

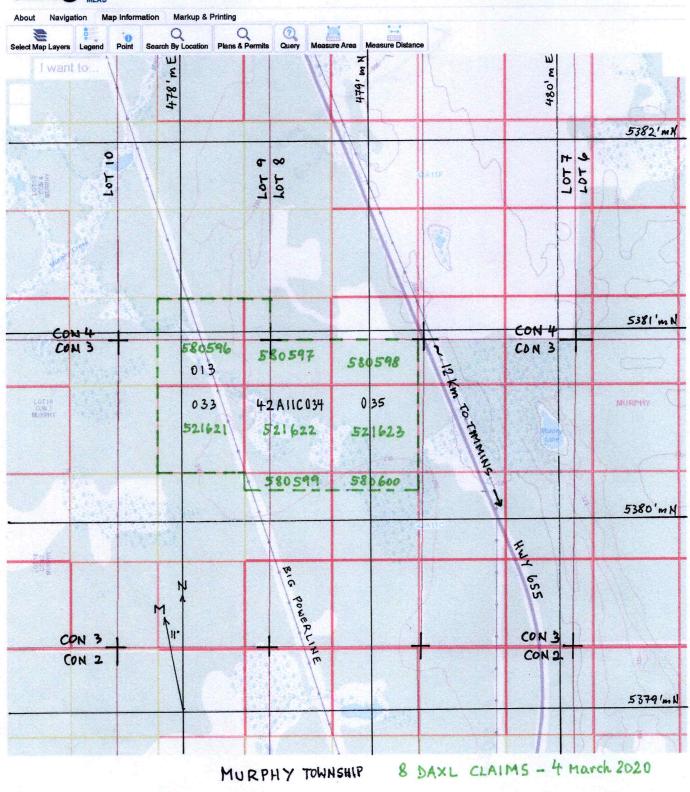
We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Gold in Decayed Vegetation

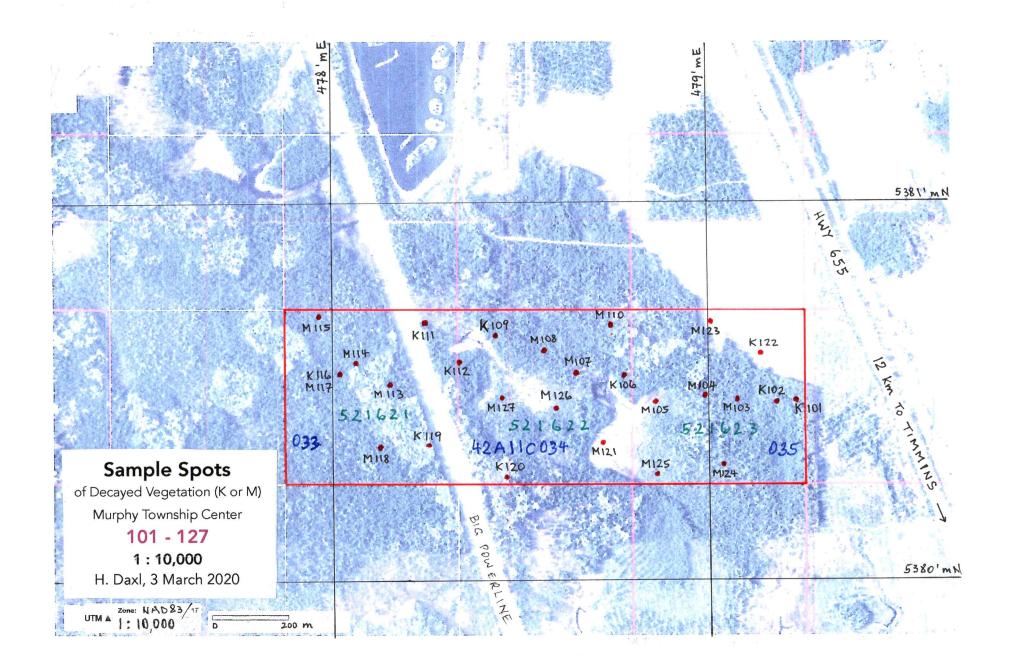
in Murphy Township Center

(Westward from Highway 655)

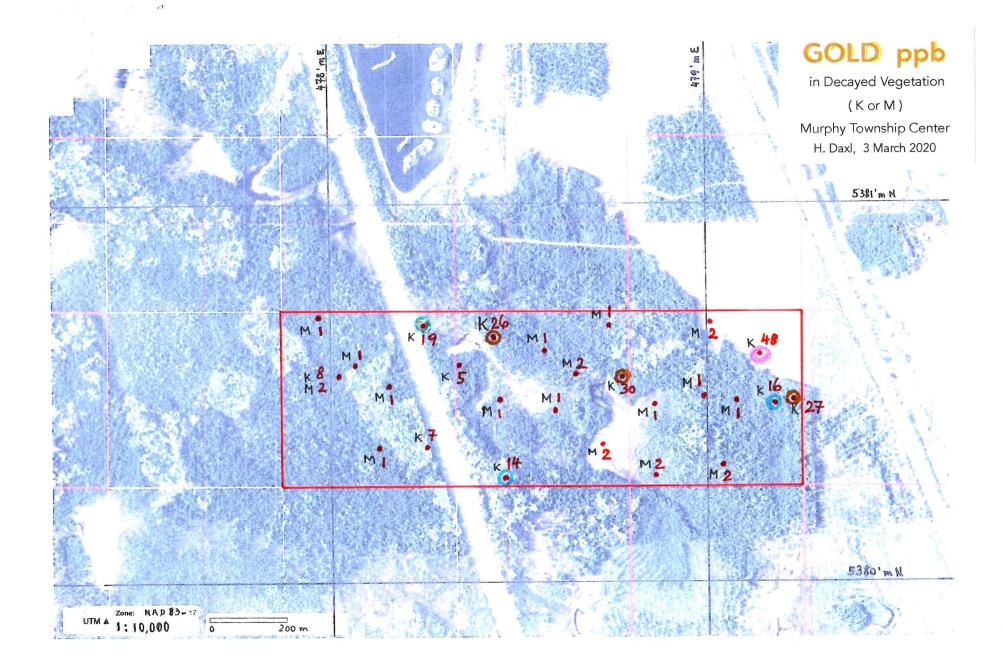

on unpatented mining claims 521621, 521622, 521623

in respective cells 42A11C033, 034, 035

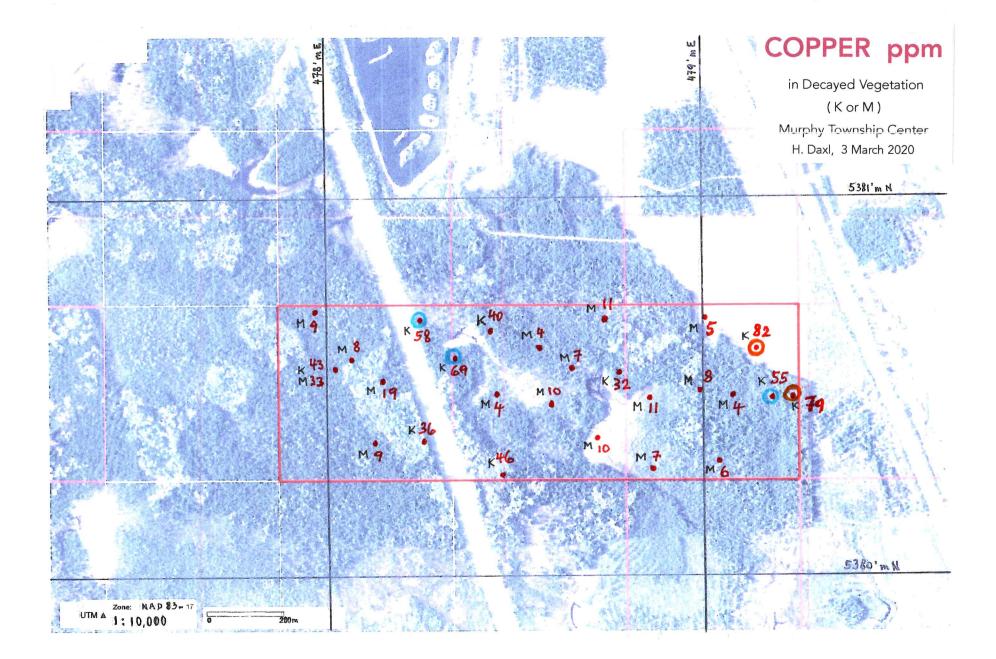
Report by Hermann Daxl, M.Sc.(Minex), Claim Holder 23 April 2020

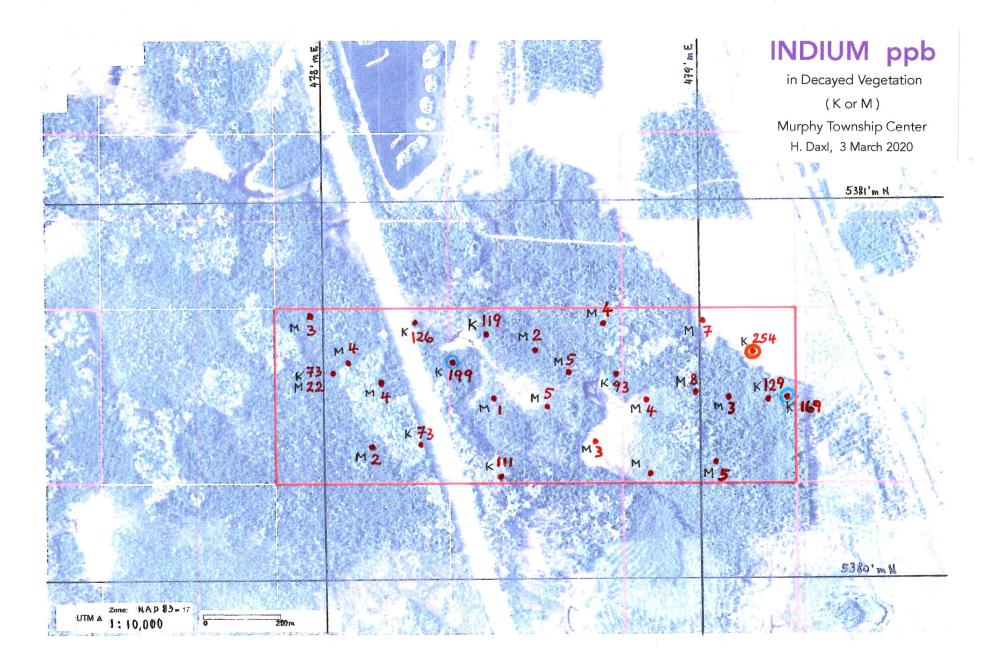

Ontario 🐨 Ministry of Energy, Northern Development and Mines

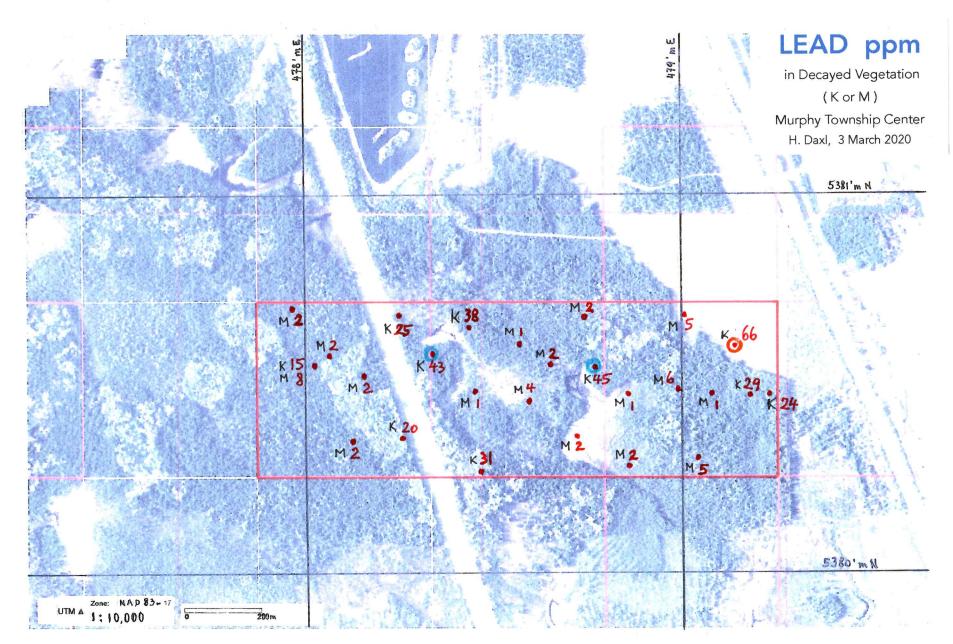
Français

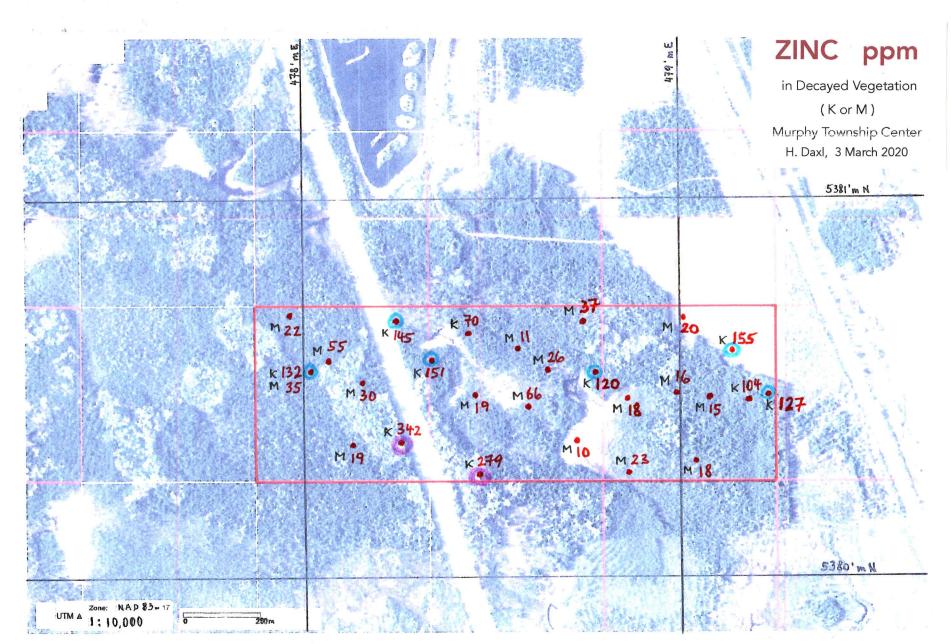


Scale: 1:20,000


Ş. F 0.15 0.3km Powered By Land Information Ontario


Ontario 🞯





Introduction

The elevated values of <48 ppb gold in decayed vegetation from 0 - 6 cm below surface (K-samples), on my 3 unpatented mining claims 521621 - 623, full cells 42A11C033 - 035 respectively, in central Murphy Township, 12 km north of Timmins, can only come from bedrock. This again proves such widely spaced sampling as an efficient prospecting method even over deep overburden. I collected 10 such K-samples, and where not available, 17 of black swamp muck (M-samples) from <1m depths, on 23, 26, 28 June 2019, after having informed the owner of surface rights as he wished.

The topography is flat around 290 m above sea level with few meters of gentle slope toward the central swamp with its effluent towards WNW into Murphy Creek at 1 km. Thin humus on sand covers the northeast which has been deforested recently. Mostly high conifers exist around the central open swamp and westward with often over 1 m deep black muck probably all on clay. Details are annotated with the sample results.

Quite unexplored, the geology is mostly assumed to be metasedimentary rocks in the north, in contact with the intermediate metavolcanic rocks of the south, according to the abrupt drop from the magnetic high of the south (OGS Maps 81071 and P.3305).

Off my claims, early October 1971, Amax Exploration Inc. (42A11SE0180) drilled two 90m holes, TX-77-71 and TX-78-71, into the north-south conductor about 200 m SSE from the SE corner of my claim 521623. The 155 m of AXT (3.5cm) drill core was dacite, dacite tuff and agglomerate, with <75 cm massive pyrrhotite or pyrite intersections explaining the conductor and magnetism. I found no analyses. The 10 m vertical overburden was swamp muck on clay, with fine sand at the base.

My three claims of my present work stretch west from near highway 655 about 12 km north of Timmins. The region is mostly sand, and is flat with the highway, which facilitates parking. The surface rights holder can open the gate further north at NAD83 - 479255E - 5380928N near the northeast corner of my claim group which includes also claims 580596 - 600. That gravel trail westward, and the big powerline in the west, are the only developments on the 3 claims worked. Please refer to the attached map.

Present Work

This is not like socalled humus sampling nor fresh specific vegetation sampling, because humus usually includes sand-silt-clay which overrides all usefulness, and the very low values of fresh vegetation are too easily influenced by many factors. If you need a theory to trust the facts below, here is some logic. Element ions rising from excess mineralization accumulate on earth's surface. Some plants take up elements, others reject them at the rootlets. In the end the elements rising to the leaves also accumulate and concentrate between those rootlets. All get into my K-samples, regardless of plant species. My 6-minute video demonstrates such sampling. www.youtube.com>watch>v=zHgkv00wSI0

I collected 27 samples (101 - 127) of two types, decayed vegetation from 0 - 6 cm depth into humus (K), or deep dense black muck from swamps (M) where was no K. K-samples are composites from several spots over about 30m, to average and cover more ground, whereas M-samples are 10cm long core from the noted depth in single 5cm diameter auger holes. This K and M is annotated to qualify values as two levels (or two populations), as K benefits from accumulation, whereas M would merely scavenge what it can, depending on waterflow in swamps, especially where the bottom cannot be reached.

After drying, rolling, rubbing, and sieving to <250 micron, I homogenized each sieving and checked for inorganic content. To remove sand and silt, which would dilute or contaminate, I sieved K106 and K109 to 125-250 micron. Further dry swirling in a plastic gold pan and skimming off the organics was necessary for samples 106, 109, 119, 120, 122. Basically the resulting sievings are condensed vegetation and therefore are suitable for vegetation analyses with the necessary very low detection limits.

Considering density, values of organics with 10 % remaining inorganic dilution would have to be boosted by 30%, however, I used only the original lab results, and annotated any remaining sand-silt content. Clay-rich samples can dry hard and do not release the trapped clay, but like in MC117, clay content often shows as higher Al, Ce, La, Li, Fe, Cr, Ni, and others. Micas could be the carriers.

The possibly very thick overburden should be no barrier, but could attenuate and spread out results. This discovery needs to be followed up with narrow sampling. Please refer to the attached lecture handout for more details about this very efficient and reliable prospecting method.

Results

The considerable gold in each of the 10 K-samples, ranging from 5 - 48 ppb Au, suggest a large gold zone under the 3 claims. More K-samples will be needed before a local concentration can be outlined. Please refer to the annotated list of analyses, the sample map, and element overlays for gold, copper, indium, lead, zinc.

The 17 M-samples are quite barren, but should not distract from this important discovery. Water in the 1m wide brook of this swamp hardly moves, whereas the swamp is very wet. Apparently the water flows throughout the muck and flushes out elements here. M-samples have worked well in stagnant other swamps for copper (my assessment work reports 1212 and 2935).

To refute the assumption that such gold could come from the very minor sand-silt still in 6 of these sievings, I submitted the 60%-sand portion of sample K120, as well as the <125 micron fraction of K109 which contained 60 % sand-silt, as samples 129 and 131 respectively. As dregs of dry swirling, they would also have contained any gold dust. Despite the multiple sand-silt content, the gold content was only a fraction in both, reflecting only the remaining organic content.

K109	with estimated	10 v	olume % sand	26 pp	b gold
K131	н	60	п	9	н
K120	н	5	н	14	п
K129	u	60	п	6	н

Also no inorganics were found in sample K111, yet it had 19 ppb gold, and M114 with 3% sand had only 1 ppb gold.

Other elements, including arsenic, appear quite normal, with the expected difference between K and M samples. Like gold, the highest values for other elements in decayed vegetation from 0 - 6 cm occur in K122, namely: 48 ppb Au, 254 ppb In, 82 ppm Cu, 66 ppm Pb, and if one assumes that zinc near the power line may be contamination from it, 155 ppm Zn.

The tower of the big power line stands at the SE corner of claim 521621, about 100 m from both samples with the highest zinc values, K119 - 342 ppm Zn, and K120 - 279 ppm Zn. The possibility of contamination needs to be investigated. The ratio Cd : Zn is only half of that it other samples.

All samples were analyzed with method 2G - unashed vegetation - aqua regia - ICP/MS - 0.5 g aliquots, by Activation Laboratories Ltd., Ancaster, who also analyzed K101 and K112 by the similar method Ultratrace 2, and 6 more by neutron activation - Code 2B - Vegetation - medium vials - double irradiation time at extra cost. In addition, 7 samples were also analyzed with method ME-VEG41 - unashed vegetation - HNO3/HCI - ICPAES /ICPMS - 1 g aliquots, by ALS Canada Ltd., North Vancouver. Ultratrace 2 is not suitable for gold, but all others were in fair agreement including my test samples and standard reference materials. The attached results are annotated for better comparison.

Conclusions and Recommendations

These widespread and rather high, confirmed gold values can come only from the rock below, as contamination from sand-silt has been ruled out. This discovery in only 3 field trips on 3 claims shows the efficiency of the method for finding mines.

Narrower infill samples may outline specific zones. More experimentation may also discover a better sample medium for the swamp that covers a large part of the 3 claims.

Respectfully submitted,

Timmins, 23 April 2020

Hermann Daxl, M.Sc.(Minex), Claim Holder

DECAYED VEGETATION 0-6 cm depth (K) OR BLACK SWAMP MUCK (M...) at cm depth. sieved < 250 µm, except # 125-250 micron (106+109) Results

MURPHY TOWNSHIP

BY 2G - UNASHED VEGETATION - AQUA REGIA - ICP/MS - 1 galiquots

Activation Laboratories Ltd.

Report: A19-08903 - REV 2

51		Results	AC	tivation L	aboratories Ltd.		Report: Ar	3-00303 - M	EVE		
Analyte Symbol	Ag	Al	As	В	Ba	Be	Bi	Са	Cd	Се	Co
Unit Symbol OL	ppb	%	ppb			ppb	ppb				ppb
									15.025		2 AR-MS
C Method Code V	AR-MS						Contraction and the second s	and Arts of Charles and a second s		own provide an African Community of the point, and a particular and a second	1360
									and the second se		989
											1420
											1910 -
											1030
	-										5740
	And a state of the										1370
											255
											1240
											1590
		the second received and second	and the second second second second second	the second second second	the second se	ter an and an out on the	a ana a may ar angana at ar a a	the last the last we had not	780	2970	977
	340 285								1230	3840	1990
								3.700	1130	6580	992
								3.840	990	15900	2520
						140	14.6		380	3810	637
Гі16 К		a tea and ten and and and ten ten ten			and the second second second second second second second	< 50	139.0	0.595	1290	1440	582
	y 130	and the second	2120	0.001	95700	1240	89.4	2.500	700	50200	4360
	40	Marking Souther			72700	140	13.5	4.710	510	4430	1540
	180 J	0.217	1120			90	129.0	1.770	1880	5080	3650 -
	290	0.204	1420 1990	< 0.001	164000	80 ,	183.0 242	1.380 🗸	(1800)	4570 / 29	20 2320
	40	0.370	1330	< 0.001	32100	180	18.8	2.780	340	6800	935
	390 J		3250 388°	< 0.001	54400	60	403.0 486	0.491 v	1590 🗸	4510 3820	1510 🗸
123 M 35	20 /	0.205	970	< 0.001	42500	50	25.2	3.950	270 <i>v</i>	2080	508 J
124 M 50	40	0.350	1070	< 0.001	32100	120	28.4	2.690	440	6420	1750
125 M 60+80	40	0.263	950	< 0.001	41900	130	20.2	2.750	590	3980	1220
126 M 60+90	60	0.586	1160	< 0.001	49000	240	35.1	2.350	690	18300	3030
127 M 50+80	20	0.218	1120	< 0.001	34600	90	8.6	2.820	160	3280	718
128 M TEST 727	9 90 /	1.260 🗸	1370	0.001	56000	460 √	24.5	1.860 🗸	3210 2880	25500 23000	3350
D 129 60% Sand part of 12	20 100	0.107	640	< 0.001	54400	< 50	64.0	0.472	590	10300	1070
130 OREAS 47	110 _v	1.150	8530 VS: 9530)	< 0.001	60700 🗸	240 ,	114.0 150	0.800 0.547	550	48700	48100,
	Analyte Symbol Unit Symbol Detection Limit Method Code 101 K 102 K 103 M 30° 104 M 50 105 M 30 + 80 106 * K 125 - 250 µm 107 M 60 + 90 108 M 50 + 90 109 * K 125 - 250 µm 100 M 50 + 90 109 * K 125 - 250 µm 110 M 50 + 80 111 K 112 K 113 M 60 114 M 50 115 M 60 + 90 116 K 117 MC 2.0 v. stick 118 M 60 + 80 119 K 120 K 121 M 50 122 K 123 M 35 124 M 50 125 M 60 + 80 126 M 60 + 90 126 M 60 + 90 127 M 50 + 80 128 M TEST 727	Analyte Symbol of Ag Unit Symbol of Ag Detection Limit T 10 Method Code T AR-MS 101 K 185 230 V 102 K 130 103 M 30 20 104 M 50 60 J 105 M $30 + 80$ 60 106 $*$ K 125 - 250 μ m 640 107 M $60 + 90$ 40 108 M $50 + 90$ 20 109 $*$ K 125 - 250 μ m 100 100 M $50 + 90$ 20 109 $*$ K 125 - 250 μ m 100 110 M $50 + 80$ 60 111 K 110 112 K 340 85 113 M 60 60 114 M 50 70 115 M $60 + 90$ 30 116 K 60 117 MC 2.0 v.sticky 130 118 M $60 + 80$ 40 119 K 180 J 120 K 290 V 121 M 50 40 125 M $60 + 80$ 40 125 M $60 + 80$ 40 125 M $60 + 80$ 40 126 M $60 + 90$ 60 127 M $50 + 80$ 20 128 M TEST $7279 V 90 > 20$ 129 $60 V$ Sand Part of 120 100	Analyte Symbol at ppb % Unit Symbol at ppb % Detection Limit and 10 0.004 Method Code V AR-MS AR-MS 101 K 185_230 V 0.218 102 K 130 0.127 103 M 3° 20 0.212 104 M 5° 60 J 0.525 105 M $30 + 80$ 60 0.382 106 * K 125 - 250 pm 640 0.444 108 M $5^{\circ} + 9^{\circ}$ 20 0.216 109 * K 125 - 250 pm 100 0.277 110 M $5^{\circ} + 80$ 60 0.524 111 K 110 0.166 112 K 340 1° 0.208 113 M 6° 60 0.377 114 M 5° 70 1.010 115 M $6^{\circ} + 8^{\circ}$ 40 0.343 116 K 60 40 0.424 117 MC 2.0 v.sticky 130 2.470 118 M $6^{\circ} + 8^{\circ}$ 40 0.343 119 K 180 J 0.217 120 K 290 V 0.204 121 M 5° 40 0.370 122 K 390 J 0.272 123 M 3^{5} 20 J 0.205 124 M 5° 40 0.350 125 M $6^{\circ} + 8^{\circ}$ 40 0.350 125 M $6^{\circ} + 8^{\circ}$ 40 0.356 127 M $5^{\circ} + 8^{\circ}$ 40 0.356 127 M $5^{\circ} + 8^{\circ}$ 40 0.356 127 M $5^{\circ} + 8^{\circ}$ 40 0.356 126 M $6^{\circ} + 8^{\circ}$ 40 0.263 126 M $6^{\circ} + 8^{\circ}$ 40 0.263 126 M $6^{\circ} + 8^{\circ}$ 40 0.350 127 M $5^{\circ} + 8^{\circ}$ 40 0.350 128 M $5^{\circ} + 8^{\circ}$ 40 0.263 126 M $6^{\circ} + 8^{\circ}$ 40 0.218 127 M $5^{\circ} + 8^{\circ}$ 40 0.218 128 M TEST 7274 (90 V 1.260 V	Analyte Symbol a_{t} ppb a_{t} ppb ppb ppb Detection Limit 10 0.004 10 Method Code x a_{t} -MS a_{t} -MS a_{t} -MS 101 K 185_230 V 0.218 2100 102 K 130 0.127 1870 103 M 3^{0} 20 0.212 1690 104 M 50 60 0.525 2240 105 M $30 + 80$ 60 0.382 980 106 # K 125 - 250 \mum 640 0.646 2070 107 M $60 + 90$ 20 0.216 1070 108 M $50 + 90$ 20 0.216 1070 109 # K 125 - 250 \mum 100 0.277 2200 110 M $50 + 90$ 20 0.216 1070 109 # K 125 - 250 µm 100 0.277 2200 110 M $50 + 80$ 60 0.377 950 111 K 110 0.166 2100	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte Symbol of t ppb % % % %	Analyte Symbol at Ag A A A A B B Ba	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

	Results	Activation L	aboratories	Ltd.	Report: A	19-08903 - R	LEV 2		
STILL Vol. / Analyte Symbol at Cr	Cs Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf
Equal TOURING SYMDON CLASS PPD	ppb ppb	ppb	ppb	ppb	%	ppb	ppb	ppb	ppb
silf T Detection Limit 20	2 10	0.5	1	1	0.003	4	4	1	3
clay C Method Code 3 ₽ 101 K 7250 6390	AR-MS AR-MS 277 804 78700	AR-MS 157.0	AR-MS 75	AR-MS 50	AR-MS 0.298 √	AR-MS 726	AR-MS 139	AR-MS 37	AR-MS 18
 ♦ 102 K ♦ 4180 	212 55000	129.0	51	44	0.211	472	120	38	24
103 M 80 2760	142 4070	191.0	98	56	0.365	420	130	25	54
0 104 M 50 7070 J	392 7980	452.0	221	138	0.898 🗸	1320	330	40	75
0 105 M $30 + 80$ 3910	152 10900	413.0	219	133	0.302	786	340	55	133
5 D 106 * K 125-250 pm 11100	1510 31600	416.0	185	141	0.638	2650	353	50	29
0 107 M 60+90 5860	309 7240	414.0	218	127	0.441	1100	312	43	150
0 108 M 50+90 2970	186 3820	184.0	104	63	0.466	473	146	23	93
10 D 109 * K 125-250 µm 5420	421 40400	197.0	79	63	0.363	1100	158	71	19
D 110 M 50+80 6730	364 11100	571.0	296	170	0.404	1080	411	55	108
0 111 K 4110	192 57500	130.0	62	49	0.212	519	100	45	34
€ 112 K 5130 √	400 68900	137.0	66	51	0.384	780	129	41	12
0 113 M 60 4800	155 19200	420.0	217	121	0.524	861	289	43	195
3 D 114 M 50 15800	196 8130	950.0	576	297	0.921	1150	696	121	85
0 115 M60+90 2620	153 8680	209.0	117	73	0.217	575	169	25	105
0 116 K 3700	138 42800	64.4	30	20	0.125	281	95	49	19
2 2 117 MC 20 V. sticky 35800	1800 33300	2350.0	1180	729	1.640	6250	1770	192	267
0 118 M 60+80 4700	268 9160	283.0	141	79	0.677	777	193	36	99
8 DT 119 K 4360 3730	504 35800 3	138.0	69	57	0.208 🗸	877	143	27	13
5 D 120 K 4160 4510	405 ~ 45600 \$	53400 146.0	67	48	0.227 🗸	805 🗸	128	33	22
0 121 M 50 4580			186	111	0.405	845	271	46	148
2 D 122 K 6150 5170	333 287 81700	162.0	89	64	0.346 0.30	971 879	157	56	23
0 123 M 35 1970 √	126 4930	129.0	59	36	0.173 √	373	96	28	31
0 124 M 50 3290	264 6490	312.0	153	95	0.588	918	238	45	87
0 125 M 60+80 3110	179 6860	211.0	110	60	0.287	552	147	26	102
0 126 M 60+90 8920	560 10200	600.0	308	197	0.355	1680	485	67	99
0 127 M 50+80 2960	273 4440	191.0	102	61	0.196	560	137	22	100
2 T 128 M TEST 7279 8270	273 4440 209 √ 377000 ³	5180.0	3110	1650	0.303 v	2540	3820	388	65
60 D 129 60 1. Sandpart \$ 120 2430	215 18100	196.0	67	44	0.128	676	222	41	23
130 DREAS 47 34800 J	1270 156000	1350.0	669	647	1.830 -	4210 VS. 3280	1150	187	279

	Results	Activation La	boratories Ltd.	×.	Report: A19-0	08903			
STILL Analyte Symbol of Hg	Но	ln K	La	Li	Lu	Mg	Mn	Мо	Na
VOUA IS LIBIT Sumphal	ppb p	pb %	ppb	ppb	ppb	%	%	ppb	%
		0.2 0.01	3	10			0.00001	10	0.005
clay C Method Code V AR-MS	AR-MS AR-		AR-MS	AR-MS 930		AR-MS 0.090	AR-MS 0.02769	AR-MS 520 /	AR-MS < 0.005
3 D 101 K 170		0.08	2340			0.073	0.01389		< 0.005
0 102 K 290		29.0 0.09	1600	580		0.196		1190 √	< 0.005
0 103 M 80 130		2.5 < 0.01	1510	300			0.01236	450 🗸	
0 104 M 50 340		7.9 0.03	4490	1540		0.161	0.05654		0.005
0 105 M 30+80 210	the second	4.2 0.01	5270	580		0.144	0.01785	350	0.008
5) 106 * K 125-250 pm 270	66.3 9	0.13	6510	5060	17.5	0.180	0.21327	550	0.005
0 107 M 60 + 90 150	75.0	4.9 0.03	4090	1670		0.213	0.01403	500	0.006
0 108 M 50+90 120	36.6	1.9 0.01	1650	430	11.7	0.200	0.01003	680	0.006
10 109 * K 125-250 pm 270	33.8 11	0.07	2630	1460	9.6	0.078	0.04182	480	< 0.005
0 110 M 50+80 180	110.0	4.3 0.03	5820	1890	36.9	0.174	0.03514	600	< 0.005
0 111 K 300	22.0 12	26.0 0.07	1550	1180	6.2	0.142	0.04786	440	< 0.005
0 112 K 430	23.9	0.08	1930	1190	7.4	0.090	0.17316	500 H10	< 0.005
0 113 M 60 180		3.5 0.01	3620	650	29.8	0.215	0.01237	340	< 0.005
3 D 114 M 50 140	196.0	3.8 0.02	7360	3240	74.1	0.280	0.01002	330	0.009
0 115 M 60+90 150		2.8 0.01	2090	630	14.5	0.231	0.01677	450	< 0.005
0 [116 K 180		72.7 0.08	681	370	3.0	0.079	0.07407	270	< 0.005
	a 11 Dor The Contract of Contract	21.6 0.22	29300	19500	143.0	0.470	0.02910	430	0.010
MIDIRO	AND DESCRIPTION OF A DE	2.1 0.02	2140	1380	16.0	0.308	0.02533	1200	0.006
V		72.9 √ 0.11	2770	1400	8.4	0.153	0.26041 🗸	240 🗸	< 0.005
8) 5 119 K 150 5 1 120 K 260	20.7 ·	11.0 12 ⁵ 0.10 V	2410 🗸	1530	7.6	0.135 0,119	0.16379 🗸	340 🗸	< 0.005
0 121 M 50 120	the set one on the set of	3.2 0.01	3610	720	23.2	0.168	0.00709	180	< 0.005
2. D 122 K 420	and the second se	54.0 V 0.06 V	2270	1030	9.8	0.094	0.02450 🗸	710 620	< 0.005
0 123 M 35 140	23.9	6.6 √ < 0.01	1110	180	6.9	0.144	0.01160 1	530 🗸	< 0.005
0 124 M 50 220	56.0	4.6 0.02	3490	1130	16.3	0.152	0.03196	490	< 0.005
0 125 M 60+80 140	37.3	1.6 < 0.01	1920	530	11.8	0.151	0.02232	660	< 0.005
2 126 M 60+90 100	118.0	4.8 0.04	7560	2760	36.4	0.210	0.03607	610	< 0.005
0 127 M 50+80 70	36.3	0.9 0.01	1640	520	13.3	0.190	0.01191	510	< 0.005
2T 128 M TEST 7279 210	1070.0	4.6 0.01	38600 /	620	449.0	0.091	0.00129 /	320 /	0.010
60 D 129 60 % sand part of 120 80		40.5 0.04	5220	860	6.0	0.052	0.06115	130	< 0.005
130 OREAS 47 30		45.4 0.14	26600/	11400 8830	73.1	0.631 0.484	0.03143	12500 🏑	0.104 0. 0 91

	Results	Activation La	aboratories Ltd.	,	Report: A	1 9-08903 — R	EV2		
STILL Vol. / Analyte Symbol at Nb	Nd Ni	Р	Pb	Pr	Rb	Re	Sb	Se	Sm
Vol. /.	ppb ppb	%	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	5 10	0.004	5	2	20	0.2	5	10	2
Clay C Memod Code AR-MS	AR-MS AR-MS 2150 750 7780 65	AR-MS 70 0.074	AR-MS 23700 19050	AR-MS 505	AR-MS 5360	AR-MS 0.7	AR-MS 92	AR-MS 1270 3610	AR-MS 365
<i>yb i</i> (1540 5500	0.063	28800	365	4560	0.7	88	1550	270
0 102 K 134 0 103 M 80 122	1570 3160	0.037	1260	359	1000	2.4	13	1380	279
0 104 M 50 314	4110 4130 ✓	0.072	5910 450°	998	2500	1.1	26	2140 1695	730
0 105 M 30 + 80 203	4450 4110	0.040	1430	1090	940	0.9	24	1040	713
5 106 * K 125-250 um 683	5480 8920	0.092	45200	1380	49400	0.3	90	1100	825
0 107 M 60 + 90 301	4010 5040	0.035	2180	964	2620	0.8	22	2010	656
0 108 M 50+90 128	1720 3720	0.029	1220	396	860	1.0	13	850	277
10 109 * K 125-250 Jum 246	2340 5300	0.064	38400	593	6560	0.5	103	1180	411
0 110 M 50 + 80 316	5460 5800	0.060	1630	1310	2960	1.0	24	900	890
0 111 K 140	1400 4640	0.067	24600	354	4150	0.4	73	1220	244
0 112 K 186	1790 6540 58	0.100	43400 35000	425	7810	0.6	113	1350	302
p 113 M 60 293	3550 6110	0.027	2170	838	1120	0.8	35	2400	598
3 D 114 M 50 382	8090 6380	0.077	1620	1870	1880	3.5	8	1380	1440
0 115 M 60+90 160	2020 3930	0.028	1550	486	1060	0.8	26	970	374
0 116 K 57	735 3170	ş	15200	168	2900	< 0.2	180	280	116
2 2 117 MC 20 V. sticky 1410	24700 21600	0.107	8040	6220	21100	2.0	50	4100	4070
0 118 M 60+80 246	2180 6830	0.045	1590	528	2630	2.5	18	1210	422
8 DT 119 K 216	2170 5930 🗸	0.105	19700 15950	552	10100	0.6	52	930 1535	331
5 D 120 K 210	1970 6340 🗸	0.100 🗸	31200 🗸	493	9470	0.3	72	1110	335
0 121 M 50 252	3400 6610	0.032	1900	797	1290	0.7	22	1810	623
2 D 122 K 201√	2240 93 ³⁰ 12800 8	0.085 ~	55400 65900 51200	517	4130	0.6	154	7310_3350 7150	366
0 123 M 35 96	1090 3000 🗸	0.033	5000 4440	252	810	1.9	38	750 1966	193
0 124 M 50 200	3030 2600	0.057	4700	748	1950	1.0	28	1130	526
0 125 M 60+80 148	1810 3410	0.031	1890	428	800	1.3	25	1750	319
0 126 M 60+90 434	6760 5960	0.061	3690	1670	5060	1.3	20	1350	1070
0 127 M 50+80 139	1700 3780	0.031	989 2600	392	1350	1.5	16	860	304
2 T 128 M. TEST 7279 238	43900 40500 🗸	0.079	33600 21	10100	1120	7.2	34	7390	7520
60 D 129 60% sand part of 120 173	4310 2510	0.030	13300	1120	4120	0.2	25	290	626
130 DREAS 47 334	20700 82900 / Vs. 17800	0.052 🧹	343000 284000	5360 /	8820 7130	0.7	24 ,	1650	3040

x

		Results		Activation La	boratories Lto	I.	Report:	A19-08903 - R.	EV2		
STILL	Sn	Sr	Та	Tb	Те	Th	Ti	TI	Tm	U	V
Vol. 1. Analyte Symbol at Sand D Unit Symbol Com	ppb	ppb	ppb	ppb	ppb	ppb	%	ppb	dqq	ppb	ppb
silt T Detection Limit	30	50	1	2	5	1	0.15	0.5	0.1	0.5	20
	R-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
3 D 101 K	880 450	13500	31	29	18	335 199	< 0.15	79.9	8.7	105.0 85	3920 🗸
0 102 K	770	11800	36	23	14	236	< 0.15	60.7	6.7	85.7	2420
0 103 M 80	40	47200	31	31	12	292	< 0.15	42.4	11.6	167.0	2980
D 104 M 50	240 130	43500	19	78	28	876 427	< 0.15	60.6	28.2	912.0 🗸	5130
0 105 M 30 + 80	40	54000	31	74	8	812	< 0.15	31.5	27.1	312.0	5910
5 J 106 K K 125-250 µm	1170	25000	7	74	29	464	< 0.15	158.0	20.5	214.0	11200
0 107 M 60+90	90	73400	23	75	13	1050	< 0.15	48.3	28.1	2840.0	4910
0 108 M 50+90	50	105000	26	34	8	551	< 0.15	27.0	11.5	244.0	2560
0 D 109 * K 125-250 Mm	1230	16600	14	34	17	272	< 0.15	57.9	11.0	137.0	4190
0 110 M 50+80	90	50900	17	100	9	886	< 0.15	40.4	36.8	266.0	6120
0 111 K	640	43300	16	23	21	297	< 0.15	52.7	8.2	86.5	2730
0 112 K	1220	18400	5	28	22	224	< 0.15	133.0	7.8	96.0	4580
0 113 M 60	100	74000	25	71	8	1240	< 0.15	39.4	28.7	707.0	5910
3) 114 M 50	50	65500	19	162	6	788	< 0.15	48.0	70.6	823.0	9950
0 115 M 60+90	60	72800	19	39	12	690	< 0.15	34.1	16.2	211.0	3590
0 1116 K	410	19200	8	11	53	206	< 0.15	29.9	2.6	46.7	1650
22 117 MC 20 V. stick	y 590	54200	5	408	30	3660	< 0.15	165.0	148.0	3160.0	22600
0 118 M 60 +80	60	54400	13	45	7	725	< 0.15	49.7	18.4	14700.0	3730
8DT 119 K	570 170	63600	3	27	19	198 89	< 0.15	107.0	7.8	92.2 72	3670 -
5 J 120 K	780	48600	3	30	23	295 127	< 0.15	110.0 🖌	7.4	93.4 🗸	4710 3600
0 121 M 50	90	62600	21	65	8	1060	< 0.15	41.4	26.2	322.0	5960
2 D 122 K	1930 820-	23500 ~	11	34	27 🗸	225 104	✓ < 0.15	134.0 🗸	10.8	121.0, 10'	4230
0 123 M 35	110 010	61000	16	22	17	196 142	< 0.15	32.5	8.1	118.0 🗸	2220
0 124 M 50	150	42300	12	57	10	660	< 0.15	40.3	19.9	197.0	5040
0 125 M 60+80	40	54000	17	35	5	574	< 0.15	25.8	13.7	152.0	3720
0 126 M 60+90	140	41700	12	110	13	817	< 0.15	55.6	38.1	323.0	8960
0 127 M 50 + 80	40	55100	16	35	7	598	< 0.15	30.0	11.3	130.0	2550
128 M-TEST 7279	100 🗸	46500	18	858	19	623	< 0.15	83.1	397.0	2210.0 ✓	5580
129 60 go sand part of 12	0 360	16800	4	43	10	1480	< 0.15	49.4	7.3	191.0	2300
130 OREAS 47	2650	47300	< 1	244 /	15	3210	< 0.15	85.0	84.2	482.0	24700

X

STILL			Results		Activation La	aboratories L	td.	19-08903	-REV2
Vol. % Analyte Sy		W	Y	Yb	Zn	Zr	Au	Pt	
sand D Unit Symb	ol cm	ppb	ppb	ppb	ppb	ppb	ACT ppb	ppb	INORGANIC TOP AT
silt T Detection clay C Method C		5 AR-MS	4 AR-MS	3	100	20	N.A. 0.2 ALS	0.2	cm
3 D 101 K	ode	241	698	AR-MS 69	136 127000 V	AR-MS 750	↓ AR-MS ↓ (27.1) [0,2]	AR-MS 2 1.8	
0 102 K		199	547	45	104000	880	17.8 16.4	2 1.8	10 fine sand, leached on bron
0 103	M 80	37	986	97	15400	1850	0.7 -	2 0.6	10 coarse wet sand
0 104	MSO	45 J	2150	208	16200 /	4804 3150	0.9 0.8	1 0.4	>100 60 clay
0 105	M 30+80	35	2300	213	18000	4960	1.0	0.4	5
	125-250 jum	140	1760	159	120000	1380	22.8 29.8	and the second sec	> 100
0 107	M 60+90	34	2040	195	25900	6100	2.0	0.8	8 silt
0 108	M 50+90	24	940	85	10900	2990	Đ 1.1	0.7	> 100
10 D 109 * K	125-250 pm	217	860	73	69700	670	26.0 6		10 sand, leached 5 cm on bri
0 110	M 50+80	29	2940	248	36600	5140	0.8	0.5	
0 111 K	ter me ha an an an an an an an an an	411	618	52	145000	1350	18.6	0.7	>100
0 112 K		274	671	59	163000 151000	460	5, 3	0.7	> 30 clay
0 113	M 60	24	2210	202	29600	8040	⊕ 1.3	1.4	10 clay
30 114	M 50	436	5550	546	54600	4620	1.1	0.4	80 gray clay
J 115	M 60+90	21	1170	113	22100	4120	1.1	0.8	60 clay
0 116 K		207	321	28	132000	650	8.3 V DUPL	1.2	> 100
22 117	MC 20 V. Stic	ky 63	11800	1060	34700	12800	1.7	0.8	>30 clay
0 118	M 60+80	62	1390	142	18700	4710	1.0	1.0	> 100
8 DT 119 K		119 √	706	55	342000	590 460	6.8 4.3 6	/10/00001	10 clay - clay hill
5 D 120 K		113	640 V	50	279000	580	16,6 14.0 14.2 6	1	
0 121	M 50	43	1860	177	9500	5730	2.1	1.4	10 sand 100 sand
2 D 122 K		457 290	748 🗸	81	155000 1	1040 870	35.3 47.7 27.0 0		8 sand
0 123	M 35	22 30	623	59	19900 √	1140 🗸	1.5 1.0	1 0.3	50 sand
Ú 124	M 50	32	1550	128	17800	3060	1.6	0.7	80 clay
v 125	M 60+80	25	1100	106	23000	3120	Ð 1.6	1.6	>100
0 126	M 60+90	36	3060	277	65600	4030	1.3	0.5	3100
0 127	M 50+80	13	956	101	19100	3250	0.9 - DUPL	0.8 ~	> 100
2 T 128 M	1-TEST 7279	53	35700	3070 .	116000 4	2650	2.7	1.1	
60 D 129 60%.	sand partef 121	0 124	727	52	94600	830	5.7	< 0.2	
130 DRE		60	6360	597	215000 N	7410	39.7 🗸		- SPIKED TILL STANDARD
		110	5750	500	W	6700	NS. 32.4 A.R.	VS: 25.7	A.R AQUA REGIA
					PARTICLES A		VS. 44.3 FA.	F.A. 29.2	F.A FIRE ASSAY

(O SWIALED TO REMOVE ANY SPARSE PARTICLES AND SAND-SILT.

D-SILT.

, X. . . .

			1	Results	5		Activa	ation La	aborato	ories L1	td.				TRON A19-15	757 V	ATION legeta	tion,	1 . /	' r n
Analyte Symbol	Au	Ag	As	Ba	Br	Ca	Со	Cr	Cs	Fe	Hg	Hf	lr	K	Мо	Na	Ni	Rb	Sb	Sc
Unit Symbol	ppb	ppm	ppm	ppm	ppm 0.01	% 0.01	ppm 0,1	0.3	ppm 0.05	% 0.005	ppm 0.05	ppm 0.05	ppb 0.1	% 0.01	ppm 0.05	ppm 1	ppm 2	ppm 1	ppm 0.005	0.01
Detection Limit Analysis Method	0.1 INAA	0.3 INAA	0.01 INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
Analysis Mellinu	111/1/1	11 1/ 1/1									and the same states of			1.91 (1.99) (1.19) (1.19) (1.19) (1.19) (1.19)						
8054 = 102	17.8	< 0.3	2.40	28	8.96	0.57	3.6	12.1	0.22	0.290	0.52	0.60	< 0.1	1.10	< 0.05	1920	< 2	< 1	0.300	1.23
8055 = 106	22.8	< 0.3	2.21	299	5.73	0.26	8.6	34.5	2.31	0.780	< 0.05	2.02	< 0.1	0.82	< 0.05	6190	< 2	106	0.430	3.54
8056 = 108	< 0.1	< 0.3	1.45	39	32.00	2.88	1.8	6.8	< 0.05	0.500	< 0.05	0.23	< 0.1	0.83	0.15	509	< 2	5	0.030	0.83
8057 = 113	< 0.1	< 0.3	1.19	132	9.94	3.08	2.0	11.2	< 0.05	0.560	0.08	0.69	< 0.1	0.70	0.35	622	< 2	< 1	0.070	1.39
8058 = 120	16.6	< 0.3	2.17	326	8.38	1.29	6.2	15.7	0.60	0.330	< 0.05	1.24	< 0.1	0.84	< 0.05	5320	< 2	39	0.340	1.60
8059 = 125	< 0.1	< 0.3	1.90	61	15.30	2.14	2.4	10.2	< 0.05	0.330	0.14	0.24	< 0.1	0.81	< 0.05	507	< 2	< 1	0.070	0.89

			1	Results	5		Activa	tion La	aborato	ories Lt	d.					
Analyte Symbol	Se	Sr	Ta	Th	U	W	Zn	La	Ce	Nd	Sm	Eυ	Tb	Lu	Yb	Mass
Unit Symbol Detection Limit	ppm 0.1 INAA	ppm 100 INAA	ppm 0.05 INAA	ppm 0.1 INAA	ppm 0.01 INAA	ppm 0.05 INAA	ppm 2 INAA	ppm 0.01 INAA	ppm 0.1 INAA	ppm 0.3 INAA	ppm 0.001 INAA	ppm 0.05 INAA	ppm 0.1 INAA	ppm 0.001 INAA	ppm 0.005 INAA	g INAA
Analysis Method	INAA	INAA	INAA	INAA												
8054 = 102	< 0.1	< 100	< 0.05	0.9	< 0.01	< 0.05	101	2.65	4.6	< 0.3	0.487	0.09	< 0.1	0.020	0.210	2.43
8055 = 106	< 0.1	< 100	< 0.05	2.7	0.33	< 0.05	81	9.39	15.9	9.6	1.370	0.28	< 0.1	0.040	0.560	3.18
8056 = 108	< 0.1	< 100	< 0.05	1.0	0.34	< 0.05	< 2	2.82	6.1	12.0	0.511	< 0.05	< 0.1	0.030	0.250	2.96
8057 = 113	< 0.1	< 100	< 0.05	2.0	0.66	< 0.05	27	5.11	8.3	5.6	0.932	0.15	< 0.1	0.050	0.450	3.74
8058 = 120	< 0.1	< 100	< 0.05	1.4	< 0.01	< 0.05	242	4.40	7.6	5.1	0.666	0.22	< 0.1	0.030	0.280	2.91
8059 = 125	< 0.1	< 100	< 0.05	1.0	0.39	< 0.05	< 2	3.06	5.7	3.7	0.487	< 0.05	< 0.1	0.010	0.240	2.64

RERUN TES	TS			Results	5		Activa	ation La	borato	ries Lt	d.		R	eport: /	A 19-15 5	58 (ULTRA	TRACE	2-Aa	UA REGIA
Analyte Symbol	Li	Be	В	Na	Mg	Al	Р	S	ĸ	Ca	۷	Cr	🔰 Ti	Mn	Fe	Co	(Ni)	Cu	Zn	Ga
Unit Symbol	ppm	ppm	ppm	%	%	%	%	%	%	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.1	0.1	1	0.001	0.01	0.01	0.001	0.001	0.01	0.01	1	1	0.01	1	0.01	0.1	0.1	0.2	0.1	0.02
Analysis Method	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-ICP	AR-ICP	AR-MS	AR-MS	AR-MS	AR-MS	AR-ICP	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
938 OREAS 47	10.2	J 0.2	√ 2	0.131	0.59	/ 1.13	0.057	0.047	0.14	0.84	~ 37	25 41	30 0.13	329	2.01	47.7	78.7	156.0	/ 241.0	213 3.43 /
939 = 101	1.0	< 0.1	3	0.019	0.08	0.22	0.095	0.136	0.08	0.30	6	9	₽↓ < 0.01	256	0.33	1.4	J 7.5	J 80.4	J 136.0	√ 0.70
940 = 112	1.0	< 0.1	4	0.014	0.08	0.20	0.122	0.163	0.08	0.62			s ₁ < 0.01	1530	0.39	2.0,	J 5.8	√ 69.2	J 163.0	√ 0.65

ì

ppm 0.1	ppm 0.1	ppm 0.1	ppm 0,1	ppm	ppm	ppm	ppm	ppm	ppm	000	0000				nnm	C C CC	onm	nom	mm
	0.1	0.1	01	O F					ppin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppmj
			0.1	0.5	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.01	0.002	0.01	0.02	0.05
R-MS A	AR-MS /	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
< 0.1	8.7 ,	0.2	7.3	v 47.9	3 7.26	5 8.9	6.7 4.8	3 5.0	• 2.1	1.3	0.2	J 0.7	< 0.1	0.9	13.40	✓ 0.104	0.51	√ 0.04	4 √ 2.96
< 0.1	2.5 •	1.0	4.3	12.2	0.72	0.9	0.5	0.4	0.2	2 0.1	< 0.1	< 0.1	< 0.1	0.3	0.37	0.185	1.53	5 0.14	4 0.65
< 0.1	3.4 🖌	/ 1.1	5.9	16.1	0.57	0.6	0.4	0.4	0.2	2 0.1	< 0.1	< 0.1	< 0.1	0.2	0.41	0.285	1.03	0.19	0.93
	< 0.1 < 0.1	< 0.1 8.7 < 0.1 2.5	< 0.1 8.7 \ 0.2 < 0.1 2.5 \ 1.0	< 0.1 8.7 v 0.2 7.3 < 0.1 2.5 v 1.0 4.3	< 0.1 8.7 v 0.2 7.3 v 47.9 < 0.1 2.5 v 1.0 4.3 12.2	<0.1 8.7 v 0.2 7.3 v 47.9 3 7.26 <0.1 2.5 v 1.0 4.3 12.2 0.72	<0.1 8.7 v 0.2 7.3 v 47.9 3 7.26 5 8.9 <0.1 2.5 v 1.0 4.3 12.2 0.72 0.9	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1.7 4.8 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1.7 4.8 3 5.0 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 ³ 7.26 ⁵ 8.9 ^{1/2} 4.8 ³ 5.0 \checkmark 2.5 \checkmark 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1.7 4.8 3 5.0 \checkmark 2.1 \checkmark 1.3 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1.7 4.8 3 5.0 \checkmark 2.1 \checkmark 1.3 0.2 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 $\stackrel{5}{}$ 8.9 $\stackrel{1}{} \stackrel{7}{} \stackrel{7}{}$ 4.8 $\stackrel{3}{}$ 5.0 \checkmark 2.1 \checkmark 1.3 0.2 \checkmark 0.7 0.7 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 ³ 7.26 ⁵ 8.9 ¹ 4.8 ³ 5.0 \checkmark 2.1 \checkmark 1.3 0.2 \checkmark 0.7 < 0.1 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1 4.8 3 5.0 \checkmark 2.1 \checkmark 1.3 0.2 \checkmark 0.7 < 0.1 0.9 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.3	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 3 7.26 5 8.9 1 4.8 $5.0 {\checkmark}$ 2.1 \checkmark 1.3 0.2 \checkmark 0.7 < 0.1 0.9 13.40 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1 0.3 0.37	< 0.1 8.7 \downarrow 0.2 7.3 \checkmark 47.9 ³ 7.26 ⁵ 8.9 ^{1/2} 4.8 ³ 5.0 \checkmark 2.1 \checkmark 1.3 0.2 \checkmark 0.7 < 0.1 0.9 13.40 \checkmark 0.104 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1 0.3 0.37 0.185	< 0.1 8.7 \downarrow 0.2 7.3 \downarrow 47.9 3 7.26 5 8.9 1.7 4.8 3 5.0 \bullet 2.1 \checkmark 1.3 0.2 \downarrow 0.7 < 0.1 0.9 13.40 \downarrow 0.104 \downarrow 0.51 < 0.1 2.5 \checkmark 1.0 4.3 12.2 0.72 0.9 0.5 0.4 0.2 0.1 < 0.1 < 0.1 < 0.1 0.3 0.37 0.185 1.53	< 0.1 8.7 < 0.2 7.3 $< 47.9^{3}$ 7.26 $< 8.9^{1}$ 4.8^{3} 5.0 < 2.1 < 1.3 0.2 < 0.7 < 0.1 0.9 13.40 < 0.104 < 0.51 < 0.04 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Analyte Symbol	Sb	Te	Cs	Ba	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu	Hf	Ta	W	Re	Au	T	Pb	Bi
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm
Detection Limit	0.02	0.02	0.02	0.5	0.5	0.01	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.001	0.5	0.02	0.1	0.02
Analysis Method	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
938 OREAS 47	0.390	< 0.02	1.07√	78.4	26.0	41.70	19.10 -	2.9	0.7	0.3√	0.6	√ < 0.1	0.3	< 0.05	0.1	< 0.001	28.5	0.09	256.0	0.18 /
939 = 101	0.65	0.04	0.21	32.7	1.9	3.60	1.64	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	0.3	< 0.001	4.9	0.10	18.4	0.32
940 - 112	0.63	0.02	0.31	100.0	1.6	2.98	1.37	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	0.2	< 0.001	5.3	0.13	35.0	0.41

Analyte Symbol		Th	U	Hg
Unit Symbo	1	ppm	ppm	ppb
Detection I	imit	0.1	0.1	10
Analysis Me	ethod	AR-MS	AR-MS	AR-MS
938 ORE	AS	47 / 3.3 ,	0.5	20
939 = 10	1	0.1	< 0.1	220
940 = 11	2	< 0.1	< 0.1	300

RERUN TES	TS			Results			Activa	ntion La	aborato	ories Lto	ol.		R	eport: /	A19-15	558	ULTRA	TRACE	2-A0	JA REGIA
Analyte Symbol Unit Symbol Detection Limit Analysis Method	Li ppm 0.1 AR-MS	Be ppm 0.1 AR-MS	B ppm 1 AR-MS	Na % 0.001 AR-MS	Mg % 0.01 AR-MS	AI % 0.01 AR-MS /	P % 0.001 AR-ICP	0.001 AR-ICP	K % 0.01 AR-MS	Ca % 0.01 AR-MS	V ppm 1 AR-MS	Cr ppm 1 AR-MS	Ti % 0.01 AR-ICP	Mn ppm 1 AR-MS	Fe % 0.01 AR-MS	Co ppm 0.1 AR-MS	Ni ppm 0.1 AR-MS	Cu ppm 0.2 AR-MS	Zn ppm 0.1 AR-MS	Ga ppm 0.02 AR-MS
938 OREAS 47		J 0.2		0.1310	A		0.057	0.047		an an an an Anna Anna Anna Anna Anna An	CARL CONTRACTOR CONCEPTION	25 41	1/1	*****		47.7				213 3.43
939 = 101	1.0	< 0.1	3	0.019	0.08	0.22	0.095	0.136	0.08	0.30	6		< 0.01	256					136.0	•
940 = 112	1.0	< 0.1	4	0.014	0.08	0.20	0.122	0.163	0.08	0.62	7		ر < 0.01			2.0			√ 163.0	
Analyte Symbol Unit Symbol Detection Limit Analysis Method	Ge ppm 0.1 AR-MS	As ppm 0.1 AR-MS	Se ppm 0.1 AR-MS	Rb ppm 0.1 AR-MS	Sr ppm 0.5 AR-MS	Y ppm 0.01 AR-MS			Pr ppm 0.1 AR-MS	Gd ppm 0.1 AR-MS	Dy ppm 0.1 AR-MS	Ho ppm 0.1 AR-MS	Er ppm 0.1 AR-MS	Tm ppm 0.1 AR-MS	Nb ppm 0.1 AR-MS	Mo ppm 0.01 AR-MS	Ag ppm 0.002 AR-MS	Cd ppm 0.01 AR-MS	In ppm 0.02 AR-MS	Sm ppm 0.05 AR-MS
938 OREAS 47	< 0.1	8.7	/ 0.2	7.3	· 47.9	3 7.26	5 8.9	6.7 4.8	3 5.0	2.1	J 1.3	3 0.2	2 . 0.7	7 < 0.1	0.9	13.40	0.104	4 0.5	1 🗸 0.04	1 √ 2.96
939 = 101	< 0.1	2.5	v 1.0	4.3	12.2	0.72	0.9	0.5	0.4	0.2	0.	1 < 0.1	< 0.1	ا < 0.1	0.3	0.37	0.18	5 1.53	3 0.14	4 0.65
940 = 112	< 0.1	3.4	<i>i</i> 1.1	5.9	16.1	0.57	0.6	0.4	0.4	0.2	0.	1 < 0.1	< 0.	< 0.1	0.2	2 0.41	0.28	5 1.03	3 0.19	9 0.93
Analyte Symbol	Sb	Те	Cs	Ba	La	Се	Nd	Sm	Eu	Tb	Yb	Lu	Hf	Τα	W	Re	Au	Π	Pb	Bi
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm
Detection Limit	0.02	0.02	0.02	0.5	0.5	0.01	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.001	0.5	0.02	0.1	0.02
Analysis Method	AR-MS	AR-MS	AR-MS				AR-MS	AR-MS	AR-MS			AR-MS			AR-MS	AR-MS	AK-MS	AR-MS	£	AR-MS
938 OREAS 47	0.39	< 0.02	1.07	78.4	₹ 26.0√	41.70	19.10	2.9	0.7	0.3	0.6	√ < 0.1	0.3	< 0.05	0.1,	< 0.001	28.5	, 0.09		√ 0.18√

< 0.1 < 0.1 < 0.1

0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.05

× .

18.4 2 0.32

35.0 🐝 0.41

4.9 0.10

0.13

5.3

0.3 < 0.001

0.2 < 0.001

< 0.1 < 0.05

Unit	yte Symbol Symbol ection Limit	Th ppm 0.1	U ppm 0.1	Hg ppb 10
Ana	lysis Method	AR-MS	AR-MS	AR-MS
938	OREAS	47 / 3.3	, 0.5 ,	, 20
939	= 10	0.1	< 0.1	220
940	= 112	< 0.1	< 0.1	300

0.65

0.63 0.02

0.04

0.21

32.7

0.31 100.0

1.9

1.6 2.98

3.60

1.64

1.37

0.3 < 0.1

939 = 101

940 = 112

Decayed Vegetation (K) or **Black Swamp Muck** (M), sieved <250 micron, by 1g Unashed Vegetation Analyses HNO3 and HCL, ALS Canada Ltd., VA20074895

		VA2007	4895	VA200	74895	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895
	Sample	e ME-V	EG41	ME-	VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Vol %	с. <u>.</u>	Depth	Au		Ag	A	As	В	Ba	Be	Bi
sand		Cm	ppb		ppm	%	ppm	ppm	ppm	ppm	ppm
5110	100	TESTV	0.9	V	0.017	0.16	1.34	12	38.9	0.07	0.015
3 D	101	K	10.2		0.236	0.19	2.65	4	24.3	0.03	0.285
0	104	M 50	0.8		0.058	0.46	2.70	6	57.3	0.16	0.058
8 DT	119	ĸ	4.3	SW	0.188	v 0.15	1.36	11	233.0	0.07	0.170
2 D	122	K	27.0	SW	0.376	J 0.21	3.85	4	57.8	0.05	0.486
A	123	M 35	1.0		0.022	0.18	1.25	8	47.7	0.05	0.038
60 D	131				0.044	0.15	1.24	1	20.8	0.03	0.180
		0F 109 K		C	6	IST TO REI	MOVE SAND	DOR SUT	T) OR HEAVI	ES LIKE GOL	N DUST.

SW = SWIRLED TO REMOVE SAND (D) OR SILT (T) OR HEAVIES LIKE GOLD DUST. M50 = BLACK MUCK AT SO CM DEPTH.

	VA20074895							
Sample	ME-VEG41							
	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	%	ppm	ppm	ppm	ppm	ppm	ppm	%
100 TE	ST 3.42	0.188	2.430	0.669	2.19	0.070	5.07	0.308
101 K	0.35	1.690	3.520	1.325	6.39	0.238	86.10	0.272
104	M 2.90	0.548	10.500	2.070	7.60	0.307	7.83	0.937
119 K	1.86	1.880	4.140	3.670	3.73	0.385	37.80 ,	0.185
122 K	0.51	1.450	3.650	1.340	5.17	0.252	84.50 ,	0.304
123	M 4.07	0.249	1.900	0.501	2.04	0.077	4.85	0.176
131	0.18	0.313	11.400	0.687	3.51	0.226	27.30	0.230

	v	A20074895	VA20074895						
Sample	Ð	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
		Ga	Ge	Hf	Hg	ln	ĸ	La	Li
		ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
100	TEST	0.347	0.041	0.072	0.072	<0.005	<0.01	1.160	0.1
101	к	0.602	0.069	0.024	0.242	0.175	0.08	1.670	0.6
104	M	1.165	0.036	0.124	0.296	0.010 -	0.02	4.510	0.8
119	К	0.711	0.019	0.014	0.171	0.077 .	0.10	2.220	0.9
122	κ	0.788	0.157	0.032	0.404	0.254	0.05	1.755	0.6
123	M	0.332	0.063	0.032	0.137	0.008	<0.01	0.984	0.1
131		0.750	0.019	0.027	0.112	0.074	0.03	5.050	0.8

	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895	VA20074895
Sample	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
Description	Mg	Mn	Mo	Na	Nb	Ni) Р	Pb
	%	ppm	ppm	%	ppm	ppm	%	ppm
100 TE	ST 0.186	107.0	0.50	0.013	0.129	<mark>4</mark> .11	0.019	0.71
101 K	0.072	290.0	0.53	0.006	0.194	6.57	0.086	19.05 🗸
104 r	ኅ 0.138	564.0	0.47	0.010	0.399	4.08	0.081	4.50
119 K	0.127	2550.0	0.24	0.005	0.250	5.31	0.123	15.95
122 K	0.074	256.0	0.62	0.002	0.186	8.49	0.088	51.20
123 N	0.126	121.0	0.52	0.008	0.108	2.87	0.034	4.44
131	0.038	165.0	0.25	0.003	0.262	2.41	0.031	17.75

	VA20074895								
Sample	ME-VEG41								
Description	Pd	Pt) Rb	Re	S	Sb	Sc	Se	
	ppb	ppb	ppm	ppm	%	ppm	ppm	ppm	
100 T	EST <1	✓ 2	v 0.21	0.001	0.20	0.07	0.31	1.060	
101 K	1	2	4.61	<0.001	0.15	0.27	0.30	3.610	
104	M 1	1	1.67	0.001	0.27	0.09	0.64	1.695	
119 K	<1	1	6.88	<0.001	0.17	0.15	0.16	1.535	
122 K	1	2	3.21	<0.001	0.16	0.41	0.29	7.150	
123	M <1	1	0.51	0.001	0.28	0.13	0.27	0.966	
131	<1	<1	2.67	<0.001	0.07	0.12	0.25	1.670	

	VA20074895							
Sample	ME-VEG41							
Description	n Sn	Sr	Та	Te	Th	Ti	TI	U
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
100	TEST 0.04	113.00	0.008	<0.02	0.353	0.003	0.012	0.260
101	< 0.45	11.80	0.004	0.03	0.144	0.006	0.088	0.085
104	M 0.13	45.10	0.008	0.03	0.427	0.007	0.046	0.965
119	K 0.17	63.30	0.002	0.04	0.089	0.006	0.102	0.072
122	K 0.82	19.80	0.004	0.04	0.104	0.005	0.123	0.101
123	M 0.09	59.80	0.006	0.03	0.142	0.003	0.019	0.115
131	0.35	6.59	0.001	<0.02	0.935	0.007	0.029	0.199

	VA	20074895	VA20074895	VA20074895	VA20074895	VA20074895		
Sample	e	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41		
Descripti	ion	V	W	Y	Zn	Zr		
		ppm	ppm	ppm	ppm	ppm		
100	TEST	3.09	0.02	0.831	16.5	2.88	~	BLANK FOR AU, Pt, Pd
101	К	3.83	0.30	0.558	131.5	• 0.95	-	ON 5 cm humus on leached fine sand
104	М	6.26	0.04	2.370	15.7	4.80	-	on clay at 60 cm
119	Κ	3.61	0.11	0.615	355.0	0.59	-	ON 5 cm humus on clay
122	Κ	4.13	0.29	0.631	153.0			ON 5cm humos on sand
123	Μ	2.78	0.03	0.658	17.6	- 1.14	-	ON sand at 50 cm
131		3.32	0.05	0.887	37.1	1.03	-	ox 5cm humus on leached sand

Reruns by similar vegetation method, 1 g unashed in HNO3 topped with HCl, ALS Vancouver, VA19229922.

	ME-VEG41	ME-VEG41 ME	VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE	Au	Ag	AI	As	В	Ba	Be	and the second second	Ca	Cd	Ce
DESCRIPTION	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
197 = 120	14.2	0.312	0.16	1.99	ç	2 187.0	0.0	7 0.242	2 1.44	1.705	4.390
198 = 122	35.3	0.376	0.22	3.88	5	5 59.1	0.05	5 0.462	0.50	1.500	3.820
199 OREAS 4	t7 40.9	V 0.090 V	0.70	8.80	✓ 3	58.4	0.17	0.109	0.51	0.469	41.200 /

	ME-VEG41 ME-	-VEG41 ME-	VEG41 ME	-VEG41 ME	E-VEG41 ME	-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	ĸ
DESCRIPTION	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
197 = 120	2.92	4.51	0.381	53.70	0.207	0.785	0.05	0.022	0.279	0.125	0.10
198 = 122	1.51	5.84	0.287	84.00	0.305	0.879	0.155	0.033	3 0.392		
199 OREAS	47 49.50	27.70	1.160 🗸	148.00 🗸	1.255	2.610	0.025	5 0.162	2 0.014	4 0.024	J 0.11

2	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	all of the second se	ME-VEG41
SAMPLE	La	Li	Mg	Mn	Mo	Na	Nb	Ni) Р	Pb	Pd
DESCRIPTION	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
197 = 120	2.33	1.2	2 0.119	1620.0	0.36	0.004	4 0.249	6.26	0.116	31.00	0.001
198 = 122	1.90	0.7	0.079	248.0	0.62	2 2 0.003	3 0.206	9.33	0.091	55.4	
199 OREAS	47 24.40	J 8.4	4√ 0.433	3/ 238.0	0√ 10.35	5 12' 0.060	6 0.155	5 77.20	v 0.052	√ 257.00	0.035 0.01

	ME-VEG41 ME-VE	G41 N	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
DESCRIPTION	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
197 = 120	0.003	8.16	0.001	0.16	0.17	0.24	2.640	0 0.33	53.	0.003	-0.02
198 = 122	0.031 2	3.62	0.001	0.15	0.37	0.37	7.310	0.89	22.	6 0.005	5 0.03
199 DREAS 4	7 0.020 0.000	7.22	-0.001	0.04	0.01	2.76	0.08	9 ² .0.69	2,57 28.	0.00	-0.02

	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE	Th	TI	TI	U	V	W	Y	Zŋ	Zr
DESCRIPTION	mqq	%	ppm	ppm	ppm	mqq	maa	mqq	maa
197 = 120	0.127	0.006	0.111	0.093	4.71	0.15	5 0.69	289.0	0.98
198 = 122	0.107	0.006	0.128	0.115	4.87	0.25	5 0.77	7 153.0	
199 OREAS 4	7 3.060	0.049	~ 0.078	0.423	3 <i>v</i> 22.20	0.02	2 5.45	5, 201.0	5.75 6.7

Quality Analysis ...

Actigibs

Innovative Technologies

Report No.:A19-08903-Rev2Report Date:17-Apr-20Date Submitted:09-Jul-19Your Reference:MU-2G-1

Hermann Daxl 39-630 Riverpark Road Timmins Ontario P4P 1B4 Canada

ATTN: Hermann Daxl

CERTIFICATE OF ANALYSIS

101 - 130

30 Vegetation samples were submitted for analysis. < 250 sievings of decouved vegetation submitted

ee regeranen eanipier nere e			
The following analytical packa	age(s) were requested:	Testing Date:	
2G	Unashed Vegetation ICP/MS		
	AQUA REGIA		

REPORT A19-08903-Rev2

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Note: Not enough material for reanalysis Au, Pt, Pd for 1 sample

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Onfario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Quality Analysis ...

Innovative Technologies

Report No.:	A19-15757
Report Date:	11-Dec-19
Date Submitted:	19-Nov-19
Your Reference:	DALTEX-2

Hermann Daxi 39-630 Riverpark Road Timmins Ontario P4P 1B4 Canada

ATTN: Hermann Daxi

CERTIFICATE OF ANALYSIS

8036 - 8059

24 Vial samples were submitted for analysis. Decayed vegetation sieved - 250 in medium vials

The followin	g analytical package	(s) were rea	uested:		Testing Date:
	legetation		QOP NAAG	EO (Vegetation INAA)	2019-12-03 13:51:20
		by	Neutron	Activation	double irradiation time for vials.
REPORT	A19-15757	/		,	,

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Footnote: INAA data may be suppressed due to high concentrations of some analytes.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actiabs.com ACTLABS GROUP WEBSITE www.actiabs.com Quality Analysis ...

Actilios

Innovative Technologies

Report No.:A19-15558Report Date:27-Nov-19Date Submitted:15-Nov-19Your Reference:SCOTT-KM1

Hermann Daxl 39-630 Riverpark Road Timmins Ontario P4P 1B4 Canada

SCOTT LAKES, BARTLETT TP.

ATTN: Hermann Daxl

CERTIFICATE OF ANALYSIS

901 - 945

45 Vegetation samples were submitted for analysis. decayed and sieved < 250 micron vegetation

The followi	ng analytical p	Dackage(s)	were rec	Uested:	resining baro.
UT-2-0.5g	ULTRAT	RACE	2 -	QOP AquaGeo/QOP Ultratrace-1 (Aqua Regia ICPOES/ICPMS)	2019-11-21 08:57:22
	AQUA	REGI	A -	0.5 g aliquots	

REPORT A19-15558

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Assays are recommended for values above the upper limit. The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

CERTIFIED BY:

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontaria, Canada, L9G 4V5 TELEPHONE +905 648-9611 ar +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Elitsa Hrischeva, Ph.D. Quality Control Coordinator

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HERMANN DAXL 39-630 RIVERPARK RD TIMMINS ON P4P 1B4

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 16-OCT-2019 This copy reported on 28-OCT-2019 Account: DAXHER

CERTIFICATE VA19229922

P.O. No.: WAC 5/6 < 250 jum olecayed vegetation Sievings This report is for 59 Vegetation samples submitted to our lab in Vancouver, BC, Canada on 13-SEP-2019. The following have access to data associated with this certificate: HERMANN DAXL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
VEG-MILL01	Maceration of dry plant material
TRA-21	Transfer sample
LOG-22	Sample login - Rçd w/o BarCode
	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
ME-VEG41	Vegetation - HNQ3/HCI ICPAES-ICPMS fg aliquot

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Comments: ** CORRECTED COPY for adjusting reporting units for Au, Pd, Pt and Fe **

Signature:

Saa Traxler, General Manager, North Vancouver

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HERMANN DAXL 39-630 RIVERPARK RD TIMMINS ON P4P 184

١.

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-APR-2020 Account: DAXHER

CERTIFICATE VA20074895

Project: PGE2

P.O. No.: 23.3.2020 Decayed, sieved < 250 micron, as submitted This report is for 38 Vegetation samples submitted to our lab in Vancouver, BC, Canada on 31-MAR-2020.

The following have access to data associated with this certificate:

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
WEI-21g	Received Wet Sample Wt in grams					
LOG-22	Sample login - Rcd w/o BarCode					

	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
ME-VEG41	Vegetation - HNO3/HCI ICPAES-ICPMS - UNASHED - 1 g aliquets

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Saa Traxler, General Manager, North Vancouver

Grab some dirt - find a mine

Yes, you can find a mine on one claim unit in a few days work, if there is one ! You can also qualify and prioritize your drill targets.

This lecture is not about the vast science of soil sampling, but about the very specific method of **decayed vegetation sampling that works for gold and base metals in the Timmins region.** I would not completely rule out gold, if there is none in a sample, but if there really is, it can only be from rock within 50 m horizontally. Therefore 30 chosen samples can adequately cover a claim unit in just two days. I have tested the method, which I learned during my M.Sc. studies at Queen's University (Neil O'Brian), over six gold occurrences, also zinc and copper, and perfected it to work extremely well. However, to convince yourself, try it yourself over your known zones, gold or base metals, whereby you can also test your work. If it does not work for you, tell me.

The scientific name of the **decayed vegetation** I sample is mor, which I had never heard before. I call it the **decay horizon** or **K**, because that is were most decay of organics happens. It is quite apparent in the forests around Timmins, where the humus usually rests on fine sand. On clay it may be very thin, so greater care is necessary. After brushing aside the loose debris, there is an interwoven carpet of rootlets, mold, fungi, decayed leaves and needles, from 0 to 6 cm depth, which you just grab and rip up (<u>https://youtu.be/zHgkvo@wSI@</u>). One such small handful from each of 5 - 10 dry spots within a 10 - 20 m radius make a good-size sample. Avoid sand, silt, clay, charcoal, sticks, or greens. Seeds can stay in. There usually are no insects nor worms. Rings, watches, bracelets, or necklaces must never be worn when handling any samples.

This therefore is not a so-called humus sample, because humus has two more parts below it, moder and mull, and usually contains sand, silt, or clay. Also, I have never had high values in the usually underlying white leached sand nor the enriched brown Bhorizon which other methods sample. So I am not surprised of their poor reputation. It helps to envisage the hypothesis, that metal ions tend to migrate to surface, and also are taken up by rootlets and end up in leaves. This all fits my observations. Some metals (gold, zinc, copper, nickel, chromium, manganese, molybdenum, etc.) get therefore concentrated in these organics. I had repeated samples of <1500 ppb Au above a quartz-vein that ran 17000 ppb (17 g/t), which proves also direct migration. This and other veins had a halo of 25m, <100 ppb Au, which can be attributed only to fallen leaves and needles, because the underlying swamp muck had no gold. I have proven this simple method for gold, copper, nickel, zinc, molybdenum, bismuth, cesium, arsenic. It even worked over 20 m thick clay or 60 m sand overburden.

Favorable sample spots are where water can evaporate, even some 2m wide humps, or higher ground around trees. Possibly small valley floors may be better than ridges, however, flowing groundwater may intercept and dissipate the migrating metal ions, and not allow later concentration. The center of a sample is plotted with GPS, as selected sites are preferable to systematic sampling at line pickets. No statistical treatment is required; elements occur where you find them. Notes can be limited to peculiarities to remember the location, as discoveries need further work anyway.

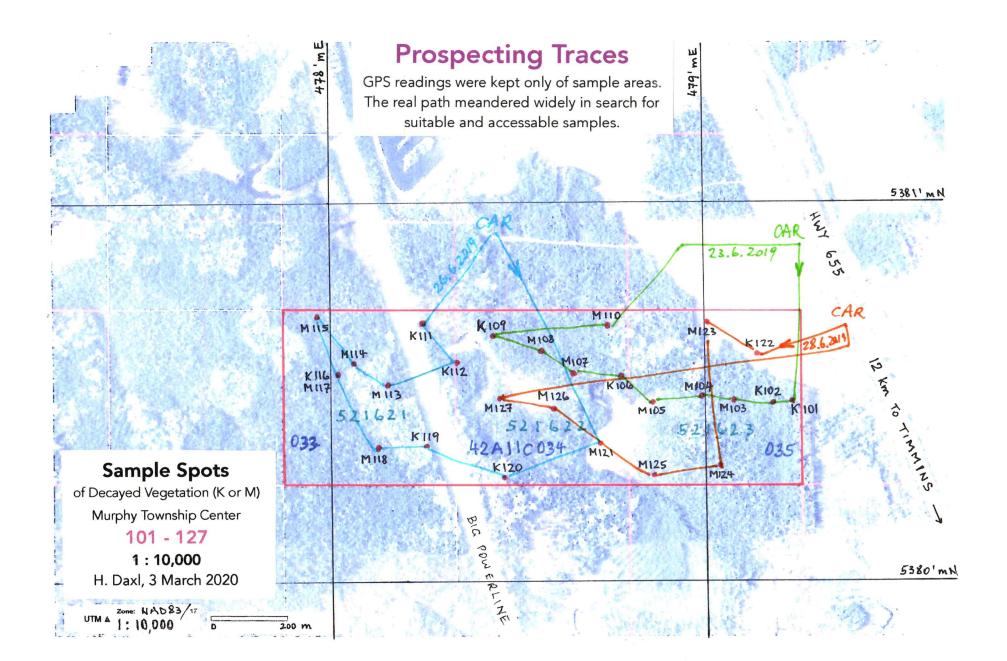
Sample preparation requires special care and is best done in-house. Even if a lab listens, and follows special instructions, you will have to live with short-cuts. So here is my method. I spread the samples without delay on paper towels on 10-inch square paper plates, which I change whenever they are getting too damp. The lower towels can be dried and re-used. This takes two days, which is less than in open paper envelopes even in a car in the sun, as air circulation is necessary. An oven would have to be less than 50 degrees Celsius, and likely is too small. Then a sample needs to be rubbed or rolled with a glass bottle in a glass bowl to loosen enough fine organics for sieving <250 micron with a 1/4 mm plastic coffee filter. This work is fine-dusty and needs to be done outside or with a good exhaust fan. Any obvious sand or charcoal must not be crushed but removed before by swirling the bowl.

After sieving, if still some sand is visible, further dry swirling in a plastic gold pan will bring the organics to the top like scum which can be skimmed off clean. The rest can be panned with water, but is pretty useless. Bracket sieving to 125-250 micron may also help to remove silt or clay, but clay dries very hard and even finely crushed it may not release the wanted organics. Maceration by a lab also needs special attention, but then how do you get the details for further adjustment in evaluation. Also coarser organics have somewhat lower values due to dilution with wood. The homogenized sievings need to be checked with a hand lens to estimate final sand and also silt content. Clay may show only as color and weight. Careful collection can usually safe such extra work.

It is also very important to homogenize the sievings by rolling and overlapping using a bent sheet of paper, like labs used to do with pulps on a mat. Tightly packed samples stay homogenized. Keep left-overs in sachets, do not shake them. Collecting a heaped double-handful of such decayed vegetation, will yield the necessary 5 - 10 g of sievings.

The only reliable analysis for gold in such samples is by neutron activation, which however is not suitable for some base metal anomalies (e.g. nickel), and does not show copper. As samples are basically organics, I use Actlabs INAA, code 2B, vegetation, but fill their medium vials (7cm3 like a pinkie finger) myself to press as much as possible into them. I submit the varying tara (vial, stopper, label) for each, and weigh also each full vial so I can check for mix-up. They report the net weight (mass) from which one also can estimate roughly, whether a sample is diluted by silt or clay. The method is usually for 15-g briquettes, so that special double irradiation time has to be ordered for vials, for which they charge extra. Sandy samples or low inorganic standards are recognized and tolerated by the lab. They use organic standards. A lab order and shipment best include warnings, "very low-grade vegetation - keep away from rock pulps". Still contamination may happen, but all values >10 ppb Au need to be investigated further anyway. For other elements in such samples I send 3 - 5 g tightly packed in sachets to Actlabs in Ancaster for Ultratrace 2 - aqua regia ICP-OES/MS, or to ALS in North Vancouver for ME-VEG41-unashed-HNO3/HCI-ICP-AES/MS which includes also platinum-palladium.

Prospecting must include swamps and swampy areas where the described decayed vegetation may not exist. I therefore bring a Dutch auger in the bush, also useful as a walking stick, a weapon against bears, and to at least occasionally probe the deeper overburden. Bedrock is sometimes near enough to be scanned with the Beep Mat.


I use the auger in swampy areas to sample the deeper dense black muck, which works well for copper, nickel, chromium, but not so well for gold, zinc, lead, manganese. Water movement may flush out elements, therefore I try for the deepest and densest muck, but stay clear above any inorganic bottom. A closed two-handful from one auger hole will do, noting the sample depth. I wrap this ball with paper towels and squeeze out the water, before letting it dry with the decay samples.

Sampling the lake bottom sludge may be the only way to explore lakes, from a canoe or best on the ice in late March - early April in just above freezing weather. A 16 cm (6 inch) diameter hand ice auger will do. A bomb will not reach the dense sludge which works well for sulfur and base metals, but I had no occasion to test it for gold yet. A soil auger with extensions may be necessary, but water is usually shallow, so a dry 5m wooden pole makes it easier with less than 4 m of water. Sludge can be 10 m thick, but I got similar values throughout. I use a strong plastic bottle with the bottom cut off and a strong insulated cable tied around near the bottom to pull on one side. I push it 1 m into the sludge, then remove the pole before pulling. The bottle will tilt and scoop up a good lump. I remove the stopper from the bottle to drain the water, then dump the lump on the snow to drain further and collect it on my return.

Decay, muck, and sludge, have different concentration levels, and must be plotted as such. I suggest to add K, M, L to the values. Sample preparation and analyses are the same for all three. Notes of consistency (woody, fibrous, grainy, sticky, smeary), crushablility, color, of M and L may be revealing.

So before you drill, do your shareholders a favor. Or before you lose a claim, grab some dirt. It takes a week to get a batch to the lab, then it takes at least 3-4 weeks to get the results for gold. A follow up again takes as much time, but a report for assessment credit is simple (see map). The best time to sample is May and October-November, like any work in the bush. In summer you raise clouds of flies from humus, and visibility for choosing sample spots may be difficult. Allow for some drying after a rain, but I doubt that seasons affects the metals. The gardening claw is in your hand now, but you can still phone me for help or advice, for set-up, organizing, or training, including field work. Hermann Daxl, M.Sc. (Minex), 705-264-4929.

Date	Field date	Lab Work	Logistics
2019			
23-Jun	collect 101-110		
24-Jun		prep samples	
26-Jun	collect 111-121		
27-Jun		prep samples	
28-Jun	collect 122-127		
29-Jun		prep samples	plot on maps
03-Jul		prep samples	
		package and ship	
05-Jul		samples	
29-Nov			evaluate sample results
2020			
25-Jan			evaluate samples to retest
06-Feb			report/maps
01-Mar			report/maps
			report/replot samples to new
03-Mar			scale
17-Apr			Report writing
18-Apr			Report writing
22-Apr			Report writing
23-Apr			Report writing
	3 days	5 days	9 days

Addendum to Assessment Work Report 3616, H. Daxl, 23 April 2020 NAD 83 GPS Coordinates for Decayed Vegetation Samples (K or M)

K-Samples are composites of 6 spots in 15 m radius plotted in the center

Sample Easting Northing

- Number 47 538
- 101 9234 0475
- 102 9180 0469
- 103 9077 0475
- 104 8998 0489
- 105 8861 0471
- 106 8786 0541
- 107 8650 0550
- 108 8569 0602
- 109 8431 0648
- 110 8746 0678
- 111 8238 0683
- 112 8337 0574
- 113 8158 0515
- 114 8065 0580
- 115 7968 0700
- 116 8019 0544
- 117 " "

118 8121 0352

119 8258 0362

120 8466 0274

121 8721 0365

122 9142 0598

123 9007 0684

124 9038 0306

125 8863 0279

126 8600 0456

127 8451 0480