

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Sudbury Integrated Nickel Operations A Glencore Company 6 Edison Road, Falconbridge Ontario POM 1S0 705 693 2761 phone

Report on the Glencore Canada Corp.

Drury Project

2019 Exploration Program

Sudbury, Ontario

Sudbury Mining Division, Ontario

WGS84 - Latitude: 46° 27' 39.71" Longitude: -81° 28' 56.58".

Sabrina Sterner, P. Geo. Sudbury Integrated Nickel Operations A Glencore Company

August 13, 2020

SUMMARY

The Drury Project is located approximately 36 kilometres west of the City of Greater Sudbury and southwest of the town of Levack. The Property is accessed by a network of drill trails off of the Fairbanks Lake Road which trends north from (paved) Highway 17 west.

The Drury Project consists of four 100% owned Glencore Canada Corp. patented claims (Table 1) including both mining and surface rights totaling 64.75 ha, located in Trill Township in the Sudbury Mining division. The middle of the Project area is at Latitude: 46° 27' 39.71" Longitude: - 81° 28' 56.58" and used DGPS for drillholes.

The West Range of the Sudbury Basin is a structurally complex area with multiple footwall panels thrusted on top of each other with the potential to host a large economic ore body. Multiple ore zones have been discovered by Vale and Glencore in this area (e.g. Trillabelle, Trillabelle Depth, Sultana, and Big Smoke), however there is a significant portion of the footwall that has not been tested due to the structural complexity. The regional AMT geophysics was used to help generate and constrain targets that could host 20Mt of both contact and footwall mineralization.

A total of 156 holes were drilled in the area between 1993 – 2012.

Glencore Canada Corp. ("Glencore") owns the Drury Project ("the Property") which formerly consists of privately owned patents within Trill and Drury Township. Sudbury Integrated Nickel Operations ("Sudbury INO"), a Glencore Company, conducted a geophysical survey and a diamond drill program on a portion of the Property in 2019. Trail construction and maintenance for the drill program started in November 2018 and was completed by William Day Construction. Drilling started in February of 2019 until end of 2019 and contracted by Foraco Canada Ltd. Physical properties surveys occurred between June and November 2019 and were completed by DGI Geoscience. Lamontagne Geophysics Ltd. performed the 4 borehole surveys between April and November 2019.

The drill program consisted of 7,643 metres in four drill holes. Three holes were designed to test a Regional AMT geophysical anomaly modelled on the footwall contact located down dip of the Big Smoke deposit, testing depths ranging from -1350 to -1850 meters vertical. One hole was designed to test a conductive UTEM geophysical anomaly.

BHEM surveys were completed on all 4 holes. T-064 did not show any conductive anomalies. T-062, T-063 and T-065 identified weak off-hole responses.

Sudbury INO personnel implemented the drilling program and logging over the course of 9 months (Feb/19 to Nov/19). All material was picked up, sumps were buried and caps were placed on all drillhole collars. The trail and drill sites will be seeded in the fall of 2020.

The AMT anomaly that was tested correlated to alteration within felsic norite likely associated to regional faulting and no significant mineralization was intersected. No follow up is required at this time.

Table of Contents

Table	of Contents	ii
1.0	Introduction	1
2.0	Property Description, Location and Access	1
3.0	Geological Setting	4
3.1	Mineralization	7
4.0	Previous Exploration	7
5.0	Exploration Program	8
5.1	Geophysics	8
5.2	Diamond Drill Program	8
6.0	Results	8
7.0	Conclusions and Recommendations1	0
8.0	References1	1

List of Tables

Table 1:	Drury Patents on Which Work was Performed	1
Table 2:	Exploration History of the Drury Project	7
Table 3:	Drury Project 2018-2019 Drill Hole Statistics	9

List of Figures

Figure 1:	Regional Location Plan of the Drury Project	2
U	Drury Project Property and Tenure Plan	
-	Regional Geology of the Sudbury Area	
U	Geology and Occurrences of Drury and Trill Township	
0	Drury Project 2018-2019 Drill Plan	

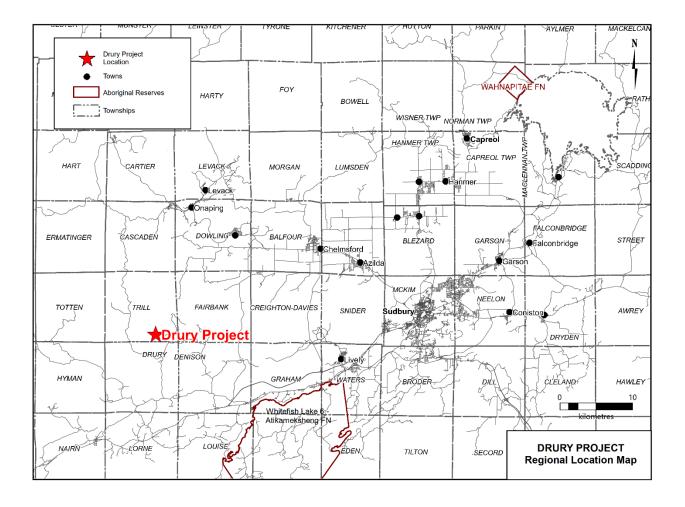
List of Appendices

Appendix I	Legends
Appendix II	Sections
Appendix III	Drill Logs
Appendix IV	Physical Properties Sections and Results
Appendix V	BHEM Results
Appendix VI	Cost Summary and Certificates

1.0 Introduction

Glencore Canada Corp. ("Glencore") owns the Drury Project ("the Property") which formerly consists of privately owned patents within Trill and Drury Township. Sudbury Integrated Nickel Operations ("Sudbury INO"), a Glencore Company, conducted an exploration program in 2019, consisting of a diamond drill program on a portion of the Property and downhole BHEM surveys starting in April 2019 until November 2019. Road preparation for the drilling started in November of 2018. Foraco Canada Ltd was contracted to carry out 7,643 metres of drilling, and this was completed by Sudbury INO between February 22nd, 2019 and November 10th, 2019. The program consisted of 4 drill holes totaling 7,643 meters, which were completed on 4 patented claims. The prime objective of the drilling was to discover new mineralization within the Sudbury Igneous Complex (SIC) contact east of known mineralization. Physical Properties was completed on 3 holes and BHEM was completed on all 4 holes. This report documents the exploration program completed in late 2018 and 2019 on the Property.

2.0 **Property Description, Location and Access**


The Drury Project is located in southeast Trill Township, approximately 36 kilometres west of the City of Greater Sudbury, Ontario (Figure 1). The Property is easily accessed from Fairbanks Lake Road, which is accessed northwards from Highway 17 West (Figure 2). There was an existing network of drilling trails however drill trails needed to be constructed to access all 4 drill holes during the drill program.

The Drury Project where drilling and geophysics was conducted consists of four 100% owned Glencore Canada Corp. patented claims (Table 1) including both mining and surface rights totaling 64.75 ha, located in Trill Township in the Sudbury Mining division. No assessment work is required to keep the patents in good standing, but any work filed for assessment will be credited towards contiguous claim cells. Figure 2 outlines the Property claims, and Table 1 documents the patents upon which exploration was performed.

The center of the Property is at WGS84 - Latitude: 46° 27' 39.71" Longitude: -81° 28' 56.58".

Table 1: Drury Patents on which work was Performed								
Patent	Parcel No.	Pin No.	Hectares	Drill hole				
PAT-42361	9167 SWS	73365-0153	16.187	T-065				
PAT-42366	9170 SWS	73365-0156	16.187	T-063				
PAT-42369	9171 SWS	73365-0157	16.187	T-064				
PAT-42368	9172 SWS	73365-0158	16.187	T-062				

 Table 1: Drury Patents on Which Work was Performed

Figure 1: Regional Location Plan of the Drury Project

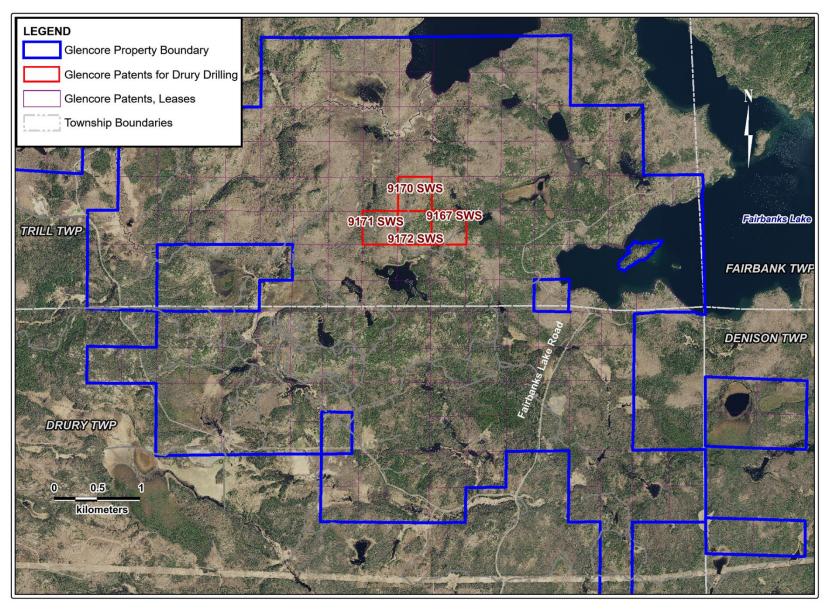


Figure 2: Drury Project Property and Tenure Plan

3.0 Geological Setting

The magmatic Ni-Cu-PGE deposits hosted by the Sudbury structure constitute one of the largest Ni-Cu districts in the world. The three main components of the elliptical-shaped Sudbury structure are: the Sudbury Igneous Complex (SIC), the Whitewater Group of the Sudbury basin, and Sudbury breccia. The SIC is interpreted to have formed by a 1.85 Ga meteorite impact, which resulted in fracturing of the crust and generating a melt sheet that filled the basin. The SIC is directly bounded by two major geological provinces. The Archean Superior Province is located to the North and the Proterozoic Southern Province is located to the South. The Sudbury basin is situated Northeast of the Grenville Province.

The Drury parcels are located in the southwest portion of the Sudbury Igneous Complex (SIC) which is also referred to as the West Range (Figure 3). The geology consists of typical SIC stratigraphy such as Granophyre (GRPH), Transition Zone (TRZN), Felsic Norite (FNOR), Mafic Norite (MNOR), Sublayer Norite (SLN) and minor Late Granite Breccia (LGBX). Multiple ore zones have been discovered by Vale and Glencore in this area (e.g. Trillabelle, Trillabelle Depth, Sultana, and Big Smoke). The Trillabelle and Sultana Embayments are situated in two major thickenings of Sublayer exposed at surface. The sequence is strongly disrupted by northwest verging thrust faults and also cut by later steeply dipping east-west shears. Due to the structural complexity, a significant portion of the footwall has not been tested prior to the current drill program.

The study area is situated roughly 2 kilometers east down-dip of known mineralization with very limited drillhole data. The lithology can be divided into four main units: Granophyre, Transition Zone, Felsic Norite and Onaping Formation. There is also minor Late Granite Breccia at the SIC contact. The area is disrupted by the northeast striking Cameron Creek Fault and the newly discovered Sultana Splay Fault. Both faults dip to the South. The footwall in this area is crosscut by the Sultana Splay fault and the stratigraphy starts back in the Onaping Formation (Figure 4).

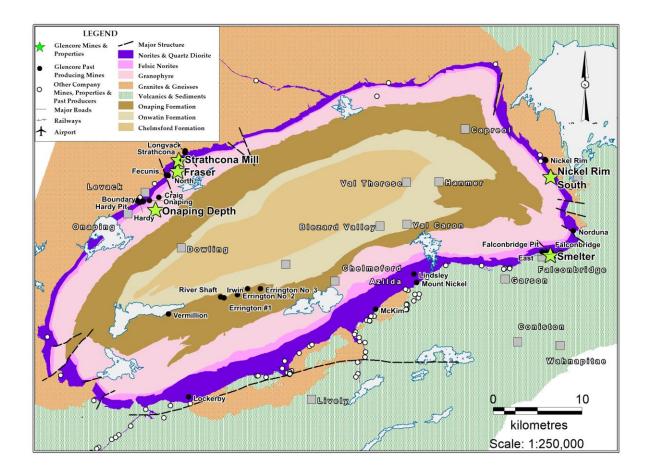


Figure 3: Regional Geology of the Sudbury Area

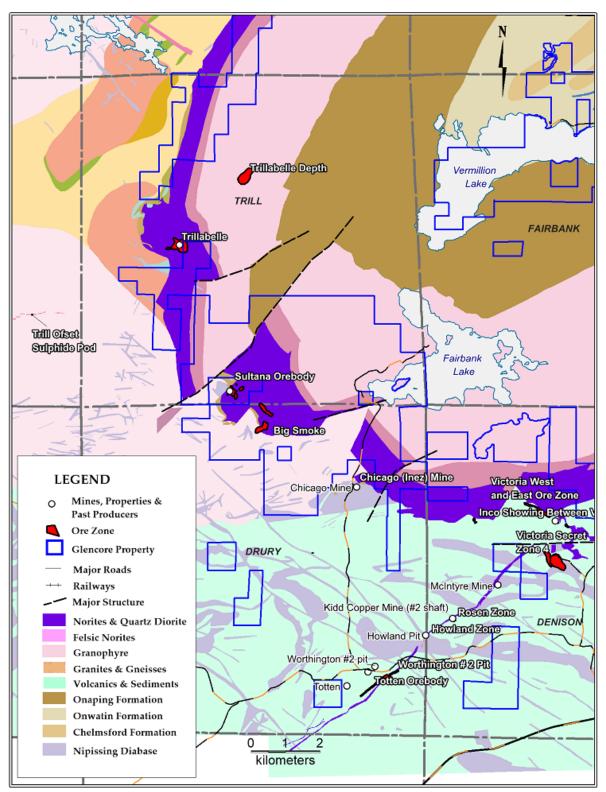


Figure 4: Geology and Occurrences of Drury and Trill Township

3.1 Mineralization

The 2019 Drury exploration program was designed to test a Regional AMT geophysical anomaly modelled on the footwall contact located down-dip of the Big Smoke deposit in the West Range of the Sudbury Basin. The AMT anomaly being tested shows a large contrast in resistivity, which can be correlated to either mineralization, regional faulting or a change in lithology. The location of the anomaly was favorable to host both contact and footwall styles of mineralization however based on the drilling results was most likely related to alteration within the felsic norite as no significant sulphides were intersected.

4.0 **Previous Exploration**

The exploration history of the Drury Project is presented in Table 2.

Period	Summary of Work Done
1916	7 Longyear drill holes totalling 242 metres in Trill Twp.
1935-1969	Geological mapping at scales of 1"=200', 1"=400' on various properties. Airborne and ground mag and VLF surveys on various properties, 1"=200', 1"=400'.
1930's	9 drill holes totalling 902.2 metres in Trill Twp.
1950's	12 drill holes totalling 2,890.4 metres in Trill Twp.
1960's	17 drill holes totalling 9,276.2 metres in Trill Twp.
1955-1974	Diamond drilling, Drury Twp., 16 holes totalling 9,763m.
1987	Aerodat airborne VLF-EM and magnetometer survey (all properties).
1992	Inco Exchange (378 Drill Holes)
1993	Diamond drilling, Trillabelle area, 4 holes totalling 2,573m. Geological mapping (1:2500) Lot 9, 10, 11, Con 3, Trill Twp. Summary report, Preliminary mineral inventory
1994	Trill-Drury PN 6-227Report on the 1994 Exploration Program. Surface UTEM geophysical survey, 92 line kilometres. Diamond drilling in Sultana and Chicago areas, 9 holes totalling 5,605 metres.
1995	Report On The 1995-1996 Exploration Program, Trill - Drury Project. Surface mapping over the cut grid covering the Planor Zone and Sultana South areas. Surface stripping over the Planor, Planor South and Boundary Zones. Diamond drilling in Sultana South and Planor Zones areas, 13 holes totalling 11,090 metres with subsequent borehole EM surveys (continuation from 1004).
1996	Diamond drilling in Sultana South area, 9 holes totalling 10,394 metres with subsequent borehole EM surveys.
1997	Diamond drilling in Sultana South area, 4 holes totalling 4,877 metres with subsequent borehole EM surveys. Acquisition negotiations were begun with several landowners in the area, including; Fielding; E. B. Eddy and Klem. Ten claim units were staked.
1998	50/50 Claims, PN 297 and Drury - Inco Joint Venture, PN 298 Sudbury Basin. Total of 24 AMT sites surveyed, 50 km of line-cutting (work completed in 1999). Acquisition negotiations were completed with several landowners in the area, including; Fielding. E.B. Eddy and Klem.
2004	2004 Program of Exploration – Trill and Drury Townships.
2007	Drilled 12 holes to test a wide range of geological environments varying from the shallow near-surface contact at Sultana South and DR-114 to the deep unexplored contact of the T-035 and DR-130 areas.
2009	Drilled 18 holes totalling 14,494m.
2010	Drilled 34 holes totalling 20,122m.
2011	Drilled 31 holes totalling 20,026m.
2012	Drilled 22 holes totalling 24,538m.

 Table 2: Exploration History of the Drury Project

5.0 Exploration Program 5.1 Geophysics

The 4 borehole UTEM surveys were conducted by Lamontagne Geophysics Ltd. between the months of April of 2019 and November of 2019. The following holes were surveyed: T-062, T-063, T-064, T-065.

5.2 Diamond Drill Program

Initial trail building for the drill trails, and continued maintenance of the trails was provided by William Day Construction between November 2018 and December 2019.

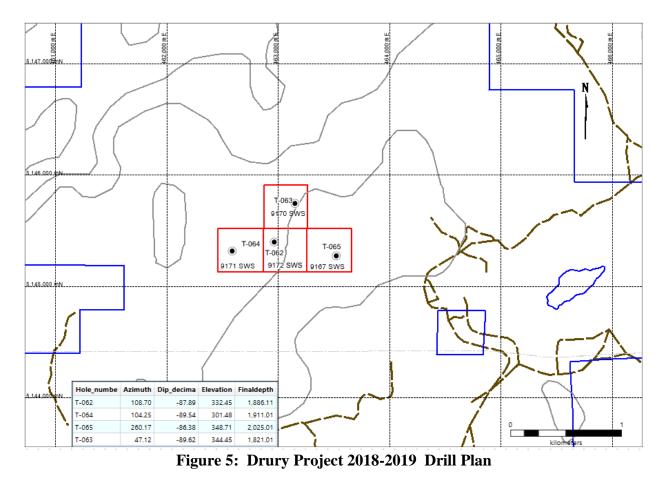
The diamond drilling was contracted to Foraco Canada of North Bay, who completed the program of four drill holes totaling 7,643 meters of NQ core between February 2019 and November 2019.

Downhole directional surveying of the drillholes was provided by Gyro Data Services Canada, from May until November of 2019.

Physical properties of the drill holes was obtained using the services of DGI Geoscience Inc., only 3 of the 4 holes had the physical properties logged.

The drill core was logged by Sudbury INO personnel – consisting of Sabrina Sterner and Andre Taillefer. Drill program assistance was provided by Sudbury INO technical staff:

- Guido Serafini, Project Management
- Sabrina Sterner, Project Management
- Andre Taillefer, Core logging
- Daniel Lacasse, Field visits
- Chris Goulet, Diamond Drill safety
- Warren Hughes, Geophysical interpretations


6.0 Results

BHEM surveys were completed on all 4 holes. T-064 did not show any conductive anomalies. Two of the holes (T-062 and T-063) identified the same low conductive off-hole response at approximately 150 S/m and roughly 600m x 600m in size. The UTEM anomaly was tested with the fourth hole (T-065) and didn't intersect any mineralization. The BHEM survey completed on T-065 identified a weak anomaly to the North and does not require additional follow-up at this time as it is located in an area that is not favorable to host economic mineralization.

The drill program consisted of four drill holes targeted on the SIC contact and footwall. The 4 drill holes tested depths ranging from -1350 to approximately -1800 meters vertical (Figure 5). Table 3 outlines the drill hole statistics. No significant mineralization was intersected in the 4 holes. The physical property logging of the holes confirmed the large resistivity contrast correlated directly with the altered Felsic Norite, likely as a result from the regional faulting. Further interpretation of the physical properties data is ongoing and will help constrain the modelling of these types of Basin wide anomalies used for target generation.

			5 5					
						Northing		
Hole No	Start Date	End Date	Azimuth	Dip	Easting_UTM	UTM	Elevation	Depth
	2019-02-	2019-05-						
T-062	22	14	108.7	-87.89	462960.8	5145417.14	332.45	1886.11
	2019-05-	2019-07-						
T-064	21	17	104.25	-89.54	462585.06	5145336.41	301.48	1911.01
	2019-08-	2019-11-						
T-065	29	10	260.17	-86.38	463520.37	5145294.39	348.71	2025.01
	2019-06-	2019-08-						
T-063	10	15	47.12	-89.62	463146.84	5145767.7	344.45	1821.01

Table 3: Drury Project 2018-2019 Drill Hole Statistics

Drill logs, cross sections, and the rock code legend are presented in Appendices I to III. The directional surveys of the drill holes are documented in the drill logs. Table 3 lists the drill holes, their locations, lengths, azimuths, and dips. The location of the drill holes is shown in Figure 5. The physical properties logs of holes T-062, T-063, and T-064 are given in Appendix IV.

7.0 Conclusions and Recommendations

The drilling program tested 4 targets in the regional AMT anomaly located in the SE part of Trill township. The regional AMT anomaly correlated to alteration within the felsic norite and no significant mineralization was intersected. The holes intersected the regional Sultana splay fault and the stratigraphy continues back in the Onaping Formation. Based on the drilling results, no further drilling is recommended in the area at this time. Further interpretation of the physical properties data is ongoing and will help constrain the modelling of these types of Basin wide anomalies used for target generation.

8.0 References

Ball, D. and Langridge, R., 1994. Logistic report on a UTEM III survey at Sudbury, Ontario for FL Ltd., Lamontagne Geophysics Ltd. report. B000688.

Clearview Geophysics, 2004: Logistics Report on Magnetics Surveys at the Drury Township Property

Cluff, G.H., 1966. Drury Township Summary. FL internal report. B000072.

Cluff, G.H., 1970. Trill Township Summary. FL internal report. B000104.

Grant, J., 2005. 2004 Geological mapping program – internal.

MacEachern, D., 1994. Report on the 1994 Exploration Program, Trill-Drury Project (6-227). FL internal report. B000692.

MacEachern, D. and Snyder, G., 1996. Report on the 1995-1996 Exploration Program, Trill-Drury Project. FL internal report. B000693.

Marshfield, S., 2008. Report on Drilling, internal company report.

Marshfield, S., 2010. Drilling Program, internal company information.

Mourre, G., 2007. Report on 2007 Drillng Program, Drury Project, internal company report.

Petch, C.A., 2004 - Trill-Drury Exploration Program PN 227, internal company report.

Poulin, R., 1992. FL Exploration Western SIC Summary: Trillabelle, Sultana, Chicago Properties. FL internal report. B000301.

Poulin, R., 1993. FL Exploration: Trillabelle, Sultana, Chicago area summary. FL internal report. B000297.

Shanks, W. S., 1992. Reconnaissance structural survey of the southwestern Sudbury structure, including parts of the Sultana-Chicago-Trillabelle properties. FL internal report B000006.

Sweeny, M., 2009 Drilling Program Report for assessment - DDH DR-165

Statement of Qualifications

I, Sabrina Sterner of 6 Edison Road, Falconbridge, Ontario POM 1S0 do hereby certify that:

- 1) I am a practising member of the Association of Professional Geoscientists of Ontario (since 2018).
- 2) I am a graduate of Laurentian University and hold an Honours Bachelor of Science (Geology) Degree, 2015.
- 3) I am a Canadian Citizen.
- 4) I have been employed as a senior field geologist by Glencore Canada Corp.

Dated this 13th day of August, 2020.

Sabrina Sterner, P.Geo.

APPENDIX I

Legends

Glencore Rock Code Legend

CODE	DESCRIPTION
APL	APLITE DIKE
CAS	CASING
DIA	DIABASE
DNBX	DARK NORITE BRECCIA
DNOR	DARK NORITE
EOH	END OF HOLE
FGN	FELSIC GNEISS
FLT	FAULT
FNOR	FELSIC NORITE
GR	GRANITE
GRPH	GRANOPHYRE
LGBX	LATE GRANITE BRECCIA
IGN	INTERMEDIATE GNEISS
MGN	MAFIC GNEISS
MNOR	MAFIC NORITE
ONAP	ONAPING FORMATION
PHYF	PYROXENE HORNFELS
SDBX	SUDBURY BRECCIA
SHR	SHEAR
SLN	SUBLAYER NORITE
SULP	SULPHIDE
TRZN	TRANSITION ZONE

Glencore Cana	da Drill Log Abbreviations/	Definitions
Abbreviation	Word/Phrase	Alternates
alt'n	alteration	altn
amph	amphibole	
assoc	associated	
b/t	between	
bio	biotite	
bkn	broken	
bx	breccia	
bx'n	brecciation	
ca	core axis	
carb	carbonate	
chl	chlorite	
comp	composition	
срх	clinopyroxene	СХ
Сру	chalcopyrite	Ср
СТ	contact	
desc	describe(d)	
diss	disseminated	dis
DTCA	degrees to core axis	DCA, tca
EP	epidote	
FF	fracture filling	ff
flt	fault	
FR	fracture	fr
frags	fragments	
FSP	feldspar	
GN	gneissic	
hem	hematite	
incip	incipient	
K	potassic	k
leuco	leucocratic	
loc'n	location	
M:F	mafic to felsic	
mins	minerals	
minz'd	mineralized	
minz'n	mineralization	
mod	moderate(ly)	
mov't	movement	
NDIA	"new" diabase	
NVS	no visible sulphides	
OD	olivine dyke	
ODIA	"old" diabase	
OGAB	"old" gabbro	
phenos	phenocrysts	

Glencore Canada Drill Log Abbreviations/Definitions					
Abbreviation	Alternates				
Pn	pentlandite				
Ро	pyrrhotite				
prev	previous(ly)				
Ру	pyrite				
remob	remobilizing,				
	remobilization				
rextall'd	recrystallized	rextallz'd			
rextall'n	recrystallization	rextallz'n			
rx'n	reaction				
SGN	sedimentary gneiss				
SS	slickenside				
Т.Т.	true thickness				
tr	trace				
W	with				
xtls	crystals	xtals			
vfg	very fine grained				
fg	fine grained				
mg	medium grained				
cg	coarse grained				
vcg	very coarse grained				

APPENDIX II

Drill Logs

Feb	05,	2020	
-----	-----	------	--

SUDBURY	
INTEGRATED NICKEL	
OPERATIONS	
* GLENCORE CONTRACTOR	

Units: METRIC

Hole Number: T-062

Project Name: Project Number: Location:	FL SURFACE 6227 Surface	Primary Coordinates Grid: U North: 5145417.14 East: 462960.81 Elev: 332.45	UTM:		Destination Coor North: 51454 East: 46296 Elev: 332.4	50.81	Collar Dip: Collar Az: Length: Start Depth:	-87.89 108.70 1,886.11 0.00
Date Started:	Feb 22, 2019	Collar Survey: Y	Plugged:	Ν	Contractor:	FORACO CANADA LTD.	Final Depth:	1,886.11
Date Completed:	May 14, 2019	Multishot Survey: Y	Hole Size:	NQ	Core Storage:	NIR		
Logged By:	Andre Taillefer, Logan Foucault	Pulse EM Survey: Y	Casing:	Left in Hole, capped				
The ho	targeting the regional 3-D AMT anomaly modelled on the ole was reduced to BQ size at 1,518m after intersecting a in hole - Section of NQ rods stuck around 1,518m.							

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	108.70			ОК	Start of T-062 gyro	10.00	112.35		G	ОК	
15.00	118.30		EZ		Mag 55893	20.00	109.71	-87.97	G	ОК	
30.00	108.76	-87.98	G	ОК		40.00	105.40	-88.01	G	ОК	
50.00	105.26	-88.07	G	ОК		60.00	100.47	-88.10	G	ОК	
69.00	102.80	-88.30	EZ		Mag 55242	70.00	99.96	-88.07	G	ОК	
80.00	98.30	-88.26	G	ОК		90.00	96.82	-88.32	G	ОК	
100.00	91.98	-88.25	G	ОК		110.00	84.38	-88.33	G	OK	
120.00	80.80	-88.40	EZ		Mag 55210	120.00	79.92	-88.21	G	ОК	
130.00	72.18	-88.26	G	ОК		140.00	68.06	-88.21	G	OK	
150.00	62.41	-88.03	G	ОК		160.00	58.21	-87.96	G	OK	
170.00	57.53	-88.06	G	OK		171.00	58.80	-88.30	EZ		Mag 55144
180.00	56.36	-87.98	G	OK		190.00	55.24	-87.88	G	OK	
200.00	54.88	-87.78	G	ОК		210.00	54.68	-87.71	G	OK	
220.00	54.73			ОК		230.00	54.61	-87.72	G	OK	
240.00	54.22			OK		250.00	54.21	-87.71	G	OK	
260.00	54.20			OK		270.00	53.38			OK	
280.00	53.46			OK		290.00	53.19			OK	
300.00	51.31	-87.69		OK		310.00	50.88			OK	
320.00	50.80			OK		330.00	49.62			OK	
340.00	48.54			OK		350.00	47.50			OK	
360.00	48.16		G	OK		370.00	48.23		G	OK	
380.00	47.97	-87.84		OK		390.00	47.64			OK	
400.00	48.28			OK		410.00	46.80			OK	Mag 55099
420.00	47.31	-87.95	G	OK		429.00	50.90	-88.20	EZ		Mag 55088

SUDBURY
NTEGRATED NICKEL
OPERATIONS
* GLENCORE STREEM

DETAILED LOG

Page 2 of 17

Hole Number: T-062

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
430.00	47.98	-87.98		ок		440.00	48.03	-88.01	G	ок	
450.00	48.78			ок		460.00	48.72	-87.99		OK	
470.00	47.90			ок		480.00	45.73		G	ок	
488.00	49.40	-88.10	EZ		Mag 55230	490.00	43.16	-87.85	G	ок	
500.00	40.58	-87.92	G	ок		510.00	42.55	-88.03	G	ок	
520.00	43.56	-87.96	G	ок		530.00	41.39	-87.89	G	ок	
531.00	44.20	-88.00	EZ		Mag 55017	540.00	39.29	-87.92	G	ок	
550.00	35.18	-87.61	G	ок		560.00	32.21	-87.47	G	ок	
570.00	30.89	-87.44	G	ОК		580.00	32.05	-87.52	G	ОК	
582.00	32.60	-88.40	EZ		Mag 54775	590.00	32.60	-87.40	G	ОК	
600.00	31.53	-87.35	G	ОК		610.00	32.31	-87.36	G	ОК	
620.00	31.21	-87.34	G	ОК		630.00	31.29	-87.33	G	ОК	
633.00	23.30	-87.40	EZ		Mag 54679	640.00	30.30	-87.33	G	ОК	
650.00	28.91	-87.38		ОК		660.00	28.52	-87.29		ОК	
670.00	27.46	-87.32		ОК		680.00	27.50	-87.28		ОК	
684.00	25.90	-87.50			Mag 55044	690.00	26.64	-87.25	G	ОК	
700.00	27.93		ł	ОК		710.00	28.37	-87.37		ОК	
720.00	28.42			ОК		730.00	29.35	-87.22		ОК	
735.00	31.30	ł			Mag 54454	740.00	28.98	-87.26		ОК	
750.00	29.28		G	ОК		760.00	27.20	-87.16		ОК	
770.00	28.24		-	ОК		780.00	28.79	-87.20		ОК	
786.00	30.70				Mag 54140	790.00	28.39	-87.26		ОК	
800.00	29.00			ОК		810.00	28.06	-87.33		ОК	
820.00	26.54			ОК	No. 55450	830.00	26.18	-87.34	G	ОК	
837.00		ł			Mag 55458	840.00	24.54	-87.28		ОК	
850.00				OK		860.00	24.39	-87.30		ОК	
870.00				ОК	Max 555.44	880.00	26.42		G	OK	
888.00		ł			Mag 55541	890.00	24.99	-87.23		OK	
900.00			G	ок ок		910.00	24.17	-87.19		ОК ОК	
920.00					Mag 55503	930.00	24.03	-87.12		OK OK	
939.00	28.90			ок		940.00	24.14	-87.09 -87.21		OK OK	
950.00	24.46 25.21	-87.25		OK		960.00	23.82	-87.21		OK	
970.00				OK		980.00 990.00	26.01				Mag 55438
990.00	24.73	-87.22	G			990.00	26.40	-87.30	ΕZ		I iviay 55450

SUDBURY
NTEGRATED NICKEL
OPERATIONS
* GLENCORE concerns

DETAILED LOG

Page 3 of 17

Hole Number: T-062

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
1000.00	26.36	-87.31	G	ок		1010.00	25.17	-87.22	G	ок	
1020.00	25.06	-87.29		ок		1030.00	25.60		G	ок	
1040.00	25.25	-87.28	G	ок		1044.00	26.90		EZ		Mag 55502
1050.00	25.57	-87.47	G	ок		1060.00	24.84	-87.30	G	ок	
1070.00	25.39	-87.45	G	ок		1080.00	25.90	-87.49	G	ок	
1090.00	24.96	-87.43	G	ок		1095.00	23.30	-87.40	EZ		Mag 55755
1100.00	26.13	-87.42	G	ОК		1110.00	24.95	-87.55	G	ок	
1120.00	24.14	-87.37	G	ОК		1130.00	23.76	-87.34	G	ок	
1140.00	23.12	-87.27	G	ОК		1146.00	25.40	-87.60	EZ		Mag 55760
1150.00	21.15	-87.35	G	ОК		1160.00	21.95	-87.46	G	ОК	
1170.00	21.60	-87.33	G	ОК		1180.00	22.21	-87.45	G	ОК	
1190.00	22.26	-87.38	G	ОК		1197.00	21.00	-87.70	EZ		Mag 55715
1200.00	22.03	-87.37	G	ОК		1210.00	21.81	-87.50	G	ОК	
1220.00	22.63	-87.47	G	ОК		1230.00	22.13	-87.43	G	ОК	
1240.00	22.64	-87.51	G	ОК		1248.00	23.00	-87.50	EZ		Mag 55700
1250.00	19.91	-87.42	G	ОК		1260.00	21.67	-87.56	G	ОК	
1270.00	19.68	-87.51	G	ОК		1280.00	19.53	-87.53	G	ОК	
1290.00	18.77	-87.51	G	ОК		1299.00	19.70		EZ		Mag 55728
1300.00	18.26	-87.51	G	ОК		1310.00	17.84	-87.40	G	ОК	
1320.00	18.69	-87.45	G	ОК		1330.00	19.68	-87.43	G	ОК	
1340.00	19.52	-87.47	G	ОК		1350.00	21.79		G	ОК	
1350.00	20.70	-87.60	EZ		Mag 55933	1360.00	21.33	-87.43	G	ОК	
1370.00	20.98	-87.36	G	ОК		1380.00	21.37	-87.47	G	ОК	
1390.00	20.66	-87.45	G	ОК		1400.00	21.29	-87.51	G	ОК	
1404.00	20.50	-87.60	EZ		Mag 55870	1410.00	21.14	-87.56		OK	
1420.00	21.49	-87.61	G	ОК		1430.00	22.59		G	OK	
1440.00	22.91	-87.60	G	ОК	Max 55050	1450.00	23.50		G	OK	
1455.00	19.70	-87.70			Mag 55953	1460.00	23.84	-87.52	G	OK	
1470.00	24.47	-87.50		OK		1480.00	22.80			OK	
1490.00	23.41	-87.25	G	OK		1500.00	17.63	-87.01	G	OK	
1510.00	18.04	-86.96		OK		1520.00	22.54	-87.21	G	OK	
1530.00	22.92	-87.22	G	OK		1540.00	22.14	-87.06	G	OK	
1550.00	22.85	-87.14		OK		1560.00	20.29	-87.08	G	OK	
1570.00	18.40	-87.01	G	ОК		1580.00	18.58	-86.96	G	ОК	

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE CONTRACTOR

DETAILED LOG

Page 4 of 17

Hole Number: T-062

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
1590.00	18.00	-87.03		ок		1600.00	18.19	-86.87	G	ок	
1610.00	19.96	-86.94	G	ок		1620.00	20.90	-86.78	G	ок	
1630.00	21.42	-86.65	G	ок		1640.00	20.33	-86.58	G	ок	
1650.00	21.19	-86.44	G	ок		1660.00	20.98	-86.28	G	ок	
1670.00	21.10	-86.22	G	ок		1680.00	21.60	-86.10	G	ок	
1690.00	22.42	-86.08	G	ок		1700.00	23.18	-85.96	G	ок	
1710.00	23.62	-85.92	G	ок		1720.00	23.52	-85.88	G	ок	
1730.00	25.07	-85.91	G	ОК		1740.00	25.73	-85.89	G	ок	
1750.00	26.70	-85.93	G	ОК		1760.00	26.68	-85.88	G	ок	
1770.00	27.83	-85.87	G	ОК		1780.00	27.99	-85.90	G	ОК	
1790.00	27.85	-85.90	G	ОК		1800.00	28.44	-85.92	G	ОК	
1810.00	28.58	-85.90	G	ОК		1820.00	29.01	-85.87	G	ок	
1830.00	29.36	-85.78	G	ОК		1840.00	29.83	-85.66	G	ок	
1850.00	29.74	-85.66	G	ОК		1860.00	28.08	-85.73	G	ОК	
1870.00	28.52	-85.69	G	ОК		1875.10	29.16	-85.55	G	ОК	End of T-062 gyro

Detailed Lithology		A	ssay Data				
From To	Lithology	Sample #	From	То	Length	Ni %	Cu %
0.00 5.00	CAS, Casing						
5.00 391.00	GRPH, Granophyre						
	Unit is medium grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. No mineralization						
	Structure19.0022.00 : FLT Fault, 35.00 Deg to CASmall FLT with fine CHL mud gouge with gossany staining suggesting groundwater movement within the structure.45.0048.00 : FLT Fault, 50.00 Deg to CASmall FLT with fine HEM/gossany staining within the slips suggesting groundwater movement within the structure.72.0075.60 : FLT Fault, 35.00 Deg to CASmall FLT with fine CHL/HEM mud gouge with gossany staining suggesting groundwater movement within the structure.126.60132.00 : FLT Fault, 70.00 Deg to CARehealed FLT with 10cm of CARB infill with moderate CARB tension gashes170.00181.00 : FLT Fault, 70.00 Deg to CARehealed FLT with ~6cm of CHL/CARB infill with moderate CHL fractures and FF and CARB tension gashes. RQD 95.2095.80 : 0.00 % RQD 100.00 % CoreWeak convex disking with 1-3cm disks and incipient disking as well.						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 5 of 17

Hole Number: T-062

Detailed Lithology		A	ssay Data				
From To	Lithology	Sample #	From	То	Length	Ni %	Cu %
391.00 632.5	TRZN, Transition Zone Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. Top contact is defined by start of magnetism. No mineralization throughout exept for a small blebbs of cpy at 381m						
	Structure 436.00 - 439.00 : FLT Fault, 70.00 Deg to CA Rehealed, competent FLT with 35cm of QTZ/CARB infill with weak CARB tension gashes 574.10 - 574.20 : SHR Shear, 50.00 Deg to CA Small, compentent Carb gash, minor hem alteration 595.40 - 598.10 : SHR Shear, 70.00 Deg to CA Small section of shearing before dyke.						
632.55 659.00	 MINOR INTERVALS: Minor Interval: 511.10 - 512.70 APL, Aplite Dike Minor Interval: 598.10 - 602.80 LGBX, Late Granite Breccia Small intrusive LGBX unit with distinct contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, light grey-pinkish matrix of slight DIOR appearance. (see picture tab). FLT, Fault Large, moderate to strong FZ with 170cm of strongly sheared infill material, containing APL?/mafic/CHL/CARB with blocks/fragments of GRPH with moderate to strong CARB tension gashes throughout with moderate CHL found after the gouge. Unit is competent, but after gouge becomes blocky due to CHL fractures. Dip of FZ is at 60° tca. No mineralization. Alteration 632.55 - 659.00 :Carb Carbonate, FF Fracture Filling, S Strong RQD 654.00 - 660.00 : 29.00 % RQD 100.00 % Core 						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 6 of 17

Hole Number: T-062

etailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
659.00	837.40	TRZN, Transition Zone		•	•	•		•
		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. Moderately magnetic with 1-3% magnetite grains throughout. No economic mineralization seen.						
		Alteration						
		735.25 - 740.00 :HE Hematite, P Pervasive, M Moderate						
		735.25 - 740.00 :CHL Chlorite, FF Fracture Filling, M Moderate						
		Structure 735.25 - 736.20 : SHR Shear, 20.00 Deg to CA Small section of shearing before dyke. 739.40 - 746.00 : SHR Shear, 30.00 Deg to CA Small section of shearing after dyke.						
		MINOR INTERVALS:						
		Minor Interval: 736.20 - 739.40 DIA, Diabase						
		Dark green to blackish green pyroxenes and amphyboles with fine cream to white phenocrysts peppered throughout, fine grained, moderately magnetic with 1-3% fine disseminated magnetite throughout with sharp but irregular contacts. No mineralization						
837.40		APL, Aplite Dike						
		Homogenous, fine grained, light grey unit. Sharp contacts with the TRZN, 70tCA and 80tCA respectively. Unit is very silicious, partially bleached?						
		Structure - small <1mm carbonate filled fractures throughout						
		Alteration - Unit is possibly bleached						
		Mineralization - none observed						
		Alteration						
		837.40 - 854.55 :Carb Carbonate, FF Fracture Filling, W Weak						
		Weak carb FF, <1mm in size, discontinous, <10/meter						
		RQD						
		851.10 - 851.50 : 25.00 % RQD 100.00 % Core						
		<1cm disks, minor CHL along fractures						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE COREC

DETAILED LOG

Page 7 of 17

Hole Number: T-062

Detailed Lit	thology		A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
854.55	906.00	TRZN, Transition Zone						
		Homogenous, medium to coarse grained, grey - light pink in color. feldspar grains are tabular, px grains accicular, dark green/black in color. Small aplite dikes cross cutting the unit, sharp contacts. Lower contact with the FNOR is gradational						
		Structure - Multiple small shears <5cm across scattered across the unit. Minor competent fault, <1m in size. moderate alteration halo surrounding						
		Alteration - hematite alteration surrounding the faulted area, and weak locallized epi alt of feldspars						
		Mineralization - Minor Py assocaited with a small qtz/carb vein.						
		Alteration						
		874.00 - 886.70 :HE Hematite, P Pervasive, M Moderate						
		Moderate - Strong pervasive hematite alteration associated with a competent fault. Alteration increases towards the fault at 881.40m - 881.65m						
		881.40 - 881.65 :EP Epidote, P Pervasive, S Strong						
		Strong epi alteration of fault matrix						
		Structure						
		881.40 - 881.65 : F Fractured, 70.00 Deg to CA						
		Strong Hematite alteration of competent fault, fault contains small clasts of host rock, and intense epi alteration of matrix						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 8 of 17

Hole Number: T-062

etailed Li	thology		Assay Data						
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %	
906.00	1260.00	FNOR, Felsic Norite		1		1			
		FNOR - Homogeouns, fine-medium grained unit, light grey with occasional discoloration due to alteraiton. Cotnact with the TRZN with gradtional, and grain size reduction as well as lack of euhedral plg was used to determine the approximate area of the change. 60/40 mafic/felsic mineral composition. Minor Aplite dikes cross.							
		Entire unit has been cross cut by thin <5cm Qtz/Carb veins with a creamy/green/grey color, possbile due to alteration.							
		Weakly magnetic past 1230.50m							
		Structure - Minor zones of Qtz/Carb FF shearing, fault present with 1-2mm of gouge along fractures, see structure tab.							
		Alteration - Strong epi and moderate-strong hematite alteration associated with the fault. Carb FF present, locallized areas of weak kspar							
		Mineralization - trace Po + Py + Ccp asscociated with qtz/carb FF <1%							
		Texture							
		922.40 - 924.00 : FG Fine Grained							
		Fine grained Aplite dike							
		1025.15 - 1172.65 : HOMO Homogeneous							
		Homogenous FNOR, 60/40 mafic/felsic composition							
		906.00 - 1024.75 : HOMO Homogeneous							
		Homogenous FNOR, roughly 60/40 mafic/felsic composition							
		1024.75 - 1025.15 : FG Fine Grained Fine grained aplite dike							
		1172.65 - 1173.65 : FG Fine Grained							
		Decrease in grain size, increase in mafic composition 80/20.							
		1173.65 - 1249.50 : HOMO Homogeneous							
		Homogenous FNOR							
		1249.50 - 1250.25 : APH Aphanitic Aphanitic - fine grained dike, containing blocks of FNOR within, weak chill margins along contacts							
		Mineralization							
		973.45 - 973.65 : PO Pyrrhotite, VN Veins, 0.10% Trace Po within core of Epi vein							
		993.95 - 994.05 : PY Pyrite, VN Veins, 0.10% Trace Py associated with Qtz/Carb vein							
		995.75 - 995.85 : PY Pyrite, VN Veins, 0.10% trace Py associated with Qtz/Carb vein							
		1077.05 - 1077.10 : PO Pyrrhotite, TR Trace, 0.10%							
		Trace Po + Ccp within the shear zone							
		1104.45 - 1104.55 : CP Chalcopyrite, TR Trace, 1.00%							
		Small Ccp + Po stringers/smoke (<mm) a="" associated="" shear<="" small="" td="" with=""><td></td><td></td><td></td><td></td><td></td><td></td></mm)>							
		1104.45 - 1104.65 : PO Pyrrhotite, TR Trace, 0.25%							
		Small Po along a small shear 1118.95 - 1119.00 : PO Pyrrhotite, VN Veins, 0.10%							
		Trace vein of Py with minor Po + Ccp							

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 9 of 17

Hole Number: T-062

Detailed Lithology		Assay Data								
From To	Lithology	Sample #	From	To L	.ength	Ni %	Cu %			
	Mineralization									
	1120.70 - 1121.00 : PO Pyrrhotite, TR Trace, 0.25%									
	Trace Po within Carb FF of shear zone									
	1142.70 - 1142.75 : PY Pyrite, VN Veins, 0.25%									
	Trace Py vein									
	1155.85 - 1156.00 : PO Pyrrhotite, TR Trace, 0.25% trace Po + Py associated with Carb FF.									
	1158.00 - 1158.10 : PY Pyrite, TR Trace, 0.10%									
	Trace Py along thin <1mm veinlet									
	1169.05 - 1169.40 : PY Pyrite, VN Veins, 0.25%									
	trace Py along the contacts of Carb FF									
	Alteration									
	973.45 - 973.65 :EP Epidote, VN Vein, M Moderate									
	Small <2cm TW Epi vein, ~40tCA, with small <1mm vein of Po in the core of the vein									
	1001.75 - 1010.80 :HE Hematite, F Fracture Controlled, S Strong									
	Moderate - Strong Hem alteration associated with the fault zone. Alteration increases intensity towards the fault zone.									
	1005.00 - 1005.80 :EP Epidote, F Fracture Controlled, S Strong									
	Strong Epi/Chl alteration associated with the faulted zone.									
	1126.00 - 1134.15 :K K-Feldspar, P Pervasive, W Weak									
	Weak kspar alteration, locally moderate alteration									
	1151.55 - 1153.45 :K K-Feldspar, P Pervasive, W Weak									
	Weak-Moderate kspar alteration of felsic minerals. Locally moderate alteration									
	1173.70 - 1175.75 :K K-Feldspar, P Pervasive, W Weak									
	Weak pervasive kspar alteration									
	1188.70 - 1193.70 :K K-Feldspar, P Pervasive, W Weak									
	Very weak kspar alteration of felsic minerals									
	1215.60 - 1220.70 :Sil Silica, P Pervasive, M Moderate									
	Moderate silicious alteration and fracture filling of interval, minor brecciation present within									
	1220.70 - 1226.25 :K K-Feldspar, P Pervasive, W Weak									
	Weak - Moderate kspar alteration of felsic minerals									
	Structure									
	978.00 - 978.75 : SHR Shear, 80.00 Deg to CA									
	Moderate Qtz/Carb FF within shear zone. small rounded fragments in the center of the shear zone. Py along contact of									
	the shear. 993.00 - 997.20 : SHR Shear, 50.00 Deg to CA									
	Weak Qtz/Carb FF within shear zone, FF appear milky/grey in color. ~5/meter, continuousm <1cm in width.									
	1001.80 - 1010.80 : F Fractured, 35.00 Deg to CA									
	Fault zone, ~35tCA <2mm gouge along fracture surfaces in main fault zone. FF associated are a light grey/green milky									
	texture (altered qtz/carb?) generally 1-3cm wide, and include fragments of FNOR within. >15fractures/meter, ~10									
	veins/meter.									
	1030.25 - 1034.30 : SHR Shear, 70.00 Deg to CA									
	Weak shear with Qtz/Carb FF, minor epi alteration of FF 1034.30 - 1034.45 : SHR Shear, 60.00 Deg to CA									
	Weak sheared zone, fine grain black matrix with small <mm fragments="" td="" within<=""><td></td><td></td><td></td><td></td><td></td><td></td></mm>									

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 10 of 17

Hole Number: T-062

etailed Lithology		Assay Data								
From To	Lithology	Sample #	From	То	Length	Ni %	Cu %			
260.00 1301.55	Structure 1071.00 - 1071.55 : SHR Shear, 60.00 Deg to CA Moderate shear zone with 5 cab FF through, foliation of material win the zone is 60tCA. 1076.00 - 1077.60 : SHR Shear, 60.00 Deg to CA Moderate shear zone, with qtz/cab FF, and a light brown FF phase (unknown) Po and Ccp is associated with Qtz FF. <1% Po-Ccp 1084.70 - 1085.05 : SHR Shear, 70.00 Deg to CA Moderate shear zone, qt/cab FF, and a light brown FF phase (unknown) Po and Ccp is associated with Qtz FF. 11%.95 - 0198.05 : SHR Shear, 70.00 Deg to CA Moderate shear zone, qt/cab FF, and 0.00 Deg to CA Weak shear avon, qt/cab FF, and 0.00 Deg to CA Weak shear with minor Po-Ccp-PY 112.70 - 1185.90 : SHR Shear, 60.00 Deg to CA Weak shear zone with minky + cab FF (epi?) 115.35 - 1156.00 : SHR Shear, 60.00 Deg to CA Weak shear zone with minky + cab FF (epi?) 115.35 - 1156.00 : SHR Shear, 60.00 Deg to CA Weak shear zone with minky + cab FF (epi?) 115.35 - 1156.00 : SHR Shear, 60.00 Deg to CA Weak shear zone with minky + cab FF (epi?) 115.35 - 1156.00 : SHR Shear, 60.00 Deg to CA Weak shear with arb FF and associated pt mineralization 1215.50 - 122.00 : SHR Shear, 60.00 Deg to CA Weak shear with minor breccia and moderate silicious alteration MINOR INTERVALS: Minor Interval: 124.50 - 122.00 : SHR Shear, 60.00 Deg to CA Wink Cab FF with cab FF and associated pt mineralization 1215.50 - 122.00 : SHR Shear, 60.00 Deg to CA Weak shear with minor breccia and moderate silicious alteration MINOR INTERVALS: Minor Interval: 124.50 - 122.00 : SHR Shear, 60.00 Deg to CA, Showing weak chill margins along the contact. Contains large block (45cm) of FNOR within FNOR, Felso Sto NAI, biabase Aphantiti-fine grained diabase sharp contacts -50tCA, showing weak chill margins along the contact. Contains large block (45cm) of FNOR within FNOR, Felso Kontie									

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE COREC

DETAILED LOG

Page 11 of 17

Hole Number: T-062

Detailed Lithology			Assay Data					
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1301.55		DIA, Diabase DIA - Aphanitic, fine-grained, sharp contacts with the FNOR ~75tCA on obth contacts. Unit is blocky, RQD ~57%. Fractures within the diabase are polished, with strong chloritic slicks with minor <mm gouge.<="" of="" td=""> Structure - Blocky Mineralization - Tr <mm diabase.<="" of="" py="" spherulites(?)="" td="" within=""> Texture 1301.55 - 1304.60 : APH Aphanitic Aphanitic fine grained diabase</mm></mm>	Sample #	F10I11	10	Length	INI 70	Cu %
		Mineralization 1301.55 - 1304.60 : PY Pyrite, TR Trace, 0.10% Trace Py spherulites within Dia unit Alteration 1301.55 - 1304.60 :CHL Chlorite, F Fracture Controlled, S Strong Strong polished fracture surfaces of Diabase with Chl slicks and gouge. Structure 1301.55 - 1304.60 : BLKY Blocky, 55.00 Deg to CA Blocky core with Chl slicks/polishing on fractures						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORNER

DETAILED LOG

Page 12 of 17

Hole Number: T-062

	thology		Assay Data								
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %			
1304.60	1483.30	FNOR, Felsic Norite		•		•		•			
		FNOR - Homogenous, fine-medium grained, light grey, generally 60/40 mafic/felsic composition. Locally increasing to 70/30 mafic/felsic. Unit is cross cut by qtz/carb veins with minor chl alteration <3veins/meter. Unit is cross cut by two small diabases at 1387.50-1387.75m and 1388.80-1389.05m. Gradationally grain size decreases ~1400, 70/30 mafic/felsic composition.									
		Structure - small competent fault <5cm in width, carb FF present, multiple competent shear zones present, varying degree of shear zones and competent faults. See Structure tab									
		Alteration - weak pervasive epi alteration throughout, 1385.0m core becomes increasingly green in color, possibly due to epi/chl alteration, moderate - strong hematite alteration associated with faults									
		Mineralization - Small Po vein within a minor shear zone, vein was heavily oxidized Texture									
		1304.60 - 1387.50 : HOMO Homogeneous homogenous FNOR									
		1387.50 - 1387.75 : APH Aphanitic aphanitic diabase									
		1387.75 - 1388.80 : HOMO Homogeneous homogenous FNOR									
		1388.80 - 1389.05 : APH Aphanitic Aphanitic diabase									
		1389.05 - 1419.00 : HOMO Homogeneous homogenous FNOR									
		1419.00 - 1455.20 : HOMO Homogeneous Homogenous FNOR with a decrease in grain size, 70/30 mafic/felsic composition									
		1455.20 - 1457.50 : FLT Fault Gouge Fault zone with mod-strong hematite alteration									
		1457.50 - 1483.30 : HOMO Homogeneous Homogenous FNOR with weak alteration, fine grained									
		Mineralization									
		 1392.55 - 1392.65 : PO Pyrrhotite, VN Veins, 5.00% 5% Po vein along a qtz/carb FF, does not fully cross cut core, only a small segment was intersected. Minor Py present, cross cutting Po. 									
		Alteration 1304.60 - 1362.00 :EP Epidote, P Pervasive, W Weak									
		Very weak pervasive epi alteration									
		1377.90 - 1378.65 :K K-Feldspar, P Pervasive, M Moderate									
		Moderate potassic alteration									
		1385.00 - 1419.00 :EP Epidote, P Pervasive, W Weak									
		Weak chl/epi alteration of the core, giving the core a slight green hue 1393.00 - 1393.80 :K K-Feldspar, P Pervasive, W Weak									
		weak potassic alteration									

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 13 of 17

Hole Number: T-062

etailed Lithology		Assay Data								
From To	Lithology	Sample #	From	То	Length	Ni %	Cu %			
From To	Lithology Alteration 1408.90 - 1412.45 : K K-Feldspar, P Pervasive, W Weak Weak-moderate potassic alteration within a shear zone 1438.80 - 1440.55 : HE Hematite, P Pervasive, M Moderate Moderate hematite alteration, within the shear zone 1451.85 - 1453.20 : HE Hematite, P Pervasive, M Weak Weak hematite alteration approaching fault zone 1451.50 : 1457.50 : HE Hematite, P Pervasive, M Moderate Moderate hematite alteration approaching fault 1455.50 - 1475.00 : HE Hematite, P Pervasive, S Strong Strong hematite alteration within fault zone 1457.50 - 1475.00 : HE Hematite, P Pervasive, W Weak Very weak hematite alteration away from fault and pervasively throughout the interval Structure 1331.05 - 1331.15 : SHR Shear, 80.00 Deg to CA Moderate Carb F within completent fault 1378.10 - 1378.45 : FLT Fault, 80.00 Deg to CA Moderate zone with Po + Carb FF. 1492.65 : SHR Shear, 80.00 Deg to CA Moderate zone with Po + Carb FF. 1408.90 - 1412.45 : FLT Fault, 85.00 Deg to CA Weak shear zone with QU/Carb FF. oraying betwen 40-60tCA. Veins are continuous and <3cm in width. ~2veins/meter	Sample #	From	То	Length	Ni %	Cu %			

SUDBURY INTEGRATED NICKEL OPERATIONS

DETAILED LOG

Page 14 of 17

Hole Number: T-062

Detailed Lithology		ļ A	Assay Data				
From To	Lithology	Sample #	From	То	Length	Ni %	Cu %
	FLT, Fault Consolidated pieces of fault brecase in depth. 1496.95m ground becomes a mixture of fragments, clay and consolidated pieces of fault brecase in ground quality with increase in ground quality with increase in ground starting around 1492m. Alteration - Strong - Intense hematite alteration, graditionally increasing with depth. Primary textures of FNOR completely destoryed by the alteration starting around 1492m. Mineralization - No mineral observed Texture 1501.35 - 1583.65 : BX Brecciated FLT SX, composed of angular polymicit fragments 1492.00 - 1511.55 : FLT Fault Gouge Fault, gradation reduction in compendancy of core, destruction of primary FNOR textures. Mineralization 1501.35 - 1511.45 : PY prite, DIS Disseminated, 2.00% 2% Disseminated Py through the FLTBX zone, often associated with small stringers Alteration 1483.30 - 1499.00 :HE Hematite, P Pervasive, S Strong Strong, gradational increase in hematite alteration throughout fault zone. Sections of fault zone are completely replaced and original textures destoryed by the alteration 1501.35 - 1511.45 :CHL Chointe, P Pervasive, W Weak Weak pervasive alteration of FLTBX matrix						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE COREC

DETAILED LOG

Hole Number: T-062

Detailed Lithology			Assay Data					
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
		MINOR INTERVALS: Minor Interval: 1501.45 - 1583.65 ONAP, Onaping Formation Onaping Formation (Basal Member) Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica and fine PY occasionally seen. Texture 1566.45 - 1576.75 : BX Brecciated Fault breccia appears to be more mafic, and has an increase in gouge present along fractures. 1548.30 - 1553.60 : MG Medium Grained Medium grained section with subhedral plagioclase grains, kspar alteration and dark matrix Alteration 1548.30 - 1553.60 : K K-Feldspar, P Pervasive, M Moderate Moderate kspar alteration of plagioclase grains Structure 1560.50 - 1564.45 : SHR Shear Moderate-Strong irregular carb FF, inclusions of host rock present, ~45% of interval is carb material						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORNER

DETAILED LOG

Page 16 of 17

Hole Number: T-062

etailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1583.70	1620.10	FNOR, Felsic Norite Fairly typical FNOR with strong interstitial HEM alteration throughout, weak CHL shearing "flows" throughout as well as CARB tension gashes. Both contacts are sharp at 55° tca. Unit becomes intruded/intermixed with sheared MD towards the end of unit and as a result quite chloritic and sheared.						
		Alteration 1583.70 - 1603.25 :HE Hematite, INT Interstitial, S Strong 1603.25 - 1620.10 :CHL Chlorite, P Pervasive, M Moderate						
		Structure 1583.70 - 1603.25 : SHR Shear, 55.00 Deg to CA 1603.25 - 1620.10 : SHR Shear, 55.00 Deg to CA FNOR unit becomes intruded/intermixed with sheared MD towards the end of unit and as a result quite chloritic and sheared. RQD 1610.00 - 1628.00 : 20.00 % RQD 100.00 % Core Blocky due to low angled fractures combined with multiple consecutive higher angled fractures. MINOR INTERVALS: Minor Interval: 1603.25 - 1609.55 FLT, Fault Moderate to strongly sheared, pervasively chloritic (moderate), fine grained, with dark green to greenish black pyroxene and amphiboles, fine biotite. Sheared to 50-55° tca. Sharp contacts at 55° tca.						
		Minor Interval: 1613.65 - 1616.10 ONAP, Onaping Formation Onaping Formation (Basal Member) Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica						
1620.10	1733.40	and fine PY occasionally seen. ONAP, Onaping Formation						
		Onaping Formation (Basal Member) Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica and fine PY occasionally seen (see photos tab). Moderate CHL fractures + CARB FF dipping between 45-70°.						
		Structure 1620.10 - 1632.00 : BLKY Blocky, 55.00 Deg to CA 1666.00 - 1684.00 : BLKY Blocky, 35.00 Deg to CA Blocky due to low angled fractures combined with multiple consecutive higher angled fractures. 1714.00 - 1729.90 : FLT Fault, 45.00 Deg to CA Slightly blocky rehealed FLT zone with 5cm of CARB infill, with sections of mm thick mud gouge seams seen occasionally within the zone with weak to moderate CARB tension gashes as well. RQD 1667.00 - 1680.00 : 25.00 % RQD 100.00 % Core Blocky due to low angled fractures combined with multiple consecutive higher angled fractures.						

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE concerns

DETAILED LOG

Page 17 of 17

Hole Number: T-062

Detailed Lithology			Assay Data										
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %					
1733.40	1886.10	GRPH, Granophyre Granophyre composed of dark green to blackish green colored, medium grained matrix, with mm sized, dense, cream to orangey-pink plagioclase phenocryst. NON MAGNETIC. Unit has a slight Granodioritic appearance to it. Moderate CHL fractures dipping between 25-60° tca. Top contact is sharp, yet irregular. No mineralization seen. Structure 1734.00 - 1764.00 : BLKY Blocky, 35.00 Deg to CA Moderate to strong CHL fracturing and some weak shearing as well. 1775.45 - 1779.70 : FLT Fault, 65.00 Deg to CA Small FLT, difficult to assess with amount of redrilled, broken, blocky core, most pieces or fragments contain CHL within every face. Some minor mm thick CHL mud gouge found on some sections of broken core. 1791.00 - 1806.50 : BLKY Blocky, 40.00 Deg to CA				Longui							
1886.10		Moderate to strong CHL fracturing and some weak shearing as well. EOH, End of Hole											

Feb	05,	2020	
-----	-----	------	--

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE someway

Page 1 of 8

Units: METRIC

Hole Number: T-063

Project Name: Project Number: Location:	FL SURFACE 6227 Surface	Primary Coordinates Grid: UT North: 5145767.70 East: 463146.84 Elev: 344.45	FM:	Destination Coordinates Grid: UTM: North: 5145767.70 East: 463146.84 Elev: 344.45	Collar Dip: Collar Az: Length:	-89.62 47.12 1,821.01
Date Started: Date Completed:	Jun 10, 2019 Aug 15, 2019	Collar Survey: Y Multishot Survey: Y	Plugged: N Hole Size: NQ	Contractor: FORACO CANADA LTD.	Start Depth: Final Depth:	0.00 1,821.01
Logged By:	Sabrina Sterner, Andre Taillefer targeting the regional 3-D AMT anomaly modelled on the	Pulse EM Survey: Y	Casing: Left in Hole, capped	Core Storage: NIR		

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	47.12	-89.62	G	ОК	Start of T-063 gyro	10.00	32.70	-89.58	G	ок	
14.00	36.20	-89.80	EZ		mag 55856	20.00	3.03	-89.41	G	ок	
30.00	358.11	-89.36	G	ОК		40.00	355.44	-89.07	G	ок	
50.00	352.69	-89.05	G	ОК		60.00	353.97	-88.77	G	ок	
69.00	36.00	-88.90	EZ		mag 56333	70.00	353.82	-88.67	G	ок	
80.00	355.85	-88.55	G	ОК		90.00	357.27	-88.57	G	ок	
100.00	358.92	-88.41	G	OK		110.00	357.92	-88.36	G	ОК	
120.00	359.40	-88.41	G	ОК		123.00	359.40	-88.50	EZ		mag 56285
130.00	358.18	-88.23	G	OK		140.00	356.84	-88.15	G	ок	
150.00	356.75	-88.03	G	OK		160.00	356.30	-87.81	G	ок	
170.00	356.22	-87.69	G	OK		174.00	354.50	-87.50	EZ		mag 56225
180.00	356.61	-87.51	G	OK		190.00	357.81	-87.26	G	ок	
200.00	358.08	-87.08	G	OK		210.00	358.30	-86.92	G	ОК	
220.00	358.15	-86.83	G	OK		228.00	354.60	-86.90	EZ		mag 56286
230.00	357.99	-86.67	G	OK		240.00	358.30	-86.50	G	ОК	
250.00	357.72	-86.35	G	OK		260.00	357.19	-86.21	G	ОК	
270.00	356.74	-86.14	G	OK		279.00	354.90	-86.30	EZ		mag 57395
280.00	356.44	-86.05	G	OK		290.00	355.98	-85.92	G	ОК	
300.00	355.74	-85.84	G	OK		310.00	355.86	-85.76	G	ОК	
320.00	355.70	-85.70	G	OK		330.00	355.33	-85.64	G	ОК	
330.00		-85.90			mag 57256	340.00	354.77	-85.58		ОК	
350.00	355.06	-85.42	G	OK		360.00	356.23	-85.15	G	ок	
370.00	356.77	-84.98	G	OK		380.00	356.73	-84.87	G	ОК	
381.00	355.90	-85.10	EZ		mag 56178	390.00	356.83	-84.73	G	ОК	
400.00	356.93	-84.64	G	OK		410.00	356.67	-84.53	G	ОК	

SUDBURY
INTEGRATED NICKEL OPERATIONS
* GLENCORE STREEM

DETAILED LOG

Page 2 of 8

Hole Number: T-063

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
420.00	356.50	-84.44	G	ок		430.00	356.43	-84.36	G	OK	
432.00	355.80	-84.50	EZ		mag 56175	440.00	356.14	-84.30	G	ОК	
450.00	356.20	-84.24	G	ок		460.00	356.02	-84.18	G	OK	
470.00	355.61	-84.12	G	ок		480.00	355.59	-84.04	G	OK	
483.00	355.20	-84.20	EZ		mag 56176	490.00	355.38	-83.95	G	OK	
500.00	355.33	-83.88	G	ок		510.00	354.92	-83.79	G	OK	
520.00	354.47	-83.72	G	ок		530.00	354.47	-83.64	G	OK	
534.00	359.90	-83.70	EZ		mag 56201	540.00	354.60			OK	
550.00	354.71	-83.51	G	ОК		560.00	355.22			OK	
570.00	356.27	-83.10		ОК		580.00	358.87			OK	
585.00	358.60	-82.50			mag 55788	590.00	358.74			OK	
600.00	358.54	-82.09	G	ОК		610.00	358.71			OK	
620.00	358.77	-81.94	G	ОК		630.00	359.00			OK	
636.00	358.60	-82.10			mag 55777	640.00	359.02			OK	
650.00	358.77	-81.81	G	ОК		660.00	358.18			OK	
670.00	357.90	-81.72	G	ОК		680.00	357.53			OK	
690.00	357.18	-81.61	G	ОК		700.00	356.99			OK	
710.00	356.66	-81.51	G	OK		720.00	356.51	-81.44		OK	mag 55934
730.00	356.05	-81.36	G	OK		738.00	356.30			014	mag 55834
740.00	355.45 355.70	-81.25	G	ОК ОК		750.00	355.40			ОК ОК	
760.00 780.00	355.70 355.82	-81.05 -80.88	G G	OK		770.00 790.00	355.73 355.79			OK OK	
780.00	353.40	-80.80			mag 55675	800.00	355.20			OK	
810.00	354.56	-80.63	G	ок		820.00	354.26			OK	
830.00	354.05	-80.53	G	OK		840.00	354.08			OK	
843.00	349.60	-80.60			mag 54971	850.00	354.24			OK	
860.00	354.32	-80.56	G	ок		870.00	354.42			ОК	
880.00	354.34	-80.58	G	ОК		890.00	353.96			OK	
891.00	351.20	-81.00	EZ		mag 55669	900.00	353.97			OK	
910.00	354.01	-80.81	G	ок		920.00	354.03			OK	
930.00	353.95	-80.85	G	ок		940.00	354.06			ОК	
942.00	351.40	-81.00	EZ		mag 56019	950.00	354.21	-80.80		ОК	
960.00	354.29	-80.77	G	ок		970.00	354.50			ОК	
980.00	354.53	-80.71	G	ок		990.00	354.59	-80.69	G	ОК	

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE solectory

DETAILED LOG

Page 3 of 8

Hole Number: T-063

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
990.00	353.60	-80.70	EZ		mag 56042	1000.00	354.70	-80.64	G	ОК	
1010.00	354.90	-80.60	G	ок		1020.00	355.21	-80.51	G	ок	
1030.00	355.38	-80.44	G	ок		1040.00	355.43	-80.36	G	ок	
1050.00	355.43	-80.31	G	ок		1060.00	355.50	-80.28	G	ОК	
1070.00	355.56	-80.26	G	ОК		1080.00	356.20	-80.40	G	ОК	
1090.00	356.74	-80.43	G	ОК		1095.00	353.30	-80.50	EZ		mag 56997
1100.00	356.98	-80.35	G	ОК		1110.00	357.25	-80.28	G	ОК	
1120.00	357.62	-80.21	G	ОК		1130.00	357.83	-80.13		ОК	
1140.00	358.12	-80.13		ОК		1149.00	356.50	-80.30	EZ		mag 57016
1150.00	358.26	-80.08	G	ОК		1160.00	358.45	-80.03	G	OK	
1170.00	358.50	-79.93		ОК		1180.00	358.68			OK	
1190.00	359.22	-79.81	G	ОК		1200.00	359.70			OK	
1210.00	0.07	-79.75		ОК		1220.00	0.45			OK	
1230.00	0.56	-79.46		OK		1240.00	0.78			OK	
1250.00	0.87	-79.36		OK		1260.00	0.63			OK	
1270.00	0.13	-78.70		OK		1280.00	1.06			OK	mag 56702
1290.00	1.45	-78.47	G	OK		1298.00	359.10		-		mag 56793
1300.00	1.63	-78.31	G	OK		1310.00	2.01	-78.15		OK	
1320.00 1340.00	2.85 4.60	-78.04 -77.65	G	ок ок		1330.00 1350.00	3.67 5.40		G	ок ОК	
1340.00	4.60 4.60	-77.60		UN	mag 57055	1350.00	5.40 6.03			OK	
1370.00	7.29	-77.10		ок		1380.00	8.41	-76.90		OK	
1390.00	9.19	-76.75		OK		1400.00	9.94			OK	
1404.00	8.10	-76.80			mag 58197	1410.00	10.58		-	ОК	
1420.00	11.14	-76.59		ок		1430.00	11.81	-76.49		OK	
1440.00	12.42	-76.36		ок		1450.00	13.11	-76.25	-	ОК	
1455.00	11.30	-76.30			mag 58273	1460.00	13.97	-76.18		ОК	
1470.00	14.61	-76.12		ок		1480.00	14.93			ок	
1490.00	15.16	-76.03	G	ок		1500.00	15.77	-76.03	G	ОК	
1506.00	14.30	-76.20	EZ		mag 58151	1510.00	16.29	-75.93	G	ок	
1520.00	16.69	-76.00	G	ок		1530.00	17.02	-75.93	G	ок	
1540.00	17.24	-75.89	G	ок		1550.00	17.49	-75.77	G	ОК	
1560.00	17.80	-75.69	G	ок		1560.00	16.70	-76.00	EZ		mag 57190
1570.00	17.77	-75.66	G	ок		1580.00	17.92	-75.59	G	ОК	

SUDBURY	-
NTEGRATED NICKEL	
OPERATIONS	
* GLENCORE CONTRACTOR	

DETAILED LOG

Page 4 of 8

Hole Number: T-063

Units: METRIC

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag		С	omments		
1590.00	18.04	-75.44	G	ок		1600.00	18.20	-75.33	G	ок					
1610.00	18.35	-75.12	G	ок		1620.00	17.98	-74.95	G	ок					
1630.00	18.17	-74.80	G	ок		1640.00	18.37	-74.60	G	ок					
1650.00	18.78	-74.51	G	ок		1660.00	19.19	-74.29	G	ок					
1670.00	19.57	-74.26	G	ок		1680.00	19.71	-74.19	G	ок					
1690.00	19.79	-74.02	G	ок		1700.00	19.69	-73.82	G	ок					
1710.00	19.80	-73.70	G	ок		1720.00	19.84	-73.62	G	ок					
1730.00	19.84	-73.65	G	ок		1740.00	20.09	-73.62	G	ок					
1750.00	20.51	-73.59	G	ОК		1760.00	20.56	-73.55	G	ок					
1770.00	20.83	-73.51	G	ок		1780.00	21.03	-73.56	G	ок					
1790.00	20.90	-73.51	G	ОК		1800.00	21.10	-73.41	G	ок					
1807.00	20.63	-73.25	G	ОК	End of T-063 gyro										
etailed Li	ithology										Assay Data				
From	То				Lithology		S	ample #			From	То	Length	Ni %	Cu %
0.00	6.00	CAS, Cas	sing								•	•			
6.00	292.00	GRPH, G	ranophyr	е											
					newhat equigranular, salmon to brick red colored felsic groundmass with d creamy white plagioclase feldspars. No mineralization	dark green to									
292.00	297.00	SHR, She	ear												
		Shear defining the contact between GRPH and TRZN. Fine-Medium grained ground mass, with subhedral felsic grains, and anhedral darkgreen pyroxenes, increase in mafic minerals compared to GRPH.													
		Shearing	is defined	by Qtz/0	Carb FF, 1-3cm in width, 40-55tCA, ~3 fractures/m										
		No minera		_											
297.00	940.00	TRZN, Tr			and authorized araise is a dark are forced and the set	d falaia abaa -	m voto								
					ained, subhedral grains in a dark grey/green groundmass, with elongated Foliation is defined by mineral elongation of felsic grains, aspect ratios >4										
		1													

Mineral - Trace, fine grained subhedral Py grains throughout the TRZN.

940.00 1172.65 FNOR, Felsic Norite

FNOR - Homogeneous, fine-medium grained unit, light grey with occasional discoloration due to alteraiton. Contact with the TRZN is gradtional, and grain size reduction as well as lack of euhedral plg was used to determine the approximate area of the change. 60/40 mafic/felsic mineral composition.

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORNER

DETAILED LOG

Page 5 of 8

Hole Number: T-063

Detailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1172.65		FLT, Fault Strong FLT, difficult to assess with amount of redrilled, broken, blocky core, as most pieces or fragments contain CHL within every sides. Some minor CHL mud gouge found on some sections of broken core with the one section of combination of crumbled FNOR and mud being ~15cm . Dip of FZ appears to be 50-55° tca. RQD within the FZ is <10% with only few pieces of core greater than 10 cm intact. Unit is within FNOR. No mineralization seen.						
		1172.65 - 1187.30 :CHL Chlorite, F Fracture Controlled, S Strong 1172.65 - 1187.30 :HE Hematite, F Fracture Controlled, W Weak RQD 1172.65 - 1187.00 : 17.00 % RQD 100.00 % Core F7						
1187.30	1231.40	 FZ SHR, Shear Intense SHR within what appears to be laminated FNOR with might be thin sections of APL as well, difficult to tell due to the intensity of shearing. Dip of shearing is 50° tca. Unit is somewhat blocky with moderate CHL/HEM fractures throughout. Alteration 1187.30 - 1231.40 :CHL Chlorite, F Fracture Controlled, M Moderate 1187.30 - 1231.40 :HE Hematite, F Fracture Controlled, M Moderate 						
1231.40		FLT, Fault Large, intense FLT, difficult to assess with amount of redrilled, broken, blocky core, as most pieces or fragments contain CHL/HEM within every sides. Some small CHL mud gouge found throughout with the main gouge containing a combination of crumbled FNOR and CHL/HEM mud totaling ~3m . Dip of FZ appears to be 55-60° tca. RQD within the FZ is <10% with only few pieces of core greater than 10 cm intact. Unit is within the contact between FNOR and Onaping Breccia as previously intersected in hole T-062. No mineralization seen.						
		Alteration 1231.40 - 1258.70 :CHL Chlorite, F Fracture Controlled, S Strong 1231.40 - 1258.70 :CHL Chlorite, FF Fracture Filling, S Strong 1231.40 - 1258.70 :HE Hematite, F Fracture Controlled, S Strong 1242.65 - 1258.70 :CHL Chlorite, P Pervasive, S Strong RQD 1233.00 - 1258.70 : 20.00 % RQD 100.00 % Core						
		FZ MINOR INTERVALS: Minor Interval: 1242.65 - 1258.70 ONAP, Onaping Formation Onaping Formation (Grey Member)- Unit is choked with various sized (mm to several cm), jagged to sub-rounded fragments of several rock types (mafic, meta-sedimentary, sedimentary) within a sparse, blackish-green mafic matrix. Moderate CHL fractures + CARB FF dipping between 45-70°. No mineralization seen.						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 6 of 8

Hole Number: T-063

Detailed Lithology				Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1258.70	1272.20	ONAP, Onaping Formation		•		•		•
		Onaping Formation (Grey Member)- Unit is choked with various sized (mm to several cm), jagged to sub-rounded fragments of several rock types (mafic, meta-sedimentary, sedimentary) within a sparse, blackish-green mafic matrix. Moderate CHL fractures + CARB FF dipping between 45-70°. No mineralization seen.						
		Alteration 1258.70 - 1272.20 :CHL Chlorite, F Fracture Controlled, M Moderate						
		1258.70 - 1272.20 :CHL Chlorite, P Pervasive, M Moderate						
1272.20	1367.30	FLT, Fault						
		Large, intense FLT zone, difficult to assess with amount of redrilled, broken, blocky core, as most pieces or fragments contain CHL within every sides. Moderate shearing throughot the FZ. No real 'main' gouge seen but several variable width (mm to 5cm thick) sections of CHL mud gouge found throughout. Dip of FZ appears to be 55-60° tca. RQD within the FZ is <10% with only few pieces of core greater than 10 cm intact. Unit is within Onaping Breccia. No mineralization seen.						
		RQD 1272.20 - 1367.30 : 20.00 % RQD 100.00 % Core F7						
1367.30	1468.95	r∠ ONAP, Onaping Formation						
1001100	1100100	Onaping Formation (Grey Member)- continuation of previous ONAP unit not much change, unit becomes more competent downhole. Unit becomes silicious and less greyish towards the end of the unit. Very sharp (30° tca) and distinct contact between the two formation members. Still unmineralized.						
		Structure						
1468.95	1546.65	1445.65 - 1451.20 : FLT Fault, 45.00 Deg to CA Small weakly sheared FLT with 10cm of recemented ONAP with CHL mud seams. Weak CARB tension gashing. ONAP, Onaping Formation						
		Onaping Formation (Basal Member) - Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica and fine PY occasionally seen.						
		Structure 1534.50 - 1539.55 : FLT Fault, 50.00 Deg to CA Somewhat blocky, moderate to strongly chloritic FZ with 5cm of mud gouge as well as finer (<1cm) seams as well						
		MINOR INTERVALS:						
		Minor Interval:						
		1530.20 - 1531.50 DIKE, Dike						
		Andesite dyke - Unit is taupey-grey to pinkish grey, apanitic, matrix rich with few sparce, jagged fragments of autobrecciated andesite, quartzite, and quartz pebbles. Unit has a distinct "flow" banding to it, dipping at 35-40° tca as well as very sharp and distinct contacts at the same dip. Weak py seen throughout.						
1546.65	1556.45	DIKE, Dike						
		Andesite dyke - Unit is taupey-grey to pinkish grey, apanitic, matrix rich with few sparce, jagged fragments of autobrecciated andesite, quartzite, and quartz pebbles. Unit has a distinct "flow" banding to it, dipping at 25-30° tca as well as very sharp and distinct contacts at the same dip. No mineralization seen.						
1556.45	1576.55	ONAP, Onaping Formation						
		Onaping Formation (Basal Member) - Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica and fine py and small clasts of po occasionally seen.						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 7 of 8

Hole Number: T-063

etailed Li	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1576.55	1598.85	DIKE, Dike		•				•
1598.85	1734.60	Andesite dyke - Unit is taupey-grey to pinkish grey, apanitic, matrix rich with few sparce, jagged fragments of autobrecciated andesite, quartzite, and quartz pebbles. Unit has a distinct "flow" banding to it, dipping at 35-40° tca as well as very sharp and distinct contacts at the same dip. No mineralization seen. ONAP, Onaping Formation						
		Onaping Formation (Basal Member) - No real major changes, slight increase in po mineralization seen in FF, small clasts and disseminated blebbs, but still nothing of great significance.						
		Structure 1718.70 - 1722.20 : FLT Fault, 55.00 Deg to CA Small competent, rehealed FLT with 7cm of CARB infill gouge and weak carb tension gashes. 1729.50 - 1734.60 : FLT Fault, 45.00 Deg to CA Somewhat blocky, rehealed FLT with ~3cm of CARB infill with small CHL mud gouge seams and weak carb tension gashes RQD 1649.90 - 1650.30 : 0.00 % RQD 100.00 % Core Weak convex disking with 1-3cm disks and incipient disking as well. 1650.85 - 1651.25 : 0.00 % RQD 100.00 % Core Weak concave disking with 1-3cm disks and incipient disking as well. 1655.25 - 1656.50 : 0.00 % RQD 100.00 % Core						
1734.60	1707 80	Moderate convex disking with ½-2cm disks and incipient disking found as well. ONAP, Onaping Formation						
1734.00	1797.80	Onaping Formation Onaping Formation Onaping Formation (Basal Onaping Intrusive) - Unit is dark grey to greenish gray grey in color and begins as apanitic, matrix rich with few sparce, jagged fragments of andesite, quartzite, and quartz pebbles then progresses to a greenish-beige colored quartz/plagiocase rich matrix with fine dark green to greenish black pyroxene and amphiboles with sections of autobrecciation occuring occasionally, as well as few small granophyric sections appearing furthur downhole (see core photos tab). Minor spotty almost clast-like po appears occasionally.						
		Structure 1763.70 - 1768.25 : SHR Shear, 30.00 Deg to CA Small, fairly competent SHR zone with moderate CARB tension gashes and weak CHL fractures RQD 1755.10 - 1758.55 : 0.00 % RQD 100.00 % Core Moderate convex disking with ½-2cm disks and incipient disking found as well.						
1797.80	1811.30	SHR, Shear Moderate SHR zone within Basal Onaping intrusion. SHR contains moderate CARB/CHL tension gashes. Unit is fairly competent, yet moderately sheared at 55° tca. No mineralization seen.						

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE concernity

DETAILED LOG

Page 8 of 8

Hole Number: T-063

Detailed Lithology			A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1811.30	1821.00	ONAP, Onaping Formation						
		Onaping Formation (Basal Onaping Intrusive) - Unit becomes strongly Chloritic "flooded" after the SHR zone, both pervasively and in fractures and quite blocky due to the strong fracturing. Unit now begins to contain occasional, very distinct fragments of GRPH along with the dark greenish-beige colored quartz/plagiocase rich matrix with fine dark green to greenish black pyroxene and amphiboles. Minor FF/dusty py for the first 30cm of the unit appears to be the only mineralization seen.						
		Alteration 1811.30 - 1821.00 :CHL Chlorite, F Fracture Controlled, S Strong						
		1811.30 - 1821.00 :CHL Chlorite, P Pervasive, S Strong						
1821.00		Structure 1811.30 - 1821.00 : BLKY Blocky, 5.00 Deg to CA Blocky due to strongly CHL fractures at various angles. EOH, End of Hole						

Feb 0	5, 20)20
-------	-------	-----

SUDBURY	
INTEGRATED NICKEL OPERATIONS	
* GLENCORE WRITEN	

DETAILED LOG

Page 1 of 13

Units: METRIC

Hole Number: T-064

Project Name: Project Number: Location:	FL SURFACE 6227 Surface	Primary Coordinates Grid: UT North: 5145336.41 East: 462585.06	M:	Destination Coordinates Grid: UTM: North: 5145336.41 East: 462585.06 Elev: 301.48	Collar Dip: Collar Az: Length:	-89.54 104.25 1,911.01
		Elev: 301.48		Elev: 301.48	Start Depth:	0.00
Date Started:	May 21, 2019	Collar Survey: Y	Plugged: N	Contractor: FORACO CANADA LTD.	Final Depth:	1,911.01
Date Completed:	Jul 17, 2019	Multishot Survey: Y	Hole Size: NQ	Core Storage: NIR		
Logged By:	Andre Taillefer	Pulse EM Survey: Y	Casing: Left in Hole			
Comments: Hole is	s targeting the regional 3-D AMT anomaly modelled on the	e Big Smoke Footwall panel				

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	104.25	-89.54	G	ОК	Start of T-064 Gyro	10.00	159.08	-89.95	G	ОК	
20.00	189.24	-89.92	G	ок		30.00	211.94	-89.86	G	ок	
33.00	211.20	-89.80	EZ		mag 54183	40.00	224.27	-89.86	G	ок	
50.00	233.86	-89.87	G	ок		60.00	246.48	-89.94	G	ок	
70.00	262.48	-89.84	G	ок		80.00	288.50	-89.84	G	ок	
84.00	228.40	-89.80	EZ		mag 55390	90.00	305.11	-89.89	G	ОК	
100.00	305.85	-89.85	G	ОК		110.00	314.54	-89.74	G	ок	
120.00	318.93	-89.74	G	ОК		130.00	313.20	-89.67	G	ок	
135.00	303.30	-89.80	EZ		mag 55521	140.00	317.50	-89.50	G	ОК	
150.00	322.67	-89.56	G	ок		160.00	324.47	-89.40	G	ОК	
170.00	325.22	-89.39	G	ОК		180.00	325.40	-89.21	G	ОК	
186.00	331.40	-89.50	EZ		mag 55530	190.00	325.82	-89.14	G	ОК	
200.00	323.78	-89.05	G	ОК		210.00	324.00	-89.14	G	ОК	
220.00	322.90	-88.99	G	ОК		230.00	322.03	-89.00	G	ОК	
237.00	323.60	-89.10	EZ		mag 55359	240.00	321.08	-88.97	G	ОК	
250.00	319.21	-88.92	G	ОК		260.00	316.75	-88.81	G	ОК	
270.00	311.39	-88.85	G	ОК		280.00	308.36	-88.64	G	ОК	
288.00	320.30	-89.60	EZ		mag 40439	290.00	306.26	-88.62	G	ОК	
300.00	305.26	-88.52	G	ОК		310.00	304.00	-88.63	G	ОК	
320.00	303.22	-88.47	G	OK		330.00	301.99	-88.45	G	ОК	
339.00	302.40	-88.50	EZ		mag 54338	340.00	300.83	-88.35	G	ОК	
350.00	299.93	-88.34	G	ОК		360.00	298.69	-88.29	G	ОК	
370.00	297.48	-88.36	G	ОК		380.00	296.97	-88.20	G	ОК	
390.00	295.62	-88.12	G	ОК		400.00	295.78	-88.19	G	ОК	
410.00	294.83	-87.96	G	OK		420.00	294.18	-88.03	G	ОК	

SUDBURY INTEGRATED NICKEL
* GLENCORE CONTRACT

DETAILED LOG

Page 2 of 13

Hole Number: T-064

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
430.00	293.83	-87.93	G	ок		440.00	293.81	-87.98	G	ок	
441.00	292.70	-88.00	EZ		mag 53752	450.00	294.85	-87.90	G	ок	
460.00	294.10	-87.85	G	ок		470.00	295.91	-87.87	G	ок	
480.00	297.65	-87.68	G	ок		490.00	296.29	-87.69	G	ок	
492.00	292.20	-87.80	EZ		mag 56060	500.00	295.61	-87.61	G	ок	
510.00	297.83	-87.59	G	ок		520.00	299.39	-87.62	G	ок	
530.00	298.64	-87.57	G	ок		540.00	298.46	-87.54	G	ок	
543.00	297.50	-87.70	EZ		mag 54937	550.00	298.93	-87.55	G	ОК	
560.00	299.21	-87.52	G	ОК		570.00	299.58	-87.51	G	ОК	
580.00	300.73	-87.57	G	ок		590.00	300.67	-87.57	G	ок	
594.00	300.70	-87.70	EZ		mag 54384	600.00	301.19	-87.51	G	ОК	
610.00	304.46			ОК		620.00	305.76			ОК	
630.00	306.82			ОК		640.00	308.05	-87.29		ОК	
648.00	307.30				mag 54838	650.00	308.59	-87.23		ОК	
660.00	309.54			ОК		670.00	310.02	-87.24		ОК	
680.00	311.05			ОК		690.00	312.03	-87.12		ОК	
696.00	311.40				mag 55548	700.00	312.30	-87.12		ОК	
710.00	313.34	-87.15		ОК		720.00	313.54	-87.16		ОК	
730.00	313.51	-87.13		ОК		740.00	313.70	-87.12		ОК	
750.00	313.06			ОК		760.00	313.75	-87.10		ОК	
770.00	314.82	1	G	ОК		780.00	315.64	-87.09		ОК	55004
790.00	315.97	-87.04		ОК		798.00	313.90	-87.20			mag 55621
800.00	316.62			ОК		810.00	316.78	-86.98	G	ОК	
820.00	317.62			ОК		830.00	317.60		G	ОК	
840.00	318.33	1		OK		849.00	317.10	-87.10			mag 55641
850.00			G	OK		860.00	318.35			ОК	
870.00		1		OK		880.00	318.45			OK	
890.00		1		ОК	mag 55291	900.00	320.30	-86.82		ок ОК	
903.00				ок	110g 00201	910.00	321.51 321.46	-86.84 -86.80		OK OK	
920.00 940.00	321.46			OK		930.00 950.00	321.46	-86.80		OK	
940.00		ł			mag 55418	950.00	322.27	-86.68		OK	
954.00				ок		980.00	323.28	-86.65		OK OK	
970.00		1		OK		1000.00	324.02			OK OK	
990.00	324.33	-30.62	G			1000.00	323.05	-00.01	9		

CLIP PLUP (
SUDBURY
NTEGRATED NICKEL
OPERATIONS
* GLENCORE concrete

DETAILED LOG

Page 3 of 13

Hole Number: T-064

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
1005.00	324.60	-86.70	EZ		mag 55353	1010.00	323.74	-86.65	G	ок	
1020.00	323.18	-86.61	G	ок		1030.00	322.65	-86.60	G	ок	
1040.00	323.08	-86.57	G	ок		1050.00	322.62	-86.55	G	ок	
1056.00	322.90	-86.50	EZ		mag 56269	1060.00	323.29	-86.53	G	ок	
1070.00	323.43	-86.56	G	ок		1080.00	323.87	-86.57	G	ок	
1090.00	324.47	-86.57	G	ок		1100.00	325.62	-86.54	G	ок	
1107.00	326.30	-86.60	EZ		mag 56257	1110.00	326.89	-86.56	G	ок	
1120.00	327.45	-86.57	G	ОК		1130.00	329.25	-86.73	G	ок	
1140.00	329.55	-86.79	G	ОК		1150.00	329.36	-86.80	G	ок	
1160.00	328.28	-86.76	G	ОК		1170.00	328.19	-86.76	G	ок	
1180.00	329.58	-86.70	G	ОК		1190.00	330.48	-86.67	G	ок	
1200.00	330.70	-86.66	G	ОК		1210.00	330.60	-86.73	G	ок	
1220.00	331.88	-86.76	G	ОК		1230.00	332.23	-86.77	G	ок	
1240.00	332.28	-86.79	G	ОК		1250.00	332.36	-86.83	G	ок	
1260.00	332.10	-86.80	G	ОК		1260.00	332.50	-86.80	EZ		mag 56254
1270.00	332.55			ОК		1280.00	332.33	-86.77		ок	
1290.00	334.22	-86.77		ОК		1300.00	334.86	-86.73		ок	
1310.00	335.88	-86.78		ОК		1311.00	331.70	-86.90	EZ		mag 56181
1320.00	336.08	-86.76	G	ОК		1330.00	334.40	-86.77	G	ок	
1340.00	334.84	-86.73		ОК		1350.00	336.18	-86.76		ОК	
1360.00	336.23			ОК		1370.00	337.00	-86.67		ОК	
1380.00	337.10			ОК		1390.00	338.48	-86.63		ОК	
1400.00	337.65			ОК		1410.00	339.33	-86.63		ок	
1420.00	340.57	-86.61		ОК		1430.00	340.30	-86.51		ок	
1440.00	340.36	-86.38	G	ОК		1450.00	339.73	-86.28	G	ок	
1460.00	341.11	-86.24		ОК		1470.00	341.09	-86.32		ОК	
1480.00	340.87	-86.32		ОК		1490.00	340.99	-86.32		ок	
1500.00	342.73			ОК		1510.00	341.73	1 1		ок	
1520.00	342.21	-86.25		ОК		1530.00	342.54	-86.28		ок	
1540.00	343.30			ОК		1550.00	343.23	-86.35		ок	
1560.00	343.55	-86.36	G	ОК		1570.00	344.27	-86.40		ок	
1580.00	345.01	-86.34	G	ОК		1590.00	344.74	-86.29	G	ок	
1600.00	343.76			ОК		1610.00	344.69	-86.32		ок	
1620.00	344.72	-86.31	G	ОК		1630.00	346.92	-86.32	G	ОК	

SUDBURY INTEGRATED NICKEL	
OPERATIONS	
* GLENCORE STREEM	

DETAILED LOG

Page 4 of 13

Hole Number: T-064

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
1640.00	346.92	-86.34	G	ок		1650.00	347.39	-86.34	G	ок	
1660.00	347.42	-86.39	G	ок		1670.00	345.82	-86.38	G	ок	
1680.00	345.46	-86.41	G	ок		1690.00	345.42	-86.44	G	ОК	
1700.00	346.08	-86.46	G	ок		1710.00	347.07	-86.47	G	ОК	
1720.00	346.40	-86.50	G	ок		1730.00	348.52	-86.49	G	ОК	
1740.00	349.16	-86.53	G	ок		1750.00	350.12	-86.48	G	ОК	
1760.00	350.15	-86.55	G	ок		1770.00	348.79	-86.58	G	ОК	
1780.00	350.47	-86.56	G	ок		1790.00	350.26	-86.57	G	ОК	
1800.00	349.95	-86.61	G	ОК		1810.00	351.20	-86.66	G	ОК	
1820.00	352.36	-86.61	G	ок		1830.00	351.49	-86.56	G	ОК	
1840.00	350.99	-86.56	G	ок		1850.00	351.39	-86.56	G	ОК	
1860.00	350.67	-86.49	G	ок		1870.00	352.27	-86.52	G	ОК	
1880.00	352.88	-86.50	G	ок		1890.00	352.96	-86.57	G	ОК	
1900.00	353.48	-86.54	G	ок		1906.00	351.36	-86.55	G	ОК	End of T-064 gyro

Detailed Li	ithology		A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
0.00	6.00	CAS, Casing						
6.00	51.00	GRPH, Granophyre						
51.00	206.00	Unit is medium grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. No mineralization TRZN, Transition Zone						
206.00		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. No mineralization DIKE, Dike						
222.20	254.00	DYKE - Strong pervasive Hem/Ep alteration, moderate patchy Ep. intrusive dyke with distinct contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, light grey-pinkish matrix of slight DIOR appearance. TRZN, Transition Zone						
		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. No mineralization						
254.00	257.00	FLT, Fault						
257.00		FLT - Brittle, hem & Chl alteration, weak gouge. contact angle appears to be at 50 TCA TRZN, Transition Zone Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. No mineralization						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Hole Number: T-064

etailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
391.10	401.90	LGBX, Late Granite Breccia		·				
		Intrusive, brecciated dyke with sharp contacts (50° top, 55° bottom). Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, light grey-pinkish matrix with a slight LGBX appearance. Weak py mineralization (~1-2%) associated with EPI FF. Moderate CHL/HEM fractures dipping between 20-60° tca						
401.90	445.80	TRZN, Transition Zone						
		Same as previous TRZN units						
445.80	458.85	FLT, Fault						
450.05	470 70	Rehealed, competent FZ with weak to moderate CARB tension gashes within weakly sheared TRZN. Recrystallized gouge consists of 4cm of CARB/CHL infill with a dip of 60° tca. No mud gouge seen. No remobilized mineralization seen.						
458.85	4/0./0	TRZN, Transition Zone						
470 70	40.4.40	Continuation of previous TRZN						
470.70	484.40	FLT, Fault						
		Rehealed, competent FZ with weak CARB tension gashes within sheared TRZN. Few sections of what appears to be possible infill dykes or where the unit was stripped of it's fabric but due to strong pervasive HEM difficult to assess. Recrystallized gouge consists of 12cm of CARB/HEM infill with some CHL seams at a dip of 55° tca. No mud gouge seen. No remobilized mineralization seen.						
484.40	497.35	TRZN, Transition Zone						
		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. No mineralization						
		MINOR INTERVALS:						
		Minor Interval:						
		487.85 - 490.60 DIA, Diabase						
		Small sections of DIA with trapped TRZN blocks (sharp undulating contacts)						
497.35	508.75	FLT, Fault						
500 75	500.00	Competent, moderately sheared FZ with 2cm of HEM/CHL mud gouge with other smaller (mm thick) seams as well, dipping at 55° with sections of CHL flooding/ SHR infill with moderate CARB/HEM tension gashes. Minor py seen.						
508.75	529.30	TRZN, Transition Zone						
		Continuation of previous TRZN no changes						
		Structure						
		518.00 - 521.85 : FLT Fault, 15.00 Deg to CA						
529.30	543 40	Small FLT zone with moderate CHL slickens containing ~2mm of HEM mud gouge with moderate shearing throughout. SHR, Shear						
		Large competent SHR zone with weak to moderate chloritized shearing throughout as well as weak CARB tension gashes Dip of SHR is 30° tca. No remobilized mineralization seen.						
543.40	5/4.45	TRZN, Transition Zone						
		Continuation of previous TRZN no changes						
		Structure						
		553.40 - 560.40 : FLT Fault, 30.00 Deg to CA FZ with moderate shearing throughout. Gouge consists of 3cm of sheared TRZN fragments/pink CARB/CHL with pink CARB tension gashes						
		563.00 - 566.00 : FLT Fault, 30.00 Deg to CA Small FZ with moderate shearing throughout. Gouge infill consists of 7cm of sheared TRZN fragments/pink CARB/CHL and QTZ pebbles with weak CARB tension gashes						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 6 of 13

Hole Number: T-064

Detailed Lit	hology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
574.45	597.40	SHR, Shear		ł	•	•		•
507.40	CO 4 75	Large competent SHR zone with moderate chloritized shearing throughout as well as moderate CARB tension gashes mostly towards the end of the zone. Dip of SHR is 55° tca. No remobilized mineralization seen.						
597.40	634.75	TRZN, Transition Zone Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to						
634.75	636.60	greenish black pyroxene and creamy white plagioclase. No mineralization LGBX, Late Granite Breccia						
		Intrusive, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX appearance. Moderate CHL/HEM fractures dipping between 20-60° tca. No mineralization						
		Alteration						
		634.75 - 636.60 :HE Hematite, P Pervasive, S Strong						
636.60	640.85	APL, Aplite Dike						
		Pinkey-Orange colored, fine, sugary textured APL dyke. Weakly sheared throughout with sharp contacts 65° top and 80° bottom						
		Alteration						
		636.60 - 640.85 :HE Hematite, P Pervasive, S Strong						
640.85	728.25	TRZN, Transition Zone						
		Continuation of previous TRZN, no major changes						
		Alteration 656.40 - 662.40 :EP Epidote, INT Interstitial, M Moderate						
		656.40 - 662.40 :CHL Chlorite, P Pervasive, M Moderate						
		Structure						
		640.86 - 643.55 : SHR Shear, 50.00 Deg to CA Weak shearing after intrusive dyke 683.75 - 688.95 : FLT Fault, 40.00 Deg to CA FZ with moderate shearing throughout. Gouge infill consists of 40cm of sheared TRZN fragments/pink CARB/CHL and QTZ pebbles with CHL tension gashes 693.50 - 700.10 : SHR Shear, 65.00 Deg to CA SHR zone with weak to moderate chloritized shearing throughout as well as strong pervasive HEM throughtout. Small brecciated dyke appears between 698.85-699.3. No remobilized mineralization seen.						
		MINOR INTERVALS:						
		Minor Interval:						
		698.85 - 699.30 LGBX, Late Granite Breccia						
		Small, intrusive, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX appearance. No mineralization,						
		Minor Interval:						
		712.40 - 712.90 LGBX, Late Granite Breccia						
		Small, intrusive, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX appearance. No mineralization						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 7 of 13

Hole Number: T-064

etailed Li	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
728.25	863.70	FNOR, Felsic Norite				-1		
		Unit is massive, leucocratic to mesocratic, medium grained, equigranular with beigy-white, tabular plagioclase and sub-rounded granophyre or quartz, as well as dark green to greenish black pyroxene, potassic feldspar and biotite. No mineralization.						
		Structure 764.50 - 768.30 : FLT Fault, 75.00 Deg to CA Small, but intense rehealed FLT with 65cm of strongly sheared QTZ/APL/FNOR/CARB/CHL infill with CHL slickenside fractures as well.						
		MINOR INTERVALS:						
		Minor Interval:						
		730.70 - 731.40 APL, Aplite Dike						
		Typical beigey/taupe colored, sugary textured, with partially consumed contacts. Weakly sheared. Minor disseminated py. Minor Interval:						
		760.25 - 761.45 LGBX, Late Granite Breccia						
		Small, intrusive, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX/APL appearance. No mineralization						
		Minor Interval:						
		842.05 - 842.55 APL, Aplite Dike						
		Typical beigey/taupe colored, sugary textured, with sharp contacts (40° T, 15° B). Weakly sheared bottom contact. Minor Interval:						
		848.15 - 850.15 APL, Aplite Dike						
863.70	877.55	Typical beigey/taupe colored, sugary textured, with sharp contacts (85° T, 70° B). Strongly sheared bottom contact. FLT, Fault						
		SHR zone with weak to moderate CHL/QTZ/CARB shearing sections throughout as well as strong pervasive HEM throughtout the zone. Small APL dyke appears between 874.25-876.2 possibly being the root cause of the structure. No remobilized mineralization seen.						
		MINOR INTERVALS: Minor Interval:						
		874.25 - 876.20 APL, Aplite Dike						
		Weakly sheared throughout, beige colored, sugary textured, with partially consumed, sheared contacts.						
877.55	1088.10	FNOR, Felsic Norite Continuation of previous FNOR						
		Structure 1045.50 - 1047.80 : FLT Fault, 30.00 Deg to CA Small, rehealed FLT with 15cm of strongly sheared CARB/QTZ/FNOR/CHL infill with minor CHL slickenside fractures as well.						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 8 of 13

Hole Number: T-064

Detailed Li	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1088.10	1105.60	FLT, Fault Competent, moderately sheared FZ with several mm thick HEM/CHL mud gouge seams dipping at 25° with sections of CHL/HEM flooding/ SHR infill with moderate CARB/HEM tension gashes. FLT zone occurs within contact with						
		FNOR/breccia dyke. Minor py seen. Alteration 1088.10 - 1105.60 :HE Hematite, P Pervasive, S Strong						
		MINOR INTERVALS: Minor Interval: 1100.05 - 1105.60 LGBX, Late Granite Breccia Intrusive, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR?						
1105.60	1118.50	and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX appearance. No mineralization, LGBX, Late Granite Breccia Continuation of LGBX, without faulting present, moderate CHL/HEM fractures and still strong pervasive HEM throughout.						
		Alteration 1105.60 - 1118.50 :HE Hematite, P Pervasive, S Strong						
1118.50	1135.05	FNOR, Felsic Norite Unit is leucocratic to mesocratic, medium grained, equigranular, tabular plagioclase and sub-rounded granophyre or quartz, as well as dark green to greenish black pyroxene, potassic feldspar and biotite. Unit is slightly deceiving due to strong pervasive/interstitial HEM throughout rendering everything pinky-orange. No mineralization.						
1135.05	1146 50	Alteration 1118.50 - 1135.05 :HE Hematite, P Pervasive, S Strong SHR, Shear						
1133.03	1140.50	SHR zone caused by intrusive breccia dyke (1136.65-1145.4). Unit is slightly blocky due to strong CHL/HEM fractures with strong slickensides on fracture face. Dip of SHR appears to be 25° tca. No mineralization seen.						
		Alteration 1135.05 - 1146.50 :HE Hematite, P Pervasive, S Strong						
		MINOR INTERVALS: Minor Interval: 1136.65 - 1145.40 LGBX, Late Granite Breccia						
		Intrusive, sheared, LGBX with sharp undulating contacts. Unit contains well to sub-rounded fragments of GRPH, mafics, NOR? and plag within a fine grained, orangey to light grey-pinkish matrix with a slight LGBX appearance. No mineralization						
1146.50	1155.30	FNOR, Felsic Norite Small section of relatively competent FNOR without any structure within. Unit is same as previous FNOR with strong pervasive HEM throughout.						
1155.30	1165.45	Alteration 1146.50 - 1155.30 :HE Hematite, P Pervasive, S Strong FLT, Fault						
	-	Blocky, rehealed FLT zone with main gouge containing ~50cm of vuggy QTZ/CARB infill at a dip of 40° tca with mm thick mud gouge seams seen before and after main gouge. FZ is within weakly to moderately sheared FNOR						
		Alteration 1155.30 - 1162.00 :HE Hematite, P Pervasive, S Strong						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 9 of 13

Hole Number: T-064

Detailed Lit	thology		A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1165.45		FNOR, Felsic Norite Typical FNOR in composition, but unit begins to be sheared up after 1183m with sections of CARB infill/tension gashes, as well as small (< 30cm) pinkish APL dikes appearing as well.	Cample #			Lengui		00 //
1262.90		 1260.05 - 1260.60 LGBX, Late Granite Breccia Small LGBX unit, weakly sheared, moderate pervasive HEM. APL, Aplite Dike Pinkey-Orange colored, fine, sugary textured APL dyke. Moderately sheared throughout with faulting found as well. Top and bottom contacts sheared at 40° tca. Strong HEM/CHL/EPI FF (tension gashes throughout. Structure 1262.90 - 1269.20 : FLT Fault, 40.00 Deg to CA Fairly competent FZ found throughout the APL dyke with moderate shearing throughout and 2cm of mud gouge as well as smaller mm sized mud seems found. 1269.20 - 1270.10 : FLT Fault, 15.00 Deg to CA Shallow dipping, blocky due to cross cutting sharper angled CHL fractures. Several mm thick gouge seams found throughout with the largest being 5-7mm thick. LGBX, Late Granite Breccia Sheared, faulted, LGBX with sharp contacts (40° T, Broken at bottom). Unit contains well to sub-rounded fragments of mafics, norites and DIA with minor small SDBX veins within a fine to medium grained, orangey to light grey-pinkish felsic matrix with a slight LGBX appearance. Strong pervasive HEM throughout. Alteration 1270.10 - 1290.95 :EP Epidote, PCH Patchy, M Moderate 						
		1270.10 - 1290.95 :CHL Chlorite, FF Fracture Filling, S Strong 1270.10 - 1290.95 :HE Hematite, FF Fracture Filling, M Moderate						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 10 of 13

Hole Number: T-064

Detailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1290.95	1300.40	DIA, Diabase				•		
		Small sheared DIA with dark green to blackish green in color with fine cream to lime green phenocrysts peppered throughout, fine grained, with blocks of partially consumed felsic? material. Sharp undulating. Weak fine dusty py found towards the bottom of unit						
		Alteration 1290.95 - 1300.40 :CHL Chlorite, F Fracture Controlled, S Strong						
1300.40	1385.00	Structure 1290.95 - 1300.40 : SHR Shear, 45.00 Deg to CA DIA unit is moderately sheared and blocky throughout. LGBX, Late Granite Breccia						
1500.40	1000.00	Continuation of previous LGBX unit, no structures observed, moderate CHL/HEM fractures throughout, same strong pervasive HEM throughout. Small SDBX veins begin to appear.						
		Alteration						
		1300.40 - 1385.00 :CHL Chlorite, F Fracture Controlled, M Moderate						
		1300.40 - 1385.00 :HE Hematite, FF Fracture Filling, M Moderate						
1385.00	1404.30	FLT, Fault						
		Rehealed, slightly blocky FZ with weak to moderate CARB tension gashes within several contacts between strongly sheared LGBX with two strongly sheared Diabase dykes and strongly sheared GR. Recrystallized gouge consists of 10cm of QTZ/CARB infill with some CHL/HEM seams at a dip of 45° tca. Occasional fine mm thick mud gouge seen. Strong EPI/CHL FF tension gashing after main gouge. Weak dusty py mineralization seen.						
		Alteration						
		1385.00 - 1404.30 :Carb Carbonate, FF Fracture Filling, M Moderate						
		1385.00 - 1404.30 :CHL Chlorite, F Fracture Controlled, M Moderate						
		1385.00 - 1404.30 :HE Hematite, FF Fracture Filling, M Moderate						
		1394.40 - 1404.30 :EP Epidote, FF Fracture Filling, S Strong						
		MINOR INTERVALS:						
		Minor Interval:						
		1385.20 - 1386.20 DIA, Diabase						
		Strongly sheared/chloritic DIA with sharp irregular contacts Minor Interval:						
		1387.95 - 1392.80 DIA. Diabase						
		Strongly sheared/chloritic DIA with sharp irregular contacts						
		Minor Interval:						
		1392.80 - 1393.10 APL, Aplite Dike						
		Pinkey-Orange colored, fine, sugary textured APL dyke. Moderately sheared throughout. Minor Interval: 1393.10 - 1404.30 GR, Granite						
		Unit is beige-pink-salmon in color, medium grained, with dark green to greenish black pyroxene and porphyroblasted, creamy white plagioclase. Strongly sheared with moderate EPI FF throughout. Fine dusty py mineralization throughout.						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 11 of 13

Hole Number: T-064

Detailed Lit	thology			Assay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1404.30	1420.15	GR, Granite			•			•
		Unit is beige-pink-salmon in color, medium grained, with dark green to greenish black pyroxene and porphyroblasted, creamy white plagioclase. Weakly sheared with moderate EPI FF throughout. Fine dusty py mineralization throughout.						
		Alteration 1404.30 - 1420.15 :EP Epidote, FF Fracture Filling, M Moderate						
		1404.30 - 1420.15 :HE Hematite, F Fracture Controlled, M Moderate						
4400.45	4407.45	Structure 1404.30 - 1420.15 : SHR Shear, 45.00 Deg to CA Weakly to moderately sheared throughout. DIA, Diabase						
1420.15		Small sheared DIA with dark green to blackish green in color with fine cream to lime green phenocrysts peppered throughout, fine grained, with blocks of partially consumed GR material. Sharp contacts 30° (top), 45° (bottom). Weak fine dusty py found throughout.						
1427.45	1444.75	GR, Granite						
1444.75	1461.65	Continuation of previous GR, same litho, sheared, small DIA found between 1442.35-1444.1 FLT, Fault						
		Moderately to strongly sheared, thrust FZ shearing off the GR and thrusting a GRPH unit into place. FZ is somewhat blocky and contains ~10-12 cm of CHL mud gouge. Dip of gouge appears to be 65° tca. Moderate CHL fracturing throughout. No remobilized mineralization seen.						
		Alteration 1444.75 - 1461.65 :CHL Chlorite, F Fracture Controlled, M Moderate						
		MINOR INTERVALS:						
		Minor Interval:						
		1444.75 - 1451.85 GR, Granite						
		Minor Interval:						
		1451.85 - 1461.65 GRPH, Granophyre						
		Moderately SHRed, medium grained, sparse salmon to brick red colored felsic groundmass at first with unit containing mostly dark green to greenish black pyroxene and few creamy white plagioclase feldspars. Moderate pervasive CHL flooding. No mineralization.						
		Alteration						
		1452.70 - 1461.65 :CHL Chlorite, P Pervasive, M Moderate						
1461.65	1474.95	GRPH, Granophyre						
		Unit is fine to medium grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. No mineralization						
		Alteration 1461.65 - 1461.65 :Carb Carbonate, FF Fracture Filling, W Weak						
1474.95	1483.80	FLT, Fault						
		Blocky, weakly SHRed, moderately chloritic FZ with ~5cm CHL/ground GRPH mud gouge dipping at 50° tca						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 12 of 13

Hole Number: T-064

Detailed Lithology			Assay Data									
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %				
1483.80	1911.00	GRPH, Granophyre		•								
		Continuation of previous GRPH, large blocky section due to moderate to strong CHL fractures between 1499.45-1539.0, unit appears like normal GRPH after the blocky section with less CHL affecting appearance. Between 1611-1696 unit becomes pervasive CHL "flooded" again, losing the brick red phenocrysts and giving them a lime green appearance.										
		Alteration 1499.45 - 1539.00 :CHL Chlorite, F Fracture Controlled, S Strong										
		Causing blocky ground/poor RQD										
		1611.00 - 1696.00 :CHL Chlorite, P Pervasive, M Moderate										
		Structure										
		1499.45 - 1539.00 : BLKY Blocky, 45.00 Deg to CA										
		No gouge seen or much shearing, minor CARB FF further aggravating RQD										
		1767.75 - 1768.65 : FLT Fault, 55.00 Deg to CA										
		Small rehealed FLT with 5cm of CARB/CHL infill and minor CHL fractures										
		1859.80 - 1867.30 : SHR Shear, 40.00 Deg to CA										
		Blocky, weak shear zone with moderate CHL fracturing throughout and weak CARB tension gashes as well										
		RQD										
		1499.45 - 1539.00 : 10.00 % RQD 100.00 % Core										
		Large blocky zone due to strong CHL fracturing throughout										
		1620.00 - 1632.00 : 40.00 % RQD 100.00 % Core										
		Blocky due to multiple consecutive CHL fractures throughout.										
		1732.35 - 1732.70 : 0.00 % RQD 100.00 % Core										
		Moderate convex disking with ½-2cm disks and incipient disking found as well.										
		1756.70 - 1758.40 : 0.00 % RQD 100.00 % Core										
		Weak concave disking with disks 1-3cm thick and incipient disking and weak CHL fractures as well.										
		1760.30 - 1762.60 : 0.00 % RQD 100.00 % Core										
		Weak concave disking with disks 1-3cm thick and incipient disking and weak CHL fractures as well.										
		1818.40 - 1818.95 : 0.00 % RQD 100.00 % Core										
		Moderate convex disking with ½-2cm disks and incipient disking found as well.										
		1820.85 - 1824.25 : 0.00 % RQD 100.00 % Core										
		Moderate convex disking with ½-2cm disks and incipient disking found as well.										
		1826.25 - 1827.60 : 0.00 % RQD 100.00 % Core										
		Moderate concave disking with ½-2cm disks and incipient disking found as well.										
		1828.20 - 1829.00 : 0.00 % RQD 100.00 % Core										
		Weak convex disking with disks 1-3cm thick and incipient disking as well.										
		1830.15 - 1830.50 : 0.00 % RQD 100.00 % Core										
		Weak concave disking with disks 1-3cm thick and incipient disking as well.										
		1838.25 - 1839.20 : 0.00 % RQD 100.00 % Core										
		Weak concave disking with disks 1-3cm thick and incipient disking as well.										
		1839.20 - 1840.00 : 0.00 % RQD 100.00 % Core										
		Weak convex disking with disks 1-3cm thick and incipient disking as well.										
		1851.50 - 1852.00 : 0.00 % RQD 100.00 % Core										
		Weak concave disking with disks 1-3cm thick and incipient disking as well.										

Feb 05	2020
--------	------

SUDBURY INTEGRATED NICKEL OPERATIONS * GLENCORE VIEWOW

DETAILED LOG

Page 13 of 13

Hole Number: T-064

Detailed Li	thology		A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1911.00	1911.01	EOH, End of Hole						

Feb	05,	2020	
-----	-----	------	--

Hole Number: T-065

SUDBURY	
INTEGRATED NICKEL OPERATIONS	
* GLENCORE CONTRACT	

-86.38

260.17

0.00 2,025.01

2,025.01

Units: METRIC

Collar Dip: Project Name: Primary Coordinates Grid: UTM: **FL SURFACE** Destination Coordinates Grid: UTM: Collar Az: Project Number: North: 5145294.39 North: 5145294.39 6227 East: 463520.37 463520.37 Length: East: Location: Surface 348.71 Elev: Elev: 348.71 Start Depth: Aug 29, 2019 Collar Survey: Contractor: FORACO CANADA LTD. Final Depth: Date Started: Y Plugged: N Date Completed: Nov 10, 2019 Multishot Survey: Y Hole Size: NQ Core Storage: NIR Logged By: Sabrina Sterner, Andre Taillefer Pulse EM Survey: Y Casing: Left in Hole Comments: Targeting a conductive UTEM geophysical anomaly south of T-063 and modeled on the footwall contact

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	260.17	-86.38		ок	Start of T-065 gyro	10.00	258.76	-86.29		ок	
15.00	256.80	-86.60			mag 55195	20.00	259.77	-86.28		ок	
27.00	261.10	-86.40			mag 55559	30.00	261.60	-86.23	G	ок	
40.00	262.19	-86.20		ок		50.00	262.52			ок	
60.00	262.96	-86.21	G	ок		70.00	264.68	-86.24	G	ок	
78.00	262.00	-86.60	EZ		mag 55610	80.00	266.21	-86.24	G	ок	
90.00	268.30	-86.25	G	ок		100.00	269.69	-86.25	G	ок	
110.00	272.27	-86.22	G	ок		120.00	273.94	-86.30	G	ок	
129.00	275.20	-86.40	EZ		mag 55539	130.00	274.55	-86.33	G	ок	
140.00	275.50	-86.32	G	ОК		150.00	276.60	-86.31	G	ок	
160.00	278.07	-86.32	G	ок		170.00	278.83	-86.36	G	ок	
177.00	279.70	-86.60	EZ		mag 55793	180.00	280.26	-86.39	G	ок	
190.00	282.78	-86.39	G	ок		200.00	286.20	-86.39	G	ок	
210.00	288.31	-86.41	G	ок		220.00	291.27	-86.41	G	ок	
230.00	292.41	-86.39	G	ок		237.00	294.10	-86.60	EZ		mag 55659
240.00	295.20	-86.35	G	ОК		250.00	297.23	-86.34	G	ок	
260.00	298.19	-86.34	G	ОК		270.00	299.38	-86.33	G	ок	
280.00	300.17	-86.33	G	ОК		288.00	298.40	-87.10	EZ		mag 43518
290.00	300.61	-86.32	G	ОК		300.00	301.03	-86.29	G	ОК	
310.00	301.42	-86.26	G	ОК		320.00	302.15	-86.23	G	ОК	
330.00	303.24	-86.20	G	ОК		339.00	302.20	-86.60	EZ		mag 55542
340.00	304.17	-86.21	G	ОК		350.00	305.36	-86.20	G	ОК	
360.00	306.42	-86.19	G	ок		370.00	307.07	-86.18	G	ок	
380.00	307.44	-86.18	G	ок		390.00	307.68	-86.16	G	ок	
396.00	305.90	-86.50	EZ		mag 55884	400.00	308.98	-86.18	G	ок	

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE sciences

DETAILED LOG

Page 2 of 8

Hole Number: T-065

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
410.00		-86.21	G	ок		420.00	313.56			ок	
430.00	314.20			ОК		440.00	314.65	-86.17		ок	
441.00	316.00				mag 55560	450.00	315.49	-86.14		ОК	
460.00	315.79			ок	, , , , , , , , , , , , , , , , , , ,	470.00	316.44	-86.12		ОК	
480.00	317.26			ок		490.00	318.03	-86.13		ок	
498.00	318.90				mag 55803	500.00	318.72	-86.11		ок	
510.00	319.43			ок		520.00	320.70	-86.03	G	ок	
530.00	321.54	-85.96	G	ок		540.00	322.41	-85.92	G	ок	
549.00	322.20	-86.30	EZ		mag 55655	550.00	322.94	-85.88	G	ок	
560.00	323.89	-85.83	G	ок		570.00	324.08	-85.69	G	ок	
580.00	324.49	-85.62	G	ок		590.00	325.85	-85.59	G	ок	
600.00	327.59	-85.51	G	ОК		610.00	328.89	-85.47	G	ок	
620.00	329.81	-85.44	G	ОК		630.00	330.31	-85.40	G	ок	
640.00	331.23	-85.41	G	ок		645.00	327.20	-86.10	EZ		mag 55882
650.00	332.29	-85.37	G	ОК		660.00	332.30	-85.35	G	ок	
670.00	333.05	-85.32	G	ОК		680.00	333.89	-85.28		ок	
690.00	334.45	-85.24		ОК		696.00	328.90	-85.40			mag 55826
700.00	335.41	-85.08		ОК		710.00	336.46	-84.99		ок	
720.00	337.97	-84.89		ОК		730.00	339.99	-84.73		ОК	
740.00	341.84	-84.56		ОК		747.00	341.60	-84.80			mag 55212
750.00	342.65	-84.41	G	ОК		760.00	342.96	-84.18		ОК	
770.00	345.03			ОК		780.00	346.64	-83.91	G	ОК	
790.00	341.40			ОК		797.00	337.40	-84.10			9m past CWT 1 - mag 55927
800.00	332.82			OK		806.00	329.80	-84.50			9m past CWT 2 - mag 56580
810.00	314.18		G	OK		815.00	316.30	-84.70			9m past CWT 3 - mag 56875
820.00	302.39			OK		824.00	305.70	-83.70			9m past CWT 4- mag 56109 9m past CWT 5 - mag 56469
830.00	297.72		G	OK		833.00	292.20	-84.20			911 pasi 011 1 3 - 111ay 30409
840.00	298.44	-83.90 -83.77		ок ОК		850.00	298.39 299.97	-83.82 -83.73		ОК ОК	
860.00 880.00	298.75 300.86			OK		870.00	299.97 303.10	-83.73 -83.80			mag 55669
880.00	300.86			OK		885.00 900.00	303.10 302.98	-83.80 -83.47		ок	1149 00000
910.00	302.02			OK		900.00	302.98 304.99	-83.47 -83.10		OK	
910.00	303.73			OK		920.00 940.00	304.99 307.95	-83.10		OK	
930.00					mag 55646	940.00 950.00				OK OK	
945.00	300.30	-02.70	22	I	111dg 000+0	950.00	309.37	-02.30	9	UN	

SUDBURY
NTEGRATED NICKEL
OPERATIONS
* GLENCORE streams

DETAILED LOG

Page 3 of 8

Hole Number: T-065

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
960.00	310.01	-82.26	G	ОК		969.00	309.10	-82.40	EZ		mag 55807
970.00	306.14	-82.38	G	ок		977.40	305.70	-82.50	EZ		9m past CWT 6 - mag 55592
980.00	297.73	-82.67	G	ок		986.00	298.50	-83.00	EZ		9m past CWT 7 - mag 55403
990.00	286.54	-82.45	G	ок		1000.00	282.95	-82.76	G	ОК	
1007.00	282.70	-83.00	EZ		12m past CWT 8 - mag 55884	1010.00	283.99	-82.75	G	ОК	
1020.00	284.52	-82.76	G	ок		1030.00	284.99	-82.76	G	ОК	
1040.00	285.21	-82.73	G	ок		1050.00	285.29	-82.66	G	ОК	
1060.00	285.25	-82.58	G	ок		1062.00	286.70	-82.90	EZ		mag 55904
1070.00	285.36	-82.56	G	ОК		1080.00	285.37	-82.50	G	ОК	
1090.00	285.39		G	ок		1100.00	285.56			ОК	
1110.00	286.03	-82.43	G	ок		1116.00	287.60		EZ		mag 57137
1120.00	286.55	-82.41	G	ОК		1130.00	286.88	-82.42	G	ОК	
1140.00	287.06	-82.40	G	ОК		1150.00	287.04	-82.43	G	ОК	
1160.00	287.36	-82.36	G	ОК		1161.00	288.80		EZ		mag 56265
1170.00	287.34	-82.30	G	ОК		1180.00	287.49	-82.25	G	ОК	
1190.00	287.55	-82.21	G	ОК		1200.00	287.54	-82.20	G	OK	
1210.00	287.33	-82.19	G	ОК		1212.00	288.90		EZ		mag 56103
1220.00	287.15	-82.20	G	ОК		1230.00	286.89		G	ОК	
1240.00	286.59	-82.20	G	ОК		1250.00	286.50	-82.19	G	OK	
1260.00	286.59		G	ОК		1263.00	287.20	-82.60			mag 57196
1270.00	286.58	1 1	G	ОК		1280.00	286.11	-82.16		ОК	
1290.00	285.83		G	ОК		1300.00	286.16		G	ОК	
1310.00	286.39	1 1	G	ОК	57000	1320.00	286.63			ОК	
1320.00	287.00	-82.40	EZ		mag 57660	1330.00	286.73		G	ОК	
1340.00	287.07	-81.90	G	ОК		1350.00	287.19			ОК	
1360.00	287.42		G	OK		1368.00	288.70				mag 57766
1370.00	287.36			OK		1380.00	287.41	-81.76		OK	
1390.00	287.48		G	OK		1400.00	287.61	-81.80		OK	mag 57696
1410.00	287.76			OK		1419.00	288.90				may 57 030
1420.00	287.51	-81.74		OK		1430.00	287.59			OK	
1440.00	287.23	-81.70	G	OK		1450.00	287.35	-81.69		OK	mag 56353
1460.00	287.48	-81.65		OK		1467.00	289.20	-81.90		04	
1470.00	287.67	-81.63	G	OK		1480.00	287.84			OK	
1490.00	288.11	-81.57	G	ОК		1500.00	287.84	-81.55	G	ОК	

SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE CONTROL

DETAILED LOG

Page 4 of 8

Hole Number: T-065

Units: METRIC

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments				
1510.00	287.79	-81.54	G	ОК		1518.00	288.80		EZ		mag 57462				
1520.00	287.54	-81.52		ОК		1530.00	287.87		G	ок					
1540.00	287.79			ОК		1550.00	287.88			ок					
1560.00	287.89			ОК		1570.00	287.90		G	ок					
1580.00	287.79			ок		1590.00	287.94		G	ок					
1600.00	288.04	-81.66		ок		1610.00	288.76		G	ок					
1620.00	289.43	-81.00	G	ок		1626.00	288.30	-82.10	EZ		mag 57667				
1630.00	290.29	-80.93	G	ок		1640.00	290.65	-80.85	G	ок					
1650.00	291.05	-80.78	G	ок		1660.00	291.38	-80.69	G	ок					
1670.00	291.65	-80.66	G	ОК		1671.00	293.10	-80.60	EZ		mag 57354				
1680.00	292.10	-80.62	G	ОК		1690.00	292.23	-80.57	G	ок					
1700.00	292.71	-80.48	G	ОК		1710.00	292.50	-80.64	G	ок					
1720.00	292.53	-80.75	G	ОК		1722.00	301.40	-80.10	EZ		mag 57127				
1730.00	292.46	-80.68	G	ОК		1740.00	292.34	-80.64	G	ок					
1750.00	293.38	-80.87	G	ОК		1760.00	297.23	-81.37	G	ок					
1770.00	300.96	-81.94	G	ОК		1780.00	301.24	-81.99	G	ок					
1790.00	301.40	-81.95	G	ОК		1800.00	301.96	-81.98	G	ок					
1810.00	302.24	-81.97	G	ОК		1820.00	302.92	-82.06	G	ОК					
1830.00	303.26	-82.07	G	ОК		1840.00	303.22	-81.95	G	ок					
1850.00	304.07	-82.01	G	ОК		1860.00	310.34	-82.73	G	ОК					
1870.00	316.90	-83.63	G	ОК		1880.00	315.19	-84.40	G	ОК					
1890.00	315.18			ОК		1900.00	316.02	1 1	G	ОК					
1910.00	315.10		G	ОК		1920.00	315.02	1 1	G	ОК					
1930.00	314.94	-85.44	G	ОК		1940.00	314.28	-85.50	G	ОК					
1950.00	312.82		G	ОК		1960.00	312.85			ОК					
1970.00	312.73	-85.51		ОК		1980.00	312.60		G	ОК					
1990.00	313.53			ОК		2000.00	314.81	-85.74	G	ОК					
2006.00	314.82	-85.93	G	ОК	End of T-065 gyro										
Detailed L	ithology							Assay Data							
Erom To Lithology								Sample # Erom To Length Ni % Cu %							

Detailed Lithology			Assay Data Sample # From To Length Ni % Cu %					
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
0.00	3.00	CAS, Casing						
3.00	41.00	GRPH, Granophyre						
		Unit is medium grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. No mineralization						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE COROL

DETAILED LOG

Page 5 of 8

Hole Number: T-065

Detailed Lithology			A	ssay Data				
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
41.00	48.00	FLT, Fault						
48.00	350.00	Hem FLT, strong Hem Alteration, brittle incompetent, gouge, brick red GRPH, Granophyre						
350.00	664.00	Unit is medium grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. No mineralization TRZN, Transition Zone						
350.00	001.00	Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, strong fabric, green to greenish black pyroxene and creamy white plagioclase. No mineralization						
661.00	665.30	APL, Aplite Dike						
665.30	947.60	Pinkey-Orange colored, fine, sugary textured APL dyke. Weakly sheared throughout TRZN, Transition Zone						
		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, strong fabric, green to greenish black pyroxene and creamy white plagioclase. No mineralization						
		Alteration 765.00 - 785.00 :EP Epidote, PCH Patchy, M Moderate 10-30cm wide patched of Ep alteration sporatic throughout the unit						
947.60	1010.80	SHR, Shear						
		Large, fairly competent SHR zone with moderate chloritized shearing throughout as well as weak CARB tension gashes at a dip of 30° tca. Unit appears to be a combination of 2 moderate shear zones with weaker shearing in the middle, within what appears to be TRZN at first with possible mafic volcanics intermixed, (difficult to assess due to amount of shearing and CHL "flooding" throughout) then GRPH towards the end. Weak py/pn seen within small FF occasionally seen.						
1010.80	1068.40	GRPH, Granophyre						
		Medium to coarse grained, somewhat equigranular, salmon to brick red colored felsic groundmass with dark green to greenish black pyroxene and creamy white plagioclase feldspars. Unit contact is gradational and determined by absence of interstial HEM alt. Small APL dyke between 1043.95-1045.0. No mineralization						
1068.40	1127.65	TRZN, Transition Zone						
		Medium to coarse grained, fairly massive, light greyish-pink felsic groundmass with euhedral to lathy feldspars, green to greenish black pyroxene and creamy white plagioclase. Unit bottom contact is difficult to assess due to complete lack of magnetite within the unit and determined by visual appearance instead. No mineralization						

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

Page 6 of 8

Hole Number: T-065

etailed Lithology			Assay Data							
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %		
1127.65		FNOR, Felsic Norite Unit is massive, leucocratic to mesocratic, medium grained, equigranular with beigy-white, tabular plagioclase and sub-rounded granophyre or quartz, as well as dark green to greenish black pyroxene, potassic feldspar and biotite. Small APL dykes appear between 1135.85 and 1137.25 as well as a small DIA dike between 1523.7-1524.20. No mineralization.				· · · ·				
		Structure 1160.90 - 1179.10 : FLT Fault, 50.00 Deg to CA Weak, fairly competent, rehealed FZ with 4cm of CHL/ONAP? infill with moderate CHL/CARB tension gashes 1237.25 - 1240.10 : FLT Fault, 20.00 Deg to CA Small, sheared, rehealed FZ with 2cm of CARB infill with weak CARB tension gashes as well. 1282.70 - 1285.65 : FLT Fault, 40.00 Deg to CA Small, sheared, rehealed FZ with 6cm of APL/CARB infill with weak CARB tension gashes as well. 1289.45 - 1291.20 : SHR Shear, 60.00 Deg to CA Small, moderately sheared, rehealed FLT with 38cm of APL/CHL/CARB infill with moderate CARB tension gashes. 1368.90 - 1373.00 : SHR Shear, 40.00 Deg to CA Small, moderately sheared, rehealed FLT with 38cm of APL/CHL/CARB infill with moderate CARB tension gashes. 1368.90 - 1373.00 : SHR Shear, 40.00 Deg to CA Small, moderately sheared, rehealed FLT with 12cm of CHL/CARB/FNOR infill with moderate CARB tension gashes. RQD 1498.30 - 1498.45 : 0.00 % RQD 100.00 % Core Weak concave disking with 1-3cm disks and incipient disking as well.								
4624.00	4704.65	1592.25 - 1592.70 : 0.00 % RQD 100.00 % Core Weak convex disking with 1-3cm disks and incipient disking as well. MINOR INTERVALS: Minor Interval: 1272.10 - 1273.50 APL, Aplite Dike Typical beigey/taupe colored, sugary textured, with sharp contacts with a dip of 70° tca. Weakly sheared. SHR, Shear								
1624.00	1724.03	Large, strong, somewhat blocky SHR zone. Unit appears to be a combination of 2 moderate to strong shear zones with weaker shearing in the middle within FNOR (to 1638m) and GRPH with moderate CHL/CARB FF shearing infill and tension gashes throughout, at a dip of 65° tca, moderate to strong HEM alteration wihin the GRPH. No mineralization seen.								
		Alteration 1639.80 - 1677.00 :HE Hematite, P Pervasive, S Strong								
		Structure 1624.00 - 1724.65 : SHR Shear, 65.00 Deg to CA 1696.00 - 1724.65 : BLKY Blocky, 40.00 Deg to CA Blocky largely due to strong, CHL laminated SHR zone RQD 1640.65 - 1669.25 : 0.00 % RQD 100.00 % Core								
		Huge disking interval, largely due to strong, laminated SHR zone, disks are in fairly large patches of ½-2 cm thick with some incipient disking in between. 1689.60 - 1692.20 : 0.00 % RQD 100.00 % Core								
		Moderate concave disking with ½-2cm disks and incipient disking found as well.								

SUDBURY INTEGRATED NICKEL OPERATIONS *GLENCORE CORRECT

DETAILED LOG

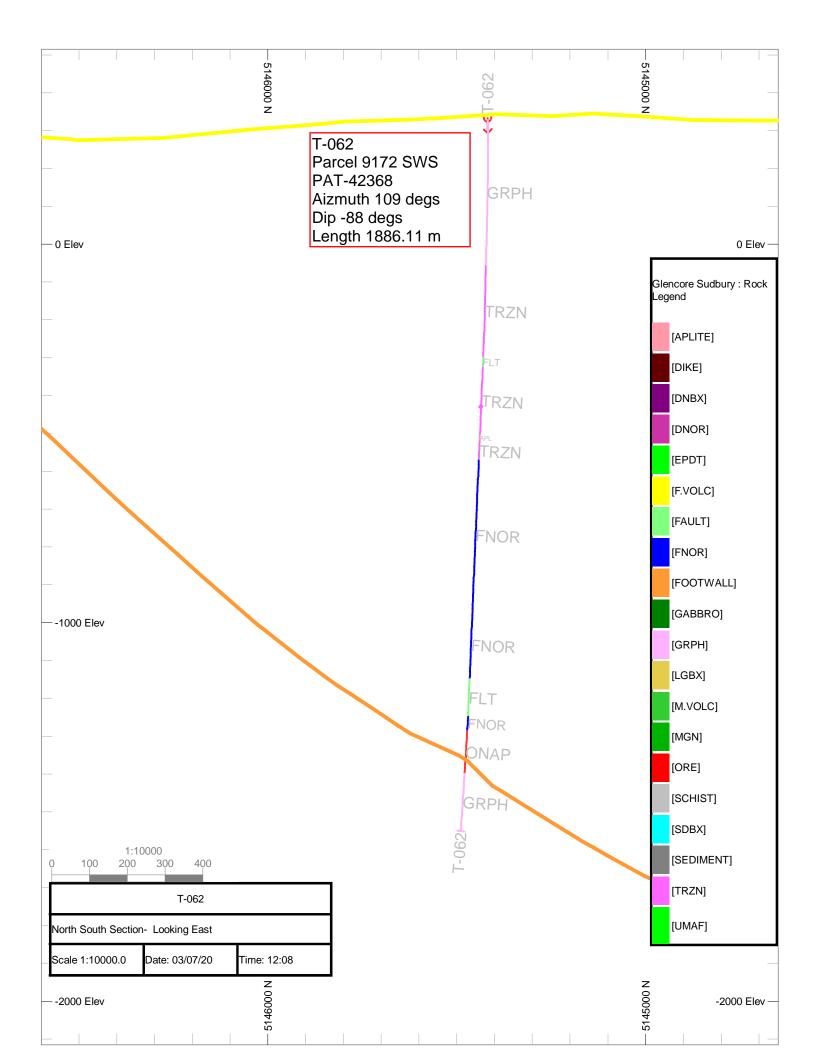
Page 7 of 8

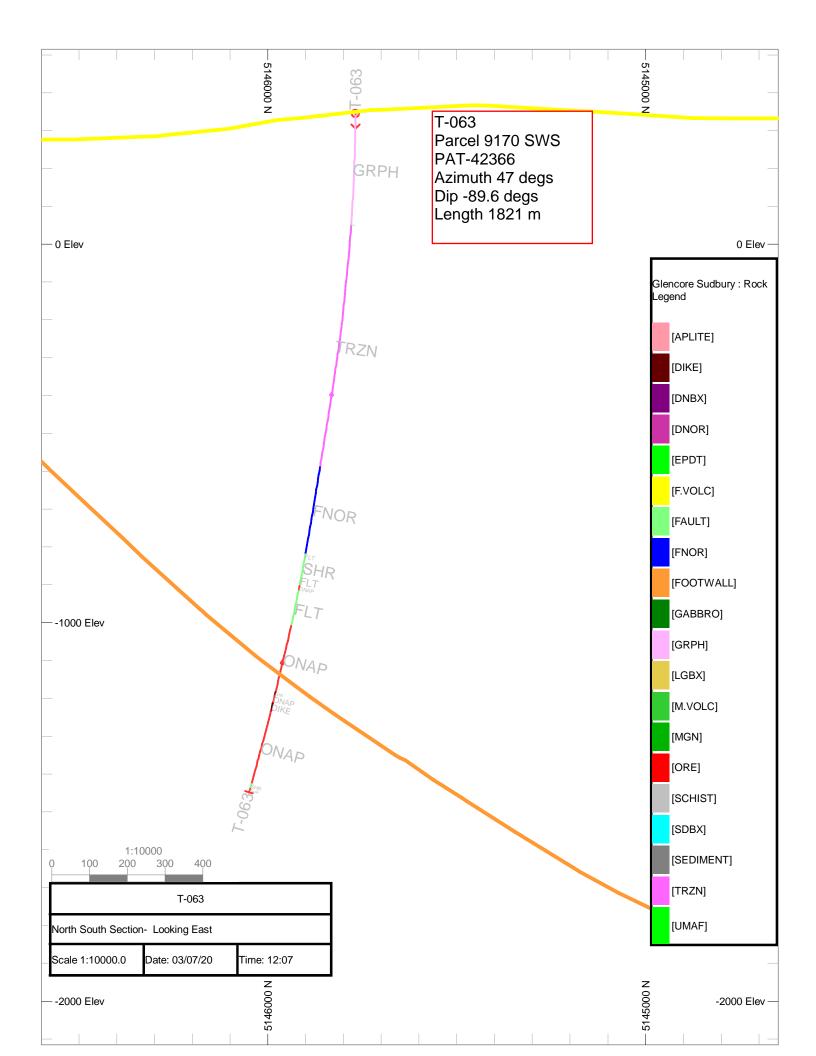
Hole Number: T-065

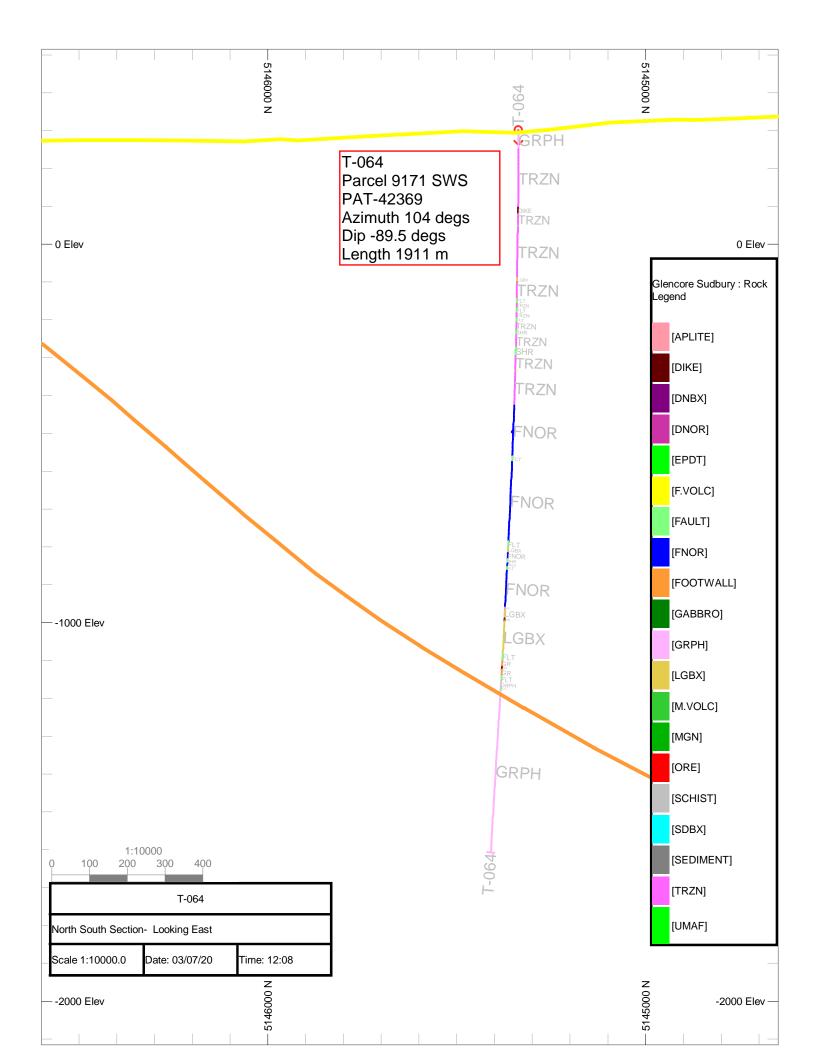
Detailed Lithology			Assay Data						
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %	
1724.65	1787.65	GRPH, Granophyre							
		Fine to medium grained with minor salmon to brick red colored felsic groundmass within dark green to greenish black pyroxene and creamy white plagioclase feldspars. Unit is weakly sheared.							
		Structure							
1787.65	1926.00	1735.50 - 1748.80 : SHR Shear, 35.00 Deg to CA SHR zone with moderate CHL infill as well as weak to moderate CARB tension gashes. SHR. Shear							
1707.05	1020.00	Large, moderate, slightly blocky SHR zone, within GRPH with moderate CHL/CARB FF shearing infill and tension gashes throughout, at a dip of 60° tca. No mineralization seen.							
1826.00	1837.55	GRPH, Granophyre							
	1010 50	Fine to medium grained with minor salmon to brick red colored felsic groundmass within dark green to greenish black pyroxene and creamy white plagioclase feldspars. Unit is weakly sheared.							
1837.55	1849.50	ONAP, Onaping Formation Onaping Formation (Grey Member)- Unit is somewhat intermixed with the GRPH with several GRPH fragments as well as							
		various sized (mm to several cm), jagged to sub-rounded fragments of several rock types (mafic, meta-sedimentary, sedimentary) within a blackish-green mafic matrix. Moderate CHL fractures + CARB FF dipping between 45-70°. Unit ends at 1882.75m within the FZ. No mineralization seen.							
1849.50	1919.00	FLT, Fault							
		Strong, large, blocky FZ with moderate shearing with several large patches of disking as well. Unit contains ~45cm of sandy-clay mud gouge. Dip is difficult to assess but appears to be (according to shearing before and after) 60° tca. Strong CHL fractures and FF throughout. Unit appears to be going in and out of ONAP/GRPH at start of FZ with the ONAP Grey member ending at 1882.75. No mineralization seen.							
		RQD							
		1852.00 - 1862.65 : 0.00 % RQD 100.00 % Core							
		Large disking interval, largely due proximity to FZ, disks are in fairly large patches of ½-2 cm thick with some incipient disking in between.							
		1881.80 - 1882.60 : 0.00 % RQD 100.00 % Core							
		Weak concave disking with 1-3cm disks and incipient disking as well.							
		1883.15 - 1884.00 : 0.00 % RQD 100.00 % Core Weak convex disking with 1-3cm disks and incipient disking as well.							
		1908.40 - 1912.75 : 0.00 % RQD 100.00 % Core							
		Moderate concave disking with ½-2cm disks and incipient disking found as well.							
		1915.80 - 1916.05 : 0.00 % RQD 100.00 % Core							
1919.00	1948.45	Weak convex disking with 1-3cm disks and incipient disking as well. ONAP, Onaping Formation							
		Onaping Formation (Basal Member) - Unit starts at 1882.75 within FZ. Strongly silicified, sub-rounded to almost jagged light beigy-green to white to light pink mostly Quartzite and Andesite fragments, within a sparce grey-green to taupe silicious matrix with very fine mica and fine PY occasionally seen.							
		RQD							
		1933.50 - 1936.40 : 0.00 % RQD 100.00 % Core							
		Moderate convex disking with 1/2-2cm disks and incipient disking found as well.							

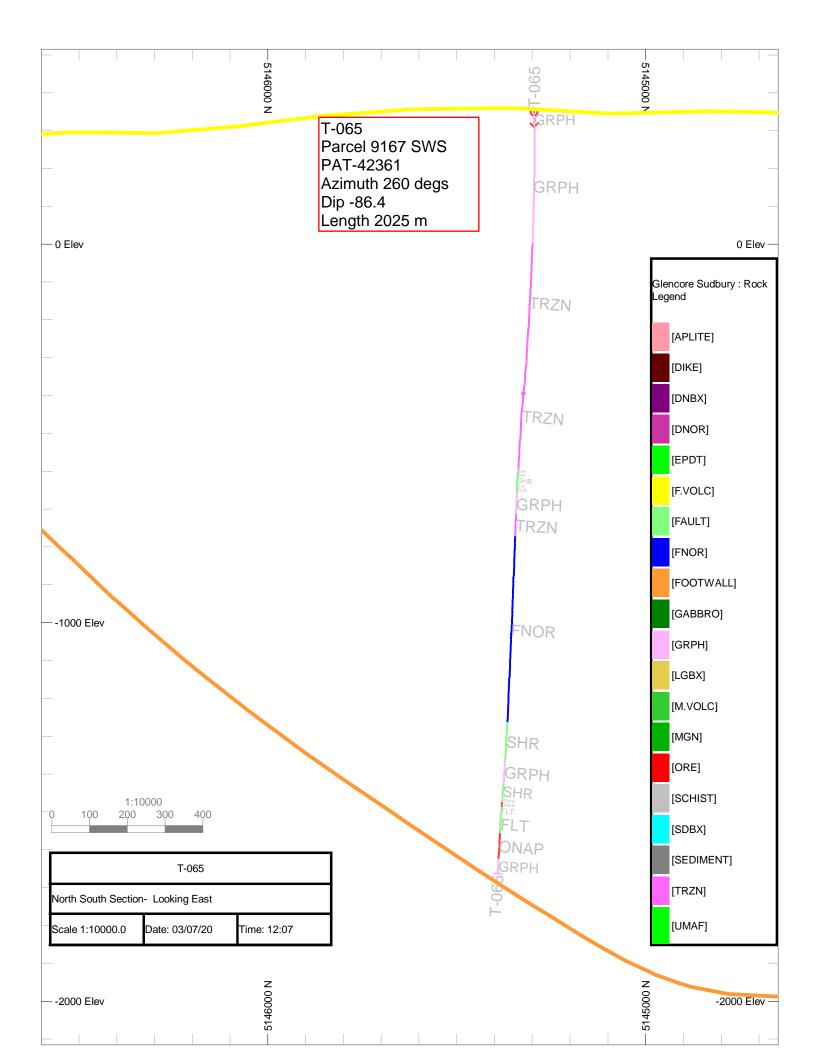
SUDBURY
INTEGRATED NICKEL
OPERATIONS
* GLENCORE stream

DETAILED LOG


Page 8 of 8

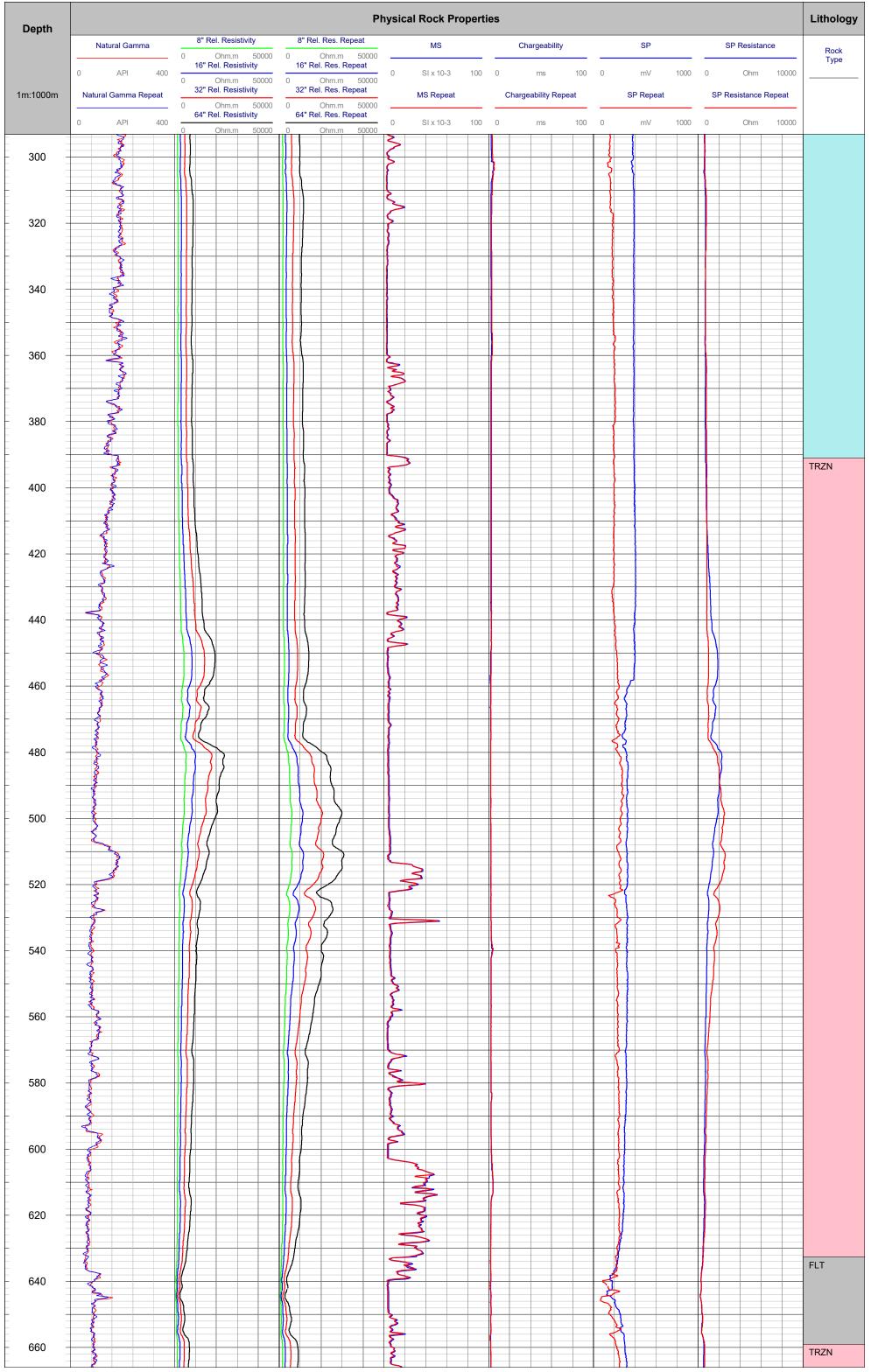

Hole Number: T-065

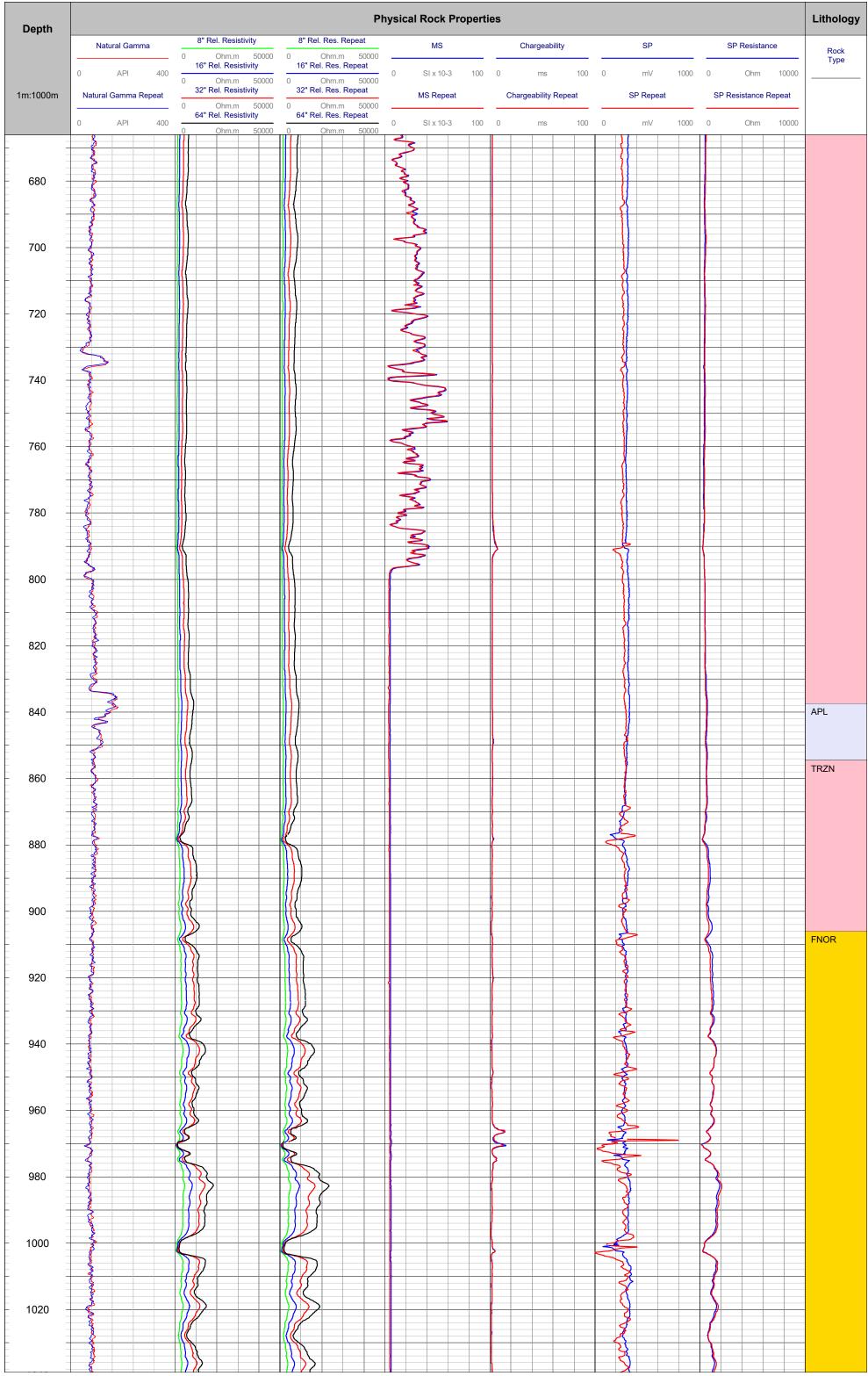

Detailed Lithology			Assay Data Sample # From To Length Ni % Cu %					
From	То	Lithology	Sample #	From	То	Length	Ni %	Cu %
1948.45	1987.85	ONAP, Onaping Formation						
		Onaping Formation (Basal Onaping Intrusive) - Unit is fine grained, dark grey to greenish grey pyroxene and amphiboles matrix with fairly dense greenish beige, jagged fragments of andesite, quartz & plagiocase. Fairly distinct contacts at both ends. No mineralization seen.						
		RQD						
		1965.95 - 1966.65 : 0.00 % RQD 100.00 % Core						
		Moderate convex disking with ½-2cm disks and incipient disking found as well.						
1987.85	2025.00	GRPH, Granophyre						
		Medium grained, dark green to blackish green pyroxenes with few black amphyboles, minor salmon to brick red colored felsic groundmass and creamy white plagioclase feldspars. No mineralization.						
2025.00	2025.01	EOH, End of Hole						

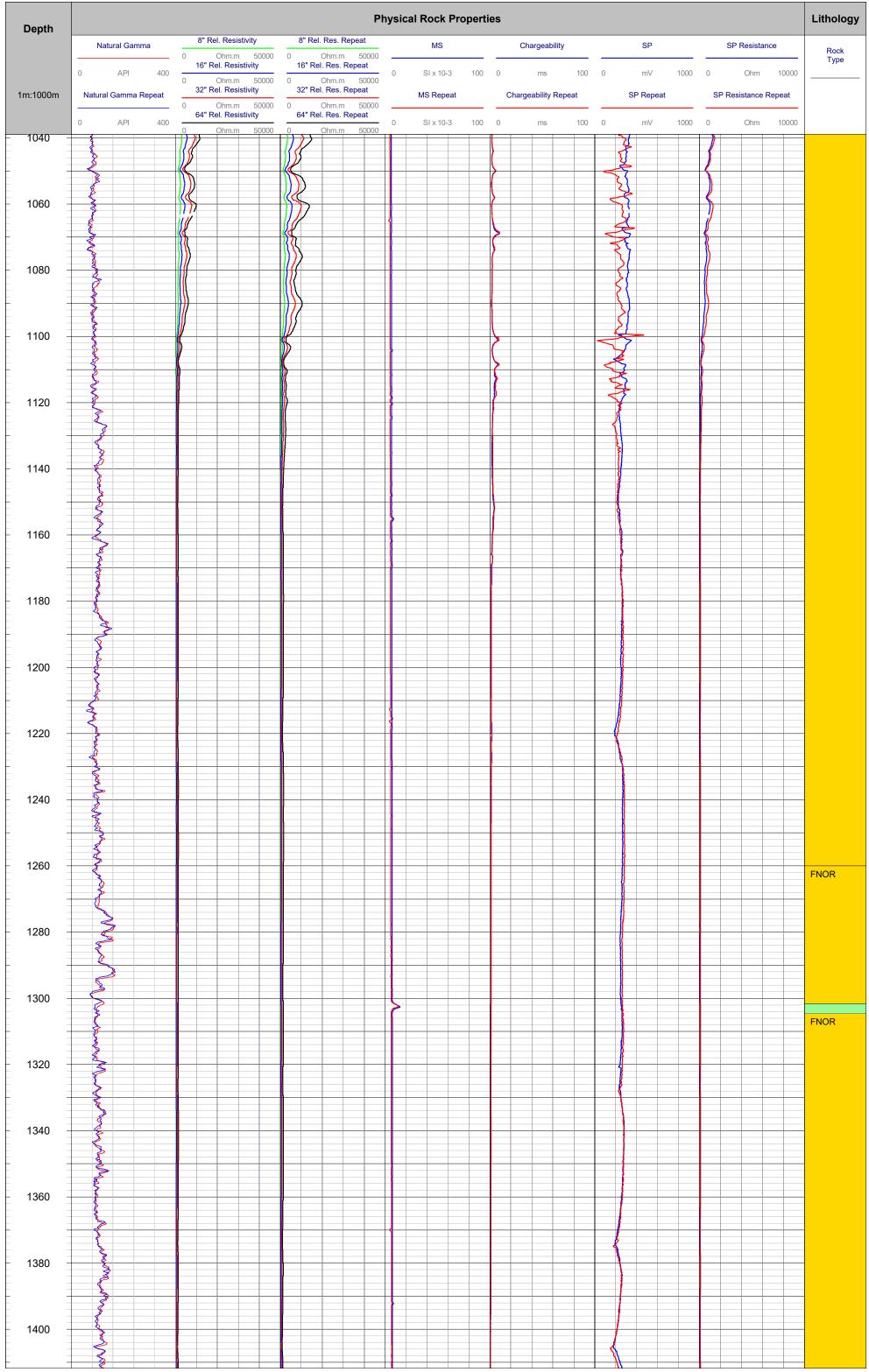

APPENDIX III

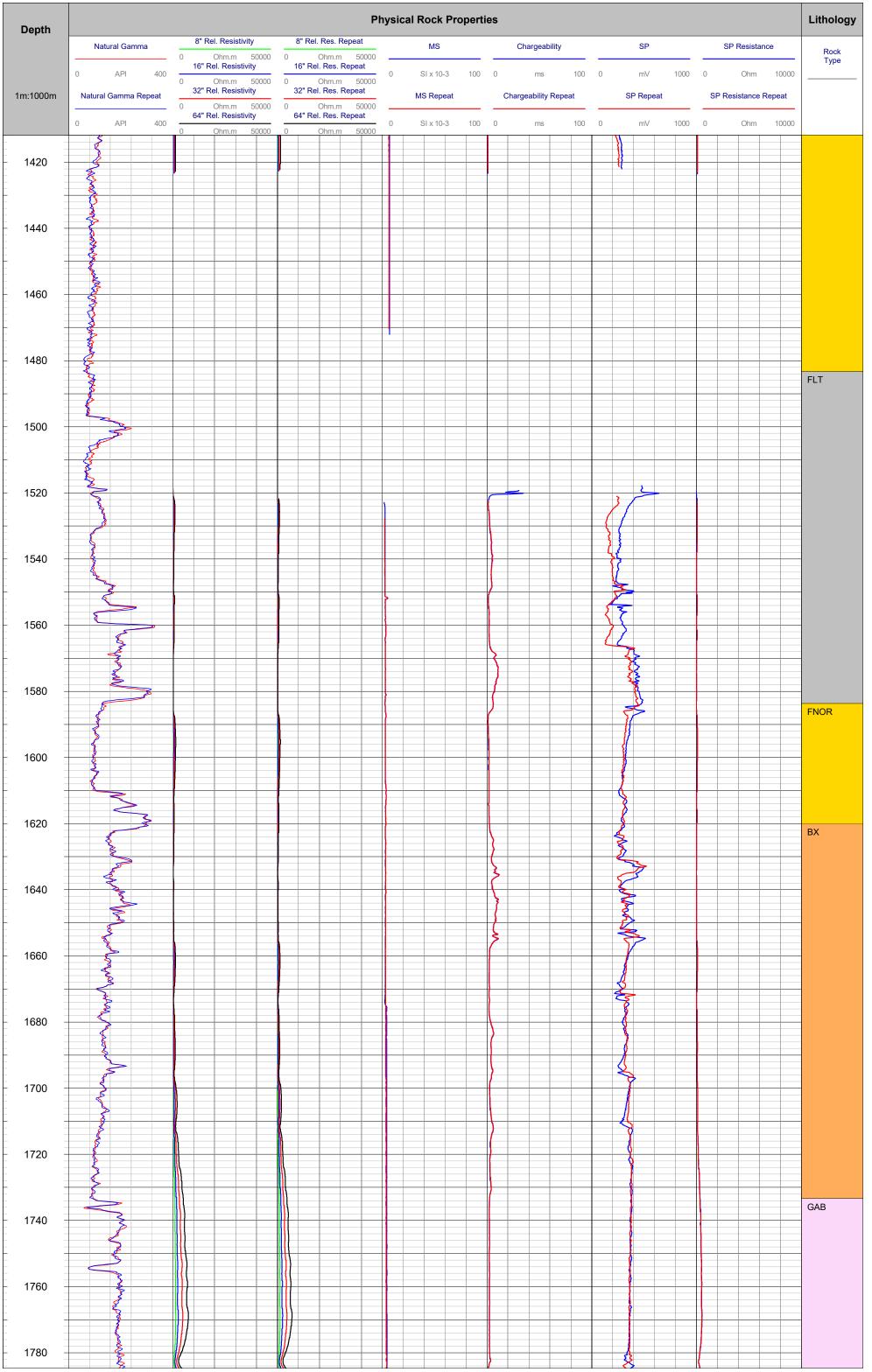
Sections

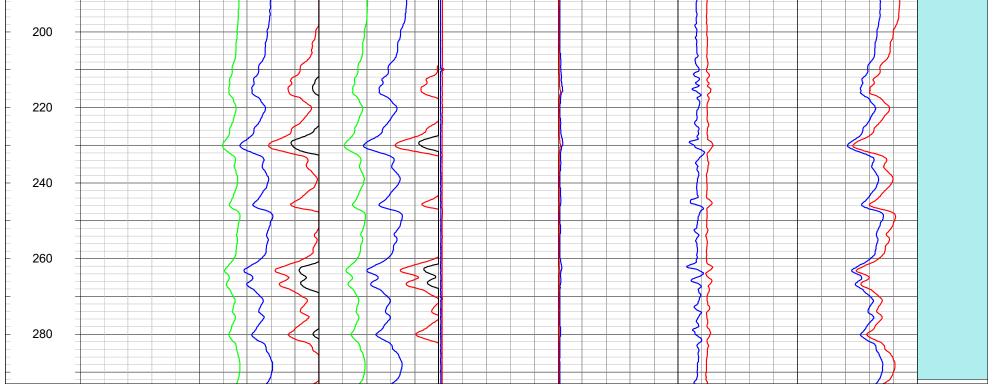

APPENDIX IV

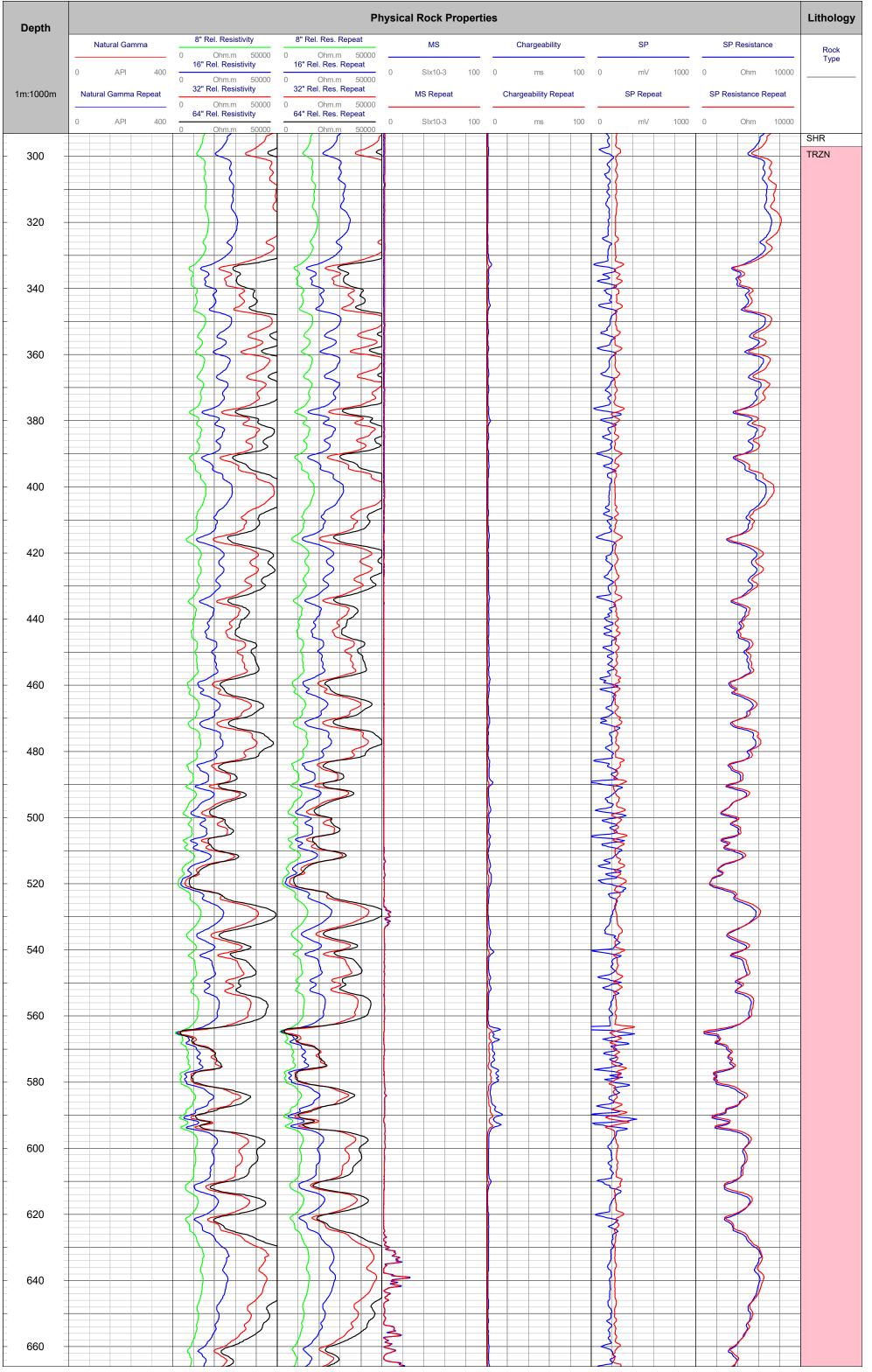

Physical Properties

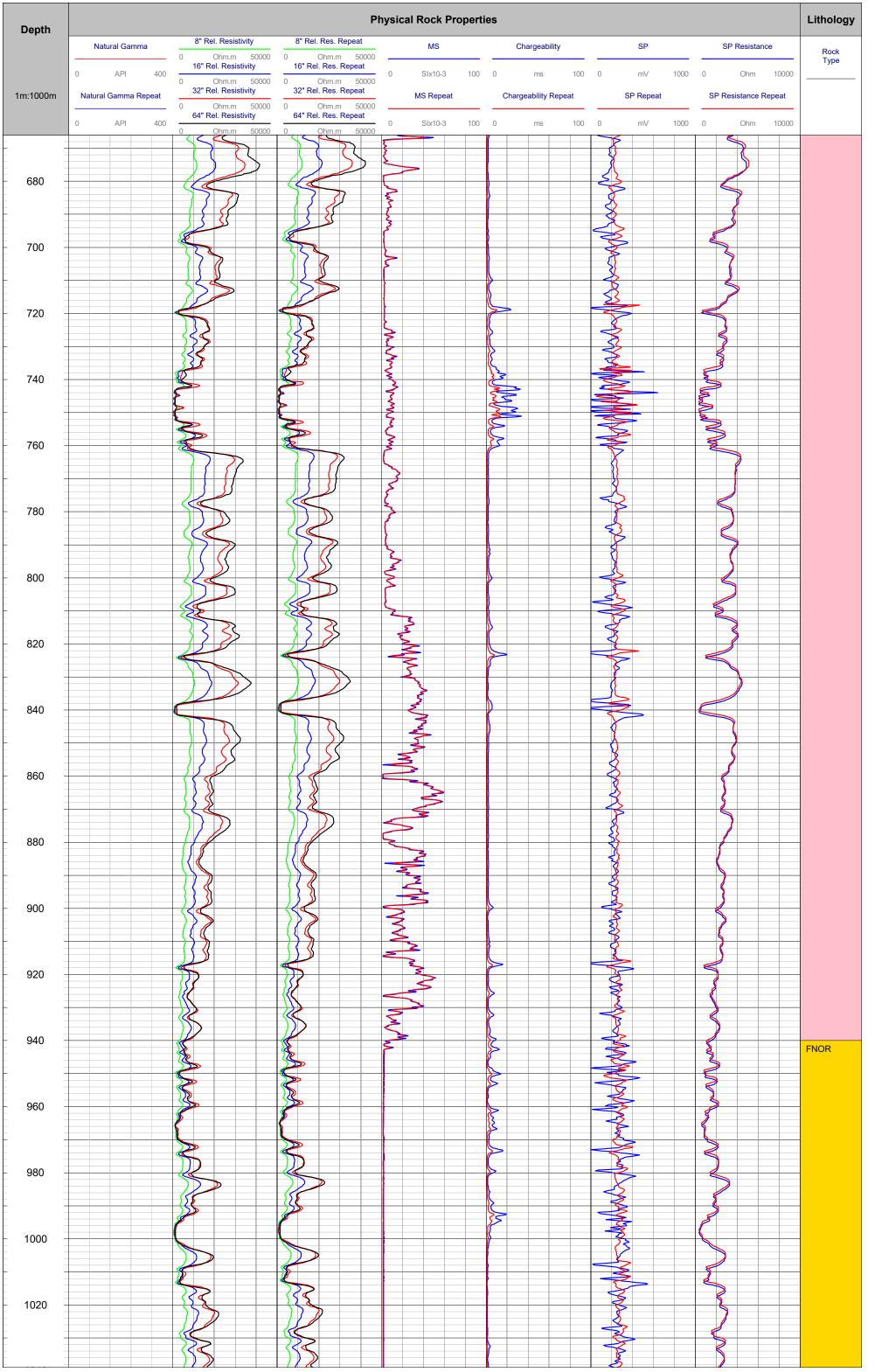

PHYSICAL PROPERTIES PLOT

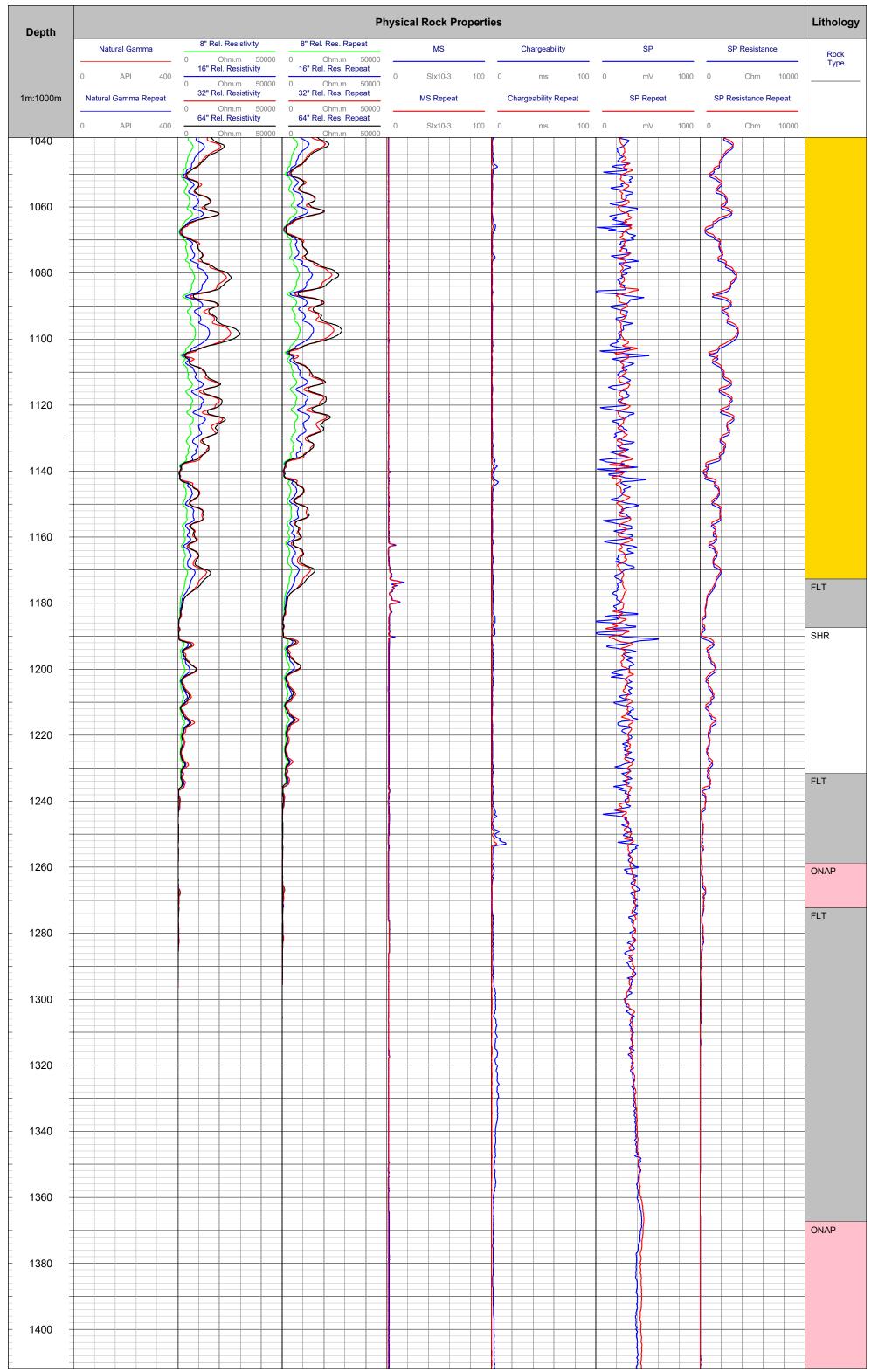


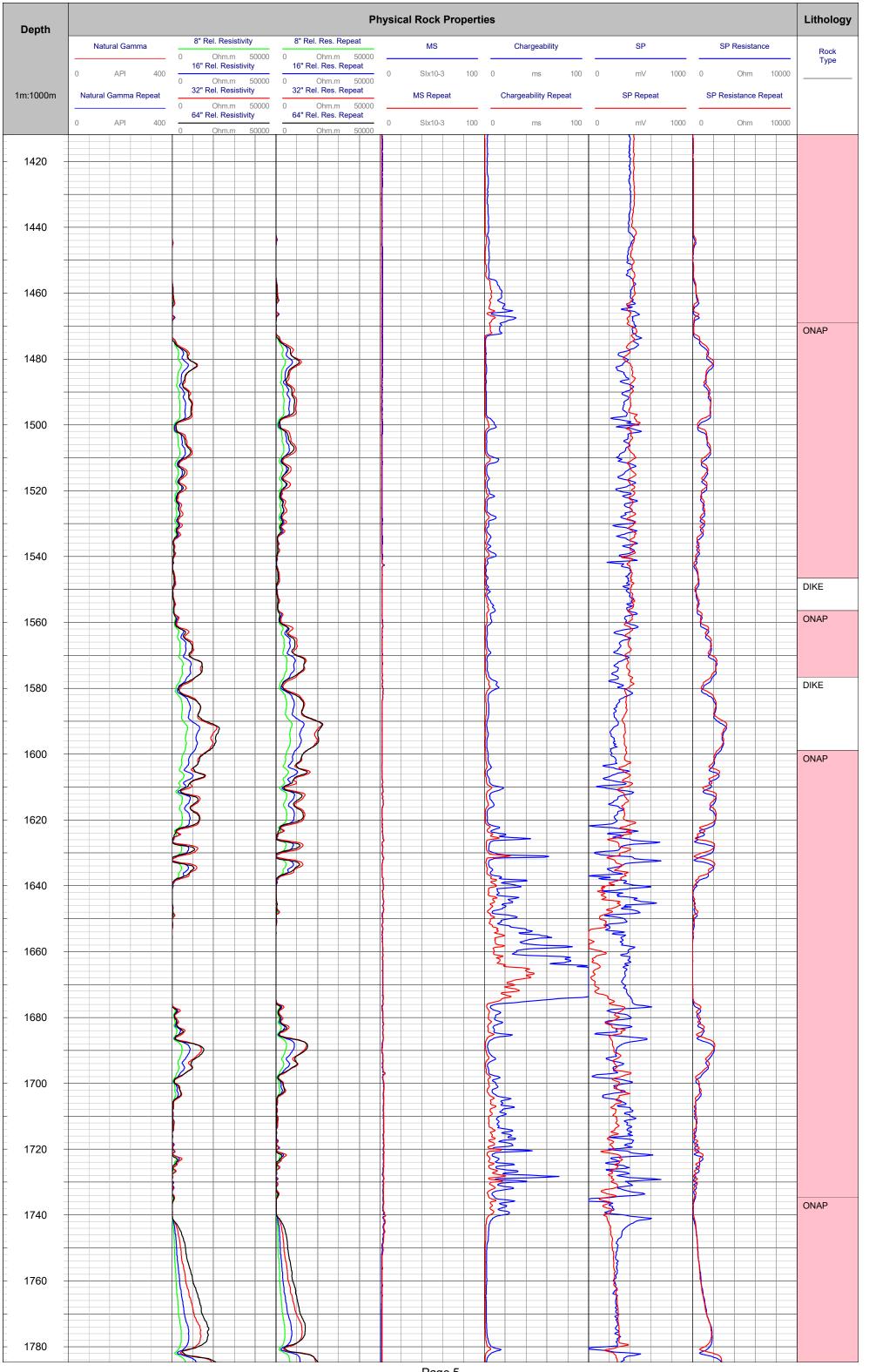

Company: Hole ID: Acquisitio Field Pers Data Analy Survey Da	n date(s): onnel: ysis:	T-062 May 16 [.] A. Crosl	e - Drury +25-26, 20 by, O. Fon e, P. Patra	nenko, Q. N	go		ed Depti ameter: /pe: Depth:	n: 18 60					UT UT	UTM X (Easting): 462962 UTM Y (Northing): 5145418.3 UTM Z (Elevation): 362.06 Legal Location: Sudbury					
Notes:																			
Natural Gam	ma was acquirec	l in rods be	tween 1423	-1520m. Hole	size rec	luction at 1518	m. Gap in	electrical	and magne	tic pr	operties a	at hole red	uction du	e to boreł	nole condi	tions.			
Depth							Physic	al Rock	Properti	es									Lithology
	Natural Ga	mma		Resistivity		Rel. Res. Repeat		MS			Chargea	ability		SP		SP	Resistar	nce	Rock
	0 API	400	16" Rel.	hm.m 50000 Resistivity		Rel. Res. Repeat	0	SI x 10)-3 100	0	ms	100	0	mV	1000	0	Ohm	10000	Туре
1m:1000m	Natural Gamma	a Repeat	32" Rel.	hm.m 50000 Resistivity		Rel. Res. Repeat		MS Rep	peat	С	hargeabilit	y Repeat		SP Repe	at	SP Res	istance l	Repeat	
	0 API	400	64" Rel.	hm.m 50000 Resistivity		Rel. Res. Repeat	<u> </u>	SI x 10)-3 100	0	ms	100	0	mV	1000	0	Ohm	10000	
			0 Oł	hm.m 50000	0	Ohm.m 50	000												CAS
	3		>>>		55	>>	7							> { > { > {		->			GRPH
20	- And		$\langle \langle \langle \rangle \rangle$		R	\geq										\leq			
20				}) }												-
				\mathcal{Y}									{						-
40 -				>	55	55							Į			5			
				<u> </u>	$\langle \langle \langle \rangle \rangle$			•					3	~		5			
	A Contraction of the second se						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						}						
60							4												
 																	11	/	-
			$\left\{ \right\}$	\mathcal{Y}			\rightarrow						Ş				\mathcal{Y}		
80	A Charles		χ	22									}				2		
100 -				5														$\left\{ \right\}$	
																		2	
	2 And		15	>	1	15							₹.	4					
120			\square		115											P			
140																			-
-																			
160																			
													5	{					
														3					
180																			
							k												

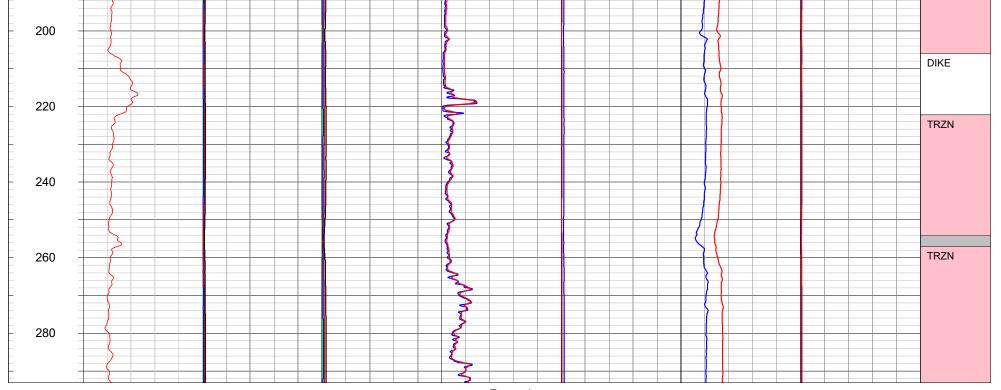


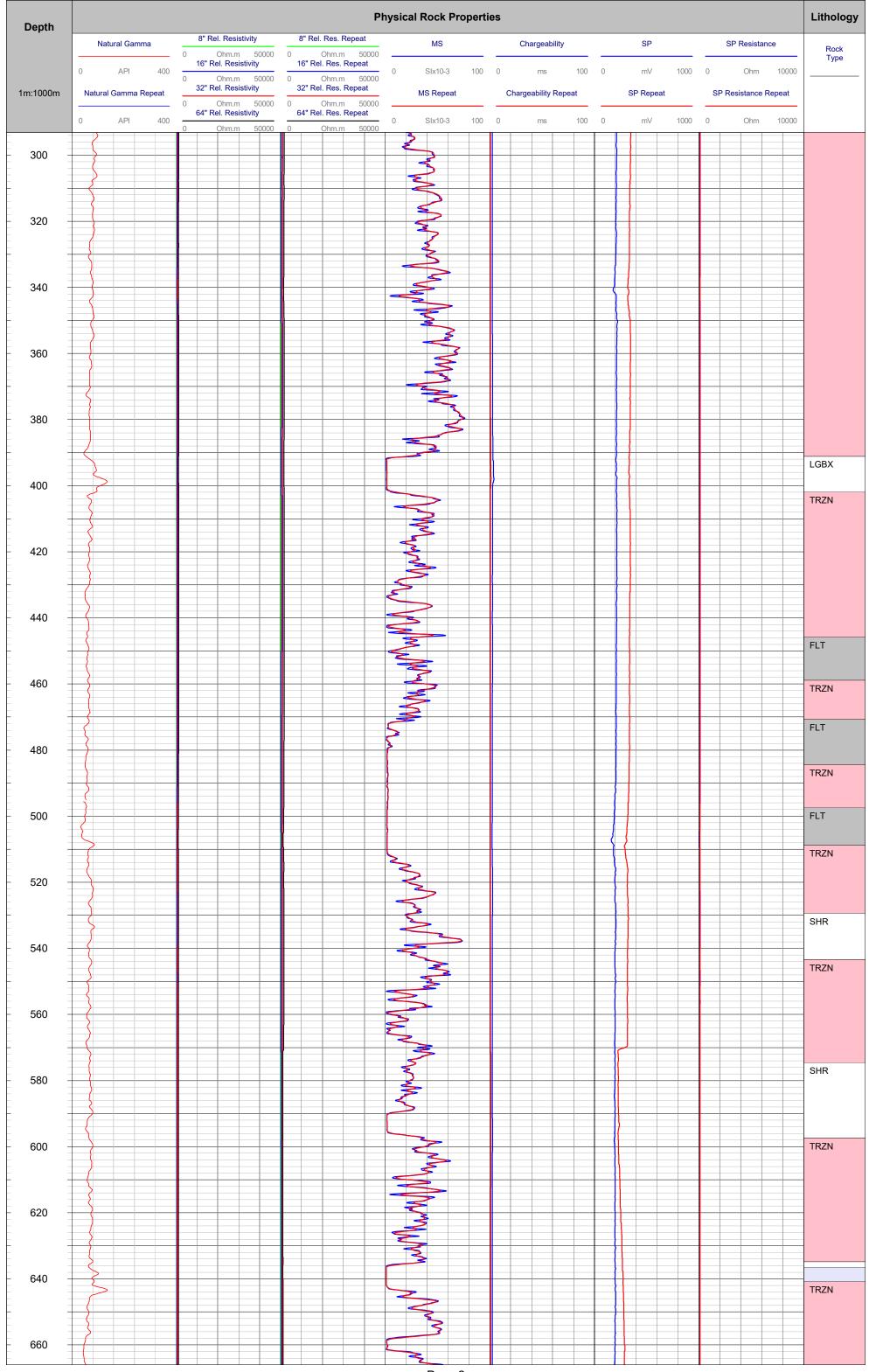

Depth			Ph	nysic	al Rock Prop	oerti	es									Lithology
	Natural Gamma	8" Rel. Resistivity	8" Rel. Res. Repeat		MS			Chargeability	y		SF	2		SP Resista	nce	Rock
	0 API 400	0 Ohm.m 50000 16" Rel. Resistivity	16" Rel. Res. Repeat	0	SI x 10-3	100	0	ms	100	0	m	√ 1000	0	Ohm	10000	Туре
1m:1000m	Natural Gamma Repeat	0 Ohm.m 50000 32" Rel. Resistivity	0 Ohm.m 50000 32" Rel. Res. Repeat		MS Repeat			nargeability Re			SP Re			SP Resistance		
		0 Ohm.m 50000 64" Rel. Resistivity	0 Ohm.m 50000 64" Rel. Res. Repeat		01 × 40.2	100				0		4 4000	_			
· -	0 API 400	0 Ohm.m 50000	0 Ohm.m 50000	0	SI x 10-3	100	0	ms	100	0	m\	V 1000	0	Ohm	10000	
1800	<u> </u>															-
-				ł												-
1820 -				ł												-
-																-
-				Ş							1					-
1840				ł												-
				3												-
1860																-
				Ş												-
1880 -	žę (کے							8		$\left \left\langle \right\rangle \right $			
1000				}										·		

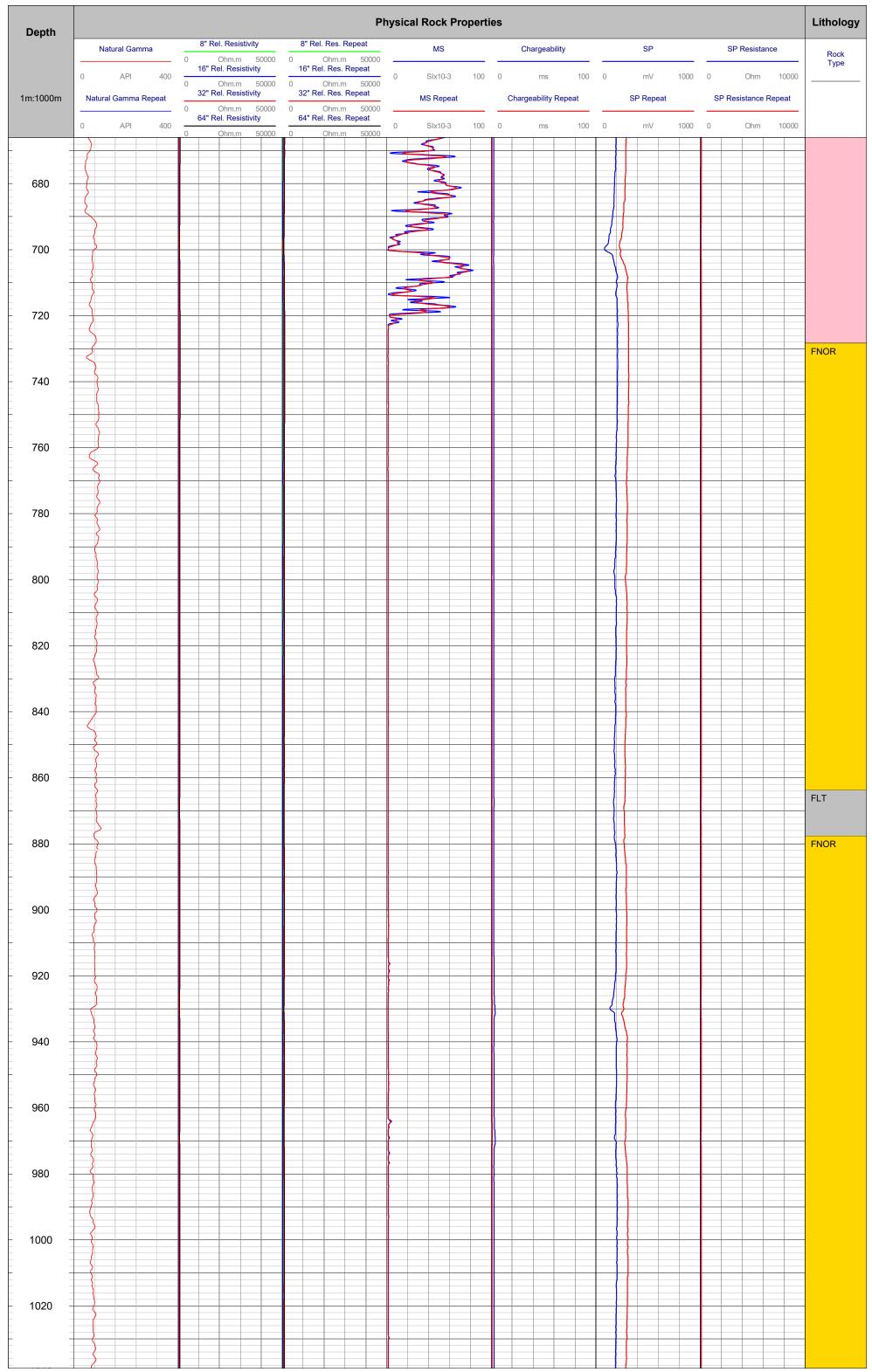

PHYSICAL PROPERTIES PLOT

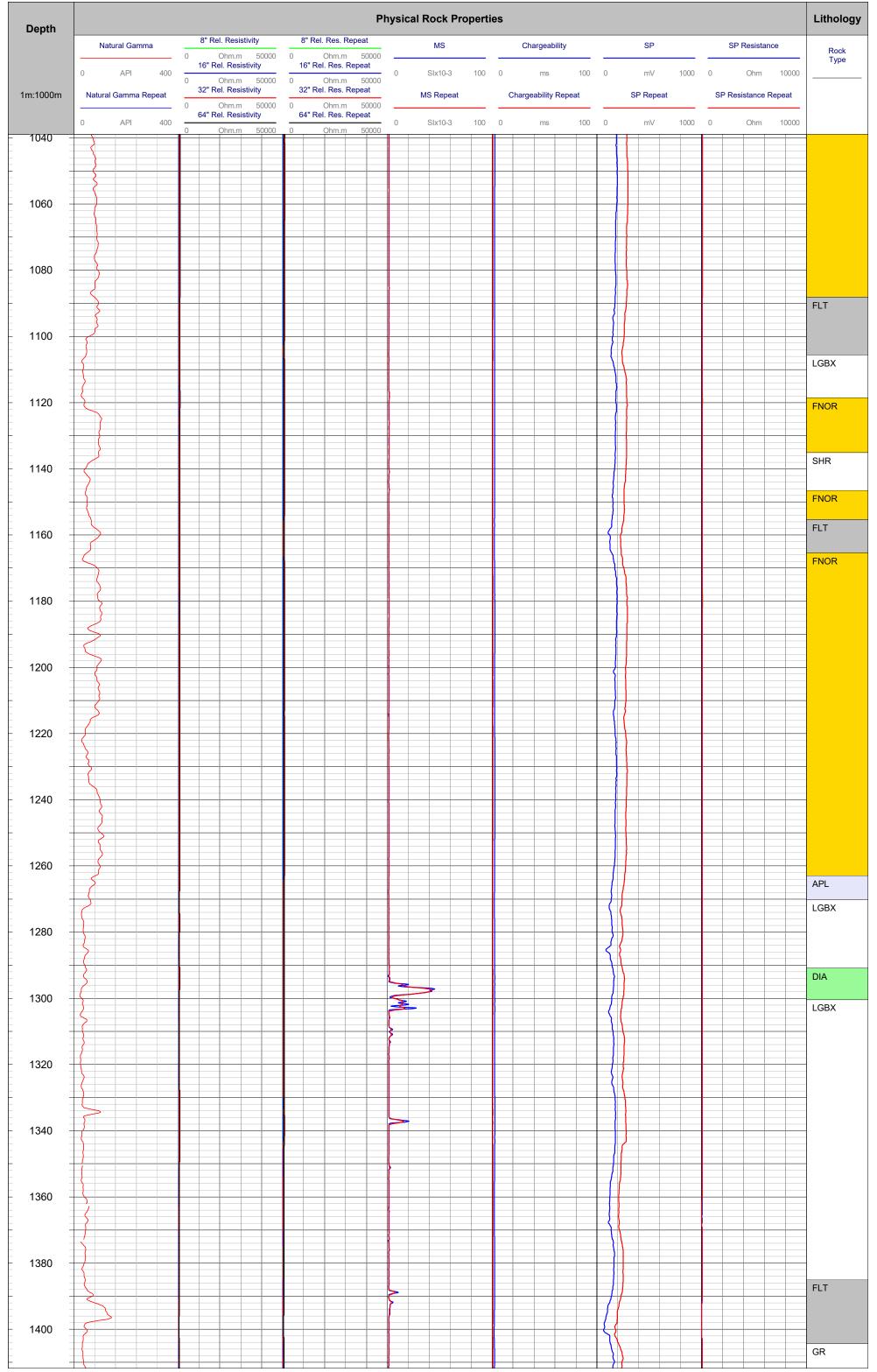


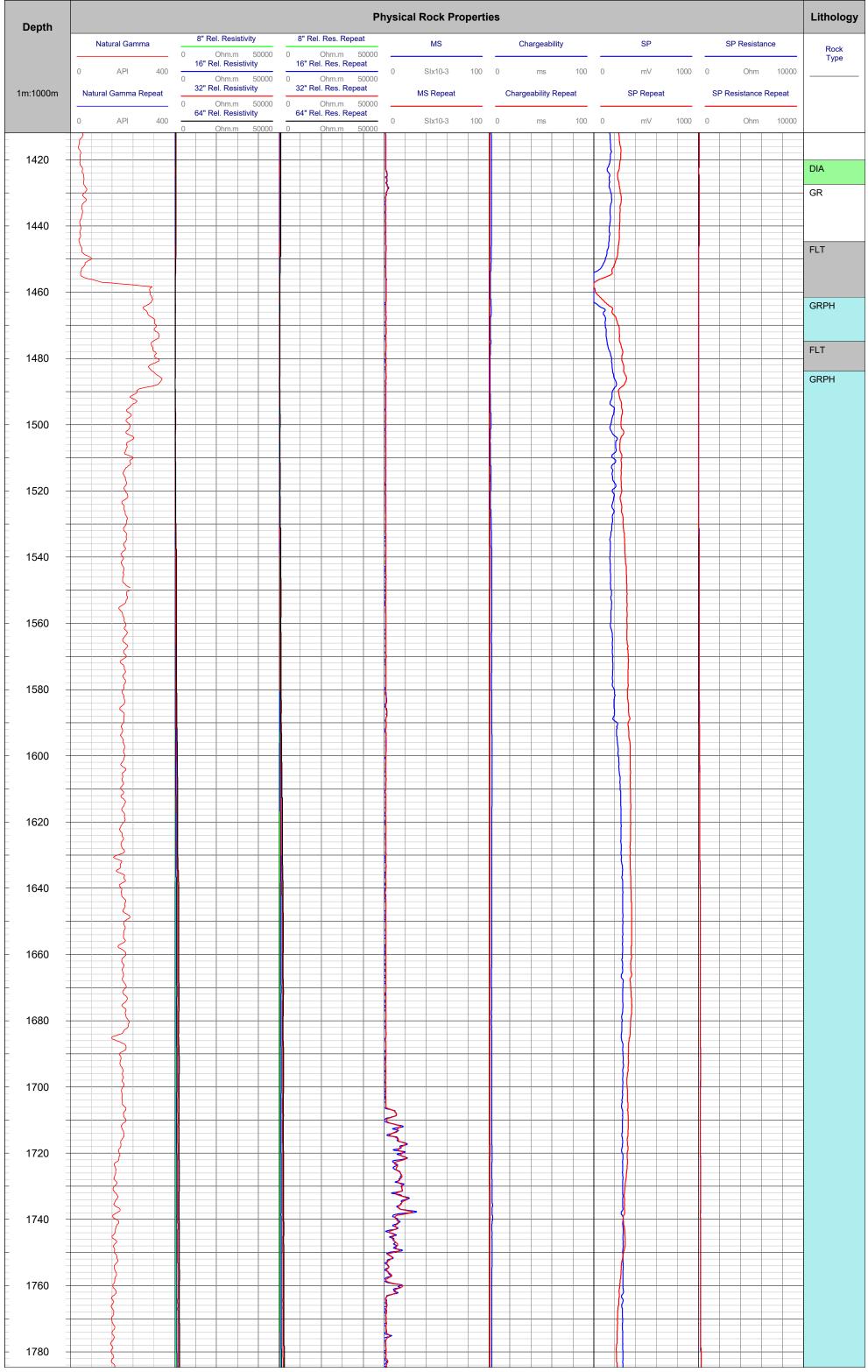

Company: Hole ID: Acquisitio Field Pers Data Analy Survey Da	n date(s): onnel: ysis:	Glencore T-063 Aug. 23, C. Crawfe R. Leblar 1	2019 ord; P		kovic		9 - - -	Fotal De Surveye Hole Dia Hole Typ Casing E Fluid Le	d Depth meter: be: Depth:	n: 18 76					UT UT	ΓΜ Χ (Ε ΓΜ Υ (Ν ΓΜ Ζ (Ε gal Loc	orthing levatio	g): n):		, ON		
Notes: Natural gamm	na was not logge	ed on this bo	orehole.																			
Depth									Physic	al Rock	Propert	ies										Lithology
	Natural Ga		0	Rel. Resisti Ohm.m	50000	0	Ohm	s. Repeat n.m 5000	0	MS			Chargea	bility		SP			SP Res	istance	9	Rock Type
1m:1000m	0 API Natural Gamma	a Repeat	0 32" 0	Rel. Resist Ohm.m Rel. Resist Ohm.m	50000 ivity 50000	0 32" 0	' Rel. Re Ohm ' Rel. Re Ohm	s. Repeat n.m 5000 s. Repeat n.m 5000	_	Slx10-3		0 C	ms Chargeabilit		0	mV SP Rep			Of P Resista		10000	
	0 API	400	0	Ohm.m	50000	<u>64</u> "	' Rel. Re Ohm	n.m 5000	0	SIx10-3	3 100	0	ms	100	0	mV	100	0 0	Oł	m	10000	CAS
20																				2		GRPH
40					>			NN S													\backslash	
60 -																					$\nabla \setminus \nabla$	
80								Z												Z		
100 -					J											<pre></pre>				}	}	
120 -					>															<u>}</u>		
140																						
160																						
180				$\left \right\rangle$	2		Z	2							$\left \right $	}				2	$\left\{ \right.$	




Depth			Phy	vsical Rock Properti	9 5			Lithology
Doptil	Natural Gamma	8" Rel. Resistivity	8" Rel. Res. Repeat	MS	Chargeability	SP	SP Resistance	
		0 Ohm.m 50000 16" Rel. Resistivity	16" Rel. Res. Repeat	0			0	Rock Type
1m:1000m	0 API 400 Natural Gamma Repeat	0 Ohm.m 50000 32" Rel. Resistivity	0 Ohm.m 50000 32" Rel. Res. Repeat	0 SIx10-3 100	0 ms 100 Chargeability Repeat	0 mV 1000 SP Repeat	0 Ohm 10000 SP Resistance Repeat	
111.100011	· · · · · ·	0 Ohm.m 50000 64" Rel. Resistivity	64" Rel. Res. Repeat			· · · · · · · · · · · · · · · · · · ·		
	0 API 400	0 Ohm.m 50000		0 Slx10-3 100	0 ms 100	0 mV 1000	0 Ohm 10000	
1800 -			255					SHR
								ONAP
1820 -								UNAP


PHYSICAL PROPERTIES PLOT




Depth Natural General	
Matrix Gamma PP Rd. Residently PR Rd. Reside	Lithology
1 Common Source String 100 0 million of the residence of the residence repeat 100 0 million of the residence repeat 100 0<	Baak
1m:100m 0 AP 00 0	Rock Type
Industry Industry <th< th=""><td> </td></th<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	CAS
	GRPH
	-
	-
	-
	-
	-
	TRZN
	-
	-
140	-
140	
	-
160	-
	-
	-

Depth										Р	hysic	al Roc	k Pro	pertie	es										Lithology
Doptil		Natural Gamma		0	8" Rel. Resis		0000		. Res. Re Ohm.m	peat 50000		М	S			Char	geabili	ty		SP			SP Resista	nce	Rock
	0	API	400 -		16" Rel. Resi	stivity		16" Re	Ohm.m Ohm.m	epeat	0	Slx1	0-3	100	0		ms	100	100 0 mV 1000 0 Ohm			10000	Туре		
1m:1000m	Nat	ural Gamma Re	epeat		32" Rel. Resi	stivity		32" Re	Ohm.m	50000 epeat 50000		MS Re	epeat		С	hargeal	bility R	epeat		SP Repea	t	SP	Resistance	Repeat	
	0	API	400 -		64" Rel. Resi	stivity		64" Re	I. Res. Re	epeat	0	Slx1	0-3	100	0		ms	100	0	mV	1000	0	Ohm	10000	
-		ξ		0	Ohm.m	50	0000	0	Ohm.m	50000															
-		5																							
1800																									
-		2									L														
		5									1														
1820																									
		5									<pre>></pre>														
-																									
1840																									
-																									
1860		}	D																						
1000		<u>}</u>																							
-																									
1880											2														
		}																							
-																									
1900		<u>}</u>									L														

APPENDIX V

BHEM Results

Sudbury Operations

Hole Number:	T-062
Collar Coord:	462962E 5145418 N 362m
Dip:	-89
Azimuth:	120
Depth:	1880m
Zone:	

Loop Size:	1km x 1km
Loop Name	1901/1902
Freq:	4Hz
APPROVED	
Plan	
Attached	

Data Quality: Excellent

Conductor	Elevation	Туре	Direction	Distance	Strength	Size	Comments
T062_1	1780m	off	90	200m	150 S/m	600mX600m	???

Comments and Recommendations:

T-062 was surveyed with loops 1901 and 1902 at 4hz. This hole was testing AMT anomaly interpreted from a previous AMT survey carried out in 2014. It appears that the 1901 loop is nearly null coupled and that the 1902 loop response shows a distant off-hole response. This correlates with the interpreted geology in the area. The off hole response appear to be approximately 200m east of the hole and appears to be 150 S/m and 600mX600m in size. The low conductance could be due to the distance away from the hole and could be better once we intersect the zone.

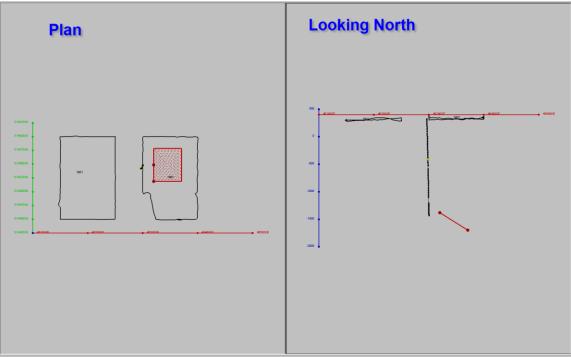
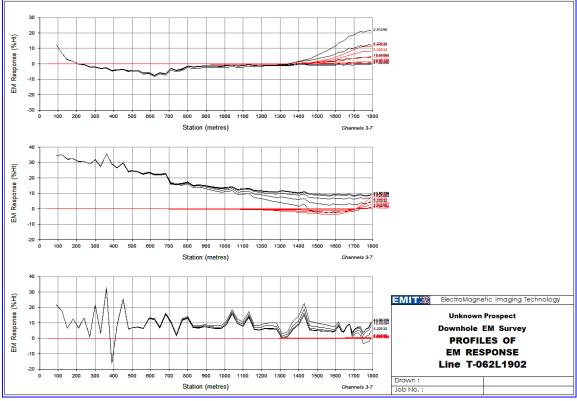
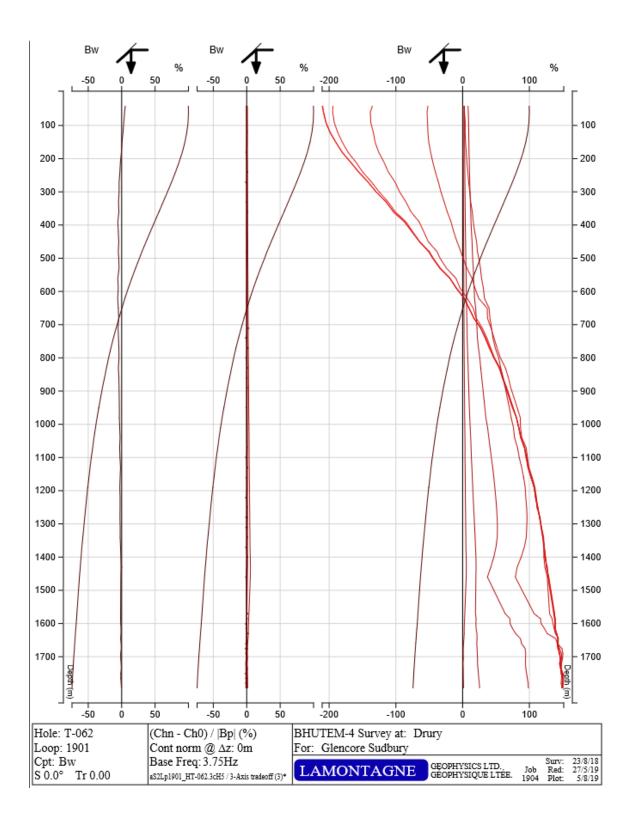
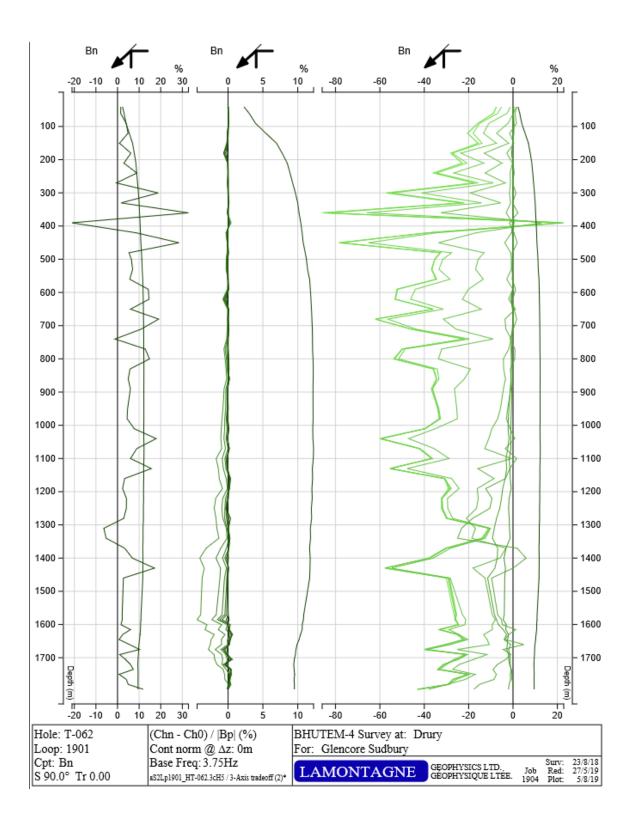
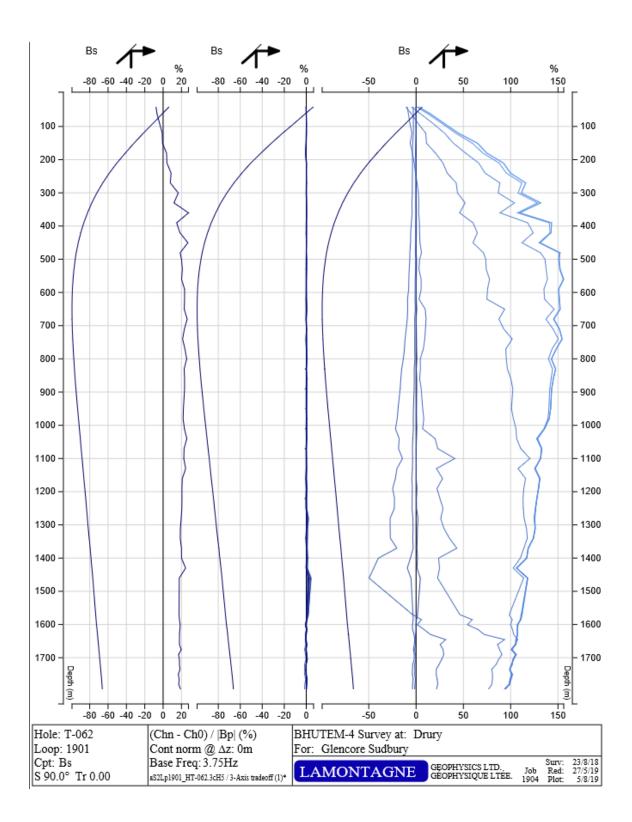
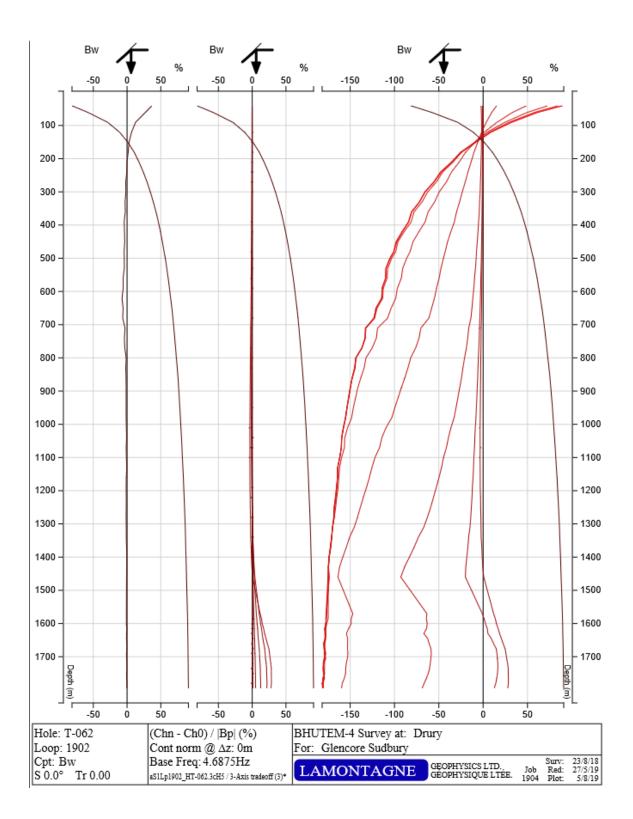
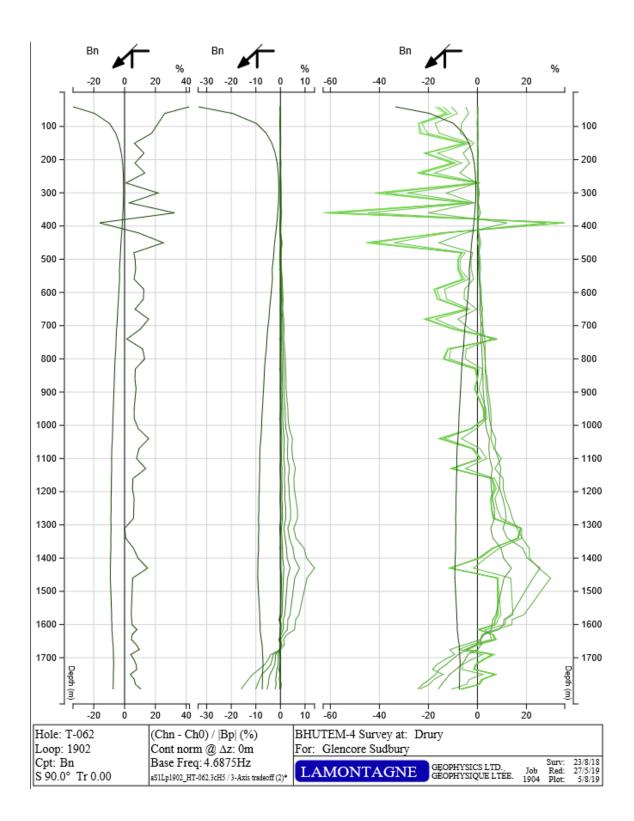
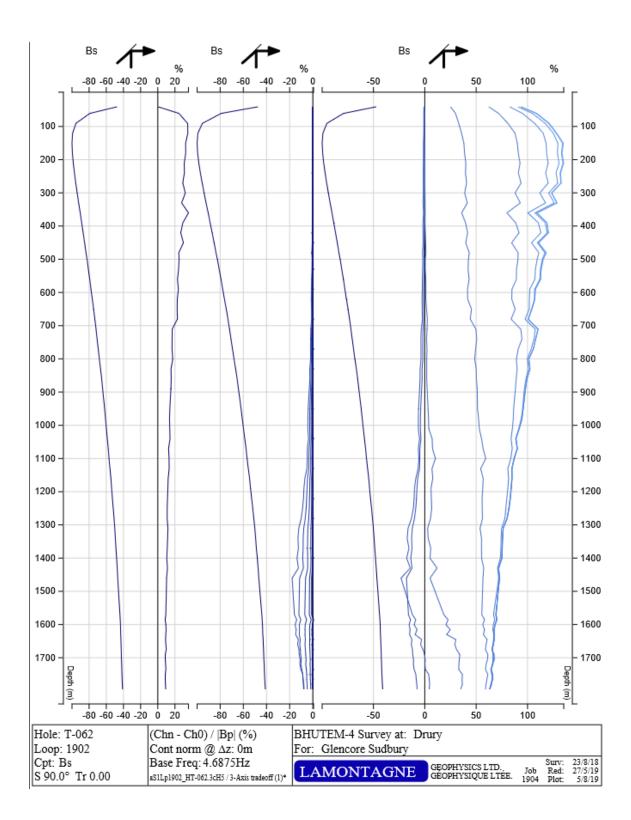


Figure 1: Modeled plates of T-062.


Figure 2: Profiles of T-062 loop 1902.



Sudbury Operations

Hole Number:	T-063
Collar Coord:	462962E 5145418 N 362m
Dip:	-89
Azimuth:	120
Depth:	1880m
Zone:	

Loop Size:	1km x 1km
Loop Name	1901/1902
Freq:	4Hz
APPROVED	
Plan	
Attached	

Data Quality: Excellent

	1		1	1			
Conductor	Elevation	Туре	Direction	Distance	Strength	Size	Comments
T063_1	1750m	off	40	80m	550 S/m	500mX300m	???

Comments and Recommendations:

T-063 was surveyed with loops 1901 and 1902 at 4hz. This hole was testing AMT anomaly interpreted from a previous AMT survey carried out in 2014. It appears that the 1901 loop is nearly null coupled and that the 1902 loop response shows a distant off-hole response. This correlates with the interpreted geology in the area. The off hole response appear to be approximately 80m north east of the hole and appears to be 550 S/m and 500mX300m in size.

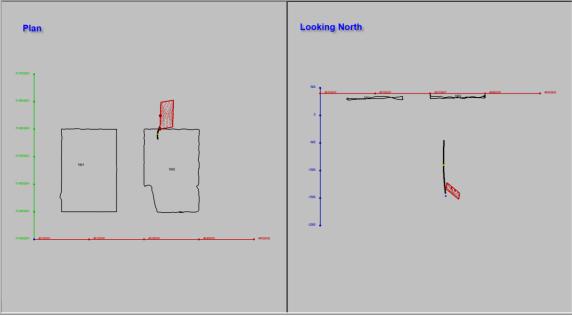
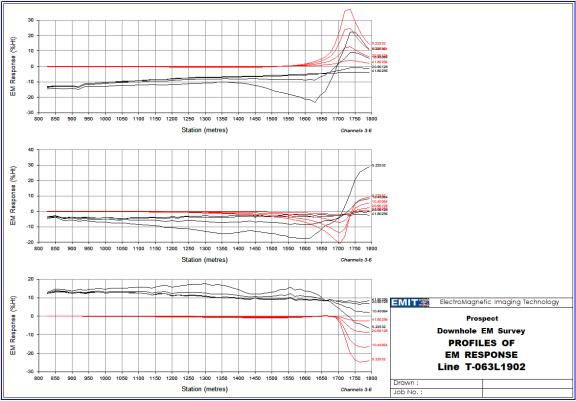
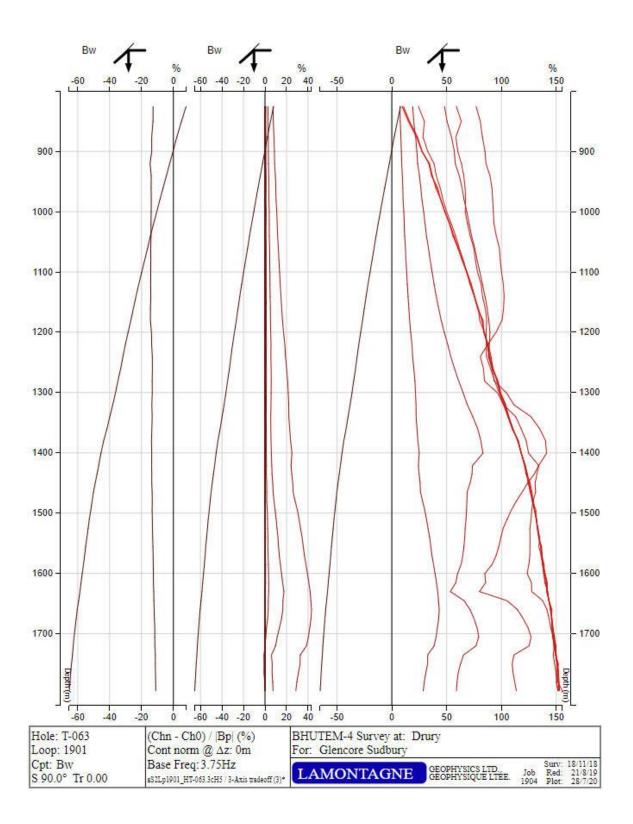
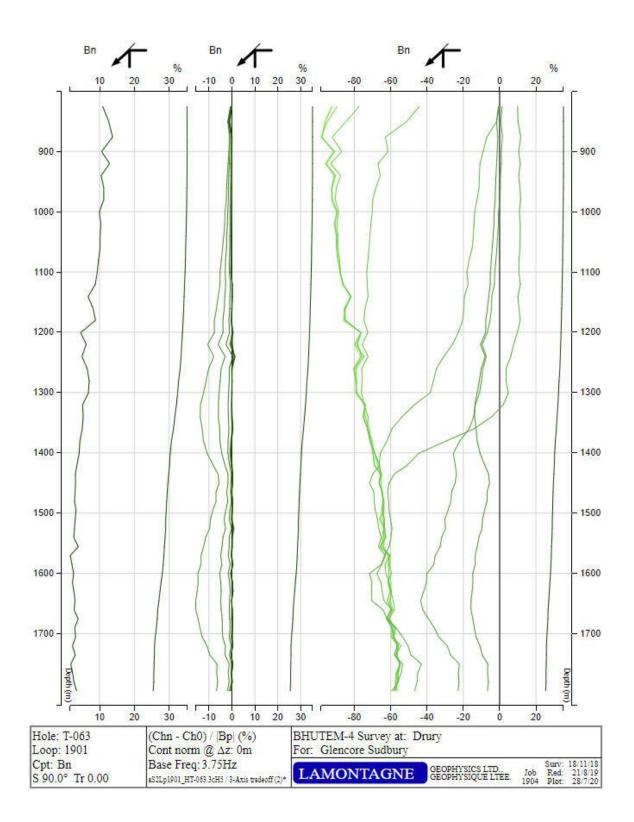
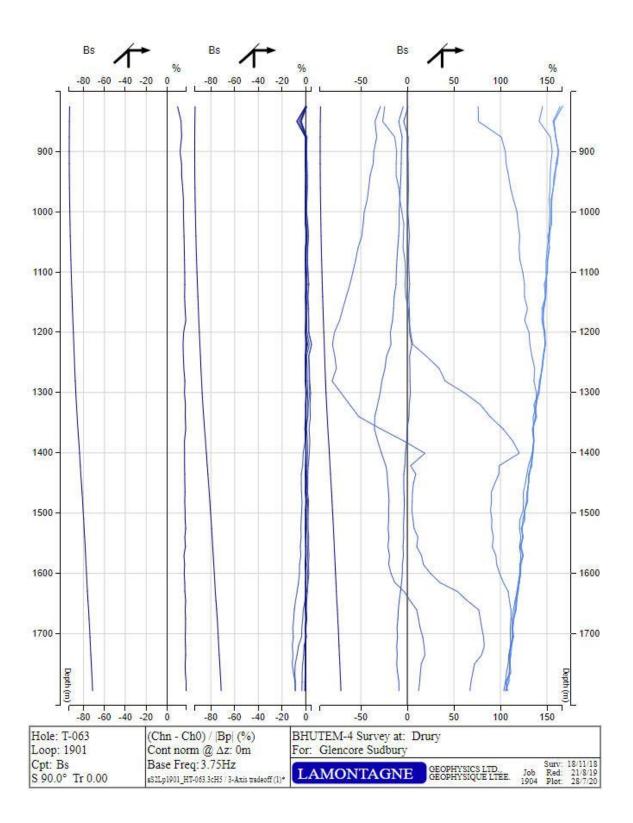
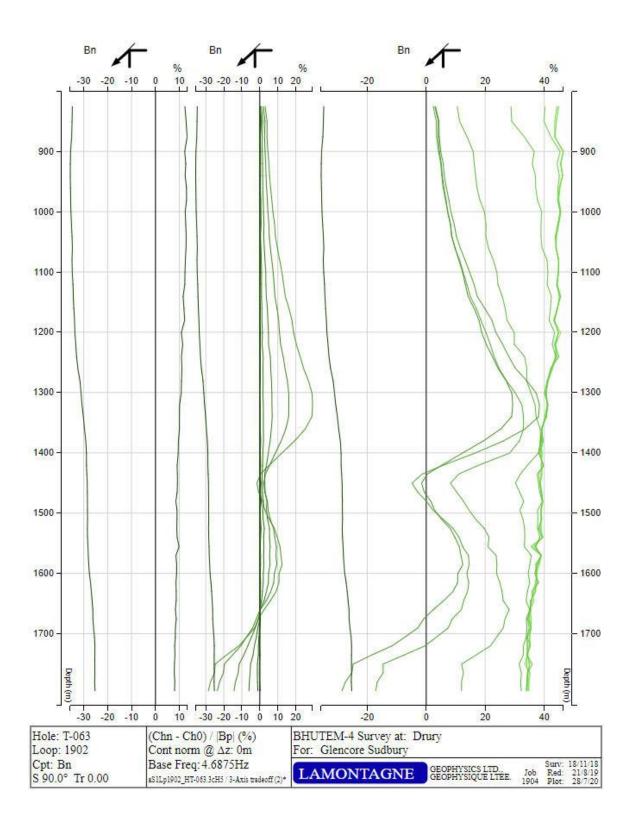
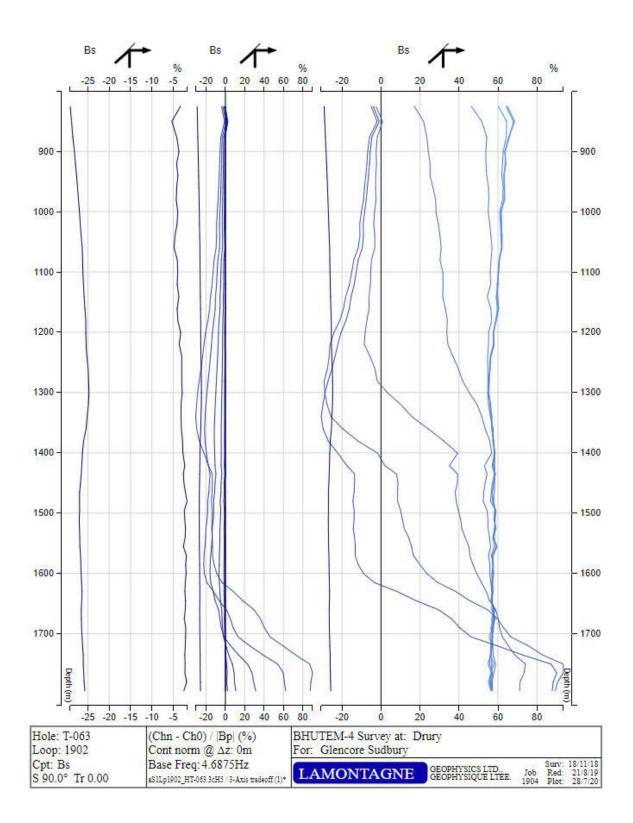
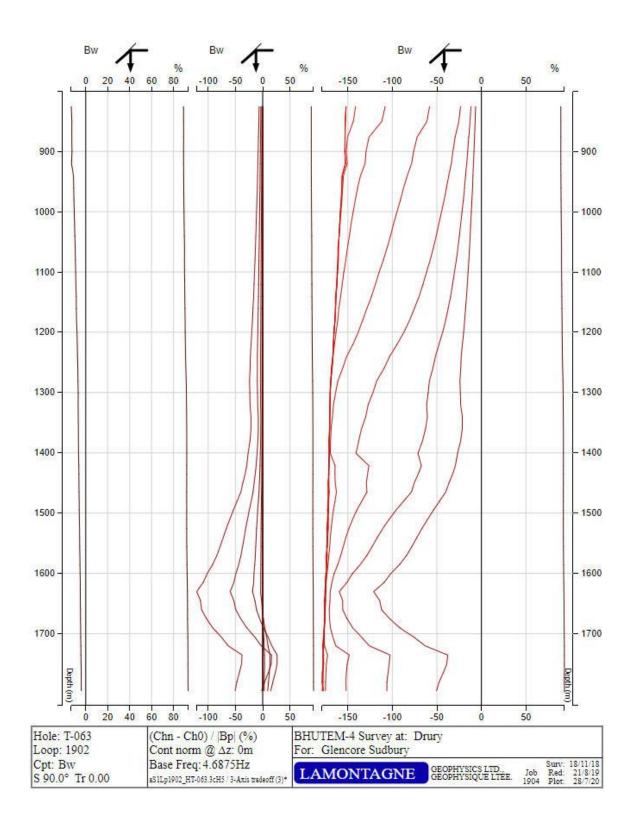


Figure 1: Modeled plates of T-063.

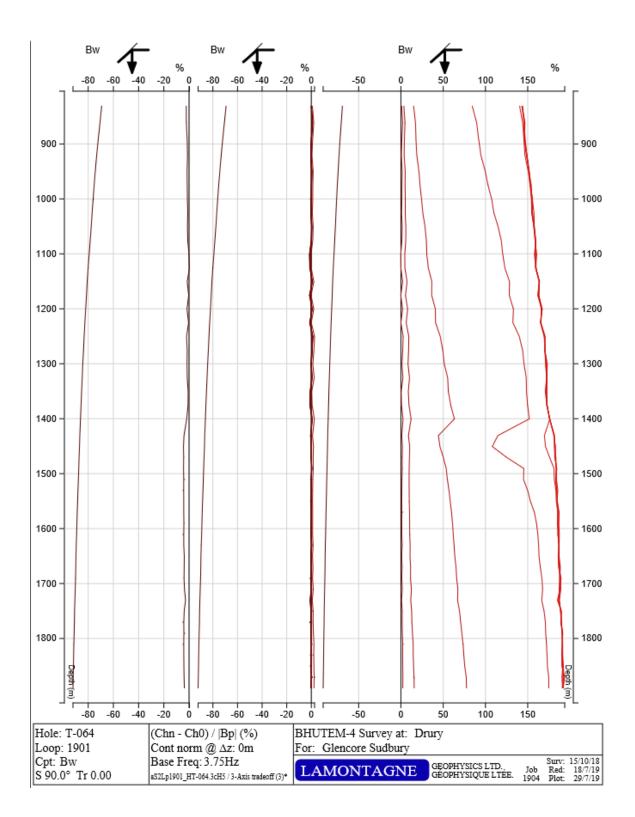






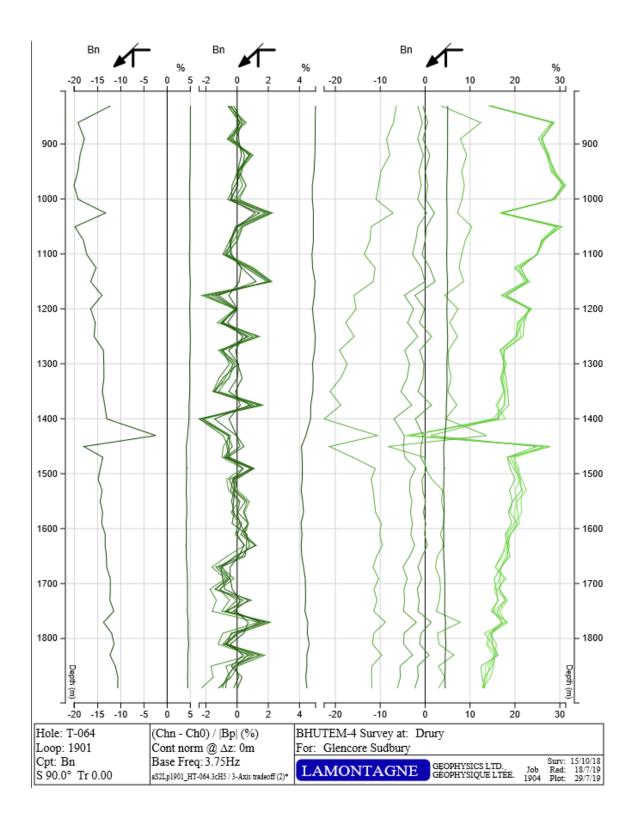

Figure 2: Profiles of T-063 loop 1902.

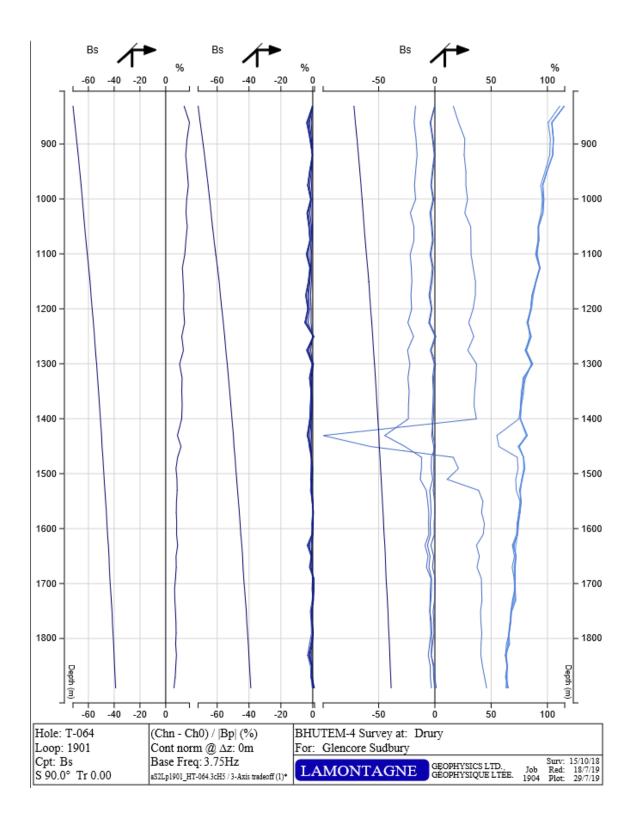


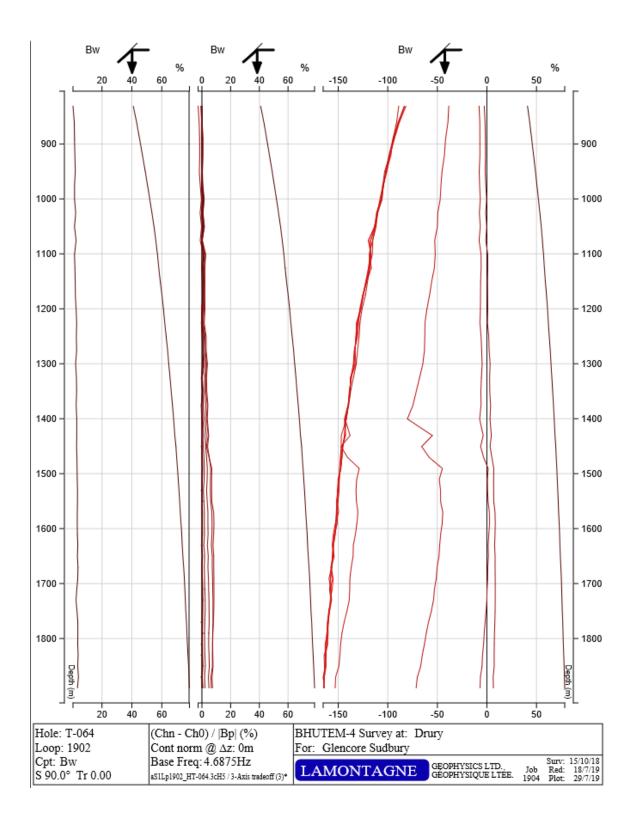
Sudbury Operations

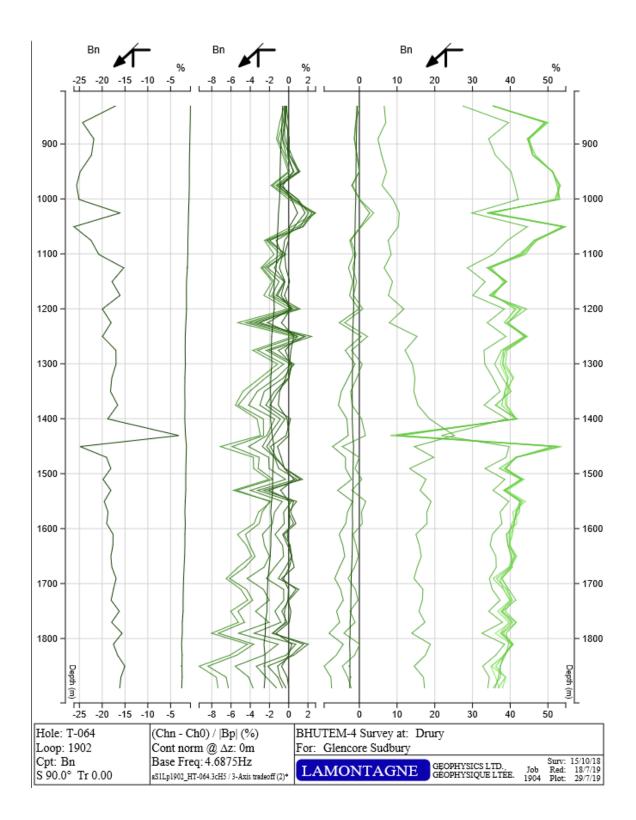
Hole Number:	T-064
Collar Coord:	462585E 5145338 N 300m
Dip:	-89
Azimuth:	104
Depth:	1911m
Zone:	

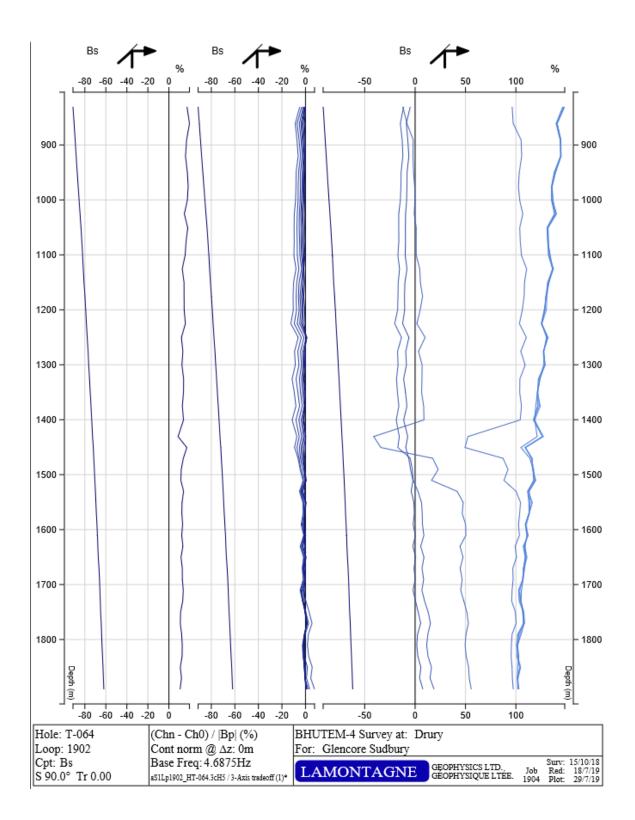

Loop Size:	1km x 1km
Loop Name	1901/1902
Freq:	4Hz
APPROVED	
Plan	
Attached	


Data Quality: Excellent


Conductor	Elevation	Туре	Direction	Distance	Strength	Size	Comments


Comments and Recommendations:


T-064 was surveyed with loops 1901 and 1902 at 4hz. No anomalies present. No follow-up required.



Sudbury Operations

Hole Number:	T-065
Collar Coord:	463520E 5145294 N 348m
Dip:	-86
Azimuth:	260
Depth:	2025m
Zone:	

Loop Size:	1km x 1km
Loop Name	1901/1902
Freq:	4Hz
APPROVED	
Plan	
Attached	

Data Quality: Excellent

Conductor	Elevation	Туре	Direction	Distance	Strength	Size	Comments
T062_1	1900m	off	320	90m	500 S/m	400mX300m	???

Comments and Recommendations:

T-065 was surveyed with loops 1901 and 1902 at 4hz. This hole was testing an off-hole associated with T-062. The off hole response appear to be approximately 90m north west of the hole and appears to be 500 S/m and 400mX300m in size. Review of known geology should be reviewed before follow-up is considered.

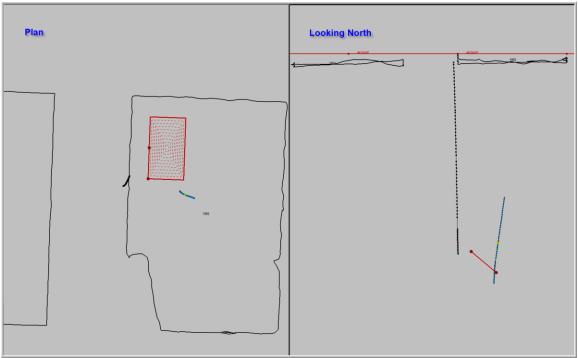
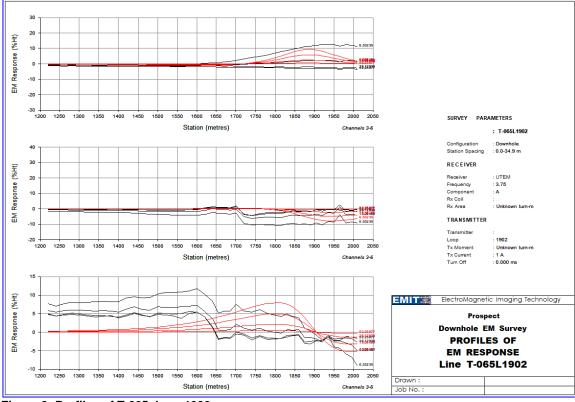
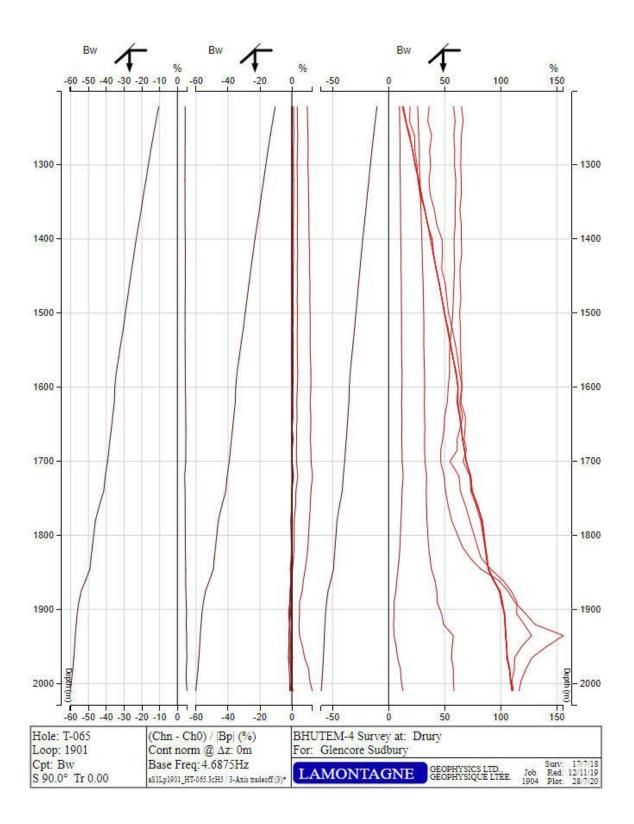
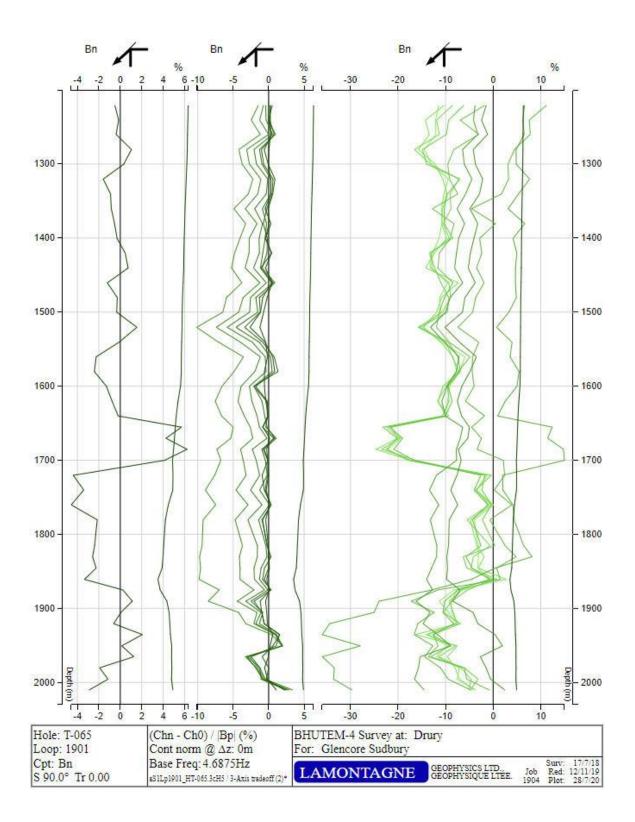
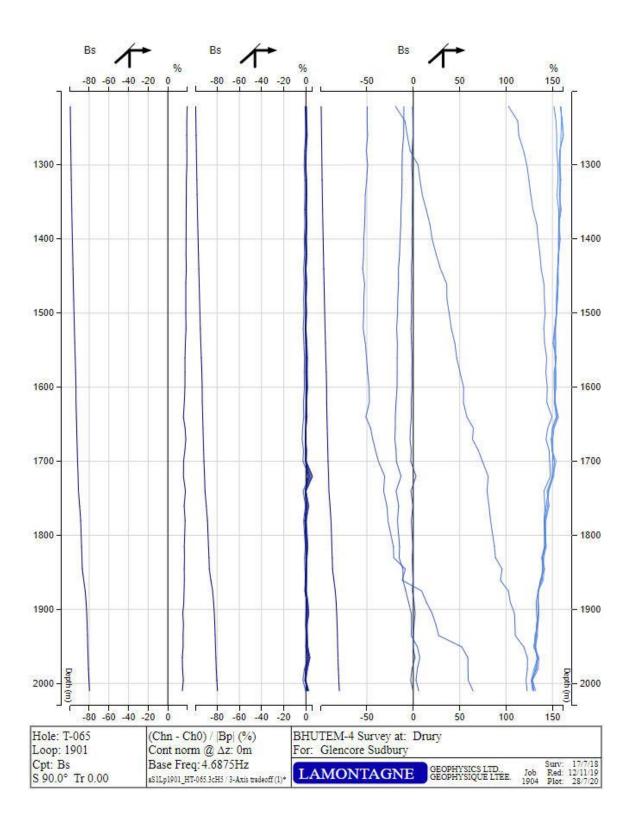
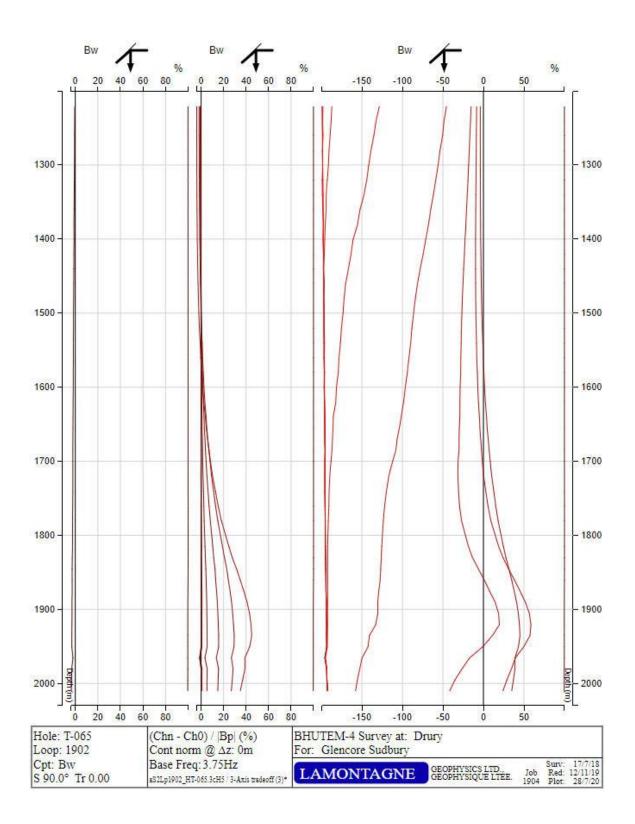
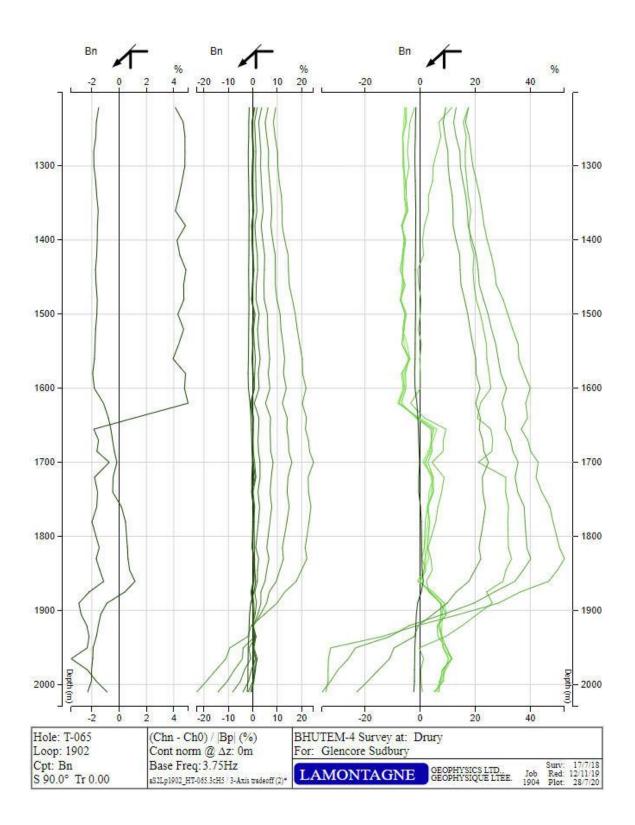


Figure 1: Modeled plates of T-065.


Figure 2: Profiles of T-065 loop 1902.

APPENDIX VI

Summary of Costs

Work/ Cost Type								Credit to
				Invoice No's				use - no
	From Date	To Date	Unit of Work		Actual Cost	HST	TOTAL	HST
Diamond Drilling - Foraco	2019-02-01	2019-11-21	7643 metres	1902074, 1902099, 1903127,	\$1,822,979.85	\$236,979.61	\$2,059,959.46	\$1,822,980
				1903151, 1904181, 1904206,				
				1905218, 1905219, 1904188,				
				1905243, 1905244, 1906272,				
				1906273, 1906299, 1906298,				
				1907326, 1907327, 1907352,				
				1907351, 1908382, 1908409,				
				1908430, 1909436, 1909459,				
				1910484, 1910504, 1911527				
Gyro Data	2019-06-05	2019-11-21	4 surveys	19-681, 19-733, 19-748, 19-810	\$10,386.50	\$1,050.25	\$11,436.75	\$10,386
Borehole EM - Lamontagne				4392, 4398, 4400, 4410, 4417, 4426,				
	2019-04-25	2019-12-13	4 drill holes	4442	\$85,087.50	\$11,061.38	\$96,148.88	\$85,088
Drillholes- Physical Properties								
surveys - DGI Geoscience				2862, 2906, 2918				
	2019-06-24	2019-09-16	3 drill holes		\$69,937.22	\$9,091.84	\$79,029.06	\$69,937
Geologists, field technicians and								
supervision - includes report				Geologist - \$500/day, at 150 days				
writing and maps, logging of core,			Geol - 150 days	Technician - \$350/day at 90 days				
site visits, setting up drillhole sites			Tech - 90 days	Supervision - \$800/day at 20 days				
	2019-02-28	2020-08-01	Sup -20 days		\$122,500.00		\$122,500.00	\$122,500
William Day Construction - trail				J097431, J097703, J097762, J098084,				
building				J098196, J098301, J098805, W78899,				
				J099294, J099759, J100366, J100367,				
				J100815, J101171, J101361, J101852,				
	2018-11-21	2019-11-01		J102301, J102757	\$224,720.44	\$29,117.04	\$253,837.48	\$224,720
supplies - water for drill- tank and	_0.0 21				, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<i></i>	+200,007110	+22.,.20
tote - mid Canada	2019-04-25	2019-06-30		8246, 8337	\$500.00	\$65.00	\$565.00	\$500
TOTAL					\$2,336,111.51	\$287,365.12	\$2,623,476.63	\$2,336,111

Distribution of Costs Drillholes and Patents

		costs ddh T-062	costs ddh T-063	costs ddh T-064	costs ddh T-065
		(1886 m) PAT-	(1821 m) PAT-	(1911 m) PAT-	(2025 m)
Total Costs	total drilling - metres	42368	42366	42369	PAT-42361
\$2,336,111.00	7643	\$576,463	\$556,595	\$584,104	\$618,949