

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report of Work

on the

Norwalk Property

2017-2018 Diamond Drilling, Stripping and Line Cutting

Rabazo, Naveau and McMurray Townships Sault Ste. Marie Mining Division Wawa, Ontario

Exploration Permit: PR16-10966

Prepared for **RT Minerals Corp.** Suite 300 - 555 West Georgia Street Randall Building Vancouver, British Columbia, Canada, V6B 1Z6

> Prepared by Philip Escher, Geologist

> > May, 2018

Table of Contents

1.0	Summary	1
2.0	Introduction	1
3.0	Property Description and Ownership, Location and Accessibility	2
3.1	Location	2
3.2	Property Description and Ownership	3
3.3	Access	6
4.0	History	7
4.1	Gananoque	8
4.2	Stenabaugh	8
4.3	Willis Shaft	8
4.4	Fred C Shaft	8
4.5	Norwalk Mine	9
5.0	Geological Setting	10
5.1	Regional Geology	10
5.2	Property Geology	11
6.0	Exploration	12
6.1	Line Cutting	12
6.2	Stripping	13
6.3	Diamond Drilling	13
7.0	Discussion and Conclusions	17
8.0	Recommendations	18
9.0	References	19
10.0	Certificate of Author	20

Figures

Figure 1: Map showing the location of the Norwalk property.	.2
Figure 2: Map showing claims of the Norwalk property	.4
Figure 3: Map showing location of mineral occurrences and past producing mines	.7
Figure 4: Regional geological map of the Superior Province showing major tectonic elements	10
Figure 5: Map showing the property geology of the Norwalk property	11
Figure 6: Map showing the Norwalk West grid	12
Figure 7: Map showing diamond drill hole locations with respect to claim boundaries	16

<u>Tables</u>

Table 1: List of claims comprising the Norwalk property.	5
Table 2: Drill hole summary	14
Table 3: Significant results for drill holes 17-11 to 18-24.	15

Appendices

Appendix 1 – Diamono	d Drill Core Lo	bgs
----------------------	-----------------	-----

- Appendix 2 Diamond Drill Sections
- Appendix 2 Assay Certificates
- Appendix 3 Drill Plan Map
- Appendix 4 -

1.0 Summary

The Norwalk project, currently under option to RT Minerals Corp. of Vancouver, Canada, is an early stage gold exploration project located in Sault Ste. Marie mining district of Northeastern Ontario. The following assessment report documents the results of the 14 diamond drill holes (945 meters) cored on the Norwalk property near Wawa, Ontario during the 2017/2018 winter exploration program.

Drilling took place from December 2017 and February 2018 and was aimed at testing the gold potential of the Red Cabonate Zone (RCZ). Nine of the 14 drill holes intersected significant gold mineralization, with values including 2.25 g/t gold over 4.5 meters, 27.4 g/t gold over 1 meter and 11.8 g/t gold over 1 meter. The drilling demonstrates that gold mineralization at the RCZ mainly occurs in quartz (+/- carbonate and or tourmaline) tension-type veins. They cut all lithological units except lamprophyre dikes and are best developed in the granofelsic marble unit (RCZ) and locally crosscutting shear-type quartz veins.

The drill program was accompanied by a program of stripping and linecutting. Five separate areas were stripped ranging in size from 10 by 100 meters for the largest to 25 by 25 meters for the smallest. Stripping work focused mainly on the area around (RCZ) and was aimed at extending the zone on surface along strike of the original exposure. These stripped areas will have to be washed, sampled and mapped in the next field season.

2.0 Introduction

The Red Carbonate Zone (RCZ) is one of several gold-bearing zones identified on RT Mineral's Norwalk property. It was discovered during a follow-up trenching program in early winter of 2017 and is located at UTM 667202 E and 5310713 N. The RCZ is a granofelsic marble consisting predominantly of dolomite with up to 25 % quartz veining. This unit strikes at 115° to 130°, dips moderately to the southwest, and varies in width from two to five meters.

3.0 Property Description and Ownership, Location and Accessibility

3.1 Location

The property is located seven kilometers south-southeast of the town of Wawa, Ontario and falls within the mining district of Sault Ste. Marie (Figure 1). The property straddles the boundary of Rabazo, Naveau and McMurray townships of the Sault Ste. Marie Mining Division and can be found on NTS sheet NTS sheet 41 N/15. The approximate geographic center of the of the property is at UTM 667744 E and 5310644 N (NAD83; Zone 16).

Figure 1: Map showing the location of the Norwalk property. From Cullen & Clark, 2017.

3.2 Property Description and Ownership

All of the lands comprising the Norwalk property were originally ground staked mining claims. On April 10th, 2018, with the implementation of online map staking, the staked claims were converted to cellbased claims and the property now consists of 12 single cell claims and 21 boundary cell claims, covering an area of 460 hectares. Cell claims comprising the property are shown in Figure 2 and tabulated in Table 1.

The claim holders of the property are Mike Tremblay (50 %) and Philip Escher (50 %). RT Minerals Corp. has the exclusive right to acquire an undivided 100 % right, title and interest in and to the Property from the claim holders (Optionors) subject to a 2 % Net Smelter Royalty retained by the Optionors.

Local First Nations groups include Michipicoten, Missanabie Cree, Batchawana and Garden River First Nations, as well as the Metis Nation of Ontario and Redsky Metis. RT Minerals has engaged these groups at the onset of exploration in 2017.

Figure 2: Map showing claims of the Norwalk property.

Tenure Number	Title Type	Anniversary
128020	Boundary Cell Mining Claim	2019-06-28
146120	Boundary Cell Mining Claim	2019-06-28
154529	Boundary Cell Mining Claim	2019-06-28
175386	Boundary Cell Mining Claim	2019-06-28
175387	Boundary Cell Mining Claim	2019-06-28
229952	Boundary Cell Mining Claim	2019-06-28
229244	Boundary Cell Mining Claim	2019-06-28
241415	Boundary Cell Mining Claim	2019-06-28
249467	Boundary Cell Mining Claim	2019-06-28
248724	Boundary Cell Mining Claim	2019-06-28
308066	Boundary Cell Mining Claim	2019-06-28
309330	Boundary Cell Mining Claim	2019-06-28
315360	Boundary Cell Mining Claim	2019-06-28
336918	Boundary Cell Mining Claim	2019-06-28
336919	Boundary Cell Mining Claim	2019-06-28
336920	Boundary Cell Mining Claim	2019-06-28
336921	Boundary Cell Mining Claim	2019-06-28
104875	Single Cell Mining Claim	2019-06-28
104876	Single Cell Mining Claim	2019-06-28
146119	Single Cell Mining Claim	2019-06-28
174687	Single Cell Mining Claim	2019-06-28
192735	Single Cell Mining Claim	2019-06-28
221973	Single Cell Mining Claim	2019-06-28
241416	Single Cell Mining Claim	2019-06-28
325226	Single Cell Mining Claim	2019-06-28
336200	Single Cell Mining Claim	2019-06-28
336201	Single Cell Mining Claim	2019-06-28
129842	Boundary Cell Mining Claim	2019-06-30
231110	Boundary Cell Mining Claim	2019-06-30
260957	Boundary Cell Mining Claim	2019-06-30
326378	Boundary Cell Mining Claim	2019-06-30
287835	Single Cell Mining Claim	2020-01-17
336202	Single Cell Mining Claim	2020-01-17

Table 1: List of claims comprising the Norwalk property.

3.3 Access

From Wawa, the property can be reached by travelling 7.6 kilometers south on the Trans-Canada Highway 17 and then east for three kilometers along the High Falls Road. The property is accessible year-round from the High Falls Road, which bisects the property in a north-direction. Additional access, within the boundaries of the property, can be gained via numerous bush trails that branch off the High Falls Road.

4.0 History

The area has been actively explored since the initial gold rush of the late 1890's, with discovery and small-scale production including the Monk Mine and the Centennial Mine, both located within a distance of two kilometers from the property.

Historical workings located within the boundaries of the property include the Norwalk Mine, Fred C Shaft, Gananoque Vein, Willis Shaft, and the Stenabaugh vein, with recorded production of gold from the Norwalk Mine. The Mays shaft on the Stenabaugh vein is also reported to have produced gold from a one-man operation. Mineral occurrences and small-scale past producing mines are shown in Figure 3.

Figure 3: Map showing location of mineral occurrences and past producing mines. From Cullen & Clark, 2017.

Despite intensive exploration activity on the Norwalk property, only limited records of the work carried out are available and for several of these workings records are non-existent. Available historical data is presented by Massey (1985) in Open File Report 5532.

4.1 Gananoque

The Gananoque occurrence is a poorly documented gold occurrence located near the common boundary of cell claims 336919 and 221973, just east of the High Falls road. Historical workings consist of three adits located at UTM 666790 E 5311301 N, 666833 E 5311308 N and 666841 E 5311283 N, respectively. Rupert (1979) describes the main occurrence lens shaped carbonate-bearing quartz vein containing one percent pyrite. The vein strikes northwest, dips steeply, and reaches widths of up to 5 feet. He also noted the presence of numerous smaller, dominantly northeast dipping veins of similar composition as the main vein. Sampling of muck piles at the Gananoque Vein completed in October, 2016 by RT Minerals yielded assays up to 70.0 g/t gold.

4.2 Stenabaugh

The Stenabaugh vein is located near the common boundary of cell claims 309330 and 229952 at approximately 666473 E and 5310842 N. Near the east end of the occurrence, a 15 foot test pit was sunk on this west-trending quartz-carbonate vein. Historical files indicate that a shaft of unknown dimensions was sunk on this vein. In 1962, six holes totalling 254 meters have been completed (Glendhill, 1962). Results from this campaign are not available.

4.3 Willis Shaft

The Willis shaft is situated in the southwest corner of cell claim 229952 at approximately 666256 E and 5310483 N. A 6' x 8' and 23' deep shaft was sunk on an east-southeast striking, moderately north dipping quartz vein with reported widths of up to 1.2 meters. According to Massey (1985) the vein was drilled by B. Carlton in 1964 but no assay values were reported. Canabec Exploration Ltd. drilled one short hole at Willis shaft in 1979. The core logs indicate a 1.5 to 1.8 meter wide zone of mineralization consisting of disseminated or laminar pyrite, pyrrhotite, chalcopyrite and arsenopyrite in a unit logged as intermediate metavolcanics rocks. Assay values were generally low.

4.4 Fred C Shaft

The Fred C shaft is located at 668351 E and 5309886 N on claim 241416. Reportedly the shaft was sunk on a northwest striking quartz vein mineralized with massive phyrrhotite and some chalcopyrite. Ferguson et al. (1971) report the vein to be seven meters wide at the 15 meter level. Little other information about this occurrence is available in historical files.

4.5 Norwalk Mine

The Norwalk Mine is located near boundary of Rabazo and Naveau townships, in the southeast quadrant of claim 336200. Old workings consist of an inclined shaft located at 668420 E and 5310638 N and a vertical shaft located at 668447 N and 5310564 N. Historical files indicate that the vertical shaft reached a depth of 126 feet with one level at 100 feet. The inclined shaft is reported to be 254 feet (measured along a 40° to 45° incline) with 100 feet of drifting at the 100 ft level and 200 ft of drifting on the 200 ft level. Total gold production is estimated at 60 ounces of gold from 820 tons of ore (Ferguson et al., 1971).

5.0 Geological Setting

5.1 Regional Geology

The project is situated within the Michipicoten greenstone belt of the Wawa subprovince (Figure 4). The Wawa subprovince extends for over 1000 kilometers from the Kapuskasing structural zone in the east to the Vermillion district of Minnesota in the west and comprises several greenstone belts separated by plutonic domains (Williams et al., 1991). To the north, the Wawa subprovince lies in shear contact with the poly-deformed metasedimentary rocks of the Quetico subprovince while Intrusive rocks of the Southern province and the Midcontinent Rift form the southern boundary of the Wawa subprovince (Williams et al., 1991).

Figure 4: Regional geological map of the Superior Province showing major tectonic elements. From Percival et al., 2012. The property location is indicated by the red star.

The MGB extends for about 140 kilometres in length and averages 45 kilometres in width. It consists of successions of predominantly Archean mafic to felsic metavolcanics rocks that have been intruded by Archean granitic rocks. Rocks of supracrustal origin have been previously subdivided into volcanic cycles: 2900 Ma (Hawk assemblage), 2750 Ma (Wawa assemblage), and 2700 Ma (Catfish assemblage). The volcanic cycles are overlain by iron formation or clastic metasedimentary rocks of volcanic origin (Sage, 1994). The metamorphic grade within the belt is generally greenschist but up to amphibolite facies proximal to intrusions of external granites (Sage, 1994; Williams et al., 1991).

5.2 Property Geology

The Norwalk property is stratigraphically positioned in the upper portion Wawa assemblage, which consists primarily of felsic to intermediate flows and tuffaceous units that have been dated at 2748 +/-8 Ma (Smith et al., 1987). Felsic plutonic rocks of the Centennial stock intrude the metavolcanics lithologies of the Wawa assemblage. The Centennial stock, mostly felsic in composition, grades from granodiorite to trondhjemite (Massey, 1985) and yielded a U-Pb date of 2742 +/- 8 Ma (Smith et al., 1987).

The main structural feature in the area is the Monk deformation zone, a up to 1.5 kilometer wide zone of high strain. The zone trends approximately 140 degrees and dips moderately to steeply to the southwest.

Figure 5: Map showing the property geology of the Norwalk property. From Cullen & Clark, 2017.

6.0 Exploration

6.1 Line Cutting

In January of 2018 a total of 13.2 kilometers of lines were cut on the western portion of the Norwalk property. The grid was established for the purpose of conducting ground geophysical surveys, prospecting and mapping. The grid lines are spaced 100 meters apart with picketed stations at 25 meter intervals (Figure 6). The cutting was completed by one crew of two workers.

Figure 6: Map showing the Norwalk West grid.

6.2 Stripping

In January of 2018, five separate areas were stripped, ranging in size from 10 by 100 meters for the largest to 25 by 25 meters for the smallest. Stripping work focused mainly on the area around Red Carbonate zone and was aimed at extending the zone on surface along strike of the original exposure. These stripped areas will have to be washed, sampled and mapped in the next field season.

6.3 Diamond Drilling

During the period from December to February a total of 945 meters of diamond drilling were completed in 14 holes on the Red Carbonate Zone. Drilling started on December 19, 2017 and was suspended from December 22 to January 5, 2018 for the Christmas and New Year holidays. A total of 93 meters of drilling in four holes had been completed before the before the break; the balance was completed by February 18, 2018.

The drilling was contracted to Downing Drilling of Grenville-sur-la-Rouge, Quebec. The program was based out of Wawa, Ontario.

Drill core size was HQ and holes were aligned using a Silva compass. Downhole surveys were conducted on all holes except N17-13 using a Reflex instrument. Single shot Refelx down-hole survey measurements started at 10 meters from the collar or casing and were carried out approximately every 30 meters thereafter. An additional Reflex multi-shot survey was carried out upon completion of the hole over the entire length of the hole. Azimuth measurements are corrected for a 7.6 degree west local magnetic declination. Drill collar locations were surveyed by Tulloch Engineering using Real-Time Kinematic (RTK) GPS methods. Locational coordinate values are referred to the NAD83-Original UTM Zone 16N datum.

Core sampling was completed on select intervals using the half-core method. Sample intervals ranging from 0.1 to 1 meter were marked on the core with a red lumber marker and a sample tag was placed at the end of each core sample. The core was then split with an hydraulic core splitter and the half-core samples were individually bagged, labeled and placed in rice bags; the other half-core was placed back in the box and is retained on site for verification and reference purposes. A total of 419 samples representing a combined length of 335.4 meters were collected for gold assay. Samples were delivered to Activation Laboratories in Thunder Bay, Ontario.

Standards and blanks were routinely inserted into the sample stream. Approximately 10 percent of the samples submitted to the laboratory comprise samples used for quality assurance.

At the laboratory, samples were analysed using standard fire assay procedure with a gravimetric finish. Samples suspected of high-grade material were analyzed using the screen metallics method.

A drill hole summary and highlights of the mineralized zone are tabulated in Table 2 and 3 respectively. Drill logs, diamond drill sections and assay certificates can be found in Appendix 1, Appendix 2 and Appendix 3 respectively. A drill plan map is presented in Figure 7 and Appendix 4.

Hole ID	Claim No.	Easting	Northing	Elevation (m)	Azimuth (°)	Dip (°)	Hole Length (m)	No. of Samples Collected	No. of Samples Assayed
N17-11	146119	667194	5310678	292.7	020	-60	27	15	15
N17-12	146119	667193	5310677	292.5	020	-80	27	18	18
N17-13	146119	667198	5310689	294.2	200	-60	12	8	8
N17-14	146119	667196	5310687	293.7	200	-62	66	62	62
N18-15	146119	667205	5310660	293.1	020	-45	54	13	13
N18-16	146119	667205	5310659	293.2	020	-55	33	9	9
N18-17	146119	667205	5310658	293.2	020	-80	48	21	21
N18-18	146119	667157	5310641	288.2	020	-65	75	19	19
N18-19	146119	667157	5310642	288.1	020	-45	63	11	11
N18-20	146119	667156	5310640	288.0	020	-85	93	21	21
N18-21	336921	667109	5310676	289.8	120	-60	114	46	46
N18-22	336921	667095	5310667	289.0	120	-60	129	49	49
N18-23	336921	667126	5310685	290.7	120	-76	78	65	65
N18-24	336921	667109	5310676	289.8	120	-73	126	62	62
Total							945	419	419

Table 2: Drill hole summary.

Drill Hole	From (m)	To (m)	Lengt h (m)	Au (g/t) by Screen Metallics (Coarse Fraction)	Au (g/t) by Screen Metallics (Fine Fraction)	Au (g/t) by Screen Metallics (Fine Fraction)	Au (g/t) by Screen Metallics (Weighted Average)
N17-11	10.2	11.2	1.0	38.8	0.85	0.95	1.61
N17-12	13.7	14.7	1.0	21.8	0.9	1.08	1.89
N17-14	3.0	4.0	1.0	63.5	0.68	0.58	1.82
N17-14	21.0	22.0	1.0	391	4.97	4.57	11.8
N17-14	37.0	38.0	1.0	1700	8.88	5.78	27.4
N18-17	34.3	34.7	0.4	66.7	0.14	0.32	1.99
N18-18	52.2	53.2	1.0	28	0.48	0.99	1.44
N18-19	44.1	45.1	1.0	11.2	0.26	0.44	0.58
N18-19	48.1	49.1	1.0	121	0.28	0.14	2.68
N18-21	74.6	75.3	0.7	44.9	3.16	4	4.26
N18-21	91.9	96.4	4.5				2.25
Incl.	91.9	92.9	1.0	90.1	1.99	1.64	3.53
Incl.	93.9	94.4	0.5	222	4.92	4.67	9.49
Incl.	95.4	96.4	1.0	33.4	0.63	0.96	1.51
N18-22	117.7	118.7	1.0	27.2	0.86	0.75	1.17
N18-22	121.0	121.6	0.6	43.9	1.36	1.61	2.44
N18-22	122.6	123.6	1.0	8.93	0.78	0.89	1.04
N18-23	44.1	44.6	0.5	2.41	0.92	1.09	1.02

Table 3: Significant results for drill holes 17-11 to 18-24.

Figure 7: Map showing diamond drill hole locations with respect to claim boundaries.

7.0 Discussion and Conclusions

The drill program on the RCZ indicates that gold mineralization is mainly confined to a set of white to glassy quartz +/-carbonate and or tourmaline veins displaying saccharoidal textures. These veins are typically oriented at moderate to high angles to the dominant shear fabric and are thus interpreted as tension veins. They cut all lithological units except lamprophyre dikes and are most commonly observed in the granofelsic marble unit (RCZ) and locally crosscutting shear- type quartz veins hosted in sericite to quartz-sericite schists. Mineralization in these veins typically consists of pyrite +/- chalcopyrite and molybdenite and rare native gold. Although gold mineralization is associated with sulfides, the amount of gold mineralization is not proportional to the amount of sulfide mineralization.

Strain distribution is heterogenous and characterized mainly by alternating panels of quartzofeldspathic mylonites separated by narrower units of sericite schist to quartz-sericite schist. The marble granofels is centered on the sericite schist. Sericite and quartz sericite schists typically display a penetrative schistose foliation and a coplanar mineral elongation lineation defined by elongate aggregates of quartz and sericite. A crenulation cleavage is developed locally in schistose units, overprinting the earlier formed foliation. Whether this overprinting relationship formed during a single phase of deformation or represents the result of progressive deformation has yet to be established. Regardless, in the area of the RCZ, this crenulation cleavage is only weakly developed and likely has little effect on the distribution of mineralization.

Based on drill core observations and core sampling results the following conclusions may be drawn:

- At the Red Carbonate Zone, high- and low-grade gold mineralization occurs primarily in quartz +/- carbonate and or tourmaline tension veins; however, gold concentrations are highly variable.
- 2) Gold occurs in both barren and sulfide bearing quartz tension veins.
- 3) Property-scale structures with potential to host gold mineralization are shear zones that possess a penetrative schistose foliation. Competent lithological units of granofelsic character immediately adjacent to high-strain zones are considered prospective as well.

8.0 Recommendations

Drilling conducted by RT Minerals demonstrates the potential for structurally controlled near surface high- and low-grade gold mineralization within the area of the Red Carbonate Zone. Further exploration is recommended on the Norwalk property to properly asses its potential for economic gold mineralization.

To properly evaluate the known gold occurrences the author recommends the following for the summer of 2018:

- 1. Washing, sampling and mapping of all stripped areas in the vicinity of the RCZ to gain a better structural understanding and to evaluate the gold potential of this structure further along strike.
- 2. Detailed mapping and structural analysis of mineralized quartz vein arrays, particularly the veining at the Norwalk vertical and inclined shafts and at the Gananoque occurrence where high-grade grab samples were obtained from both shear-type and tension veins. The structural analysis would help determine the kinematics of structures hosting the veining and provide clues to possible plunge controls on the veins.
- 3. A targeted diamond drill program designed to test the intersection of shear and tension veins.

9.0 References

- Cullen, D. and Clark, G, J. 2017. Technical Report on the Norwalk Property, Rabazo, Naveau and McMurray Townships Sault Ste. Marie Mining Division Ontario, Canada. Prepared for: RT Minerals Corp.
- Ferguson, S.A., Groen, H.A. and Haynes, R. 1971. Gold deposits of Ontario part 1, Districts of Algoma, Cochrane, Kenora, Rainy River and Thunder Bay, Ontario. Department of Mines, Mineral Resources Circular 13.
- Massey, N.W.D. 1985. Geology of the Mishewawa Lake Area, District of Algoma. Ontario Geological Survey, Open File Report 5532, 167p.
- Percival, J. A., Skulski, T., Stott, G., 2012. Geology and tectonic evolution of the Superior Province, Canada; in Tectonic Styles in Canada: The Lithoprobe Perspective. Geological Association of Canada Special Paper, 0072-1042; 49.
- Sage, R.P. 1994. Geology of the Michipicoten greenstone belt. Ontario Geological Survey, Open File Report 5888, 592p
- Smith, P.E.; Tatsumoto, M. and Farquhar, R.M., 1987. Zircon Lu Hf systematics and evolution of the Archean crust in the Superior Province, Canada. Contributions to Mineralogy and Petrology, v. 97., p. 93-104
- Williams, H.R., Stott, G.M., Heather, K.B., Muir, T.L. and Sage, R.P. 1991. Wawa Subprovince; in Geology of Ontario. Ontario Geological Survey, Special Volume 4, Part 1, p.485–542.

10.0 Certificate of Author

I Philip Escher of 190 Market Street, Thunder Bay, Ontario, am the author of this report titled '**Report** of Work on the Norwalk Property, 2017-2018 Diamond Drilling, Stripping and Line Cutting', dated May 2018 (the "Technical Report"), and certify the following:

- 1. I am a self-employed contract geologist.
- 2. I graduated from Lakehead University (B.Sc. in Earth Science, 2013; H.B.Sc. in Geology, 2017).
- 3. I have practiced my profession in mineral exploration continuously since graduation.
- 4. I am responsible for the preparation of this Technical Report.
- 5. I have a direct interest in the Norwalk property.

Dated this 10th day of August 2018, at Thunder Bay, Ontario

Philip Escher, H.BSc.

Appendix 1 – Diamond Drill Core Logs

RT Minerals	Corp	DIAMOND	DRILL	CORE LOG

UTM Northing		5310678.04				
(Nad83)	Easting	667193.86				
Elevation	(m):	292.7				
Dip at Co	llar:	-60				
Azimuth:		020				
Total Depth:		27				
Core Size:		HQ				
Bomarka:		Core stored at 100 Mills				

DDH:	<u>N17-11</u>	
Claim No.:		146119
Unit Key:		41N15K359
Property:		Norwalk
Zone:		Carbonate Zone
Date start:		19-Dec-17
Date finish:		19-Dec-17
Contractor:		Downing
Logged by:		Philip Escher

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey

Depth	Dip	Azimuth							

Remarks: Core stored at 100 Mills Dr, Wawa, ON P0S 1K0

Casing: Pulled

Cap:		N/A											
	GEOL	.OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-Me (Weighted Average)
0.00	6.30	Quartzo-Feldspathic Mylonite		Fine grained, medium to dark grey color. Comprised predominantly of quartz, plagioclase and chlorite.	Ру	0.8 to 1% medium grained euhedral to subhedral pyrite mainly along fo	C39351		4.2	5.2	1.0	< 0.03	8
				Mylonitic foliation @ 55° to core axis. First 3.5 m are strongly fractured. Carbonate staining along fractures.		4.5 to 6.3 increasing sulfide content (~2%)	C39352		5.2	6.2	1.0	< 0.03	3
				Asymmetric pressure shadows of quartz surrounding coarse euhedral pyrite grains.			C39353		6.2	7.2	1.0		< 0.0
				Mm-scale plagioclase fractures with sub-cm plagioclase to sericite alteration halos are common.			C39354		7.2	8.2	1.0		< 0.0
							C39355		8.2	9.2	1.0		< 0.0
6.30	10.40	Sericite Schist		Very fine grained, creamy grey to light green color. Upper contact is gradational. Lower contact is sharp but obscured by broken core.	Ру	3 to 5% subhedral pyrite along foliation planes.	C39356		9.2	10.2	1.0		< 0.0
				Comprised of sericite after plagioclase, minor chlorite, and ~10 - 15 % quartz porphyroclasts.		~1% coarse euhedral sulfides near lower contact	C39357		10.2	11.2	1.0		1.6
				Penetrative foliation @ 55° to core axis.			C39358	BLK				1.71	
				Cm-scale quartz veins @ 7.8 and 8.8m. Veins are parallel to subparallel to foliation.			C39359		11.2	12.2	1.0		< 0.0
				Several mm-scale quartz veinlets x-cutting foliation between 9.4 and 9.9. Veins are glassy white in color and without visible sulfides.			C39360	Oreas 62P	b			10.5	5
							C39361		12.2	13.2	1.0		< 0.0
10.40	13.50	Marble Granofels		Medium grained crystalline carbonate. White to light grey color. Lacks penetrative fabric but has brecciated appearance.	PY	0.5 to locally up to 2% clusters of fine grained py in carbonate.	C39362		13.2	14.2	1.0		< 0.0
		(RCZ)		Upper contact appears sharp but is obscured by broken core and quartz veining. Sharp lower contact @ 60° to core axis.	VG	VG at 11.1m. Occurs near vein margin.	C39363		14.2	15.2	1.0		0.0
				Cm to dm-scale quartz veins @ 10.2, 10.6, 11.1 and 11.8. Veins generally @ 20 to 30° to core axis. No visible sulfides in quartz.			C39364		15.2	16.2	1.0		< 0.0
				Several cm-scale irregular shaped quartz veins between 10.3 and 10.5 m.			C39365		16.2	17.2	1.0	< 0.03	3
			Lamprophyre	Cm-scale lamprophyre @ 20° to core axis.			C39366		17.2	18.2	1.0	< 0.03	3
							C39367		18.2	19.2	1.0	< 0.03	3
13.50	16.00	Quartz-Sericite Schist		30 to 50% dull grey quartz veins, parallel to foliation.	Ру, Сру	0.5 to 0.8% disseminated pyrite.							
				13.5 to 13.9m strong sericite after plagioclase. Strong penetrative foliation @ 50° to core axis. Irregular shaped white quartz vein @ 13.8.		Locally up to 4% disseminated and in whisps along foliation planes.							
				19.9 to 16.0m slight decrease in grain size. Mylonitic foliation.		0.5% anhedral cpy @ 15.9 m							
16.00	27.00	Quartzo- Feldspathic Mylonite		Fine grained, medium to dark grey color. Comprised predominantly of quartz, plage and accessory chlorite	Ру	0.5% disseminated. Locally up to 1% coarse grained euhedral sulfides.							
				Mylonitic foliation @55° to core axis. 5 to 8% quartz porphyroclasts.									
				16.0 to 21.3m abundant mm- scale plage/ kspar veinlets with cm-scale plage/ kspar alteration halos @ various orientation to core axis.									
				16.0 to 18.0m ~20% mm-scale carbonate porphyroblasts(?)									
				17.7m cm-scale quartz vein @ 45° to core axis.									
												<u> </u>	
												<u> </u>	
												<u> </u>	
												<u> </u>	
								_					
								_					
								_					
													

			RT Minerals Corp DIAMOND DRILL CORE LOG						
υтм	Northing	5310677.44		DDH:	<u>N17-12</u>	DIAMOND DRI	L CORE L	OG	
(Nad83)	Easting	667193.4		Claim No.:	146119	Reflex EZ Sho	- Diamond	Drillhole Sur	vey
Elevation	(m):	292.47		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Col	lar:	-80		Property:	Norwalk				
Azimuth:		20		Zone:	Carbonate Zone				
Total Dep	th:	27		Date start:	20-Dec-17				
Core Size:	:	HQ		Date finish:	20-Dec-17				
Remarks:	Remarks: Core stored at 100 Mills Dr, V		ills Dr, Wawa, ON P0S 1K0	Contractor:	Downing				
Casing:		Pulled		Logged by:	Philip Escher				

Casing:	Pulled
Cap:	N/A

•	GEOL	.OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-Me (Weighted Average)
0.00	1.00			Lost Core			C39368		3.7	4.7	1.0	< 0.03	
1.00	11.40	Quartzo-Feldspathic Myloni	ite	1.10 to 1.6m fractured and broken core. Rusty carbonate staining along fractures.	PY	0.5 to 1% medium to coarse grained euhedral to subhedral sulfides along foliation planes	C39369		4.7	5.7	1.0	< 0.03	
				Fine grained, medium to dark grey color. Comprised predominantly of plagioclase and chlorite.		From 6.0 to 11.40 increased sulfide content of ~2 to 4% to locally up to 6%.	C39370		5.7	6.7	1.0	< 0.03	
				Mylonitic foliation @ 30 to 40° to core axis.		Sulfides fine to medium grained.	C39371		6.7	7.7	1.0	< 0.03	
				Asymmetric pressure shadows of quartz surrounding coarse euhedral pyrite grains.			C39372		7.7	8.7	1.0	< 0.03	
				Millimeter scale plagioclase fractures with sub-cm plage-sericite alteration halos are common.			C39373		8.7	9.7	1.0	< 0.03	
				Irregular shaped cm to dm-scale quartz veins @ 5.5, 5.9, 8.30, 9.6, 9.8, 10.6. Veins display a sugary texture and are white in color.			C39374	_	9.7	10.7	1.0	< 0.03	
				Little to no sulfides associated with veining. Majority of veins are discordant to foliation.			C39375		10.7	11.7	1.0		< 0.0
				10.3 to 11.4m gradually increasing sericite content and segregation of mafic and felsic components into shear bands (striped appearance).			C39376		11.7	12.7	1.0		< 0.0
							C39377		12.7	13.7	1.0		< 0.0
11.40	13.70	Sericite Schist		Very fine grained, creamy grey to light green color. Gradational upper contact.	Py	1 to 3% fine to locally medium grained sulfides along foliation planes.	C39378	Oreas62Pt	b			11	
				Comprised of sericite after plagioclase, minor chlorite and ~10 - 15 % quartz porphyroclasts.		Locally up to 3 to 5% fine grained sulfides in mm-scale seams.	C39379		13.7	14.7	1.0		1.8
				Penetrative foliation @ 30° to core axis.			C39380		14.7	15.7	1.0		< 0.0
				Cm-scale irregular shaped white quartz vein with sugary texture cross-cutting foliation @ 12.3m			C39381	_	15.7	16.7	1.0		< 0.0
				Several cm-scale (length) tension veinlets @ 13.5 m.			C39382		16.7	17.7	1.0	< 0.02	< 0.0
40.70	17.20			M. Provinsky, Landelly, and and MRNA, P. B. Landelly, L. P. Landelly, K. B. B. Barris, K. B. B. Barris, K. B. Barris, M. Ba			C39383	BLK	47.7	10.7	10	< 0.03	< 0.0
13.70	17.30	Marble Granotels		Medium grained crystalline carbonate, white to light grey color. Lacks penetrative fabric but has brecclated appearance.	Py	13.7 to 14.8 m ~8-10% tine grained disseminated suitides.	000005		17.7	18.7	1.0		- 0.0
				Sharp upper contact @50 to 55° to core axis. Sharp lower contact @ 40° to core axis.	MO Du	13.7 to 14.8 2-5% molybdenum in hairline tractures (2) various orientations to core axis.	C39385		18.7	19.7	1.0	< 0.03	0.1
				min-scale kspan nactures (@ vanous orientations to core axis.	РУ	14.8 to 17.3 decreasing sunde content (~trace to 0.5%)	C39386		19.7	20.7	1.0	< 0.03	
				Cri-scale quartz veins (0) 14.1, 14.3, 14.6, 14.9, 10.1, 10.5, 10.4, 16.6. Generally (0)40 to 50 to core axis.				_	23	24	1.0		
				DM-scale quartz vein (g) 15.2.									
				13.5 to 15.7 In and 16.4 to 17.3m strongly brecoated appearance watrix consists mainly or glassy quartz.									
17.30	19.60	Quartz-Sericite Schist		Fine-grained, comprised of predominantly of plagioclase and lesser chlorite.	Py	0.5 to 1% subhedral sulfides along foliation planes							
				~5-10% mm-scale quartz porphyroclasts with asymmetric tails.									
				17.3 to 18.3m strong penetrative foliation @ 40 to 45° to core axis. Strong sericite after plagioclase									
				17.7m cm-scale quartz vein @80° to core axis at .									
				18.0 to 18.7m several cm-scale quartz vein @ 10° to core axis.									
19.60	27.00	Quartzo-Feldspathic Myloni	ite	Gradational upper contact. Fine grained, medium to dark grey color. Comprised predominantly of plagioclase and chlorite.	Py	0.5% disseminated. Locally up to 1% coarse grained euhedral sulfides.							
				MM- scale plage/ kspar veinlets with cm-scale plage/ kspar alteration halos @ various orientation to core axis.			,						
				Mylonitic foliation @ 35 to 45° to core axis.			,						
				19.6 to 23.0m up to 30% mm-scale carbonate porphyroblasts (?).									
				25.2m cm-scale white quartz vein @ 40° to core axis									
				23.0 to 24.0m numerous mm-scale quartz veinlets at 60 to 80° to core axis.									
	-							_					
		+											
								_					
		+											
	1										1		

			RT Minerals Corp DIAMOND DRILL CORE LOG					
UTM	Northing	5310688.8		<u>DDH: N17-13</u>		DIAMOND DRI	L CORE L	OG
(Nad83)	Easting	667198.49		Claim No.:	146119	Reflex EZ Sho	- Diamond	Drillhole Surve
Elevation	(m):	294.23		Unit Key:	41N15K359	Depth	Dip	Azimuth
Dip at Co	llar:	-60		Property:	Norwalk			
Azimuth:		200		Zone:	Carbonate Zone			
Total Dep	th:	12		Date start:	21-Dec-17			
Core Size	:	HQ		Date finish:	21-Dec-17			
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing			
Casing:		Pulled		Logged by:	Philip Escher			

Cap:		N/A											
	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.00	2.30			Lost Core			C39388		3.3	4.3	1.0		0.03
2.30	6.30	Marble Grand	fels	Looks like rubble to 2.8m.	Ру	0.5% fine to medium grained subhedral sulfides disseminated.	C39389		4.3	5.3	1.0		0.1
				Medium grained crystalline carbonate. White to light grey color. Lacks penetrative fabric but has brecciated appearance.		Locally patches of up to 3-5% Fine grained sulfides.	C39390	Oreas 61Pa	1			4.47	
				Sharp lower contact @20° to core axis.	Мо	several thin seams of molybdenum @ 4.3m	C39391		5.3	6.3	1.0		< 0.03
				Numerous mm-scale glassy quartz veinlets generally @ 80 to 90° to core axis.			C39392		6.3	7.3	1.0	< 0.03	
				Cm-scale quartz veins @ 5.0, 5.1, 5.8 and 6.2 Generally at 70 to 90° to core axis. Veins are white with a sugary texture and occasionally cor	ntain thin seams o	of tourmaline.	C39393		7.3	8.3	1.0	< 0.03	
				2 cm tourmaline vein at 70° to core axis.			C39394		8.3	9.3	1.0	< 0.03	
			Mafic Dike	5.2 to 5.4m dike @ 85° to core axis.			C39395		9.3	10.3	1.0	< 0.03	
							C39396	BLK				< 0.03	
6.30	12.00	Sericite Schis	t	Very fine grained, creamy grey to light green color. Upper contact is gradational. Lower contact is sharp but obscured by broken core.	Py	trace amounts of euhedral to subhedral sulfides.	C39397		10.3	11.3	1.0	< 0.03	
				Comprised of sericite after plagioclase, minor chlorite and ~10 - 15 % quartz porphyroclasts with asymmetric tails.							!		
				Penetrative foliation @ 10 to 20° to core axis.							!		
											!	L	
				8.0 to 12.0 decrease in sericite. Light creamy grey color. Mylonitic foliation @ 10 to 20° to core axis.							!	L	
				9.7 to 10.8m Carbonate material @ 10° to core axis. ~15 to 20% mm-scale quartz veinlets throughout @ 60 to 80° to core axis.							!	L	
										<u> </u>	<u> </u>		
				Cm-scale quartz vein @ 9.6, 11.1m. Veins @ 40°						<u> </u>	- <u> </u> '		
				5cm k-spar vein @ 20° to core axis @ 11.4m.						<u> </u>	- <u> </u>		
										<u> </u>	'		
											'		
											'		
											'		
											'		
					-						<u> </u>	 	
					-		-				<u> </u>	 	
	-										'	<u> </u>	
												<u> </u>	
										+		<u> </u>	
												<u> </u>	
										+	<u> </u>	<u> </u>	
	+				+		+			+	<u> </u>	<u> </u>	
	+						+			+	<u>+</u>	<u> </u>	
	+				+		+			+	+	<u> </u>	
	+				+		+			+	+	<u> </u>	
	+						+			+	+	<u> </u>	
	+									+	+	<u> </u>	

			RT Minerals Corp DIAMOND DRILL CORE LOG					
UTM	Northing	5310687.4		<u>DDH: N17-14</u>		DIAMOND DRI	LL CORE L	OG
(Nad83)	Easting	667195.58		Claim No.:	146119	Reflex EZ Sho	- Diamond	Drillhole Surve
Elevation	(m):	293.72		Unit Key:	41N15K359	Depth	Dip	Azimuth
Dip at Co	lar:	-62		Property:	Norwalk			
Azimuth:		200		Zone:	Carbonate Zone			
Total Dep	th:	27		Date start:	21-Dec-17			
Core Size	:	HQ		Date finish:	16-Jan-18			
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing			
Casing:		Left in hole		Logged by:	Philip Escher			

Cap:		Screw-on										
	GEOL	OGY			Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments Line	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	2.3	Overburden				C39398		2.3	3.0	0.7		< 0.03
2.3	46.3	Marble Gran	ofels	Medium grained crystalline carbonate. White to light grey color. Lacks penetrative fabric but has brecciated appearance. Py	0.5% fine to medium grained subhedral sulfides disseminated.	C39399		3.0	4.0	1.0		1.82
				Two types of vein are present throughout the core: one is white with a sugary texture, contains significant amounts of tourmaline	Locally patches of up to 3-5% Fine grained sulfides.	C39400		4.0	5.0	1.0		< 0.03
				and reaches thicknesses of 2 to 15cm; the other is glassy white with thicknesses that generally don't exceed the mm-scale.		C39451		5.0	6.0	1.0		< 0.03
				The latter variety occurs as straight veinlets and within the breccia matrix. Volumetrically the glassy variety is more abundant.		C39452		6.0	7.0	1.0		0.04
				Sugary veins typically oriented at 70 to 90° and 40 to 50° to the core axis (possible conjugate vein set), whereas the glassy variety occurs mair Mo	Several thin seams of molybdenum (~1%) @ 3.4m, 19.4 to 19.9,	C39453		7.0	8.0	1.0		< 0.03
				at 70 to 90° to the core axis.		C39454		8.0	9.0	1.0		< 0.03
				~15 to 20% glassy quartz veins throughout.		C39455		9.0	10.0	1.0		< 0.03
				2.3 to 37.0 m. ~5-8% sugary quartz veins. Veins occur at a frequency of ~2 veins per meter.		C39456		10.0	11.0	1.0		0.25
				Potassic quartz veinlets @ various orientation to core axis are common. Occasionally these veinlets are cut by fractures with dextral offsets.		C39457		11.0	12.0	1.0		< 0.03
				Sharp lower contact @ 40° to core axis.		C39458		12.0	13.0	1.0		< 0.03
				2.3 to 6.0 m contains ~ 15 to 20 % inclusions of sericite schist. Foliation @ 10 to 20° to core axis. Decrease amount of glassy quartz veinlets.		C39459	BLK				< 0.03	
				12.6 to 17.0m contains ~ 15 to 20 % inclusions of sericite schist. Foliation @ 10 to 20° to core axis. Decreasing amount of glassy veinlets (5 to 8%)		C39460		13.0	14.0	1.0		< 0.03
				37.0 to 44.5 m. decreasing amount of glassy quartz veinlets (2-3%). Cm- scale sugary quartz vein @ 37.5m and 43.7m.		C39461		14.0	15.0	1.0		0.78
				42.5 to 42.8 m. Inclusions of sericite schist. Contact is sharp @ 20 to 40° to core axis.		C39462		15.0	16.0	1.0		< 0.03
			Lamprophyre	4.1 to 4.4 m Lamprophyre dike @ 60° to core axis.		C39463		16.0	17.0	1.0		0.81
			Lamprophyre	28.0 to 29.8 m Upper contact @ 22° to core axis; lower contact @ 10° to core axis.		C39464		17.0	18.0	1.0		0.48
			Lamprophyre	30.0 to 30.2 m. Upper contact @ 20° to core axis, lower contact @ 10-20° to core axis. Contacts obscured by broken core.		C39465		18.0	19.0	1.0		< 0.03
			Lamprophyre	31.2 to 32.0 m. Contacts @ 20° to core axis.		C39466		19.0	20.0	1.0		< 0.03
			Lamprophyre	35.5 to 35.8 m Broken core		C39467		20.0	21.0	1.0		< 0.03
						C39468		21.0	22.0	1.0		11.8
46.3	54.5	Sericite Schi	st	Fine grained. Creamy grey to light green color. Comprised mainly of sericite, minor amounts of chlorite and actinolite(?). ~ 2-4 % quartz		C39469		22.0	23.0	1.0		< 0.03
				porphyroclasts. Actinolite occurs as acicular radiating masses. Penetrative foliation at 40° to 20° to core axis. Locally banded appearance Py	2 to 4% fine grained pyrite, disseminated	C39470	Oreas 62Pa				7.21	
				due to segregation sericite and chlorite into distinct domains. Gradational lower contact	Up to 2 to 3% fine to medium grained subhedral pyrite in foliation para	C39471		23.0	24.0	1.0		< 0.03
				49.0 m. 1.5 cm quartz vein @ 60° to core axis.		C39472		24.0	25.0	1.0		< 0.03
						C39473		25.0	26.0	1.0		0.13
54.5	66.0	Quartzo-Feld	spathic Mylonite	Gradational upper contact. Fine grained, medium to dark grey color. Comprised predominantly of quartz and plagioclase/ sericite. Py	0.5 to 1% fine grained disseminated pyrite	C39474		26.0	27.0	1.0		< 0.03
				~8% quartz porphyroclasts (sigma-type) with asymmetric tails.	and randomly distributed clusters of medium to coarse grained	C39475		27.0	28.0	1.0		0.03
				MM- scale plage/ kspar veinlets with cm-scale plage/ kspar alteration halos @ various orientation to core axis.	euhedral pyrite with chlorite(?) In pressure shadows.	C39476		28.0	28.5	0.5		< 0.03
				Mylonitic foliation @ 10° to 40° to core axis.		C39477		30.0	31.0	1.0		< 0.03
				54.5 to 64.4 m. ~25 to 30% sericite content. Local sericite segregation into diffuse domains.	63.9 to 64.0m 8-10% medium grained euhedral pyrite.	C39478		32.0	33.0	1.0		0.6
				64.5 to 66.0 m. decreasing sericite content gives this unit a dark grey appearance.		C39479		33.0	34.0	1.0		0.08
						C39480		34.0	35.0	1.0		< 0.03
						C39481		35.0	36.0	1.0		0.33
						C39482		36.0	37.0	1.0		0.04
						C39483		37.0	38.0	1.0		27.4
						C39484		38.0	39.0	1.0		< 0.03

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	5310687.4		<u>DDH: N17-14</u>		DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	667195.58		Claim No.:	146119	Reflex EZ Shot-	Diamond	Drillhole Su	rvey
Elevation	(m):	293.72		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	llar:	-62		Property:	Norwalk				
Azimuth:		200		Zone:	Carbonate Zone				
Total Dep	oth:	27		Date start:	21-Dec-17				
Core Size	:	HQ		Date finish:	16-Jan-18				
Remarks		Core stored	l at 100 Mills Dr, Wawa, ON POS 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Casing:	Left in hole
Cap:	Screw-on

Сар:	GEOL	OGY			Mineralization	SAMPLE	INTERVAL			WIDTH		
From	То	Maj Rock	Min Rock	Comments	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
						C39485		39.0	40.0	1.0		< 0.03
						C39486		40.0	41.0	1.0		< 0.03
						C39487		41.0	42.0	1.0		< 0.03
						C39488		42.0	43.0	1.0		< 0.03
						C39489		43.0	44.0	1.0		0.42
						C39490	BLK				< 0.	03
						C39491		44.0	45.0	1.0		0.06
						C39492		45.0	46.0	1.0		< 0.03
						C39493		46.0	46.5	0.5		< 0.03
						C39494		46.5	47.5	1.0	< 0.	03
						C39495		47.5	48.5	1.0	0.	07
						C39496		48.5	49.5	1.0	< 0.	03
						C39497		49.5	50.5	1.0	< 0.	03
						C39498		50.5	51.5	1.0	< 0.	03
						C39499		51.5	52.5	1.0	< 0.	03
						C39500		52.5	53.5	1.0	< 0.	03
						C39501		53.5	54.5	1.0	0.	09
						C39502		54.5	55.5	1.0	0.	13
						C39503		55.5	56.5	1.0	0.	07
						C39504		56.5	57.5	1.0	0.	08
						C39505		57.5	58.5	1.0	0.	05
						C39506		58.5	59.5	1.0	0.	09
						C39507		59.5	60.5	1.0	0.	19
						C39508		60.5	61.5	1.0	< 0.	03
						C39509		61.5	62.5	1.0	< 0.	03
						C39510	Oreas 15Pa	a			0.	96
						C39511		62.5	63.5	1.0	0.	43
						C39512		63.5	64.5	1.0	0.	22
						C39513		64.5	65.5	1.0	0.	05
								ļ	1			
									1			
									i			

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	667205		<u>DDH:</u> <u>N18-</u>	<u>15</u>	DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	5310659		Claim No.:	146119	Reflex EZ Shot	Diamond	Drillhole Su	irvey
Elevation	(m):	293.06		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	llar:	-45		Property:	Norwalk				
Azimuth:		200		Zone:	Carbonate Zone				
Total Dep	th:	54		Date start:	16-Jan-18				
Core Size	:	HQ		Date finish:	17-Jan-18				
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Cap:		Screw-on											
	GEOL	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	1.6	Overburden		Casing			C39514		17.4	18.4	1.0	< 0.03	
1.6	16.9	Quartzo- Felo	spathic Mylonite	Fine grained, medium to dark grey color. Comprised predominantly of quartz, lesser plagioclase and accessory chlorite.	Ру	0.5 to 0.8% fine to medium grained subhedral to euhedral pyrite.	C39515		18.4	19.4	1.0	< 0.03	
				Up to 8% mm-scale quartz porphyroclasts. Fine mylonitic foliation @ 60° to core axis.			C39516		19.4	20.4	1.0	< 0.03	
				MM-scale plagioclase to k-spar fractures occur throughout. Fractures @ various orientation to core axis.			C39517		20.4	21.4	1.0	0.05	
				1.6 to 3.5m. Strongly fractured and broken core with carbonate staining along fractures.			C39518		21.4	22.4	1.0		< 0.03
				5.8 to 6.4 m. Several discontinuous glassy quartz veinlets, mainly at 30 to 60° to core axis.			C39519		22.4	23.4	1.0		0.17
				10.1 to 11.1 m. Numerous k-spar fractures with diffuse k-spar alteration halos.			C39520		23.4	24.5	1.1		0.13
				13.3 to 16.9 m. Increasing plagioclase/sericite content with local segregation of sericite into diffuse domains.			C39521	BLK				< 0.03	
			Sericite schist	14.6 to 14.9 m. Sericite schist with 5-8 % quartz porphyroclasts. Locally minor epidote(?)			C39522		24.5	25.5	1.0	< 0.03	
				15.8 to 19.9 m. 25 to 30 % sub-mm-scale carbonate porphyroclasts.			C39523		25.5	26.5	1.0	< 0.03	
							C39524		26.5	27.5	1.0	< 0.03	
16.9	21.4	Quartz- Serio	ite Schist	Fine grained, light to medium grey color. Comprised mainly of sericite & quartz. 15 to 20% chlorite and actinolite(?).	Py	0.8 to 1% subhedral pyrite along foliation planes .	C39525		27.5	28.5	1.0	< 0.03	
				Gradational upper contact. Contains ~20 to 40 % foliation parallel quartz veins with dull grey color.			C39526		43.5	44.1	0.6	< 0.03	
				Foliation 60 to 70° to core axis. Segregation of sericite into distinct domains.			C39527		45.0	45.8	0.8	< 0.03	
				17.4 to 19.0 m. ~25 % mm-scale carbonate porphyroblasts.									
				20.9 m 5 cm quartz-carbonate vein @ 40° to core axis. Vein is x-cutting foliation.									
21.4	24.5	Marble (RCZ		Medium grained crystalline carbonate. White to light grey color. Lacks penetrative fabric but has brecciated appearance.	Ру	Trace to 0.5% pyrite, disseminated							
				Sharp upper contact @ 65° to core axis. Lower contact appears to be gradational.									
				2 to 4 % glassy quartz veinlets @ 15 to 30° to core axis. 3 to 4 % glassy quartz in the matrix.									
				21.5 to 21.7 Sugary quartz vein @ 20° to core axis									
				22.4 to 22.9 m. Sugary quartz vein @ 10 to 20° to core axis.									
				23.0 to 23.4 m. Sugary quartz vein @ 5 to 10° to core axis.									
			Sericite Schist	24.0 to 24.2. Sericite schist @ 60° to core axis									
24.5	54.0	Quartzo- Felo	Ispathic Mylonite	Fine grained, medium to dark grey color. Comprised predominantly of quartz, plagioclase and accessory chlorite. Locally	Ру	0.5 to 0.8% fine to medium grained subhedral to euhedral pyrite throug	ghout.						
				up to 8 % mm-scale quartz porphyroclasts with asymmetric tails (sigma-type). Fine mylonitic foliation @ 60° to core axis.									
				Minor MM-scale plagioclase fractures occur throughout. Locally mm to cm scale offsets along fractures.									
				Local segregation of sericite into diffuse domains.									
			Sericite Schist	24.5 to 25.3 m. Sericite schist. Becomes gradually more quartz rich towards 28.5 m.									
				26.9 to 28.4 m. Several mm- to sub-cm-scale carbonate-quartz veinlets x-cutting foliation. Mainly @ 30 to 40° to core axis.									
				26.6 to 26.9. m. 20 to 30 % sub-mm scale carbonate porphyroblasts.									
				32.7 to 46.4 m. Abundant k-spar to plagioclase fractures with cm- to dm-scale kspar to plagioclase alteration halos									
				42.4 to 42.9. Intense k-spar alteration. Dike like appearance. Some open-space texture. Strongly brecciated.									
				43.5 to 44.1 m. Quartz-carb alteration zone. Several highly irregular shaped quartz-carbonate veins. Wall-rock has a strongly bleached appear	Py	43.5 to 44. m. 5 to 10% subhedral to euhedral pyrite, disseminated.							
						Locally thin mm-scale seams of semi-massive pyrite.							

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	667205		<u>DDH: N18-15</u>		DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	5310659		Claim No.:	146119	Reflex EZ Shot-	Diamond	Drillhole Su	rvey
Elevation	(m):	293.06		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	llar:	-45		Property:	Norwalk				
Azimuth:		200		Zone:	Carbonate Zone				
Total Dep	oth:	54		Date start:	16-Jan-18				
Core Size):	HQ		Date finish:	17-Jan-18				
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Cap:

Screw-on

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL	w	IDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
				45.3 to 45.7 m. Quartz-carb-kspar alteration zone. Several highly irregular shaped quartz-carbonate to carbonate-quartz veins. Wall-rock has a structure of the several highly irregular shaped quartz-carbonate to carbonate-quartz veins.	ongly bleached	43.3 to 45.7 m. 5 to 8% fine to coarse grained subhedral to euhedral	pyrite,						
						disseminated.							
			Lamprophyre	48.2 to 49.0 m. Lamprophyre dike @ 30 to 40° to core axis									
				49.8 to 54 m. 2 to 3% cm-scale carbonate-quartz veinlets x-cutting foliation. Mainly @ 30 to 40° to core axis.									
				· · · · · · · · · · · · · · · · · · ·									
									1				

			RT Minerals Corp DIAMOND DRILL CORE LOG					
υтм	Northing	667205		<u>DDH:</u> <u>N18-16</u>		DIAMOND DRIL	L CORE L	OG
(Nad83)	Easting	5310659		Claim No.:	146119	Reflex EZ Shot-	Diamond	Drillhole Survey
Elevation	(m):	293.22		Unit Key:	41N15K359	Depth	Dip	Azimuth
Dip at Col	llar:	-55		Property:	Norwalk			
Azimuth:		200		Zone:	Carbonate Zone			
Total Dep	th:	33		Date start:	17-Jan-18			
Core Size	:	HQ		Date finish:	17-Jan-18			
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing			
Casing:		Left in hole		Logged by:	Philip Escher			

Cap:

Screw-on

GEOLOGY

From	То	Maj Rock Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то
0.0	1.6	Overburden	Casing			C39528		19.4	20.4
1.6	17.9	Quartzo-Feldspathic Mylonite	Fine grained, medium to dark grey color. Comprised predominantly of quartz and lesser plagioclase. Locally up to 8 % sub-mm-scale quartz	Ру	0.5 to 0.8% fine to medium grained subhedral to euhedral pyrite.	C39529		20.4	21.4
			porphyroclasts. Fine mylonitic foliation @ 60 to 70° to core axis.			C39530	Oreas 18Pa		
			Minor mm-scale plagioclase fractures occur throughout.			C39531		21.4	22.4
			1.6 to 4.0 m. Strongly fractured and broken core. Locally carbonate staining along fractures.			C39532		22.4	23.4
			14.4 to 15.0 m. Increasing sericite content with local segregation of sericite into distinct domains.			C39533		23.4	24.4
		Sericite Schis	15.9 to 16.2. Sericite schist with minor quartz porphyroclasts.			C39534		24.4	25.4
			16.3 m. 5 cm vein of crystalline carbonate.			C39535		25.4	26.4
			18.0 to 20.3 m. 25 to 30% sub-mm scale carbonate porphyroclasts.			C39536		26.4	27.4
			16.8 to 17.9 m. Gradual increase in sericite content and segregation of sericite into relatively distinct domains.			C39537		27.4	28.4
17.9	22.4	Quartz-Sericite Schist	Fine grained, light to medium grey color. Comprised mainly of quartz, sericite and locally accessory chlorite and actinolite(?).	Ру	0.8 to 1% subhedral pyrite along foliation planes.				
			Gradational upper contact. Contains up 20 to 30 % foliation parallel quartz veins. Veins are dull grey in color.						
			Foliation @ 70° to core axis. Distinct segregation of sericite and quartz into relatively distinct domains.						
			18.0 to 20.3 m. ~25 % mm-scale carbonate porphyroblasts.						
22.4	26.4	Marble (RCZ)	Medium grained crystalline carbonate. White to light grey color. Brecciated appearance.	Py	Trace to 0.5% pyrite, disseminated.				
			Sharp upper contact @ 70 to 75° to core axis. Sharp lower contact @ 30° to core axis.						
			2 to 4 % glassy quartz veinlets @ 15 to 30° to core axis. 3 to 4% glassy quartz in matrix.						
			22.4 m. 2 cm sugary quartz vein @ 20° to core axis. Vein cuts across contact						
			22.7 m. 2 cm-scale sugary quartz veins @ 30° to core axis.			L	<u> </u>	ļ!	<u> </u>
			23.7 m. Cm-scale sugary quartz vein @ 30° to core axis.						
	1				1	1	1	1	1

									4	
				23.7 m. Cm-scale sugary quartz vein @ 30° to core axis.						
				24.0 to 26.0 m. Multiple sugary cm-scale quartz veins spaced ~10 to 20 cm apart. Veins @ 30° to core axis. Locally veins contain tourmalin	e					
			Sericite Schis	26.1 to 26.2. Sericite schist @ 50° to core axis						
26.4	27.1	Sericite Schist		Sericite Schist. Strongly crenulated.						
27.1	33.0	Quartzo-Feldsp	athic Mylonite	Fine grained, medium to dark grey color. Comprised predominantly of quartz, plagioclase. Up to 2 to 4% mm-scale quartz	Py	0.5 to 0.8% fine to medium grained subhedral to euhedral pyrite through	ighout.			
				porphyroclasts. Fine mylonitic foliation @ 60° to core axis.						
				Minor carb-quartz veinlets @ 60° to core axis.						
				28.0 to 31.0 m. 25 to 30% carbonate porphyroblasts.						
				31.1 to 33.0 m. Plage/ kspar alteration zone.						
									1	
									· · · · · · · · · · · · · · · · · · ·	

INTERVAL

WIDTH

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Au (g/t) FA-GRA

< 0.03 < 0.03

3.28

< 0.03

< 0.03

0.03

Au (g/t) FA-MeT (Weighted Average)

0.06

< 0.03

< 0.03

< 0.03

SAMPLE

Mineralization

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	667204		DDH:	<u>N18-17</u>	DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	5310658		Claim No.:	146119	Reflex EZ Shot	- Diamond	Drillhole Su	rvey
Elevation	(m):	293.24		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	llar:	-80		Property:	Norwalk				
Azimuth:		200		Zone:	Carbonate Zone				
Total Dep	th:	48		Date start:	17-Jan-18				
Core Size	:	HQ		Date finish:	18-Jan-18				
Remarks:		Core stored	at 100 Mills Dr, Wawa, ON P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Cap:		Screw-on											
	GEOL	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	2.0	Overburden		Casing			C39538		21.3	22.3	1.0	< 0.03	
2.0	20.5	Quartzo- Feld	spathic Mylonite	Fine grained, medium to dark grey color. Comprised predominantly of quartz and lesser plagioclase. Locally up to 2 to 3 sub-	Ру	Trace to 0.5% fine grained sulfides, disseminated.	C39539		22.3	23.3	1.0	< 0.03	
				mm-scale quartz porphyroclasts. Locally porphyroclasts have asymmetric tails (sigma-type). Fine mylonitic foliation @ 40° to core axis.			C39540		23.3	24.3	1.0	< 0.03	
				Minor MM-scale plagioclase fractures occur throughout. Locally mm- to cm-scale offsets along fractures.			C39541		24.3	25.3	1.0	< 0.03	
				18.0 to 20.5 m. several mm-scale carb-quartz veinlets @ 70° to core axis. Veinlets x-cut foliation.			C39542		25.3	26.3	1.0	< 0.03	
20.5	30.3	Quartz- Serici	te Schist	Fine grained, light to creamy grey. Comprised mainly of quartz and sericite. Penetrative foliation	Ру	0.5 to locally up to 1% subhedral to euhedral sulfides.	C39543		26.3	27.3	1.0	0.1	
				@ 40° to core axis. Banded appearance due to segregation of sericite into distinct domains. Locally moderate to strong epidote(?).			C39544		27.3	28.3	1.0	0.07	
				20 to up to 50% foliation parallel quartz veins with dull grey color and laminated appearance. Gradational upper contact.			C39545		28.3	29.3	1.0	< 0.03	
				21.0 to 24.0 m. Moderate to strong sericite after plagioclase.			C39546		29.3	30.3	1.0	< 0.03	
				22.8 m. 8 cm wide sugary quartz-carbonate vein. @ 60° to core axis. Vein x-cuts foliation.			C39547		30.3	31.3	1.0		< 0.03
							C39548		31.3	32.3	1.0		< 0.03
30.3	34.7	Marble (RCZ)		Medium grained crystalline carbonate. White to light grey color. Lacks penetrative fabric but has brecciated appearance.	Py	Trace amounts to locally up to 1% subhedral pyrite.	C39549		32.3	33.3	1.0		0.4
				Sharp upper contact @ 40° to core axis. Sharp lower contact @ 50° to core axis.			C39550	Oreas 18Pa				3.63	
				1-2 % mm-scale glassy quartz veinlets.			C39551		33.3	34.3	1.0		0.17
							C39552		34.3	34.7	0.4		1.99
			Sericite schist	30.6 to 30.8 m. Sericite schist @ 30° to core axis.			C39553		34.7	35.7	1.0	0.07	
				31.0 m. 14 cm Sugary quartz vein			C39554		35.7	36.7	1.0	< 0.03	
				34.5 m. Two cm-scale sugary quartz- tourmaline veins.			C39555		36.7	37.7	1.0	< 0.03	
				34.5 m. 15 cm sugary quartz vein.			C39556		37.7	38.7	1.0	< 0.03	
				34.6 m. 10 cm sugary quartz vein near contact.			C39557		38.7	39.7	1.0	< 0.03	
				Veins mainly @ 50 to 60° to core axis.			C39558		39.7	40.7	1.0	0.23	
34.7	35.8	Sericite Schis	t	Fine grained, light green. Comprised predominantly of sericite. 2 to 3% mm-scale quartz porphyroclasts. Penetrative foliation @ 45 to 55°			C39559		40.7	41.7	1.0	< 0.03	
				to core axis. Gradational lower contact.							 		
				35.4 m. Several cm-scale carbonate veins parallel to foliation.							 		
											 		
35.8	48.0	Quartzo- Feld	spathic Mylonite	Fine grained, light grey to medium grey. Comprised of approximately equal proportions of quartz and plagioclase. 2 to 4%	Py	Trace to 0.5% fine grained sulfides, disseminated.							
				quartz porphyroclasts. Segregation sericite into diffuse domains. Mylonitic foliation to schistose foliation @ 30 to 40° to core axis.							\vdash		
				39.2 to 42.0. ~20 to 25% sub-mm to mm-scale carbonate porphyroblasts throughout.							\vdash		
				40.0 to 45.5 m. 2- 3% mm-scale carb-quartz veinlets x-cutting foliation. Mainly @ 60 to 80° to core axis.							\vdash		
				45.3 to 48.0 m. Increasing sericite content (60 to 65%) and more schistose foliation.							\vdash		
											$ \downarrow $		
											$ \downarrow $		
											$ \downarrow $		
											$ \longrightarrow $		
											$ \longrightarrow $		
			1								i l	ļ	

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	5310641.2		DDH:	<u>N18-18</u>	DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	667156.58		Claim No.:	146119	Reflex EZ Shot	- Diamond	Drillhole Su	rvey
Elevation	(m):	288.17		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	llar:	-65		Property:	Norwalk				
Azimuth:		200		Zone:	Carbonate Zone				
Total Dep	th:	75		Date start:	18-Jan-18				
Core Size		HQ		Date finish:	19-Jan-18				
Remarks:		Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Fine grained, light green. Contains 2-4% quartz porphyroclasts. Porphyroblasts locally have asymmetric tails. 2-3% quartz veins sub-parallel to foliation.

59.60 63.80 Sericite Schist

Cap:		Screw-on											
	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.00	17.30	Overburden		Casing			C39560		48.2	49.2	1.0	< 0.03	
17.30	46.70	Quartzo-Felds	pathic Mylonite	Fine grained, dark grey color. Comprised mainly of quartz, plagioclase and accessory chlorite. Porphyroclasts absent.	Py	1 to locally up to 2% fine to medium grained subhedral to euhedral py	/ri C39561		49.2	50.2	1.0	< 0.03	
				Fine continuous mylonitic foliation to schistose foliation @ 40 to 50° to core axis. Minor plage to kspar fractures throughout.		mainly along foliation planes. Occasional quartz in pressure shadows	C39562		50.2	51.2	1.0	< 0.03	
				1-3% sub-cm carb-quartz veins @ 70 to 90° to c.a.			C39563		51.2	52.2	1.0		< 0.03
				17.3 to 31.8 m. Segregation of plage/ sericite into relatively distinct domains, which results in banded appearance.			C39564		52.2	53.2	1.0		1.44
				17.3 to 31.8 m. 2-4% mm- to sub-cm scale carbonate-quartz veinlets mainly @ 60 to 80° to core axis. X-cut foliation as well as sugary quartz veinlets.			C39565		53.2	54.2	1.0		< 0.03
				17.3 to 24.0. Banding occurs on the cm-scale and becomes progressively finer towards 31.0 m.			C39566		54.2	55.2	1.0		< 0.03
				21.35 m. Cm scale sugary quartz vein @ 30° to core axis, sub-parallel to foliation. Vein X-cut by carb-quartz veinlet.			C39567		55.2	56.2	1.0		< 0.03
				31.0 to 36.0 m. Abundant mm-scale plagioclase to k-spar veinlets with sub-cm alteration halo @ various orientations to core axis.			C39568		56.2	57.2	1.0		< 0.03
							C39569		57.2	58.2	1.0		< 0.03
			Lamprophyre	31.8 to 32.7m. Lamprophyre @ 40° to core axis.			C39570	BLK				< 0.03	
							C39571		58.2	59.2	1.0		0.03
				42.0 to 49.9 m. Segregation of sericite into relatively distinct domains. Banded on sub-cm to cm-scale.			C39572		59.2	59.6	0.4		0.06
				45.3 to 47.70 m. 1 to 3% sub-cm-scale carb-quartz veinlets x-cutting foliation			C39573		59.6	60.6	1.0	< 0.03	
				45.9 m. Cm-scale quartz vein with chloritic margins @ 50° to core axis. Veins x-cut by carb-quartz veinlet.			C39574		60.6	61.6	1.0	< 0.03	
							C39575		61.6	62.6	1.0	< 0.03	
46.70	51.20	Quartz-Sericite	Schist	Fine grained, light to creamy grey. Comprised mainly of quartz and lesser sericite. Schistose foliation. Segregation of sericite into distinct domains.	Py, Mo	48.0 to 49.2 m. Up to 8% fine grained pyrite disseminated. Locally up	t C39576		62.6	63.6	1.0	< 0.03	
				47.5 to 49.9 m. Up to 20% mm- scale carbonate porphyroblasts.		coarse grained euhedral pyrite.	C39577		69.9	70.3	0.4	< 0.03	
				48.2 to 50.2 m. 15 to 25% dull white to grey foliation parallel quartz veins.		Locally trace amounts of molybdenum	C39578		74.4	74.7	0.3	< 0.03	
				49.2 to 51.2 m. Increasing sericite and lesser quartz. 3-5% dull grey foliation parallel quartz veins.									
51.20	59.60	Marble (RCZ)		Medium grained crystalline carbonate. White to light grey color. Brecciated appearance.	Ру	trace to 0.8% pyrite, disseminated.							
				Sharp upper contact@ 40° to core axis. Lower contact obscured by broken core.									
				2 to 5 % glassy quartz veinlets @ 30 to 40° core axis.									
			Sericite Schist	51.4 to 51.8 m. Sericite schist. Upper contact @ 20° to core axis. Lower contact @ 50° to core axis.									
				518 to 54.0 m. Relatively homogenous grey color. 2-3% glassy quartz veinlets.									
				54.0 to 55.0 m and 55.1 to 55.2 m. Dull grey quartz veins @ 40° to c.a. Laminated appearance with minor sericite laminae.									
			Sericite Schist	57.7 to 58.1 m. Light green sericite schist with 2-3% quartz porphyroclasts. 2 sub-cm-scale quartz veins x-cutting foliation.									
				51.9 m. 10 cm sugary quartz vein @ 50° to core axis.									
				54.9 m. 7 cm sugary quartz tourmaline vein @ 55° to core axis.									
				55.8 m. Two 2 cm quartz tourmaline vein									
				56.0 m. 10 cm sugary quartz tourmaline vein at 30° to core axis.									
				56.5 m. 1 to 5 cm sugary quartz tourmaline vein @ 30 to 40° to core axis.									
				59.0 m. 20 cm sugary quartz tourmaline vein									
				59.4 m. 6 cm quartz tourmaline vein.									
				1									
1	1	1	1		1		1	1	1	1	1		1

Py

0.5 to 1 % fine grained subhedral sulfides, disseminated

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	5310641.2		DDH:	<u>N18-18</u>	DIAMOND DRI	L CORE L	.OG	
(Nad83)	Easting	667156.58		Claim No.:	146119	Reflex EZ Shot	- Diamond	Drillhole Sur	vey
Elevatio	n (m):	288.17		Unit Key:	41N15K359	Depth	Dip	Azimuth	
Dip at Co	ollar:	-65		Property:	Norwalk				
Azimuth	:	200		Zone:	Carbonate Zone				
Total De	pth:	75		Date start:	18-Jan-18				
Core Siz	e:	HQ		Date finish:	19-Jan-18				
Remarks	:	Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				
Cap:		Screw-on							

Cap:		Screw-on											
	GEOLO	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	1	
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
				60.9 to 62.4 m. Increasing chlorite content (5-10%). Segregation of chlorite into diffuse domains.									
63.8	64.4	Quartz-Sericit	e Schist	Banded appearance due to segregation of sericite into relatively distinct domains. Gradational upper and lower contacts.									
64.40	69.90	Quartzo-Felds	pathic Mylonite	Fine grained, green to dark grey color. Comprised mainly of quartz, plagioclase and accessory chlorite. ~1% quartz porphyroclasts. Gradational	Ру	0.8 to 1% fine grained subhedral to euhedral sulfides				<u> </u>			
				upper contact. Fine continuous mylonitic foliation @ 40 to 50° to core axis. Minor plage to kspar fractures throughout.						!		L	
				65.5 to 68.5 m. Numerous mm-scale carb-quartz veinlets @ 40 to 50° to core axis.						'		 	
				Cm-scale quartz veins @ 64.9, 67.1. 69.4 m and 69.5 m. Veins sub-parallel to foliation.						ļ'	[]	 	
69.90	75.00	Meta-Gabbro(?)	Fine to medium grained, dark green. Comprised of 50 to 70% chlorite and plagioclase.						ļ'	ļ]	 	
				Upper contact is sharp @ 40° to core axis.						ļ'	ļ]	 	
				69.9 to 70.2 m. Very fine grained. Penetrative foliation @ 40° to core axis. Several cm-scale deformed quartz-carb veins.						ļ!	\vdash	 	
				70.2 to 72.0 m. Medium grained with coarse foliation @ 60° to core axis						ļ!	\vdash	 	
				72.0 73.9 m. Medium grained. Lacks penetrative fabric.						<u> </u>	\vdash	l	
				73.9 to 74.5 m. Medium grained with coarse foliation @ 60° to core axis						<u> </u>	\vdash	 	
				74.5 to 74.70 m. Numerous deformed quartz veins sub-parallel to foliation.						ļ'	└─── ┘	t	
										'	├ ────	<u> </u>	
										'	├ ────	<u> </u>	
										'	<u>├</u> ───┤	<u> </u>	
										'	───┦	t	
											<u>├</u> ──┤		
									+				
											<u>├</u> ───┤		
											<u>├</u> ──┤		
									-		<u>├</u>		
											<u>├</u>		
									-		<u>├</u>		
									-			(
												1	
												ĺ	
												1	
												Í	
												1	
			RT Minerals Corp DIAMOND DRILL CORE LOG										
-----------	----------	--------------	---	--------------	----------------	-----------------	----------	------------------					
UTM	Northing	5310642		DDH: N1	8-19	DIAMOND DRIL	L CORE L	OG					
(Nad83)	Easting	667157.11		Claim No.:	146119	Reflex EZ Shot-	Diamond	Drillhole Survey					
Elevation	(m):	288.14		Unit Key:	41N15K359	Depth	Dip	Azimuth					
Dip at Co	ollar:	-45		Property:	Norwalk								
Azimuth:		200		Zone:	Carbonate Zone								
Total Dep	oth:	63		Date start:	20-Jan-18								
Core Size	e:	HQ		Date finish:	21-Jan-18								
Remarks	:	Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing								
Casing:		Left in hole		Logged by:	Philip Escher								
Cap:		Screw-on											

Cap:		Screw-on										
	GEOL	OGY			Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	17.3	Overburden	Casing	Py	2 to 3% fine to medium grained subhedral to euhedral pyrite mainly a	C39579		43.1	44.1	1.0	0.03	
18.5	49.9	Quartzo-Feldspathic Mylonite to Schist	Fine grained, dark grey color. Comprised mainly of quartz plagioclase and accessory chlorite. Porphyroclasts absent.		foliation planes. Locally clusters of up to 5% pyrite	C39580		44.1	45.1	1.0		0.5
			Fine continuous mylonitic foliation @ 60° to core axis. Minor plage to kspar fractures throughout.		1% very coarse euhedral sulfides locally.	C39581		45.1	46.1	1.0		0.2
			18.5 to 28.4 m. Segregation of sericite into relatively distinct domains.			C39582		46.1	47.1	1.0		< 0.0
			1 % carb-quartz veinlets throughout, mainly @ 40 to 70° to core axis.			C39583		47.1	48.1	1.0		< 0.0
			31.3 to 33.2 m. Strongly fractured and broken core.			C39584		48.1	49.1	1.0		2.6
		Lamprophyre	30.9 to 40.2 m. Lamprophyre @ 50° to core axis.			C39585		49.1	50.1	1.0		< 0.0
		Lamprophyre	32.0 to 33.1 m. Lamprophyre. Contacts obscured by strongly fractured and broken core.			C39586		50.1	51.1	1.0		< 0.0
			36.4 to 43.7 m. Segregation of sericite into relatively distinct domains.			C39587		51.1	52.1	1.0		0.1
			36.9 m. Deformed 1cm quartz vein.			C39588		52.1	53.1	1.0		< 0.0
			39.2 m. 3 cm quartz vein sub-parallel to foliation.			C39589		53.1	54.7	1.6		< 0.0
39.6	44.1	Quartz-Sericite Schist	Light grey color. 20 to 30% dull grey quartz veins, parallel to foliation.	Ру	43.6 to 44.1 m. 8 to 10 % euhedral to subhedral sulfides, disseminate	C39590	Oreas 50c				0.88	
44.1	54.7	Marble (RCZ)	Medium grained crystalline carbonate. White to light grey color. ~ 1 to 2 % mm-scale glassy quartz veinlets @ 30 to 40° to core axis.	Py	Trace to 0.5% disseminated pyrite.	C39591		54.7	55.2	0.5	< 0.03	
			44.2 to 44.4 m. Sugary quartz vein @ 10 to 20° to core axis.									
			44.5 to 44.8 m. Sugary quartz vein @ 10° to core axis.	_								
			45.0 to 45.3 m. strongly fractured and broken core. K-spar along fractures.									
		Quartz-Sericite Schist	45.7 to 45.9 m. Penetrative fabric @ 60° to core axis. Sharp upper contact @ 40° to core axis. Sharp lower contact @ 60° to core axis.	Py	45.7 to 46.1 m. 1 to 2% fine grained euhedral to subhedral sulfides,							
			20 to 30% dull white to grey foliation parallel quart veinlets.		disseminated.							
		Quartz-Sericite Schist	46.1 to 47.3 m. Quart-Sericite Schist with 15 to 25% dull grey foliation parallel quartz veins.	Py	46.1 to 47.3 m. 3 to 5% subhedral sulfides associated with veins.							
		Sericite schist	49.2 to 49.6m. Sharp upper and lower contact @ 60° to core axis. 25 to 35% dull grey foliation parallel quartz veins.									
		Sericite Schist	50.5 to 50.7m . Sharp upper and lower contacts @ 50 to 60° to core axis.									
			50.1 m. 3 cm quartz tourmaline vein @ 40° to core axis.									
			51.1 to 54.1. Quartz tourmaline vein @ 20 to 30° to core axis.									
			52.5 m. 2 cm sugary quartz vein @ 20° to core axis.									
			54.0 m. 3 cm quartz vein @ 20° to core axis.	Mo	54.0 m. Trace moly in quartz vein.							
53.1	54.7	Sericite Schist	Fine grained, lime green. 3-4% quartz porphyroclasts.									
54.7	63.0	Quartz-Sericite Schist to Quartzo-Feldspathic	Fine grained, dark grey color to greenish color.1 to 3% quartz porphyroclasts.									
			Foliation @ 60° to core axis. Moderate amount of plage/ kspar fractures with sub-cm scale alteration halos throughout.									
			Segregation of sericite into diffuse domains.									
		Lamprophyre dike	58.2 to 56.5 m. Lamprophyre. Upper contact @ 60° to core axis. Lower contact obscured by broken core.									
		Gabbroic dike	58.5 to 59.0 m. Fine grained meta- gabbroic(?) dike. Upper and lower contact @ ~ 40° to core axis. Foliation @ 50 to 60° to core axis. Foliation	ation defined by chl	orite.							
				_								
	+	+ +						+				
	+	+ +		-			+	+				
	-	1 1						+				
	-							+		-		
	-						-	+				

			RT Minerals Corp DIAMOND DRILL CORE LOG					
UTM	Northing	5310640.4		DDH:	<u>N18-20</u>	DIAMOND DRIL	L CORE L	OG
(Nad83)	Easting	667156.35		Claim No.:	146119	Reflex EZ Shot	- Diamond	Drillhole Survey
Elevatio	n (m):	288.02		Unit Key:	41N15K359	Depth	Dip	Azimuth
Dip at Co	ollar:	-85		Property:	Norwalk			
Azimuth		200		Zone:	Carbonate Zone			
Total De	pth:	93		Date start:	22-Jan-18			
Core Siz	e:	HQ		Date finish:	24-Jan-18			
Remarks	:	Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing			
Casing:		Left in hole		Logged by:	Philip Escher			
Cap:		Screw-on						

	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	14.7	Overburden		Casing			C39592		21.5	22.0	0.5	< 0.03	
14.7	30.7	Chlorite Schis	t	Medium grained, dark green color. Comprised mainly of chlorite and subordinate amounts of plagioclase.	Ру	0.5 to 0.8 % subhedral to euhedral sulfides	C39593		27.1	28.0	0.9	< 0.03	
				Relatively coarse penetrative foliation @ 20 to 30° to core axis. Locally segregation of plagioclase into distinct mm-scale domains.		21.7 to 22 m. up to 5% euhedral to subhedral sulfides. Spatially associ	C39594		29.1	30.0	0.9	< 0.03	
				14.7 to 18.0 m. Strongly fractured and broken core.		with quartz veining.	C39595		30.0	30.7	0.7	< 0.03	
				21.3 to 21.9. Strongly fractured and broken core			C39596		45.0	46.0	1.0	< 0.03	
				22.0 m. Cm-scale boudinaged quartz vein sub-parallel to foliation			C39597		46.0	47.0	1.0	< 0.03	
				27. 2 and 27.3. Cm-scale quartz-carb vein x-cutting foliation			C39598		47.8	48.2	0.4	< 0.03	
				27.5 to 27.9 m. Several cm-scale boudinaged quartz veins sub-parallel to foliation.			C39599		52.4	53.2	0.8	< 0.03	
				29.1 to 30.7 m. Contorted foliation @ 0 to 20° to core axis. Several cm-scale boudinaged to lensoid shaped quartz veins parallel to subparallel to foliation.		27.5 to 27.9 m. 2 to 3% subhedral to euhedral pyrite. Spatially associat	C39600		69.7	70.7	1.0	< 0.03	
				30.4 m. Cm-scale quartz vein x-cutting foliation.		quartz veining	C39601		70.7	71.7	1.0	< 0.03	
							C39602		71.7	72.7	1.0	< 0.03	
30.7	69.7	Quartz-Sericite	e Schist	Fine grained, dark grey to greenish color. Schistose to mylonitic fabric @ 30° to 40° to core axis. Comprised mainly of quartz, plagioclase/sericite and minor of	Py	2 to 3% subhedral pyrite mainly along foliation planes.	C39603		72.7	73.7	1.0	0.13	
				Segregation of sericite into relatively distinct domains gives the unit a banded appearance. 1-3% sub-scale carb-quartz veinlets x-cutting foliation throughout	t	Locally asymmetric fringes around pyrite grains.	C39604		73.7	74.1	0.4	0.63	
				36.4 to 40.8m. Several cm-scale quartz veins sub-parallel to foliation, mainly @ 20° to 40° to core axis.			C39605		74.1	75.1	1.0		< 0.0
				44.9 to 47.2 m. Foliation @ 10 to 20° to core axis.			C39606		75.1	76.1	1.0		< 0.0
				45.0 m. 5 cm quartz-carbonate vein x cutting foliation @ 70° to core axis.			C39607		76.1	77.1	1.0		0.1
				46.3 m. 5 cm quartz-carbonate vein x-cutting foliation.			C39608		77.1	78.1	1.0		< 0.0
				46.2 to 47.1 m. Cm-scale quartz-tourmaline vein parallel to foliation. (10 to 20° to core axis)	Ру	46.3 to 48.1 m. 3 to 5% subhedral pyrite, disseminated	C39609		78.1	78.7	0.6		0.1
				47.8 to 48.1 m. Cm-scale quartz vein subparallel to foliation . (@ 20 to 30° to core axis).			C39610	BLK				< 0.03	
				52.4 to 52.8 m. Quartz carbonate vein @ 10 to 20° to core axis. (sub-parallel to foliation)			C39611		78.7	79.7	1.0	< 0.03	
				53.1 m. 3.5 cm quartz-carbonate vein @ 70° to core axis (x-cutting foliation).			C39612		79.7	80.7	1.0	0.12	
			Lamprophyre	67.4 to 68.0 m. Lamprophyre @ 20° to core axis.			C39613		80.7	81.7	1.0	< 0.03	
				68.8 to 69.8 m. Numerous mm-scale plage/ kspar fractures @ various orientation to core axis.									
				68.8 to 70.70 m .~15 to 20% mm-scale carbonate porphyroclasts.									
69.7	74.1	Sericite Schist	t	Fine grained, light grey color to very light greenish color. 30 to 70% dull grey foliation parallel quartz veins separated by sericitic laminae.	Ру	5 to 10% fine to medium grained euhedral to subhedral sulfides associa	ated with						
				69.7 to 71.7 m. Comprised mainly of dull grey laminated quartz veins.		quartz-rich domains.							
				73.8 to 74.1. Comprised predominantly of dull grey laminated quartz veins.									
				72.7 to 74.1 m. ~2 % mm-scale quartz veins at steep angles to core axis.									
74.1	78.7	Marble (RCZ)		Medium to coarse grained carbonate. Brecciated appearance. Matrix consists of fine grained calcite and locally quartz.	Ру	Trace amounts of pyrite							
				1-2% mm-scale glassy quartz veins, mainly at 60 to 70° to core axis.									
				Cm-scale sugary quartz veins at 74.2, 74.6, 75.8, 76.0, 76.4, 76.6 and 77.0m. Dm-scale vein @ 76.9m. Veins @ 60 to 70° to core axis.									
				75.3 to 74.4 m. Intercalated with sericite schist.									
				74.3 m. 2.5 cm lamprophyre @ 30° to core axis.									
78.7	81.5	Sericite Schist	t	Fine grained, light green color. Penetrative foliation @ 40° to core axis. Comprised mainly of sericite and 5 to 15% quartz porphyroclasts.	Ру	Trace to 0.8% pyrite							
81.5	93.0	Quartzo-Felds	pathic Mylonite	Very fine grained, bluish-grey color. Mylonitic foliation @ 30 to 40° to core axis. Comprised mainly of quartz lesser amounts of feldspar and 5-8%	Ру	1 to 2% pyrite							
				quartz porphyroclasts.									
				86.80 to 93.0 m. Abundant k-spar fractures with mm- to cm-scale alteration halos.									
										1			

RT Minerals Corp. - DIAMOND DRILL CORE LOG

UTM	Northing	5310675.68			DDH:	<u>N18-21</u>		DIAMOND DRILI	L CORE LC)G
(Nad83)	Easting	667109.11			Claim No.:		336921	Reflex EZ Shot-	Diamond I	Drillhole S
Elevatior	n (m):	289.82			Unit Key:		41N15K358	Depth	Dip	Azimuth
Dip at Co	ollar:	-60			Property:		Norwalk			
Azimuth:		120			Zone:		Carbonate Zone			
Total Dep	pth:	111			Date start:		24-Jan-18			
Core Size	e:	HQ			Date finish:		26-Jan-18			
Remarks	:	Core stored at 1 Michipico	en River Village Rd, Wawa, P0S 1K0		Contractor:		Downing			
Casing:		Left in hole			Logged by:		Philip Escher			

Cap:		Screw-on											
	GEOLO	IGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	10.0	Overburden		Casing.			C39614		42.4	43.4	1.0	< 0.03	
10.0	33.7	Quartzo Feldspathic Mylonite		Core starts at 8.9 m but looks like boulders to 10.0 m.			C39615		43.4	44.4	1.0	< 0.03	
				Fine grained, grey to locally greenish color. Comprised of quartz, feldspar and accessory chlorite. Mylonitic to schistose foliation @ 20			C39616		44.4	45.4	1.0	< 0.03	
				to 30° to core axis. Local segregations of sericite into mm-scale bands. Minor mm-scale k-spar fractures throughout.			C39617		45.4	46.4	1.0	< 0.03	
				10.0 to 28.8 m. Characterized by absence of quartz porphyroclasts.			C39618		46.4	47.4	1.0	< 0.03	
				13.8 to 14.3 m. Lamprophyre dike,			C39619		47.4	48.4	1.0	< 0.03	
				14.3 to 17.5 m. Fine grained mafic dike(?) intercalated with carbonaceous material. Comprised mainly of chlorite. Lacks penetrative fabric.	Ру	3 to 5% subhedral pyrite, disseminated.	C39620		48.4	49.4	1.0	< 0.03	
				28.8 to 33.7 m. 5 to 10% quartz porphyroclasts.			C39621		49.4	50.4	1.0	< 0.03	
33.7	42.0	Quartz-Sericite Schist		Gradational upper contact. Pronounced segregation of sericite into distinct domains. Banded appearance. Foliation @ 30° to core axis.			C39622		50.4	51.2	0.8	< 0.03	
				1-3% carb-quartz veins at steep angles to core axis.			C39623		64.4	64.8	0.4	< 0.03	
			Chlorite Schist	37.1 to 38.3 m. Chlorite schist intercalated with carbonaceous material.			C39624		64.8	65.1	0.3	< 0.03	
							C39625		67.1	67.4	0.3	< 0.03	
42.4	51.2	Chlorite Schist		Fine to medium grained. Dark green color. Sharp upper and lower contact @ 30° to core axis. 3 to 5% cm-scale boudinaged quartz veins	Ру	1 to 2 % fine to medium grained pyrite	C39626		67.4	68.1	0.7	< 0.03	
				to quartz lenses throughout. Lenses and boudins display aspect ratios of ~1:4 (width:length). Veins sub-parallel to foliation @ 30°.			C39627		68.1	68.6	0.5	< 0.03	
51.2	71.7	Quartz-Sericite Schist		Fine grained, greyish green color. Comprised of quartz, sericite and accessory chlorite. Banded appearance due to segregation of sericite.			C39628		70.0	70.4	0.4	< 0.03	
				No porphyroclasts.			C39629		74.6	75.3	0.7		4.26
			Lamprophyre	52.5 to 53.7m Lamprophyre			C39630	Oreas 61Pa			0.0	4.51	
				64.4 to 64.8 m. Coarse foliation. Several cm-scale boudinaged quartz veins sub-parallel to foliation.	Ру	0.5 to 1% pyrite	C39631		75.6	76.1	0.5		< 0.03
				64.8 to 65.1 m. Quartz vein with numerous wall-rock inclusions Upper contact @ 55, lower contact @ 30° to core axis.	PY	0.8% subhedral pyrite in vein.	C39632		76.1	76.7	0.6		< 0.03
				67.1 to 67.5 m & 68.1 to 68.6 m. Crystalline carbonate with 8-10% quartz in glassy veinlets and matrix. Veinlets @ 70 to 90° to core axis	Ру	1 to 3 % subhedral py, disseminated	C39633		77.0	78.0	1.0		< 0.03
				upper and lower contacts @ 45° to core axis.			C39634		78.0	78.5	0.5		< 0.03
			Lamprophyre	71.7 to 74.6 m. Lamprophyre			C39635		78.7	79.7	1.0		< 0.03
74.6	82.2	Quartz Vein		Sugary quartz-tourmaline vein with abundant wall-rock inclusions (locally up to 15%). Where present, wall-rock fragments appear strongly bro	e Py, Mo	Clusters of up to 5% subhedral pyrite. Clusters spatially associated wit	C39636		79.7	80.4	0.7		< 0.03
				Locally clusters of up to 8% carbonate. Lower contact @ 45° to core axis.		wall-rock fragments.	C39637		80.6	81.6	1.0		< 0.03
			Lamprophyre	75.3 to 75.6 m. 76.7 to 77.0, 78.5 to 78.7, 80.4 to 80.6. Lamprophyre dikes, mainly @ 40° to core axis.		Locally 1 to 2% hematite. Locally up to 2% molybdenum in thin mm-so	C39638		81.6	82.2	0.6		< 0.03
						seams.	C39639		82.2	83.2	1.0	< 0.03	
82.2	90.1	Sericite Schist		Fine grained, creamy green to grey. Comprised of mainly sericite and lesser quartz. 5 to 15 % dull grey foliation parallel quartz veins.	Py, Mo	1 to 2% to locally up to 8% pyrite.	C39640		83.2	84.2	1.0	< 0.03	
				Cm-scale quartz veins x-cutting foliation @ 83.4, 84.8, 85.1 and 85.7 and 87.5 and 88.4.		85.8 to 86.0 m. 5% molybdenum in thin seams.	C39641		84.2	85.2	1.0	< 0.03	
				Cm-scale boudinaged quartz veins subparallel to foliation from 85.9 to 86.0 m and @ 88.4m.			C39642		85.2	85.7	0.5	0.33	
				DM-scale boudinaged quartz vein subparallel to foliation @ 89.3 to 89.5 m @ 30° to core axis.			C39643		85.8	86.0	0.2	< 0.03	
			Lamprophyre	86.1 to 86.0 m and 85.7 to 85.8 m. Lamprophyre dike			C39644		86.4	87.4	1.0	< 0.03	
				87.5 to 88.7 m. 70 to 80% dull grey foliation parallel quartz veins.			C39645		87.4	88.4	1.0	< 0.03	
90.1	99.6	Granofelsic Marble (RCZ)		Medium to coarse grained carbonate. White to light grey color. Brecciated appearance. Sharp upper and lower contact @ 40° to core axis.	Py	1 to locally up to 2% pyrite, disseminated.	C39646		88.4	89.3	0.9	< 0.03	
				2 to 3% glassy quartz veinlets @ 70 to 90° to core axis 3 to 5% quartz in matrix.			C39647		89.3	90.1	0.8	< 0.03	
				90.5 to 90.7 m. Dull grey laminated quartz vein @ 30° to core axis.	Py, Mo	90.5 to 90.7 m. 8 to 10% pyrite, disseminated. 5% moly in thin seams.	C39648		90.1	90.9	0.8	< 0.03	
				Cm-scale sugary quartz +/- tourmaline veins @ 90.2, 91.1, 91.7, 91.8, 93.0 93.4, 94.1, 94.3, 96.6, 97.5, 99.5 m.			C39649		90.9	91.9	1.0		< 0.03
				Sugary veins mainly at 50 to 60° to core axis. Some veins @ 30° to core axis.	VG	94.1 m. Cluster of 15 gold grains in quartz tourmaline.	C39650	BLK			0.0	< 0.03	
				97.0 to 98.2 m. Intercalated with dm-scale domains of sericite schist.		Gold in concentrated in tourmaline.	C39651		91.9	92.9	1.0		3.53
96.6	104.5	Sericite Schist		Fine grained, creamy green color. Comprised of mainly of sericite and lesser quartz. 2-3% quartz porphyroclasts.			C39652		92.9	93.9	1.0		0.27
				Penetrative foliation @ 45° to core axis.			C39653		93.9	94.4	0.5		9.49
				99.6 to 100.6 m. 20 to 30 % dull grey laminated quartz veins parallel to foliation.	Py		C39654	1	94.4	95.4	1.0		0.07

CORE LOG

Diamond Drillhole Survey

95.4 96.4 1.0

1.51

C39655

			<u> RT Minerals Corp DIAMOND DRILL CORE LOG</u>						
υтм	Northing	5310675.68		<u>DDH: N18-</u>	<u>21</u>	DIAMOND DRI	L CORE L	OG	
(Nad83)	Easting	667109.11		Claim No.:	336921	Reflex EZ Shot	- Diamond	Drillhole Surve	аy
Elevation	(m):	289.82		Unit Key:	41N15K358	Depth	Dip	Azimuth	
Dip at Co	llar:	-60		Property:	Norwalk				
Azimuth:		120		Zone:	Carbonate Zone				
Total Dep	th:	111		Date start:	24-Jan-18				
Core Size	:	HQ		Date finish:	26-Jan-18				
Remarks:		Core stored at 1 Michipico	en River Village Rd, Wawa, P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Cap:		Screw-on											
	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
104.5	111.0	Quartzo-Feldspathic Mylonite		Fine grained, dark grey. 2-3% quartz porphyroclasts. Mylonitic foliation	Py	0.5 to locally up to 1% PY	C39656		96.4	97.4	1.0		< 0.03
				at 20 to 30° to core axis. Abundant k-spar fractures with sub-cm-scale alteration halos.			C39657		97.4	98.4	1.0		< 0.03
				111.6 to 114 m. Several cm- to dm-scale lamprophyres. Intense network of k-spar fractures @ various orientation to core axis.			C39658		98.4	98.9	0.5		< 0.03
							C39659		98.9	99.6	0.7		< 0.03
							C39660		99.6	100.6	1.0	< 0.03	
							C39661		100.6	101.6	1.0	0.07	
													ļ
	_												
	-												
	+												
													1
													i
													l
													l
													l
					+								
<u> </u>													
		1						1					(

RT Minerals Corp	DIAMOND	DRILL (CORE LOO
------------------	---------	---------	----------

UTM	Northing	5310666.92				DDH:	<u>N18-22</u>		DIAMOND DRIL	CORE LO	JG	
(Nad83)	Easting	667095.45				Claim No.:		336921	Reflex EZ Shot-	Diamond	Drillhole Si	irvey
Elevation	(m):	289.02				Unit Key:		41N15K358	Depth	Dip	Azimuth	
Dip at Co	llar:	-60				Property:		Norwalk				
Azimuth:		120				Zone:		Carbonate Zone				
Total Dep	oth:	129				Date start:		25-Jan-18				
Core Size	:	HQ				Date finish:		27-Jan-18				
Remarks:	:	Core stored at 1 Michipicoten River	Village Rd, Wawa, P0S 1K0			Contractor		Downing				
Caeina		Loft in hole				I odded pv.		Philip Escher				

Casing: Leit in

Cap:		Screw-on		I									
	GEOL	LOGY				Mineralization	SAMPLE	4	INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA Av	/t) FA-MeT /eighted werage)
0.0	10.6	Overburden		Casing			C39662		71.0	71.5	0.5	< 0.03	
10.6	17.3	Quartz-Plagioclase-Chlorite Schist		Core starts @ 10.6 m but looks like boulders to 11.1 m. Fractured and broken core to 21 m.			C39663		71.5	72.0	0.5	< 0.03	
				Fine grained, medium to green. Characterised by up to 3 to 8% cm-scale plage porphyroclasts with aspect ratios of >1:10 and			C39664		72.0	72.5	0.5	< 0.03	
				lesser mm-scale quartz porphyroclasts. Penetrative schistose foliation @ 50° to core axis.			C39665		72.5	73.0	0.5	< 0.03	
			Lamprophyre	13.2 to 14.0 m., Lamprophyre			C39666		73.0	73.5	0.5	< 0.03	
17.3	20.2	Chlorite- Biotite Schist		Fine to medium grained. Black to green color. Comprised of plagioclase biotite and chlorite. Penetrative fabric @ 50° to c.a.			C39667		73.5	74.0	0.5	< 0.03	
							C39668		74.0	74.5	0.5	< 0.03	
20.2	69.4	Quartzo-Feldspathic Mylonite to Schist		Fine grained, steel grey to locally greenish color. Comprised mainly of plagioclase, quartz and accessory chlorite. No quartz porphyroclasts.	Py	Trace to 1% pyrite	C39669		91.0	91.5	0.5	< 0.03	
				Mylonitic foliation mainly @ 20° to 30° to core axis.			C39670	Oreas 61P	ь			4.68	
				3 to 5 % mm-scale k-spar fractures throughout . Fractures at various orientation to core axis.			C39671		91.5	92.5	1.0	< 0.03	
				54.2 to 61.3 m. 5 to 10% guartz porphyroclasts.			C39672		92.5	93.5	1.0	< 0.03	
			Quartz- Sericite Schist	57.7 to 61.3 m. Banded appearance due to segregation of sericite.			C39673		93.5	94.5	1.0	< 0.03	
				61.3 to 62.2 m. Chlorite schist.			C39674		94.5	95.0	0.5	< 0.03	
				62.6 to 68.4. Weakly banded appearance due to segregation of sericite into mm-scale domains.			C39675		95.7	96.7	1.0	< 0.03	
			Lamprophyre	45.4 to 45.9m. Lamprophyre @ 60° to core axis.			C39676		96.7	97.2	0.5	< 0.03	
			Lamprophyre	57.1 to 57.3 m. Lamprophyre @ 30° to core axis.			C39677		97.2	98.2	1.0		< 0.03
68.4	79.6	Chlorite Schist		Medium grained, dark green color. Coarse foliation @ 30° to core axis.	Py	1 to 3% subhedral pyrite	C39678		98.2	99.2	1.0		< 0.03
				72.0 to 74.2 m. Finer grained and fine foliation. 15 to 20% cm-scale boudinaged guartz veins to lenses sub-parallel to foliation @ 30° to core axis.			C39679		99.2	100.2	1.0		< 0.03
				Lenses display aspect ratios of ~1:2.			C39680		100.2	100.7	0.5		< 0.03
79.0	97.2	Quartz- Sericite Schist		Fine grained, grevish green color. Comprised of plagioclase, guartz and accessory chlorite. Banded appearance due to segregation of sericite			C39681		100.7	101.7	1.0		0.04
				into distinct domains. Foliation @ 30 to 40° to core axis.			C39682		101.7	102.7	1.0		< 0.03
			Lamprophyre	80.7 to 81.3 m, 82.9 to 85.3 m, 86.8 to 87.3 m, 90.5 to 91.0 m, Lamprophyres mainly @ 40 to 60° to core axis.			C39683		102.7	103.7	1.0		< 0.03
				91.0 to 91.2 m. Quartz vein @ 45° to core axis. Sugary texture. Contains minor sub-cm wall rock fragments	Pv	2 to 3% medium grained subhedral sulfides in guartz vein.	C39684		103.7	104.7	1.0		0.03
				91.2 to 94.4 m. 5-10 % dull arev foliation parallel quartz veins. 3 to 5 % sub-cm- to cm-scale boudinaged quartz veins subparallel to foliation.	Pv	91.2 to 94.4 m. Clusters of up to 3-5% pyrite near guartz veins	C39685		104.7	105.5	0.8		< 0.03
				Boudinaged veins mainly @ 30° to core axis			C39686		105.5	106.0	0.5		0.41
			Lamprophyre	95.0 to 95.7 m. Lamprophyre dike @ 35° to core axis.			C39687		106.0	107.0	1.0		< 0.03
97.2	100.7	Quartz Vein		White sugary quartz vein with 2 to 3 % wall rock fragments. Upper and lower contact characterized by gradual increase in guartz veining	Pv. Cpv. Mo	2 to 3 % to locally up to 5% sulfides in clusters (pv>> cpv)	C39688		107.0	108.0	1.0		< 0.03
				Vein appears with boundingged and slightly brecciated near contacts. Lower contact is well defined @ 35 th to core axis. Veins near upper	. ,, .,,	Sulfides appear to be associated with wallrock fragments: lesser	C39689		108.0	109.0	1.0		0.21
				contact @ 30° to c.a. 1 to 2 % cm scale x-cutting guartz-carbonate veins @ 80° to core axis.		amounts disseminated within vein material	C39690	Blk	1			< 0.03	
						Trace amounts of moly near contacts	C39691		109.0	109.5	0.5		0.33
100.7	111.0	Sericite Schist		Fine grained, creamy green color, Foliation @ 40° to core axis: local crenulations	Pv. CPY	2 to 4% subhedral pyrite along foliation planes.	C39692		109.5	110.5	1.0		0.11
				3 to 5% mm-scale to cm-scale carb-quartz to quartz-carb vehilets x-cutiting foliation. Veins @ 80 to 90° to core axis	. ,,	Lip to 10 % pyrite and minor amounts of chalcopyrite in x-cutting gua	C39693		110.5	111.5	1.0		< 0.03
				1 % cm-scale bourdingged places up and z veins with weakly precided annearance sub-parallel to foliation. Minor sub-cm scale quartz veins			C39694		111.5	112.2	0.7		< 0.03
				- room care commission grady query query area with meany processes appearance care parameter or instance, minor care on care query many and the standard appearance care parameter or instance, minor care on care query many and the standard appearance care parameter or instance. The standard appearance care parameter or instance care parameter or	VG	105.7 m. One mm-scale Au grain in mm-scale carb-guartz veinlet	C39695	-	112.2	113.2	1.0		30.0
			Quartz- Sericite Schist	100.7 to 102.7 m Commised of annoximately equal proportions of sericite and quartz	10	109.1 m. One mm-scale grain and several pinhead grains pear margi	C39696		113.2	114.2	1.0		< 0.03
			Quartz Sericite Schist	100.3 to 101.7 Comprised of approximately equal proportions of service and quartz		of sub-dm scale quartz vein	C39697		114.2	115.2	1.0		< 0.03
			quarte contene conten	Sub-dimensional entry of the programment of the programment of the second entry of the		or out an odelo quarte von.	C39698	-	115.2	116.2	1.0		< 0.03
				See an ease quarter in commune commune reaction practice quarter vers.	Mo	109 5 to 111 0 3-4% moly in this discontinuous seams	C39699	-	116.2	117.3	1.0		< 0.03
						rooto to This of homoly in ann alcoonanadad odamo.	C39700	<u> </u>	117.7	118.7	1.0		1 17
111.0	125.0	Granofelsic Marble		Medium to coarse grained carbonate. Creamy gray color. Linner contact @ 40° to core avia: lower contact obscured by guartz vain	Pv	0.5 to locally up to 1% pyrite disseminated	C39701		118.7	110.7	0.5		0.07
111.0	120.0	(RCZ)		medium to coarse grained calconate, creanly grey close, opper contact (grey to cue as), tower contact ouscares by qualizivem. Previous de annexerse 2.5% disease quarty within the mediativ and as me-scale valuate. Valuate within the mediate valuate ous of the or to ave	r y	0.5 to locally up to 1% pyrite disseminated	C39701		110.7	120.0	0.5		0.07
		(102)		Discolates appearance. Cryon grassy data them are mark and as microsoft values, for the soft of the soft of the soft.			C39702	+	120.0	121.0	1.0		0.03
				The other than the graning and monogrand gray gray control to a security repair mediates.			C39704	+	121.0	121.6	0.6		2.44
							C30705	+	121.6	122.6	1.0		0.10
			Sericite Schist	In Some quarter commander to the get of 10 King and seg 110.0 dire 113.2 m.			C39706	+	121.0	122.0	1.0		1.12
			Lamprophyre	1134 m Dussale lamonhyre			C30707	+	122.0	120.0	0.0		0.90
			Lamprophyre	117.3 to 117.6 m Lamprophyre @ 25° to core axis			C39708	+	124.5	125.0	0.5		0.14
			Quartzo-Feldenathic Mylonito	110 2 0 111 6 m Engloyen register area oner Mulantin faliation @ 20 to 35° to core avia Cm.ecole scale quest voice	Pv.	2 to 3% pyrite throughout and up to 10% pyrite pear lower contact	C30700	+	124.0	126.0	1.0	< 0.03	0.14
L	1		Lean 20*1 eluspatilio iniylofiite	113.2 to 121.0 m. The granted, groupsh green color, reporting to ination (@ 20 to 35 to core axis, on-scale scale quality vehics	IF Y	12 to 5 % pyrite throughout and up to 10 % pyrite heal lower contact.	033103	4	120.0	120.0	1.0	× 0.03	

		RT Minerals Corp DIAMOND DRILL CORE LOG					
UTM Northing	5310666.92		DDH:	<u>N18-22</u>	DIAMOND DRIL	L CORE LO	G
(Nad83) Easting	667095.45		Claim No.:	336921	Reflex EZ Shot	- Diamond	Drillhole Survey
Elevation (m):	289.02		Unit Key:	41N15K358	Depth	Dip	Azimuth
Dip at Collar:	-60		Property:	Norwalk			
Azimuth:	120		Zone:	Carbonate Zone			
Total Depth:	129		Date start:	25-Jan-18			
Core Size:	HQ		Date finish:	27-Jan-18			
Remarks:	Core stored at 1 Michipicoten River	/illage Rd, Wawa, P0S 1K0	Contractor:	Downing			
Casing:	Left in hole		Logged by:	Philip Escher			

Casing: Left in noie Cap: Screw-on

Cap.	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
				@ 119.5, 119.7, 121.3. Veins mainly @ 80 to 90° to core axis. Minor green mica near lower contact. Lower contact @ 30° to core axis.	VG	119.7 m. Two mm-scale grains of VG in quartz vein	C39710	Rocklabs SK6	2			3.89	
125.0	126.0	Sericite Schist		125.0 to 126.0 m.Fine grained, creamy green color. 5-8% quartz porphyroclasts. Grading into quartzo-feldspathicmylonite near lower contact.			C39711		126.0	127.0	1.0	< 0.03	
							C39712		127.0	128.0	1.0	< 0.03	
126.0	129.0	Quartz-Sericite Schist		Fine grained, greyish green color. Foliation @30° to core axis. 5-8% quartz porphyroclasts. Segregation of sericite into diffuse domains	Py	Trace to locally up to 1%	C39713		128.0	129.0	1.0	< 0.03	
				Foliation becoming more mylonitic towards 129.0 m.									
													-
	_												
	-												-
												+	
	-												
													-
													-
-													
-													
												-	
												-	-
												-	
												-	
L					ļ								
					ļ								
					1								

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	5310685.1		<u>DDH:</u> <u>N18-23</u>		DIAMOND DRIL	L CORE LO	DG	
(Nad83)	Easting	667125.53		Claim No.:	336921	Reflex EZ Shot	Diamond	Drillhole Sur	vey
Elevation	(m):	290.7		Unit Key:	41N15K358	Depth	Dip	Azimuth	
Dip at Co	llar:	-70		Property:	Norwalk				
Azimuth:		120		Zone:	Carbonate Zone				
Total Dep	th:	78		Date start:	25-Jan-18				
Core Size	:	HQ		Date finish:	27-Jan-18				
Remarks:		Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Cap:		Screw-on											
	GEOL	LOGY				Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-MeT (Weighted Average)
0.0	8.3	Overburden		Casing			C39714		15.8	16.0	0.2	0.1	
8.3	15.5	Quartzo-Felds	spathic Mylonite	Strongly fractured and broken core. Fine grained, dark grey color. Local segregation of sericite into thin but relatively distinct domains.	Ру	~1% subhedral pyrite	C39715		16.0	16.5	0.5	< 0.03	
				Mylonitic foliation @ 20 to 25° to core axis. Abundant plage/ kspar fractures @ various orientation to c.a.			C39716		16.5	17.0	0.5	< 0.03	
			Lamprophyre	Lamprophyres @ 8.3 to 9.0, 9.2 to 9.8, 11.8 to 12.7 m. Lamprophyres mainly @ 20° to core axis.			C39717		17.0	17.5	0.5	< 0.03	
15.3	22.2	Chlorite Schis	st	Fine to medium grained, dark green. Sharp upper contact @ 40° to core axis. Foliation mainly @ 40° to core axis.	Ру	3 to 5% subhedral to euhedral pyrite	C39718		17.5	18.0	0.5	< 0.03	
				15.9 to 18.1 m. Numerous cm-scale boudinaged to lensoid-shaped quartz veins.			C39719		18.0	18.5	0.5	< 0.03	
				15.9 m. 2 cm quartz carbonate vein x-cutting foliation.			C39720		18.5	19.0	0.5	< 0.03	
							C39721		19.0	19.5	0.5	< 0.03	
22.3	27.7	Quartz-Sericit	te Schist.	Fine to medium grained, light grey to dark greyish color. Banded appearance due to segregation of sericite into distinct domains.			C39722		19.5	20.0	0.5	< 0.03	
				Foliation @ 35 to 40° to core axis. Up to 20 % sub-mm- to mm-scale carbonate porphyroblasts.			C39723		20.0	20.5	0.5	3.95	
				22.3 to 24.0 m. Approximately 5 to 6 % dull grey quartz veins parallel to foliation.			C39724		20.5	21.0	0.5	< 0.03	
				23.1 and 23.3 m Several cm-scale x-cutting quartz-carbonate veins @ high angles to core axis. Minor amounts of green mica @ 22.5 m.			C39725		21.0	21.5	0.5	< 0.03	
				25.8 to 27.0 m. Several sub-cm quartz-carbonate veinlets x-cutting foliation.			C39726		21.5	22.0	0.5	< 0.03	
			Sericite Schis	t 27.3 to 27.7 m. Sericite schist with 15 cm quartz tourmaline vein x-cutting foliation. Gradational upper contact.	Ру	27.3 to 27.7 m. 5 to 10% subhedral pyrite.	C39727		22.0	22.5	0.5	< 0.03	
27.7	39.6	Quartz Vein Z	Ione	Quartz vein zone. Comprised of 40 to 60% quartz veining with the remainder being host rock. Locally veins appear weakly brecciated	Py, Cpy, AsPy	27.7 to 39.6 m. ~2 to 5% subhedral to anhedral sulfides	C39728		22.5	23.0	0.5	< 0.03	
				Vein margins are poorly defined. Majority of veins at ~30° to c.a. 2 to 3 % cm-scale x-cutting quartz carbonate veins at steep angles to core axis.		(Py>>Cpy). Trace arsenopyrite(?)	C39729		23.0	23.4	0.4	< 0.03	
				27.2 to 31.8 m. Host rock consists of quartz-sericite schist.			C39730	BLK				< 0.03	
				31.8 to 33.8 m. Host rock consists of sericite schist. Locally moderate amounts of green mica.			C39731		23.4	24.0	0.6	< 0.03	
			Quartz-Sericit	433.8 to 36.8 m. Fine grained to medium grained, greyish color. Comprised mainly of sericite and quartz.	Ру	33.8 to 36.8 m. ~2% to locally up to 10% subhedral pyrite	C39732		25.8	26.3	0.5	< 0.03	
				Locally wk to moderate epidote(?) after plagioclase. Penetrative foliation at 25 to 30° to core axis.			C39733		26.3	27.0	0.7	< 0.03	
				5 to 8% sub-cm scale boudinaged quartz veins sub-parallel to foliation throughout.			C39734		27.3	27.7	0.4		0.12
39.6	41.1	Granofelsic N	larble (RCZ)	39.6 to 41.1 m. Crystalline carbonate with brecciated appearance. 3 to 5% mm-scale quartz veinlets @ 70 to 90° to core axis. Cm-scale sugary	Ру	45.1 to 54.4 m. cluster of 25% semi-massive pyrite	C39735		27.7	28.2	0.5		0.04
				quartz veins @ 40° and 70° to core axis at 40.1, 40.4, 40.8, 40.9 m. Sharp upper and lower contact at 30 and 40° to core axis respectively.	VG	46.8 to 47.0 and 47.7 to 48.1 numerous pinhead grains of VG mainly	C39736		28.2	28.7	0.5		0.06
41.1	48.0	Quartz Vein		41.1 to 48.0 m. Sugary quartz vein with 25 to 35% foliated wall-rock clasts. Wall-rock clasts have a bleached appearance.		on surface of core	C39737		28.7	29.2	0.5		0.12
				Locally trace amounts of green mica.			C39738		29.2	29.7	0.5		0.63
48.0	50.8	Quartz-Sericit	te Schist	Fine to medium grained, light grey to dark greyish color. Banded appearance due to segregation of sericite into distinct domains.			C39739		29.7	30.2	0.5		< 0.03
				Foliation @ 35 to 40° to core axis. Up to 15 % sub-mm- to mm-scale quartz porphyroclasts.			C39740		30.2	30.7	0.5		0.32
50.8	78.0	Quartzo-Felds	spathic Mylonite	Fine to medium grained, steel grey color. Comprised mostly of quartz & feldspar.			C39741		30.7	31.2	0.5		< 0.03
				3-5% quartz porphyroclasts. Foliation @ 30° to core axis. Minor (<1%) sub-cm scale carbonate veinlets @ 80 to 90° to core axis.			C39742		31.2	31.7	0.5		0.12
				62.0 to 63.0 Several cm-scale quartz veins, mainly @ 25 to 35° to core axis. Intense network of k-spar fractures @ various orientation to core axis.			C39743		31.7	32.2	0.5		< 0.03
				63.0 to 63.8. Segregation of sericite into relatively distinct domains. Slightly more schistose foliation.	Ру	Trace amounts of pyrite	C39744		32.2	32.7	0.5		0.05
				63.8 to 66.2 m. Meta-gabbroic dike. Upper and lower contact at 45 and 30° to core axis respectively. Weak but penetrative foliation @ 30 to 45° to core	axis.		C39745		32.7	33.2	0.5		< 0.03
				63.0 to 69.0 m. Strongly fractured and broken core. Possible fault			C39746		33.2	33.8	0.6		< 0.03
							C39747		33.8	34.3	0.5		0.16
							C39748		34.3	34.8	0.5		< 0.03
							C39749		34.8	35.3	0.5		< 0.03
							C39750	Oreas 61 Pb				4.54	
							C39751		35.3	35.8	0.5		< 0.03
							C39752		35.8	36.3	0.5		< 0.03

			RT Minerals Corp DIAMOND DRILL CORE LOG						
UTM	Northing	5310685.1		<u>DDH: N18-23</u>		DIAMOND DRIL	L CORE L	OG	
(Nad83)	Easting	667125.53		Claim No.:	336921	Reflex EZ Shot	Diamond	Drillhole Sur	vey
Elevation	(m):	290.7		Unit Key:	41N15K358	Depth	Dip	Azimuth	
Dip at Co	llar:	-70		Property:	Norwalk				
Azimuth:		120		Zone:	Carbonate Zone				
Total Dep	oth:	78		Date start:	25-Jan-18				
Core Size	ə:	HQ		Date finish:	27-Jan-18				
Remarks	:	Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	Downing				
Casing:		Left in hole		Logged by:	Philip Escher				

Casing:	Left in hole
Cap:	Screw-on

•	GEOLO	DGY			Mineralization	SAMPLE		INTERVAL		WIDTH		
From	То	Maj Rock	Min Rock	Comments Signature	Comments	NO.	QC	FROM	то		Au (g/t) FA-GRA	Au (g/t) FA-Me (Weighted Average)
						C39753		36.3	36.8	0.5	ļ	< 0.0
						C39754		36.8	37.3	0.5	L	< 0.0
						C39755		37.3	37.8	0.5	ļ	< 0.0
						C39756		37.8	38.3	0.5	I	< 0.0
						C39757		38.3	38.8	0.5	I	< 0.0
						C39758		38.8	39.3	0.5	i	< 0.0
						C39759		39.3	39.7	0.4	I	< 0.0
						C39760		39.7	40.2	0.5	i	< 0.0
						C39761		40.2	41.1	0.9	i	< 0.0
						C39762		41.1	41.6	0.5	i	0.0
						C39763		41.6	42.1	0.5	i	0.1
						C39764		42.1	42.6	0.5	i	< 0.0
						C39765		42.6	43.1	0.5	i	< 0.0
						C39766		43.1	43.6	0.5	i	< 0.0
						C39767		43.6	44.1	0.5	i	0.1
						C39768		44.1	44.6	0.5	I	1.0
						C39769		44.6	45.1	0.5	I	< 0.0
						C39770	BLK				< 0.03	
						C39771		45.1	45.6	0.5	I	< 0.0
						C39772		45.6	46.1	0.5	I	< 0.0
						C39773		46.1	46.6	0.5	I	< 0.0
						C39774		46.6	47.1	0.5	ļ	< 0.0
						C39775		47.1	47.6	0.5	I	< 0.0
						C39776		47.6	48.1	0.5	I	< 0.0
						C39777		48.1	48.6	0.5	< 0.03	
						C39778		48.6	49.6	1.0	< 0.03	i
						C39779		49.6	50.6	1.0	< 0.03	
						C39780		62.0	62.5	0.5	< 0.03	
						C39781		62.5	63.0	0.5	< 0.03	
									ļ'		i	
									Ļ'		I	
									Ļ'		I	
									Ļ'		I	
									·'		 	
									·'		 	
									·'		 	
									·'		 	
									·'		 	
											i	

			RT Minerals Corp DIAMOND DRILL CORE LOG					
UTM	Northing	5310675.9		DDH:	<u>N18-24</u>	DIAMOND DRI	L CORE L	DG
(Nad83)	Easting	667108.9		Claim No.:	336921	Reflex EZ Shot	- Diamond	Drillhole Survey
Elevatior	(m):	289.82		Unit Key:	41N15K358	Depth	Dip	Azimuth
Dip at Co	llar:	-70		Property:	Norwalk			
Azimuth:		120		Zone:	Carbonate Zone			
Total Dep	oth:	126		Date start:				
Core Size	:	HQ		Date finish:	:			
Remarks		Core stored	at 1 Michipicoten River Village Rd, Wawa, P0S 1K0	Contractor:	: Downing			
Casing:		Left in hole		Logged by:	: Philip Escher			

Cap:		Screw-on											
	GEOL	OGY		Mineralization	SAMPLE	INTERVAL		WIDTH					
From	То	Maj Rock Min Rock	Comments B	Comments	NO.	QC FROM	то		Au (g/t) FA-GRA	u (g/t) FA_MeT (Coarse Fraction)	Au (g/t) FA_MeT (Fine Fraction)	Au (g/t) FA_MeT (Fine Fraction)	Au (g/t) FA-MeT (Weighted Average)
0.0	8.8	Overburden	Casing Casing		C39782	41.2	41.5	0.3	< 0.03				
8.8	18.2	Biotite Schist	Biolite Schist		C39783	42.2	42.6	0.4	< 0.03				
			145 to 152 Jamorohyve		C39784	43.5	44.1	0.6	< 0.03				
			1.00 to 11.2 million pro		C39785	45.6	46.2	0.6	€ 0.03				
18.2	40.8	Quartzo Feldenathic Midanite	The restriction of the second se		C39786	46.0	47.2	0.3	< 0.02				
10.2	40.0	Qualizor elaspatric mytorite	r no granto, car gray concernance o quear, pagenciero a quear, pagenciero que concernance de la concernace de la concernace de la concernance de la concerna		C39787	40.5	51.8	0.6	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02
			Information of the sub-one calculation and the sub-state of the sub-state		C39788	60.1	60.0	0.8		0.03	< 0.03	< 0.03	< 0.03
					C39789	60.9	61.4	0.5		c 0.03	< 0.03	< 0.03	< 0.03
			J UIT + UIT gaa 2-teatorias tem go to dote sate.		C39799	Orease 17Ph	01.4	0.5	2.50	< 0.05	< 0.05	< 0.05	< 0.05
					C39791	61.4	62.0	0.6	2.35	< 0.02	< 0.02	< 0.02	< 0.02
40.8	60.1	Quartz Sericite Schiet	Eine to medium ansing Comprised of earling august and accessory chipits. Banded apparature due to contraction of satisfies to desire the main strain of the total of the satisfies of the satisfi	Lip to 2% purite	C39791	62.0	63.0	1.0		< 0.03	< 0.03	< 0.03	< 0.03
40.0	00.1	Qualiz-Sericite Scriist	First to mecuan upante. Comprised to service, quality and accessivy choines, barload appearance out to service in the data and accessivy choines, barload appearance out to service in the data and accessivy choines. Barload appearance out to service in the data and accessive and accessive and accessive accessive and accessive accessive and accessive	Op to 2 % pyrite	C39792	62.0	62.0	0.0		< 0.03	< 0.03	< 0.03	< 0.03
			Local relations: to construct quark populations and exception of the finance quark variety and exception group variety and to construct and exception of the finance quark variety and the second exception of the second exce		000704	03.0	03.0	0.0		0.08	0.14	0.12	0.13
			40.00 to 42.6 m. Several cm-scale boudinaged quartz verns sub-parallel to tollauon. whore sub-cm scale quartz carbonate verns x-cutuing tollauon (@ 70 to 80 to 2016 axis).		039794	03.0	04.3	0.5		< 0.03	< 0.03	< 0.03	< 0.03
		011 11 0 11 1			C39795	64.3	65.0	0.7		< 0.03	< 0.03	< 0.03	< 0.03
		Chlorite Schist	44.1 to 49.1 m. Fine to medium grained. Relatively coarse tollation (gr sur to core axis. Foliation tends to be finer near contacts. Py	I race to locally up to 3% subhedral pyrite	C39796	65.0	66.0	1.0		< 0.03	< 0.03	< 0.03	< 0.03
			45.5 to 46.2 m. 8 to 10% bouildinged to lensod shaped quart 2 verins sub-parallel to foliation.		C39797	66.0	66.7	0.7		< 0.03	< 0.03	< 0.03	< 0.03
			46.9 to 47.2 m. Numerous boudinaged quartz vens sub-parallel to foliation.	46.9 to 47.2 m. Trace pyrite	C39798	66.7	67.2	0.5		0.12	0.16	0.18	0.17
					C39799	67.2	67.7	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			49.1 to 50.8 m. 4 to 6 % sub-cm scale to cm-scale dull white to grey quartz veins parallel foliation. Locally moderate amounts of green mica associated with quartz veining.		C39800	67.7	68.2	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			51.2 to 52.8 m. Several cm-scale sugary quartz veins sub-parallel to foliation.		C39801	68.2	68.7	0.5		1.27	0.34	0.32	0.35
					C39802	68.7	69.2	0.5		< 0.03	< 0.03	< 0.03	< 0.03
60.1	65.0	Quartz Vein Zone	Characterised by 5 to 25% dull grey foliation parallel guartz veins with laminated appearance; 3 to 5% boudinaged guartz-carbonate veins, and minor guartz-carbonate tension veins. Py, Cpy	52.3 to 63.0 m. 5 to 15% euhedral to anhedral pyrite; minor chalcopyrite	C39803	69.2	69.7	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			Vein zone occurs near transition of quartz-sericite schist and sericite schist.		C39804	69.7	70.2	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			60.1 to 62.9 m. Quartz- sericite schist host Mo(?)	60.6 m. Thin seams of molybdenum in laminated quartz vein.	C39805	70.2	70.7	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			62.9 to 65.0 m. Sericite schist host Py, Cpy	64.4m to 65.0m. 3 to 4% medium to coarse grained pyrite in quartz vein.	C39806	70.7	71.3	0.6		< 0.03	< 0.03	< 0.03	< 0.03
			Dm-scale boudinaged quartz-carbonate veins subparallel to foliation @ 60.5, 60.7, 61.0, 61.3 m and minor cm scale boudinaged quartz veins between 61.4 to 62.9 m.	Trace chalcopyrite.	C39807	71.3	72.0	0.7		< 0.03	< 0.03	< 0.03	< 0.03
			X-cutting cm-scale quartz tension veins @ 63.2, 63.3, 63.8m. Veins at 70 to 90° to core axis.		C39808	72.0	72.8	0.8		< 0.03	< 0.03	< 0.03	< 0.03
					C39809	72.8	73.3	0.5		< 0.03	< 0.03	< 0.03	< 0.03
65.0	66.	7 Granofelsic Marble (RCZ)	65.0 to 66.7m. Carbonate zone. White to grey color. Intercalated with sericite schist. Py, Cpy	65.5 to 66.0m. 5 to 10% sulfides, disseminated and in clusters	C39810	BLK			< 0.03				
			5-10% glassy quartz in matrix. Cm-scale sugary quartz veins at 65.3, 66.5 and 66.7, Veins @ 50 to 60° to core axis. Upper contact @ 40° to core axis. Lower contact obscured by quartz vein.	(py >> cpy)	C39811	73.3	73.8	0.5		< 0.03	< 0.03	< 0.03	< 0.03
66.7	72.8	Sericite Schist	66.7 to 72.8 m. Fine to medium grained. Comprised mainly of sericite and lesser amounts of guartz. 5% guartz porphyroclasts.	2 to 3% euhedral to subhedral pyrite.	C39812	73.8	74.3	0.5		< 0.03	< 0.03	< 0.03	< 0.03
-			Foliation @ 30° to core axis.		C39813	74.3	74.8	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			Cm-scale quartz carbonate veins x-cutting foliation @ 67.5, 68.3, 70.6, 70.7. Veins are @ 60 to 70° to core axis.		C39814	74.8	75.3	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			66.7 to 71.3 m. 2-3% cm scale boudinaged to lensoid shaped quartz-carb veins sub-parallel to foliation.		C39815	75.3	75.9	0.6		< 0.03	< 0.03	< 0.03	< 0.03
					C39816	75.9	76.4	0.5	< 0.03				
72.5	75.9	Quartz Vein	72.8 to 75.9. Sugary quartz vein with abundant wall-rock fragments (up to 30%). Wall-rock fragments have a bleached appearance. Py, Cpy, Mo	3 and locally up to 5 % fine grained pyrite and lesser chalcopyrite.	C39817	76.4	76.9	0.5	< 0.03				
			Upper and lower contact @ 30° to core axis. Upper contact characterized by gradual increase in veining	Sulfides mainly associated with wall-rock fragments.	C39818	76.9	77.5	0.6	< 0.03				
				78.3 m. Several thin seams of molybdenum in quartz vein.	C39819	77.5	78.4	0.9	< 0.03				
75.9	82.0	Sericite Schist	75.9 to 82.0 m. Sericite schist. Minor sub-cm boudinaged quartz veins throughout. Py, Cpy	1 to 2% euhedral to subhedral sulfides along foliation planes. Trace cpy	C39820	78.4	78.8	0.4	< 0.03				
			78.4 to 78.8 m. Several cm-scale boudinaged guartz veins and lenses. Minor epidote(?) alteration.	76.9 to 77.2. 15 % sulfides along foliation planes.	C39821	78.8	79.0	0.2	< 0.03				
			78.8 to 79.0 m. Quartz-carbonate vein @ 80 to 90° to core axis.		C39822	79.0	80.0	1.0	< 0.03				
			79.0 to 80.6 m. Abundant mm-scale k-spar fractures with dm to cm-scale alteration halos.		C39823	80.0	80.5	0.5	< 0.03				
			80.6 m. 6 cm quartz- carbonate vein @ 70° to core axis.		C39824	80.5	81.0	0.5	< 0.03				
					C39825	81.0	81.5	0.5	< 0.03				
82.0	110.3	Quartzo-Feldspathic Mylonite to Schist	Fine grained, dark grey to greenish color. 5% quartz porphyroclasts. Mylonitic to schistose foliation @ 30 to 40° to core Py	0.5 to locally up to 1.5% pyrite	C39826	81.5	82.0	0.5	< 0.03				
			axis. Minor plage to k-spar fractures @ various orientation to core axis. Offsets along these fractures often exceeds the cm-scale. Fault? Local segregation of sericite into diffuse domains.		C39827	109.0	110.0	1.0	< 0.03				
		Lamprophyre	Lamprophyres @ 90.3 to 91.2m, 91.9 to 92.5, 96.0 to 98.4m, 99.1 to 99.3m. 100.1 to 100.9m.		C39828	110.0	110.3	0.3	< 0.03				
			110.0 to 110.3m. Two sub-cm quartz veins x-cutting foliation. Veins @ 20 to 30° to core axis.		C39829	110.3	110.8	0.5		< 0.03	< 0.03	< 0.03	< 0.03
			110.3 to 112.4m. 15 to 20 % cm-scale wk boudinaged quartz veins sub-parallel to foliation (15 to 30° to core axis). Cm-scale quartz-carb vein @ 80 to 90° to core axis at 111.5 m. Py	110.3 to 112.4m. 10 to 15% very fine grained pyrite	C39830	Oreas 50c			0.72				
		Quartz Vein	112.4 to 113.7m. Laminated quartz vein with 10% wall rock fragments. Upper and lower contacts at 40 and 35° to core axis respectively.		C39831	110.8	111.7	0.9		< 0.03	< 0.03	< 0.03	< 0.03
			113.2 m. cm-scale guartz-carbonate vein @ 70 to 80° to core axis. Mo, Py	112.4 to 114.7. 5 to 8% molybdenum in mm-scale seams. 2-4% pyrite	C39832	111.7	112.4	0.7		< 0.03	< 0.03	< 0.03	< 0.03
114.0	126.0	Quartzo-Feldspathic Mylonite	Fine grained, grey to greenish color. Mylonitic foliation @ 30° to core axis. K-spar fractures @ various orientation to core axis throughout. Py	3 to 5% fine grained pyrite, associated with guartz veinlets	C39833	112.4	113.0	0.6		0.14	0.14	0.18	0.16
			1% sub-cm scale carb-quartz veins sub-parallel to foliation throughout.		C39834	113.0	113.7	0.7		< 0.03	< 0.03	< 0.03	< 0.03
			115.5 m. 3 cm laminated quartz vein @ 20° to core axis.		C39835	114.0	114.4	0.4		< 0.03	< 0.03	< 0.03	< 0.03
		Mafic Dike	118.0 to 119.1m. Fine grained mafic dike with 4 - 5% quartz veins. @ 30° to core axis. Margins are weakly foliated.		C39836	115.3	115.7	0.4	< 0.03				
			119.1 m. 1 to 2 cm boudinaged guartz vein sub parallel to foliation.		C39837	116.2	116.4	0.2	< 0.03				
			121.1 m. 2 cm quartz vein subparallel to foliation.		C39838	116.7	117.0	0.3	< 0.03				
				•			· · · · ·						

			RT Minerals Corp DIAMOND DRILL CORE LOG									
UTM	Northing	5310675 9		DDH:	N18-24	DIAMOND DRI		G				
(Nad®	3) Easting	667409 0		Claim No.:	336921	Reflex EZ Sho	t- Diamond	Drillhole S	urvev			
Elevat	ion (m):	289.82		Unit Key:	41N15K358	Denth	Din	Azimuth				
Dip at	Collar:	-70		Property:	Norwalk	Deptil		Azimuur				
Azimu	th:	120		Zone:	Carbonate Zone							
Total	Depth:	126		Date start:								
Core	Size:	HQ		Date finish:								
Rema	rks:	Core store	at 1 Michipicoten River Village Rd. Wawa. POS 1K0	Contractor:	Downing							
Casin		L off in hold		Logged by:	Philip Escher		-					
Casili	y.	Corous on		Loggou bj.								
Cap.		Screw-on	101 4 to 120 1 m 2 28 mm and a ministrum			C 20920		119.0	110.0 1.0	10.02	 	Т
			1214 to 125. This 2-57 this scale quart year with outsets of -90 to 000 easys. 1920 to 1325 m 1 cm nutry way with outsets of 150 to cross axis			C39839		110.0	119.0 1.0	< 0.03	 +	
						C39841		120.2	120.5 0.1	< 0.03	 	
						C39842		120.5	121.0 0.5	< 0.03	 	
						C39843		121.0	121.2 0.3	< 0.03		
						C39844		121.4	122.1 0.7	< 0.03		
						C39845		123.4	123.7 0.3	< 0.03		
						C39846		125.0	125.5 0.5	< 0.03	 	
		_									 	
		-		+			-			+	 	+
											 	+
		-									 	-
			n and a second se								 	
											 +	-
											 	-
										-		
							_				 	
											 	-
			n de la construcción de								 	
			r								 	
											 +	-
											 	-
											 '	+
											 '	+
	-	-		-			-				 	+
											 	+
		-		+			-				 	+
-				1							 +	+
											 +	1
											 +	1
											 1	1
									1			1
											 	+
											 	+
											 	+
											 	+
	-	-		1							 +'	+
		-		1			1				 	+

Appendix 2 – Diamond Drill Sections

Appendix 2 – Assay Certificates

Innovative Technologies

Date Submitted:27-Dec-17Invoice No.:A17-14657Invoice Date:10-Jan-18Your Reference:

RT Minerals Corp.

ATTN: Paul Antoniazzi

CERTIFICATE OF ANALYSIS

73 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-Tbay Au-Fire Assay-Metallic Screen-500g

REPORT A17-14657

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 500 gram split is seived at 150 mesh (105 micron) with assays performed on the entire +150 mesh and 2 splits of the -150 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au	Au + 150 mesh	Au - 150 mesh (A)	Au - 150 mesh (B)	Total Au	+ 150 mesh	- 150 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39353		< 0.03	< 0.03	< 0.03	< 0.03	17.95	635.79	653.74
C39354		< 0.03	< 0.03	< 0.03	< 0.03	21.11	690.82	711.93
C39355		< 0.03	< 0.03	< 0.03	< 0.03	30.20	681.28	711.50
C39356		< 0.03	< 0.03	< 0.03	< 0.03	15.50	620.56	636.06
C39357		38.8	0.85	0.95	1.61	10.63	553.23	563.86
C39358	1.71							
C39359		< 0.03	< 0.03	< 0.03	< 0.03	29.45	616.88	646.33
C39360	10.5							
C39361		< 0.03	< 0.03	< 0.03	< 0.03	24.80	531.08	555.88
C39362		< 0.03	< 0.03	< 0.03	< 0.03	19.34	548.98	568.32
C39363		1.00	< 0.03	< 0.03	0.03	14.05	525.84	539.89
C39364		< 0.03	< 0.03	< 0.03	< 0.03	8.950	522.30	531.25
C39351	< 0.03							
C39352	< 0.03							
C39365	< 0.03							
C39366	< 0.03							
C39367	< 0.03							
C39375		< 0.03	< 0.03	< 0.03	< 0.03	37.50	519.37	556.87
C39376		< 0.03	< 0.03	< 0.03	< 0.03	30.08	656.50	686.58
C39377		< 0.03	< 0.03	< 0.03	< 0.03	36.93	511.29	548.22
C39378	11.0							
C39379		21.8	0.90	1.08	1.89	30.54	677.43	707.97
C39380		< 0.03	< 0.03	< 0.03	< 0.03	13.85	554.47	568.32
C39381		< 0.03	< 0.03	< 0.03	< 0.03	7.830	577.36	585.19
C39382		< 0.03	< 0.03	< 0.03	< 0.03	29.84	549.21	579.05
C39383	< 0.03							
C39384		< 0.03	< 0.03	< 0.03	< 0.03	15.15	621.30	636.45
C39385		1.93	< 0.03	< 0.03	0.12	31.03	482.94	513.97
C39368	< 0.03							
C39369	< 0.03							
C39370	< 0.03							
C39371	< 0.03							
C39372	< 0.03							
C39373	< 0.03							
C39374	< 0.03							
C39386	< 0.03							
C39387	< 0.03							
C39388		0.45	< 0.03	< 0.03	0.03	33.33	562.09	595.42
C39389		1.97	< 0.03	< 0.03	0.10	28.50	558.09	586.59

Analyte Symbol	Au	Au + 150 mesh	Au - 150 mesh (A)	Au - 150 mesh (B)	Total Au	+ 150 mesh	- 150 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39391		< 0.03	< 0.03	< 0.03	< 0.03	13.12	662.74	675.90
C39392	< 0.03							
C39393	< 0.03							
C39394	< 0.03							
C39395	< 0.03							
C39396	< 0.03							
C39397	< 0.03							
C39398		< 0.03	< 0.03	< 0.03	< 0.03	24.52	610.86	635.38
C39399		63.5	0.68	0.58	1.82	8.810	456.29	465.10
C39400		< 0.03	< 0.03	< 0.03	< 0.03	34.56	729.41	763.97
C39451		< 0.03	< 0.03	< 0.03	< 0.03	26.15	679.31	705.46
C39452		0.72	< 0.03	< 0.03	0.04	47.43	710.16	757.59
C39453		< 0.03	< 0.03	< 0.03	< 0.03	29.57	554.90	584.47
C39454		< 0.03	< 0.03	< 0.03	< 0.03	24.15	623.19	647.34
C39455		< 0.03	< 0.03	< 0.03	< 0.03	46.78	585.16	631.94
C39456		< 0.03	0.23	0.29	0.25	26.41	507.50	533.90
C39457		< 0.03	< 0.03	< 0.03	< 0.03	22.30	412.79	435.09
C39458		< 0.03	< 0.03	< 0.03	< 0.03	21.80	572.52	594.32
C39459	< 0.03							
C39460		< 0.03	< 0.03	< 0.03	< 0.03	7.290	625.38	632.70
C39461		7.55	0.52	0.60	0.78	17.75	547.33	565.08
C39462		< 0.03	< 0.03	< 0.03	< 0.03	26.02	525.89	551.91
C39463		10.5	0.29	0.36	0.81	25.20	499.02	524.22
C39464		< 0.03	0.49	0.56	0.48	55.47	614.21	669.68
C39465		< 0.03	< 0.03	< 0.03	< 0.03	17.40	512.39	529.79
C39466		< 0.03	< 0.03	< 0.03	< 0.03	13.23	539.27	552.50
C39467		< 0.03	< 0.03	< 0.03	< 0.03	24.53	517.73	542.26
C39468		391	4.97	4.57	11.8	10.11	545.08	555.19
C39469		< 0.03	< 0.03	< 0.03	< 0.03	17.08	524.36	541.40
C39470	7.21							
C39471		< 0.03	< 0.03	< 0.03	< 0.03	20.19	476.04	496.23
C39472		< 0.03	< 0.03	< 0.03	< 0.03	21.84	552.91	574.75
C39473		< 0.03	0.10	0.16	0.13	13.68	594.54	608.22
C39474		< 0.03	< 0.03	< 0.03	< 0.03	23.01	658.75	681.76

Analyte Symbol	Au	Au + 150 mesh	Au - 150 mesh (A)	Au - 150 mesh (B)	Total Au	+ 150 mesh	- 150 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
OREAS 216 (Fire	6.58				6.39			
Assay) Meas								
OREAS 216 (Fire	6.66				6.66			
Assay) Cert								
OREAS 216 (Fire					6.96			
OPEAS 216 (Eiro					6.66			
Assay) Cert					0.00			
OREAS 216 (Fire					6.73			
Assay) Meas								
OREAS 216 (Fire Assay) Cert					6.66			
Klen 3.65 Meas	3.68							
Klen 3.65 Cert	3.65							
C39353 Orig		< 0.03	< 0.03	< 0.03	< 0.03	17.95	635.79	653.74
C39354 Orig		< 0.03	< 0.03	< 0.03	< 0.03	21.11	690.82	711.93
C39355 Orig		< 0.03	< 0.03	< 0.03	< 0.03	30.20	681.28	711.50
C39356 Orig		< 0.03	< 0.03	< 0.03	< 0.03	15.50	620.56	636.06
C39357 Orig		38.8	0.85	0.95	1.61	10.63	553.23	563.86
C39359 Oria		< 0.03	< 0.03	< 0.03	< 0.03	29.45	616.88	646.33
C39361 Orig		< 0.03	< 0.03	< 0.03	< 0.03	24.80	531.08	555.88
C39362 Orig		< 0.03	< 0.03	< 0.03	< 0.03	19.34	548.98	568.32
C39363 Orig		1.00	< 0.03	< 0.03	0.03	14.05	525.84	539.89
C39364 Oria		< 0.03	< 0.03	< 0.03	< 0.03	8.950	522.30	531.25
C39375 Orig		< 0.03	< 0.03	< 0.03	< 0.03	37.50	519.37	556.87
C39376 Orig		< 0.03	< 0.03	< 0.03	< 0.03	30.08	656.50	686.58
C39377 Orig		< 0.03	< 0.03	< 0.03	< 0.03	36.93	511.29	548.22
C39379 Orig		21.8	0.90	1.08	1.89	30.54	677.43	707.97
C39380 Orig		< 0.03	< 0.03	< 0.03	< 0.03	13.85	554.47	568.32
C39381 Orig		< 0.03	< 0.03	< 0.03	< 0.03	7.830	577.36	585.19
C39382 Orig		< 0.03	< 0.03	< 0.03	< 0.03	29.84	549.21	579.05
C39384 Orig		< 0.03	< 0.03	< 0.03	< 0.03	15.15	621.30	636.45
C39385 Orig		1.93	< 0.03	< 0.03	0.12	31.03	482.94	513.97
C39368 Orig	< 0.03							
C39368 Dup	< 0.03				1			
C39388 Orig		0.45	< 0.03	< 0.03	0.03	33.33	562.09	595.42
C39389 Orig		1.97	< 0.03	< 0.03	0.10	28.50	558.09	586.59
C39391 Orig		< 0.03	< 0.03	< 0.03	< 0.03	13.12	662.74	675.90
C39393 Oria	< 0.03							
C39393 Dup	< 0.03							

Analyte Symbol	Au	Au + 150 mesh	Au - 150 mesh (A)	Au - 150 mesh (B)	Total Au	+ 150 mesh	- 150 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39397 Orig	< 0.03							
C39397 Split PREP DUP	< 0.03							
C39398 Orig		< 0.03	< 0.03	< 0.03	< 0.03	24.52	610.86	635.38
C39399 Orig		63.5	0.68	0.58	1.82	8.810	456.29	465.10
C39400 Orig		< 0.03	< 0.03	< 0.03	< 0.03	34.56	729.41	763.97
C39451 Orig		< 0.03	< 0.03	< 0.03	< 0.03	26.15	679.31	705.46
C39452 Orig		0.72	< 0.03	< 0.03	0.04	47.43	710.16	757.59
C39453 Orig		< 0.03	< 0.03	< 0.03	< 0.03	29.57	554.90	584.47
C39454 Orig		< 0.03	< 0.03	< 0.03	< 0.03	24.15	623.19	647.34
C39455 Orig		< 0.03	< 0.03	< 0.03	< 0.03	46.78	585.16	631.94
C39456 Orig		< 0.03	0.23	0.29	0.25	26.41	507.50	533.90
C39457 Orig		< 0.03	< 0.03	< 0.03	< 0.03	22.30	412.79	435.09
C39458 Orig		< 0.03	< 0.03	< 0.03	< 0.03	21.80	572.52	594.32
C39460 Orig		< 0.03	< 0.03	< 0.03	< 0.03	7.290	625.38	632.70
C39461 Orig		7.55	0.52	0.60	0.78	17.75	547.33	565.08
C39462 Orig		< 0.03	< 0.03	< 0.03	< 0.03	26.02	525.89	551.91
C39463 Orig		10.5	0.29	0.36	0.81	25.20	499.02	524.22
C39464 Orig		< 0.03	0.49	0.56	0.48	55.47	614.21	669.68
C39465 Orig		< 0.03	< 0.03	< 0.03	< 0.03	17.40	512.39	529.79
C39466 Orig		< 0.03	< 0.03	< 0.03	< 0.03	13.23	539.27	552.50
C39467 Orig		< 0.03	< 0.03	< 0.03	< 0.03	24.53	517.73	542.26
C39468 Orig		391	4.97	4.57	11.8	10.11	545.08	555.19
C39469 Orig		< 0.03	< 0.03	< 0.03	< 0.03	17.08	524.36	541.40
C39471 Orig		< 0.03	< 0.03	< 0.03	< 0.03	20.19	476.04	496.23
C39472 Orig		< 0.03	< 0.03	< 0.03	< 0.03	21.84	552.91	574.75
C39473 Orig		< 0.03	0.10	0.16	0.13	13.68	594.54	608.22
C39474 Orig		< 0.03	< 0.03	< 0.03	< 0.03	23.01	658.75	681.76
Method Blank	< 0.03							
Method Blank	< 0.03							
Method Blank					< 0.03			0.00000
Method Blank					< 0.03			0.00000
Method Blank					< 0.03			0.00000
Method Blank					< 0.03			0.00000
Method Blank					< 0.03			0.00000
Method Blank					< 0.03			0.00000

Innovative Technologies

Date Submitted:27-Dec-17Invoice No.:A17-14657Final2Invoice Date:19-Jan-18Your Reference:Image: State Sta

RT Minerals Corp. 300 - 555 West Georgia Street Vancouver BC V6B 1Z6 Canada

ATTN: Paul Antoniazzi (inv-cc)

CERTIFICATE OF ANALYSIS

77 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-Tbay Au-Fire Assay-Metallic Screen-500g

REPORT A17-14657Final2

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 500 gram split is seived at 150 mesh (105 micron) with assays performed on the entire +150 mesh and 2 splits of the -150 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	ppb	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	5	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39357			12.6	0.26	0.20	0.34	16.19	1743.9	1760.1
C39358	< 0.03								
C39360		10900							
C39351		8							
C39352		< 5							
C39365		< 5							
C39474			< 0.03	0.12	< 0.03	0.06	16.97	1312.2	1329.2

Analyte Symbol	Au	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	ppb	g/mt	g/mt	g/mt	g/mt	g	g	g	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	5	0.03	0.03	0.03	0.03				0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
OREAS 216 (Fire Assay) Meas	6.45					6.59							6.55			
OREAS 216 (Fire Assay) Cert	6.66					6.66							6.66			
OREAS 254 Meas		2530														
OREAS 254 Cert		2550														
OREAS 220 (Fire Assay) Meas		856														
OREAS 220 (Fire Assay) Cert		828														
Klen 3.65 Meas	3.83															
Klen 3.65 Cert	3.65															
C39352 Orig		< 5														
C39352 Dup		< 5														
Method Blank	< 0.03															
Method Blank		< 5														
Method Blank						< 0.03			0.000							
Method Blank													< 0.03			0.00000

Innovative Technologies

Date Submitted:25-Jan-18Invoice No.:A18-00846Invoice Date:09-Feb-18Your Reference:Norwalk

RT Minerals Corp. 300 - 555 West Georgia Street Vancouver BC V6B 1Z6 Canada

ATTN: Paul Antoniazzi (inv-cc)

CERTIFICATE OF ANALYSIS

84 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-1000g

REPORT A18-00846

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Linit Symbol	a/tonne	a/mt	a/mt	a/mt	a/mt	a	a	a
Lower Limit	0.03	0.03	0.03	0.03	0.03	9	9	9
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39390	4.47							
C39475		< 0.03	0.06	< 0.03	0.03	17.11	973.42	990.53
C39476		< 0.03	< 0.03	< 0.03	< 0.03	24.23	983.22	1007.5
C39477		< 0.03	< 0.03	< 0.03	< 0.03	21.05	1006.4	1027.5
C39478		12.9	0.32	0.34	0.60	21.25	966.39	987.64
C39479		0.68	0.10	< 0.03	0.08	28.02	940.59	968.61
C39480		< 0.03	< 0.03	< 0.03	< 0.03	29.10	937.80	966.90
C39481		< 0.03	0.67	< 0.03	0.33	27.54	945.56	973.10
C39482		1.68	< 0.03	< 0.03	0.04	20.87	1088.8	1109.6
C39483		1700	8.88	5.78	27.4	11.70	977.42	989.12
C39484		< 0.03	< 0.03	< 0.03	< 0.03	17.34	977.65	994.99
C39485		< 0.03	< 0.03	< 0.03	< 0.03	23.77	980.08	1003.8
C39486		< 0.03	< 0.03	< 0.03	< 0.03	18.67	965.18	983.80
C39487		< 0.03	< 0.03	< 0.03	< 0.03	19.96	969.62	989.58
C39488		< 0.03	< 0.03	< 0.03	< 0.03	21.01	975.29	996.30
C39489		< 0.03	0.46	0.40	0.42	10.72	1022.2	1032.9
C39490	< 0.03							
C39491		0.21	0.12	< 0.03	0.06	9.570	1081.2	1090.8
C39492		< 0.03	< 0.03	< 0.03	< 0.03	22.47	1025.6	1048.1
C39493		< 0.03	< 0.03	< 0.03	< 0.03	16.68	987.00	1003.7
C39494	< 0.03							
C39495	0.07							
C39496	< 0.03							
C39497	< 0.03							
C39498	< 0.03							
C39499	< 0.03							
C39500	< 0.03							
C39501	0.09							
C39502	0.13							
C39503	0.07							
C39504	0.08							
C39505	0.05							
C39506	0.09							
C39507	0.19							
C39508	< 0.03							
C39509	< 0.03							
C39510	0.96							
C39511	0.43							
C39512	0.22							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39513	0.05							
C39514	< 0.03							
C39515	< 0.03							
C39516	< 0.03							
C39517	0.05							
C39518		< 0.03	< 0.03	< 0.03	< 0.03	15.66	1029.0	1044.7
C39519		< 0.03	0.12	0.22	0.17	11.07	980.22	991.29
C39520		11.3	< 0.03	< 0.03	0.13	11.50	1024.7	1036.2
C39521	< 0.03							
C39522	< 0.03							
C39523	< 0.03							
C39524	< 0.03							
C39525	< 0.03							
C39526	< 0.03							
C39527	< 0.03							
C39528	< 0.03							
C39529	< 0.03							
C39530	3.28							
C39531	< 0.03							
C39532		1.39	< 0.03	< 0.03	0.06	26.69	880.71	907.40
C39533		0.11	< 0.03	< 0.03	< 0.03	26.25	923.89	950.14
C39534		< 0.03	< 0.03	0.04	< 0.03	27.30	865.35	892.65
C39535		< 0.03	< 0.03	< 0.03	< 0.03	28.76	938.19	966.95
C39536	< 0.03							
C39537	0.03							
C39538	< 0.03							
C39539	< 0.03							
C39540	< 0.03							
C39541	< 0.03							
C39542	< 0.03							
C39543	0.10							
C39544	0.07							
C39545	< 0.03							
C39546	< 0.03							
C39547		0.25	< 0.03	< 0.03	< 0.03	28.36	926.78	955.14
C39548		0.30	< 0.03	< 0.03	< 0.03	27.05	911.52	938.57
C39549		< 0.03	0.51	0.30	0.40	23.95	969.14	993.09
C39550	3.63							
C39551		2.25	< 0.03	0.22	0.17	21.77	960.08	981.85
	I							I 7

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39552		66.7	0.14	0.32	1.99	26.28	966.43	992.71
C39553	0.07							
C39554	< 0.03							
C39555	< 0.03							
C39556	< 0.03							
C39557	< 0.03							

Activation Laboratories Ltd.

Analyte Symbol	Au	Total Au	Total Weight
Unit Symbol	g/tonne	g/mt	g
Lower Limit	0.03	0.03	
Method Code	FA- GRA	FA-MeT	FA-MeT
OREAS 216 (Fire Assay) Meas	6.49	6.59	
OREAS 216 (Fire Assay) Cert	6.66	6.66	
OREAS 216 (Fire Assay) Meas	6.89	6.54	
OREAS 216 (Fire Assay) Cert	6.66	6.66	
OREAS 216 (Fire Assay) Meas	6.75		
OREAS 216 (Fire Assay) Cert	6.66		
Klen 3.65 Meas	3.73		
Klen 3.65 Cert	3.65		
Klen 3.65 Meas	3.74		
Klen 3.65 Cert	3.65		
Klen 3.65 Meas	3.86		
Klen 3.65 Cert	3.65		
C39501 Orig	0.10		
C39501 Dup	0.08		
C39511 Orig	0.40		
C39511 Dup	0.46		
C39523 Orig	< 0.03		
C39523 Split PREP DUP	< 0.03		
C39525 Orig	< 0.03		
C39525 Dup	< 0.03		
C39543 Orig	0.11		
C39543 Dup	0.09		
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank			0.00000
Method Blank			0.00000
Method Blank	< 0.03		

Innovative Technologies

Date Submitted:06-Feb-18Invoice No.:A18-01361Invoice Date:21-Feb-18Your Reference:Norwalk

RT Minerals Corp. 300 - 555 West Georgia Street Vancouver BC V6B 1Z6 Canada

ATTN: Paul Antoniazzi (inv-cc)

CERTIFICATE OF ANALYSIS

123 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-1000g

REPORT **A18-01361**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03	5		<u> </u>
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39558	0.23							
C39559	< 0.03							
C39560	< 0.03							
C39561	< 0.03							
C39562	< 0.03							
C39563		< 0.03	< 0.03	< 0.03	< 0.03	25.22	913.30	938.52
C39564		28.0	0.48	0.99	1.44	23.19	876.50	899.69
C39565		< 0.03	< 0.03	< 0.03	< 0.03	23.75	945.00	968.80
C39566		< 0.03	< 0.03	< 0.03	< 0.03	22.10	940.90	963.00
C39567		< 0.03	< 0.03	< 0.03	< 0.03	19.91	829.00	848.91
C39568		< 0.03	< 0.03	< 0.03	< 0.03	29.95	868.60	898.55
C39569		< 0.03	< 0.03	< 0.03	< 0.03	12.74	968.60	981.34
C39570	< 0.03							
C39571		1.38	< 0.03	< 0.03	0.03	18.83	994.00	1012.8
C39572		< 0.03	< 0.03	0.12	0.06	17.06	971.10	988.16
C39573	< 0.03							
C39574	< 0.03							
C39575	< 0.03							
C39576	< 0.03							
C39577	< 0.03							
C39578	< 0.03							
C39579	0.03							
C39580		11.2	0.26	0.44	0.58	21.12	974.70	995.82
C39581		6.90	0.04	0.10	0.21	19.42	937.90	957.30
C39582		< 0.03	< 0.03	< 0.03	< 0.03	17.66	893.30	910.96
C39583		< 0.03	< 0.03	< 0.03	< 0.03	31.31	807.00	838.31
C39584		121	0.28	0.14	2.68	20.20	969.50	989.70
C39585		< 0.03	< 0.03	< 0.03	< 0.03	24.74	955.10	979.84
C39586		< 0.03	< 0.03	< 0.03	< 0.03	10.41	970.80	981.21
C39587		< 0.03	< 0.03	0.24	0.12	15.70	954.80	970.50
C39588		< 0.03	< 0.03	< 0.03	< 0.03	9.410	955.00	964.41
C39589		< 0.03	< 0.03	< 0.03	< 0.03	15.24	942.80	958.04
C39590	0.88							
C39591	< 0.03							
C39592	< 0.03							
C39593	< 0.03							
C39594	< 0.03							
C39595	< 0.03							
C39596	< 0.03							
	T							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39597	< 0.03							
C39598	< 0.03							
C39599	< 0.03							
C39600	< 0.03							
C39601	< 0.03							
C39602	< 0.03							
C39603	0.13							
C39604	0.63							
C39605		< 0.03	< 0.03	< 0.03	< 0.03	9.000	949.70	958.70
C39606		< 0.03	< 0.03	< 0.03	< 0.03	16.72	896.40	913.12
C39607		1.79	0.16	0.12	0.19	22.94	734.50	757.44
C39608		< 0.03	< 0.03	< 0.03	< 0.03	32.73	958.70	991.43
C39609		< 0.03	0.12	0.14	0.13	12.20	816.40	828.60
C39610	< 0.03							
C39611	< 0.03							
C39612	0.12							
C39613	< 0.03							
C39614	< 0.03							
C39615	< 0.03							
C39616	< 0.03							
C39617	< 0.03							
C39618	< 0.03							
C39619	< 0.03							
C39620	< 0.03							
C39621	< 0.03							
C39622	< 0.03							
C39623	< 0.03							
C39624	< 0.03							
C39625	< 0.03							
C39626	< 0.03							
C39627	< 0.03							
C39628	< 0.03							
C39629		44.9	3.16	4.00	4.26	12.95	784.90	797.85
C39630	4.51							
C39631		< 0.03	< 0.03	< 0.03	< 0.03	12.34	872.20	884.54
C39632		< 0.03	< 0.03	< 0.03	< 0.03	34.82	1005.6	1040.4
C39633		< 0.03	< 0.03	< 0.03	< 0.03	15.69	1088.2	1103.9
C39634		< 0.03	< 0.03	< 0.03	< 0.03	16.30	849.00	865.30
C39635		< 0.03	< 0.03	< 0.03	< 0.03	15.41	932.50	947.91
								1

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39636		< 0.03	< 0.03	< 0.03	< 0.03	11.61	876.20	887.81
C39637		< 0.03	< 0.03	< 0.03	< 0.03	6.300	735.80	742.10
C39638		< 0.03	< 0.03	< 0.03	< 0.03	26.98	910.90	937.88
C39639	< 0.03							
C39640	< 0.03							
C39641	< 0.03							
C39642	0.33							
C39643	< 0.03							
C39644	< 0.03							
C39645	< 0.03							
C39646	< 0.03							
C39647	< 0.03							
C39648	< 0.03							
C39649		< 0.03	< 0.03	< 0.03	< 0.03	28.69	1048.1	1076.8
C39650	< 0.03							
C39651		90.1	1.99	1.64	3.53	19.94	1005.4	1025.3
C39652		10.3	0.04	0.16	0.27	16.63	970.40	987.03
C39653		222	4.92	4.67	9.49	19.49	883.40	902.89
C39654		4.28	< 0.03	< 0.03	0.07	18.00	1018.3	1036.3
C39655		33.4	0.63	0.96	1.51	20.29	905.80	926.09
C39656		< 0.03	< 0.03	< 0.03	< 0.03	22.65	981.90	1004.5
C39657		< 0.03	< 0.03	< 0.03	< 0.03	16.67	997.20	1013.9
C39658		< 0.03	< 0.03	< 0.03	< 0.03	14.64	947.90	962.54
C39659		< 0.03	< 0.03	< 0.03	< 0.03	30.90	912.70	943.60
C39660	< 0.03							
C39661	0.07							
C39662	< 0.03							
C39663	< 0.03							
C39664	< 0.03							
C39665	< 0.03							
C39666	< 0.03							
C39667	< 0.03							
C39668	< 0.03							
C39669	< 0.03							
C39670	4.68							
C39671	< 0.03							
C39672	< 0.03							
C39673	< 0.03							
C39674	< 0.03							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39675	< 0.03							
C39676	< 0.03							
C39677		< 0.03	< 0.03	< 0.03	< 0.03	12.11	799.70	811.81
C39678		< 0.03	< 0.03	< 0.03	< 0.03	18.48	1000.6	1019.1
C39679		< 0.03	< 0.03	< 0.03	< 0.03	14.63	1011.0	1025.6
C39680		< 0.03	< 0.03	< 0.03	< 0.03	27.22	1005.1	1032.3
Analyte Symbol	Au	Total Au	Total Weight					
---------------------------------------	------------	-------------	---------------------------------------	--				
Unit Symbol	a/tonne	a/mt	a					
Lower Limit	0.03	0.03	3					
Method Code	FA- GRA	FA-MeT	FA-MeT					
OREAS 214 Meas	2.96	2.89						
OREAS 214 Cert	3.03	3.03						
OREAS 214 Meas	3.00	2.99						
OBEAS 214 Cert	3.03	3.03						
OREAS 214 Meas	2.95	2.91						
ORFAS 214 Cert	3.03	3.03						
OBEAS 214 Meas	0.00	2.89						
OBEAS 214 Cert		3.03						
OREAS 216 (Fire Assay) Meas	6.44	6.42						
OREAS 216 (Fire Assay) Cert	6.66	6.66						
OREAS 216 (Fire Assay) Meas	6.37	6.66						
OREAS 216 (Fire Assay) Cert	6.66	6.66						
OREAS 216 (Fire Assay) Meas	6.60	6.86						
OREAS 216 (Fire Assay) Cert	6.66	6.66						
OREAS 216 (Fire Assay) Meas		6.60						
OBEAS 216 (Fire		6.66						
Assay) Cert		0.00						
C39576 Orig	< 0.03							
C39576 Dup	< 0.03							
C39596 Orig	< 0.03							
C39596 Dup	< 0.03							
C39611 Orig	< 0.03							
C39611 Split PREP DUP	< 0.03							
C39612 Orig	0.13							
C39612 Dup	0.10							
C39626 Orig	< 0.03							
C39626 Dup	< 0.03							
C39645 Orig	< 0.03							
C39645 Dup	< 0.03							
C39660 Orig	< 0.03							
C39660 Split PREP DUP	< 0.03							
C39666 Orig	< 0.03							
C39666 Dup	< 0.03							
C39674 Orig	< 0.03							
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					

Analyte Symbol	Au	Total Au	Total Weight
Unit Symbol	g/tonne	g/mt	g
Lower Limit	0.03	0.03	
Method Code	FA- GRA	FA-MeT	FA-MeT
C39674 Dup	< 0.03		
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank	< 0.03		
Method Blank	< 0.03		

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 13-Feb-18

 Invoice No.:
 A18-01728

 Invoice Date:
 27-Feb-18

 Your Reference:
 X

RT Minerals Corp. 300 - 555 West Georgia Street Vancouver BC V6B 1Z6 Canada

ATTN: Paul Antoniazzi (inv-cc)

CERTIFICATE OF ANALYSIS

167 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-1000g

REPORT A18-01728

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	a/mt	g/mt	a/mt	g/mt	a	a	a
Lower Limit	0.03	0.03	0.03	0.03	0.03	0	0	0
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39681		0.56	< 0.03	0.04	0.04	19.79	858.10	877.89
C39682		< 0.03	< 0.03	< 0.03	< 0.03	25.63	1048.2	1073.8
C39683		< 0.03	< 0.03	< 0.03	< 0.03	27.20	1102.5	1129.7
C39684		0.06	0.04	< 0.03	0.03	31.30	953.50	984.80
C39685		0.05	< 0.03	< 0.03	< 0.03	44.36	1026.3	1070.7
C39686		1.17	0.35	0.44	0.41	26.50	1303.6	1330.1
C39687		< 0.03	< 0.03	< 0.03	< 0.03	25.58	936.60	962.18
C39688		< 0.03	< 0.03	< 0.03	< 0.03	9.930	874.30	884.23
C39689		< 0.03	0.26	0.18	0.21	16.36	851.40	867.76
C39690	< 0.03							
C39691		2.73	0.28	0.29	0.33	18.67	974.30	992.97
C39692		< 0.03	0.10	0.12	0.11	13.29	1038.0	1051.3
C39693		< 0.03	< 0.03	< 0.03	< 0.03	13.92	1035.5	1049.4
C39694		< 0.03	< 0.03	< 0.03	< 0.03	12.43	1040.8	1053.2
C39695		< 0.03	0.08	0.08	0.08	16.56	1039.7	1056.3
C39696		< 0.03	< 0.03	< 0.03	< 0.03	7.880	1024.6	1032.5
C39697		< 0.03	< 0.03	< 0.03	< 0.03	11.75	1036.1	1047.8
C39698		< 0.03	< 0.03	< 0.03	< 0.03	10.14	1004.0	1014.1
C39699		< 0.03	< 0.03	< 0.03	< 0.03	25.22	1063.5	1088.7
C39700		27.2	0.86	0.75	1.17	15.22	1073.2	1088.4
C39701		< 0.03	0.08	0.06	0.07	17.54	1035.4	1052.9
C39702		13.2	< 0.03	< 0.03	0.39	28.91	952.80	981.71
C39703		< 0.03	0.08	0.12	0.10	28.87	890.00	918.87
C39704		43.9	1.36	1.61	2.44	19.58	847.20	866.78
C39705		< 0.03	0.12	0.12	0.12	22.46	872.90	895.36
C39706		8.93	0.78	0.89	1.04	24.31	910.70	935.01
C39707		2.24	0.38	0.30	0.39	25.84	871.50	897.30
C39708		< 0.03	0.16	0.12	0.14	23.97	931.80	955.77
C39709	< 0.03							
C39710	3.89							
C39711	< 0.03							
C39712	< 0.03							
C39713	< 0.03							
C39714	0.10							
C39715	< 0.03							
C39716	< 0.03							
C39717	< 0.03							
C39718	< 0.03							
C39719	< 0.03							
	1							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39720	< 0.03							
C39721	< 0.03							
C39722	< 0.03							
C39723	3.95							
C39724	< 0.03							
C39725	< 0.03							
C39726	< 0.03							
C39727	< 0.03							
C39728	< 0.03							
C39729	< 0.03							
C39730	< 0.03							
C39731	< 0.03							
C39732	< 0.03							
C39733	< 0.03							
C39734		0.20	0.14	0.10	0.12	15.10	802.20	817.30
C39735		< 0.03	0.04	0.04	0.04	23.26	944.70	967.96
C39736		0.88	0.04	0.04	0.06	20.49	926.00	946.49
C39737		< 0.03	0.14	0.10	0.12	26.33	875.90	902.23
C39738		12.5	0.40	0.38	0.63	18.70	917.60	936.30
C39739		< 0.03	< 0.03	< 0.03	< 0.03	23.57	930.90	954.47
C39740		1.50	0.26	0.31	0.32	25.34	964.00	989.34
C39741		< 0.03	< 0.03	< 0.03	< 0.03	27.32	1001.3	1028.6
C39742		0.22	0.14	0.10	0.12	23.19	938.60	961.79
C39743		< 0.03	< 0.03	< 0.03	< 0.03	26.44	945.50	971.94
C39744		< 0.03	0.04	0.06	0.05	24.12	1008.8	1032.9
C39745		< 0.03	< 0.03	< 0.03	< 0.03	19.48	950.20	969.68
C39746		< 0.03	< 0.03	< 0.03	< 0.03	18.76	951.30	970.06
C39747		< 0.03	0.18	0.16	0.16	18.21	873.10	891.31
C39748		< 0.03	< 0.03	< 0.03	< 0.03	22.20	851.40	873.60
C39749		< 0.03	< 0.03	< 0.03	< 0.03	17.97	854.50	872.47
C39750	4.54							
C39751		< 0.03	< 0.03	< 0.03	< 0.03	27.76	972.20	999.96
C39752		< 0.03	< 0.03	< 0.03	< 0.03	25.31	964.60	989.91
C39753		< 0.03	< 0.03	< 0.03	< 0.03	20.50	960.80	981.30
C39754		< 0.03	< 0.03	< 0.03	< 0.03	28.53	1050.6	1079.1
C39755		< 0.03	< 0.03	< 0.03	< 0.03	24.03	1052.1	1076.1
C39756		< 0.03	< 0.03	< 0.03	< 0.03	30.53	977.30	1007.8
C39757		< 0.03	< 0.03	< 0.03	< 0.03	29.18	1045.9	1075.1
C39758		< 0.03	< 0.03	< 0.03	< 0.03	17.32	988.80	1006.1
	1	1	1			1		

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39759		< 0.03	< 0.03	< 0.03	< 0.03	20.90	962.70	983.60
C39760		< 0.03	< 0.03	< 0.03	< 0.03	12.72	1095.4	1108.1
C39761		< 0.03	< 0.03	< 0.03	< 0.03	27.07	1061.9	1089.0
C39762		< 0.03	0.04	0.04	0.04	23.00	963.90	986.90
C39763		0.04	0.24	0.24	0.23	24.07	1024.6	1048.7
C39764		< 0.03	< 0.03	< 0.03	< 0.03	24.57	991.60	1016.2
C39765		< 0.03	< 0.03	< 0.03	< 0.03	17.58	1000.6	1018.2
C39766		< 0.03	< 0.03	< 0.03	< 0.03	20.86	949.80	970.66
C39767		< 0.03	0.18	0.20	0.18	23.42	1052.6	1076.0
C39768		2.41	0.92	1.09	1.02	14.53	982.60	997.13
C39769		< 0.03	< 0.03	< 0.03	< 0.03	16.18	1006.9	1023.1
C39770	< 0.03							
C39771		< 0.03	< 0.03	< 0.03	< 0.03	18.42	964.50	982.92
C39772		< 0.03	< 0.03	< 0.03	< 0.03	24.07	957.60	981.67
C39773		< 0.03	< 0.03	< 0.03	< 0.03	23.93	960.10	984.03
C39774		< 0.03	< 0.03	< 0.03	< 0.03	18.76	953.50	972.26
C39775		< 0.03	< 0.03	< 0.03	< 0.03	21.51	966.60	988.11
C39776		< 0.03	< 0.03	< 0.03	< 0.03	25.24	959.80	985.04
C39777	< 0.03							
C39778	< 0.03							
C39779	< 0.03							
C39780	< 0.03							
C39781	< 0.03							
C39782	< 0.03							
C39783	< 0.03							
C39784	< 0.03							
C39785	< 0.03							
C39786	< 0.03							
C39787		< 0.03	< 0.03	< 0.03	< 0.03	18.63	968.20	986.83
C39788		0.83	< 0.03	< 0.03	< 0.03	21.72	941.60	963.32
C39789		< 0.03	< 0.03	< 0.03	< 0.03	50.24	957.40	1007.6
C39790	2.59							
C39791		< 0.03	< 0.03	< 0.03	< 0.03	10.21	997.40	1007.6
C39793		0.08	0.14	0.12	0.13	12.72	862.70	875.42
C39794		< 0.03	< 0.03	< 0.03	< 0.03	14.60	1063.9	1078.5
C39795		< 0.03	< 0.03	< 0.03	< 0.03	19.21	979.70	998.91
C39796		< 0.03	< 0.03	< 0.03	< 0.03	25.93	1006.6	1032.5
C39797		< 0.03	< 0.03	< 0.03	< 0.03	29.90	884.10	914.00
C39798		0.12	0.16	0.18	0.17	25.00	848.50	873.50

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39799		< 0.03	< 0.03	< 0.03	< 0.03	21.08	977.00	998.10
C39800		< 0.03	< 0.03	< 0.03	< 0.03	14.32	916.90	931.22
C39801		1.27	0.34	0.32	0.35	25.24	888.20	913.44
C39802		< 0.03	< 0.03	< 0.03	< 0.03	25.54	844.50	870.04
C39803		< 0.03	< 0.03	< 0.03	< 0.03	17.24	875.30	892.50
C39804		< 0.03	< 0.03	< 0.03	< 0.03	23.08	913.40	936.48
C39805		< 0.03	< 0.03	< 0.03	< 0.03	18.20	825.50	843.70
C39806		< 0.03	< 0.03	< 0.03	< 0.03	19.62	889.20	908.82
C39807		< 0.03	< 0.03	< 0.03	< 0.03	23.66	919.40	943.06
C39808		< 0.03	< 0.03	< 0.03	< 0.03	28.11	896.40	924.51
C39809		< 0.03	< 0.03	< 0.03	< 0.03	15.46	902.00	917.46
C39810	< 0.03							
C39811		< 0.03	< 0.03	< 0.03	< 0.03	24.92	1086.6	1111.5
C39812		< 0.03	< 0.03	< 0.03	< 0.03	30.54	946.70	977.20
C39813		< 0.03	< 0.03	< 0.03	< 0.03	22.40	919.10	941.50
C39814		< 0.03	< 0.03	< 0.03	< 0.03	18.96	934.60	953.56
C39815		< 0.03	< 0.03	< 0.03	< 0.03	19.27	905.60	924.90
C39816	< 0.03							
C39817	< 0.03							
C39818	< 0.03							
C39819	< 0.03							
C39820	< 0.03							
C39821	< 0.03							
C39822	< 0.03							
C39823	< 0.03							
C39824	< 0.03							
C39825	< 0.03							
C39826	< 0.03							
C39827	< 0.03							
C39828	< 0.03							
C39829		< 0.03	< 0.03	< 0.03	< 0.03	25.36	954.40	979.76
C39830	0.72							
C39831		< 0.03	< 0.03	< 0.03	< 0.03	26.59	915.50	942.09
C39832		< 0.03	< 0.03	< 0.03	< 0.03	27.96	928.10	956.06
C39834		< 0.03	< 0.03	< 0.03	< 0.03	25.42	929.00	954.42
C39835		< 0.03	< 0.03	< 0.03	< 0.03	19.91	885.00	904.91
C39836	< 0.03							
C39837	< 0.03							
C39838	< 0.03							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39839	< 0.03							
C39840	< 0.03							
C39841	< 0.03							
C39842	< 0.03							
C39843	< 0.03							
C39844	< 0.03							
C39845	< 0.03							
C39846	< 0.03							
C39847		< 0.03	< 0.03	< 0.03	< 0.03	25.70	919.90	945.60

Analyte Symbol	Au	Total Au	Total Weight
Unit Symbol	a/tonne	a/mt	a
Lower Limit	0.03	0.03	5
Method Code	FA-	FA-MeT	FA-Me
	GRA		
OREAS 214 Meas	2.91	2.88	
OREAS 214 Cert	3.03	3.03	
OREAS 214 Meas	2.88	2.87	
OBEAS 214 Cert	3.03	3.03	
ORFAS 214 Meas	0.00	2.95	
OBEAS 214 Cert		3.03	
OREAS 214 Meas		2.05	
OREAS 214 Mieas		2.00	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.02	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.16	
OREAS 214 Cert		3.03	
OREAS 214 Meas		2.96	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.10	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.01	
OREAS 214 Cert		3.03	
OREAS 216 (Fire	6.55	6.46	
Assay) Meas			
OREAS 216 (Fire	6.66	6.66	
Assay) Cert			
OREAS 216 (Fire		6.38	
Assay) Meas			
OREAS 216 (Fire		6.66	
Assay) Cert			
OREAS 216 (Fire		6.47	
Assay) Weas		0.00	
Assav) Cert		0.00	
OBEAS 216 (Fire		6.61	
Assay) Meas		0.01	
OREAS 216 (Fire		6.66	
Assay) Cert			
OREAS 216 (Fire		6.56	
Assay) Meas			
OREAS 216 (Fire		6.66	
Assay) Cert			
OREAS 216 (Fire		6.88	
Assay) Meas			
OREAS 216 (Fire		6.66	
Assay) Cert		0.15	
UNEAS 210 (FIR		0.45	

Analyte Symbol	Au	Total Au	Total Weight	
Linit Symbol	a/tonne	a/mt	a	
Lower Limit	0.03	0.03	9	
Method Code	6.00 ΕΔ.	EA-MOT	FA-MoT	
	GBA	I A-IVIE I	I A-IVIE I	
Assav) Meas	0.1.0.1			
OBEAS 216 (Fire		6 66		
Assay) Cert		0.00		
OREAS 216 (Fire		6.65		
Assay) Meas				
OREAS 216 (Fire		6.66		
Assay) Cert				
OREAS 216 (Fire		6.76		
Assay) Meas				
OREAS 216 (Fire		6.66		
Assay) Cert				
C39717 Orig	< 0.03			
C39717 Dup	< 0.03			
C39727 Orig	< 0.03			
C39727 Dup	< 0.03			
C39730 Orig	< 0.03			
C39730 Split	< 0.03			
PREP DUP				
C39779 Orig	< 0.03			
C39779 Dup	< 0.03			
C39780 Orig	< 0.03			
C39780 Split	< 0.03			
PREP DUP				
C39820 Orig	< 0.03			
C39820 Dup	< 0.03			
C39828 Orig	< 0.03			
C39828 Split	< 0.03			
PREP DUP				
C39836 Orig	< 0.03			
C39836 Dup	< 0.03			
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	
Method Blank		< 0.03	0.00000	

Analyte Symbol	Au	Total Au	Total Weight
Unit Symbol	g/tonne	g/mt	g
Lower Limit	0.03	0.03	
Method Code	FA- GRA	FA-MeT	FA-MeT
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 13-Feb-18

 Invoice No.:
 A18-01728

 Invoice Date:
 28-Feb-18

 Your Reference:
 X

RT Minerals Corp. 300 - 555 West Georgia Street Vancouver BC V6B 1Z6 Canada

ATTN: Paul Antoniazzi (inv-cc)

CERTIFICATE OF ANALYSIS

167 Core samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-1000g

REPORT A18-01728

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	a/mt	g/mt	a/mt	g/mt	a	a	a
Lower Limit	0.03	0.03	0.03	0.03	0.03	0	0	0
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39681		0.56	< 0.03	0.04	0.04	19.79	858.10	877.89
C39682		< 0.03	< 0.03	< 0.03	< 0.03	25.63	1048.2	1073.8
C39683		< 0.03	< 0.03	< 0.03	< 0.03	27.20	1102.5	1129.7
C39684		0.06	0.04	< 0.03	0.03	31.30	953.50	984.80
C39685		0.05	< 0.03	< 0.03	< 0.03	44.36	1026.3	1070.7
C39686		1.17	0.35	0.44	0.41	26.50	1303.6	1330.1
C39687		< 0.03	< 0.03	< 0.03	< 0.03	25.58	936.60	962.18
C39688		< 0.03	< 0.03	< 0.03	< 0.03	9.930	874.30	884.23
C39689		< 0.03	0.26	0.18	0.21	16.36	851.40	867.76
C39690	< 0.03							
C39691		2.73	0.28	0.29	0.33	18.67	974.30	992.97
C39692		< 0.03	0.10	0.12	0.11	13.29	1038.0	1051.3
C39693		< 0.03	< 0.03	< 0.03	< 0.03	13.92	1035.5	1049.4
C39694		< 0.03	< 0.03	< 0.03	< 0.03	12.43	1040.8	1053.2
C39695		< 0.03	0.08	0.08	0.08	16.56	1039.7	1056.3
C39696		< 0.03	< 0.03	< 0.03	< 0.03	7.880	1024.6	1032.5
C39697		< 0.03	< 0.03	< 0.03	< 0.03	11.75	1036.1	1047.8
C39698		< 0.03	< 0.03	< 0.03	< 0.03	10.14	1004.0	1014.1
C39699		< 0.03	< 0.03	< 0.03	< 0.03	25.22	1063.5	1088.7
C39700		27.2	0.86	0.75	1.17	15.22	1073.2	1088.4
C39701		< 0.03	0.08	0.06	0.07	17.54	1035.4	1052.9
C39702		13.2	< 0.03	< 0.03	0.39	28.91	952.80	981.71
C39703		< 0.03	0.08	0.12	0.10	28.87	890.00	918.87
C39704		43.9	1.36	1.61	2.44	19.58	847.20	866.78
C39705		< 0.03	0.12	0.12	0.12	22.46	872.90	895.36
C39706		8.93	0.78	0.89	1.04	24.31	910.70	935.01
C39707		2.24	0.38	0.30	0.39	25.84	871.50	897.30
C39708		< 0.03	0.16	0.12	0.14	23.97	931.80	955.77
C39709	< 0.03							
C39710	3.89							
C39711	< 0.03							
C39712	< 0.03							
C39713	< 0.03							
C39714	0.10							
C39715	< 0.03							
C39716	< 0.03							
C39717	< 0.03							
C39718	< 0.03							
C39719	< 0.03							
	1							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39720	< 0.03							
C39721	< 0.03							
C39722	< 0.03							
C39723	3.95							
C39724	< 0.03							
C39725	< 0.03							
C39726	< 0.03							
C39727	< 0.03							
C39728	< 0.03							
C39729	< 0.03							
C39730	< 0.03							
C39731	< 0.03							
C39732	< 0.03							
C39733	< 0.03							
C39734		0.20	0.14	0.10	0.12	15.10	802.20	817.30
C39735		< 0.03	0.04	0.04	0.04	23.26	944.70	967.96
C39736		0.88	0.04	0.04	0.06	20.49	926.00	946.49
C39737		< 0.03	0.14	0.10	0.12	26.33	875.90	902.23
C39738		12.5	0.40	0.38	0.63	18.70	917.60	936.30
C39739		< 0.03	< 0.03	< 0.03	< 0.03	23.57	930.90	954.47
C39740		1.50	0.26	0.31	0.32	25.34	964.00	989.34
C39741		< 0.03	< 0.03	< 0.03	< 0.03	27.32	1001.3	1028.6
C39742		0.22	0.14	0.10	0.12	23.19	938.60	961.79
C39743		< 0.03	< 0.03	< 0.03	< 0.03	26.44	945.50	971.94
C39744		< 0.03	0.04	0.06	0.05	24.12	1008.8	1032.9
C39745		< 0.03	< 0.03	< 0.03	< 0.03	19.48	950.20	969.68
C39746		< 0.03	< 0.03	< 0.03	< 0.03	18.76	951.30	970.06
C39747		< 0.03	0.18	0.16	0.16	18.21	873.10	891.31
C39748		< 0.03	< 0.03	< 0.03	< 0.03	22.20	851.40	873.60
C39749		< 0.03	< 0.03	< 0.03	< 0.03	17.97	854.50	872.47
C39750	4.54							
C39751		< 0.03	< 0.03	< 0.03	< 0.03	27.76	972.20	999.96
C39752		< 0.03	< 0.03	< 0.03	< 0.03	25.31	964.60	989.91
C39753		< 0.03	< 0.03	< 0.03	< 0.03	20.50	960.80	981.30
C39754		< 0.03	< 0.03	< 0.03	< 0.03	28.53	1050.6	1079.1
C39755		< 0.03	< 0.03	< 0.03	< 0.03	24.03	1052.1	1076.1
C39756		< 0.03	< 0.03	< 0.03	< 0.03	30.53	977.30	1007.8
C39757		< 0.03	< 0.03	< 0.03	< 0.03	29.18	1045.9	1075.1
C39758		< 0.03	< 0.03	< 0.03	< 0.03	17.32	988.80	1006.1
	1	1	1			1		

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39759		< 0.03	< 0.03	< 0.03	< 0.03	20.90	962.70	983.60
C39760		< 0.03	< 0.03	< 0.03	< 0.03	12.72	1095.4	1108.1
C39761		< 0.03	< 0.03	< 0.03	< 0.03	27.07	1061.9	1089.0
C39762		< 0.03	0.04	0.04	0.04	23.00	963.90	986.90
C39763		0.04	0.24	0.24	0.23	24.07	1024.6	1048.7
C39764		< 0.03	< 0.03	< 0.03	< 0.03	24.57	991.60	1016.2
C39765		< 0.03	< 0.03	< 0.03	< 0.03	17.58	1000.6	1018.2
C39766		< 0.03	< 0.03	< 0.03	< 0.03	20.86	949.80	970.66
C39767		< 0.03	0.18	0.20	0.18	23.42	1052.6	1076.0
C39768		2.41	0.92	1.09	1.02	14.53	982.60	997.13
C39769		< 0.03	< 0.03	< 0.03	< 0.03	16.18	1006.9	1023.1
C39770	< 0.03							
C39771		< 0.03	< 0.03	< 0.03	< 0.03	18.42	964.50	982.92
C39772		< 0.03	< 0.03	< 0.03	< 0.03	24.07	957.60	981.67
C39773		< 0.03	< 0.03	< 0.03	< 0.03	23.93	960.10	984.03
C39774		< 0.03	< 0.03	< 0.03	< 0.03	18.76	953.50	972.26
C39775		< 0.03	< 0.03	< 0.03	< 0.03	21.51	966.60	988.11
C39776		< 0.03	< 0.03	< 0.03	< 0.03	25.24	959.80	985.04
C39777	< 0.03							
C39778	< 0.03							
C39779	< 0.03							
C39780	< 0.03							
C39781	< 0.03							
C39782	< 0.03							
C39783	< 0.03							
C39784	< 0.03							
C39785	< 0.03							
C39786	< 0.03							
C39787		< 0.03	< 0.03	< 0.03	< 0.03	18.63	968.20	986.83
C39788		0.83	< 0.03	< 0.03	< 0.03	21.72	941.60	963.32
C39789		< 0.03	< 0.03	< 0.03	< 0.03	50.24	957.40	1007.6
C39790	2.59							
C39791		< 0.03	< 0.03	< 0.03	< 0.03	10.21	997.40	1007.6
C39792		< 0.03	< 0.03	< 0.03	< 0.03	28.96	1011.5	1040.5
C39793		0.08	0.14	0.12	0.13	12.72	862.70	875.42
C39794		< 0.03	< 0.03	< 0.03	< 0.03	14.60	1063.9	1078.5
C39795		< 0.03	< 0.03	< 0.03	< 0.03	19.21	979.70	998.91
C39796		< 0.03	< 0.03	< 0.03	< 0.03	25.93	1006.6	1032.5
C39797		< 0.03	< 0.03	< 0.03	< 0.03	29.90	884.10	914.00
								I 7

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39798	1	0.12	0.16	0.18	0.17	25.00	848.50	873.50
C39799		< 0.03	< 0.03	< 0.03	< 0.03	21.08	977.00	998.10
C39800		< 0.03	< 0.03	< 0.03	< 0.03	14.32	916.90	931.22
C39801		1.27	0.34	0.32	0.35	25.24	888.20	913.44
C39802		< 0.03	< 0.03	< 0.03	< 0.03	25.54	844.50	870.04
C39803		< 0.03	< 0.03	< 0.03	< 0.03	17.24	875.30	892.50
C39804		< 0.03	< 0.03	< 0.03	< 0.03	23.08	913.40	936.48
C39805		< 0.03	< 0.03	< 0.03	< 0.03	18.20	825.50	843.70
C39806		< 0.03	< 0.03	< 0.03	< 0.03	19.62	889.20	908.82
C39807		< 0.03	< 0.03	< 0.03	< 0.03	23.66	919.40	943.06
C39808		< 0.03	< 0.03	< 0.03	< 0.03	28.11	896.40	924.51
C39809		< 0.03	< 0.03	< 0.03	< 0.03	15.46	902.00	917.46
C39810	< 0.03							
C39811		< 0.03	< 0.03	< 0.03	< 0.03	24.92	1086.6	1111.5
C39812		< 0.03	< 0.03	< 0.03	< 0.03	30.54	946.70	977.20
C39813		< 0.03	< 0.03	< 0.03	< 0.03	22.40	919.10	941.50
C39814		< 0.03	< 0.03	< 0.03	< 0.03	18.96	934.60	953.56
C39815		< 0.03	< 0.03	< 0.03	< 0.03	19.27	905.60	924.90
C39816	< 0.03							
C39817	< 0.03							
C39818	< 0.03							
C39819	< 0.03							
C39820	< 0.03							
C39821	< 0.03							
C39822	< 0.03							
C39823	< 0.03							
C39824	< 0.03							
C39825	< 0.03							
C39826	< 0.03							
C39827	< 0.03							
C39828	< 0.03							
C39829		< 0.03	< 0.03	< 0.03	< 0.03	25.36	954.40	979.76
C39830	0.72							
C39831		< 0.03	< 0.03	< 0.03	< 0.03	26.59	915.50	942.09
C39832		< 0.03	< 0.03	< 0.03	< 0.03	27.96	928.10	956.06
C39833		0.14	0.14	0.18	0.16	22.08	948.80	970.88
C39834		< 0.03	< 0.03	< 0.03	< 0.03	25.42	929.00	954.42
C39835		< 0.03	< 0.03	< 0.03	< 0.03	19.91	885.00	904.91
C39836	< 0.03							

Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03	0.03			
Method Code	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
C39837	< 0.03							
C39838	< 0.03							
C39839	< 0.03							
C39840	< 0.03							
C39841	< 0.03							
C39842	< 0.03							
C39843	< 0.03							
C39844	< 0.03							
C39845	< 0.03							
C39846	< 0.03							
C39847		< 0.03	< 0.03	< 0.03	< 0.03	25.70	919.90	945.60

Analyte Symbol	Au	Total Au	Total Weight
Linit Symbol	a/tonne	a/mt	a
Lower Limit	0.02	0.02	g
Lower Linit Mothod Codo	0.00 EA	EA MOT	
	GBA	I A-IVIE I	
OREAS 214 Meas	2 91	3.01	
OREAS 214 Cert	3.03	3.03	
OREAS 214 Ven	0.00	0.00	
OREAS 214 Meas	2.00	2.00	
OREAS 214 Cert	3.03	3.03	
OREAS 214 Meas		2.87	
OREAS 214 Cert		3.03	
OREAS 214 Meas		2.95	
OREAS 214 Cert		3.03	
OREAS 214 Meas		2.95	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.02	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.16	
OREAS 214 Cert		3.03	
OREAS 214 Meas		2.96	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.10	
OREAS 214 Cert		3.03	
OREAS 214 Meas		3.01	
OREAS 214 Cert		3.03	
OREAS 216 (Fire	6.55	6.72	
Assay) Meas			
OREAS 216 (Fire	6.66	6.66	
Assay) Cert			
OREAS 216 (Fire		6.46	
ASSAY) Weas		0.00	
Assav) Cert		0.00	
OBEAS 216 (Fire		6.38	
Assay) Meas		0.00	
OREAS 216 (Fire		6.66	
Assay) Cert			
OREAS 216 (Fire		6.47	
Assay) Meas			
OREAS 216 (Fire		6.66	
Assay) Cert			
OREAS 216 (Fire		6.61	
OBEAS 216 (Fire		6 66	
Assay) Cert		0.00	
OREAS 216 (Fire		6.56	
Assay) Meas			
OREAS 216 (Fire		6.66	
1		I	

Analyte Symbol	Au	Total Au	Total Weight	
Unit Symbol	a/tonne	a/mt	a	
Lower Limit	0.03	0.03	5	
Method Code	FA-	FA-MeT	FA-MeT	
	GRA			
Assay) Cert				
OREAS 216 (Fire		6.88		
Assay) Meas				
OREAS 216 (Fire		6.66		
Assay) Cert				
OREAS 216 (Fire		6.45		
Assay) Meas				
OREAS 216 (Fire		6.66		
OBEAS 216 (Eiro		6.65		
OREAS 210 (FILE Assav) Meas		0.00		
OBEAS 216 (Fire		6 66		
Assay) Cert		0.00		
OREAS 216 (Fire		6.76		
Assay) Meas				
OREAS 216 (Fire		6.66		
Assay) Cert				
C39717 Orig	< 0.03			
C39717 Dup	< 0.03			
C39727 Orig	< 0.03			
C39727 Dup	< 0.03			
C39730 Orig	< 0.03			
C39730 Split	< 0.03			
PREP DUP				
C39779 Orig	< 0.03			
C39779 Dup	< 0.03			
C39780 Orig	< 0.03			
C39780 Split	< 0.03			
PREP DUP				
C39820 Orig	< 0.03			
C39820 Dup	< 0.03			
C39828 Orig	< 0.03			
C39828 Split PREP DUP	< 0.03			
C39836 Orig	< 0.03			
C39836 Dup	< 0.03	Ì		
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank	< 0.03			
Method Blank	1 0.00	< 0.03	0.0000	
Method Blank		< 0.03	0.00000	
Mothod Plank		< 0.03	0.00000	
		< 0.03	0.00000	
	-	-		

Analyte Symbol	Au	Total Au	Total Weight
Unit Symbol	g/tonne	g/mt	g
Lower Limit	0.03	0.03	
Method Code	FA- GRA	FA-MeT	FA-MeT
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000
Method Blank		< 0.03	0.00000

Appendix 4 – Drill Plan Map

