·										
23.35	35.45	Sandstone: poorly cerr	nented, very porous										
		23.35 - 26.50 40 - 50%	sub-angular to sub-rounded	fragments of white									
		sandst	one to 2cm in a dark grey sil	y matrix; fosiliferous to									
		~24.60)m										
		25.4 - 2	26.3 dark greyish green, few	fragments									
		26.50 bedding	g / contact irregular										
		26.50 - 29.55 dark grey	yish green; very silty matrix, ·	<10% white sandstone									
		fragme	ents										
		29.55 bedding	g / contact broken core										
		29.55 - 31.60 mid gree	en, fine grained, massive										
		31.60 bedding	g / contact broken core										
		31.60 - 33.00 mid grey		ht grey & medium									
		grained	d down hole										
		33.00 bedding	g / contact ground core										
		33.00 - 35.45 coarse g	rained, clean white sandston	e with quartz pebbles									
		to 1cm	n										
35.45		Contact ground core								_			
05.45	104.00	Ondari						_					
35.45	104.80		lorly arow other shows the	hut annionacity /									
		35.45 - 30.80 light to d	ark grey, strongly weathered	, but gneissosity /	_								
		29.20 - 30.30 Weak to	iocally slivingly weathered	ad coro									
			at mat piece of non-weather					+					
1	1				1	1	1	1	1		1	1	1

	SPIDER RESOURCES INC.			: Kyle #3			HOLE NO:	2001-12	PAGE: 2/4	4
		SPIDER RESOURCES INC.								
FDOM	то	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		38.30 - 51.25 pink gneiss with only very minor grey gneiss sections,								
		medium grained, uniform, faintly foliated, <5% mafics								
		(granite gneiss); weathering over short sections & along								
		fractures - controlled by foliation / banding & fractures								
		@ 38.80 5cm moderately weathered @ 60°								
		39.80 - 40.85 70% moderately weathered								
		@ 41.35 5cm moderately weathered @ 60°								
		42.00 - 42.25 strongly weathered @ 55°								
		@ 43.10 5cm strongly weathered @ 40°								
		51.25 contact / banding @ 50°								
		51.25 - 62.25 grey gneiss with lesser pink gneiss intervals; poor to well								
		foliated / banded								
		@ 59.70 banding @ 60°								
		62.25 - 72.05 granite gneiss; pink, medium to coarse grained, very								
		weakly foliated								
		71.80 - 71.90 guartz microcline vein @ 45°								
		72.05 contact sharp $@ 60^{\circ}$								
		72.05 - 80.30 50/50 mixture of pink & grey gneiss								
		@ 83.55 banding @ 55°								
		80.30 contact sharp @ 40°								
		80.30 - 91.45 grey gneiss with minor intervals of pink gneiss; banding								
		poorly to well developed								
		@ 84.60 foliation / gneissosity @ 30°								
		@ 89.65 foliation / gneissosity @ 50°								
		91.45 contact sharp @ 55°								
		91.45 - 104.80 mix of pink & grey gneiss								
		@ 98.40 foliation / gneissosity @ 40°								
		@ 104.20 foliation / gneissosity @ 55°								
104.80		Contact sharp @ 10°								
104.80	107.75	Kimberlite: dark greenish grey to black, moderately magnetic, strongly								
		carbonatized (pervasive in veinlets), very fine grained, green								
		serpentine - carbonate - phlogopite matrix with ~50% <1 to								
		2mm peridotite clasts: carbonate - hematite veinlets parallel								
		to contact								
		10 % gneiss to 30cm, 50% peridotite 1 - 2mm	2001-12-01	104.80	107.75	3.95				
107.75		Contact @ 10°								

			PROJECT	: Kyle #3			HOLE NO:	2001-12	PAGE: 3/4	1
		SPIDER RESOURCES INC.							-	
FROM	то		1			ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
107.75	257.25	Gneiss:								
		107.75 - 111.15 mix of grey & pink gneiss								
		@ 111.15 contact / gneissosity @ 25°								
		111.15 - 125.35 grey gneiss, minor pink gneiss @ pegmatite								
		@ 113.25 ~10cm Kimberlite @ 20° badly broken,								
		weathered - rotten								
		@ 114.00 10cm quartz - microcline vein @ 40°								
		@ 121.15 banding @ 60°								
		125.35 contact @ 15° cross cutting foliation / gneissosity								
		125.35 - 126.10 Kimberlite as above								
		126.10 contact sharp @ 15°								
		126.10 - 147.30 grey gneiss; minor pink gneiss								
		@ 131.50 foliation / banding @ 45°								
		136.00 - 139.20 mainly pink granite gneiss								
		@ 144.80 foliation / banding @ 55°								
		147.30 banding / contact @ 60°								
		147.30 - 164.50 mixed grey (65%), and pink (35%) gneiss								
		151.60 - 151.90 pegmatite								
		152.30 - 153.50 pegmatite								
		164.50 contact sharp @ 10°								
		164.50 - 165.60 Kimberlite: strongly magnetic, strongly carbonatized;								
		50% <1 to 2mm clasts of peridotite, olivine, & phlogopite								
		in a very fine grained serpentine - carbonate matrix								
		165.60 contact sharp @ 15°								
		165.60 - 184.45 grey gneiss 80%, pink gneiss 20%								
		@ 175.80 banding @ 55 [°]								
		177.85 - 178.45 pegmatite								
		184.45 contact sharp @ 55° conformable								
		184.45 - 188.60 light pink granite gneiss: medium to coarse grained								
		188.60 contact sharp @ 30° cutting foliation (50°)at a low angle								
		188.60 - 199.50 mixed gneiss as previous								
		@ 195.70 banding @ 30°								
		199.50 contact @ 35° conformable								
		199.50 - 257.25 mainly a pink granite gneiss locally greyish due to								
		assimilated grey gneiss; medium to coarse grained,								
		massive where pink or weak to moderately foliated in								
		grey intervals; ~25% grey gneiss xenoliths; minor								
		pegmatite								
		@ 229.25 foliation @ 35°								

				T: Kyle #3			HOLE NO	: 2001-12	PAGE: 4/4	4
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		250.75 - 251.10 quartz vein - very irregular contacts;								
		inclusions of gneiss								
		251.60 - 257.25 weakly fractured at all angles								
		@ 254.15 3cm Kimberlite @ 50° cross cutting								
		gneissosity								
		@ 255.40 2cm Kimberlite @ 50°								
		255.95 - 256.10 2 - 2cm Kimberlite dykes @ 15°								
257.25		Contact sharp @ 45°								
257.25	260.15	Kimberlite: dark brownish grey to black, strongly magnetic, strongly								
		carbonatized, ~20% black peridote clasts & olivine								
		macrocrysts to 3mm in a very fine grained serpentine -								
		carbonate - phlogopite matrix								
		1.50m of kimberlite dykes as follows	2001-12-02	257.25	260.15					
		257.25 - 258.20 contacts @ 45° & 40°								
		259.20 5cm @ 30°								
		259.65 - 260.15 contacts @ 30° & 35°								
260.15		Contact sharp @ 35°								
260.15	276.45	Gneiss: as for 199.50 - 257.25								
276.45		E.O.H.								
		Notor								
		1) Down Holo surveye by acid test				_				
		2) Core telescoped: remaining core stored on site Boyes 42 43 & 44								
		dumped								
		3) Hole plugged @								

						INCLINAT	ION TESTS	5				
		SPIDER RESOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO:	2001-13	
		•••••••••••••••••••••••••••••••••••••••		COLLAR	60°	151.49	58°	322.17	56°	PAGE : 1 (OF 5	
LOCATION:	Kyle #3	GRID: Ashton	ELEVATION: ~130m	14.33	3 59°	197.21	59°			PROJECT:	Spider #1 /	Kvle #3
I ENGTH: 3	22 17m			60.05	5 59°	236.83	56°			STARTED		, , , , , , , , , , , , , , , , , , ,
CORE SIZE	: NQ	RECOVERY: LOGGED BY: Jim Bu	ns DATE: 01/03/2001	105.77	7 58°	288.65	56°			FINISHED:		
							ANAI	YTICAL RE	SULTS			
FROM	то	DESCRIPTION		SAMPLE	FROM	то	LENGTH					
0	10.50	Overburden: cored pieces of dolomite, aneiss.	mafic volcanic	-		-	-					
10.50	25.00	Dolomite:										
		10.50 - 15.90 light creamy brown, massive, mo	derately fossiliferous									
		15.90 contact sharp @ 50°	· · · · ·									
		15.90 - 25.00 generally mid brownish grey, very	fossiliferous, beds to 1m;									
		minor light creamy brown beds										
25.00		contact sharp @ 55°										
25.00	36.50	Sandstone: very porous										
		25.00 - 27.60 mid grey, very poorly bedded, po	orly consolidated, minor									
		fossils; ~50% sub-angular to ro	unded fragments of white									
		sandstone to 2cm in a dark gre	y silty matrix									
	_	27.60 contact @ 50°										
		27.60 - 33.00 generally dark greyish green with	minor mid grey-green									
		sections; 1 - 2m beds poorly co	nsolidated									
		@ 31.70 bedding @ 55°			_							
	_	33.00 bedding / contact ground core	<u> </u>									
	-	33.00 - 36.50 light grey "clean" quartz sandstor	e, progressively grading	2001-13-05	33.00	36.50	3.50					
	_	down hole from fine grained to	coarse; massive;									
		occassional quartz peobles										
26.50	_	contact around core										
30.30	_											
36.50	100.25	Gnoise:										
50.50	133.23	36.50 - 39.00 strong to extremely weathered liv	abt arey mainly quartz	-								
	_	grains rimmed by weathered fe	dspar, gneiss remnants									
		39.00 contact taken at start of run of re	ecognizable gneiss		-							
		39.00 - 48.50 moderately to poorly weathered (intensity decreasing down		1							
		hole from weathered intervals of	f +/- 30cm to 5cm along	1	1		1			1	1	
		fractures); recognizable as pink	gneiss		1						1	
		48.50 contact gradational	-									
					1							

				:Kyle # 3			HOLE NO	:2001-13	PAGE: 2/5	
		SPIDER RESOURCES INC.								
						ANAL	YTICAL RE	SULTS		
FROM	то	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		48.50 - 64.95 generally pink gneiss: poorly foliated &/or banded: locally								
		appears granitic: lesser sections of grev gneiss: minor								
		weathering along fractures								
		64.95 contact @ 20° along fracture								
		64.95 - 65.35 Kimberlite: dark grev to black, strongly carbonatized, weak								
		to moderately magnetic. 50% peridotite, olivine, phlogopite.								
		to 1mm in a serpentine - carbonate - phlogopite matrix								
		65.35 contact @ 25° along hematite fracture								
		65.35 - 82.00 pink gneiss as previously; minor weathering along								
		fractures								
		82.00 contact gradational								
		82.00 - 114.85 predominantly grey gneiss, moderately to well bedded,								
		fine to coarse grained; minor pink gneiss sections, minor								
		cross-cutting narrow (<25cm) dykes of granite gneiss								
		@ 83.35 5cm weathering along fracture @ 60°								
		@ 87.50 banding @ 55°								
		@ 98.00 banding @ 50°								
		@ 109.75 banding @ 45°								
		114.85 contact very irregular as if gneiss has been "consumed"/								
		assimilated by unit below								
		114.85 ~ 123.35 pink granite gneiss: medium to coarse grained,								
		massive, weakly foliated, assimilated blocks of grey								
		gneiss								
		123.35 contact "consumed" / assimilated								
		123.35 - 199.25 mixed; 65% grey gneiss, 35% pink gneiss; minor								
		pegmatite								
		@ 129.30 banding @ 45°								
		@ 140.00 foliation @ 60°								
		@ 156.00 banding @ 45°								
		159.95 - 169.70 medium to coarse grained, uniform /								
		massive, pinkish grey, minimal banding, moderately								
		foliated								
		@ 163.00 foliation @ 60°								
		@ 177.40 foliation / banding @ 60°								
		@ 183.50 foliation / banding @ 55°								
		@ 189.00 banding @ 50°								
		@ 190.30 5cm Kimberlite dyke @ 15° cross-cutting								
		gneissosity (almost in same plane), weakly		T						
		magnetic, 30% olivine / peridotite to 2mm								

			PROJECT	: Kyle # 3			HOLE NO:	2001-13	PAGE: 3/5	
		SPIDER RESOURCES INC.								
FROM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH				
		192.70 - 193.00 15cm Kimberlite dyke; moderately								
		magnetic, 30% olivine / peridotite clasts to 2mm								
		upper contact irregular @ ~20°								
		196.30 - 199.25 moderately to strongly fractured at all								
		angles; minor Kimberlite on fractures, notably								
		@ 198.40, 0.5cm @ 30° & 198.95 0.5cm very								
		irregular								
199.25		Contact sharp @ 30° cross-cutting gneissosity in same plane								
199.25	202.70	Kimberlite: dark greenish grey to black, very magnetic, strongly								
		carbonatized; ~20% black peridotite clasts + olivine grains to								
		3mm.								
		Zone of Kimberlite actually contains 2m total of kimberlite with intervals	2001-13-01	199.25	202.70	3.45				
		as follows;								
		199.25 - 199.65 contacts @ 30° & 40°								
		200.60 - 201.15 contacts @ 25° & 20°								
		201.65 - 202.70 contacts @ 25°								
202.70		contact sharp @ 20° cross-cutting foliation in the same plane								
202.70	249.20	Gneiss:								
		202.70 - 249.20 grey gneiss as previously								
		@ 203.30 1cm Kimberlite @ 15°								
		@ 203.50 2cm Kimberlite @ 30°								
		@ 209.30 foliation / banding @ 70°								
		211.60 - 217.45 pink granite gneiss: 30% partially								
		assimilated grey gneiss; 5-10% pegmatite:								
		upper contact obscure/diffuse, but conformable								
		lower cross-cutting but semi-parallel to foliation								
		@ 221.35 banding @ 60°								
		@ 236.30 foliation @ 45°								
		236.45 - 241.25 granite gneiss: coarse to very coarse grained, pink to								
		dark red; locally assimilated grey gneiss								
		241.25 contact @ 50° semi-parallel to gneissosity @ 60°								

			PROJECT	: Kyle # 3			HOLE NO:	2001-13		PAGE: 4/5	
		SPIDER RESOURCES INC.					-				
	то	DESCRIPTION				ANAL	YTICAL RE	SULTS			
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH					
		241.25 - 249.20 mix of grey (60%) + pink (40%) gneiss;									
		@ 242.30 gneissosity @ 55°									
		243.15 - 243.30 Kimberlite dyke @ 35°									
		@ 247.50 foliation @ 45°									
		249.20 contact sharp @ 35°									
249.20	250.60	Kimberlite: dark grey to black, very magnetic, strongly carbonatized; 1cm	2001-13-02	249.20	250.60	1.40					
		chill margins; 50% olivine macrocrysts / peridotite clasts to									
		1mm									
250.60		contact sharp @ 35°									
250.60	261.45	Gneiss: mix of pink & grey gneiss as previously									
		@ 252.20 0.5cm Kimberlite @ 25° cross-cutting									
		gneissosity in same plane									
		@ 252.35 2cm Kimberlite @ 25° cross-cutting									
		gneissosity in same plane									
		@ 253.60 gneissosity @ 65°									
		@ 259.70 gneissosity @ 55°									
261.45		Contact sharp @ 20°									
261.45	262.40	Kimberlite: same as previously									
		2 dykes - 261.45 - 261.50 & 261.75 - 262.40	2001-13-03	261.45	262.40	0.95					
262.40		Contact sharp @ 20°									
262.40	267.55	Gneiss: mix of pink & grey gneiss as previously									
		@ 265.50 foliation @ 55°									
267.55		Contact sharp @ 10°									
267.55	269.05	Kimberlite: generally as previously: 5% coarse phlogopite									
	-	5% gneiss clasts	2001-13-04	267.55	269.05	1.50+L12					
000.05											
269.05		Contact sharp @ 40°									

			PROJECT	: Kyle # 3			HOLE NO	:2001-13	PAGE: 5/5	
		SPIDER RESOURCES INC.								
EDOM	то	DESCRIPTION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
269.05	322.17	Gneiss:								
		269.05 - 271.40 grey gneiss								
		@ 270.70 banding @ 40°								
		271.40 contact sharp @ 35° - conformable								
		271.40 - 290.25 pink granite gneiss: medium to very coarse grained,								
		massive to very weakly foliated; 5-10% grey gneiss								
		xenoliths								
		290.25 contact sharp @ 60° cross-cutting gneissosity & rotated								
		~30° out of plane of gneissosity								
		290.25 - 322.17 mix of grey & pink gneiss: pink gneiss mainly granite								
		gneiss - medium to very coarse grained								
		@ 302.30 banding @ 55°								
		@ 314.30 banding @ 40°								
		@ 322.00 foliation @ 65°								
322.17		E.O.H.								
		Notes:							 	
		 Down hole surveys taken by acid test. 								
		Core telescoped; majority of remainder dumped on site.								
	1	3) Hole plugged @								

							INCLINA	TION TESTS	S				
		SPIDER R	ESOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO	: 2001-14	
					COLLAR	50°					PAGE:10	OF 3	
LOCATION:	Kvle #3	GRID:	Ashton	ELEVATION: ~130m	12.19	9 49°					PROJECT:	Spider #1 /	Kyle #3
LENGTH: 2	200 25m				108.8	1 49 [°]					STARTED	opido: // /	i i ji č
CORE SIZE	· NO			DATE: 02/03/01	200.13	2 49°					FINISHED:		
OUNE OILL		RECOVERT.		D/(12: 02/00/01	200.12	-			I YTICAL RE		r intionieb.		
FROM	то		DESCRIPTION		SAMPLE	FROM	ТО				T		
0	12 19	Overburden:			C/ WIT EE	i i i i i i i i i i i i i i i i i i i		LEINGIII					
0	12.10				-								
12 19	29.10	Dolomite [.]			_			_					
12110	20110	12 19 - 19 65 light c	reamy brown massive fossilifer	005									
		19.65 bedd	ling / contact @ 55°		_						-		
		19.65 - 29.10 mid to	ark brownish grev, very fossilif	erous, beds to 1m:	_						-		
		mine	or light creamy brown interbeds								-		
		@ 2	7.35 bedding @ 50°										
		27.3	35 - 29.10 matrix sand, sandier c	lown hole									
			,										
29.10		Contact sharp @ 60	0								-		
29.10	39.60	Sandstone: very por	rous, poorly consolidated										
		29.10 - 30.40 50 - 6	0% angular to rounded fragment	s of white sandstone									
		in a	dark grey silty to sandy matrix										
		@ 2	9.85 bedding @ 50°										
		30.40 conta	act broken core										
		30.40 - 34.90 dark g	greyish green, massive, fine grair	ned									
		34.90 conta	act gradational										
		34.90 - 37.15 as ab	ove but mid-green										
		37.15 conta	act ground core										
		37.15 - 39.60 white	(locally greenish) "clean" sandste	one increasing in	2001-14-02	37.15	39.60	2.45					
		grai	n size down hole from fine to coa	arse; considerable lost									
		core	e due to grinding										
39.60		Contact ground core	9		_								
					_								
39.60	164.30	Gneiss:				_							
		39.60 - 44.85 weath	ered; weathering intensity decrea	asing down hole;		_							
		wea	thering develops preferentially al	long foliation /						_	_		
		gnei	issosity & emenates from fracture	es							_		
		39.6	60 - 42.80 extremely to strongly	weathered	-						_		
		42.8	30 - 44.85 moderately weathered	i, pink colour							_		
			discernable								_		
	_												
								1				1	

				: Kyle #3			HOLE NO:	2001-14	PAGE: 2/3	3
		SPIDER RESOURCES INC.								
						ANAL	YTICAL RE	SULTS		
FROM	то	DESCRIPTION	SAMPLE	FROM	ТО				Γ	
		$44.85 \sim 75.00$ mix of grev & pink gneiss; poorly foliated to well banded:								
		occassional weathered fractures								
		@ 52 50 banding @ 35°								
		@ 53 55 5cm Kimberlite dyke @ 25° cross-cutting banding								
		in same plane								
		$(a, 62, 90, foliation, (a, 50)^{\circ})$								
		@ 70 70 banding @ 30°								
		75.00 gradational change to predominantly grey gneiss								
		75.00 - 132.45 grev gneiss: fine to coarse grained, light to dark grev.								
		moderately foliated to well banded: subordinate sections								
		of pink gneiss: minor short pegmatite sections								
		cross-cutting banding								
		@ 78.50 banding @ 35°								
		@ 93.00 banding @ 25°								
		@ 104.20 banding @ 65°								
		@ 109 10 handing @ 15°								
		@ 122 10 banding @ 30°								
		132.45 gradational change								
		132.45 - 150.90 mix of grev (60%) & pink (40%) gneiss								
		$(133.75 \text{ banding } @ 60^{\circ}$								
		(2.12450) banding (2.20)								
		@ 145.05 5-10cm irregular mafic dyke								
		150.90 contact gradational								
		150.90 - 164.30 grev gneiss as previously								
		@ 157.60 foliation / banding @ 35°								
		~159.00 - 164.30 moderately intense fracture set								
		$@ 20^{\circ}-30^{\circ}$ cross-cutting foliation / banding								
		(in same plane) & increasing in intensity down								
		hole								
164.30		Contact sharp @ 30° cross-cutting foliation in same plane								
164.30	167.15	Kimberlite: strongly magnetic, strongly carbonatized (pervasive & in								
		veinlets), dark grey to black, weakly foliated; <1cm chill								
		margins at contacts; very fine grained serpentine-carbonate-								
		phlogopite matrix								
		10% gneiss clasts to 10cm, 20% peridotite + olivine to 3mm	2001-14-01	164.3	167.15	2.85				
		166.20 - 167.15 ~1-2% corroded purple-red garnets & green diopside								

				: Kyle #3			HOLE NO	: 2001-14		PAGE: 3/3	3
		SPIDER RESOURCES INC.									
	то					ANAL	YTICAL RE	SULTS			
FROM	10	DESCRIPTION	SAMPLE	FROM	ТО	LENGTH					
167.15		contact sharp @ 50°									
167.15	200.25	Gneiss:									
		167.15 - 170.70 grey gneiss as previously									
		167.15 - 167.80 low angle cross-cutting fractures as at									
		159.00 - 164.30									
		@ 167.25 1cm Kimberlite fracture dykelet @ 70°									
		167.30 - 167.40 Kimberlite @ 60° cross-cutting									
		gneissosity									
		@ 167.80 3cm Kimberlite dyke @ 15°									
		@ 170.00 banding @ 50°									
		170.70 contact irregular, obscure & cross-cutting banding									
		170.70 - 175.60 pink granite gneiss: medium to coarse grained, pink to									
		light greyish pink, massive to weakly foliated									
		175.60 contact irregular & obscure									
		175.60 - 200.25 grey gneiss with subordinate pink gneiss sections									
		@ 179.00 banding @ 25°									
		@ 189.00 banding @ 45°									
		@ 194.60 5cm Kimberlite dyke @ 35°; 30% <1mm sub-									
		rounded peridotite clasts in a very fine grained									
		serpentine-carbonate-phlogopite matrix									
		@ 200.15 banding @ 35°									
200.25		E.O.H.									
		Notes:									
		1) Dip by acid tests									
		2) Core telescoped, with the majority of the remainder dumped on site									
		3) Hole plugged @									
	1					1					

						INCLINA	TION TESTS	S				
		SPIDER RESOURCES INC.		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO	: 2001-15	
		•••••••••••••••••••••••••••••••••••••••		COLLAR	55°					PAGE:1	OF 3	
LOCATION:	Kyle #3	GRID: Ashton	ELEVATION: ~130m	12.19	9 55°					PROJECT:	Spider #1 /	Kvle #3
LENGTH: 2	03.30m			108.8	1 55°					STARTED	opido: ii i i	
CORE SIZE	· NQ	RECOVERY: LOGGED BY: Jim Burns	DATE: 03/03/01	188.06	6 48°					FINISHED:		
			27112. 00,00,01	100.00			ANA	I YTICAL RE	SULTS			
FROM	то	DESCRIPTION		SAMPLE	FROM	ТО				1	1	
0	11 28	Overburden: cored peobles and cobbles of dolomite	& diabase	0/ IIII EE		10						
0	11.20											
11.28	27.05	Dolomite:					_					
		11.28 - 18.15 light creamy brown, fossiliferous, poor	v bedded									
		18.15 contact @ 40°	,									
		18.15 - 27.05 mainly mid to dark grey brown, very for	ssiliferous; beds up									
		to 1m; minor light creamy brown dol	omite interbeds.									
		25.45 - 27.05 matrix sandy										
		@ 26.05 bedding @ 50°										
27.05		Contact sharp @ 55°										
27.05	37.40	Sandstone: very porous, poorly consolidated										
		27.05 - 29.55 ~50% white sandstone fragments in a	dark grey silt sand									
		matrix; crudely bedded										
		29.55 contact broken core										
		29.55 - 32.80 dark grey, massive, ~10% fragments										
		32.80 contact broken core										
		32.80 - 35.85 mid-green, fine to medium grained, ma	assive									
		35.85 contact @ 60°										
		35.85 - 37.40 "clean" white sandstone increasing in	grain size downhole									
		from very fine to coarse; considerabl	e ground core									
37.40		Contact; depth approximate due to lost core										
37.40	189.25	Gneiss:	· · · ·				_			-		
		37.40 - 40.70 strong to extremely weathered; minor i	ntervals where		-		_			-		
		gneiss is recognizable										
		40.70 contact sharp - broken core	I haddad waadii wa ta									
		40.70 - 47.55 grey griess: moderately ioliated to wel										
	+	44.5 IUlidiiUli @ 50						-		+		
	+	47.35 55.00 grapite groups: pink modium to control	arained massivo					-		+		
	+	very weakly foliated 15% group and	e inclusione					+		+	-	
		55.90 contact conformable with opeiesosity	3 111010310113		+					+		
1	1			1	1	1	1		1	1	1	1

				: Kyle #3			HOLE NO:	2001-15	PAGE: 2/3	3
		SPIDER RESOURCES INC.		-						
FROM	TO	DECODIDITION				ANAL	YTICAL RE	SULTS		
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH				
		55.90 - 61.60 grey gneiss								
		@ 57.20 foliation @ 35°								
		61.60 contact @ 25° cross cutting gneissosity, but in same plane								
		61.60 - 61.95 Kimberlite: dark grey to black, strongly magnetic, strongly								
		carbonatized; 30% peridotite clasts to 2mm;								
		25% gneiss clasts								
		61.95 contact @ 20° cross cutting gneissosity (in same plane)								
		61.95 - 123.95 grey gneiss as above								
		@ 64.60 foliation / gneissosity @ 45°								
		@ 65.20 4cm kimberlite dyke @ 35° cross-cutting								
		gneissosity, but in same plane								
		66.85 - 67.80 pegmatite; contact conformable								
		@ 69.00 gneissosity @ 60°								
		77.65 - 79.05 pegmatite: upper contact conformable,								
		lower @ 25° cross-cutting gneissosity								
		@ 88.00 banding @ 40°								
		@ 89.15 fracture gouge @ 40° parallel to gneissosity								
		@ 95.60 banding @ 40°								
		97.50 - 101.20 hematite stained fractures								
		@ 103.00 banding @ 30°								
		@ 113.00 foliation @ 25°								
		117.10 - 117.35 pegmatite: upper contact conformable								
		@ 15°: lower irregular @ 10°								
		122.65 - 123.20 pegmatite: upper contact @ 30° cross-								
		cutting & rotated 90° lower contact @ 10°								
		& cross-cutting								
		123.95 contact irregular								
		123.95 - 125.95 pegmatite: pink, guartz & microcline to 3cm								
		125.95 contact @ 50° & conformable								
		125.95 - 189.25 mixed grey (65%) & pink (35%) gneiss: local sections of								
		possible granite gneiss								
		@ 136.50 foliation @ 30°								
		@ 148.60 foliation / banding @ 40°								
		@ 154.00 foliation / banding @ 40°								
		@ 163.00 foliation @ 40°								
	1	@ 170.20 banding @ 35°		1				1		
		173.85 - 176.80 granite aneiss								
		@ 179.00 banding @ 50°	1	1						
189.25		Contact sharp @ 30°		1						

			PROJECT	: Kyle #3			HOLE NO	: 2001-15	PAGE: 3/3	3			
		SPIDER RESOURCES INC.											
FROM	то					ANAL	YTICAL RE	SULTS					
TROM	10		SAMPLE	FROM	TO	LENGTH							
189.25	194.75	Kimberlite: dark grey to black, moderately to strongly magnetic, strongly											
		carbonatized; ~40% peridotite clasts & olivine megacrysts to											
		1cm; moderately to strongly fractured - fractures calcite filled											
	_	3.25m cumulative Kimberlite as follows:	2001-15-01	189.25	194.75	5.50							
		189.25 - 189.65 contacts @ 30° & 35°											
		191.00 - 193.00 contacts @ 15° & 25°											
		193.75 - 194.30 contacts @ 15° & 15°											
	_	194.45 - 194.75 contacts @ 15° & 20°		_									
194.75		Contact sharp @ 20 [°]							 				
194.75	203.30	Gneiss: mainly granite gneiss; medium to coarse grained											
000.00		Fou											
203.30		Е.О.Н.											
		Notes:											
		1) Down hole survey - acid test											
		 Core telescoped - majority of remainder dumped on site 											
		3) Hole plugged @											
	_												
SPIDER RESOURCES INC.						INCLINAT							
-----------------------	---------	---	--	----------------------------	------------	----------	-------	------	-------------	-------------	-----------	-----------	---
					DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE NO	: 2001-16	
			COLLAR	52°	200.25	48°			PAGE:1	OF 4			
	Kyle #3	GRID [.] A	17.37	51°	261 21	48°			PRO.IECT.	Spider #1 /	Kyle #3		
			28.33	50°	201121				STARTED	opidol #17			
			LOGGED BY: lim Burns	DATE: 06/03/01	142 34	50°	1				EINISHED:		
		REGOVERT.		DITE: 00/00/01	142.04				I VTICAL RE		TINOTILD.		
FROM	то	DESCRIPTION			SAMPLE	FROM	ТО					1	
0	15 24	Overburden:											
-					-								
15.24	29.45	Dolomite:											
		15.24 - 20.15 light cr	eamy brown, fossiliferous, poorl	ly bedded									
		20.15 conta	ct / beding @ 55°										
		20.15 - 29.45 mid to	dark greyish brown, light cream	y interbeds									
		@ 26	3.45 bedding @ 50°	•									
		28.0	5 - 29.45 matrix sandy										
29.45		contact / bedding sha	rp @ 60°										
29.45	41.50	Sandstone: poorly consolidated, very porous											
		29.45 - 32.50 30% fra	agments to 3cm of white sandst	one in a fine grained									
		sand	-silt matrix: few fragments to 29	.90									
		32.50 - 37.30 poorly	bedded, dark greyish green to 3	35.15, mid to dark									
		greer	n thereafter										
		37.30 conta	ct irregular										
		37.30 - 41.50 "clean"	white sandstone increasing in e	grain size downhole	2001-16-01	37.30	41.50	4.20					
		from	very fine to coarse; ~50% core	loss due to grinding						_	_		
		from	38.70 - 41.50										
41.50		Contact sharp @ 50°											
44.50	100.00	Ondiana											
41.50	129.80	Gneiss:	humanthe real faliation (mained		-								
		41.50 - 42.50 Strong	y weathered, tollation / gneissos	sity & colour locally	-								
			mable	abort (200m)	-					_		-	
		42.30 - 45.75 Weak II	3 moderately weathered, minor	short (<20011)	-								
		45 75 - 113 25 nink te	o red granite gneiss: medium to	coarse grained									
		-0.70 - 110.20 plink to	sive to weakly foliated: inclusio	ns of arey aneiss very	-								
		wea	k pervasive weathering over sh	ort (<20cm) intervals	-								
		& alc	and fractures to $\sim 60m$										
		61 5	$50 - 61.75$ pegmatite @ 30° cros	ss-cutting foliation (40°)							1		
		01.0	and rotated 90° fro	m plane of foliation	1	1			1		1		1
		70.0	00 - 75.20 60% arev aneiss										
		@ 7	'2.45 banding @ 60°		1				1		1		

SPIDER RESOURCES INC.			PROJECT: Kyle #3				HOLE NO: 2001-16			PAGE: 2/4		
FROM	то	DESCRIPTION	ANALYTICAL RESULTS									
		DESCRIPTION	SAMPLE	FROM	TO	LENGTH						
		73.45 - 75.95 weak to moderately weathered										
		85.45 - 87.00 grey gneiss										
		92.85 ~103.00 20% grey gneiss										
		@ 95.20 banding @ 50°										
		103.00 - 113.25 40% grey gneiss										
		105.95 - 106.10 weakly weathered - calcite partially										
		weathered from fractures										
		@ 108.50 banding @ 65°										
		113.25 contact at commencement of macroscopically recognizable										
		brecciation										
		113.25 - 129.80 granite gneiss with grey gneiss intervals as above, but										
		unit is brecciated / shattered / crushed, larger fragments										
		angular to rounded & in a general size range from 1 - 10										
		cm supported by smaller <2mm clasts & all "cemented"										
		with <10% Kimberlite; occassional Kimberlite veinlets										
		totally fragmented, no alignment to the fragments.										
129.80		Contact very irregular: gradational fron sub-unit above to Kimberlite below										
		taken at abrupt increase in kimberlite content										
129.80	234.45	Kimberlite: dark greenish grey, to dark brownish grey to black; strongly										
		carbonatized, weakly magnetic										
		average 40% gneiss clasts (70% 129.80 - 130.15) to 15cm decreasing in	2001-16-02	129.80	136.00	6.2						
		size & percentage downhole; ~10% black peridotite & olivine green olivine										
		macrocrysts to 1cm										
		@ 133.05 2cm calcareous mud (smelling of methane) @ 50°										
		30% gneiss clasts to 5cm; 15-20% fine (1-2mm max) gneiss in matrix;	2001-16-03	136.00	142.00	6.0						
		10% peridotite clasts & olivine macrocrysts to 1cm; matrix serpentine &										
		phlogopite rich										
		30% gneiss clasts to 0.5m, 20% peridotite / olivine to 1cm	2001-16-04	142.00	147.20	5.20						
		145.40 - 145.65 core badly broken										
		147.20 - 159.65 granite gneiss										
		147.20 - 151.90 brecciated										
		157.30 - 157.75 quartz vein										

SPIDER RESOURCES INC.			PROJECT	: Kyle #3			HOLE NO: 2001-16			PAGE: 3/4		
FROM	то	DESCRIPTION	ANALYTICAL RESULTS									
FROM		DESCRIPTION	SAMPLE	FROM	TO	LENGTH						
		20% gneiss clasts to 5cm; 25% peridotite & olivine to 1cm; matrix	2001-16-05	159.65	163.60	3.95						
		serpentine & phlogopite rich										
		163.60 - 165.40 granite gneiss: light pinkish grey to grey, brecciated										
		@ 165.10 1cm Kimberlite vein @ 50°										
		15% gneiss clasts to 10cm; 20% peridotite / olivine to 1cm	2001-16-06	165.40	170.80	5.40						
		@ 166.3 5cm zone ~5% corroded garnet to1cm + minor diopside				_						
		Kimberlite voine to 1 on mov										
						_						
		10% gneiss to 7cm 20% peridotite / oliving to 1cm	2001-16-07	173 50	180.00	6.5						
		@ 176 90, 1 cm tension breccia $@$ 15°	2001-10-07	170.00	100.00	0.0						
		177 25 - 177 50, core badly broken										
		45% gneiss including 180.00 - 182.45, 15% peridotite / olivine to 1cm	2001-16-08	180.00	186.00	6.00						
		matrix phlogopite rich										
		45% gneiss including, 186.80 - 187.55, 188.90 - 190.45, 190.70 - 191.25	2001-16-09	186.00	192.00	6.0						
		@ 190.30 5cm zone of fracture gouge @ 40°										
		60% gneiss to 35cm; clasts very closely packed; matrix in part fine	2001-16-10	192.00	198.00	6.0						
		grained <2mm gneiss fragments										
		@ 192.45 1cm serpentine vein @ 20°										
		30% gneiss to 55cm, 20% peridotite / olivine to 0.5cm	2001-16-11	198.00	204.00	6.0						
		50% gneiss to 95cm; Kimberlite matrix very phiogopite rich,	2001-16-12	204.00	210.00	6.0						
		30% gneiss to 75cm: Kimberlite dark grey to blue black: strongly	2001-16-13	210.00	216.00	6.0						
		magnetic phlogonite poor: (possible late phase)	2001-10-13	210.00	210.00	0.0						
		$(a, 214, 50)$ banding $(a, 60)^{\circ}$						1		1		
		211.80 - 212.10 numerous <1mm corroded garnet & dionside								1		
	L											
		5% gneiss clasts; 30% peridotite / olivine to 1cm, mainly magnetic. dark	2001-16-14	216.00	222.00	6.0		1		1	1	
		grey to black								1		
								1		1		

				PROJECT: Kyle #3				HOLE NO: 2001-16			PAGE: 4/4	
SPIDER RESOURCES INC.												
FROM	то	DESCRIPTION	ANALYTICAL RESULTS									
FROM	10	DESCRIPTION	SAMPLE	FROM	TO	LENGTH						
		5% gneiss to 10cm, 35% peridotite / olivine to 2cm, matrix mainly light	2001-16-15	222.00	228.00	6.0						
		grey serpentine - carbonate										
		224.70 - 225.65 dark grey to black, sharp contacts with main unit @ 80° +										
		60°										
		<5% gneiss to 3cm, 35% peridotite / olivine to 5cm	2001-16-16	228.00	234.45	6.45						
234.45		Contact sharp @ 65°										
234.45	261.21	Gneiss:										
		234.45 - 241.65 mainly grey gneiss with short (<1m) intervals of pinkish										
		grey granite gneiss										
		@ 240.00 banding @ 50°										
		241.65 abrupt decrease in grey gneiss										
		241.65 - 261.21 granite gneiss: pinkish grey, massive to poorly foliated,										
		coarse grained, <10% grey gneiss										
		253.25 - 255.80 Kimberlite: 40% peridotite clasts to										
		2mm; contacts @ 70° + 50°										
		254.05 - 254.15 Kimberlite: contacts @ 60° + 60°										
		@ 254.40 6cm Kimberlite @ 65°										
261.21		E.O.H.										
		Notes:										
		1) Down hole surveys - acid test.										
		Core telescoped; remainder stored on site.										
		3) Cement plugs @ 23.47m & 60.60m										

CJP EXPLORATION INC.

Kyle #3 BMA 532 854, Ontario

Diamond Drill Hole Location Map

Processed by: Isaac Riddle Map Drawn By: C Jason Ploeger, P.Geo March 2020

Drawing : CJP-Kyle3-DDH

Drill Plan

100 East

Kyle #3 Line 200E

N: 205, 402 S: 205, 694 Scale: 1:2,000 0m 50m

Kyle #3 Line 250E

N: 248, 404 S: 248, 694

Scale: 1:2,000

0m 50m

Kyle #3 Line 300E

N: 298, 404 S: 298, 694

> Scale: 1:2,000 0m 50m

Kyle #3 Line 400E

N: 398, 405 S: 398, 693

> Scale: 1:1,900 0m 50m

500 East

Kyle #3 Line 500E

N: 498, 388 498, 712 S:

Scale: 1:2,000

Kyle #3 Line 600E

N: 598, 404 S: 598, 695

Scale: 1:2,000 0m 50m

Legend GM Dolomite Overburden Gniess Sandstone Kimberlite Kyle #3 Line 700E

S: 685, 403 N: 685, 693 Scale: 1:2,000 0m 50m