

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report on Diamond Drilling at the Ranoke Project, Ontario

Ranoke Property, Mulholland, Pickett & Morrow Townships, Porcupine Mining Division, Northeast Region, Ontario Map Sheet: 42I12

> Author: Justin J. Daley, MSc, PGeo Principal Geologist VR Resources Ltd.

> > June 2020

VR RESOURCES LTD. 1750 – 700 West Pender St. Vancouver, BC, Canada, V6C1G8 Web: <u>www.vrr.ca</u>

Table of Contents

Summary	3
Location and Access	5
Regional Geology and Exploration History	6
Property Exploration History	10
Property Geology	10
Exploration Model	14
Drill Holes	15
Recommendations & Conclusions	15
Certificate	16
References	17

List of Figures & Tables

Figure 1: Location and access to the Ranoke Property	5
Figure 2: Location of assessment report database drillholes	7
Figure 3: Regional geology map of Kapuskasing structural zone (KSZ)	8
Table 1: Summary of major geological/tectonic events shaping the study region.	9
Figure 4: Total magnetic field at Ranoke	11
Figure 5: Geochemical discrimination plots	12
Figure 6: Core photos from Ranoke 2019-2020 drill program.	13
Figure 7: Schematic section of the exploration target at Ranoke.	14
Table 2: Diamond drill hole locations at Ranoke	15

Appendix A

Plan Map Logging Code List and Abbreviations Drill Logs XRF Logs Drill Sections

Appendix B Expense Report 2

Summary

The first-pass diamond drill program at Ranoke was conducted in two phases over the winter season of 2019-2020; beginning October 28th, 2019 for 35 days, on January 25th, 2020 for 30 days and on March 6th, 2020 for 7 days culminating on total drill demobilization by March 12th, 2020. Four (4) drill holes totaling 1,711 metres were completed on three (3) pads across a north-south transect of the northern half of the property to test large magnetic and gravity geophysical features for copper and gold mineralization and hydrothermal alteration related to an iron-oxide copper gold (IOCG) deposit or carbonatite intrusion along known structures in the James Bay Lowlands.

Drilling was completed by Machine Roger International (MRI) based in Val d'Or, Quebec with camp, logistics and helicopter supplied by Expedition Group of Companies in Cochrane, Ontario. The work was completed for the claim owners, VR Resources Ltd., who own all claims 100% with no royalties or carried interests. A well-site trailer camp was constructed at the end of regional road ON-634 by Expedition just northwest of the Otter Rapids hydroelectric facility (Figure 1) on ground rented from Villeneuve Construction.

Winter drill sites were cleared of trees in the immediate area of drilling and for an adjacent helipad, as there is no access by land. Larger trees (>10cm diameter) from the bank of the nearby Pickett Creek were cut, limbed and lain on the bog to form a firm base for the drilling platform. All drilling materials were removed from site and felled logs were dispersed to more easily decompose in the bog.

Drill core, both NQ and BQ size, was brought to and logged at the Otter Rapids Camp by VR Resources personnel and contractors. Before being stacked on pallets for storage, the core was analyzed by X-ray fluorescence (XRF) within areas of interest and on 3 metre intervals for trace element vectors and to determine the necessity of sampling for assay.

Significant overburden (190-220m) was encountered in all holes and caused the abandonment of the first hole of the program at the Silurian-Archean unconformity. From surface, units encountered were clay-sand-boulder till, marine clay, Cretaceous mudstone, Devonian limestone and dolostone sequences and basal Silurian sandstone. The unconformity with the underlying English River subprovince of the Superior Craton appears to be relatively uniform in depth across the area of work, ranging within 15m from surface. The basement geology was characterized by variably magnetic metavolcanics/metasedimentary pegmatitic biotite-feldspar-quartz orthogneiss, medium-grain magnetic meta-basalt interpreted to be a Matachewan dyke, and a highly-magnetic and foliated Archean granodiorite. All Archean basement units were cut by late (probable Cretaceous age) aphanitic and amygdular to phlogopite-phyric lamprophyre dykes, ranging from 0.25 - 1.5 m in width, that appear to have been intruded into fault structures and were the main host of lower temperature hydrothermal alteration that includes potassic sericite on specular hematite veining and intense iron carbonate replacement. The altered lamprophyre zones were often host to reactivated faulting and further fluid movement.

No economic mineralization has been identified in this drilling, however the identification of specular hematite veins in **RK19-001b** & **RK20-002** and fluorite-calcite veins in **RK20-003** along with high-temperature potassic and low temperature iron carbonate alteration related to

Mesozoic lamprophyre intrusions is supportive of an IOCG or carbonatite mineral system at Ranoke. The results of this three hole first-pass drill program have realigned the exploration targeting from large magnetic and gravity "pipe-like" features towards more structurally controlled zones where hydrothermal fluids have concentrated with the potential for copper or gold mineralization. It is recommended that a follow up drill program of 4 holes, costing ~\$1 million, be conducted to target major structural intersections associated with large magnetic and gravity features.

All maps, figures and coordinates are in UTM WGS84 Zone 17

Location and Access

The Ranoke property is in the Moose River basin in northern Ontario, Canada. It is located between the Mattagami and Missinaibi rivers. The nearest town is Moosonee located on tide water some 111 kilometres to the northeast at James Bay. Cochrane is the regional services hub and is located 180 kilometres to the southeast, on the Trans-Canada Highway (Provincial HWY 11). The property is 15 kilometers west of the active ONR railway line which connects the town of Moosonee with the Cochrane on the Trans Canada Highway, thus providing port access to the James Bay region (Figure 1).

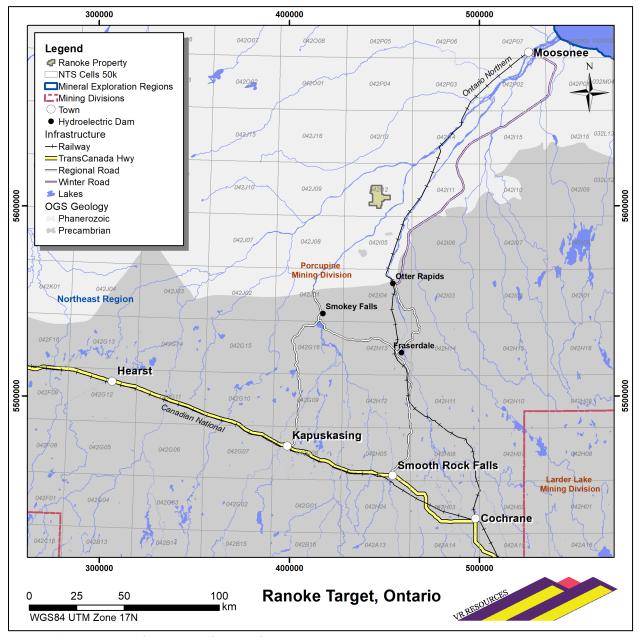


Figure 1: Location and access to the Ranoke Property

Otter Rapids Dam is an Ontario hydroelectric facility located on the Abitibi River about 50 kilometres to the south of the property. Provincial Highway 634 provides road access to Otter Rapids from Smooth Rock Falls, located at the junction of HWY 634 with the Trans-Canada Highway. Private ground just behind the ONR bunk house was rented from Villeneuve Construction and served as camp and helicopter base for crews during drilling. Helicopter access to the property from camp is about 50km each way

The Ranoke property is located in a boreal region of lowland muskeg, with black spruce and pine forest along river drainages. Topographic relief is minimal, and there is no outcrop in the lowland region; Ranoke is tens of kilometres north of the northern limit of exposed Archean Superior Province shield in northern Ontario.

Regional Geology and Exploration History

The Moose River Basin has a varied, checkerboard history of mineral exploration for the past 100 years. Cretaceous coal seams were the focus at the turn of the previous century, while diamond exploration has dominated in the region during the past 60 years (Figure 2). This section was adapted from the 2006 Coral Rapids Assessment Report for Baltic Resources.

Overall, exploration in the region is hindered by the lack of outcrop in the boggy, lowland terrain, and by the cover of up to 400 metres of mid-Paleozoic (Devonian) marine shelf strata and Cretaceous in-land basinal strata overlying Archean basement. Archean VMS and Proterozoic orogenic gold deposits occur in the surrounding sub-provinces of the Superior craton, but there are no active base metal or precious metal mines in the Moose River Basin region. The Attawapiskat diamond mine ("Victor") of Debeer's located well to the north along the Attawapiskat River has reached the end of its mine life after more than a decade in production.

The oldest mineral exploration in the Moose River region relates to coal, which is documented as far back as 1672 when the Abitibi River was part of an important fur trading route linking Hudson Bay with the Great Lakes. There are lignite occurrences exposed in the banks of the Abitibi River north of Coral Rapids. The coal seams were first studied in detail by the Geological Survey between 1871 and 1912. They extend westward from the Abitibi River within the confines a small Cretaceous successor basin named the Moose River Basin which is less than 50 kilometers in diameter. More than one hundred shallow drill holes were completed by the Ontario Department of Mines between 1926 and 1930 to evaluate the resource, leading ultimately to the completion of two shafts and some 389 metres of interconnecting drifts. Drilling resumed in the early 1950's with the completion of an additional 182 holes. In 1981, the Ontario Energy Corporation re-visited the potential of the coal and evaluated lignite stratigraphy farther to the west, in the region between the Mattagami and Missinaibi rivers. Hundreds of shallow drill holes were completed on a lease which exceeded 1 million acres. Drill holes were completed around, but not on, VR's current Ranoke copper-gold property.

Diamonds have been the focus of modern mineral exploration in the James Bay region. Exploration started in the 1960's by DeBeers (Monoprose Canada), focused initially in the Attawapiskat River region well to the north of the Moose River Basin, and built on the pioneering regional aeromagnetic program of the Geological Survey of Canada. Ongoing and extensive regional till and alluvium heavy mineral sampling and high-resolution magnetic surveys through the late 1980's eventually led to the discovery of numerous kimberlite pipes, including Victor.

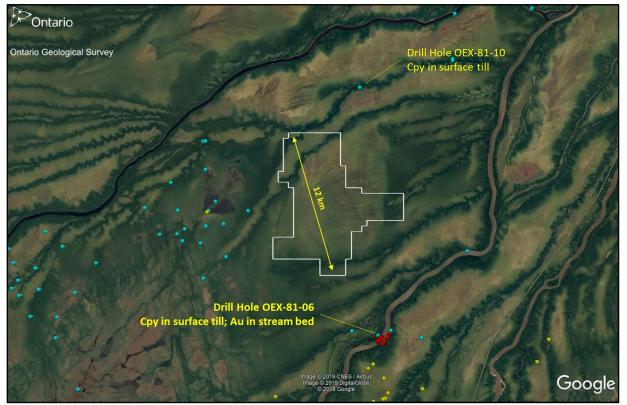


Figure 2: Location of assessment report database drillholes near the Ranoke Property. Teal pins to SW and NE of Ranoke represent drilling for coal by ONEXCO in 1981-1983, whereas red pins to south represent a soil auger campaign by them in 1982 following up on gold frains found in nearby heavy mineral separates from RC Drilling. Yellow pins to south represent kimberlite exploration during the 70s-90s.

The Ranoke property is near the southeastern margin of the Paleozoic Hudson Platform of Devonian marine strata. The property is within the Moose River Basin, a small, Cretaceous successor basin less than 50 kilometres across and located at the southeastern-most margin of the Paleozoic platform. Devonian and Cretaceous strata in the Moose River area were deposited on a gneissic crystalline basement of metamorphosed sedimentary assemblages and lesser volcano-plutonic complexes of the English River sub-Province, in what is believed to be the thickest part of the Archean Superior craton.

The Ranoke property occurs on the western margin of the Kapuskasing Structural Zone (KSZ), a crustal-scale shear zone which bisects the Superior craton in a complex, northeast-southwest trending zone of uplifted, high grade metamorphic rocks extending for more than 500 kilometres between Lake Superior and James Bay. There is believed to be more than 20 kilometres of

vertical crustal displacement along the KSZ. It is clearly defined by positive gravity and magnetic domains on regional geophysical maps.

The KSZ has a long-lived history of repeated ultra-basic, alkaline and carbonatite intrusions and kimberlite facies diatremes which collectively span 1.6 billion years of earth history, to as young as 125 million years ago. Intrusions in and around Coral Rapids and along the western margin of the KSZ where Archean rocks are exposed in major river drainages such as the Abitibi have been explored since the early 1960's, and many have been age-dated (Figure 3).

Selection Trust (later named Selco) began alluvial sampling in the KSZ region in 1962 and were joined by Esso Minerals in 1979. The first composite kimerlite – lamprophyry dyke was drilled in 1967, followed by drilling of the Valentine carbonatite complex in 1969. Between 1979 and 1983, the Selco – Esso partnership completed regional heavy mineral sampling of till and alluvium over an area exceeding 100,000 hectares, and an aeromagnetic program launched in 1980 led to the identification of numerous post-Paleozoic, pipe-like anomalies, of which 45 were drill-tested; most were ultra-basic and alkaline intrusions, non copper-bearing, and four were kimberlite-facies diatremes.

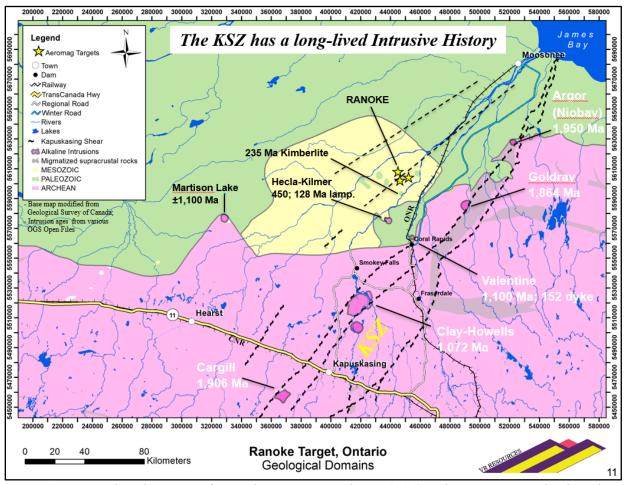


Figure 3: Regional geology map of Kapuskasing structural zone (KSZ) and James Bay Lowlands with alkaline and ultrabasic intrusions and their ages highlighted. The Ranoke target is noted by 3 gold stars indicating magnetic targets.

The Aquitane Company of Canada Ltd. completed airborne and ground geophysics between 1972 and 1974 to evaluate the hydro-carbon potential of Paleozoic strata, and twelve diamond drill holes to test for base metal, Mississippi Valley Type mineralization. A kimberlite west of Coral Rapids and south of Ranoke was also detected, delineated and drill-tested during this work. In 1978, Kerr-Addison Mines complete a series of reverse circulation drill holes near Coral Rapids to test exposed basal sandstone at the eastern edge of the Hudson Platform for uranium. These targets were re-visited and re-tested in 2006, during the re-surgent uranium exploration sector.

Regional-scale exploration in the KSZ - Moose River Basin region waned after 1983. Various small-scale airborne magnetic surveys and ground-based EM surveys, and local alluvium sampling programs were completed at the property-scale between 1983 and 2006, with the focus mostly on previously known, ultra-basic and alkaline intrusions and diatremes exposed at surface in and around Coral rapids, but also on limestone for industrial mineral applications.

Lastly, one high resolution airborne magnetic survey was completed north of Ranoke in 2014. The survey targeted kimberlite anomalies over an area of approximately 1,600 square kilometres.

Sixty years after modern mineral exploration arrived in the region, VR is focused on a specific, unexplored and untested geophysical anomaly and integrated target for a post-Archean intrusion or hydrothermal pipe with copper and gold located in a lowland terrain with no outcrop and no roads, and in a geologic domain where the Archean Superior shield is covered by a thin veneer of Paleozoic and Mesozoic rocks of the Hudson Platform and Moose River Basin respectively.

Date	Event
3–2.6 Ga	Assembly of Superior Craton
2.8–2.6 Ga	Kenoran Orogen completes assembly process
2.49–2.45 Ga	Hotspot influence and rifting on SE Superior margin
	leads to emplacement of Matachewan dyke swarm
2.2 Ga	Age of Southern Province; Nipissing Sills fed by distant Ungava plume
1.9–1.6 Ga	Penokean Orogen on southern margin of Superior Province;
	likely age of major uplift in Kapuskasing Structural Zone
~1.8 Ga	Trans-Hudson Orogen on northwest Superior margin
~1.1 Ga	Keweenawan Mid-Continent Rift on southern Superior margin
1.1–1.0 Ga	Grenville Orogen on southeast Superior margin
Late Proterozoic -	Opening of Ottawa-Bonnechere Graben and Lake Timiskaming
Early Cambrian	structural zone (Ontario/Quebec border region)
Phanerozoic	Development of Hudson Bay and Moose River intracratonic basins
180–134 Ma	Emplacement of kimberlites along track of Great Meteor hotspot

Table 3: Summary of major geological/tectonic events shaping the study region. (Darbyshire et al., 2017)

Property Exploration History

The Ranoke target is previously unexplored: it is under cover, it is north of exposed Archean Superior Province shield, and it is north of road access in northern Ontario. The specific area of the Ranoke property does not appear to have been staked before, is not included in any mineral exploration assessment reports filed with the MENDM, and there are no historic drill holes located at Ranoke in the MENDM drill hole database (Figure 2).

Property Geology

The overburden at the Ranoke Property begins around 210 metres depth at the Archean unconformity with the Upper Silurian Sextant Formation, comprising deep red limonitic sandstones at the weathered erosional contact and grades upward into a coarse reduced arenite. As the basin subsided and the sea prograded in the lower Devonian, clastics were replaced by carbonate muds and chemically precipitated carbonates with coral and stromatoporoid to form the Kwataboahegan Formation. The lower section contains chemically-deposited limestone, primary dolomite and thin muddy breccia. This breccia represents limy mud in evaporitic environments and dissolution features after induration. Several brecciated layers can be traced through several holes in the central and eastern areas of the basin. The upper part shows a definite marine influence and is well differentiated. While the lower part fluctuates from dolomitic to limy, the marine sequence with crinoids, corals and brachiopods is strictly limy.

The Moose River Formation, which conformably overlies the Kwataboahegan, is organic poor carbonate rocks developed with a reefal facies, rich in coral and stromatoporoids and very porous in the lower Murray Island beds. This features seems to have remained into the above formation (Williams Island) as well, though not as well marked. The Murray Island would rather represent a fore-slope with pelletoidal limestone, breccia and some wackestone. Towards the end of the Murray Island time, by reference to carbonate and biogenic sedimentation extended to the whole basin and tended to replace the clayish deposition of the underlying formation. The Williams Island Formation saw a quiet limy environment covering the general area, with its alternances of limestone, primary dolomite and some thin clay. The chemically deposited unfossiliferous strata suggested sabkha environment with its many intricate variations due to local geomorphic changes.

Unconformably overlying the Paleozoic strata at roughly 80m depth is a successor basin of unconsolidated Jurassic to Cretaceous muds, sands and local lignite coal deposition (however not observed in drilling at Ranoke). Recovery in this unit was very low, however plastic blue-grey muds were observed. Although not observed, regional drilling and reports from drillers suggests there were variably boulder-rich sandy tills from 50m to near surface where a layer of marine clay deposited from the post-glacially enlarged Hudson Bay.

The basement geology was the focus of drilling at the Ranoke property and consists primarily of undifferentiated Archean metasedimentary to metavolcanic paragneisses of the English River subprovince from within the deepest part of the Superior craton, a foliated probable-Archean granodiorite, as well as a wide (100's of metres) diabase/metabasalt intrusions that likely represents the 2.45 Ga Matachewan (NNW trending) and 2.2 Ga Biscotasing (ENE Trending)

dyke systems (See Table 1; Darbyshire et al., 2017, Hall & Davis, 2004) and occur as major structural and magnetic features that interesect on the property (Figure 4).

Variability in the depth to Paleozoic strata as well as changes in the regional TMI magnetic grain are interpreted to be caused by many generations of rifting along the KSZ (see Table 1). Normal faults appear to have formed along the planar margins of the Archean dykes that intersect within the property.

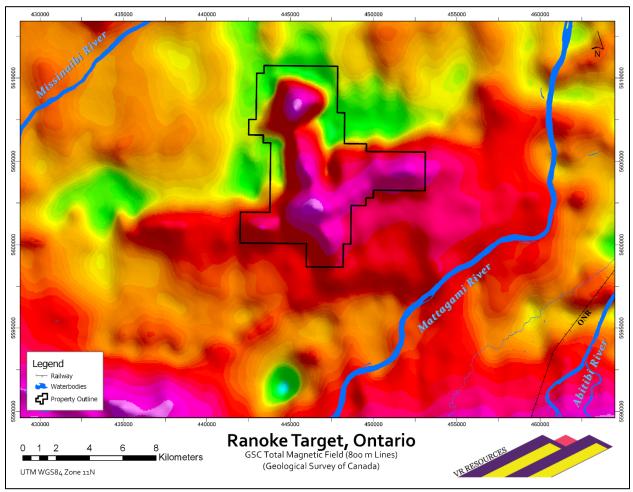


Figure 4: Total magnetic field at Ranoke showing staking over the high-magnetic complex inferred to be the intersection of Archean Mattachewan and Biscotasing dyke swarms. Structural planes along these dykes appear to have been reactivated by rifting providing a conduit for hydrothermal fluids and potential IOCG or carbonatite mineralization.

Basement units are cross-cut by much later aphanitic lamprophyre dykes that are ferroan and alkalic in nature and often contain calcite amygdales and phlogopite lathes (Figure 5, Photo 1). These late dykes often have brittle intrusive contacts with angular wall rock clasts and are rarely more than 1.5m across. The brittle nature and movement indicators on the contacts indicates the lamprophyres have intruded along active faults.

Hydrothermal fluid alteration has only been found related to lamprophyre dykes and reactivation of normal fault structures along them. The alteration mineralogy is siderite-ankerite-sericite with local includes specular hematite blebs and veinlets and clots of pyrite, grading outwards to epidote-chlorite-carbonate replacement of the orthogneiss and lamprophyre wallrock (Figure 6). These alteration facies are analogous to phyllic-argyllic and propylitic alteration assemblages found in porphyry and IOCG systems and are atypical of alteration and mineralization commonly seen in the Archean mineral deposits of the region.

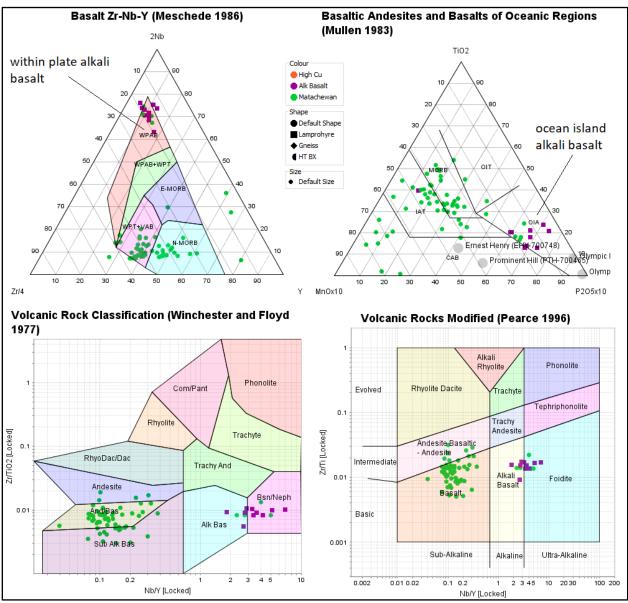


Figure 5: Geochemical discrimination plots in IMDEX ioGas using XRF results from the Ranoke drill program clearly differentiate between late lamprophyre intrusions and Archean metabasalts observed in core. Trace elements indicate the lamprophyre intrusions are alkalic and likely sourced from a mantle plume (Great Meteor hotspot) beneath the Superior Craton at 180-134 Ma. (matachewan data points within the lamprophyre cluster were rechecked and appear to be logging error due to high degrees of alteration. Citations in reference section.)

Figure 6: Core photos from Ranoke 2019-2020 drill program. A) Fluorite-calcite-epidote veinlet cutting across foliated Archean granodiorite at 378m in RK20-003; indicates high temperature hydrothermal fluids commonly found within and around IOCG and carbonatite deposits. B) specular hematite veining with potassium-rich halos at 210m in RK19-001a near Archean unconformity; further evidence for IOCG potential. C) least altered, narrow alkalic lamprophyre dyke at 345m in RK19-001b with carbonate amygdales and phlogopite lathe phenocrysts. D) Iron carbonate cemented hydrothermal breccia with rip-up clasts and intense high-K sericite altered lamprophyre wall-rock at 419m in RK19-001b.

Exploration Model

Ranoke is located immediately north of a robust copper-gold-fluorite heavy mineral anomaly evident in several rivers in the Coral Rapids area, based on a regional alluvium survey completed by the Ontario Geological Survey in 2001 and 2002. The unique mineral assemblage underscores the potential for a buried carbonatite or IOCG deposit (iron oxide copper-gold) as the source of the geochemical anomaly.

The Ranoke property covers a well defined, high intensity magnetic complex approximately 12 x 12 kilometres in size and evident on regional-scale Geological Survey of Canada (GSC) aeromagnetic maps. The complex delineates a regional-scale structural intersection, and individual magnetic anomalies are locally discordant to the regional magnetic grain evident in Archean basement rocks. The high resolution airborne survey completed by VR in 2019 confirmed the location, geometry and intensity of the Ranoke complex evident on the historic GSC maps. The northern magnetic anomaly at Ranoke is both the largest, at > 2.3 km's in diameter, and the highest intensity, at > 1,000 nT. It has a vertical, pipe-like geometry with sharply defined margins and a central apex which is consistent across TMI, RTP and 1VD magnetic products.

The 2019 airborne survey by VR also confirmed the discrete gravity anomaly evident at Ranoke in historic, regional gravity data collected by the Geological Survey of Canada. A singular, 2.5 mgal gravity anomaly is apparent in the 13 x 14 km survey completed by VR. It is co-spatial with the central part of the Ranoke magnetic complex overall, but it is locally discordant to the large, circular magnetic pipe at the north end of the complex.

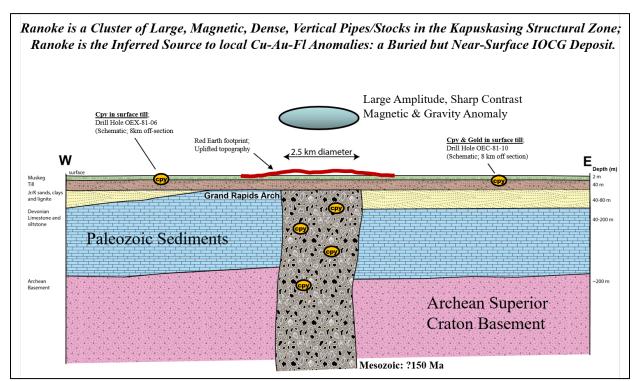


Figure 7: Schematic section of the exploration target at Ranoke.

The schematic cross-section shown in Figure 7 illustrates the target at Ranoke; a near-surface, large, vertical, magnetic, dense IOCG pipe or carbonatite intrusion. This cross-section is a representation of the discreet magnetic anomaly (pipe) at the northern end of the overall magnetic complex and structural intersection at Ranoke. This pipe is potentially the near-surface but till-covered source to copper and gold grains observed in the unconsolidated overburden in nearby reverse circulation drill holes completed in the early 1980's during a reconnaissance evaluation of Cretaceous-aged coal seams in the Moose River Basin.

Drill Holes

Drilling occurred under MENDM permit PR-19-000205. No core samples for assay have presently been taken. No holes encountered artesian conditions. XRF results are included in Appendix C

Hole #	Size	Depth (m)	UTM Grid System	Northing	Easting	Elev. (m)	Azimuth	Dip	Started	Completed	Contractor	Assays
RK19-001a	NQ	195	WGS 84 / UTM zone 17N	5,606,666	445,628	70	342	-85	2019-11-09	2019-11-16	MRI	0
RK19-001b	BQ	468	WGS 84 / UTM zone 17N	5,606,666	445,628	71	342	-71	2019-11-18	2019-11-26	MRI	0
RK20-002	BQ	645	WGS 84 / UTM zone 17N	5,607,151	445,323	70	015	-65	2020-02-03	2020-02-11	MRI	0
RK20-003	BQ	403	WGS 84 / UTM zone 17N	5,608,190	445,214	70	165	-75	2020-02-15	2020-02-21	MRI	0

Table 4: Diamond drill hole locations at Ranoke.

Conclusions & Recommendations

The 2019-2020 winter drill program at Ranoke was successful in testing for and encountering evidence for alteration styles consistent with both IOCG and Carbonatite deposit models. The depth to basement was tested along the northerly magnetic trend in the centre of the property and averaged 210m. Inferred Archean lithologies were groundtruthed and proved to be correct, while lamprophyres were newly described and new IOCG-related hydrothermal alteration and brecciation were discovered accompanying them.

Further drill testing west and east of RK19-001is recommended to target large structural features and their intersections for concentration of hydrothermal alteration and mineralization. These large structures are usually normal faults that have formed subparallel to the KSZ and perpendicularly along Matachewan dykes over the last 400 million years, and prime conduits for rising mineralizing fluids.

Certificate

- 1. I, Justin J. Daley, reside at 451 Kingswood Rd., Toronto, Ontario, M4E3P4
- 2. I have a B.Sc. Honours in Geological Sciences from Queen's University in Kingston, ON (2012) and a M.Sc. in Geology (Mineral Exploration) from Laurentian University in Sudbury, ON (2017).
- 3. I am a registered Professional Geoscientist in the Province of British Columbia and have been for three years.
- 4. I have been involved in all aspects of mineral exploration for 10 years in the United States, Mexico, Chile, Peru, and across Canada in British Columbia, Saskatchewan, Yukon Territory and Ontario.
- 5. I have primarily worked within magmatic-hydrothermal systems, such as Cu-Mo-Au porphyries, Au-Ag epithermal deposits and iron-oxide copper gold deposits, for the last 10 years.
- 6. I am not aware of any material fact or of any material change with respect to the subject matter of this technical report, which has not been reviewed and might make the report misleading.
- 7. I am a non-independent person with respect to VR Resources, I own shares and have received option agreements with respect to my work with the company as "Principal Geologist" from 2017 to present.

Dated at Toronto, Ontario on June 11th, 2020

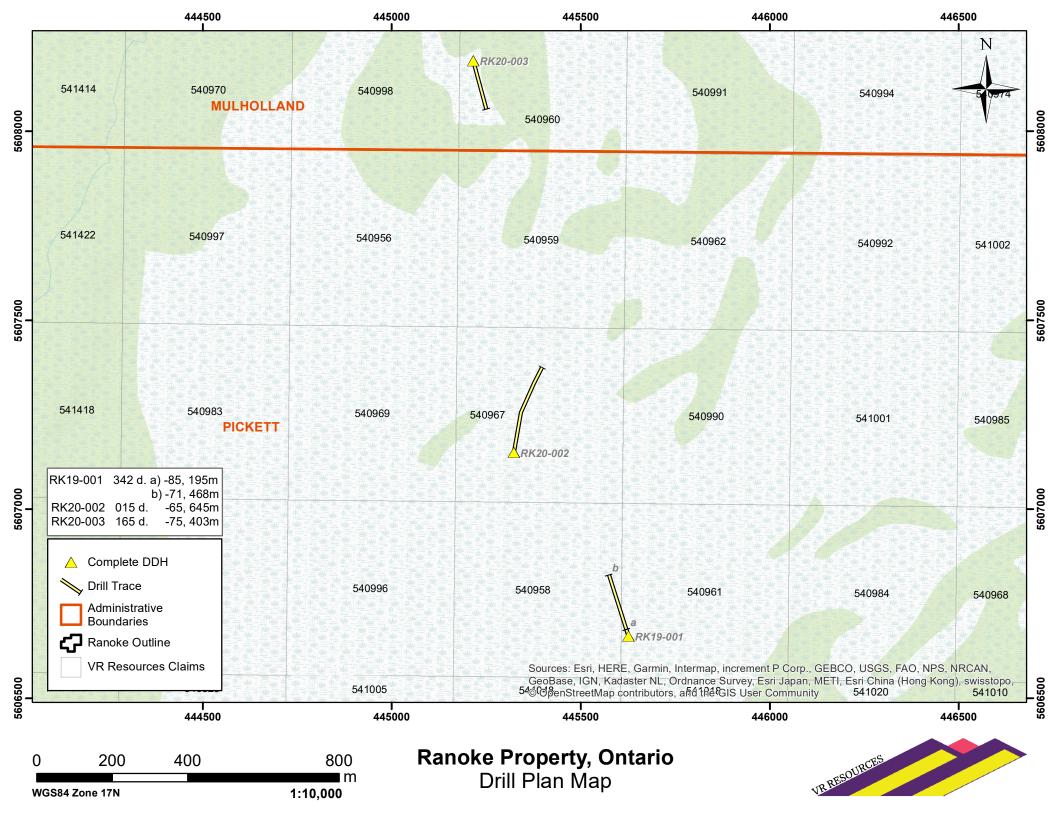
Justin J. Daley, PGeo ESSIC PROVINCE OF J. J. DALEY # 47182 BRITISH OLUMBI

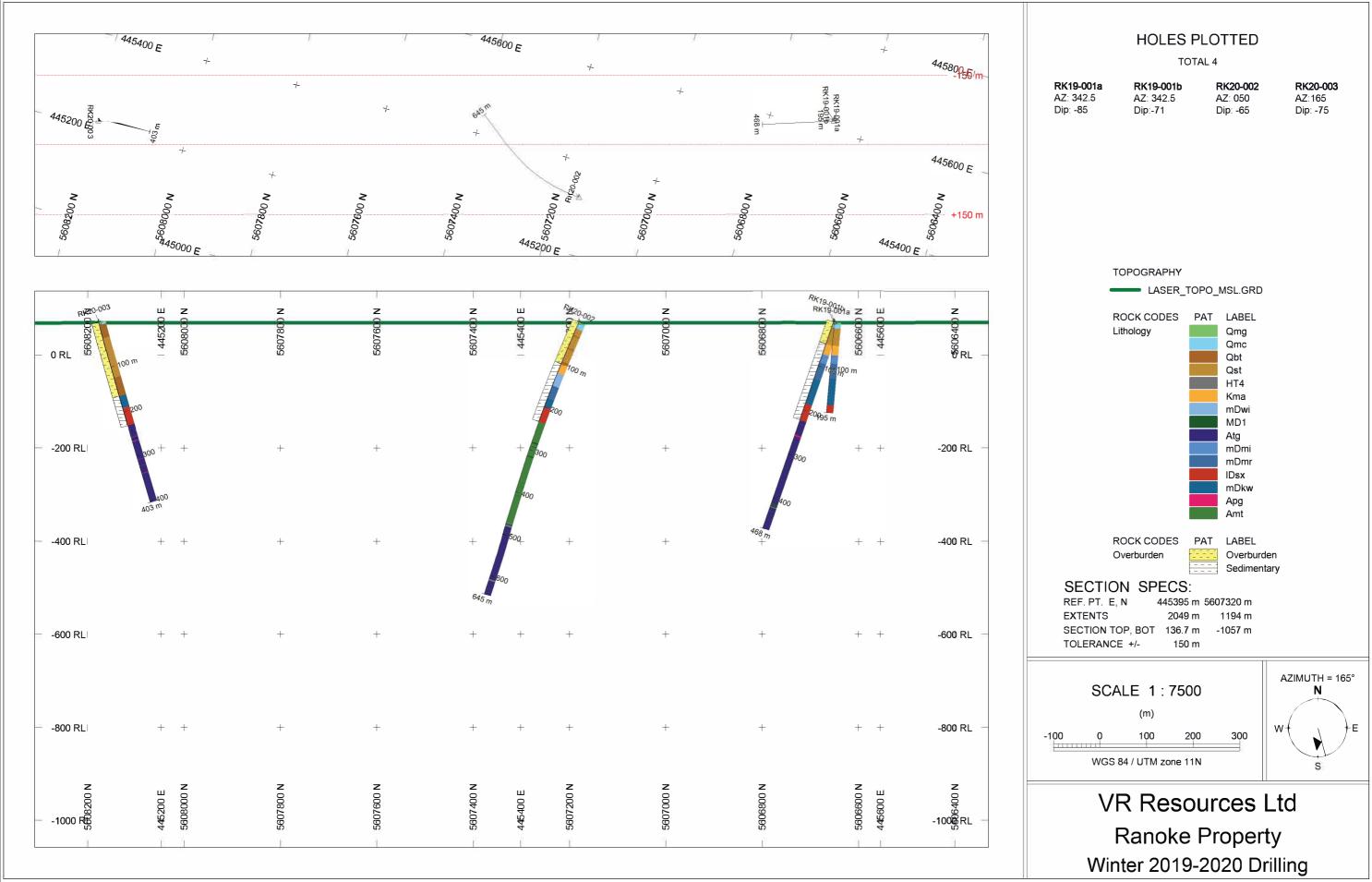
SCIEN

References

Darbyshire, F. A., Eaton, D. W., Frederiksen, A. W., & Ertolahti, L. 2007. New insights into the lithosphere beneath the Superior Province from Rayleigh wave dispersion and receiver function analysis. *Geophysical Journal International*, *169*(3), 1043-1068.

Halls, H. C., & Davis, D. W., 2004. Paleomagnetism and U Pb geochronology of the 2.17 Ga Biscotasing dyke swarm, Ontario, Canada: evidence for vertical-axis crustal rotation across the Kapuskasing Zone. Canadian Journal of Earth Sciences, 41(3), 255-269.


Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb 1bZr 1bY diagram. Chemical geology, 56(3-4), pp.207-218.


Mullen, E.D., 1983. MnO/TiO₂/P₂O₅: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1), pp.53-62.

Pearce, J., 1996. Sources and settings of granitic rocks. Episodes, 19, pp.120-125.

Salo, R. W., 2006. Diamond Drilling Report On The Coral Rapids Property For Baltic Resources Inc., OGS Assessment Report Database. Assessment File: 20000001302. AFRO Number: 2.31852. Resident Geologist District: Timmins. Resident Geologist Office File Number: T-5357

Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology, 20, pp.325-343.

VE RESOLUCES

Ranoke Drilling Logging Code List VR Resources Ltd.

Lithology	/ Code List
Code	Description
Qmg	Muskeg
Qmc	Marine Clay
Qbt	Boulder Till
Qst	Sandy Till
Qct	Clay Till
Int1	Intrusive 1
Int1	Intrusive 2
Int2	Intrusive 2
HT1	
HT2	Hydrothermal 1 Hydrothermal 2
	•
HT3	Hydrothermal 3
HT4	Hydrothermal 4
Kma	Mattagami Formation - Clay (carbonaceous and laminated), sandstone, quartzose, sand, lignite
Jmi	Mistuskwia Beds - well sorted calcareous quartz sands and silty clay
	Long Rapids Fmtn - dark bituminous shales, siltstone and clays, green to chocolate mudstones, minor
uDlr	limestone and dolomite
mDwi	Williams Island Fmtn - oolitic fossiliferous limestone, argillaceous limestone, and calcareous shales
MD1	Young Mafic Dyke (Lamprophyre)
Atg	Archean Tonalite-Granodiorite Gneiss
Λιg	Murray Island Fmtn - reefal facies with coral, stromatoporoids, voids. Fore-slope bx, some wacke.
mDmi	biogenic increase upwards
mDmr	Moose River Fmtn - grey mudstone, slightly dolomitic
lDsx	Sextant Fmtn - red-brown limonitic sandstone, conglomerate and siltstone.
IDSX	Kwataboahegan Fmtn - marine facies with crinoids, brachiopods, corals and muddy disolution
mDkw	breccias. Grading to limey chemically deposited muds, clastic-quartz grains
Apg	Archean Pegmatite
Amt	Archean Matachewan Dyke
Rock Uni	t Code List
Code	Description
M1	metamorphosed pelites
M13	Orthogneiss
M10	metamorphosed int to mafic intrusives
V2	Felsic volcanic rocks (Rhyolite, Ryodacite, Dacite; silica content > 63%; pyroclastic
S5	Mudstone/siltstones/pelites (including calcareous)
18	Diorite
M7	metamorphosed int to mafic volcanics
HT8	Siliceous zone
M11	metamorphosed ultramafics intrusives
	Hydrothermal replacement (quartz veining is greater than 50% and any clasts present have been
HT6	largely replaced by silica)
V8	Mafic volcanic rocks (basaltic-andesite, basalt; silica content 45-57%)
HT4	quartz-sulphide vein/replacement
UT1	guartz voin (rankasament (identified as lithology when > 100 cm. atherwise noted in comments)

HT1 quartz vein/replacement (identified as lithology when > 100 cm, otherwise noted in comments)

Ranoke Drilling Logging Code List VR Resources Ltd.

110	Gabbro
M9	metamorphosed felsic intrusives
	quartz-carbonate vein/replacement (massive white to white quartz and pink or white calcite, yellow
HT2	sericite, ivory ankerite veining, carbonate comprised at least 5% of vein)
15	granodiorite (mainly feldspars and quarts, bt +/- hbl up to 5-15%)
M8	metamorphosed ultramafic volcanics
M6	metamorphosed felsic volcanics
S6	Limestone
VBx	Volcanic breccia
FOS	Fossil bearing intervals
V6	Mafic dykes; cross cutting, basaltic-andesite
P1	Felsic porphyries
17	Syenite (granodiorite but alkali feldspars dominant)
19	Syenodiorite (potassic diorite)
M12	Migmatite
NR	Nothing Recorded
S3	conglomerate
M3	metamorphosed conglomerates
13	Granite (qtz, plag, Kspar, and minor bt+hbl)
M5	Marble
S4	Sandstone/arenite (fine- to coarse-grained); S4gwy - greywacke
НВХ	Hydrothermal breccias
M14	Amphiboliticgneiss
M4	metamorphosed carbonates
12	Granophyre/microgranite (significant body of fg felsic intrusive)
V9	Felsic dykes
P2	Intermediate porphyries
V4	Intermediate volcanic rocks (Andesite, Latite; Silica content 57-63%); pyroclastic
M2	metamorphosed arenites
HT7	Dense vein stockwork (quartz veining is greater than 25%)
HT3	quartz-silicate vein/replacement (quartz-tourmaline; often occurring as hard, dark-grey veinlets)
14	Monzogranite/quartz syenite (granite with Kspar dominant)
HT9	massive sulphide
NA	No Rock/Late Cover

Alteration Facies

Code	Description
Arg	Argyllic: clay-carbonate-oxides
Phy	Phylllic: serecite-silica-pyrite-specularite
disProp	chl-carb-hm-epi
CCC	Chlorite-Carb-Clay
OutProp	Outer Propylitic: albite-actinolite-quartz-carbonate-pyrite
InProp	Inner Propylitic: albite-chlorite-actinolite-epidote-hematite-quartz
Gen-P	Potassic: biotite-magnetite-quartz
In-CP	Inner Calc-Potassic: biotite-actinolite-magnetite-potassium feldspar-albite-quartz-bornite
Out-CP	Outer Calc-Potassic: Potassium feldspar-chlorite-biotite-albite-actinolite-quartz-chalcopyrite

Ranoke Drilling Logging Code List VR Resources Ltd.

Alteration Mineral Codes

Code	Description	Code
ер	epidote	al
spc	specularite	ad
hem	hematite	bt
sil	silica	cl
mag	magnetite	cal
ser	sericite	ab
act	actinolite	plg
Si	silica flooding	scp
lim	limonite	jar
GL	glassy limonite	ank
anh	anhydrite	ру
carb	carbonate	Sod
jsp	jasperoidal	sb
chl	chlorite	gnt
goe	goethite	ksp
ох	oxides	

Description

visible gold

sphalerite

pyrargite

chalcocite

azurite tetrahedrite

molybdenite

pyrite

Code

сру

cov

gn

Description

fracture coating

disseminated

blebs in veins

disseminated in veins mottled replacement

matrix replacement

clot

blebs

Mineralization Mineral Codes

<u> </u>	- · · ·	
Code	Description	Code
mal	malachite	au
sulf	sulfosalts	ру
aspy	arsenopyrite	sph
CuOx	copper oxides	pyar
cry	chrysocola	сс
tnt	tennantite	mo
bn	bornite	az
fbg	friebergite	ttr

Mineralization Form Codes

Willer all Zacion Form Coues				
Code	Description	Code		
С	clots	cl		
Vs	vein selvages	F		
Α	aggregates	Vd		
NR	Nothing Recorded	Rm		
Vb	banded in veins	D		
Str	stringers	Rmx		
В	banded	Bl		
DN	dendtritic	Blv		
Rx	phenochryst replacement			
Rp	pervasive replacement			
V	veins			
Rc	clast replacement			
OS	open space crystallization			

OURCES	
VR RESO	
VRRESOURCES	

Alteration Form Codes

Description	Code	Description
alunite	F	fracture-controlled
adularia	L	acid-leached
biotite	OS	open-space crystallization
clay	С	clots
calcite	Rv	vein associated replacement
albite	Ву	blotchy
phlogopite	Pchy	patchy
scapolite	V	filling vugs
jarosite	Rm	mottled replacement
ankerite	Rmx	rock matrix replacement
pyrite	Rc	clast replacement
ab-qz-hm	Rp	pervasive replacement
shreddy biotite	D	disseminated
garnet	Str	stringers
K feldspar	Rx	phenochryst replacement

Alteration Intensity Codes

Description	Code
chalcopyrite	
covelite	
galena	

Description

- 4 moderate
- 3 weak to moderate
- 2 weak
- 6 strong
- 1 trace
- 5 moderate to strong

Mineralization Intensity Codes

Code	Description
	1 traces
	2 <0.5%
	3 0.5-2.0%
	4 2.0-5.0%
	5 5.0-10.0%
	6 10.0-20.0%
	7 >20.0%

-Justin Daley

RK19-001a	Abandon	ed at base of	f sedimentary units, cav	e in. (195m)	
Casing Left:	<u>Yes; NW</u>	Steel casing	cap w/ 1m high red mar	<u>rker</u>	
Core Storage:	Otter Rap	ids Camp	Core Size:	NQ	
GS84 Zone 17N	UTM E	<u>445,628</u>	Azimuth:	<u>342.5</u>	
	UTM N	5,606,666	Dip:	-85	

Contractor: <u>Machine Roger Int.</u> Start: <u>2019-11-09</u> Finish: <u>2019-11-16</u> Claim: <u>540961 (100% VR Resources)</u> Permit: <u>PR-19-000205</u>

Hole number	From	То	Lithology	Rock Unit	Texture	Grain Size	Colour	Oxidation	Description
RK19-001a	0	2	Qmg	NA		Very Fine	Br	H20	no recovery
RK19-001a	2	12	Qmc	NA				H20	no recovery
RK19-001a	12	50	Qst	NA				H20	no recovery
									grey calcareous laminated plastic clay with nodules of pyrite around 6
									has boulders/cobblers of biotite-feldspar>quartz granitoid gneiss and
RK19-001a	50	70.65	Kma	S5	bd	Very Fine	Gy	H20	clay of Long Rapids formation. lower contact is irregular
									Dark grey to buff coloured fossiliferous packstone to limey mud carbo
									up to 15cm with darker grey/brown muddy to grainy cement containi
									subangular to rounded further down and calcareous. no evidence of I
RK19-001a	70.65	89.4	mDmi	S6	fs	Coarse	Cr	Fr	coral. problems with recovery from clay layers? or karst formation. re
									dark grey black calcareous mudstone conglomerate. matrix supported
									clasts 1-6cm semi regularly. clasts are small and increase in concentra
RK19-001a	89.4	109.56	mDmr	S3	msp	Coarse	Gy	Fr	poor core recovery. mud washed away?
									Interlayered dolomite and limestone mudstone with sequences of do
									local round fossils laying in mud bedding. smells of sulfur and has som
RK19-001a	109.56	121.16	mDmr	S5	bd	Medium	Cr	Fr	packstone horizons up to 10cm
									gradation into fossiliferous floatstone to rudstone with abundant stro
RK19-001a	121.16	130.6	mDkw	S6	fs	Coarse	BI	Fr	blocks averaging 6cm up to 15cm in 40% of rock. matrix is bituminous
									similar unit to before with much coral-stromatoporoid-bitumen layer
RK19-001a	130.6	174.1	mDkw	S6	fs	Coarse	Cr	Fr	mudstone. coral-stromatoporoid-bitumen layer is 30% of rock overal
									transition into coarse siliciclastic packstone with large corals 2-20cm a
RK19-001a	174.1	178.28	mDkw	S6	fs	Coarse	Cr	Fr	rudstone in places. Quartz and limestone fragments are angular and
									Dark grey calcareous fossiliferous arenite to siliciclastic wackestone.
									dark bituminous layers show cross bedding around 184-186m. angula
RK19-001a	178.28	189.42	lDsx	S4	xbd	Fine	Gy	Fr	amongst sandy matrix.
					1				10cm clast of pyrite, silica and chlorite veined igneous textured rock v
RK19-001a	189.42	195	lDsx	S4	m	Medium	Mr	Ox	Sandston grading into firm maroon arenite at 194m. intense oxidation

d 67m and disseminated throughout. top of core box nd fine diabase? probably cretaceous unconsolidated

bonate with local depositional or dissolution breccias ining very fine pyrite and weak K (xrf). breccia is of HT alteration. crinoid stems, brachipods and local reports of gas escaping, H2S?

ted, local angular buff layered limestone and coral tration towards base. zone of increased dissolution,

dolomitic stromatoporoid and burrow rock packstone. ome rusty patches. wackestone to biomicrite

tromatoporoid mats up to 1cm 20-40%, large coral ous wackestone to packstone with rare thick bitumen ers up to 30cm interspersed between buff calcareous rall.

n and occasional brachiopods in grainstone. looks like nd 2-6mm in mud matrix

. fossils are small fragments in narrow 5cm horizons. Ilar quartz and limestone grains in 20cm layers

k with clay alteration. tan weakly consolidated ion and more firm.

-Justin Daley

RK19-001b	468 metre	es			Contractor:	Machine Roger Int.
Casing Left:	<u>Yes; NW</u>	Steel casing cap	w/ 1m high red marke	<u>er</u>	Start:	<u>2019-11-18</u>
Core Storage:	Otter Rap	ids Camp	Core Size:	<u>BQ</u>	Finish:	<u>2019-11-26</u>
GS84 Zone 17N	UTM E	<u>445,628</u>	Azimuth:	<u>342.5</u>	Claim:	540961 (100% VR Resources)
	UTM N	<u>5,606,666</u>	Dip:	<u>-71</u>	Permit:	<u>PR-19-000205</u>

Hole number	From	То	Lithology	Rock Unit	Texture	Grain Size	Colour	Oxidation	Description
RK19-001b	0	2	Qmg	NA				H20	no recovery
RK19-001b	2	12	Qmc	NA				H20	no recovery
									No recovery; grey calcareous laminated plastic clay with nodules of py
									of core box has boulders/cobblers of biotite-feldspar>quartz granitoid
RK19-001b	12	50	Qst	NA				H20	unconsolidated clay of Long Rapids formation. lower contact is irregu
									Dark grey to buff coloured fossiliferous packstone to limey mud carbo
									up to 15cm with darker grey/brown muddy to grainy cement containi
									subangular to rounded further down and calcareous. no evidence of H
RK19-001b	50	72.86	Kma	S5	lam	Fine	Gy	Fr	coral. problems with recovery from clay layers? or karst formation. re
							- /		dark grey black calcareous mudstone conglomerate. matrix supported
									clasts 1-6cm semi regularly. clasts are small and increase in concentra
RK19-001b	72.86	92.2	mDmi	S6	fs	Coarse	Cr	Fr	poor core recovery. mud washed away?
									Interlayered dolomite and limestone mudstone with sequences of dol
									local round fossils laying in mud bedding. smells of sulfur and has som
RK19-001b	92.2	112.99	mDmr	S3	bx	Coarse	Gy	Fr	packstone horizons up to 10cm
									gradation into fossiliferous floatstone to rudstone with abundant stro
									blocks averaging 6cm up to 15cm in 40% of rock. matrix is bituminous
RK19-001b	112.99	129.8	mDmr	S5	bd	Medium	Cr	Fr	layers.
									similar unit to before with much coral-stromatoporoid-bitumen layers
RK19-001b	129.8	130.6	mDkw	S6	fs	Coarse	BI	Fr	mudstone. coral-stromatoporoid-bitumen layer is 30% of rock overal
									transition into companyi ciliciclestic necletone with large comple 2, 20 mm
DK10 001h	120.0	142.0		SC.	£.	Coores	Cri	F	transition into coarse siliciclastic packstone with large corals 2-20cm a
RK19-001b	130.6	143.8	mDkw	S6	fs	Coarse	Cr	Fr	rudstone in places. Quartz and limestone fragments are angular and 2
									Dark grey calcareous fossiliferous arenite to siliciclastic wackestone. f
DK10 001h	142.0	10F F	mDlau	sc	fa	Coorse	Cr	F ₂	dark bituminous layers show cross bedding around 184-186m. angula
RK19-001b	143.8	100.0	mDkw	S6	fs	Coarse	Cr	Fr	amongst sandy matrix. 10cm clast of pyrite, silica and chlorite veined igneous textured rock w
									Sandston grading into firm maroon arenite at 194m. intense oxidation
									boulders of other igneous and metamorphic units. a fresh biotite physic
DK10 001h	10F F	202		C /	vbd	Madium	<u> </u>	F ₂	recovery was extremely poor as starting bar was used to get through
RK19-001b	185.5	202	lDsx	S4	xbd	Medium	Gy	Fr	narrow band of pink coarse massive felsic rock. no banding or obvious
									interstitial magnetite altering to specularite rims. interstitial dissemin
RK10 001h	202	222.62		сл	m	Madium	Mr	0.4	
RK19-001b	202	222.02		S4	m	Medium	Mr	Ox	predominantly agglomeration of 3-7mm pink stained feldspar. weakly foliated equigranular coarse tonalite diorite, maybe part of Art
RK19-001b	222.62	775 1	Ang	15	dk	Coarso	Pk	Ov	narrow books, replaced by chlorite, the rest issue pink stained feldspa
UV13-0010	222.02	223.1	lvhR	15	dk	Coarse	РK	Ox	Inarrow books, replaced by chlorite, the rest issue plink stalled feldspa

pyrite around 67m and disseminated throughout. top oid gneiss and fine diabase? probably cretaceous gular

bonate with local depositional or dissolution breccias ning very fine pyrite and weak K (xrf). breccia is f HT alteration. crinoid stems, brachipods and local reports of gas escaping, H2S?

ted, local angular buff layered limestone and coral tration towards base. zone of increased dissolution,

dolomitic stromatoporoid and burrow rock packstone. ome rusty patches. wackestone to biomicrite

romatoporoid mats up to 1cm 20-40%, large coral us wackestone to packstone with rare thick bitumen

ers up to 30cm interspersed between buff calcareous rall.

n and occasional brachiopods in grainstone. looks like d 2-6mm in mud matrix

fossils are small fragments in narrow 5cm horizons. lar quartz and limestone grains in 20cm layers

with clay alteration. tan weakly consolidated on and more firm. Base of unit has cobbles and nyric rock, a hematite and pyrite altered tonalite. h sand.

ous metamorphic texture. sharp lower contact. local inated black pyrite and spec. local phlogopite, but

Archean TTG complex. 20-30% biotite in 3-4mm par with 5.7% K.

-Justin Daley

223.1								clay altered soft magnetic late mafic dyke. dark green to maroon. relie
223.1								
223.1			1					mottled intense maroon hematite stain. sharp contacts, likely vertical
	223.25	Atg	M13	eq	Coarse	Pk	Ox	K. bleaching for 15cm at bottom contact.
								weakly foliated equigranular coarse tonalite diorite, maybe part of Ar
								narrow books, replaced by chlorite, the rest issue pink stained feldspa
223.25	223.9	MD1	V6	por	Medium	Bl	Ox	grain and chlorite coarse sections.
								narrow band of pink coarse massive felsic rock. no banding or obvious
								interstitial magnetite altering to specularite rims. interstitial dissemin
223.9	231	Atg	M13	bx	Coarse	Pk	Ox	predominantly agglomeration of 3-7mm pink stained feldspar.
								moderately foliated equigranular medium grain orthogneiss, maybe p
								biotite and less intrusive. 20-30% biotite in 3-4mm narrow books, rep
231	231.43	Apg	17	dk	Coarse	Pk	Ox	feldspar. after fault at 240m is fresh dark green biotite rich orthognei:
								late mafic dyke with quenched hyalocrysstaline contacts and small xe
231.43	244.93	Atg	M13	bx	Medium	Gr	Tr	anhedral rounded dark green augite phenos.
								more intensely foliated gneiss sick layered and variably banded biotite
244.93	245.25	MD1	V6	dk	Fine	BI	Fr	biotite and less mag. feldspar rich bands too. and evidence for relic te
245.25	254.8	Atg	M13	gs	Coarse	Gr	Fr	15cm dyklet of quartz kspar magnetite pegmatite. 3mm magnetite in
								more intensely foliated gneiss sick layered and variably banded biotite
254.8	255	Apg	M12	peg	Coarse	Cr	Fr	biotite and less mag. feldspar rich bands too. and evidence for relic te
255	256.07	Atg	M13	gs	Coarse	Gr	Fr	felsic zone of gneiss with few mafics and local patches of pink pegmat
								many xenoliths in gneissic banded section. Probably porphyry, diorite
256.07	259.3	Apg	M12	peg	Coarse	Pk	Fr	and biotite.
								narrow band of pink coarse massive felsic rock. no banding or obvious
								interstitial magnetite altering to specularite rims. interstitial dissemin
259.3	262.46	Atg	M13	xnl	Coarse	Gy	Fr	predominantly agglomeration of 3-7mm pink stained feldspar.
		-						back to a more homogeneous moderately foliated orthogneiss of feld
262.46	262.76	Apg	M12	pbl	Coarse	Pk	Fr	diorite protolith. strong pink banded alteration as section proceeds.
								late mafic dyke with quenched hyalocrysstaline contacts and small xe
262.76	328.72	Atg	M13	fol	Coarse	Pk	Fr	anhedral rounded dark green augite phenos. some cross cutting calcit
								back to a more homogeneous moderately foliated orthogneiss of feld
328.72	329.72	MD1	V6	fbx	Coarse	BI	Fr	diorite protolith. strong pink banded alteration as section proceeds.
								late mafic dyke with quenched hyalocrysstaline contacts and small xe
329.72	346.42	Atg	M13	fol	Coarse	Pk	Fr	anhedral rounded dark green augite phenos. chlorite and pink carbon
								back to a more homogeneous moderately foliated orthogneiss of feld
346.42	346.85	MD1	V6	fbx	Coarse	BI	Fr	diorite protolith. strong pink banded alteration as section proceeds.
						Pk	Fr	apparently a silly of fine to medium grain porphyriytic volcanic rock. c
		-0						strongly foliated and banded orthogneiss of feldspar and biotite, rare
398.15	398.29	MD1	V8	fbx	Medium	Tn	Fr	strong pink banded alteration as section proceeds.
				-		1	1	narrow, steep green to black porphyritic volcanic dyke with rounded of
								clasts at edges. narrow and large multi phase wavy calcite veins insid
398.29	411	Atg	M13	fol	Coarse	Mr	Fr	epidote bands and a carbonate hydrothermal breccia at bottom conta
230.23		· ·•o						strongly foliated and banded orthogneiss of feldspar and biotite, rare
411	416 4	MD1	V4	dk	Medium	Gr	H20	strong pink banded alteration as section proceeds.
	223.9 231 231.43 244.93 245.25 254.8 255 256.07 259.3 262.46 262.76 328.72	223.9 231 231 231.43 231.43 244.93 244.93 245.25 245.25 254.8 254.8 255 255 256.07 256.07 259.3 262.46 262.76 262.76 328.72 328.72 329.72 346.42 346.85 398.15 398.29 398.29 411	223.9 231 Atg 231 231.43 Apg 231.43 244.93 Atg 244.93 245.25 MD1 245.25 254.8 Atg 254.8 255 Apg 256.07 259.3 Apg 259.3 262.46 Atg 262.46 262.76 Apg 328.72 328.72 MD1 329.72 346.42 Atg 398.15 398.29 Atg	223.9 231 Atg M13 231 231.43 Apg I7 231.43 244.93 Atg M13 244.93 245.25 MD1 V6 245.25 254.8 Atg M13 254.8 255 Apg M12 255 256.07 Atg M13 256.07 259.3 Apg M12 259.3 262.46 Atg M13 262.46 262.76 Apg M13 328.72 328.72 Atg M13 328.72 346.42 Atg M13 346.42 346.85 MD1 V6 346.85 398.15 Atg M13 398.15 398.29 MD1 V8 398.29 411 Atg M13	223.9 231 Atg M13 bx 231 231.43 Apg I7 dk 231.43 244.93 Atg M13 bx 244.93 245.25 MD1 V6 dk 244.93 245.25 MD1 V6 dk 245.25 254.8 Atg M13 gs 254.8 255 Apg M12 peg 255 256.07 Atg M13 gs 256.07 259.3 Apg M12 peg 259.3 262.46 Atg M13 xnl 262.46 262.76 Apg M12 pbl 262.76 328.72 Atg M13 fol 328.72 329.72 MD1 V6 fbx 346.42 346.85 MD1 V6 fbx 346.85 398.15 Atg M13 fol 398.15 398.29 MD1 V8 fbx 398.29 411 Atg M13 fol	223.9 231 Atg M13 bx Coarse 231 231.43 Apg I7 dk Coarse 231.43 244.93 Atg M13 bx Medium 244.93 245.25 MD1 V6 dk Fine 245.25 254.8 Atg M13 gs Coarse 254.8 255 Apg M12 peg Coarse 255 256.07 Atg M13 gs Coarse 256.07 259.3 Apg M12 peg Coarse 259.3 262.46 Atg M13 xnl Coarse 262.46 262.76 Apg M12 pbl Coarse 328.72 328.72 Atg M13 fol Coarse 328.72 346.42 Atg M13 fol Coarse 346.42 346.85 MD1 V6 fbx Coarse 398.15 398.15 Atg M13 fol Coarse 398.15 398.29 MD1	223.9 231 Atg M13 bx Coarse Pk 231 231.43 Apg I7 dk Coarse Pk 231.43 244.93 Atg M13 bx Medium Gr 244.93 245.25 MD1 V6 dk Fine Bl 245.25 254.8 Atg M13 gs Coarse Gr 254.8 255 Apg M12 peg Coarse Gr 255 256.07 Atg M13 gs Coarse Gr 256.07 259.3 Apg M12 peg Coarse Pk 259.3 262.46 Atg M13 xnl Coarse Pk 262.76 328.72 Atg M13 fol Coarse Pk 328.72 329.72 MD1 V6 fbx Coarse Bl 329.72 346.42 Atg M13 fol Coarse Pk 398.15 398.29 MD1 V8 fbx Medium T	223.9 231 Atg M13 bx Coarse Pk Ox 231 231.43 Apg I7 dk Coarse Pk Ox 231.43 244.93 Atg M13 bx Medium Gr Tr 244.93 245.25 MD1 V6 dk Fine Bl Fr 245.25 254.8 Atg M13 gs Coarse Gr Fr 254.8 255 Apg M12 peg Coarse Gr Fr 255 256.07 Atg M13 gs Coarse Gr Fr 256.07 259.3 Apg M12 peg Coarse Pk Fr 262.46 262.76 Apg M13 xnl Coarse Gy Fr 328.72 329.72 MD1 V6 fbx Coarse Bl Fr 329.72 346.42 Atg M13 fol <td< td=""></td<>

elic augite? phenos 1-2mm totally replaced, locally by cal attitude. +30% Fe in xrf, also high Ba, La, Ce and 5%

Archean TTG complex. 20-30% biotite in 3-4mm spar with 5.7% K. at 225.9 transitions into banded fine

bus metamorphic texture. sharp lower contact. local ninated black pyrite and spec. local phlogopite, but

e part of Archean TTG complex. looking like a lot more eplaced by chlorite, the rest issue pink stained eiss, variable banding .

xenoliths. pretty fresh and fine grain with up to 20%

ite orthogneiss. highly variable with zones of pure textures

interstitial. texture is about 1ck

ite orthogneiss. highly variable with zones of pure textures

atitic texture ~1cm grains.

ite and mafic dyke protolith. all replaced by feldspar

bus metamorphic texture. sharp lower contact. local inated black pyrite and spec. local phlogopite, but

Idspar and biotite, rare quartz. probable tonalite or

kenoliths. pretty fresh and fine grain with up to 20% cite veins

Idspar and biotite, rare quartz. probable tonalite or

kenoliths. pretty fresh and fine grain with up to 20% onate. veins crossing

ldspar and biotite, rare quartz. probable tonalite or

. cutting get and parallel with siderite veins are quartz. probable tonalite or diorite protolith.

d dark green and white altered phenocrysts. local small side with epidote selvage. lower some hematite cored ntact

are quartz. probable tonalite or diorite protolith.

-Justin Daley

								strongly altered hydrothermal breccia with pale green angular blesche
416.4	418.2	Atg	M13	fol	Coarse	Gy	Fr	matrix. associated with the mafic dyke, cross-cutting with many veins.
								strongly foliated and banded orthogneiss of feldspar and biotite, rare
418.2	420	HT4	HBX	bx	Fine	Rd	Ox	strong pink banded alteration as section proceeds.
								veined and pale green epidote altered narrow, steep green to black po
420	427.5	Atg	M13	gs	Coarse	Pr	Fr	and white altered phenocrysts. local small clasts at edges. narrow wa
								strongly foliated and banded orthogneiss of feldspar and biotite, rare
427.5	429	MD1	V6	por	Medium	Gr	Fr	strong pink banded alteration as section proceeds.
								narrow, steep green to black porphyritic volcanic dyke with rounded d
429	437.65	Atg	M13	fol	Coarse	Mr	Fr	clasts at edges. narrow wavy calcite veins inside
								strongly foliated and banded with local mafic xenoliths around 433. al
437.65	438.35	MD1	V6	dk	Medium	Gy	Fr	10cm to irregular biotite bands.
								narrow, steep green to black porphyritic volcanic dyke with rounded d
438.35	445.82	Atg	M13	xnl	Coarse	Pk	Fr	clasts at edges. narrow wavy calcite veins inside
								strongly foliated and banded with local mafic xenoliths around 433. al
445.82	446.4	MD1	V6	dk	Medium	Gy	Fr	10cm to irregular biotite bands.
446.4	468	Atg	M13	gs	Coarse	Pk	Fr	
	418.2 420 427.5 429 437.65 438.35 445.82	418.2 420 420 427.5 427.5 429 429 437.65 437.65 438.35 438.35 445.82 445.82 446.4	418.2 420 HT4 420 427.5 Atg 427.5 429 MD1 429 437.65 Atg 437.65 438.35 MD1 438.35 445.82 Atg 445.82 446.4 MD1	418.2 420 HT4 HBX 420 427.5 Atg M13 427.5 429 MD1 V6 429 437.65 Atg M13 437.65 438.35 MD1 V6 438.35 445.82 Atg M13 445.82 446.4 MD1 V6	418.2 420 HT4 HBX bx 420 427.5 Atg M13 gs 427.5 429 MD1 V6 por 429 437.65 Atg M13 fol 437.65 438.35 MD1 V6 dk 438.35 445.82 Atg M13 xnl 445.82 446.4 MD1 V6 dk	418.2 420 HT4 HBX bx Fine 420 427.5 Atg M13 gs Coarse 427.5 429 MD1 V6 por Medium 429 437.65 Atg M13 fol Coarse 437.65 438.35 MD1 V6 dk Medium 438.35 445.82 Atg M13 xnl Coarse 445.82 446.4 MD1 V6 dk Medium	418.2 420 HT4 HBX bx Fine Rd 420 427.5 Atg M13 gs Coarse Pr 427.5 429 MD1 V6 por Medium Gr 429 437.65 Atg M13 fol Coarse Mr 437.65 438.35 MD1 V6 dk Medium Gy 438.35 445.82 Atg M13 xnl Coarse Pk 445.82 446.4 MD1 V6 dk Medium Gy	418.2 420 HT4 HBX bx Fine Rd Ox 420 427.5 Atg M13 gs Coarse Pr Fr 427.5 429 MD1 V6 por Medium Gr Fr 429 437.65 Atg M13 fol Coarse Mr Fr 437.65 438.35 MD1 V6 dk Medium Gy Fr 438.35 445.82 Atg M13 xnl Coarse Pk Fr 445.82 446.4 MD1 V6 dk Medium Gy Fr

thed clasts on edges of orange red hematite carbonate ns.

are quartz. probable tonalite or diorite protolith.

porphyritic volcanic dyke with rounded dark green vavy calcite veins inside

re quartz. probable tonalite or diorite protolith.

dark green and white altered phenocrysts. local small

alternating between pink pegmatoidal zones around

l dark green and white altered phenocrysts. local small

alternating between pink pegmatoidal zones around

-Justin Daley

RK19-002 645	metres		(Contractor:	<u>Machine Roger Int.</u>
Casing Left: <u>Yes;</u>	NW Steel casing cap w/ 1m h	igh red marker		Start:	<u>2020-02-03</u>
Core Storage: <u>Otte</u>	er Rapids Camp	Core Size:	BQ	Finish:	<u>2020-02-11</u>
GS84 Zone 17N U	TM E <u>445,323</u>	Azimuth:	<u>15</u>	Claim:	540967 (100% VR Resources)
נט	TM N <u>5,607,151</u>	Dip:	<u>-65</u>	Permit:	PR-19-000205

Hole number	From	То	Lithology	Rock Unit	Texture	Grain Size	Colour	Oxidation	Description
RK20-002	0	3	Qmg	NA		Very Fine		H20	no recovery
RK20-002	3	15	Qmc	NA		Very Fine		H20	no recovery
RK20-002	15	30	Qst	NA		Fine		H20	no recovery
RK20-002	30	33	Qbt	NA		Coarse		H20	no recovery
RK20-002	33	60	Qst	NA		Fine		H20	no recovery
RK20-002	60	63	Qbt	NA		Coarse		H20	no recovery
RK20-002	63	93	Qst	NA		Fine		H20	no recovery
RK20-002	93	99	Qbt	NA		Coarse		H20	no recovery
RK20-002	99	150	Кта	S5		Fine		H20	no recovery
RK20-002	150	234.9	Jmi	S5		Fine		Ox	cobbles of dolomite and granitoid, sandy
									fine grain massive basalt with blotches of epidote alteration up to 2cm
RK20-002	234.9	281.8	Amt	V8	pbl	Medium	Gr	Fr	dome with no devonian limestone that has down dropped
RK20-002	281.8	285.2	MD1	V6	amy	Fine	Bl	Fr	very fine late magic dyke cross cutting with fluids on contacts. locally
RK20-002	285.2	289.9	Amt	V8	pbl	Medium	Gr	Fr	fine grain massive basalt with blotches of epidote alteration up to 2cm
									weakly brecciated on contact of very fine late dyke. small angular frag
RK20-002	289.9	290.74	HT4	НВХ	shr	Coarse	Or	Fr	veining looks like orange iron carbonate and chlorite local gypsum?.
RK20-002	290.74	292.5	MD1	V6	amy	Fine	Gr	Fr	very fine late magic dyke cross cutting with fluids on contacts. locally a
RK20-002	292.5	313.9	Amt	V8	eq	Medium	Gr	Fr	fine grain massive basalt
									high angle to core with much more fragments and layering. pink fragments and layering.
RK20-002	313.9	316.46	MD1	V6	aph	Fine	BI	Fr	irregular green 4cm class with sheeted veins
RK20-002	316.46	326.35	Amt	V8	pbl	Medium	Gr	Fr	fine grain massive basalt with locally pegmatitic zone at 325m, needle
RK20-002	326.35	326.65	MD1	V6	sx	Fine	BI	Fr	narrow very fine grain with needles of deep green bootie? and 1mm of
RK20-002	326.65	376.7	Amt	V8	pbl	Medium	Gr	Fr	median grain massive basalt with variable replacement in zones arour
									narrow irregular aphanktic dyke with small rounded carb blobs and di
RK20-002	376.7	376.85	MD1	V6	fb	Fine	BI	Fr	dark material "pulsing"
RK20-002	376.85	386.36	Amt	V8	pbl	Medium	Gr	Fr	median grain massive basalt with variable replacement in zones arour
									narrow irregular aphanktic dyke with small rounded carb blobs and di
									dark material "pulsing". usual narrow mafic dyke with aphanitic edges
RK20-002	386.36	386.81	MD1	V6	fb	Fine	BI	Fr	small angular fragments of red hematite or ankerite/siderite
RK20-002	386.81	407.14	Amt	V8	pbl	Medium	Gr	Fr	median grain massive basalt with variable replacement in zones arour
									usual narrow mafic dyke with aphanitic edges and rounded clasts 1-5
RK20-002	407.14	407.64	MD1	V6	por	Medium	BI	Fr	of red hematite or ankerite/siderite
RK20-002	407.64	472.31	Amt	V8	pbl	Medium	Gr	Fr	median grain massive basalt with variable replacement in zones arour
									fault zone with alternating maroon Atg and Amt fragments with inter
									chlorite and pink clasts. contact between matachewan dyke and gneis
RK20-002	472.31	474.5	HT4	HT2	bx	Coarse	Or	Ox	but is totally bleached.

cm. feldspars are glassy in places. could be archean

ly amygdaloidal with carbonate fill.

cm

ragments are dark green in light green ground mass.

ly amygdaloidal with carbonate fill.

gments, pyrite, and angular black frags. magnetic. one

dle like grains indicating supersaturation

n calcite at core. edges are irregular and high level ound veins and dykes

disseminated pyrite. edges have multiple bands of

ound veins and dykes

disseminated pyrite. edges have multiple bands of ges and rounded clasts 1-5mm in core. starting to see

ound veins and dykes

-5mm in core. starting to see small angular fragments

ound veins and dykes

tense silica-carbonate hydrothermal infill. lots of eiss. possible that thefr is some young dyke in here,

-Justin Daley

									pale green grey fine volcanic with green chlorite replacing nodules. da
									of pink pegmatite in dyke streaming. looking fluidized and bleached g
RK20-002	474.5	477.7	MD1	V6	por	Fine	Gy	Ox	either side
									fault zone with alternating maroon Atg and Amt fragments with inter
									chlorite and pink clasts. contact between matachewan dyke and gneis
RK20-002	477.7	481.5	HT4	HT2	bx	Coarse	Or	Ox	but is totally bleached.
									massive pink-maroon pegmatite bands in pink metavolcanic, with mo
RK20-002	481.5	494.03	Atg	M9	peg	Coarse	Pk	Tr	migmatitic zones
									pale green grey fine volcanic with green chlorite replacing nodules. loo
RK20-002	494.03	495.22	MD1	V6	por	Fine	Gr	Fr	calcite veins
									massive pink-maroon pegmatite bands in pink metavolcanic, with mo
RK20-002	495.22	608.05	Atg	M9	peg	Coarse	Mr	Fr	migmatitic zones. gets more mafic after 530m.
									intense iron carbonate and silica voining and brossiation and comparts
	C08.05	C10		1172	£	Caaraa	0.7		intense iron-carbonate and silica veining and brecciation and cementa
RK20-002	608.05	612	HT4	HT2	fz	Coarse	Or	Ox	grey to pink granitoid pebble dyke? local dark blue black silica in matri
RK20-002	612	630.11	Atg	M7	gs	Coarse	Gr	Fr	predominantly dark green crystalloblastic and locally gneissic mafic material
RK20-002	630.11	630.52		V6		Fine	BI	Fr	fairly fresh mafic-alkaline lamprophyre with sharp edges and rounded
									predominantly dark green crystalloblastic and locally gneissic mafic m
RK20-002	630.52	645	Atg	M9	gs	Coarse	Gr	Fr	transitions to pink fellsic protolith at 638.56

dark rims on clasts with calcite infill. 6mm fragments greh with calcite veins in it and strong brecciation on

ense silica-carbonate hydrothermal infill. lots of eiss. possible that thefr is some young dyke in here,

noderate veining. locally developed gneissic and

looking fluidized and bleached greh at its core with

noderate veining. locally developed gneissic and

ntation surrounding clast fault zone with polymictic attrix. other tabular clasts are pink calcite.

metavolcanic with quartz-kspar pegmatites. ed 1mm calcite blobs and possible pyrite? metavolcanic with quartz-kspar pegmatites.

-Justin Daley

RK19-003 403 metres			Contractor: Machine Roger Int.
Casing Left: <u>No</u> <u>No N</u>	<u>Marker</u>		Start: <u>2020-02-15</u>
Core Storage: Otter Rapids C	amp Core Size:	BQ	Finish: <u>2020-02-21</u>
GS84 Zone 17N UTM E <u>44</u>	45,214 Azimuth:	<u>165</u>	Claim: 540960 (100% VR Resources)
UTM N <u>5,60</u>	<u>D8,190</u> Dip:	<u>-75</u>	Permit: <u>PR-19-000205</u>

Hole number	From	То	Lithology	Rock Unit	Texture	Grain Size	Colour	Oxidation	Description
RK20-003	0	2	Qmg	NA				H20	no recovery
RK20-003	2	6	Qmc	NA				H20	no recovery
RK20-003	6	36	Qbt	NA				H20	boulders of dolomite, granitoid gneiss and fine grain mafic rocks
RK20-003	36	124	Qst	NA				H20	no recovery
RK20-003	124	165	Qbt	NA				Fr	boulders of fresh archean granodiorite and a couple fragments of aph
									dark floatstone dolomite to 180m with yellowish euhedral calcite grow
RK20-003	165	191.5	mDkw	S6	fs	Coarse	Tn	Fr	with local coral and shell fragments in Packstone horizons 5-25mm
									massive grey Isandstone to 204m with rare fizz, local 5-8mm empty sl
									coarse wackestone with some large blocks of limestone, otherwise no
									fragment of silestone at 207m and the start of some oxidation. return
									immature greywhacke. may even be some biotite in there. large quar
									seams of black siltstone and becoming more interbedded with arenit
RK20-003	191.5	230.8	lDsx	54	bd	Medium	Mr	Tr	at 217m. 220m sees a change to softer darker and more oxidized wat
11120-003	191.5	230.0	10.37	54	bu	weaturn		11	weakly foliated pegmatitic granodiorite with variable mafic content (k
									with megacrystic quartz and Kspar with 1cm clots of euhedral brassy
RK20-003	230.8	257.65	Atø	M10	peg	Coarse	Pk	Tr	specularite
RK20-003	257.65		•	M9	peg	Coarse	Pk	Fr	very coarse pegmatite of quartz Kspar and magnetite
					19-0				
									weakly foliated pegmatitic granodiorite with variable mafic content (k
RK20-003	257.85	266.2	Atg	M10	fol	Coarse	Gy	Fr	with megacrystic quartz and Kspar with 1cm clots of euhedral brassy
RK20-003	266.2	267.55		M9	peg	Coarse	Pk	Fr	very coarse pegmatite of quartz Kspar and magnetite, large clot of bio
									weakly foliated pegmatitic granodiorite with variable mafic content (k
RK20-003	267.55		•	M10	fol	Coarse	Gy	Fr	with megacrystic quartz and Kspar with 1cm clots of euhedral brassy l
RK20-003	307.32	307.96	Apg	M9	peg	Coarse	Pk	Fr	very coarse pegmatite of quartz Kspar and a seam of pyrite
									weakly faliated according to a with variable matic content (k
	207.00	221.0	^+~	N410	5-1	Coores	C	F	weakly foliated pegmatitic granodiorite with variable mafic content (k
RK20-003	307.96			M10	fol	Coarse	Gy Pk	Fr Fr	with megacrystic quartz and Kspar with 1cm clots of euhedral brassy l
RK20-003	321.6	322.45	Ард	M9	peg	Coarse	РК	Fr	very coarse pegmatite of quartz Kspar and magnetite, large clot of bic
									weakly foliated pegmatitic granodiorite with variable mafic content (b
RK20-003	322.45		•	M10	fol	Coarse	Gy	Fr	with megacrystic quartz and Kspar with 1cm clots of euhedral brassy l
RK20-003	337.75	338.7	Apg	M9	peg	Coarse	Pk	Fr	very coarse pegmatite of quartz Kspar and magnetite, large clot of bio
									weakly foliated pegmatitic granodiorite with variable mafic content (k
RK20-003	338.7	403	Atg	M10	fol	Coarse	Gy	Fr	with megacrystic quartz and Kspar with 1cm clots of euhedral brassy I
	•		0	•		•			Log finished 2020-02-22 Justin J. Daley

Log finished 2020-02-22 -- Justin J. Daley

phanitic mafic volcanic

rowing in voids. turning to pale grey limestone after

y shell shaped voids. after is another sequence of no fizz, large fragments of bull quartz. angular urn to grey granite to 210m before turning back to uartz fragments again at 211m. after 213m are 1-20cm nite after 216m. 3cm thick angular siltstone fragment vacke. becomes deep red at 222m

: (biotite) from 30 to 50%. pegmatites are 10cm across by black biotite. disseminated magnetite oxidized to

: (biotite) from 30 to 50%. pegmatites are 10cm across by black biotite. disseminated magnetite biotite

: (biotite) from 30 to 50%. pegmatites are 10cm across by black biotite. disseminated magnetite

(biotite) from 30 to 50%. pegmatites are 10cm across y black biotite. disseminated magnetite biotite

(biotite) from 30 to 50%. pegmatites are 10cm across y black biotite. disseminated magnetite biotite

: (biotite) from 30 to 50%. pegmatites are 10cm across sy black biotite. disseminated magnetite

-Justin Daley

Hole number	From	То	Length	AltFacies	Alt 1	Alt 1 Inte Alt 1 F	or Alt 2	Alt 2 Intens	Alt 2 F	orm Alt 3	Alt 3 Inter	Alt 3 Forn	Description
RK19-001b	222.8	223.1	0.3	In-CP	hem	4 Rp	ksp	5	Rv	chl	1	Rx	hematite stringers and stockworks altered mafic sites. hematite rimm
RK19-001b	222.8	223.1		In-CP	hem	5 Rp	ksp		Rv	chl			hematite stringers and stockworks disseminated specularite.
RK19-001b	223.1			CCC	hem	6 Rp	cl		Rp	chl		Rp	intense mottled hematite replacer and phenocrysts.
RK19-001b	223.23			In-CP	hem	5 D	ksp		Rv	chl			begins with strong bleavhing for 15 selvage. intense chlorite altered m
RK19-001b	225.9			disProp	hem	3 Rv	ab		Rv	chl			stockwork of chlorite veins in banc halo. weaker hematite stockworks
													hematite stringers and stockworks
RK19-001b	231	231.43	0.43	Out-CP	hem	5 Rv	ksp			chl	2	Rv	altered mafic sites. hematite rimm strong chlorite replacement of stro
RK19-001b RK19-001b	231.43 246.4			disProp	hem chl	2 Rv 4 Rp	ksp			chl	6		Kspar halos are weaker. strong chlorite replacement of stro
RK19-001b	256.1	259.3			hem	2 D	ksp	5					bands and patches of pink kspar re mafic sites. increasing in intensity t
DK10 001h	250.2	262.2			h o ree		lian			abl		r.	zone of epidote, chlorite and hems and patches of pink kspar replace
RK19-001b RK19-001b	259.3 262.76				hem hem	2 D	ksp	3		chl	3		sites. bands and patches of pink kspar re mafics
RK19-001b	202.70	268.5			nem								zone of hematite veining and chlor
RK19-001b	268.5				hem	3 Pchy	ksp	3	Rv				bands and patches of pink kspar re mafic sites. increasing in intensity t
													bands and patches of pink kspar re mafic sites. increasing in intensity t
RK19-001b	289	298.5	9.5		hem	3 D	ksp	4	Rv	cl	3		carbonate disseminated
RK19-001b	298.5	303.2	4.7		hem	5 D	ksp	5	Rv	ер	2	Rv	large bands and patches of pink ks specularite replacement of mafic s splotches of weak white clay and c
													large bands selvages of pink kspar
RK19-001b	303.2	328.72	25.52		hem	3 Pchy	ksp	4	Rv				specularite replacement of mafic s splotches of weak white clay and c
													large bands selvages of pink kspar specularite replacement of mafic s
RK19-001b	329.72	346.4	16.68		hem	2 D	ksp	3	Rv	cl	3	Rx	splotches of weak white clay and c

rks with Kspar selvage, weak bleaching too. locally chlorite nming magnetite in clots. disseminated pyrite too. rks with Kspar selvage. intense chlorite altered mafic sites.

cement of rock. totally chlorite-clay altered groundmass

15cm. hematite stringers and stockworks with Kspar mafic sites. disseminated specularite.

nded fine grain gneiss with bleached white feldspar in ks. local late carbonate veins.

ks with Kspar selvage, weak bleaching too. locally chlorite ming magnetite in clots. disseminated pyrite too.

tronger biotite foliation. local intense hematite veins but

tronger biotite foliation.

r replacement. leucoxene and specularite replacement of ty towards 303.

mstite, brecciating Kspar, and disseminated pyrite. bands cement. leucoxene and specularite replacement of mafic

replacement. leucoxene and specularite replacement of

lorite, epidote rim. siderite and epidote veins.

r replacement. leucoxene and specularite replacement of cy towards 303.

r replacement. leucoxene and specularite replacement of cy towards 303. new splotches of weak white clay and

kspar replacement around epidote veins. leucoxene and c sites, some py. increasing in intensity towards 303. new d carbonate disseminated more intensely

ar replacement around epidote veins. leucoxene and c sites, some py. increasing in intensity towards 303. new d carbonate disseminated more intensely

ar replacement around epidote veins. leucoxene and c sites, some py. increasing in intensity towards 303. new l carbonate disseminated more intensely

-Justin Daley

RK19-001b	346.85	351	4.15	hem	2	D	ksp	3	Rv	ер	2	Rv	large bands selvages of pink kspar specularite replacement of mafic s splotches of weak white clay and c
RK19-001b	351	390.75	39.75	hem	2	D	ksp	3	Rv	sb	3	Rp	large bands selvages of pink kspar specularite replacement of mafic s replacement to bt
RK19-001b	390.75	398.15	7.4	hem	5	Rv	ksp	5	Rx	sb	5		zone of more intense pink hem/ks vein dominated.
RK19-001b	398.29	401.7	3.41	hem	4	Rp	ksp	5	Rv	cl	1	Rx	zone of more intense pink hem/ks vein dominated. with specs of clay
RK19-001b	401.7	411	9.3	hem	3		ksp	2	Rv	cl	4	Rx	as before but more intense clay al
RK19-001b	411	421	10	hem	3		cl	2	Rv	ер	3	Rx	bleached clasts in dyke or hydroth chlorite and epidote throughout. a
RK19-001b	421	427.5	6.5	hem									zone of more intense pink hem/ks vein dominated. with specs of clay
RK19-001b	427.5	429	1.5	hem			chl	4	Rv	ер			bleaching and epidote chlorite rep
RK19-001b	429	437.65	8.65	hem									zone of more intense pink hem/ks vein dominated. with specs of clay
RK19-001b	437.65	438.35	0.7										
RK19-001b	438.35	445.82	7.47	hem	3		ksp	2	Rv	cl	3	Rx	as before but more intense clay al around dykes.
RK19-001b	446.4	450	3.6	hem	3		ksp	2	Rv	cl	3	Rx	as before but more intense clay al around dykes.

Hole number	From	То	Length	AltFacies	Alt 1	Alt 1 Inte	Alt 1 Fo	r Alt 2	Alt 2 Intens	Alt 2 Form	Alt 3	Alt 3 Inter	Alt 3 Forn	Description
														patchy replacements by epidote of
RK20-002	234.9	281.8	46.9	disProp	ер	4	Pchy							areas every 5cm. and around wavy
RK20-002	281.8	285.2	3.4	disProp	ер	2	Rv	chl	2	Rv	cal	3	v	epidote selvage on fine dark green
RK20-002	285.2	289.9	4.7	disProp	ер	4	Ву							patchy replacements by epidote or areas every 5cm. and around wavy
RK20-002	289.9	290.74	0.84	disProp	ер	5		carb	4	Rv				patchy replacements by epidote o areas every 5cm. and around wavy
RK20-002	290.74	292.5	1.76	disProp	ер	2	Rv	chl						epidote selvage on fine dark greer
RK20-002	292.5	313.9	21.4	disProp	ер	2	D							less patchy replacements by epido
RK20-002	313.9	316.46	2.56	disProp	carb	3	Rv							very fine carbonate disseminated i hydrothermal breccia
RK20-002	316.46	326.35	9.89	disProp	chl	3	Rm	ер	2	D				banded areas of more intense alte
RK20-002	326.65	338	11.35	disProp	chl	4	Rm							weak mottled chlorite replacemen
RK20-002	338	376.7	38.7	disProp	ser	3	Rv	chl	5	Rm				mottled replacement and weak ble
RK20-002	376.85	386.36	9.51	disProp	ser	3	Rv	chl	5	Rm				mottled replacement and weak ble
RK20-002	386.81	407.14	20.33	disProp	ser	3	Rv	chl	5	Rm				mottled replacement and weak ble

ar replacement around epidote veins. leucoxene and c sites, some py. increasing in intensity towards 303. new d carbonate disseminated more intensely

ar replacement around epidote veins. leucoxene and c sites, some py. increasing in intensity with biotite

kspar staining and biotite replacement to shreddy biotite.

kspar staining and biotite replacement to shreddy biotite. ay alteration through.

alteration just after 402m

thermal breccia with strong hematite staining, lots of a chaotic late low temperature zone.

kspar staining and biotite replacement to shreddy biotite. ay alteration through.

eplacement around the strong calcite veinning at kspar staining and biotite replacement to shreddy biotite. ay alteration through.

alteration just after 402m. especially concentrated

alteration just after 402m. especially concentrated

of fsp phenos and destruction of mafic texture in 1-2cm avy carbonate veins.

en chlorite veins. and calcite in 6mm amydules

of fsp phenos and destruction of mafic texture in 1-2cm vy carbonate veins.

of fsp phenos and destruction of mafic texture in 1-2cm avy carbonate veins.

en chlorite veins. and calcite in 6mm amydules

lote around wavy carbonate veins.

d in groubdmass of dyke and rubble areas of angular

teration. pyroxenes going to glassy titanite...

ent

pleaching around vein zones every 2m or so.

pleaching around vein zones every 2m or so.

bleaching around vein zones every 2m or so.

-Justin Daley

RK20-002	407.64	447	39.36	disProp	ser	3	Rv	chl	5	Rm			mottled replacement and weak blo
				0.01 · 0 p									more regular alteration of feldspar
RK20-002	447	465	18	disProp	ser	4	Rm	chl	5	Rm			alteration. destruction of magneti
													transition into bleached and clay a
													specularite. locally replacing a prin
RK20-002	465	472.31	7.31	ссс	cl	5	Rp	chl	4	Rm	ох	2 F	
													transition into bleached and clay a
													specularite. locally replacing a prin
RK20-002	472.31	474.5	2.19	Arg	cl	5	Rp	chl	3	Rp	ох	3 F	contact with tonalite gneiss.
													bleached and clay altered oxidized
													hydrothermal breccia. locally repla
RK20-002	474.5	477.7	3.2	Arg	cl	5	Rp	chl	3	Rp	ох	3 F	
													bleached and clay altered oxidized
													hydrothermal breccia. locally repla
RK20-002	477.7	481.5	3.8	Arg	cl	5	Rp	chl	3	Rp	ох	3 F	up contact with tonalite gneiss and
RK20-002	481.5	494.03	12.53	disProp	ser	2	Rp	chl	2	Rp			pink pegmatite and gneiss is not o
													bleached and clay altered with inte
RK20-002	494.03	495.22	1.19	CCC	cl	5	Rp	chl	3	Rp	CCC	3 F	veins at core
RK20-002	502.5	505.2	2.7	disProp	ер	4	Rm						epidote replacement in bands in m
RK20-002	512.75	516	3.25	disProp	ер	4	Rm						epidote replacement in bands in m
RK20-002	520.5	522	1.5	disProp	ер	4	Rm						epidote replacement in bands in m
RK20-002	531	534	3	disProp	ер	4	Rm						epidote replacement in bands in m
RK20-002	540.6	551	10.4	disProp	ер	5	Rp						epidote replacement in bands in m
RK20-002	560.3	562.1	1.8	disProp	ер	5	Rp						epidote replacement in bands in m
RK20-002	567.2	573	5.8	disProp	ер	5	Rm						epidote replacement in bands in m
													pale epidote bands and alteration
RK20-002	580.4	582	1.6	disProp	ер	3	Rm	chl	5	Rp			coming up foliation
													pale epidote bands and alteration
RK20-002	582	588.9	6.9	disProp	ер	3	Rm	chl	5	Rp			chlorite coming up foliation and ve
													same pulses of epidote, overprinte
													heading towards rubble in fault at
RK20-002	592.2	604.5	12.3	InProp	ер	5	Rm	chl	6	Rp	ох	4 D	pegmatitic quartz and Kspar
													much more bleached and crunchy
RK20-002	604.5	608.05	3.55	Phy	ser	5	Rm	carb	5	Rp	ох	4 D	rubble.
													sericite-hematite-siderite altered a
RK20-002	608.05	612	3.95	Phy	ser	5	Rm	carb	5	Rp	ох	4 D	
													pretty intense chlorite and epidote
RK20-002	612	630.11	18.11	disProp	chl	5	Rv	ер	4	Rv	ру	2 D	
													pretty intense chlorite and epidote
RK20-002	630.5	638.5	8	disProp	chl	5	Rv	ер	4	Rv	ру	2 D	replacement. locally disseminated

bleaching around vein zones every 2m or so. Dars to peachy white sericite and moderate chlorite etite into specularite

y altered oxidized crumbly rock. veinlets of carb with rimary breccia, volcanic in nature. fluids coming up

y altered oxidized crumbly rock. veinlets of carb with rimary breccia, volcanic in nature. fluids coming up

ed crumbly rock. intense chlorite replacement in placing a primary breccia, volcanic in nature. fluids coming and late mafic dyke

ed crumbly rock. intense chlorite replacement in

placing a primary breccia, volcanic in nature. fluids coming and late mafic dyke

obviously all that altered

ntense chlorite replacement especially around quartz carb

more mafic sections

more mafic sections. local breccia infilling

on through section with band of apple green chlorite

on through section with band of apple green to dark veining at 584m, 586m and 588.2m

nted by chlorite alteration and now strong hematite stain at 609m. all that's left of initial mineralogy seem to be

hy overprint to hematite-Chlorite alteration around

d and silica cemented pebble dyke zone. matrix is cal silica and specularite

ote alteration in more mafic gneiss, browd bands of ed py

ote alteration in more mafic gneiss, browd bands of ed py

-Justin Daley

Hole number	From	То	Length Alt	Facies Alt 1	Alt 1 Inte Alt	L For Alt 2	Alt 2 Intens Alt 2 Form A	Alt 3 Alt 3 Inter	Alt 3 Forn Description	
-		·		·	· ·	·			paleosurface oxidation of gran	odic
RK20-003	230.8	3 234	3.2 Arg	ох	5 Rp	cl	4 Rmx		situ	
									very weak local spots of chlorit	te al
RK20-003	234	4 245.8	8 11.8 disF	rop chl	2 D	spc	3 D		specularite in situ. patches whe	ere l
									weak local bands of chlorite all	tera
RK20-003	256.6	5 257.4	0.8 disF	rop chl	3 D	spc	3 D c	:1 2	where leucoxene are bright wh	nite

diorite with clay and hematite, patches of leucoxene in

e alteration on edges of biotite. magnetite altering to re leucoxene are bright white

eration. magnetite altering to specularite in situ. patches ite

VR Resources - Ranoke Mineralization Logs

-Justin Daley

Hole number	From	То	Min 1	Min 1 Intensity	Min 1 Form	Min 2	Min 2 Intensity	Min 2 Form	Min 3	Min 3 Intensity	Min 3 Form	Description
RK19-001a	67	68	ру	3	A							nodules and aggregat
RK19-001a	82.3	84	ру	1	Str							thin black coatings or
RK19-001a	157	159	ру	3	OS							crystalline pyrite coat
RK19-001a	166	167	ру	2	OS							crystalline pyrite coat
RK19-001a	168.2	169	ру	2	BI							local blebs and clots o
RK19-001a	174.9	177.5	ру	3	OS							large blebs of pyrite f
												pyrite disseminated in
RK19-001a	189.42	189.49	ру	4	V	ру	3	D				arenite
RK19-001a	189.5	194	ру	4	C							1cm crystalline clots

Hole number	From	То	Min 1	Min 1 Intensity	Min 1 Form	Min 2	Min 2 Intensity	Min 2 Form	Min 3	Min 3 Intensity	Min 3 Form	Description
												Trace to 1% pyrite clo
RK19-001b	184.6	185.5	ру	3	С							bedding.
RK19-001b	189.9	190	ру	4	OS							pyrite coating void in
RK19-001b	222.8	223.1	ру	2	D							finely disseminated py
RK19-001b	259.9	260	ру	3	D							strongly disseminated
RK19-001b	260.9	261.5	ру	3	D							pyrite disseminated ir
RK19-001b	266.5	266.6	ру	2	D							pyrite finely dissemination
RK19-001b	299.4	300	ру	2	D							finely disseminated ar
RK19-001b	333.3	333.4	ру	2	D							Pyrite finely dissemination
RK19-001b	361	361.2	ру	2	D							Pyrite finely dissemination
RK19-001b	371	372	ру	1	D							Pyrite finely dissemination
RK19-001b	391	396	ру	3	Vd							Pyrite finely dissemination
RK19-001b	411	415	ру	3	D							pyrite is disseminated
RK19-001b	429	435	ру	2	D							
RK19-001b	438.35			3	BI							Fine pyrite in pink bar
RK19-001b	446.5			2	D							

Hole number	From	То	Min 1	Min 1 Intensity	Min 1 Form	Min 2	Min 2 Intensity	Min 2 Form	Min 3	Min 3 Intensity	Min 3 Form	Description
RK20-002	237	270	ру	3	B D							disseminated primary
RK20-002	286	289.5	ру	2	2 D							disseminated primary
RK20-002	293	313	ру	2	2 D							disseminated primary
RK20-002	315	315.5	ру	2	2 D							disseminated very fine
RK20-002	316.9	326	ру	2	D							disseminated very fine
RK20-002	318.4	318.5	sulf	3	B cl							1cm clot of pyrrhotite
RK20-002	327	476	ру	2	2 D							very fine disseminated
RK20-002	327.6	327.7	sulf	3	B cl							1cm clot of pyrrhotite

gated pyrite in bedding horizons. disseminated 1mm to 1cm on bottom of clasts. locally crystalline

nating cast of fossil void.

pating cast of fossil void.

s of pyrite inside corals and floating in mud.

e filling voids in corals

in veins and through matrix of intrusive clast at top of

s of pyrite sitting in sandstone. weird!

clots (1mm to 1cm) weakly deformed, stretched in the

in rock

pyrite with black coating

ed on margin of narrow mafic dyke

I in zone of epidote replacement

inated in dark biotite band

around edges of the pink kspar bands

inated in pinkish alteration

inated in pinkish alteration

inated in pinkish alteration

inated in pinkish alteration

ed in the mafic dykes around epidote alteration

and. clusters

ary pyrite

ary pyrite ary pyrite

ine pyrite

ine pyrite

ite-pentlandite exsolution texture. highly magnetic ted pyrite

ite-pentlandite exsolution texture. highly magnetic

VR Resources - Ranoke Mineralization Logs

-Justin Daley

RK20-002	375.9	375.95	ру	3 cl			circular disc c	clots on f
RK20-002	376.9	386	ру	2 D			finely dissem	inated ir
RK20-002	421	421.1	ру	3 cl			clot of pyrrho	otite enc
RK20-002	429.3	429.5	ру	3 Vs			1-3mm bl3bs	of pyrite
DK20.002							clot of pyrrho	
RK20-002	444.3	444.5	ру	3 cl			brassy and no	on-magn
RK20-002	452.6	452.95	ру	3 cl			clots of pyrite	e within
							large blocky o	clots and
RK20-002	473	473.25	ру	5 C			dyke into pin	k pegma
RK20-002	489	493	ру	2 D			finely dissem	inated p
RK20-002	500	502.6	ру	2 D			fine dissemin	ated pyr
RK20-002	510	511	ру	2 D			fine dissemin	ated pyr
RK20-002	522	522.78	ру	2 D			fine dissemin	ated pyr
RK20-002	525.6	526.8	ру	2 D			fine dissemin	ated pyr
RK20-002	599.2	599.4	ру	2 Vd			very finely di	sseminat
RK20-002	612.5	630	ру	2 D			very fine diss	eminate

Hole numbe	r From	То	Min 1	Min 1 Intensity	Min 1 Form	Min 2	Min 2 Intensity	Min 2 Form	Min 3	Min 3 Intensity	Min 3 Form	Description
RK20-003	307	.5 307.	6 ру	4	C							clots and seams in qu
RK20-003	337	.9 33	8 py	4	Blv							clots and seams in qu

n fracture of bright silvery pyrite or pyrrhotite

in needle like yellowish micro agglomeration

ncircling feldspar grains. 1cm

rite around silica carbonate veins

ncircling feldspar grains. 1cm. and near the veins it is more gnetic... turning I to pyrite

in chlorite streaming

nd agglomerations of pyrite streaming up contact of mafic matite

I pyrite in pegmatized zones

byrite in coarse pegmatite zones with quartz

oyrite in coarse pegmatite zones with quartz

oyrite in coarse pegmatite zones with quartz

oyrite in coarse pegmatite zones with quartz

nated in thick hematite veins

ated pyrite

quartz kspar Kspar pegmatite quartz kspar Kspar pegmatite

VR Resources - Ranoke Veining Logs

-Justin Daley

Hole number	From	То	Vein Type	Vein Min	Vein Min Alt	Vein Alt 2	Vein Selvage	Vein Selv 2	Width (cm)	Interval (cm)	Core Angle	Description
											15	
RK19-001b	222.8	223.1			hem		ksp		0.1	4	45	stockwork of very thin red he
RK19-001b	223.5	225.9			hem		ksp		0.1	4	45	stockwork of very thin red h
RK19-001b	223.5				chl				0.1	10		locally intense stockworks or
RK19-001b	225.9				cal				0.5	25		late calcite veins cross-cuttin
RK19-001b	240	244.9			cal				0.1	30	50	late calcite veins cross-cuttin
RK19-001b	240.1	240.4			cal	sil			0.2		20	late Cb - Qtz vein with open :
												late Cb - Chlorite veinlets cro
RK19-001b	252.1	254.4			cal	chl			0.1	15	35	30 to 60 dtca.
RK19-001b	255.8	275			cal				0.1	75	65	late calcite veins cross-cuttin
RK19-001b	256.5	267			ksp				0.5	10	30	pink kspar bands, could be p
												zone of intense hematite and
RK19-001b	267	268.5			hem	ер	chl		0.3	5	30	intense iron replacement.
RK19-001b	268	291					ksp	hem	1	25	45	banding of pink kspar and we
RK19-001b	268	411			cal				0.1	50	35	late whitish veinlets cross cu
RK19-001b	291	299					ksp	hem	3	10	50	banding of pink kspar and we
RK19-001b	299	303			carb	ер	cl		0.4	60		section of slightly more inter
												near core axis siderite and lo
RK19-001b	311	314			hem	carb	ksp		2	120		of PINK Kspar
RK19-001b	312	393			ер				1	150		epidote bands with local Tou
RK19-001b	332.5				ер	hem	ksp		0.3			epidote again with tourmalir
RK19-001b	351	356.5			ер	hem	ksp	sb	0.5	150		epidote tourmaline and som
RK19-001b	375		1		ep	hem	ksp	sb	0.5	150		epidote tourmaline and som
RK19-001b	390	411			carb	cal			0.3	20		higher angle and more abund
												high angle saccharine calcite
RK19-001b	200 7	402			6 7 .0		ham	a n	1	500		py disseminated. selvage of i
	390.7 392				spc		hem	ер	1 0.2	500		overprinting get epidote veir
RK19-001b RK19-001b	401				carb	ep	ksp		0.2	30 80		siderite and epidote veinlets open space calcite veins with
RK19-0010	401	411			carb	ер			0.3	80		late propylitic locally open sp
												cross cutting dyke, also at bc
												siderite, calcite, and epidote
RK19-001b	411	416.5			carb	hem	ер	chl	0.4	Δ		some pyrite
		+10.5					ср		0.4		50	vein stockwork and vein bred
												strong chlorite epidote repla
RK19-001b	418	420.5			carb	hem	ер	chl	0.4	2		greenish selvage.
												late creamy to white multiph
RK19-001b	421	436			carb	cal	ер		0.2	50		gneiss
												late creamy to white multiph
RK19-001b	436	445			carb	cal	ер		0.2	20	35	gneiss. locally banded and co

hematite veins with elevated K on selvage.

hematite veins with elevated K on selvage.

or chlorite veinlets especially at 226m

ting cutting all. crystalline

ting cutting all. crystalline

n space texture. Crystalline

cross cutting all with a variable orientations between

ting cutting all. crystalline

part of metamorphic texture

and epidote alteration and some clay. 267.5 is

weakly disseminated specularite cutting all. Cb in fracture filling ? weakly disseminated specularite

ense carbonate veining with local epidote. locally specularite centered veins with 2cm selvage

ourmaline!

line. and other banded ksp veins

ome specularite in

ome specularite in

undant calcite veins, orally with siderite.

ite vein with 7mm patches of specularite and some of red creamy hematite and then black Mn rind. ein.

ets with strong pink halo on them

ith epidote and halos of clay alteration

space veins with strong preferred orientation and boundaries is most intense. banded hematite, te fringes. locally much stronger hematite. can be

reccia of hematite and siderite cored fluids and placement of mafic rock. also elevated K in bleached

iphase carbonate veins through mafic dykes and

iphase carbonate veins through mafic dykes and colloidal

VR Resources - Ranoke Veining Logs

-Justin Daley

RK19-001b	447	448		hem	chl	cl	0.3		30	late mess of hematite and ch
RK19-001b	448	468		ksp			0.4	10	60	pink kspar bands, could be pa

Hole number	From	То	Vein Type	Vein Min	Vein Min Alt	Vein Alt 2	Vein Selvage	Vein Selv 2	Width (cm)	Interval (cm)	Core Angle	Description
											ŭ	dark green black undulose su
RK20-002	237.5	238.4			chl	ank			0.3	10	40	and bright orange ankerite
												dark green black undulose su
RK20-002	238.4	246			chl	ank			0.2	150	25	and bright orange ankerite
RK20-002	281	282	Epi		carb	ер	ank		0.3	10	20	bands of undulose white crat
												dark green chlorite veins in w
RK20-002	282	284	Epi		chl	ер			0.1	5	45	clay?
												larger zone of high core angle
												green chlorite. also white cal
RK20-002	289.8	290.6			chl	carb	ank		3	5	20	potentially gypsum
												dark green chlorite veins in w
RK20-002	290.6	293			chl				0.1	15	30	clay?
RK20-002	293	312			carb							
RK20-002	303	312			chl				0.1	100	10	dark green undulose chlorite
												vein breccia with calcite cem
RK20-002	314.5	316.5			cal				0.3	25	80	carbonated
RK20-002	316.5	321			chl				0.1	200	45	dark green undulose chlorite
RK20-002	327	336	Carb		carb				0.1	500	20	boring carbonate veins.
												red silia veins overprinting pe
RK20-002	336	336.5	Carb		sil	chl			1	15	75	textures
												stronger carbonate veining w
												might be serictite or just chlo
RK20-002	336.5	384	Carb		carb		ser	chl	0.1	250	15	in rock.
												stronger carbonate veining w
												might be serictite or just chlo
RK20-002	390	485	Carb		carb		ser	chl	0.1	300	20	in rock.
RK20-002	403	405	Qtz-Cb		sil	ank			0.2		10	low temperature chalcedony
											_	long vein along core axis with
RK20-002	411	415	Qtz-Cb		sil	ank		chl	1		5	reddish silica or chalcedony v
	100 5										_	red stained silica vein and a l
RK20-002	428.5		Qtz-Cb		sil	ank		chl	1			chlorite with calcite 2. later r
RK20-002	430.5	438	Qtz-Cb		sil	ank		chl	0.5	35	40	multi phase carb to silica veir
DK20.002									2		25	ivory carbonate that fizzes re
RK20-002	441.4	441.6			carb	chl			2		25	wall late open space filling with sp
	465	100			aa xh				0.2		10	
RK20-002	465	466			carb	spc			0.2		10	carb veinlets
												low core angle epithermal lo
BK20 002	172 4	100	Otz Ch		cil	carb		ny	0.5	-	20	brecciasgrading into full on b
RK20-002	472.4	483	Qtz-Cb	ļ	sil	carb	ļ	ру	0.5	5	L 20	mafic dyke and through it. m

chlorite replacement with weak clay selvage part of metamorphic texture

subparallel low ramp veins with some carbonate

subparallel low ramp veins with some carbonate

rab veins in sheared strongly on contact n weak stockworkwith pale selvage of epidote or

gle fibrous ankerite (bright tangerine). and dark calcite seems later and there are nodu,es of

weak stockworkwith pale selvage of epidote or

ite veins

ement and unaltered angular coasts. local orange

ite veins

peachy carb vein with chlorite. Late Low temp

with large selvages of yellowish bleaching that norite and epidote. occurs a, most as fluid banding

with large selvages of yellowish bleaching that norite and epidote. occurs a, most as fluid banding

ny? vein with micro inclusions of orange/red carb? /ith multi phase fluids. 1. chlorite with calcite 2. later y veins

a long vein along core axis with multi phase fluids. 1. r reddish silica or chalcedony veins

eins with epithermal boiling textures

readily with spines of chlorite perpendicular to vein

specularite and calcite, interconnecting with orange

looking quartz carbonate veins and vein n bx matrix at 474m and 479m on either side of minor pyrite on selvages of veins.

VR Resources - Ranoke Veining Logs

-Justin Daley

										•		
												chlorite veining seems to pre
RK20-002	480	486			chl				0.1	15	45	and decreases to stringers to
												quartz carbonate veins comi
										_		clay chlorite alteration. core
RK20-002	494.2		Qtz-Cb			carb	cl		0.3	5		segment
RK20-002		499.75	· ·		ер				0.2	5		angular narrow subparallel st
RK20-002	504.6				chl		ру		0.1			dark green red veinlets locall
RK20-002	509.5		Qtz-Cb		sil	carb			0.7	5		open space filling quartz cark
RK20-002	512.75				ер				0.1	5		angular narrow subparallel st
RK20-002	517.8	519	Chl		chl	hem			0.1	100	45	dark green red veinlets locall
												anastomosing and locally und
RK20-002	570.8	571.7	Chl		chl	hem			0.1	5	25	pyrite.
												various sizes and angles of th
RK20-002	582.8					hem			0.3	45		calcite mixed in.
RK20-002	586.5	586.6	Qtz-Cb		sil	carb			1		40	thicker quartz carbonate epit
												irregular and anastomosing v
RK20-002	593.5	608			hem				0.1	125	45	seem to precede the qtz cark
												stockwork and single fracture
RK20-002	593.7	606	Qtz-Cb		sil	carb			0.3	30	25	carbonate veins
RK20-002	596.5	597.6			spc		chl		0.6	50	30	same generation of hematite
												late iron carbonate with calc
RK20-002	605					carb			0.4		1	towards cementation of the
RK20-002	235	281			carb		ер		0.2	45	15	undulose carbonate veins wi
	I_	_										
		То	Vein Type	Vein Min		Vein Alt 2	Vein Selvage	Vein Selv 2		Interval (cm)		-
RK20-003	254.75		Carb		cal				0.1			undulose carbonate veins wi
RK20-003	271.6		Carb		cal				0.2	15		undulose carbonate veins wi
RK20-003	281.5	283	Carb		cal				0.2	15	25	undulose carbonate veins wi
RK20-003	289.5	291	Carb		cal				0.2	40	30	undulose carbonate veins wi
RK20-003	325.8	330	Carb		cal				0.2	40	75	undulose carbonate veins wi
RK20-003	332.5	337	Carb		cal				0.2	80	75	undulose carbonate veins wi
RK20-003	344.5	346	Carb		cal				0.2	150	70	undulose carbonate veins wi
RK20-003	363	370	Carb		cal				0.2	25	10	undulose carbonate veins wi
RK20-003	378	378.2			fl	ер	cal		1		30	megacrystic purple fluorite

precede the mafic event? filling bx matrix after 480m to end of segment.

ming up centre of mafic dyke and bleaching it with re angle increasing from 20 to 70 to bottom of

stockwork of epidote

ally with some pyrite.

arb veins

l stockwork of epidote

ally with some pyrite.

undulating dark green red veinlets locally with some

thicker chlorite and hematite veins with more

pithermal crustiform vein

g veinlets and stringers of hematite in fractures? arb veinlets

ure filling low temp epithermal white to ivory quartz

ite veinlets, just thicker and more crystalline

alcite cores. very angular and irregular increasing

ne hydrothermal breccia

with local peppered epidote replacement

30 megacrystic purple fluorite with calcite and epidote in sharp planar vein.