

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 REPORT ON PROPERTY VISIT TO THE IOCG JOINT VENTURE CLAIMS AYLMER TOWNSHIP, ONTARIO

NTS 41115

March 16, 2020

Thomas Hart, P.Geo

Table of Contents

1.0 Introduction	3
2.0 Property Location, Access, and Description	3
3.0 PREVIOUS WORK	5
4.0 GEOLOGY	8
4.1. Regional Geology	8
4.2. Local Geology	10
4.3. Mineralization	11
5.0. 2019 Property Visit and Sampling	12
5.1. August 20	12
5.2. Analytical Results	17
6.0 Geophysical Review	21
7.0 STATEMENT OF EXPENDITURE	21
6.0 Discussion	24
7.0 Recommendation	24
8.0 REFERENCES	25
9.0 STATEMENT of the author	26
Appendix A: IOCG Group Assessment Work	27
Appendix B: Sample Descriptions	28
Appendix C – Analytical Certificates	30
Appendix D – Financial	31

List of Tables

- Table 1: List of claims composing the IOCG Joint Venture Property
- Table 2: Samples supplied by the IOCG Group from the gold showing located at 517253 m East and 5190047 m North (coordinates are UTM metres NAD 83, Zone 17)
- Table 3: Samples analysed for trace elementsfrom the gold showing located at 517253 m East and5190047 m North (coordinates are UTM metres NAD 83, Zone 17)
- Table 4: Samples analysed for major and trace elements from the gold showing located at 517250 mEast and 5190047 m North (coordinates are UTM metres NAD 83, Zone 17)

Table 5: An abbreviated correlation matrix with only elements that correlated well with either gold or copper for both the 2018 and 2019 visits

Table 6: Summary of Expenditures

List of Figures

- Figure 1: Property location map
- Figure 2: IOCG Joint Venture Group claim map
- Figure 3: Geology of Aylmer and Telfer townships after Dressler (1981); with claims outlined in white
- Figure 4: Generalized stratigraphy of the Huronian Supergroup; Modified after Young (1991)
- Figure 5: Claims map of the property with the locations of sampled collected in 2019 with the 2018 sample locations are unlabelled locations.
- Figure 6: Sample L783324, representative of the three samples from the gold showing with analytical results listed in Table 3
- Figure 7: Sample L783325, mineralized silty sandstone
- Figure 8: Sample L783327, green grey siltstone
- Figure 9: Sample L783328, granitic dykelets in siltstone
- Figure 10: Total Alkalis versus Silica diagram with the 2019 samples (Middlemost, 1994).
- Figure 11: classification of the Aylmer property samples compared to the average compositions supplied by Gates (1991) with the "_A" prefix denoting the altered examples (after Al-Hashim, 2016
- Figure 12: classification of the potential source material compositions (after Al-Hashim, 2016)
- Figure 13: classification of the potential source materials with PM passive margin, ACM active continental margin, and ARC oceanic island arc margin (after Al-Hashim, 2016)
- Figure 14: provenance of the source materials with TTG tonalite-trondhjemite-granite with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)
- Figure 15: provenance of the source materials with TTG tonalite-trondhjemite-granite with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)
- Figure 16: The Tilt derivative of the IOCG survey inset on the total field magnetic data for the regional magnetic survey next to the Z-component B-field from the same survey with the location of the Cu breccia denoted by the Cu on both maps

1.0 INTRODUCTION

This report has been prepared by Transition Metals to document of a property visit and sampling of the IOCG Joint Venture Group claims located in Aylmer Township completed on August 20, 2019 and document analyses completed on samples supplied by the Group. The visit was conducted to examine a reported gold showing that had been missed on previous property visits in 2018. The property is of interest as it encompasses copper and gold mineralization on the western end of the Mirage geophysical anomaly, north of Lake Wanapitei.

2.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION

The Property is located in north-central Aylmer township at $46^{\circ} 2.37'$ N latitude, $080^{\circ} - 2.4'$ W longitude (UTM coordinates: Zone 17, NAD 83; 517500 m E, 5190000 m N), approximately 63 km north of Capreol by road (Fig. 1). The township is located within the Sudbury Mining Division and the District of Sudbury, Ontario. Access to the Property from Sudbury, Ontario, is north through Hamner and Capreol along highway 545 for approximately 10 km to the Portelance Road, after crossing the Wanapitei River turn south on to the Poupore Road. From Hanmer, the distance to the property by road is approximately 63 km.

The Property is comprised of 42 single cell claims and one multi-cell mining claim covering approximately 1,455 hectares, as listed in Table 1, and shown in Figure 2. A joint venture, the IOCG Joint Venture, currently holds the claims in joint ownership but the claims are registered 100% in the name of Tom Sheppard, a member of the joint venture.

Township	Tenure	Туре	Anniversary Date	Status	Percent Ownership	Work Required	Total Reserve
AYLMER	122139	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	125981	Single Cell Mining Claim	2020-08-16	Active	100	400	0
AYLMER	128088	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	137966	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	139625	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	148107	Single Cell Mining Claim	2021-12-02	Active	100	400	0
AYLMER	148108	Single Cell Mining Claim	2021-08-16	Active	100	400	179
AYLMER	149476	Single Cell Mining Claim	2021-08-16	Active	100	400	180
AYLMER	153874	Single Cell Mining Claim	2021-12-02	Active	100	400	0
AYLMER	153875	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	166537	Single Cell Mining Claim	2020-08-16	Active	100	400	0

Table 1: List of claims composing the IOCG Joint Venture Property

Township	Tenure	Туре	Anniversary Date	Status	Percent Ownership	Work Required	Total Reserve
AYLMER	166645	Single Cell Mining Claim	2021-08-02	Active	100	400	0
AYLMER	170521	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	177357	Single Cell Mining Claim	2021-05-24	Active	100	400	0
AYLMER	178761	Single Cell Mining Claim	2021-08-16	Active	100	400	192
AYLMER	178762	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	178763	Single Cell Mining Claim	2020-08-16	Active	100	400	0
AYLMER	178764	Single Cell Mining Claim	2021-08-16	Active	100	400	26
AYLMER	186047	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	210379	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	210393	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	225325	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	227286	Single Cell Mining Claim	2021-08-16	Active	100	400	8
AYLMER	229424	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	231953	Single Cell Mining Claim	2021-08-02	Active	100	400	0
AYLMER	239390	Single Cell Mining Claim	2021-08-16	Active	100	400	68
AYLMER	244102	Single Cell Mining Claim	2021-05-24	Active	100	400	0
AYLMER	251454	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	251455	Single Cell Mining Claim	2021-12-02	Active	100	400	0
AYLMER	252842	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	285806	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	285807	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	285808	Single Cell Mining Claim	2020-08-16	Active	100	400	0
AYLMER	298639	Single Cell Mining Claim	2021-08-16	Active	100	400	3
AYLMER	302083	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	318737	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	318738	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER	318739	Single Cell Mining Claim	2020-08-16	Active	100	400	0
AYLMER	335723	Single Cell Mining Claim	2020-12-02	Active	100	400	0
AYLMER	335724	Single Cell Mining Claim	2020-12-02	Active	100	400	0

Township	Tenure	Туре	Work Required	Total Reserve			
AYLMER	340910	Single Cell Mining Claim	2021-08-02	Active	100	400	29
AYLMER	345447	Single Cell Mining Claim	2021-08-16	Active	100	400	0
AYLMER, TELFER	524992	Multi-cell Mining Claim	2020-06-25	Active	100	9600	74

3.0 PREVIOUS WORK

Below is a brief summary of historical work conducted over the Property as compiled by Winter (2017).

- 1950- H. Barry discovered copper mineralization in the matrix of a breccia; a 2 m chip sample from 1949 returned 2.07% Cu. Three drill holes, 182.7 m, were drilled in 1952. A 4.1 m intersection adjacent to the showing was estimated to run 0.5% Cu.
- 1958 Kennco Exploration completed an airborne EM and magnetic surveys, but no bedrock conductors were identified. Three pits were excavated and 2 packsack diamond drill holes were completed with scattered pyrite and trace chalcopyrite were present in the first hole but no sulphides were identified in the second hole.
- 1964 R.C. Dennie drilled a 61 m hole in reporting pyrite in the core.
- 1965 L.L. Billoki conducted an IP survey and completed two drill holes totalling 277 m reporting up to 10% pyrite and 2% chalcopyrite across 3 meters.
- 1979 Kerr Addison Mines Limited completed ground VLF-EM and magnetometer surveys.
- 1991 Falconbridge flew a GEOTEM fixed wing airborne EM survey covering part of the current property. No anomalies were identified.
- 2002 Roger Poulin investigated the property area for possible decorative stone quarrying.
- 2008 2017 F. Delabbio reported on mapping, trenching, sampling, geophysics, soil sampling, and prospecting in claim 4203306 and adjacent areas on the behave of the IOCG Joint Venture Group. Copper values of 1.8% Cu and 0.25% Cu were reported. VLF and vertical loop ground EM surveys indicated the presence of possible conductors.

A complete list of the work completed by the Group is contained in Appendix A

- 2011 Geotech conducted an airborne VTEM horizontal magnetic gradient survey for the IOCG Joint Venture Group covering 9 km2 over 51 line kilometres. Geotech stated that the area does not have anomalies that have EM response.
- 2017 S. Winter completed a mapping and sampling program for the IOCG Joint Venture Group.
- 2018 Site visit by Transition Metals geologists sampling the east and west breccias.

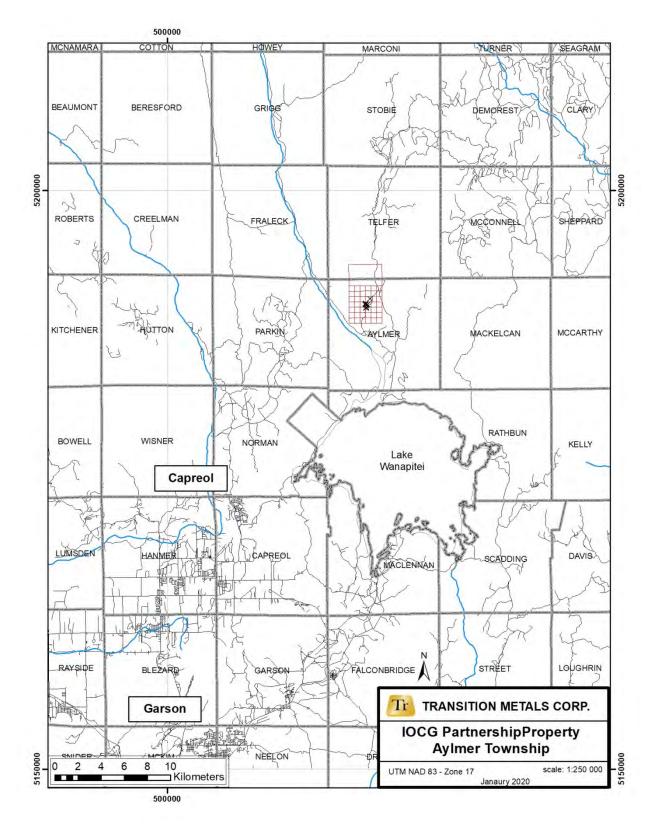


Figure 1: Property location map

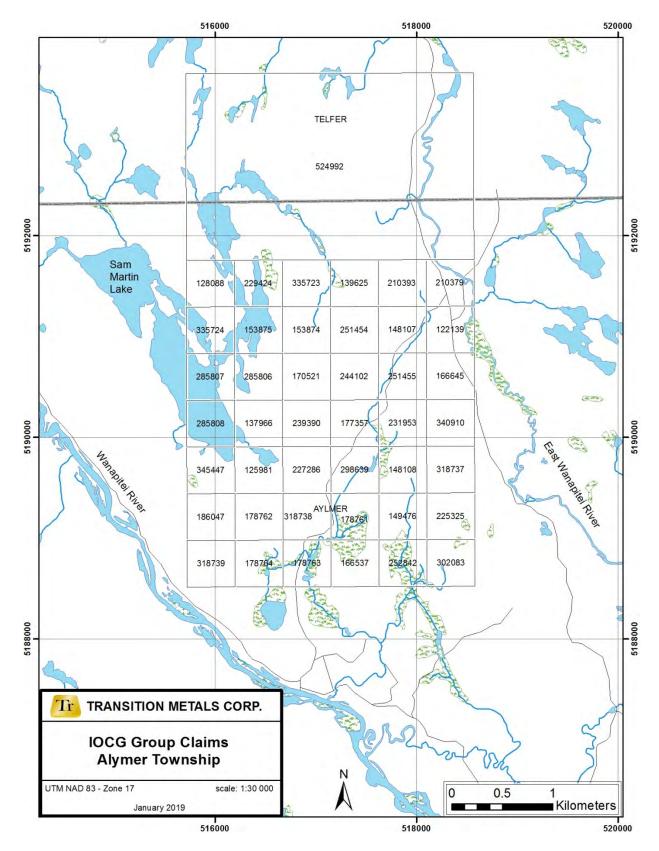


Figure 2: IOCG Joint Venture claim map

4.0 GEOLOGY

4.1. Regional Geology

The property is located in the south portion of the Cobalt Embayment, northeast of the Sudbury Igneous Complex. Rocks of the Huronian Supergroup have been intruded by sills, dykes and irregular bodies of Nipissing gabbro (Fig. 3). Archean age rocks of the Superior Province occur to the west, while metasedimentary and intrusive rocks of the Grenville Province occur to the south. Several Sudbury olivine diabase dykes cut the older lithologies. Bedrock is locally well exposed.

The Huronian metasedimentary rocks lie unconformably above the Archean basement. They are part of the Huronian Supergroup, portions of which extend across the region from Sault Ste. Marie in the west to the Cobalt area near the Quebec border in the east. The Huronian sediments are interpreted to have been deposited during a period of marine transgression from south to north, commencing with sandstones, conglomerates and argillites with local intercalated mafic volcanics followed by more mature clastic sediments and marine evaporates. The sediments are thought to have been deposited from the northwest towards the southeast, with the clastic material derived from gradual uplift of the foreland to the north. The unconformity with the basement rocks is sharply defined in some places and at others is represented by several meters of regolith. The Huronian Supergroup has been divided into four groups, each containing several formations, as seen summarized after Young (1991), (Figure 4).

The primary intrusive event affecting the region was the emplacement of the Nipissing diabase sills and dykes which are dated at 2120 Ma. The sills and dykes were folded during the Penokean Orogency and metamorphosed to greenschist facies. The Nipissing diabase is found as intrusions in the Huronian sediments and also the underlying Archean rocks.

The major structural event that deformed the Huronian sediments was the Penokean Orogeny, which affected the region between about 1850 Ma and 1750 Ma. The deformation caused by the Penokean Orogeny resulted in folding and thrust faulting of the Huronian sediments. The Murray fault system and Onaping fault systems are composed predominantly of strike-slip faults that were formed sometime after the Grenville Orogeny (post 1000 Ma). In the area of the property, the major fold axes trend approximately north-south. The major north-northwest fault is the McLaren Lake-Wanapitei River Fault; the major north-south faults are the McLaren Creek and Laundry Lake Faults.

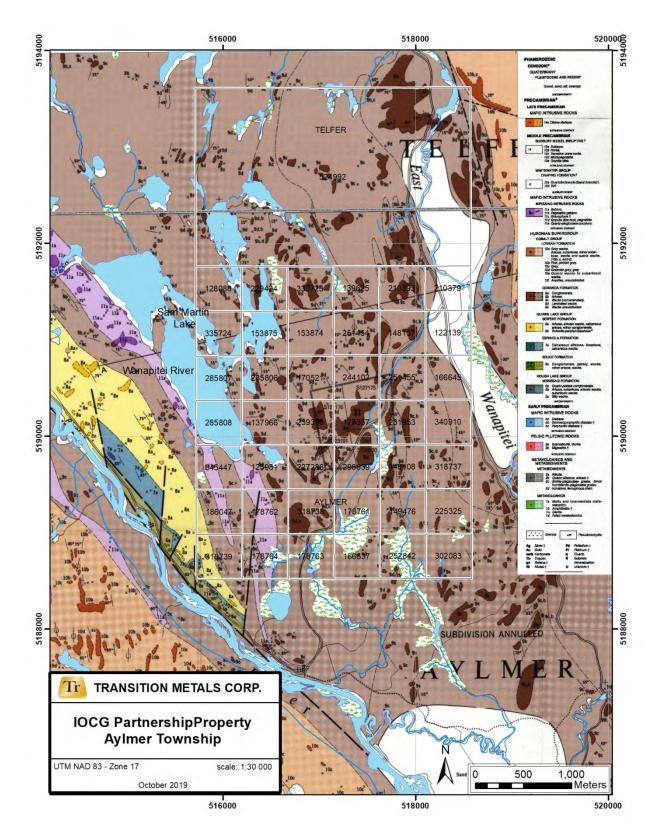


Figure 3: Geology of Aylmer and Telfer townships (Dressler, 1981); with claims outlined in white

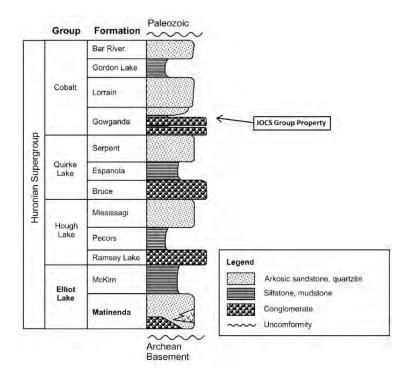


Figure 4: Generalized stratigraphy of the Huronian Supergroup; modified after Young (1991)

4.2. Local Geology

The Gowganda Formation is the basal formation of the Cobalt Group and underlies the Property (Figure 3 and 4). This formation is composed of conglomerates, sandtones, quartzites, siltstones and argillites but consists wackes, sandstones and siltstones, in the area of the property. A northwest-trending exposure of Nipissing gabbro is located in the southwest part of the property. Structurally, the property lies on the western limb of a syncline trending north north west. Overburden consists of a coarse glacial till ranging from a few centimetres to several meters in depth.

Alteration appears to be dominantly albitic (pink) with chloritization and carbonatization. The wackes appear to be very fine grained, chloritized and albitized. Mineralization in the central part of the property area consists of a number of showings mainly composed of coarse breccias with quartz and or carbonate as the matrix plus variable amounts of pyrites, chalcopyrite, and in some cases bornite. A dark green-black chlorite accompanies some of the quartz veining and mineralization. Much of the pyrite occurs as coarse, disseminated cubes. In some locations the breccia matrix hosts cubic shaped cavities filled with limonite which may be a weathering product of the pyrite. Regionally in some of the showings, gold values are reported, associated with the copper mineralization.

Some of the breccia bodies appear to be more or less "stratiform" however others are crosscutting. On a property in Scadding township to the southeast, similar mineralization shows a crude zoning of hydrothermal alteration in breccia near gold mineralization. The pattern of alteration from proximal to distal includes:

- Green chloritic breccia with quartz + ankerite + sulphide stringers and/or matrix material.
- Pink albitic + hematitic breccia with coarse dolomite + quartz stringers and/or matrix material.

On the property the East Quarry breccia appears to be controlled by a near vertical north trending structure with an indeterminate width due to the limited exposure. But the structure appeared to narrow towards the north. The orientation of the West Quarry difficult to determine as the limits of the breccia were only observed in plan. However, the exposures in the quarry face and in outcrop downhill from the quarry, along with intersections in historical drill holes, suggest the potential for a greater vertical and horizontal extent. Dressler (1981) described the mineralization and brecciation as appearing to be related to a minor east steeply dipping fault. The brecciation and hydrothermal impregnations of the breccia by quartz and carbonate are not uncommon in the vicinity of the property. A thin gabbro dike was observed just west of the mineralized showing.

4.3. Mineralization

There is a broad regional structural zone in the order of 14 to 15 km wide that extends from the Grenville Front, northwest from Dana, Janes, Davis and Scadding townships and that then turns to trend more north-north westerly through the eastern part of Wanapitei Lake and the area to the east of the lake. From here the zone continues through the eastern part of Fraleck and Aylmer townships. The western limit of the structural zone is the upper Wanapitei Fault which follows the Wanapitei River. The Property lies approximately 1 km east of this major fault in Aylmer township (Fig. 3).

Gates (1991) describes in the order of 30 mineral showings or occurrences that for the most part lie within the indicated structural zone and of these, in the order of 25 are characterized by soda metasomatism as expressed by albitization. The associated mineralization varies from quartz veins with pyrite and chalcopyrite to breccia bodies mineralized with quartz, pyrite and chalcopyrite. Also, arsenopyrite is not uncommon.

Iron carbonate alteration and silicification are usually present and all zones appear to be structurally controlled. The property in Aylmer township is not described by Gates (1991), however, it falls within the indicated structural zone and shows the same features of soda metasomatism etc. as for the majority of the occurrences described in OFR 5771.

A paper given by Martinsson (2011), at the Iron Oxide Copper Gold (IOCG) Workshop in Antatagasta, Chile in 2011, provides a review of IOCG deposits in the northern part of the Fennoscandia Shield and of particular interest are the "Au-type IOCG Deposits". Described as having the following typical features;

- Albite, sericite, carbonate, biotite, quartz and tourmaline alteration,
- Au, Co, Cu, As, Ni, Bi, Te, Mo, Zn, U metal association,

One deposit of note, the Suurikuusikko (18.2Mt @ 5.1 ppm Au), is structurally controlled and mineralization occurs in brecciated and albite—carbonate altered schist and mafic volcanic rocks, associated with disseminated sulphides. The gold, in this example, is hosted within arsenopyrite (71%) and pyrite (22%). It was proposed by Winter (2017) that the Fennoscandian IOCG —Type gold deposits, those described by Gates (1991) and the mineralization on the IOCG Joint Venture Group property are all Au-type, IOCG deposits.

5.0. 2019 PROPERTY VISIT AND SAMPLING

On August 20, 2019, Transition geologists Grant Mourre and Tom Hart visited the property to examine a gold showing that was not properly located during the 2018 visit. Samples supplied by the IOCG Group earlier in the summer of 2019 were analysed by Transition and returned highly anomalous gold values. The select results for the two samples are contained in Table 2 with the sample descriptions contained in Appendix B and the analytical certificates contained in Appendix C.

The visit was conducted by Fred Delabbio, Tom Sheppard, and Stewart Winter as guides to the location of the gold occurrence located south of the West Quarry. A total of six samples were collected with three sample submitted for a multiple element analysis including gold, and three samples submitted for a trace and major element analyses. The analytical results of the sampling are contained in Table 3 and 4, the sample descriptions are contained in Appendix A and the analytical certificates are contained in Appendix C.

5.1. August 20

A total of six samples were collected in the area of the gold showing, located on the hill side between the two roads accessing the West Quarry. Three of the samples were a silty sandstone with quartz veining and 10-20% disseminated medium-grained pyrite in rubble from the same location as the two samples listed in Table 2 (Fig. 5). The other three samples were collected from approximately 3 metres to the east from the showing to examine the nature of the alteration and vary of lithologies associated with the showing.

Table 2: Samples supplied by the IOCG Group from the gold showing located at 517253 m East and5190047 m North (coordinates are UTM metres NAD 83, Zone 17)

Sample	Description	Au (ppm)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)	Mo (ppm)	Te (ppm)
L782847	reddy brown silty sandstone with 10- 20% pyrite	7.61	0.49	293	2590	3.6	0.65	0.33
L782848	reddy brown silty sandstone with 10- 20% pyrite	4.28	0.18	1205	495	2.5	0.85	2.15

Table 3: Samples analysed for trace elementsfrom the gold showing located at 517253 m East and5190047 m North (coordinates are UTM metres NAD 83, Zone 17)

Sample	Description	Au	Ag	As	Co	Cu	Мо	Te
		(ppm)						
L783323	reddy brown silty sandstone with 10- 20% pyrite	0.104	0.03	346	547	11.2	15.55	2.43
L783324	reddy brown silty sandstone with 10- 20% pyrite	0.012	0.03	86.7	363	1.8	113.5	0.53
L783326	reddy brown silty sandstone with 10- 20% pyrite	0.1	0.03	320	407	5.9	76.8	0.43

Table 4: Samples analysed for major and trace elements from the gold showing located at 51720 m Eastand 5190047 m North (coordinates are UTM metres NAD 83, Zone 17)

Sample	Description	SiO2 (%)	Na2O (%)	Ag (ppm)	As (ppm)	Co (ppm)	Cu (ppm)
L783325	mineralized material; silty sandstone	55.3	9.21	<0.5	22	104	2
L783327	siltstone	60.3	4.18	<0.5	<5	19	2
L783328	Granitic dykelets in siltstone	81.4	3.17	<0.5	7	19	3

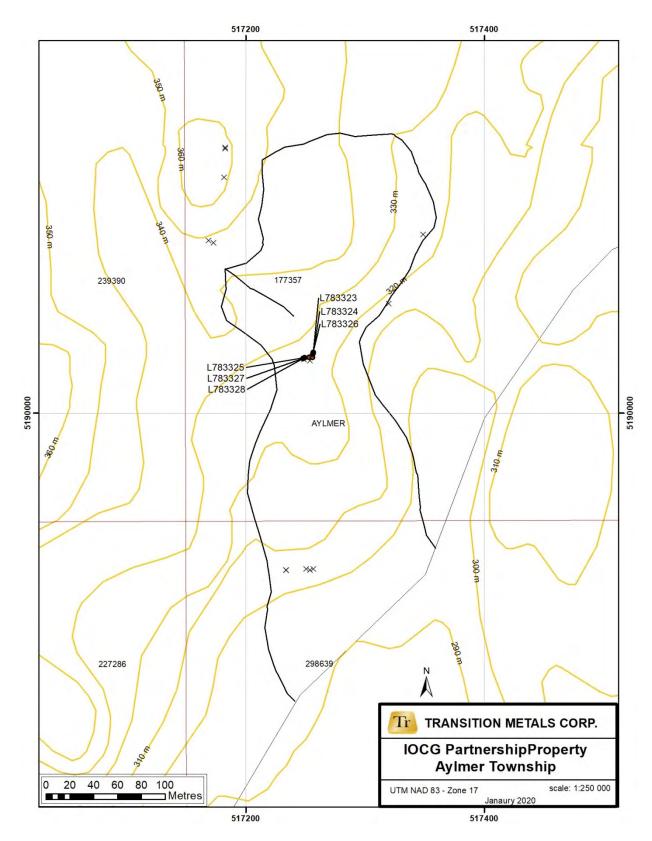
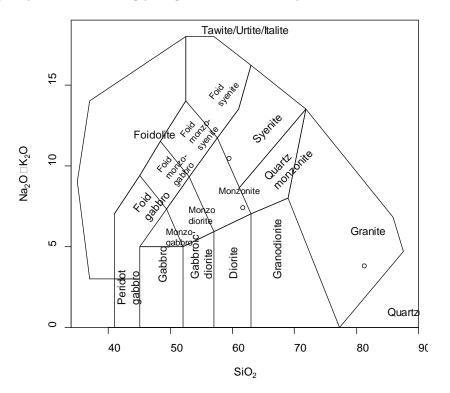


Figure 5: Claims map of the property with the locations of sampled collected in 2019 with the 2018 sample locations are unlabelled locations.

Figure 6: Sample L783324, representative of the three sample from the gold showing with analytical results listed in Table 3

Figure 7: Sample L783325, mineralized silty sandstone


Figure 8: Sample L783327, green grey siltstone

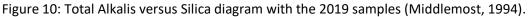


Figure 9: Sample L783328, granitic dykelets in siltstone

5.2. Analytical Results

Three samples were collected for whole rock geochemistry, with the one of interest being the granitic dykelets cutting a siltstone (L783328). The dykelets appear to be granitic in composition composed of quartz and feldspar with minor epidote. Samples L783325 and L783327 plot with higher total alkalis and lower SiO₂ than L783328 in figure 10. It is not obvious why there is as much of a difference between L783327, the siltstone, and L783328, the siltstone with granite, as there total volume of dykelets in the same was not more than 50%. However, it may be that the small aliquot selected from the pulp by the laboratory may have been strongly weighted towards the dykelets.

There are few diagrams designed specifically for the classification of sedimentary rocks as the sediments often reflect the composition of the host rock and the weathering processes. One diagram that has been proposed was by Herron (1988) and was used by Al-Hashim (2016) in the characterisation of units of the Espanola Formation in the Bruce Mines – Elliot Lake area (Fig. 11). This diagram classifies L783328 as a Fe-sandstone and L783325 as a Fe-shale does not seem to be correct but that sample does plot close to the altered Espanola and Mississagi compositions (Espanola_A and Mississagi_A) from Gates (1991). Sample L783327 plots in the shale field which seems to be appropriate for this sample.

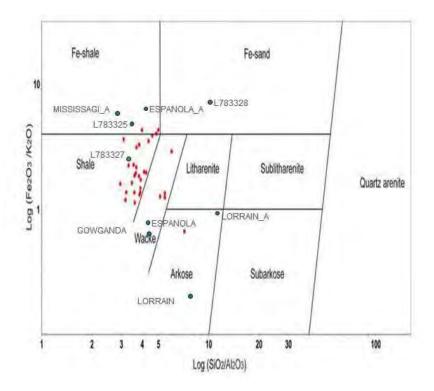


Figure 11: classification of the Aylmer property samples compared to the average compositions supplied by Gates (1991) with the "_A" prefix denoting the altered examples with the red symbols being the Espanola Formation (after Al-Hashim, 2016)

Al-Hashim (2016) used a series of diagrams to classify the potential source materials for the sediments, and although not appropriate for the classification for a sample L783328, they are help in comparing the samples to the compositions provided by Gates (1991) for the unaltered and altered examples of the Gowganda, Espanola and Mississagi formations. In figure 12, sample L783325 plots in the same range as the Gowganda altered composition while L783327 plots in the same range as the unaltered Gowganda composition. Both of these correlations would seem to be appropriate for these samples. A similar correlation is apparent in figure 13. Unfortunately in figures 14 and 15 the averages from Gates (1991) did not have the proper trace element analyses to allow for many of the rock types to be plotted. However, both L783325 and L783327 plot close the TTG-granodiorite compositions suggesting a felsic source composition for these sediments in figure 14. In figure 15, L783327 also plots close to the TTG-granodiorite composition which may reflect the more altered nature of this sample rather than a true indication of the source composition.

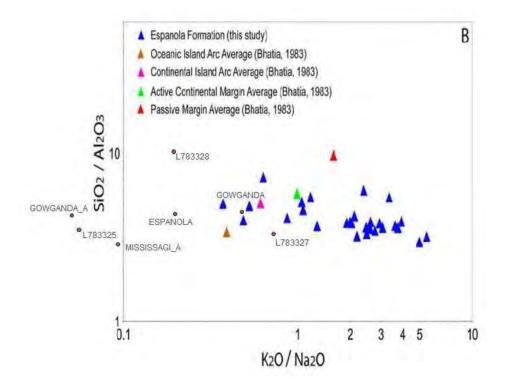


Figure 12: classification of the potential source material compositions with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)

Figure 13: classification of the potential source materials with PM – passive margin, ACM – active continental margin, and ARC – oceanic island arc margin with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)

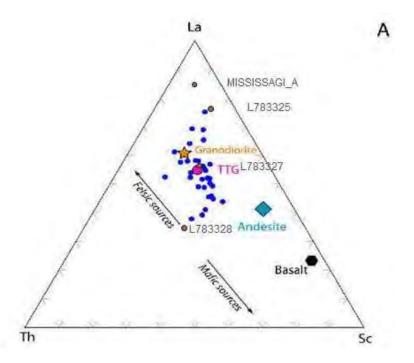


Figure 14: provenance of the source materials with TTG – tonalite-trondhjemite-granite with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)

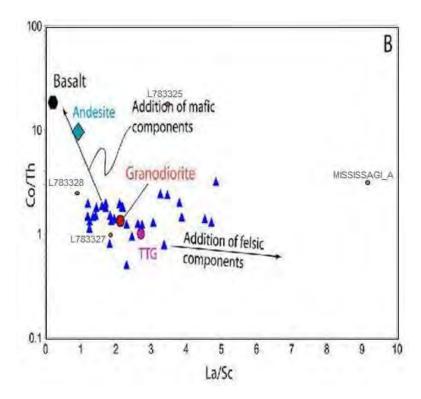


Figure 15: provenance of the source materials with TTG – tonalite-trondhjemite-granite with the blue symbols being the Espanola Formation (after Al-Hashim, 2016)

The correlation coefficients for all the elements analysed was calculated and there is a good correlation between Au and Ag, Co, Fe, Ni, and S, but not a great correlation between Au and Na, W, Rb, or Sr which is often an indicator or IOCG mineralization (Table 5). Copper also does not correlate well with Au but rather with Ag, Ba, Cs, In, K, Mg, Sb, Se, and Zn. It is unclear what these differences in the element correlations may indicate, whether it is an indication of two unrelated mineralizing events or the result of a small sample population.

6.0 GEOPHYSICAL REVIEW

A basic review of the geophysical data for a survey completed by the IOCG group in 2011 indicated that the Cu breccia is located along the trend of coincident magnetic and VTEM anomalies (Fig. 16). This correlation of the geophysical anomalies indicates that a much more detailed of the data from this survey is required.

7.0 STATEMENT OF EXPENDITURE

The total value of work done on the IOCG Group Property is summarized in Table 6. Details of the expenditures is contain on Appendix D.

		Work	Performed		
Category	From date	To date	Invoice	Costs (\$)	Subtotal
Geological Survey			geologist		
	10/08/2019	10/08/2019	Grant Mourre - salary 1 day	\$550	
	10/08/2019	10/08/2019	Tom Hart - 1 day - 1908.3	\$550	
	09/03/2020	13/03/2020	Tom Hart 4 days - report - 2003.3	\$2,200	
					\$3,300
	Asso	ociated Costs			
Assays					
		08/03/2019	4650709	\$140	
		07/09/2019	4860149	\$212	
		07/09/2019	4860129	\$242	
					\$594
	Tra	ansportation			
	vehicle mileage				
	10/08/2019	10/08/2019	1 day rental - 293	\$50	
	10/08/2019	10/08/2019	Gas	\$44	
					\$94
	I	1		Total	\$3,988

	Au	Ag	As	Ва	Bi	Се	Co	Cs	Cu	Fe	Ge	In	к	La	Mg	Na	Ni	Pb	Rb	S	Sb	Se	Sr	TI	U	w	Zn
Au	1.00																										
Ag	0.71	1.00																									
As	0.52	0.21	1.00																								
Ba	0.20	0.71	-0.07	1.00																							
Bi	-0.07	0.30	-0.12	0.38	1.00																						
Се	0.68	0.93	0.00	0.77	0.23	1.00																					
Co	0.81	0.57	0.35	-0.04	-0.08	0.49	1.00																				
Cs	-0.07	0.57	-0.18	0.89	0.39	0.55	-0.26	1.00																			
Cu	-0.05	0.64	-0.20	0.87	0.51	0.60	-0.19	0.93	1.00																		
Fe	0.84	0.67	0.75	0.15	0.03	0.49	0.79	-0.04	0.02	1.00																	
Ge	0.82	0.83	0.01	0.44	0.11	0.90	0.76	0.19	0.25	0.57	1.00																
In	-0.04	0.65	-0.18	0.87	0.46	0.60	-0.18	0.94	1.00	0.03	0.25	1.00															
К	-0.11	0.40	-0.09	0.73	0.41	0.41	-0.27	0.72	0.70	-0.08	0.10	0.70	1.00														
La	0.85	0.83	0.06	0.42	0.06	0.89	0.79	0.17	0.22	0.61	1.00	0.22	0.06	1.00													
Mg	-0.25	0.30	-0.26	0.60	0.28	0.32	-0.30	0.65	0.70	-0.14	0.02	0.72	0.44	0.01	1.00												
Na	-0.23	-0.56	-0.01	-0.62	-0.33	-0.49	-0.02	-0.71	-0.61	-0.20	-0.31	-0.61	-0.29	-0.31	-0.36	1.00											
Ni	0.94	0.67	0.50	0.09	-0.04	0.60	0.92	-0.16	-0.13	0.86	0.80	-0.12	-0.15	0.83	-0.25	-0.15	1.00										
Pb	0.86	0.73	0.22	0.22	0.16	0.71	0.81	-0.01	0.05	0.69	0.89	0.04	0.01	0.90	-0.25	-0.16	0.88	1.00									
Rb	0.02	0.50	-0.13	0.88	0.56	0.59	-0.27	0.82	0.79	-0.03	0.25	0.78	0.79	0.21	0.55	-0.51	-0.10	0.08	1.00								
S	0.65	0.53	0.71	0.01	0.04	0.30	0.74	-0.10	-0.01	0.94	0.39	0.01	-0.16	0.43	-0.07	-0.14	0.73	0.49	-0.15	1.00							
Sb	-0.16	0.32	-0.41	0.62	0.54	0.44	-0.38	0.63	0.69	-0.30	0.16	0.68	0.77	0.11	0.45	-0.28	-0.25	0.01	0.77	-0.38	1.00						
Se	0.32	0.84	0.01	0.71	0.32	0.73	0.36	0.70	0.80	0.46	0.55	0.81	0.43	0.55	0.53	-0.55	0.31	0.38	0.49	0.47	0.33	1.00					
Sr	0.47	0.18	0.36	0.16	-0.28	0.24	0.39	-0.08	-0.19	0.37	0.32	-0.18	-0.22	0.35	-0.08	0.03	0.40	0.32	-0.04	0.24	-0.42	0.01	1.00				
TI	0.07	0.67	-0.04	0.89	0.58	0.63	-0.15	0.90	0.95	0.13	0.28	0.94	0.75	0.25	0.63	-0.59	-0.02	0.14	0.89	0.06	0.71	0.74	-0.12	1.00			
U	0.56	0.37	-0.10	-0.06	-0.12	0.50	0.65	-0.30	-0.16	0.35	0.72	-0.16	-0.20	0.71	-0.12	0.30	0.62	0.65	-0.16	0.26	0.02	0.18	0.15	-0.15	1.00		
w	-0.13	-0.25	-0.21	-0.17	-0.22	-0.04	-0.20	-0.27	-0.19	-0.33	-0.06	-0.18	0.12	-0.08	-0.02	0.53	-0.15	-0.16	0.01	-0.33	0.39	-0.32	-0.31	-0.16	0.38	1.00	
Zn	-0.15	0.41	-0.20	0.52	0.19	0.35	-0.20	0.71	0.71	-0.04	0.08	0.74	0.41	0.07	0.54	-0.35	-0.15	-0.06	0.40	-0.05	0.45	0.60	-0.29	0.62	-0.04	-0.09	1.00

Table 5: An abbreviated correlation matrix with only elements that correlated well with either gold or copper for both the 2018 and 2019 visits

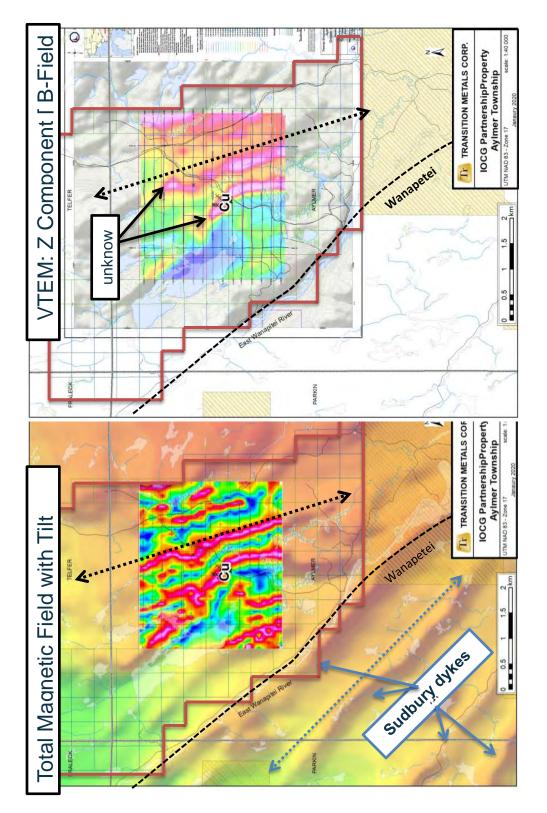


Figure 16: The Tilt derivative of the IOCG survey inset on the total field magnetic data for the regional magnetic survey next to the Z-component B-field from the same survey with the location of the Cu breccia denoted by the Cu on both maps.

6.0 DISCUSSION

The analytical results for gold from the 2019 sampling of the gold showing did not agree well with the analytical results of the two samples supplied by the property owners. However, the samples did return high Na2O values as well as other element abundances that are similar to the high gold samples. The S content of the gold rich samples was higher and it is possible that the material selected for sampling during the 2019 visits was not quite the sample material as the high gold samples. The area is covered by debris and sampling of the bedrock was difficult.

The examination of the results of the airborne geophysical survey completed by the IOCG Group indicated the potential presence of a series of north-trending magnetic features that are coincident with the VTEM anomalies. The Cu breccia sampled in 2018 is located along one of these coincident features suggesting that the features may relate to the source of the mineralization. Recent work completed on the Scadding deposit by MacDonald Mines has correlated the gold mineralization at that location with a series of north-trending structures. Similar correlations between north-trending structures and mineralization have also been made on the ground currently held by Inventus to the east of the Aylmer property.

7.0 RECOMMENDATION

This property is located within the regional structural zone that extends north from the Grenville Front, and hosts breccias and metasomatic alteration seems to occur in some locations within rocks of the Huronian Supergroup. The presence of sulphide mineralization hosting copper mineralization suggests a potential copper-gold mineralization of an IOCG style as proposed by Gates (1991). The location of the Cu breccia along the coincident magnetic-VTEM anomalies suggests that the source of the mineralization may have a geophysical response.

It is recommended that the data from the airborne survey be examined and modelled to further determine the validity of the anomalies and the correlation with the copper mineralization. If the results of the modelling as positive then it is further recommended that an airborne magnetotelluric survey be completed in an attempt to further image a potential source for the mineralization.

8.0 REFERENCES

- Al-Hashim, M.H. 2016: Sedimentology and geochemistry of the mixed carbonate-siliciclastic Espanola Formation, Paleoproterozoic Huronian Supergroup, Bruce Mines-Elliot Lake Area, Ontario, Canada; Electronic Thesis and Dissertation Repository. 4350.https://ir.lib.uwo.ca/etd/4350
- Debicki, R.L. 1987: Stratigraphy, Paleoenvironment and Economic Potential of the Huronian Supergroup in the Southern Cobalt Embayment; Ontario Geological Survey, Open File Report 5665, 251 pages, 21 figures, 24 tables, 27 photographs, and 2 maps.
- Dressler, B.O. 1981: Otter Lake; Ontario Geological Survey, Map 2450, Precambrian Geology Series, Scale 1 inch to 1/2 mile, 1:31360. Geology 1978.
- Dressler, B.O., 1980. Geology of the Wanapitei Lake Area, District of Sudbury, Ontario. Geological Survey, Open File 5287
- Gates, B.I., 1991. Sudbury Mineral Occurrence Study; Ontario Geological Survey, Open File Report 5771, 235 p.
- Myer, W., 1995. Exploration Potential in the Sudbury Area; in Ontario Canada Explore the Opportunities, Mines and Minerals Division, Ontario Ministry of Northern Development and Mines, p. 16.
- Schandl, E.S., Gorton, M.P. and Davis, D.W., 1994. Albitization of 1700 + 2 Ma in the Sudbury —
 Wanapitei Lake area, Ontario; implications for deep-seated alkali magmatism in the Southern Province; Can. J. Earth Sci., vol. 31, pp. 597-607
- Smith, D., 2014. Site Visit, Delabbio Property, Aylmer Township, Ontario, Canada, 10 p.
- Winter, L.D.S., 2017. Geological Mapping and Sampling Program, Sheppard Property, ALymer Township, District of Sudbury, Ontario; Ministry of Northern Development and Mines assessment file 2.58251, 49 p.

9.0 STATEMENT OF THE AUTHOR

- I, Thomas Hart do hereby certify that:
- 1) I reside at 2404 Algonquin Road, Sudbury, Ontario P3E 5V1,
- 2) I graduated with a M.Sc. (Geology) degree in 1984 from the University of Toronto.
- 3) I have been practicing my profession in Canada since 1984, as an exploration geologist (an employee and independent consultant) on precious and base metal projects with exploration/mining companies in Canada, and as a mapping geologist with the Ontario Geological Survey.
- 4) I am the proprietor of Hart Geoscience Inc., a consulting company based in Sudbury Ontario contracted by Transition Metals Corp. to provide management services with respect to on-going exploration and development activities on their properties in Ontario. In this capacity, I am authorized to act as an Agent of the Company.
- 4) I am a member of the Association of Professional Geoscientists of Ontario
- 7) I supervised the portions of this work program and writing of the technical report.

Signed this 15 of January, 2019 in the City of Sudbury, Ontario

Thomas Hart, M.Sc., P. Geo.

APPENDIX A: IOCG GROUP ASSESSMENT WORK

AFRI File No.	File ID	YEAR	Property	Work Type	Work Description
20000004181	2.41560, Aylmer-SP008, W0970.01356	2007	Aylmer Property	PROSP	Prospecting By Licence Holder
2000004344	2.42379, Aylmer-SP010, W0970.02029	2007	Aylmer Property	ASSAY, PMAN	Assaying and Analyses, Manual Labour
20000004186	2.41587, Aylmer-SP007, W0970.01380	2007	Aylmer Property	PROSP	Prospecting By Licence Holder
2000004327	2.42365, Aylmer-SP009, W0970.02016	2008	Aylmer Property	PHOTO, PMAN, PSTRIP	Air Photo and Remote Imagery Interpretations, Manual Labour, Overburden Stripping
20000004539	2.44168, Aylmer-SP011, W1070.00471		Aylmer Property	PMAN	Manual Labour
20000004472	2.44234, Aylmer-SP018, W1070.00527	2009	Aylmer Property	LC, MAG, VLF	Electromagnetic Very Low Frequency, Linecutting, Magnetic / Magnetometer Survey
2000004655	2.45869, Aylmer-SP017, W1070.01962	2009	Aylmer Property	PROSP	Prospecting By Licence Holder
2000006489	2.45865, Aylmer-SP012, W1070.01959	2009	Aylmer Property	PROSP	Prospecting By Licence Holder
2000005607	2.46299, Aylmer-SP015, W1070.02313	2010	Aylmer Property	EM, LC, MAG, VLF	Electromagnetic, Electromagnetic Very Low Frequency, Linecutting, Magnetic / Magnetometer Survey
2000004673	2.45845, Aylmer-SP019, W1070.01941	2010	Aylmer Property	ASSAY, PSTRIP	Assaying and Analyses, Overburden Stripping
2000004657	2.45863, Aylmer-SP016, W1070.01957		Aylmer Property	PROSP	Prospecting By Licence Holder
2000006305	2.47732, Aylmer-SP021, W1170.00500	2010	Aylmer Property	GEOL	Geological Survey / Mapping
2000006308	2.47734, Aylmer-SP020, W1170.00502	2010	Aylmer Property	ASSAY, PMAN	Assaying and Analyses, Manual Labour
2000006223	2.47724, Aylmer-SP022, W1170.00492	2010	Aylmer Property	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
2000006488	2.45848, Aylmer-SP014, W1070.01944	2010	Aylmer Property	ASSAY, PROSP	Assaying and Analyses, Prospecting By Licence Holder
2000006487	2.45847, Aylmer-SP013, W1070.01943	2010	Aylmer Property	ASSAY, PROSP	Assaying and Analyses, Prospecting By Licence Holder
2000006646	2.48946, Aylmer-SP023, W1170.01577	2011	Aylmer Property	PROSP	Prospecting By Licence Holder
2000006851	2.49495, Aylmer-SP024, W1170.02051	2011	Aylmer Property	LC, PMAN, PROSP	Linecutting, Manual Labour, Prospecting By Licence Holder
2000006861	2.49557, Aylmer-SP025, W1170.02107	2011	Aylmer Property	ASSAY, PTRNCH	Assaying and Analyses, Bedrock Trenching
2000007031	2.50390, Aylmer-SP026, W1270.00011	2011	Aylmer Property	PROSP	Prospecting By Licence Holder
2000007624	2.52371, Aylmer-SP028, W1270.01825	2011	Aylmer Property	PMAN	Manual Labour
2000008294	2.53362, Aylmer-SP029, W1270.02760	2011	-	DATA	Database Data
2000008885	2.54232, Aylmer-SP033, W1370.02039	2012	Sheppard Claim 4203306	PROSP	Prospecting By Licence Holder
2000008545	2.55239, Aylmer-SP037, W1470.01712	2012	Delabbio Claim 4219156	MAG, VLF	Electromagnetic Very Low Frequency, Magnetic / Magnetometer Survey
2000008506	2.54259, Aylmer-SP034, W1370.02047	2012	Sheppard Claim 4203306	EM, VLF	Electromagnetic, Electromagnetic Very Low Frequency
2000008888	2.54255, Aylmer-SP032, W1370.02040	2012	Sheppard Claim 4203306	GEOL, LC	Geological Survey / Mapping, Linecutting
2000008797	2.53688, Aylmer-SP030, W1370.00515	2012	-	ASSAY, PROSP	Assaying and Analyses, Prospecting By Licence Holder
2000008506	2.54259, Aylmer-SP034, W1370.02047	2012	Sheppard Claim 4203306	EM, VLF	Electromagnetic, Electromagnetic Very Low Frequency
2000008875	2.54159, Aylmer-SP031, W1370.01808	2012	-	ASSAY, PROSP	Assaying and Analyses, Prospecting By Licence Holder
2000008884	2.54231, Aylmer-SP035, W1370.01985	2013	Sheppard Claim 4203306	PROSP	Prospecting By Licence Holder
2000008884	2.54231, Aylmer-SP035, W1370.01985	2013	Sheppard Claim 4203306	PROSP	Prospecting By Licence Holder
20000014546	2.56121, Aylmer-SP040, W1570.01517	2014	Sheppard Claims 4216910; 4216909	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014572	2.56217, Aylmer-SP041; W1570.01748, W1570.01748	2014	Sheppard Claim 4203306 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014545	2.55981, Aylmer-SP039, W1570.01151	2014	Sheppard Claim 4203306	PROSP	Prospecting By Licence Holder
2000008711	2.55402, Aylmer-SP038, W1470.02078	2014	Sheppard Claim 4203306	ASSAY	Assaying and Analyses
20000009174	2.55222, Aylmer-SP036, W1470.01668	2014	Sheppard Claim 4203306	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014576	2.56432, Aylmer-SP044; W1570.02335, W1570.02335	2015	Sheppard Claim 4216908 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014575	2.56389, Aylmer-SP042; W1570.02197, W1570.02197	2015	Sheppard Claim 4216908 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014579	2.56391, Aylmer-SP049; W1570.02203, W1570.02203	2015	Sheppard claim 4216908; 4216909	ASSAY, GEOL, ROCK	Assaying and Analyses, Geological Survey / Mapping, Rock Sampling
20000014114	2.56883, Aylmer-SP043; W1670.01072, W1670.01072	2015	Delabbio Claim 4219156	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014102	2.56884, Aylmer-SP050; W1670.01073, W1670.01073	2015	Delabbio Claim 4219156	GEOL	Geological Survey / Mapping
20000014569	2.57029, Aylmer-SP051; W1670.01285, W1670.01285	2015	Sheppard Claim 4203306	GEOL	Geological Survey / Mapping
20000014578	2.56450, Aylmer-SP046; W1570.02385, W1570.02385	2015	Sheppard Claim 4216908; 4203306 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder

AFRI File No.	File ID	YEAR	Property	Work Type	Work Description
20000014577	2.56452, Aylmer-SP045; W1570.02388, W1570.02388	2015	Sheppard Claim 4216908 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014573	2.56464, Aylmer-SP047; W1570.02435, W1570.02435	2015	Sheppard Claim 4203306 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014574	2.56480, Aylmer-SP048; W1570.02460, W1570.02460	2015	Sheppard Claim 4203306 (Cu Au)	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000013897	2.57392, Aylmer-SP060, W1670.02150	2016	Claim 4216910	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000014571	2.57050, Aylmer-SP052; W1670.01305, W1670.01305	2016	Sheppard Claim 4203306	ROCK	Rock Sampling
20000014570	2.57051, Aylmer-SP053; W1670.01306, W1670.01306	2016	Sheppard Claim 4203306	GEOL	Geological Survey / Mapping
20000013854	2.57269, Aylmer-SP056, W1670.01806	2016	Sheppard Group Claim	ASSAY, GEOL, ROCK	Assaying and Analyses, Geological Survey / Mapping, Rock Sampling
20000014581	2.57270, Aylmer-SP054, W1670.01807	2016	Sheppard Group Claim	GEOL, ROCK	Geological Survey / Mapping, Rock Sampling
20000014580	2.57274, Aylmer-SP055, W1670.01817	2016	Sheppard Group Claim	ASSAY, ROCK	Assaying and Analyses, Rock Sampling
20000013894	2.57389, Aylmer-SP057, W1670.02147	2016	Claims 4203306	ASSAY, PROSP, ROCK	Assaying and Analyses, Prospecting By Licence Holder, Rock Sampling
20000013895	2.57390, Aylmer-SP058, W1670.02148	2016	Claims 4203306	ASSAY, PROSP, ROCK	Assaying and Analyses, Prospecting By Licence Holder, Rock Sampling
20000013896	2.57391, Aylmer-SP059, W1670.02149	2016	Claims 4203306 and 4216910	GEOL, PROSP	Geological Survey / Mapping, Prospecting By Licence Holder
20000015123	2.57812, Aylmer-SP063, W1770.00975	2016	Sheppard Group Claim 4203306	PMAN, PSTRIP, ROCK	Manual Labour, Overburden Stripping, Rock Sampling
20000013585	2.57813, Aylmer-SP061, W1770.00976	2016	Sheppard Claim 4216910	geol, Pman	Geological Survey / Mapping, Manual Labour
20000015074	2.58198, Aylmer-SP062, W1770.01804	2017	Sheppard Property	ASSAY, SOIL	Assaying and Analyses, Soil/Till Sampling
20000015160	2.58248, Aylmer-SP064, W1770.01923	2017	Sheppard Claim Group	PMAN	Manual Labour
20000015161	2.58251, Aylmer-SP065, W1770.01929	2017	Sheppard Claim Group	ASSAY, GEOL, ROCK	Assaying and Analyses, Geological Survey / Mapping, Rock Sampling
20000015377	2.58447, Aylmer-SP066, W1870.00059	2017	Sheppard Property	ASSAY, GCHEM, SOIL	Assaying and Analyses, Geochemical, Soil/Till Sampling
20000015740	2.58443, Aylmer-SP067, W1870.00055	2017	Sheppard Property	PMAN	Manual Labour
20000017049	41204	2018	Sheppard Claims	PROSP	Prospecting By Licence Holder

APPENDIX B: SAMPLE DESCRIPTIONS

Sample	East	North	Area	Showing	Туре	Description
L782572	517169	5190145	Alymer Twp.	West Quarry	rubble	bxd Gowganda gwke w vuggy qtz mtx and diss to blebby, cg, 3-5% py/cpy
L782573	517173	5190143	Alymer Twp.	West Quarry	rubble	bxd Gowganda gwke w diss f-mg, 2-3% py/cpy
L782574					std	Standard
L783545	517569	5190636	Alymer Twp.	East Quarry	rubble	bxd Gowganda gwke w vuggy qtz mtx and diss to blebby, cg, 3-5% py/cpy
L783546	517320	5190092	Alymer Twp.	west quarry road	grab	pink altd Gowganda siltstone w patchy to diss 20-30% mg py
L783547	517349	5190150	Alymer Twp.	west quarry road	grab	pink altd Gowganda sandstone w qtz mtx
L783548	517183	5190223	Alymer Twp.	West Quarry	grab	gossan in altd Gowganda sandstone w diss 5-10% f-mg py/cpy
L783549	517183	5190222	Alymer Twp.	West Quarry	grab	gossan in altd Gowganda sandstone w diss 3-5% f-mg py/cpy
L783550	517182	5190198	Alymer Twp.	West Quarry	grab	qtz vn w blebby to cg py/cpy in altd Gowganda sandstone
L782575	517234	5189868	Alymer Twp.	Pit 1	grab	light brown-tan, highly altered siltstone, bxd with qtz-chlc-carb mtx, 2-3% fg py
L782576	517234	5189868	Alymer Twp.	Pit 1	rubble	light brown-tan, highly altered sittstone, bxd with qtz-chlc-carb mtx, 3-5% fg py
L782577	517234	5189868	Alymer Twp.	Pit 1	grab	light brown-tan, highly altered siltstone, bxd with qtz-chlc-carb mtx, 3-5% fg py
L782578	517251	5189869	Alymer Twp.	Cu Bx	grab	med brown, highly altered siltstone, bxd with qtz-chlc-carb mtx, 5-15% m-fg py, cpy, mi mal
L782579	517254	5189868	Alymer Twp.	Cu Bx	rubble	med brown, highly altered siltstone, bxd with qtz-chlc-carb mtx, 5-15% m-fg py, cpy, mi mal
L782580	517257	5189869	Alymer Twp.	Cu Bx	grab	med brown, highly altered siltstone, bxd with qtz-chlc-carb mtx, 5-15% m-fg py, cpy, mi mal
L782581	517249	5190045	Alymer Twp.	Hillside	rubble	as L783546 - pink altd Gowganda siltstone w patchy to diss 20-30% mg py
L782582	517254	5190044	Alymer Twp.	Hillside	rubble	as L783546 - pink altd Gowganda siltstone w patchy to diss 20-30% mg py

APPENDIX C – ANALYTICAL CERTIFICATES

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

CERTIFICATE SD19047522

Project: Pgen

This report is for 2 Rock samples submitted to our lab in Sudbury, ON, Canada on 26-FEB-2019.

The following have access to data associated with this certificate:

JAKE BURDEN	GREG COLLINS	THOMAS HART
GRANT MOURRE		

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-32	Pulverize 1000g to 85% < 75 um							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

CERTIFICATE OF ANALYSIS SD19047522

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1
L782847 L782848		1.60 1.02	83.3	91.6	7.61 4.28	0.49 0.18	5.82 6.17	293 1205	70 60	0.33 0.56	0.38 0.34	0.03 0.03	0.02 0.02	>500 130.0	2590 495	11 20

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1
Sample Description	LOD															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005
L782847 L782848		1340 571	790 70	11.0 3.3	7.5 13.6	0.002 <0.002	>10.0 >10.0	0.38 0.39	0.2 0.4	22 4	<0.2 0.2	74.1 66.0	<0.05 <0.05	0.33 2.15	3.65 2.33	0.009 0.013

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

	Method	ME-MS61							
	Analyte Units	ΤI	U	V	W	Υ	Zn	Zr	
Sample Description	Units	ppm							
	LOD	0.02	0.1	1	0.1	0.1	2	0.5	
L782847 L782848		0.03	9.2	7	0.8	35.2	<2	42.2	
L782848		0.05	1.4	19	0.9	8.3	<2	49.2	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

	CERTIFICATE CO	MMENTS	
Applies to Method:	ANAL REE's may not be totally soluble in this method. ME-MS61	YTICAL COMMENTS	
Applies to Method:	LABOR Processed at ALS Sudbury located at 1351-B Kelly Lake Road, CRU-31 CRU-QC PUL-QC SPL-21	RATORY ADDRESSES Unit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-32
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, N Au-ICP21 ME-MS61	lorth Vancouver, BC, Canada.	

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

QC CERTIFICATE SD19047522

Project: Pgen

This report is for 2 Rock samples submitted to our lab in Sudbury, ON, Canada on 26-FEB-2019.

The following have access to data associated with this certificate:

JAKE BURDEN GRANT MOURRE	GREG COLLINS	THOMAS HART

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-32	Pulverize 1000g to 85% < 75 um
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	DARDS								
GPP-14	Bound Bound	7.16 7.29 6.66 7.52 0.930														
GPP-14 Target Range - Lower		0.919 0.853														
Upper MRGeo08	Bound	0.965	4.04	7.42	31.4	1110	3.01	0.60	2.63	2.06	68.3	18.0	93	11.80	635	4.00
Target Range - Lower	Bound Bound		4.00 4.92	6.64 8.14	29.5 36.5	920 1270	2.98 3.76	0.60 0.76	2.35 2.90	2.00 2.48	66.2 81.0	17.7 21.9	81 102	11.20 13.80	587 675	3.55 4.37
OREAS 905			0.49	7.48	33.1	2880	3.14	5.37	0.60	0.32	91.6	13.7	20	6.80	1530	4.10
	Bound Bound		0.46 0.58	6.67 8.17	31.0 38.4	2280 3110	2.69 3.39	5.14 6.30	0.52 0.66	0.30 0.42	82.8 101.0	13.2 16.4	16 22	6.05 7.51	1425 1640	3.66 4.50
OREAS-45h OREAS-45h Target Range - Lower		0.039 0.045														
PMP-18 PMP-18 Target Range - Lower	Bound	0.307 0.307 0.289														
	Bound	0.327														
							BLA	ANKS								
BLANK		< 0.001														
BLANK Target Range - Lower		<0.001 <0.001														
Upper BLANK	Bound	0.002	<0.01	<0.01	<0.2	<10	<0.05	<0.01	<0.01	<0.02	<0.01	<0.1	<1	<0.05	0.2	<0.01
Target Range - Lower Upper	Bound Bound		<0.01 0.02	<0.01 0.02	<0.2 0.4	<10 20	<0.05 0.10	<0.01 0.02	<0.01 0.02	<0.02 0.04	<0.01 0.02	<0.1 0.2	<1 2	<0.05 0.10	<0.2 0.4	<0.01 0.02

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							STAN	DARDS								
G913-10 G913-10 Target Range - Lower																
GPP-14	r Bound															
GPP-14 Target Range - Lower	Bound r Bound															
MRGeo08		19.15	0.11	2.9	0.168	3.21	31.9	29.8	1.33	559	13.85	2.04	20.5	689	1010	1095
Target Range - Lower Uppe	Bound r Bound	17.50 21.5	<0.05 0.27	2.8 3.6	0.155 0.201	2.79 3.43	31.1 39.1	29.5 36.5	1.17 1.45	497 619	13.65 16.75	1.76 2.18	19.0 23.4	622 760	930 1160	971 1185
OREAS 905		24.5	0.12	6.4	0.635	2.99	45.2	21.5	0.28	378	3.11	2.52	17.7	8.6	270	28.8
Target Range - Lower Uppe	r Bound r Bound	22.5 27.7	<0.05 0.27	6.1 7.6	0.571 0.709	2.58 3.18	40.9 51.1	17.8 22.2	0.24 0.31	333 418	2.89 3.65	2.15 2.65	16.2 20.0	8.4 10.7		26.9 33.9
OREAS-45h																
OREAS-45h Target Range - Lower	Bound															
Uppe	r Bound															
PMP-18 PMP-18																
Target Range - Lower																
Uppe	r Bound															
							BL/	ANKS								
BLANK BLANK																
Target Range - Lower	Bound															
Uppe BLANK	r Bound	<0.05	<0.05	<0.1	<0.005	<0.01	<0.5	<0.2	<0.01	<5	<0.05	<0.01	<0.1	0.2	<10	<0.5
Target Range - Lower	Bound	<0.05	<0.05	<0.1	< 0.005	< 0.01	<0.5	<0.2	<0.01	<5	< 0.05	< 0.01	<0.1	<0.2	<10	<0.5
Uppe	r Bound	0.10	0.10	0.2	0.010	0.02	1.0	0.4	0.02	10	0.10	0.02	0.2	0.4	20	1.0

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

r																
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61										
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	ΤI	U	V
Course I. Decontration	Units	ppm	ppm	%	ppm	%	ppm	ppm	ppm							
Sample Description	LOD	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
							STAN	IDARDS								
C012.10																
G913-10 G913-10																
Target Range - Lower	Dound															
	Bound															
GPP-14	bound															
GPP-14																
Target Range - Lower	Bound															
	Bound															
MRGeo08		178.5	0.009	0.31	4.02	12.4	1	3.6	310	1.39	<0.05	18.05	0.502	0.89	4.6	107
Target Range - Lower	Bound	173.5	0.005	0.27	3.89	11.1	<1	3.5	277	1.39	<0.05	17.90	0.443	0.89	4.9	97
	Bound	212	0.013	0.35	5.39	13.7	4	4.7	339	1.81	0.14	21.9	0.553	1.25	6.2	121
OREAS 905		129.0	<0.002	0.07	1.85	4.5	3	3.6	159.5	1.25	0.09	15 <u>.</u> 00	0.124	0.63	4.5	10
Target Range - Lower		124.0	<0.002	0.04	1.61	4.3	<1	3.4	141.0	1.16	<0.05	13 <u>.</u> 15	0.105	0.59	4.4	8
	Bound	152.0	0.004	0.09	2.29	5.5	5	4.6	173.0	1.52	0.19	16.05	0.139	0.85	5.6	13
OREAS-45h																
OREAS-45h	Derver															
Target Range - Lower	Bound															
PMP-18	Бойна															
PMP-18																
Target Range - Lower	Bound															
	Bound															
							BL/	ANKS								
BLANK BLANK																
Target Range - Lower	Pound															
	Bound															
BLANK	bound	<0.1	<0.002	<0.01	0.06	<0.1	<1	<0.2	<0.2	<0.05	<0.05	<0.01	<0.005	<0.02	<0.1	<1
Target Range - Lower	Bound	<0.1	< 0.002	< 0.01	< 0.05	<0.1	<1	<0.2	<0.2	< 0.05	< 0.05	<0.01	< 0.005	< 0.02	<0.1	<1
	Bound	0.2	0.004	0.02	0.10	0.2	2	0.4	0.4	0.10	0.10	0.02	0.010	0.04	0.2	2

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Methor Analyte Sample Description LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
G913-10 G913-10 Target Range - Lower Bound Upper Bound GPP-14 GPP-14 Target Range - Lower Bound Upper Bound MRGeo08 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS-45h OREAS-45h OREAS-45h Target Range - Lower Bound Upper Bound OREAS-45h PMP-18	4.1 4.1 5.8 2.3 2.3 3.3	24.5 23.8 29.3 15.7 14.0 17.4	795 722 886 141 122 154	105.0 92.2 126.0 258 214 290	STANDARDS
Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound	<0.1 <0.1 0.2	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	BLANKS

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound	1.170 1.105 1.080 1.195														
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound	0.171 0.176 0.164 0.183														
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Upper	Bound [•] Bound		0.16 0.17 0.15 0.18	7.31 7.53 7.04 7.80	2.6 2.5 2.2 2.9	210 220 190 240	0.99 0.89 0.84 1.04	0.44 0.47 0.42 0.49	6.90 7.17 6.67 7.40	0.33 0.33 0.29 0.37	8.30 8.18 7.82 8.66	43.8 43.4 41.3 45.9	180 191 175 196	2.25 2.19 2.06 2.38	105.0 109.5 103.5 111.0	9.14 9.55 8.87 9.82
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound	0.210 0.198 0.193 0.215														
ORIGINAL DUP Target Range - Lower Upper	Bound ⁻ Bound	0.018 0.021 0.018 0.021														
ORIGINAL DUP Target Range - Lower Upper	Bound [•] Bound	0.001 <0.001 <0.001 0.002														

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound	14.10 15.80 14.15 15.75	0.07 0.07 <0.05 0.10	0.9 0.7 0.7 0.9	0.079 0.076 0.069 0.086	0.96 1.00 0.92 1.04	2.9 2.8 2.2 3.5	25.2 24.4 23.4 26.2	4.31 4.47 4.16 4.62	1640 1690 1575 1755	3.68 3.63 3.42 3.89	1.71 1.79 1.65 1.85	1.7 1.8 1.6 1.9	97.4 101.0 94.0 104.5	270 270 250 290	12.3 12.6 11.3 13.6
ORIGINAL DUP Target Range - Lower Upper	Bound [•] Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	70.0 63.2 63.2 70.0	0.002 0.002 <0.002 0.004	0.06 0.06 0.05 0.07	0.25 0.23 0.17 0.31	45.9 46.9 44.0 48.8	1 1 <1 2	5.1 5.1 4.6 5.6	149.5 156.0 145.0 160.5	0.12 0.13 0.07 0.18	<0.05 <0.05 <0.05 0.10	0.20 0.20 0.18 0.22	0.501 0.530 0.485 0.546	0.29 0.30 0.25 0.34	0.1 0.1 <0.1 0.2	270 281 261 290
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					DUPLICATES
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	1.5 1.5 1.3 1.7	20.5 19.6 18.9 21.2	161 169 155 175	18.9 19.2 17.1 21.0	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-MAR-2019 Account: TRAMET

Project: Pgen

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME-MS61
Applies to Method:	LABORATORY ADDRESSESProcessed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.CRU-31CRU-QCLOG-22PUL-32PUL-QCSPL-21WEI-21WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-MS61

CERTIFICATE SD19209684

Project: Pgen 002

This report is for 3 Rock samples submitted to our lab in Sudbury, ON, Canada on 23-AUG-2019.

The following have access to data associated with this certificate:

JAKE BURDEN GRANT MOURRE	GREG COLLINS BEN WILLIAMS	THOMAS HART

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-32	Pulverize 1000g to 85% < 75 um								
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	
ME-4ACD81	Base Metals by 4-acid dig.	ICP-AES
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1
L783325 L783327 L783328		0.94 0.94 0.66	72.0	87.4 93.8	18.2 587 109.0	112.0 94.0 13.8	130 170 100	0.12 2.95 0.65	4.76 3.92 4.72	2.53 2.10 3.39	1.41 1.31 0.36	22.7 27.6 9.7	5.69 4.76 2.78	1.9 4.6 1.9	0.92 0.73 1.18	57.6 51.0 7.3

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1
Sample Description	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 2	ME-ICP06 SiO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01
Sample Description	Units															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01	ME-4ACD81 Ag ppm 0.5	ME-4ACD81 As ppm 5	ME-4ACD81 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD81 Cu ppm 1	ME-4ACD81 Li ppm 10	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 TI ppm 10	ME-4ACD81 Zn ppm 2
Sample Description	LOD			0.01 100.01 100.13 101.52												2 <2 <2 <2

ALS Canada Ltd.

Т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

		CERTIFICATE COMMENTS									
	LABORATORY ADDRESSES										
Applies to Method:	Processed at ALS Sudbury located at CRU-31 PUL-QC	1351-B Kelly Lake Road, Unit #1, Sudb CRU-QC SPL-21	ury, ON, Canada. LOG-22 WEI-21	PUL-32							
Applies to Method:	Processed at ALS Vancouver located ME-4ACD81 TOT-ICP06	at 2103 Dollarton Hwy, North Vancouv ME-ICP06	er, BC, Canada. ME-MS81	OA-GRA05							

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

QC CERTIFICATE SD19209684

Project: Pgen 002

This report is for 3 Rock samples submitted to our lab in Sudbury, ON, Canada on 23-AUG-2019.

The following have access to data associated with this certificate:

JAKE BURDEN GRANT MOURRE	GREG COLLINS BEN WILLIAMS	THOMAS HART

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-32	Pulverize 1000g to 85% < 75 um	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	

	ANALYTICAL PROCEDURES	5
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	
ME-4ACD81	Base Metals by 4-acid dig.	ICP-AES
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. **410 FALCONBRIDGE ROAD** UNIT 5 **SUDBURY ON P3A 4S4**

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD19209684

Project: Pgen 002

	Method	ME-MS81														
	Analyte	Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Но	La	Lu	Nb	Nd
	Units	ppm														
Sample Description	LOD	0.5	0.1	10	0.01	0.05	0.03	0.03	0.1	0.05	0.2	0.01	0.1	0.01	0.2	0.1
	202		-	-					-		-		-		-	
							σταν	IDARDS								
							5171	IDARDJ								
AMIS0167																
Target Range - Lower	Bound															
Upper	Bound															
AMIS0286																
Target Range - Lower																
	Bound															
AMIS0461																
Target Range - Lower																
	Bound															
MRGeo08																
Target Range - Lower																
	⁻ Bound															
OREAS 146	n 1	>10000	5000	190	0.52	237	87.4	126.0	18.5	361	4.3	37.6	2730	6.54	417	2240
Target Range - Lower		11450	4220	160	0.47	202	78.3	114.5	26.2	323	3.6	33.1	2260	5.66	349	1965
OREAS 602	Bound	>10000	5160	220	0.59	246	95.7	139.5	32.2	395	4.8	40.5	2760	6.94	427	2400
Target Range - Lower	Pound															
5	· Bound															
SY-4	Bound															
Target Range - Lower	Round															
	Bound															
SY-4	bound	337	124.0	10	1.59	19.70	15.20	1.81	39.8	15.00	10.7	4.37	61.0	2.25	13.9	57.5
Target Range - Lower	Bound	306	109.5	<10	1.34	16.35	12.75	1.77	33.1	12.55	9.8	3.86	52.1	1.88	11.5	51.2
	Bound	375	134.5	30	1.66	20.1	15.65	2.23	40.7	15.45	12.4	4.74	63.9	2.32	14.5	62.8
							BL /	ANKS								
							36									
BLANK																
Target Range - Lower	Bound															
	Bound															
BLANK																
Target Range - Lower																
	Bound															
BLANK	n 1	1.3	< 0.1	<10	< 0.01	< 0.05	< 0.03	< 0.03	0.1	< 0.05	< 0.2	< 0.01	< 0.1	< 0.01	< 0.2	<0.1
Target Range - Lower		< 0.5	<0.1	<10	< 0.01	< 0.05	< 0.03	< 0.03	<0.1	< 0.05	< 0.2	< 0.01	<0.1	< 0.01	<0.2	<0.1
	Bound	1.0	0.2	20	0.02	0.10	0.06	0.06	0.2	0.10	0.4	0.02	0.2	0.02	0.4	0.2
BLANK	Danual															
Target Range - Lower																
Upper	Bound															

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. **410 FALCONBRIDGE ROAD** UNIT 5 **SUDBURY ON P3A 4S4**

QC CERTIFICATE OF ANALYSIS

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

SD19209684

Project: Pgen 002

Target Range - Lower Bound AMIS0286 Target Range - Lower Bound Upper Bound AMIS0260 Target Range - Lower Bound Upper Bound AMIS0286 Target Range - Lower Bound Upper Bound MRGe08 Target Range - Lower Bound Upper Bound MRGe08 Target Range - Lower Bound Upper Bound MRGe08 Target Range - Lower Bound Upper Bound OREAS 146 599 28.1 467 47 3360 4.2 46.2 984 10.05 2.66 159 31 946 54.4 249 Araget Range - Lower Bound Upper Bound 493 23.7 397 400 2790 3.6 42.5 813 8.90 2.37 140 58.9 254 OREAS 602 Target Range - Lower Bound Upper Bound 485 52 3410 4.6 51.9 93 10.90 3.01 182 33 96 58.9 254 OREAS 602 Target Range - Lower Bound Upper Bound Upper Bound 485 51.9 93 10.90 3.01 182 33 96 58.9	Sample Description	Method Analyte Units LOD	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 2
Target Range - Lower Bound AMISO 266 AMISO 266 Target Range - Lower Bound MISCe08 AMISO 461 Target Range - Lower Bound Upper Bound S99 28.1 467 47 3360 4.2 46.2 964 1.05 2.66 159 31 946 54.4 249 MISCe08 Target Range - Lower Bound Upper Bound 603 2.3.7 397 40 2790 3.6 42.5 813 6.90 2.3.7 140 25 814 46.1 204 MISCe08 Target Range - Lower Bound Upper Bound 603 2.3.7 397 40 2790 3.6 42.5 813 6.90 2.3.7 140 25 814 46.1 204 MISCe08 Target Range - Lower Bound Upper Bound 603 2.5 485 241 5.9 1.0.95 3.0.1 162 3.3 946 54.4 249 SY-4 Target Range - Lower Bound Upper Bound 15.45 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.40 65 <1								STAN	IDARDS								
Upper Bound AMISO 263 Convert Sound Upper Bound MISO 264 Convert Sound Upper Bound Upper Bound Upper Bound BRCe008 Convert Sound Upper Bound BRCe008 Convert Sound BRCe008 Convert Soun	AMIS0167																
AMIS266 Target Range - Lower Bound AMIS261 Target Range - Lower Bound Upper Bound OREAS 146 569 28,1 467 47 3360 4.2 46.2 964 10.05 2.66 159 31 946 54.4 249 Target Range - Lower Bound Upper Bound 569 28,1 467 47 3380 4.2 46.2 964 10.05 2.66 159 31 946 54.4 249 Target Range - Lower Bound Upper Bound 603 2.37 337 40 2750 3.6 42.5 813 8.60 2.37 140 2.5 814 48.1 204 OREAS 16 603 2.37 397 40 2750 3.5 42.5 813 8.60 2.37 140 2.5 814 48.1 204 OREAS 00 Target Range - Lower Bound Upper Bound 105 5.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 5 <1																	
Target Range - Lower Bound Upper Bound MRCe008 Target Range - Lower Bound Upper Bound	Ирре Ирре	r Bound															
Lower Bound AMISO461 AMISO461 Target Range - Lower Bound Upper Bound 599 28.1 467 47 3360 4.2 46.2 984 10.05 2.66 159 31 946 54.4 249 Target Range - Lower Bound Upper Bound 6493 22.7 397 40 2790 3.6 42.5 813 8.90 2.37 1400 2.5 814 46.1 204 OREAS 16.6 199 29.5 485 52 3410 4.6 51.9 993 10.90 3.01 182 33 996 58.9 254 Target Range - Lower Bound Upper Bound 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1		r Bound															
Target Range - Lower Bound Upper Bound OREAS 160 483 23.7 397 40 2790 3.6 42.5 813 8.90 2.37 140 25 814 48.1 204 OREAS 160 493 23.7 397 40 2790 3.6 42.5 813 8.90 2.37 140 25 814 48.1 204 OREAS 160 493 23.5 485 52 3410 4.8 51.9 993 10.90 3.01 182 33 996 58.9 254 OREAS 602 Target Range - Lower Bound Upper Bound 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1	Uppe																
Upper Bound MRCe008 Upper Bound DRCe03 Upper Bound B03 28.1 467 47 3360 4.2 46.2 984 10.05 2.66 159 31 946 54.4 249 OREA5166 599 28.1 467 477 3360 4.2 964 10.05 2.66 159 31 946 54.4 249 OREA5166 599 28.1 467 470 326 813 8.90 2.37 140 25 814 48.1 2040 OREA502 Target Range - Lower Bound Upper Bound 553 51.9 993 10.90 3.01 162 33 996 65.9 256 SY-4 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1		a															
MRCc008 Sevential																	
Upper Bound DREAS 146 59 28.1 467 47 3360 4.2 46.2 984 10.05 2.66 159 31 946 54.4 209 Target Range Lower Bound Upper Bound 483 23.7 397 40 2760 3.6 42.5 813 8.00 2.37 140 25 814 48.1 204 OREAS 102 603 29.5 485 52 3410 4.6 51.9 993 10.90 3.01 182 33 996 56.9 254 Target Range Lower Bound Upper Bound Upper Bound S55 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1 117.0 15.95 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1 107.0 13.30 643 Target Range Lower Bound Upper Bound 13.46 49.3 14.40 6 1070 0.13 <th< td=""><td>MRGeo08</td><td>i bound</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	MRGeo08	i bound															
OREAS 146 599 28.1 467 47 3360 4.2 46.2 984 10.05 2.66 159 31 946 54.4 249 Target Range - Lower Bound Upper Bound V-4 483 23.5 485 52 3410 4.6 51.9 933 1.090 2.37 140 25 814 48.1 204 OREAS 602 Target Range - Lower Bound Upper Bound 1.090 3.01 182 33 996 58.3 254 Y-4 Target Range - Lower Bound Upper Bound 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1																	
Target Range - Lower Bound Upper Bound 493 (03) 237 (397) 397 (40) 400 (52) 2790 (36) 3.6 (42,5) 913 (190) 8.00 (100) 2.37 (140) 140 (25) 814 (48,1) 40.1 (25) 204 (25) 814 (25) 48.1 (25) 204 (25) 814 (25) 48.1 (25) 204 (25) 814 (25) 48.1 (25) 204 (25) 814 (26) 48.1 (26) 204 (26) 204 (26) 204 (26) 204 (27) 204 (20)		r Bound	500	00.4	407	47	2200	4.0	40.0	004	40.05	0.00	450	24	0.40	FA A	240
Upper Bound OREAS 602 603 29.5 485 52 3410 4.6 51.9 993 10.90 3.01 182 33 996 58.9 254 OREAS 602 Target Range - Lower Bound Upper Bound SY-4 Target Range - Lower Bound Upper Bound Target Range - Lower Bound 13.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1		r Bound															
Target Range - Lower Bound Upper Bound SY-4 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1																	
Upper Bound SY-4 State	OREAS 602																
SY-4 Target Range - Lower Bound 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1	5 5																
Upper Bound SY-4 15.85 55.4 13.75 6 1235 0.8 2.67 1.17 2.33 0.80 6 <1 117.0 15.95 556 Target Range - Lower Bound Upper Bound 13.45 49.3 11.40 6 1070 0.7 2.33 1.11 2.06 0.66 <5 <1 107.0 13.30 543 Upper Bound 13.45 49.3 11.40 6 1070 0.7 2.33 1.11 2.06 0.66 <5 <1 107.0 13.30 543 LANK 60.7 14.00 10 1310 1.11 2.87 1.47 2.54 0.94 18 3 131.0 16.30 6688 BLANK 7	SY-4	i bound															
SY-4 15.85 55.4 13.75 8 1235 0.8 2.67 1.17 2.33 0.80 6 <1 117.0 15.95 556 Target Range - Lower Bound Upper Bound 13.45 49.3 11.40 6 1070 0.7 2.33 1.11 2.06 0.66 <5 <1 107.0 13.30 543 BLANK 60.7 14.00 10 1310 1.1 2.87 1.47 2.54 0.94 18 3 131.0 16.30 668 BLANK 7	Target Range - Lower																
Target Range - Lower Bound Upper Bound 13.45 16.55 49.3 60.7 11.40 14.00 6 10 1070 1310 0.7 1.1 2.33 2.87 1.11 1.47 2.06 2.54 0.66 0.94 <5 18 <1 3 107.0 131.0 13.30 668 543 668 BLANK Target Range - Lower Bound Upper Bound BLANK 668 668 <td></td> <td>r Bound</td> <td></td> <td></td> <td>10 75</td> <td></td> <td>1005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15.05</td> <td>550</td>		r Bound			10 75		1005									15.05	550
Upper Bound 16.55 60.7 14.00 10 1310 1.1 2.87 1.47 2.54 0.94 18 3 131.0 16.30 668 BLANK Target Range - Lower Bound Upper Bound Upper Bound Up		r Round															
BLANK Target Range - Lower Bound Upper Bound BLANK Stanke 0upper Bound BLANK 0upper Bound 0.03 <0.2																	
BLANK Target Range - Lower Bound BLANK BLANK Co.03 <0.2																	
Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound 0 BLANK								BL	ANKS								
Upper Bound BLANK Target Range - Lower Bound Upper Bound BLANK Selank Target Range - Lower Bound Upper Bound BLANK Selank BLANK Co.03 <0.2	BLANK																
BLANK Target Range - Lower Bound Upper Bound BLANK <0.03																	
Target Range - Lower Bound Upper Bound		r Bound															
Upper Bound		r Bound															
Target Range - Lower Bound <0.03 <0.2 <0.03 <1 <0.1 <0.1 <0.05 <0.01 <0.05 <5 <1 <0.01 <0.03 <2 Upper Bound 0.06 0.4 0.06 2 0.2 0.2 0.02 0.10 0.02 0.10 10 2 0.2 0.66 4 BLANK Target Range - Lower Bound <																	
Upper Bound 0.06 0.4 0.06 2 0.2 0.2 0.02 0.10 10 2 0.2 0.06 4 BLANK Target Range - Lower Bound																	
BLANK Target Range - Lower Bound																	
Target Range - Lower Bound		гърони	0.06	0.4	0.06	2	0.2	0.2	0.02	0.10	0.02	0.10	10	2	0.2	0.00	4
Upper Bound		r Bound															
	Uppe	r Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	ME-4ACD81 Ag ppm 0.5
							STAN	DARDS								
AMIS0167		92.5	2.48	3.43	0.12	0.24	0.09	0.49	0.058	0.15	0.02	0.04	<0.01	0.01		
Target Range - Lower		89.6	2.29	3.28	0.10	0.21	0.06	0.45	0.049	0.12	<0.01	<0.01	<0.01	<0.01		
Upper AMIS0286	Bound	93.3	2.55	3.62	0.16	0.27	0.12	0.55	0.067	0.18	0.04	0.05	0.02	0.02	7.92	
Target Range - Lower	Bound Bound														7.25	
AMIS0461															38.9	
	Bound ⁻ Bound														36.9 40.9	
MRGeo08 Target Range - Lower	Round															4.7 3.2
	Bound															5.6
Target Range - Lower	Bound Bound															
OREAS 602																>100
	Bound Bound															107.5 100.0
SY-4	D	49.0	20.9	6.20	7.94	0.51	7.33	1.59	< 0.002	0.29	0.10	0.13	0.14	0.04		
Target Range - Lower Upper	Bound Bound	48.7 51.1	20.1 21.3	5.95 6.47	7.74 8.36	0.49 0.59	6.81 7.39	1.56 1.76	<0.002 0.005	0.25 0.32	0.08 0.13	0.10 0.16	0.11 0.17	<0.01 0.06		
SY-4 Target Range - Lower Upper	Bound Bound															
							BL/	ANKS								
BLANK																<0.5
Target Range - Lower	Bound Bound															<0.5
BLANK		<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.002	<0.01	<0.01	0.01	<0.01	<0.01		
	Bound ⁻ Bound	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.002 0.004	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02	<0.01 0.02		
BLANK Target Range - Lower Upper BLANK	Bound Bound														0.01	
Target Range - Lower	Bound Bound														<0.01 <0.01 0.02	

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

QC CERTIFICATE OF ANALYSIS SD19209684

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-4ACD81 As ppm 5	ME-4ACD81 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD81 Cu ppm 1	ME-4ACD81 Li ppm 10	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 Tl ppm 10	ME-4ACD81 Zn ppm 2			
							STAN	IDARDS							
AMIS0167							21711								
Target Range - Lower	Bound Bound														
Target Range - Lower Upper AMIS0461	Bound Bound														
Target Range - Lower Upper	Bound Bound														
MRGeo08		32	2.4	21	624	30	14	709	1090	11	<10	808			
Target Range - Lower	Bound Bound	21 45	1.1 3.4	17 23	586 676	<10 50	12 18	621 761	969 1190	10 15	<10 20	722 886			
OREAS 146 Target Range - Lower			0.1	20	0.0					10	20		I		
OREAS 602		676	25.2	11	5090	20	5	60	1030	4	<10	4180			
Target Range - Lower Upper SY-4	Bound Bound	579 719	21.7 27.7	7 12	4790 5510	<10 40	2 7	53 67	918 1125	2 6	<10 20	3770 4610			
Target Range - Lower	Bound Bound														
Target Range - Lower	Bound Bound														
							BL/	ANKS							
BLANK		<5	<0.5	<1	1	<10	1	<1	<2	<1	<10	<2			
Target Range - Lower		<5	<0.5	<1	<1		<1	<1	<2			<2			
Upper BLANK	Bound	10	1.0	2	2		2	2	4			4			
Target Range - Lower Upper	Bound Bound														
BLANK Target Range - Lower Upper	Bound Bound														
BLANK Target Range - Lower Upper	Bound Bound														

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	699 697 663 733	51.6 47.6 47.0 52.2	30 20 <10 40	1.73 1.55 1.55 1.73	2.79 2.94 2.67 3.06	1.31 1.78 1.44 1.65	0.96 0.96 0.88 1.04	19.4 20.4 18.8 21.0	3.37 3.47 3.20 3.64	1.7 2.5 1.8 2.4	0.47 0.57 0.48 0.56	27.2 23.6 24.0 26.8	0.16 0.21 0.17 0.20	7.4 7.5 6.9 8.0	23.9 23.4 22.4 24.9
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	6.61 6.25 6.08 6.78	59.8 59.5 56.5 62.8	5.22 4.41 4.54 5.09	2 1 <1 2	472 480 452 500	1.2 1.1 1.0 1.3	0.46 0.54 0.47 0.54	6.75 6.75 6.36 7.14	0.15 0.23 0.17 0.21	1.71 1.92 1.67 1.96	35 37 29 43	263 259 247 275	12.9 15.7 13.5 15.1	1.25 1.40 1.23 1.42	60 90 69 81
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Method Analyte Units LOD	ME-ICP06 SiO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	ME-4ACD81 Ag ppm 0.5
ound Bound						DUPL	ICATES							3.10 3.05 2.99 3.16	
ound 3ound	70.4 70.0 68.4 72.0	15.00 15.05 14.65 15.40	1.84 1.91 1.82 1.93	2.81 2.83 2.74 2.90	0.72 0.75 0.71 0.76	3.86 3.86 3.75 3.97	2.09 2.11 2.04 2.16	0.003 0.003 <0.002 0.004	0.34 0.31 0.31 0.34	0.02 0.02 <0.01 0.03	0.06 0.07 0.05 0.08	0.05 0.05 0.04 0.06	0.08 0.08 0.07 0.09		
ound 3ound															<0.5 <0.5 <0.5 1.0
	Analyte Units LOD ound ound ound ound ound	ound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound bound b	Analyte Units LOD SiO2 % Al2O3 % Junits LOD % % 0.01 0.01 0.01 ound 70.4 15.00 70.0 15.05 15.40 ound 72.0 15.40	Analyte Units LOD SiO2 Al2O3 Fe2O3 % % % % LOD 0.01 0.01 0.01 ound 0.01 0.01 0.01 ound 70.4 15.00 1.84 70.0 15.05 1.91 ound 68.4 14.65 1.82 round 72.0 15.40 1.93	Analyte Units LOD SiO2 Al2O3 Fe2O3 CaO % % % % % 0.01 0.01 0.01 0.01 0.01 ound bound 70.4 15.00 1.84 2.81 70.0 15.05 1.91 2.83 68.4 14.65 1.82 2.74 bound 72.0 15.40 1.93 2.90	Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO MgO % % % % % % % % LOD 0.01 0.01 0.01 0.01 0.01 0.01 ound bound 70.4 15.00 1.84 2.81 0.72 70.0 15.05 1.91 2.83 0.75 ound bound 68.4 14.65 1.82 2.74 0.71 ound 72.0 15.40 1.93 2.90 0.76	Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO MgO Na2O % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO MgO Na2O K2O % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % <th>Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % Joint 0.01 0.01 0.01 0.01 0.01 0.01 0.002 Jound found 70.4 15.00 1.84 2.81 0.72 3.86 2.09 0.003 Jound found 68.4 14.65 1.82 2.74 0.71 3.75 2.04 <0.002 Jound 15.40 1.93 2.90 0.76 3.97 2.16 0.004</th> <th>Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % TiO2 % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002 0.01 ound bound bound 70.4 15.00 1.84 2.81 0.72 3.86 2.09 0.003 0.34 ound bound 68.4 14.65 1.82 2.74 0.71 3.75 2.04 <0.002 0.31 ound 72.0 15.40 1.93 2.90 0.76 3.97 2.16 0.004 0.34</th> <th>Analyte Units LOD Si02 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO Units LOD % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</th> <th>Marcinol Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % TiO2 % MnO P2O5 % Units LOD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.06 0.07 0.07 0.03 0.31 0.02 0.07 0.03 0.03 0.03 0.03 0.03 0.03</th> <th>Marchud Analyte Units LOD SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</th> <th>Marcinud Analyte Units LOD SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO Marcinud Units LOD % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</th> <th>Marcinus Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Units LOD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</th>	Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % Joint 0.01 0.01 0.01 0.01 0.01 0.01 0.002 Jound found 70.4 15.00 1.84 2.81 0.72 3.86 2.09 0.003 Jound found 68.4 14.65 1.82 2.74 0.71 3.75 2.04 <0.002 Jound 15.40 1.93 2.90 0.76 3.97 2.16 0.004	Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % TiO2 % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002 0.01 ound bound bound 70.4 15.00 1.84 2.81 0.72 3.86 2.09 0.003 0.34 ound bound 68.4 14.65 1.82 2.74 0.71 3.75 2.04 <0.002 0.31 ound 72.0 15.40 1.93 2.90 0.76 3.97 2.16 0.004 0.34	Analyte Units LOD Si02 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO Units LOD % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	Marcinol Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO % MgO % Na2O % K2O % Cr2O3 % TiO2 % MnO P2O5 % Units LOD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.06 0.07 0.07 0.03 0.31 0.02 0.07 0.03 0.03 0.03 0.03 0.03 0.03	Marchud Analyte Units LOD SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	Marcinud Analyte Units LOD SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO Marcinud Units LOD % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	Marcinus Analyte Units LOD SiO2 % Al2O3 % Fe2O3 % CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Units LOD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

(ALS)	/								QC	CERTI	FICATE	OF AN/	ALYSIS	SD19209684	
Sample Description	Method Analyte Units LOD	ME-4ACD81 As ppm 5	ME-4ACD81 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD81 Cu ppm 1	ME-4ACD81 Li ppm 10	ME-4ACD81 Mo ppm 1	ME-4ACD81 Ni ppm 1	ME-4ACD81 Pb ppm 2	ME-4ACD81 Sc ppm 1	ME-4ACD81 TI ppm 10	ME-4ACD81 Zn ppm 2			
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES							
ORIGINAL DUP Target Range - Lower Upper	Bound Bound														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<5 <5 <5 10	<0.5 <0.5 <0.5 1.0	3 3 2 4	7 7 6 8	<10 <10 <10 20	5 4 3 6	18 20 17 21	<2 <2 <2 4	5 5 4 6	<10 <10 <10 20	4 4 <2 6			

ALS Canada Ltd.

Т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

		CERTIFICATE CON	IMENTS	
		LABOR	ATORY ADDRESSES	
Applies to Method:	Processed at ALS Sudbury loca CRU-31 PUL-QC	ated at 1351-B Kelly Lake Road, L CRU-QC SPL-21	Init #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-32
Applies to Method:	Processed at ALS Vancouver lo ME-4ACD81 TOT-ICP06	ocated at 2103 Dollarton Hwy, No ME-ICP06	orth Vancouver, BC, Canada. ME-MS81	OA-GRA05

CERTIFICATE SD19209689

Project: Pgen 002

This report is for 4 Rock samples submitted to our lab in Sudbury, ON, Canada on 23-AUG-2019.

The following have access to data associated with this certificate:

JAKE BURDEN GRANT MOURRE	GREG COLLINS BEN WILLIAMS	THOMAS HART

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
LOG-23	Pulp Login - Rcvd with Barcode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-32	Pulverize 1000g to 85% < 75 um								
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
ME-MS61 Au-ICP21	48 element four acid ICP-MS Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1
Sample Description	LOD		0.01									0.01 2.62 2.76 2.28 4.50				

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1
L783323 L783324 L783326 L783329		0.09 0.08 0.09 4.43	11.2 1.8 5.9 65.5	7.80 5.02 6.41 3.19	21.7 22.1 21.2 12.25	0.07 0.06 0.09 0.06	3.2 3.3 2.6 1.8	0.008 <0.005 <0.005 0.039	0.29 0.26 0.34 1.82	2.3 10.3 12.0 10.5	0.5 0.4 0.4 41.4	1.15 0.92 0.92 1.15	338 191 248 852	15.55 113.5 76.8 5.69	6.05 6.50 6.19 1.40	1.2 1.4 1.2 2.3

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005
L783323 L783324 L783326 L783329		266 44.5 94.1 12.1	650 160 350 660	1.4 1.2 1.5 16.8	3.3 2.9 3.9 70.8	<0.002 0.015 0.004 <0.002	6.77 5.11 5.48 0.45	0.28 0.20 0.27 2.10	14.5 10.9 13.5 13.1	7 6 11 1	0.2 0.2 0.7	48.1 48.6 46.6 342	0.10 0.11 0.08 0.11	2.43 0.53 0.43 4.41	8.37 3.55 6.87 2.65	0.050 0.055 0.050 0.281

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

	CERTIFICATE OF	ANALYSIS	SD19209689
--	----------------	----------	------------

Method Analyte	ME-MS61 TI	ME-MS61 U	ME-MS61 V	ME-MS61 W	ME-MS61 Y	ME-MS61 Zn	ME-MS61 Zr	
Units LOD	ppm 0.02	ррт 0.1	ppm 1	ppm 0.1	ррт 0.1	ppm 2	ррт 0.5	
	<0.02 0.02 0.03 0.55	3.7 2.0 4.2 0.7	79 50 55 106	1.0 0.9 0.9 1.8	8.5 11.8 9.5 10.1	2 <2 <2 71	119.5 115.5 97.1 70.2	
	Analyte Units	Analyte Tl Units ppm LOD 0.02 <0.02	Analyte Tl U Units ppm ppm LOD 0.02 0.1 <0.02	Analyte Units Tl U V DD ppm ppm ppm LOD 0.02 0.1 1 <0.02	Analyte Units Tl U V W Units ppm ppm ppm ppm LOD 0.02 0.1 1 0.1 <0.02	Analyte Units Tl U V W Y Units ppm ppm ppm ppm ppm ppm LOD 0.02 0.1 1 0.1 0.1 <0.02	Analyte Units LOD Tl U V W Y Zn units LOD ppm ppm ppm ppm ppm ppm ppm .002 0.1 1 0.1 0.1 2 .002 3.7 79 1.0 8.5 2 .0.02 2.0 50 0.9 11.8 <2	Analyte Units LOD Tl U V W Y Zn Zr Units LOD ppm pm pm pm pm<

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

	CERT	IFICATE COMMENTS						
	REE's may not be totally soluble in this metho	ANALYTICAL CO	MMENTS					
Applies to Method:	ME-MS61							
	LABORATORY ADDRESSES							
Applies to Method:	Processed at ALS Sudbury located at 1351-B CRU-31 CRU-C		bury, ON, Canada. LOG-22	LOG-23				
	PUL-32 PUL-Q		SPL-21	WEI-21				
Applies to Method:	Processed at ALS Vancouver located at 2103 Au-ICP21 ME-MS		/er, BC, Canada.					

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

QC CERTIFICATE SD19209689

Project: Pgen 002

This report is for 4 Rock samples submitted to our lab in Sudbury, ON, Canada on 23-AUG-2019.

The following have access to data associated with this certificate:

	JAKE BURDEN GRANT MOURRE	GREG COLLINS BEN WILLIAMS	THOMAS HART
--	-----------------------------	------------------------------	-------------

	SAMPLE PREPARATION										
ALS CODE	DESCRIPTION										
WEI-21	Received Sample Weight										
LOG-22	Sample login - Rcd w/o BarCode										
LOG-23	Pulp Login - Rcvd with Barcode										
CRU-31	Fine crushing - 70% <2mm										
SPL-21	Split sample - riffle splitter										
PUL-32	Pulverize 1000g to 85% < 75 um										
CRU-QC	Crushing QC Test										
PUL-QC	Pulverizing QC Test										

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	
ME-MS61 Au-ICP21	48 element four acid ICP-MS Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

(ALS)								QC		FICATE	OF AN	ALYSIS	SD1	920968	89
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							STAN	IDARDS								
EMOG-17 Target Range - Lower Upper KIP-19	Bound Bound	2.44	69.1 60.9 74.5	4.85 4.18 5.13	603 522 638	210 310 440	1.77 1.60 2.06	6.16 5.31 6.51	1.97 1.72 2.12	21.2 18.15 22.2	49.9 42.9 52.5	770 686 838	57 49 62	7.63 6.56 8.12	8330 7750 8910	4.99 4.42 5.42
K I P-19 Target Range - Lower	Bound ⁻ Bound	2.51 2.28 2.58 0.258														
OREAS 684 Target Range - Lower	Bound ⁻ Bound	0.255	0.12	8.06	5.3	580	2.84	0.66	0.51	0.06	94.8	16.1	84	9.06	117.0	4.19
Target Range - Lower	Bound Bound		0.08	6.91 8.47	4.6 6.1	450 640	2.54 3.22	0.61 0.77	0.44	0.08	84.6 103.5	13.9 17.3	70 88	7.72 9.54	104.0 120.0	3.72 4.56
PMP-18 PMP-18 Target Range - Lower	Bound	4.98 5.12 4.50 5.07 0.309 0.304 0.289 0.327														
							BL	ANKS								
	Bound Bound	<0.001 <0.001 <0.001 0.002														
BLANK Target Range - Lower Upper	Bound ⁻ Bound		<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<10 <10 20	<0.05 <0.05 0.10	0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.02 <0.02 0.04	0.01 <0.01 0.02	<0.1 <0.1 0.2	<1 <1 2	<0.05 <0.05 0.10	0.2 <0.2 0.4	<0.01 <0.01 0.02

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

(ALS)								QC	CERTI	ICATE	OF AN	ALYSIS	SD19209689		
Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
							STAN	DARDS								
KIP-19 KIP-19 Target Range - Lower Upper OREAS 684 OREAS 684 Target Range - Lower Upper OREAS 920 Target Range - Lower PK2 PK2 Target Range - Lower Upper PMP-18 PMP-18 Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	12.90 10.75 13.25 21.9 18.65 22.9	0.13 0.07 0.29 0.14 0.06 0.28	2.0 1.6 2.2 4.9 4.0 5.2	0.978 0.823 1.015 0.087 0.070 0.098	1.74 1.49 1.85 3.06 2.59 3.19	25.3 20.7 26.4 45.7 41.0 51.2	23.9 23.9 29.7 29.7 26.0 32.2	0.98 0.86 1.08 1.39 1.23 1.53	758 670 830 603 535 665	1105 997 1220 0.46 0.34 0.58	1.15 0.99 1.23 0.68 0.56 0.71	15.0 12.7 15.7 19.2 15.6 19.2	7730 6820 8330 43.8 37.4 46.2	820 700 880 780 640 800	7330 6570 8030 24.9 20.7 26.4
Opper	⁻ Bound						BLA	ANKS								
BLANK Target Range - Lower	⁻ Bound	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.1 <0.1 0.2	<0.005 <0.005 0.010	<0.01 <0.01 0.02	<0.5 <0.5 1.0	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<5 <5 10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.1 <0.1 0.2	<0.2 <0.2 0.4	<10 <10 20	<0.5 <0.5 1.0

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

(ALS)								QC		ICATE	OF AN	ALYSIS	SD1	920968	39
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							STAN	DARDS								
	Bound Bound	118.0 98.9 121.0	0.336 0.286 0.354	3.42 2.91 3.57	813 643 869	8.3 7.2 9.0	6 4 9	2.9 2.2 3.2	215 184.5 226	0.94 0.78 1.08	1.36 1.10 1.46	11.55 10.35 12.65	0.322 0.294 0.370	2.38 1.89 2.61	3.4 2.8 3.7	76 67 84
OREAS 684 OREAS 684 Target Range - Lower Upper OREAS 920 Target Range - Lower	Bound Bound Bound	184.0 158.5 193.5	<0.002 <0.002 0.004	0.04 <0.01 0.05	1.61 1.22 1.76	14.7 12.8 15.8	1 <1 2	5.5 4.3 5.7	86.3 73.6 90.4	1.33 1.08 1.43	<0.05 <0.05 0.12	20.7 17.35 21.2	0.495 0.434 0.542	0.96 0.73 1.03	4.0 3.3 4.2	102 86 108
PK2 PK2 Target Range - Lower Upper PMP-18 PMP-18 Target Range - Lower	Bound Bound						DI	ANKS								
BLANK							DL/	ANKS								
BLANK Target Range - Lower	Bound	<0.1 <0.1 0.2	<0.002 <0.002 0.004	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.1 <0.1 0.2	<1 <1 2	<0.2 <0.2 0.4	<0.2 <0.2 0.4	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.005 <0.005 0.010	<0.02 <0.02 0.04	<0.1 <0.1 0.2	<1 <1 2

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						STANDARDS
EMOG-17		4.1	16.9	7630	71.9	
Target Range - Lower	Bound	3.3	14.3	6800	55.6	
Upper KIP-19	Bound	4.7	17.7	8320	76.4	
KIP-19						
Target Range - Lower	Bound					
Upper OREAS 684	Bound					
OREAS 684						
Target Range - Lower						
Upper OREAS 920	Bound	3.2	34.4	121	170.0	
Target Range - Lower	Bound	2.5	29.8	102	128.0	
Upper	Bound	3.7	36.6	130	174.0	
РК2 РК2						
Target Range - Lower	Bound					
Upper	Bound					
PMP-18 PMP-18						
Target Range - Lower	Bound					
Upper	Bound					
						BLANKS
BLANK BLANK						
Target Range - Lower	Bound					
Upper	Bound					
BLANK Target Range - Lower	Round	<0.1 <0.1	<0.1 <0.1	<2 <2	<0.5 <0.5	
Upper	Bound	0.2	0.2	4	1.0	

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
							DUPL	ICATES								
OR I GINAL DUP Target Range - Lower Upper	Bound r Bound		<0.01 <0.01 <0.01 0.02	10.35 10.50 9.89 10.95	32.9 30.6 30.0 33.5	1090 1070 990 1170	3.63 3.25 3.22 3.66	0.05 0.05 0.04 0.06	0.23 0.24 0.21 0.26	<0.02 <0.02 <0.02 0.04	14.60 16.65 14.85 16.40	12.3 11.6 11.3 12.6	71 69 66 75	6.57 7.03 6.41 7.19	3.1 2.8 2.6 3.3	6.75 6.71 6.38 7.08
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	0.017 0.022 0.018 0.021														
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	0.021 0.022 0.019 0.024														
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	<0.001 0.003 <0.001 0.003														
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	0.088 0.089 0.083 0.094														
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	0.017 0.016 0.015 0.018														

DUP

DUP

DUP

DUP

DUP

DUP

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. **410 FALCONBRIDGE ROAD** UNIT 5 **SUDBURY ON P3A 4S4**

QC CERTIFICATE OF ANALYSIS

Page: 3 - B Total # Pages: 3 (A - D) **Plus Appendix Pages** Finalized Date: 7-SEP-2019 Account: TRAMET

SD19209689

Project: Pgen 002

ME-MS61 Method Mg Ni Pb Ga Ge Ηf In Κ La Li Mn Мо Na Nb Ρ Analyte % % % ppm ppm ppm ppm ppm ppm Units ppm ppm ppm ppm ppm ppm Sample Description LOD 0.05 0.05 0.1 0.005 0.01 0.5 0.2 0.01 5 0.05 0.01 0.1 0.2 10 0.5 **DUPLICATES** ORIGINAL 30.2 0.05 2.8 0.089 2.87 6.2 111.5 1.30 10050 0.16 0.95 16.4 52.5 540 14.0 0.07 0.068 2.81 7.5 92.7 49.2 530 13.6 28.6 2.8 1.28 10100 0.16 0.94 15.2 Target Range - Lower Bound < 0.05 2.6 0.070 2.69 6.0 96.8 1.22 9570 0.10 0.89 14.9 48.1 500 12.6 27.9 Upper Bound 30.9 0.10 3.0 0.087 2.99 7.7 107.5 1.36 10600 0.22 1.00 16.7 53.6 570 15.0 ORIGINAL Target Range - Lower Bound Upper Bound ORIGINAL Target Range - Lower Bound Upper Bound

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound	127.0 132.5 123.0 136.5	<0.002 <0.002 <0.002 0.004	<0.01 <0.01 <0.01 0.02	0.24 0.25 0.18 0.31	18.1 17.6 16.9 18.8	1 <1 <1 2	3.3 3.2 2.9 3.6	141.0 143.5 135.0 149.5	1.01 0.95 0.88 1.08	<0.05 <0.05 <0.05 0.10	10.00 10.90 9.92 11.00	0.462 0.456 0.431 0.487	0.64 0.64 0.57 0.71	1.3 1.3 1.1 1.5	104 102 97 109
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound															

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
						DUPLICATES
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	4.8 4.6 4.2 5.2	25.4 26.4 24.5 27.3	119 117 110 126	100.5 96.9 90.8 106.5	
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound [.] Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TRANSITION METALS CORP. 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-SEP-2019 Account: TRAMET

Project: Pgen 002

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME-MS61
Applies to Method:	
Applies to Method:	PUL-32PUL-QCSPL-21WEI-21Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.WEI-21WEI-21Au-ICP21ME-MS61WEI-21

APPENDIX D – FINANCIAL

		v	Vork Performed		
Category	From date	To date	Invoice	Costs (\$)	Subtotal
Geological Survey			geologist		
	10/08/2019	10/08/2019	Grant Mourre - salary 1 day	\$550	
	10/08/2019	10/08/2019	Tom Hart - 1 day - 1908.3	\$550	
	09/03/2020	13/03/2020	Tom Hart 4 days - report - 2003.3	\$2,200	
					\$3,300
Associated Costs					
Assays					
		08/03/2019	4650709	\$140	
		07/09/2019	4860149	\$212	
		07/09/2019	4860129	\$242	
					\$594
Transportation					
	vehicle mileage				
	10/08/2019	10/08/2019	1 day rental - 293	\$50	
	10/08/2019	10/08/2019	Gas	\$44	
					\$94
				Total	\$3,988