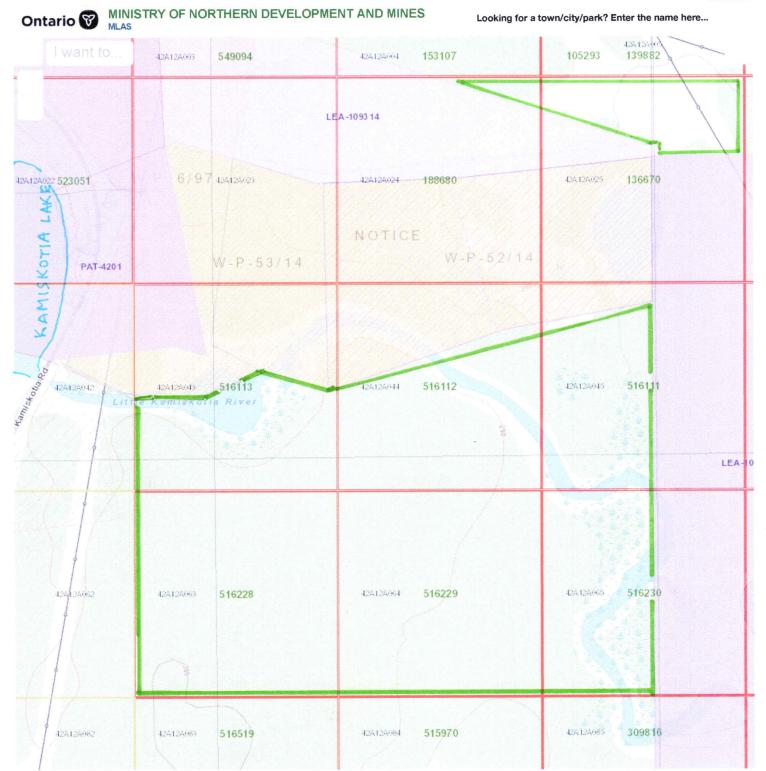


We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

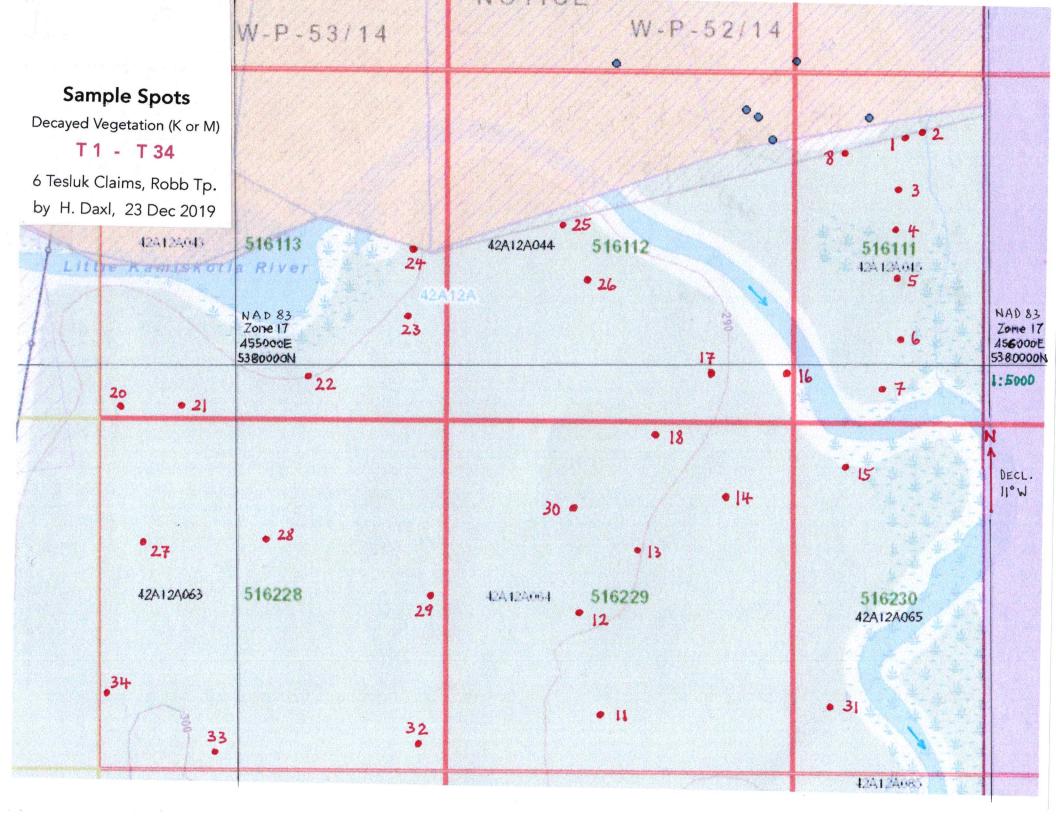
Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

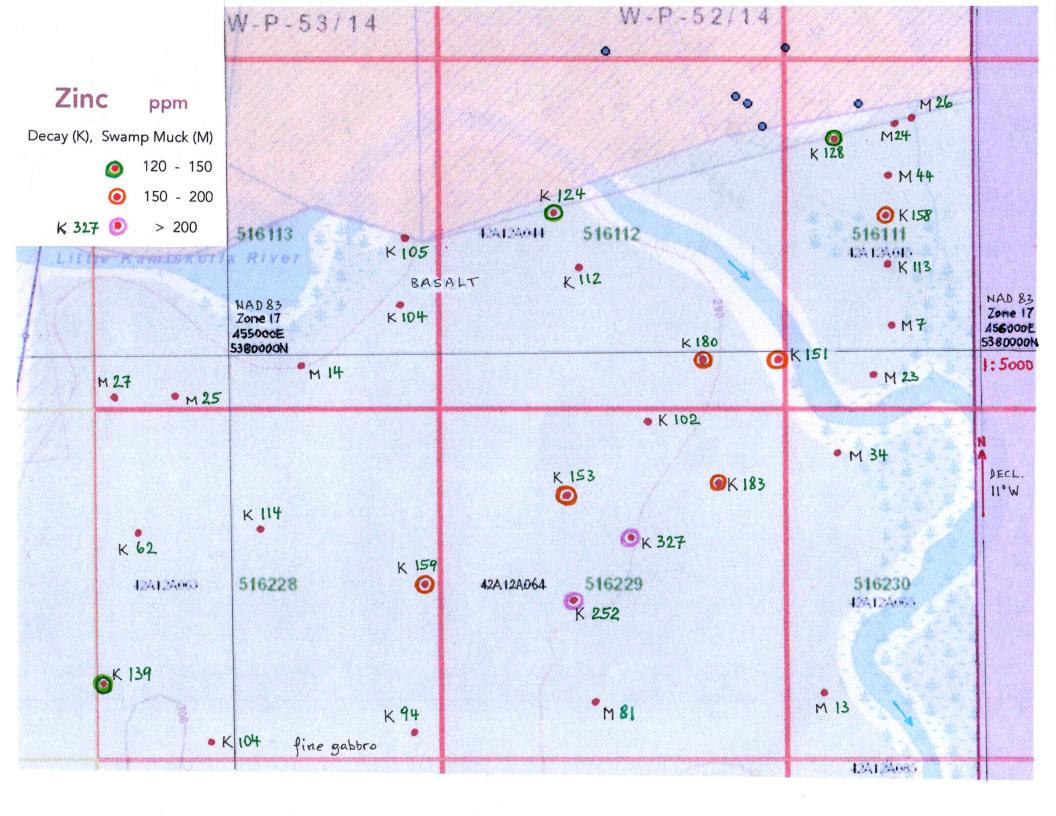
Zinc

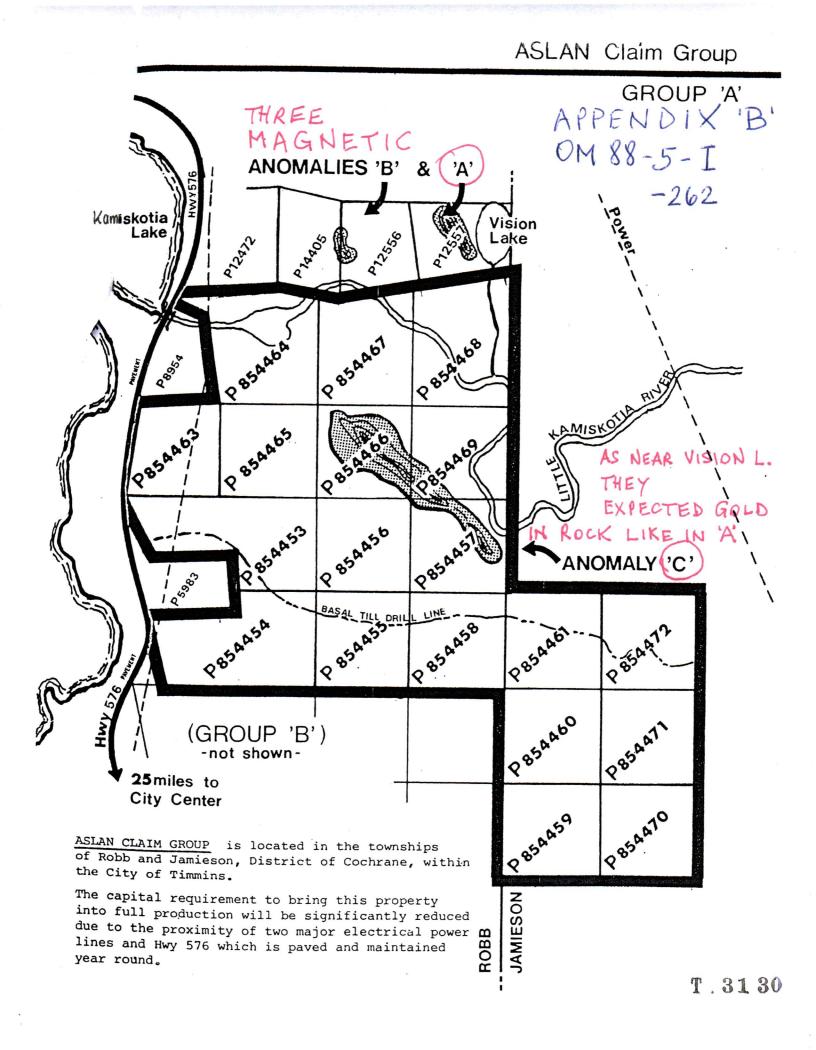

in

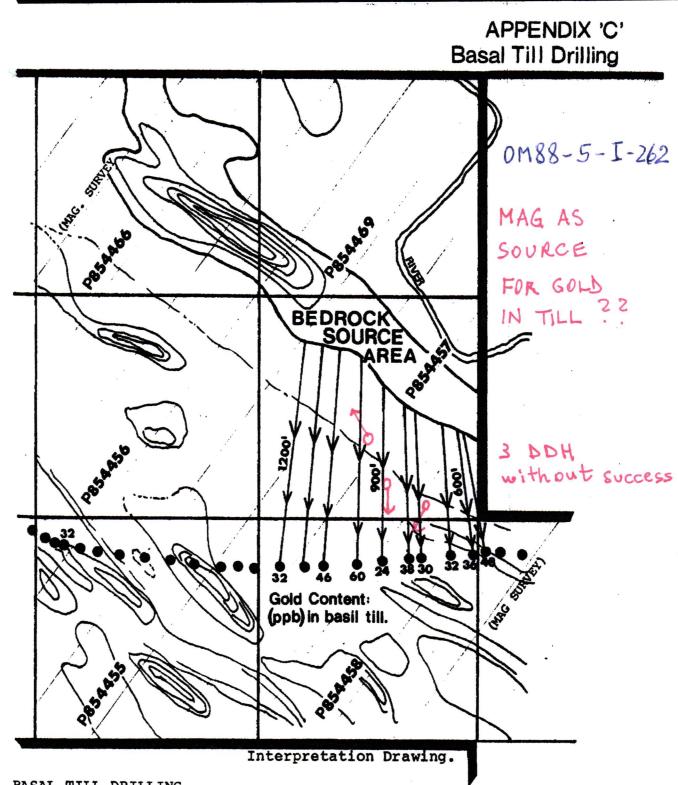
Decayed Vegetation

near Little Kamiskotia River


on unpatented mining claims 516113, 516112, 516111, 516228, 516229, 516230 within respective cells 42A12A043, 044, 045, 063, 064, 065 Robb Township, Ontario


> Held by Susan M. Tesluk Report by Hermann Daxl, M.Sc.(Minex) Timmins, 27 Dec 2019




8 TESLUK CLAIMS 2019 EAST OF KAMISKOTIA LAKE

0 100 200m

BASAL TILL DRILLING

Basal Till Drilling is a relatively inexpensive method of locating orebodies by testing the soil for metal particles (precious and/or base) which have been disseminated by the glacier's scraping the tops of ancient volcanic vents and depositing this 'dust' in glacial till down-ice from the source. In areas down-ice from the existing gold mines in the Timmins area, the gold dust readings run between 10 and 20 parts per billion (PPB). Results on the ASLAN CLAIM GROUP show various readings up to 60 PPB. This is a good indicator of a very strong source of gold on the ASLAN property.

Introduction

A large but week zinc anomaly over the historic Mag-VLF zone was now found in this sampling of decayed vegetation, which was carried out as efficient initial prospecting of the 6 claims, 516111 - 113 and 516228 - 230, by Hermann Daxl, assisted by claim holder Susan M. Tesluk, and Jean-Marc Roy, between 13 July and 28 Sep 2019. The 6 claims were registered on 13 Apr 2018, while the northern part of cells 42A12A043 - 045 had been withdrawn, and the eastern limit of the claim group had been the Robb/ Jamieson Township line. These boundaries still exist as shown on the attached map, and there is no development nor surface rights holder within.

The claims are situated between the historic Jameland Mine and the Kamiskotia Lake, and straddle the contact area between the Kamiskotia Gabbroic Complex, which outcrops in the west, and the mafic volcanics in the east. Several Mag and EM surveys included the present area, but only one VLF conductor seems to dominate (T-3130), diagonally NW - SE on claim 516229, and is also a magnetic high on the OGS MAP 81754. Visible gold was reported 700 m north in a similar zone west of Vision Lake and also found in Reverse Circulation holes 600 m south (T-2608). Yet the three diamond drill holes south of its SE end, outside the present claim, were misguided (OM88-5-I-262, see attached excerpts).

No soil survey has been mentioned even in the wider region, however, the mature mixed forest with some swamps is ideal for the present sampling of decayed vegetation from 0 - 6 cm depth or deeper swamp muck. Now several samples indicate excessive zinc in bedrock across this MAG-VLF zone.

Access is easy at about 25 km westnorthwest of Timmins on Highway 576, on a dirt trail eastward from NAD83 - 454460 E - 5379280 N opposite Martineau Ave, or directly from Highway 576 just south of Little Kamiskotia River which meanders through the claims.

Present Work

The present decayed vegetation sampling differs from any humus sampling as all inorganic dilution or contamination is prevented by the rather lengthy sample preparation, which I therefore did myself. Such sand and silt is removed by dry swirling the <250 sievings in a plastic gold pan and skimming off the wanted organics. After homogenizing, any remaining sand, silt, or clay content is noted. Basically the resulting sievings are condensed vegetation and therefore are suitable for vegetation analyses with the necessary very low detection limits.

The two types of samples collected were decayed vegetation from 0 - 6 cm depth (K) and deep dense black muck from swamps (M). This K and M are added to the sample plots because some elements concentrate better in one or the other. Generally zinc, indium, lead, manganese, and gold show best in K, and copper best in M, but too much groundwater movement due to the Little Kamiskotia River may rinse out elements from the swamp muck here. However, no contamination from the upstream Kamiskotia mine reclamation work was encountered. Overall even the arsenic and lead values are quite normal, and cadmium correlates with zinc as it should. The possibly very thick clay on higher ground should be no barrier, but could attenuate and spread out results. Please refer to the attached lecture handout about this very efficient and reliable prospecting method.

I collected the 31 samples (T1 - 8, 11 - 18, 20 - 34) myself. Sample T9 with 60% sand-silt including the whole <125 um (micron) fraction is a subsample of sample T8 to show that sand-silt would not contaminate but would dilute. Sample T35 is a rerun of sample T7. Samples T10 and T36 are standards to test the work of Activation Laboratories Ltd. who did all analyses by Unashed Vegetation 2G or Ultratrace 2, both with aqua regia extraction, and verified samples T1 and T8 (8033 - 34) for gold by neutron activation, code 2B-vegetation, double irradiation time for medium vials. Only samples T2 and T4 (329 and 330) were verified with the similar method ME-VEG41 by ALS Canada Ltd. All verifications were successful, however, gold by these aqua regia methods may not be reliable for various reasons, and further analyses for gold by neutron activation is recommended. Please refer to the attached tables with various annotations.

Results

As illustrated on the attached zinc map, several zinc values are beyond the normal of near 100 ppm in K, reaching 252 and 327 ppm Zn at the the MAG-VLF zone. As already explained, the M samples here are not considered useful. Cadmium values confirm the zinc anomaly by their usual association. This zinc without arsenic would resemble more the clean high-grade zinc-gold quartz-veins in the southwest corner of Jamieson township at 3.3 km south, than it does the zinc-copper with much arsenic in the nearby historic Jameland mine at 1.5 km northeast. The higher values of Li, Al, Ce, La, Nd, Y, in sample T11 are due to smeary clay content as noticed, and as also known from other areas. Depending on regions, elevated Co, Cr, Fe, V, can also be due to clay.

As a prospecting method, the samples were widely spaced, but each sample was composed from several spots over 20 to 50 m, which makes them more reliable and less acute. A video about collecting our sample T14 can be seen on Youtube, <u>https://youtu.be/zHgkvo0wSI0</u>.

Conclusions and Recommendations

Decayed vegetation when cleaned from all inorganic material will show excessive mineralization in the bedrock below, as proven for several elements in several areas around Timmins. The present clay overburden is no obstacle, because the method has worked over 20 m till and clay, and over 60 m sand and silt. The overlap with the previously favoured MAG-VLF zone was not sought nor planned, but newly found.

Knowledgeable interpretation matters, but the zinc anomaly is quite obvious here, and is hardly a coincidence. However, infill sampling is recommended and analyses for gold by neutron activation will also be necessary, especially because clean zinc without arsenic in the surrounding area is known from the high-grade quartz-sphalerite veins with gold in the southwest corner of Jamieson township.

No contamination from the Kamiskotia nor the Jameland mines was encountered.

Respectfully submitted,

Timmins, 27 December 2019

Hermann Daxl, M.Sc.(Minex)

Grab some dirt - find a mine

Yes, you can find a mine on one claim unit in a few days work, if there is one ! You can also qualify and prioritize your drill targets.

This lecture is not about the vast science of soil sampling, but about the very specific method of **decayed vegetation sampling that works for gold and base metals in the Timmins region.** I would not completely rule out gold, if there is none in a sample, but if there really is, it can only be from rock within 50 m horizontally. Therefore 30 chosen samples can adequately cover a claim unit in just two days. I have tested the method, which I learned during my M.Sc. studies at Queen's University (Neil O'Brian), over six gold occurrences, also zinc and copper, and perfected it to work extremely well. However, to convince yourself, try it yourself over your known zones, gold or base metals, whereby you can also test your work. If it does not work for you, tell me.

The scientific name of the **decayed vegetation** I sample is mor, which I had never heard before. I call it the **decay horizon** or **K**, because that is were most decay of organics happens. It is quite apparent in the forests around Timmins, where the humus usually rests on fine sand. On clay it may be very thin, so greater care is necessary. **After brushing aside the loose debris, there is an interwoven carpet of rootlets, mold, fungi, decayed leaves and needles, from 0 to 6 cm depth, which you just grab and rip up.** >https://youtu.be/zHgkvo0wSI0< One such small handful from each of 5 - 10 dry spots within a 10 - 20 m radius make a good-size sample. Avoid sand, silt, clay, charcoal, sticks, or greens. Seeds can stay in. There usually are no insects nor worms. Rings, watches, bracelets, or necklaces must never be worn when handling any samples.

This therefore is not a so-called humus sample, because humus has two more parts below it, moder and mull, and usually contains sand, silt, or clay. Also, I have never had high values in the usually underlying white leached sand nor the enriched brown Bhorizon which other methods sample. So I am not surprised of their poor reputation. It helps to envisage the hypothesis, that metal ions tend to migrate to surface, and also are taken up by rootlets and end up in leaves. This all fits my observations. Some metals (gold, zinc, copper, nickel, chromium, manganese, molybdenum, etc.) get therefore concentrated in these organics. I had repeated samples of <1500 ppb Au above a quartz-vein that ran 17000 ppb (17 g/t), which proves also direct migration. This and other veins had a halo of 25m, <100 ppb Au, which can be attributed only to fallen leaves and needles, because the underlying swamp muck had no gold. I have proven this simple method for gold, copper, nickel, zinc, molybdenum, bismuth, cesium, arsenic. It even worked over 20 m thick clay or 60 m sand overburden.

Favorable sample spots are where water can evaporate, even some 2m wide humps, or higher ground around trees. Possibly small valley floors may be better than ridges, however, flowing groundwater may intercept and dissipate the migrating metal ions, and not allow later concentration. The center of a sample is plotted with GPS, as selected sites are preferable to systematic sampling at line pickets. No statistical treatment is required; elements occur where you find them. Notes can be limited to peculiarities to remember the location, as discoveries need further work anyway.

Sample preparation requires special care and is best done in-house. Even if a lab listens, and follows special instructions, you will have to live with short-cuts. So here is my method. I spread the samples without delay on paper towels on 10-inch square paper plates, which I change whenever they are getting too damp. The lower towels can be dried and re-used. This takes two days, which is less than in open paper envelopes even in a car in the sun, as air circulation is necessary. An oven would have to be less than 50 degrees Celsius, and likely is too small. Then a sample needs to be rubbed or rolled with a glass bottle in a glass bowl to loosen enough fine organics for sieving <250 micron with a 1/4 mm plastic coffee filter. This work is fine-dusty and needs to be done outside or with a good exhaust fan. Any obvious sand or charcoal must not be crushed but removed before by swirling the bowl.

After sieving, if still some sand is visible, further dry swirling in a plastic gold pan will bring the organics to the top like scum which can be skimmed off clean. The rest can be panned with water, but is pretty useless. Bracket sieving to 125-250 micron may also help to remove silt or clay, but clay dries very hard and even finely crushed it may not release the wanted organics. Maceration by a lab also needs special attention, but then how do you get the details for further adjustment in evaluation. Also coarser organics have somewhat lower values due to dilution with wood. The homogenized sievings need to be checked with a hand lens to estimate final sand and also silt content. Clay may show only as color and weight. Careful collection can usually safe such extra work.

It is also very important to homogenize the sievings by rolling and overlapping using a bent sheet of paper, like labs used to do with pulps on a mat. Tightly packed samples stay homogenized. Keep left-overs in sachets, do not shake them. Collecting a heaped double-handful of such decayed vegetation, will yield the necessary 5 - 10 g of sievings.

The only reliable analysis for gold in such samples is by neutron activation, which however is not suitable for some base metal anomalies (e.g. nickel), and does not show copper. As samples are basically organics, I use Actlabs INAA, code 2B, vegetation, but fill their medium vials (7cm3 like a pinkie finger) myself to press as much as possible into them. I submit the varying tara (vial, stopper, label) for each, and weigh also each full vial so I can check for mix-up. They report the net weight (mass) from which one also can estimate roughly, whether a sample is diluted by silt or clay. The method is usually for 15-g briquettes, so that special double irradiation time has to be ordered for vials, for which they charge extra. Sandy samples or low inorganic standards are recognized and tolerated by the lab. They use organic standards. A lab order and shipment best include warnings, "very low-grade vegetation - keep away from rock pulps". Still contamination may happen, but all values >10 ppb Au need to be investigated further anyway. For base metals in such samples I send 2 - 4 g densely packed in a sachet to Actlabs for Ultratrace 2 - aqua regia ICP-OES/MS, but any values for gold thereby are admittedly not reliable for various reasons. Similar vegetation analyses include platinum, which may be worth a try.

Prospecting must include swamps and swampy areas where the described decayed vegetation may not exist. I therefore bring a Dutch auger in the bush, also useful as a walking stick, a weapon against bears, and to at least occasionally probe the deeper overburden. Bedrock is sometimes near enough to be scanned with the Beep Mat.

I use the auger in swampy areas to sample the deeper dense black muck, which works well for copper, nickel, chromium, but not so well for gold, zinc, lead, manganese. Water movement may flush out elements, therefore I try for the deepest and densest muck, but stay clear above any inorganic bottom. A closed two-handful from one auger hole will do, noting the sample depth. I wrap this ball with paper towels and squeeze out the water, before letting it dry with the decay samples.

Sampling the lake bottom sludge may be the only way to explore lakes, from a canoe or best on the ice in late March - early April in just above freezing weather. A 16 cm (6 inch) diameter hand ice auger will do. A bomb will not reach the dense sludge which works well for sulfur and base metals, but I had no occasion to test it for gold yet. A soil auger with extensions may be necessary, but water is usually shallow, so a dry 5m wooden pole makes it easier with less than 4 m of water. Sludge can be 10 m thick, but I got similar values throughout. I use a strong plastic bottle with the bottom cut off and a strong insulated cable tied around near the bottom to pull on one side. I push it 1 m into the sludge, then remove the pole before pulling. The bottle will tilt and scoop up a good lump. I remove the stopper from the bottle to drain the water, then dump the lump on the snow to drain further and collect it on my return.

Decay, muck, and sludge, have different concentration levels, and must be plotted as such. I suggest to add K, M, L to the values. Sample preparation and analyses are the same for all three. Notes of consistency (woody, fibrous, grainy, sticky, smeary), crushablility, color, of M and L may be revealing.

So before you drill, do your shareholders a favor. Or before you lose a claim, grab some dirt. It takes a week to get a batch to the lab, then it takes at least 3-4 weeks to get the results for gold. A follow up again takes as much time, but a report for assessment credit is simple (see map). The best time to sample is May and October-November, like any work in the bush. In summer you raise clouds of flies from humus, and visibility for choosing sample spots may be difficult. Allow for some drying after a rain, but I doubt that seasons affects the metals. The gardening claw is in your hand now, but you can still phone me for help or advice, for set-up, organizing, or training, including field work. Hermann Daxl, M.Sc. (Minex), 705-264-4929.

Innovative Technologies

 Date Submitted:
 23-Jul-19

 Invoice No.:
 A19-09513-Rev

 Invoice Date:
 30-Aug-19

 Your Reference:
 TESLUK-1

Hermann Daxl 39-630 Riverpark Road Timmins Ontario P4P 1B4 Canada

Quality Analysis ...

ATTN: Hermann Daxl

CERTIFICATE OF ANALYSIS

T1 - T10

10 Vegetation samples were submitted for analysis. The following analytical package(s) were requested: Decayed Vegetation sieved <250 micron Code 2G Unashed Vegetation ICP/MS aqua region - 0,5g

REPORT A19-09513-Rev

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actiabs.com ACTLABS GROUP WEBSITE www.actiabs.com

Decayed Vegeti sieved < 250 jum	ation, Kor	М							Code 2 G u ICP/MS, aq	nashed veg	etation
sieved < 250 pm	except T8		Results		Activation L	aboratories Ltd.	Report:	A19-09513	ICP/MS, aq	ua regia,	0.5 g
Analyte Symbol		Ag	Al	As	AU	Ba	Be	Bi	Ca	Cd	C
Unit Symbol		ppb	%	ppb	ppb	ppb	ppb	ppb	%	ppb	ppl
Detection Limit	Inorganic	10	0.004	10	0.2	10	50	0.5	0.025	10	
Method Code	Top at cm	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-M
M 90	>100	30	0.207	1020	3.9	32300	100	19.7	3.130	310	326
12 M 100	>110	30	0.158	750	2.9	35100	80	14.8	3.340	260	194
13 M 40	clay 60	60	0.434	590	2.2	75600	240	27.2	4.760	850	1050
r4 K	clay 20	60	0.091	1530	5.2	87100	< 50	208.0	1.610	730	168
IS K	beige clay 20	60	0.081	1710	4.5	69100	< 50	214.0	1.040	780	194
16 M 20	clay 40	30	0.188	1260	1.8	65000	100	19.6	4.820	430	275
17 M 20	beige clay 30	60	1.130	1650	1.6	80300	570	48.7	3.370	280	3160
T8 K 1% D 125-250		500	0.416	1520	2.9	88800	170	155.0	1.380	1280	1240
19 60%. DT of T8		130	0.297	850	1.3	36500	90	74.8	0.515	420	1810
TIO OREAS 45.		60	8.040	2900	16.1	152000	1060	131.0	0.085	< 10	2210

K Decayed vegetation 0-6 cm depth, M Black swamp muck at cm depth, DT Sand and silt-volume %.

			Results	sults Activation Laboratories Ltd.			td.	Report:	A19-09513			
Analy	te Symbol	Со	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge
	ymbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	%	ppb	ppb	ppb
	ction Limit	2	20	2	10	0.5	1	1	0.003	4	4	1
	od Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
TI	M 90	848	2540	70	7060	286.0	135	77	0.316	324	191	27
T2	M 100	299	1640	40	6580	140.0	77	42	0.149	277	95	19
T3	M 40	1080	5800	180	14200	551.0	296	176	0.734	1040	411	59
T4 K		569	1490	172	17100	72.1	34	26	0.125	333	62	73
T5 K		558	1310	146	18700	78.6	47	32	0.120	291	74	55
T6	M 20	789	2160	80	8270	155.0	85	47	0.264	436	110	29
T7	M 20	2020	14700	391	23700	1360.0	700	432	1.020	3080	1050	125
	(1×) 125-250	2930	7490	588	14400	443.0	203	156	0.416	1630	366	62
T9	60%.DT of T8	1690	5650	369	6270	459.0	198	142	0.308	1430	454	67
T10 {	OREAS 45 &	40600	367000	2690	363000	1460.0	736	446	13.800	17800	918	110

- 1

	Results		Activation La	aboratories Li	ld.	Report:	A19-09513			
Analyte Symbol	Hf	Hg	Но	In	K	La	Li	Lu	Mg	Ma
Unit Symbol	ppb	ppb	ppb	ppb	%	ppb	ppb	ppb	%	ppb
Detection Limit	3	10	0.4	0.2	0.01	3	10	0.4	0.002	10
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
TI M90	65	80	51.7	1.0	< 0.01	2010	120	15.9	0.177	590
T2 M100	47	60	29.4	1.0	< 0.01	995	140	9.1	0.259	440
T3 M 40	92	140	105.0	3.8	0.02	5850	1990	34.8	0.377	190
T4 K	22	220	14.1	32.4	0.08	904	430	3.2	0.163	440
15 K	18	230	15.6	36.6	0.07	1050	320	4.3	0.130	380
16 M 20	29	90	29.5	1.9	< 0.01	1420	1030	10.1	0.454	630
17 M 20	128	110	251.0	9.7	0.05	17600	5600	80.8	0.365	36
18 K 1.1. D 125-250	21	130	79.7	23.9	0.13	6570	4390	21.7	0.208	460
19 60 %. DT of T8	45	20	77.1	9.0	0.06	8930	3300	21.2	0.120	20
TIO OREAS 45 d	1380	20	268.0	86.6	0.11	11600	15700	85.9	0.195	87

			Results		Activation La	boratories Lt	d.	Report:	A19-09513	
Analyte Syr	mbol	Na	Nb	Nd	Ni	Р	Pb	Pr	Rb	Re
Unit Symbo	d	%	ppb	ppb	ppb	%	ppb	ppb	ppb	ppb
Detection L	Limit	0.005	2	5	10	0.004	5	2	20	0.2
Method Co	ode	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
[]]	M 90	< 0.005	149	2090	3490	0.039	1090	492	410	1.2
2	M 100	< 0.005	103	1060	2510	0.026	852	256	310	0.4
3 1	M 40	0.007	342	5160	6520	0.051	2080	1270	2000	2.8
4 K		< 0.005	82	834	3110	0.078	21300	194	3330	0.4
5 K		< 0.005	68	977	3060	0.076	21800	228	3240	0.4
the set is an one set a	M 20	0.007	141	1400	3880	0.040	2330	347	660	2.0
7 1	1 20	0.013	852	14300	11600	0.064	4410	3590	3720	1.1
8 K 1%	D 125-25	0 < 0.005	477	5670	6490	0.091	22300	1420	15700	0.2
	Y. DT OLT		455	7690	3700	0.033	11300	1960	8540	< 0.2
10 ORE	AS 451	0.034	52	10000	231000	0.021	14800	2420	21800	< 0.2

		Results		Activation L	aboratories Li	d.	Report:	A19-09513				
Analyt	e Symbol	Sb	Se	Sm	Sn	Sr	Ta	Tb	Те	Th	Ti	TI
Unit Sy	mbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	%	dqq
Detec	tion Limit	5	10	2	30	50	1	2	5	1	0.15	0.5
Metho	od Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
TI	M 90	16	1560	366	50	56100	16	43	8	397	< 0.15	21.2
T2	M 100	20	710	200	40	83300	15	26	11	312	< 0.15	19.5
T3	M 40	30	2950	882	120	136000	12	95	16	835	< 0.15	36.6
T4 K		100	910	134	790	48100	8	14	22	169	< 0.15	75.6
15 K		79	1170	152	580	31500	7	16	24	159	< 0.15	61.4
T6	M 20	54	800	233	80	156000	10	25	31	223	< 0.15	27.0
T 7	M 20	35	2190	2340	330	128000	4	237	11	1870	< 0.15	52.3
18 K	1%. 0 125-2	50 62	580	884	650	29200	1	82	18	922	< 0.15	106.0
T9	60%. DT of	T8 24	1430	1230	370	13500	2	96	5	2320	< 0.15	52.1
T10 ()	REAS 45 f	39	1730	1890	2380	15700	< 1	240	31	7060	< 0.15	135.0

	F	lesults	Activation Lab	oratories Ltd.	Repo	t: A19-09513		
Analyte Symbol	Tm	U	V	W	Y	Yb	Zn	Zr
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
Detection Limit	0.1	0.5	20	5	4	3	100	20
Method Code	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
TI M 90	19.7	331.0	2340	20	1430	147	24000	2540
T2 M 100	10.6	191.0	2210	12	703	83	26200	1730
T3 M 40	37.0	7490.0	8520	26	2930	259	44400	4700
T4 K	4.1	117.0	1820	84	343	38	158000	750
т5 K	5.0	76.2	1600	70	420	38	113000	630
T6 M 2.0	10.2	3100.0	4330	26	833	64	6900	1480
T7 M 20	82.2	5020.0	20100	59	7260	629	23000	7150
18 K 1 X. D 125-25	0 24.7	204.0	7030	64	2020	177	128000	1350
19 60% DT of T		295.0	5730	72	2000	160	44100	1980
TIO OREAS 45 f	96.2	1050.0	185000	< 5	6570	697	27100	35500

Innovative Technologies

Report No.:	A19-15755
Report Date:	29-Nov-19
Date Submitted:	19-Nov-19
Your Reference:	TESLUK-2

Hermann Daxl 39-630 Riverpark Road Timmins Ontario P4P 1B4 Canada

ATTN: Hermann Daxl

CERTIFICATE OF ANALYSIS

T11-T36

26 Vegetation samples were submitted for analysis. decayed and sieved < 250 um

The following analytical package(s) were reques	ted:	Testing Date:
	QOP AquaGeo/QOP Ultratrace-1 (Aqua Regia CPOES/ICPMS)	2019-11-22 12:54:29
AQUA REGIA -0.596	nliquots	

REPORT A19-15755

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Assays are recommended for values above the upper limit. The Au from AR-MS is for information purposes, for accurate Au fire assay 1A2 should be requested.

CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD. 41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actilabs.com ACTLABS GROUP WEBSITE www.actilabs.com

Decayed Vegetati Black Muck (M	/		or	Result	s		Activ	ation La	aborate	ories Li	td.		в	eport:	A19-15	755	ULTRA			- 0.5 g
all sieved < 250	um				-												AQUE	ANEG		0.59
Analyte Symbol of	Li	Be	В	Na	Mg	Al	Р	S	K	Ca	V	Cr) Ti	Mn	Fe	Co	(Ni)	Cu	Zn	Ga
Unit symbol cm	opm	ppm	ppm	%	%	%	%	%	%	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.1 R-MS	0.1 AR-MS	AR-MS	0.001 AR-MS	0.01 AR-MS	0.01 AR-MS	0.001 AR-ICP	0.001 AR-ICP	0.01 AR-MS	0.01 AR-MS	AR-MS	AR-MS	0.01 AR-ICP	AR-MS	0.01 AR-MS	0.1 AR-MS	0.1 AR-MS	0.2 AR-MS	0.1 AR-MS	0.02 AR-MS
	19.2	1.1	12	0.034	0.45	(2.44)	0.132	0.249	0.23	1.71	23	42	0.05	253	1.41	6.2	22.0	31.0	81.0	4.88
T12 K	0.5	< 0.1	12	0.019	0.15	0.10	0.105	0.215	0.08	1.74	4	4	< 0.01	371	0.18	0.8	4.1	26.7	252.0	0.56
T13 K	3.1	0.1	16	0.023	0.22	0.35	0.128	0.195	0.12	2.32	8	8	0.01	635	0.46	3.0	7.3	24.2	327.0	1.38
T14 K	0.5	< 0.1	11	0.021	0.19	0.09	0.093	0.196	0.08	1.91	3	4	< 0.01	285	0.16	0.8	3.8	23.8	183.0	0.46
T15 M 40	3.7	0.5	10	0.033	0.27	0.84	0.109	0.293	0.06	2.60	14	16	0.02	98	0.56	1.7	8.4	22.2	34.1	1.95
T16 K	1.3	< 0.1	9	0.023	0.19	0.15	0.095	0.176	0.10	1.52	5	5	< 0.01	406	0.34	4.3	3.7	36.3	151.0	0.56
T17 K	4.2	0.1	13	0.023	0.29	0.43	0.130	0.183	0.13	2.22	10	9	0.01	466	0.58	3.3	8.6	24.2	180.0	1.44
T18 K	5.4	0.2	9	0.018	0.21	0.55	0.105	0.159	0.14	1.46	12	11	0.03	587	0.56	3.9	8.9	26.3	102.0	2.06
119 TEST M 90	0.9	20.2	10	-0.016	0.20	0.31	0.051	0.292	-0.0K	3.23	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< 0.01	84	0.20	0.9	4.5	20.0	70	2.56
T20 M 40	4.7	0.3	6	0.020	0.24	0.66	0.074	0.201	0.06	2.29	11	12	0.03	278	0.54	2.8	6.2	16.6	27.2	2.23
T21 M 80	0.5	0.1	9	0.018	0.18	0.25	0.045	0.275	0.01	3.09	5	5	< 0.01	397	0.39	1.3	4.5	16.6	25.2	0.57
T22 M 50	2.9	0.3	11	0.020	0.31	0.49	0.085	0.289	0.04	4.28	11	9	0.01	159	0.50	1.0	5.9	27.8	14.0	1.35
T23 K	2.5	0.1	7	0.015	0.15	0.32	0.106	0.185	0.08	1.83	7	6	< 0.01	167	0.33	1.5	5.8	26.5	104.0	1.06
124 K 1%.D	2.2	0.1	9	0.016	0.16	0.30	0.099	0.175	0.08	1.76	8	7	0.02	475	0.35	3.0	6.1	36.1	105.0	1.17
T25 K	5.4	0.2	8	0.016	0.18	0.60	0.122	0.150	0.14	1.02	12	10	0.03	804	0.54	3.8	8.4	24.2	124.0	2.21
T26 K	6.9	0.3	11	0.018	0.23	0.67	0.117	0.168	0.15	1.60	13	13	0.03	446	0.64	3.6	9.7	25.4	112.0	2.37
T27 K	0.5	< 0.1	5	0.014	0.14	0.12	0.066	0.167	0.05	1.35	3	3	< 0.01	375	0.13	0.8	3.2	28.5	62.3	0.38
T28 K	3.0	0.1	11	0.016	0.22	0.32	0.091	0.183	0.08	2.21	7	7	< 0.01	572	0.33	1.7	5.7	21.3	114.0	1.09
T29 K	4.1	0.1	12	0.017	0.19	0.42	0.112	0.170	0.14	2.29	9	9	0.01	443	0.39	2.5	7.3	29.1	159.0	1.40
T30 K 5%D	3.3	< 0.1	7	0.018	0.15	0.35	0.109	0.155	0.13	1.38	11	8	0.02	1410	0.40	3.8	6.6	22.7	153.0	1.74
T31 M60+90	1.4	0.2	8	0.019	0.20	0.38	0.042	0.290	0.02	2.86	10	7	< 0.01	77	0.31	0.9	7.7	17.4	13.2	0.98
132 K 5% DTC	0.9	< 0.1	6	0.015	0.08	0.17	0.112	0.144	0.09	0.94	5	4	0.01	1550	0.19	2.1	5.1	21.6	94.7	0.91
T33 K	1.4	< 0.1	7	0.015	0.11	0.17	0.102	0.153	0.09	1.23	5	4	< 0.01	658	0.18	2.3	4.4	17.9	104.0	0.69
134 K 3%.D	4.0	0.2	10	0.015	0.17	0.38	0.118	0.163	0.12	1.98	9	8	0.02	720	0.40	3.6	7.7	22.5	139.0	1.52
135 = T7 by 2G	4.95%	0.5 v	10.	0.027	0.32	0.89.5	0.073	0.267	0.05	3.12√	24 9	16.	0.03	104	0.91	or 2.0,	10.7	25.3	21.4/	2.63 ✓
	10.7			-0.133	0			0.048				9		of 314,	1.83,		78.6		193.0x	
	0.			U		0.							0				~	•	213.	3.

Remaining dilution where marked (volume % of sand=D, silt=T, clay=C) High LiAl YLale Nd im TII may be due to clay.

ONLY T24, T25, T32 needed to be swirled to remove excess inorganics. it worked.

5

				Results	5		Activa	tion L	aborate	ories L	td.		R	eport:	A19-15	755				
Analyte Symbol at	Ge	As	Se	Rb	Sr	Y	Zr	Sc	Pr	Gd	Dy	Но	Er	Tm	Nb	Мо	Ag	Cd	In	Sn
Unit Symbol cm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.1	0.1 AR-MS	0.1 AR-MS	0.1 AR-MS	0.5 AR-MS	0.01 AR-MS	0.1 AR-MS	0.01 AR-MS	0.002 AR-MS	0.01 AR-MS	0.02 AR-MS	0.05 AR-MS								
and the second	R-MS < 0.1	< 0.1	1.4	26.8	47.2	17.00	4.5	3.5	11.4	5.4	3.5	0.7	1.7	0.2	1.5	0.44	0.198	0.81	0.02	0.49
0 1	< 0.1	2.4	1.0	2.0	41.2	0.44	0.6	0.1	0.2	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.44	0.093	0.98	0.04	0.66
T13 K	< 0.1	1.6	0.9	7.7	40.0	1.48	1.6	0.6	1.0	0.4	0.3	< 0.1	0.1	< 0.1	0.3	0.53	0.177	1.54	0.03	0.58
T14 K	< 0.1	2.1	0.8	2.9	40.8	0.52	0.7	0.1	0.3	0.2	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.32	0.056	0.88	0.03	0.43
T15 M40	< 0.1	1.3	1.4	5.8	66.0	6.09	5.1	1.3	3.1	1.5	1.1	0.2	0.5	< 0.1	0.7	0.47	0.098	0.59	< 0.02	0.22
T16 K	< 0.1	2.2	0.8	3.0	23.1	0.78	1.1	0.4	0.5	0.2	0.1	< 0.1	< 0.1	< 0.1	0.2	0.36	0.080	0.93	0.05	0.45
T17 K	< 0.1	1.6	0.9	12.1	34.3	2.17	2.3	0.6	1.5	0.6	0.4	< 0.1	0.2	< 0.1	0.4	0.46	0.256	1.26	0.05	0.67
T18 K	< 0.1	2.1	1.0	13.2	29.9	2.76	1.9	0.8	1.7	0.8	0.5	0.1	0.2	< 0.1	0.7	0.61	0.195	0.90	0.03	0.75
TI9 TEST M90	AON	0.6	1.0	1.3	40.8	4.04	3.1	0.4	0.9	0.8	0.5	-0.1	0.4	< 0.1	0.2	2.44	0.026	0.16	< Q.02	0.70
120 M 40	< 0.1	1.3	1.1	5.1	50.3	5.07	5.5	1.6	2.6	1.5	1.0	0.2	0.5	< 0.1	0.9	0.35	0.113	0.58	< 0.02	0.28
T21 M 80	< 0.1	1.4	1.1	0.9	69.4	1.47	3.2	0.5	0.5	0.3	0.2	< 0.1	0.1	< 0.1	0.2	0.41	0.035	0.36	< 0.02	0.08
122 M 50	< 0.1	3.4	2.3	2.3	92.0	4.46	7.3	0.7	1.8	1.0	0.7	0.1	0.4	< 0.1	0.6	0.32	0.066	0.39	< 0.02	0.24
123 K	< 0.1	2.3	1.1	3.6	26.4	1.89	2.6	0.5	1.0	0.5	0.3	< 0.1	0.1	< 0.1	0.3	0.49	0.130	0.57	0.05	0.71
124 K 1%.D	< 0.1	3.1	1.1	5.0	34.0	2.17	1.3	0.7	1.2	0.6	0.4	< 0.1	0.2	< 0.1	0.4	0.49	0.121	0.86	0.05	0.92
T25 K	< 0.1	2.4	1.1	10.6	20.6	2.96	0.5	0.7	2.1	1.1	0.6	0.1	0.3	< 0.1	0.6	0.60	0.353	1.07	0.04	0.91
126 K	< 0.1	2.4	1.0	10.8	30.7	3.72	2.0	0.7	2.5	1.2	0.8	0.1	0.4	< 0.1	0.8	0.57	0.195	0.75	0.04	0.82
127 K	< 0.1	2.1	0.8	2.4	25.4	0.58	0.5	0.2	0.2	0.2	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.34	0.080	0.46	0.04	0.47
128 K	< 0.1	1.9	1.0	4.5	29.4	1.35	2.5	0.3	0.6	0.4	0.2	< 0.1	0.1	< 0.1	0.3	0.41	0.081	0.68	0.02	0.57
T29 K	< 0.1	1.4	0.9	8.2	36.8	1.78	2.7	0.5	1.2	0.5	0.4	< 0.1	0.2	< 0.1	0.4	0.34	0.132	1.08	0.03	0.43
T30 K 5%.D	< 0.1	2.8	1.1	13.3	27.2	1.04	1.3	0.6	0.8	0.4	0.2	< 0.1	< 0.1	< 0.1	0.6	0.55	0.211	1.14	0.04	0.94
T31 M60+90	< 0.1	1.0	1.3	1.3	56.3	2.01	4.3	0.5	0.8	0.4	0.3	< 0.1	0.2	< 0.1	0.3	0.49	0.026	0.23	< 0.02	0.15
132 K 57. DTC	< 0.1	1.9	1.1	6.8	32.4	0.77	0.5	0.3	0.6	0.2	0.1	< 0.1	< 0.1	< 0.1	0.2	0.39	0.128	0.81	0.04	0.86
T33 K	< 0.1	1.2	0.9	6.4	22.3	0.53	0.6	0.3	0.3	0.2	0.1	< 0.1	< 0.1	< 0.1	0.2	0.31	0.088	0.72	0.03	0.51
T34 K 31, D	< 0.1	1.6	.5 1.0	11.3	36.2	1.56	1.3	0.6	1.0	0.5	0.3 چ	< 0.1	0.1	< 0.1	0.5		S 0.191	1.13	0.04	0.73
T35 = T7 by 2G		1.4 \	. 1.9		105.0				3.5		*				1.0		0.074		2	
T36 OREAS 47	~0.1	9.0	0.5	6.7	1 47.1 3	7 6.93 7 5.	15 7.9	K 4.4	v 5.4	2.2	4 1.4	0.2	× 0.8	<0.1	0.8	-1T.80	0.121	1 0.40	0.04	3.13

				Results	6		Activ	ation La	aborat	ories L	td.		R	eport:	A19-1	5755				
Analyte Symbol	Sb	Te	Cs	Ba	La	Ce	Nd	Sm	Ευ	Tb	Yb	Lu	Hf	Τα	W	Re	Au	TI	Pb	Bi
Unit Symbol cm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm
Detection Limit	0.02	0.02	0.02	0.5	0.5	0.01	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.001	0.5	0.02	0.1	0.02
Analysis Method V / 111 clayey M 50	AR-MS 0.10	AR-MS < 0.02	AR-MS 1.25	AR-MS 128.0		AR-MS	40.40	AR-MS 5.8	AR-MS 1.4	0.6	AR-MS 1.5	AR-MS 0.2	AR-MS 0.1	AR-MS < 0.05	AR-MS 0.1		AR-MS < 0.5	AR-MS 0.17	AR-MS 6.3	AR-MS 0.09
112 K	0.23	< 0.02	0.12	115.0	1.0	2.07	0.83	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05		< 0.001	0.5	0.07	29.7	0.30
13 K	0.18	< 0.02	0.33	143.0	4.6	8.64	3.47	0.3	0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.08	26.3	0.24
114 K	0.14	< 0.02	0.12	70.6	1.2	2.42	0.95	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.06	23.0	0.28
15 M 40	0.10	< 0.02	0.63	77.5	13.3	25.30	11.00	1.5	0.4	0.2	0.6	< 0.1	0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.07	4.1	0.06
16 K	0.19	< 0.02	0.15	69.2	2.0	4.15	1.83	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.07	18.6	0.25
17 K	0.23	0.02	0.43	104.0	6.9	12.30	5.33	0.7	0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.08	33.0	0.30
18 K	0.38	0.02	0.47	107.0	7.8	15.80	6.36	1.0	0.2	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.1	< 0.001	2.4	0.10	25.5	0.33
19 TEST M 90	0.14	< 0.02	0.15	29.6	4.1	5.17	3.97	0.6	-0.1	₹0.1	0.3	< 0.1	< 0.1	< 0.05	~ 0 .1	< 0.001	20.5	0.04	1.3	0.08
20 M 40	0.16	< 0.02	0.45	56.3	11.2	23.90	9.94	1.8	0.3	0.2	0.4	< 0.1	0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.06	4.7	0.11
21 M 80	0.13	< 0.02	0.14	67.5	1.9	3.45	1.84	0.3	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	1.3	0.03	1.3	0.07
22 M 50	0.17	< 0.02	0.25	89.8	7.5	15.10	7.04	1.1	0.2	0.1	0.4	< 0.1	0.1	< 0.05	0.1	< 0.001	0.9	0.06	2.7	0.12
23 K	0.33	0.03	0.22	63.6	5.0	8.14	3.82	0.5	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	2.5	0.08	30.3	0.36
24 K 1%. D	0.42	0.02	0.30	77.5	4.9	9.75	4.67	0.4	0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.1	< 0.001	2.5	0.09	35.6	0.43
25 K	0.33	< 0.02	0.59	116.0	8.9	18.10	7.51	1.1	0.2	0.1	0.2	< 0.1	< 0.1	< 0.05	0.2	< 0.001	2.4	0.13	33.2	0.38
26 K	0.34	0.04	0.60	119.0	11.3	21.80	9.60	1.3	0.2	0.1	0.3	< 0.1	< 0.1	< 0.05	0.1	< 0.001	1.0	0.11	28.2	0.35
27 K	0.25	< 0.02	0.10	40.1	1.0	2.02	0.85	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	2.1	0.07	23.0	0.28
28 K	0.30	0.02	0.24	51.8	2.8	5.28	2.68	0.2	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	0.9	0.08	21.7	0.27
29 K	0.23	< 0.02	0.34	111.0	5.4	9.93	3.98	0.6	0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	2.2	0.07	16.8	0.21
130 K 51.D	0.35	0.05	0.40	149.0	3.6	7.88	2.92	0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	0.2	< 0.001	2.2	0.12	43.4	0.40
131 M60+90	0.13	0.02	0.19	52.9	4.0	6.94	3.14	0.5	< 0.1	< 0.1	0.2	< 0.1	0.1	< 0.05	< 0.1	< 0.001	2.0	0.06	1.5	0.08
132 K 51. DTC	0.29	< 0.02	0.33	146.0	2.8	4.62	2.09	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	1.7	0.17	35.0	0.36
33 K	0.29	< 0.02	0.26	82.8	1.3	2.77	1.14	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	2.5	0.09	16.5	0.25
34 K 34. D	0.29	< 0.02	0.39	108.0	4.9	10.60	3.96	0.8	0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.05	0.1	< 0.001	1.8	0.09	31.4	0.34
T35 = T7 by 2G	0.19	0.02		3 83.3 .	16.1	30.90	13.40	1.9	0.4	0.2	0.6	< 0.1	0.2	< 0.05	< 0.1	< 0.001	0.91.	6 0.05 -	3.9 v	0.10
136 OREAS 47	0.26	< 0.02	0.93	2 68.8	25.4	46.80	20.20	\$ 2.7	07	0.2	0.7	< 0.1	0.3	\$0.05	0.1	<0.001	31.6	0.02	264.0	. 0.18

*

		Res	ults	Activation Labo
Analyte Symbol at	īh U	Hg	Inorganic or	lesburden
Unit Symbol cm pp		ppb	underhumu	s or muck
Y Y	.1 0.1 1S AR-MS	10 2	abruptly sti	arts at cm:
Analysis Method AR-M T11 clayey M50 0	.5 1.7	AK-1013	80-clay	
•	.1 < 0.1		30-clay	
112 11	.3 0.2	170	J	
	.1 < 0.1		20 - clay	
	.5 2.0	170		
	.3 0.2		15 - beige	day
	.3 0.2		20 - silt+c	
	.3 0.3		10 - clay+	
	 13~~0.5		- Molyhde	num Test OK.
	•			
т20 М 40 1			60 - dark =	beige silty chay
	0.3 0.4	110 _	65 - blue - g	room clay
	0.5 5.7			
120 1	0.1 0.3		20 - beige	
T24 K I % り C	0.3 0.2		20 - fines	and + pebbles
T25 K <0		170		
T26 K C).2 0.5	180 —	20 - beige	silt
T27 K <0).1 < 0.1			green silly chay
T28 K C).3 0.3		60 - beige	
T29 K (0.4 0.2		20 - beig	
T30 K 5%) (0.3 0.2	160 🗕	10 - beige	e silt + clay
T31 M60+90	0.2 2.0		- 7100	
T32 K 5%. DTC ().1 < 0.1	180	10 - clay	or leached sand
T33 K ().1 < 0.1	160 —	10 - beige	silt
134 K 37. N (0.2 0.2	130 —	10 - beig	e silt
135 = T7 by 26	0.81 ^{.\$7} 5.2	√ 90 NÛ		
	34//0.5	~ 90 -	- STANDAI	रष

. .

Activation Laboratories Ltd.

Report: A19-15755

.

Quality Contro	1
----------------	---

Activation Laboratories Ltd.

Report: A19-15755

Analyte Symbol	Li	Be	В	Na	Mg	A	Р	S	K	Ca	V	Cr	Ti	Mn	Fe	Co	Ni	Cu	Zn	Ga
Unit Symbol	ppm	ppm	ppm	%	%	%	%	%	%	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.1	0.1	1	0.001	0.01	0.01	0.001	0.001	0.01	0.01	1	1	0.01	1	0.01	0.1	0.1	0.2	0.1	0.02
Analysis Method	AR-MS 11.2	AR-MS 1.4	AR-MS	AR-MS 0.160	AR-MS 1.65	AR-MS 2.92	AR-ICP 0.123	AR-ICP 1.777	AR-MS 1.84	AR-MS 0.88	AR-MS 76	AR-MS 54	AR-ICP 0.13	AR-MS 147	AR-MS 2.94	AR-MS 13.2	AR-MS 38.1	AR-MS 6200.0	AR-MS 69.5	AR-MS 10.90
GXR-4 Meds	11.1	1.4	4 5	0.160	1.66	7.20	0.120	1.770	4.01	1.01	87	64	0.13	155	3.09	14.6	42.0	6520.0	73.0	20.00
GXR-4 Meas		1.7	5	0.004	1.00	7.20	0.127	1.822	4.01	1.01	0,	01	0.13	100	0.07	1	12.0	0020.0	, 0.0	20100
GXR-4 Cert							0.120	1.770					0.29							
GXR-6 Meas	28.2	0.8	4	0.084	0.40	6.84	0.032	0.013	1. 12	0.16	148	71		94 1	4.88	12.3	22.3	64.0	109.0	17.50
GXR-6 Cert	32.0	1.4	10	0.104	0.61	17.70	0.035	0.016	1.87	0.18	186	96		1010	5.58	13.8	27.0	66.0	118.0	35.00
GXR-6 Meas							0.033	0.013												
GXR-6 Cert							0.035	0.016												
OREAS 45d (Aqua Regia) Meas	18.1			0.044	0.17	5.91	0.033	0.041	0.13	0.10	179	455		394	13.00	25.4	200.0	331.0	36.3	17.30
OREAS 45d (Aqua Regia) Cert	11.9			0.031	0.14	4.86	0.035	0.045	0.10	0.09	201	467		400	13.65	26.2	176.0	345.0	30.6	17.90
OREAS 45d (Aqua Regia) Meas							0.033	0.041												
OREAS 45d (Aqua Regia) Cert							0.035	0.045												
OREAS 907 (Aquá Regia) Meas							0.024	0.065					0.03							
OREAS 907 (Aqua Regia) Cert							0.024	0.066					0.02							
Oreas 621 (Aqua Regia) Meas	8.6	0.7		0.225	0.42	1.89	0.033	4.663	0.40	1.70	12	35		527	3.47	30.0	27.1	3300.0	> 5000	8.80
Oreas 621 (Aqua Regia) Cert	8.2	0.5		0.160	0.44	1.60	0.034	4.500	0.33	1.65	11	31		520	3.43	27.9	25.8	3660.0	51700.0	9.29
Oreas 621 (Aqua Regia) Meas	7.7	0.6		0.199	0.46	1.81	0.034	4.599	0.39	1.57	12	34		504	3.35	28.2	28.0	3530.0	> 5000	9.78
Oreas 621 (Aqua Regia) Cert	8.2	0.5		0.160	0.44	1.60	0.034	4.500	0.33	1.65	11	31		520	3.43	27.9	25.8	3660.0	51700.0	9.29
OREAS 263 (Aqua Regia) Meas	19.3	1.1		0.079	0.55	1.63	0.042	0.120	0.38	0.87	23	48		403	3.06	25.4	62.7	75.2	105.0	4.70
OREAS 263 (Aqua Regia) Cert	20.1	1.2		0.079	0.59	1.29	0.041	0.126	0.29	1.03	23	48		490	3.68	31.0	72.0	87.0	127.0	4.92
OREAS 263 (Aqua Regia) Meas							0.044	0.126												
OREAS 263 (Aqua Regia) Cert							0.041	0.126												
T15 Orig	3.8	0.4	10	0.033	0.27	0.83	0.110	0.295	0.06	2.60	14	16	0.02	99	0.57	1.7	8.7	22.8	34.3	2.05
T15 Dup	3.6	0.5	9	0.032	0.26	0.85	0.108	0.291	0.07	2.60	14	16	0.02	97	0.54	1.6	8.0	21.5	33.9	1.85
T16 Orig	1.4	< 0.1	9	0.025	0.20	0.17	0.095	0.177	0.11	1.61	5	5	< 0.01	426	0.37	4.6	4.0	37.6	159.0	0.57
T16 Dup	1.2	< 0.1	8	0.022	0.18	0.14	0.095	0.174	0.09	1.42	4	4	< 0.01	385	0.32	4.1	3.4	35.0	143.0	0.55

÷

Reruns by similar vegetation method, 1 g unashed in HNO3 topped with HCl, ALS Vancouver, VA19229922.

		ME-VE	G41 I	VIE-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	N	IE-VEG41 N	NE-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE			Au	Ag	Ai	As		В	Ba	Be	Bi	Ca	Cd	Ce
DESCRIPTI	ON		ppb	ppm	%	ppm	_	om	ppm	ppm	ppm	%	ppm	ppm
328	OREAS	47	43.1	0.093	J 0.77	9.17	1	3	60.7	0.14	0.111	0.59	0.420	✓ 38.200 •
329	= T2	•	2.0	0.025	• 0.14			10	37.9 -		0.012	3.36	0.237	'√ 1.770 v
330	= 74		5.6	/ 0.061	2 0.08	2.06	1.53	11	100.5	0.03	0.238	l√ 1.71	, 0.772	i 🗸 🛛 1.545 🗸
331	TEST	\sim	, 52.5	2 0.107	0.55	55.90	v	9	136.0	0.08	0.163	1.63	0.802	5.320

	MEA	/EG41 ME-	VEG41 ME-V	/EG41 ME-	VEG41 ME	VEG41 ME-V	EG41 ME-VI	EG41	ME-VEG41 ME-V	VEG41 ME-\	VEG41 ME-V	EG41
SAMPLE	101 <u>–</u> –	Co	Cr	Cs ppm	Cu	Fe %	Ga ppm	Ge ppm	Hf ppm	Hg ppm	ln ppm	K <u>%</u>
328 OREAS	47	47.40 -	28.50 v	1.075 🗸	147.50 /	1.365 1.65	2.500 3.3	0.021	0.187	0.016	0.024	0.11
329 = T2		0.27 🗸	1.64 v	0.030 V	6.10 -	0.148 🗸	0.247 -	0.036	0.040 -	0.089 ~	-0.005	-0.01
327 = 12 330 = T4		0.57 🗸	1.44 1	0.144 🖍	18.30 /	0.118 🗸	,0.353 ≁	0.165	0.021 -	0.252 🗸	0.033 🖌	0.08 🗸
331 TEST		17.20 V	19.00	0.525	45.40	1.515	2.280	0.013	0.035	0.493	0.046	0.07

	ME-VEG41 ME-	EG41 MI	E-VEG41 ME-	VEG41 MI	E-VEG41 ME-	VEG41	ME-VEG41	ME-VEG41 ME	E-VEG41	ME-VEG41	ME-VEG41
SAMPLE	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb	Pd
DESCRIPTION	nqq	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm
						·					0043
328 OREAS	47 22.50	6.7	0.470 🖌	253.0 🗸	10.05 12	0.075	0.187	71.60 🗸	0.052	262.00	✓ 0.034 ✓
329 = T2	0.85 -	0.1	0.224 ~	41.3 -	0.41 -	0.007	0.123	2.197	0.031	0.59	-0.001
330 = 74	0.84 🧹	0.3	0.152 /	360.0 🗸	0.43 ~	0.007	0.092	J 2.13 3	.\\ 0.094	15.80	2 ^{1.7} -0.001
331 TEST	2.45	4.2	0.304	1190.0	0.48	-0.001	0.412	22.20	0.104	44.60	0.002

		ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41	ME-VEG41
SAMPLE	1	Pt	Rt) Re	s S	Sb	Sc	se Se	s Sn	Sr	Ta	Те
DESCRIPT	ION	ppm	26 ppn	n ppm	<u>%</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm
328	OREAS 1	+7 0.015	.0. 6.8	4 -0.00	1 0.04	t √ 0.0 ⁴	1 2.9	9 0.060	0 0.77	7 29.0	/ 0.001	-0.02
329	- T2	0.007	~ 0.1	8 -0.00	1 0.18	3 0.0	7 0.34	4 0.816	6 0.03	3~ 75.0	v 0.00€	-0.02
330	= + 4	0.003	3~ 2.9	5 0.00	1 0.18	3 0.30	0.2	4 ² , 2.360	0.0.9 0.54	5∼ 45.9	J 0.003	-0.02
331	TEST	0.002	2 7.9	3 -0.00	1 0.11	0.2	3 3.3	2 1.550	0 1.03	3 35.9	0.001	0.10

	ME-VEG41 ME-VI	EG41 M	E-VEG41 ME-VE	EG41 ME-V	/EG41 ME-VE	G41 ME-	VEG41 ME-V	EG41 ME-V	EG41
SAMPLE	Th	Tī	ТІ	U	V	w	Y	Zn	Zr
DESCRIPTION	ppm	%	ppm	ppm	ppm	ppm	ppm	maa	DOM
328 OREAS 4	7 2.660	0.059	0.068	0.372	22.40 -	0.02	5.29	205.0 🖌	6.56 🗸
329 = T2	0.221 ~	0.002	0.011 ^	0.175 🖌	2.49	0.01	0.75 🗸	24.6 7	1.63 🖌
330 = T4	0.080~	0.002	0.080 ~	0.110 -	2.20 \.	0.08	0.37 -	163.0 🖌	0.80 ⊻
331 TEST	0.310	0.012	0.050	0.118	21.60	0.31	1.35	227.0 /	1.57

RERUNS				Results	5		Activation Laboratories Ltd.							eport:	A19-10		NEUTRON ACTIVATION 2 B - Vegetation					
Analyte Symbol	Aυ	Ag	As	Ba	Br	Ca	Co	Cr	Cs	Fe	Hg	Hf	łr	К	Мо	Na	Ni	Rb	Sb	Sc		
Unit Symbol	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	%	ppm	ppm	ppm	ppm	ppm	ppm		
Detection Limit	0.1	0.3	0.01	5	0.01	0.01	0.1	0.3	0.05	0.005	0.05	0.05	0.1	0.01	0.05	1	2	1	0.005	0.01		
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA		
8033 = T1	2.3	< 0.3	1.97	< 5	28.80	2.45	< 0.1	5.8	< 0.05	0.415	0.22	0.15	< 0.1	1.48	< 0.05	252	< 2	< 1	0.102	0.85		
8034 = T8	< 0.1	< 0.3	1.92	310	8.95	1.74	3.3	17.7	0. 49	0.768	0.15	2.17	< 0.1	1.26	< 0.05	6070	< 2	46	0.365	2.87		

. .

Analyte Symbol	Se	Sr	Ta	Th	U	W	Zn	La	Ce	Nd	Sm	Εu	Tb	Lu	Yb	Mass
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g
Detection Limit	0.1	100	0.05	0.1	0.01	0.05	2	0.01	0.1	0.3	0.001	0.05	0.1	0.001	0.005	
Analysis Method	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
8033 = TI	< 0.1	< 100	< 0.05	0.7	0.29⁄	< 0.05	33	3.15	5.1	< 0.3	0.555	0.07	< 0.1	< 0.001	0.200	2.70
8034 = T 8	< 0.1	< 100	< 0.05	2.7	0.70	< 0.05	136 🗸	10.50	18.0	9.6	1.440	0.55	< 0.1	0.058	0.490	3.17

TESLUK - KAMISKOTIA - WORK LOG - 2019

SHIP SAMPLES: $2 \times 15 = \frac{4}{20.00} - 2 EXPRESS$ Supplies: I Lot $\frac{4}{28}$ 4 Field Jrips $\times 50 = 200 \text{ Km} \times 0.50 = \frac{4}{200} \frac{100}{100} \frac{100}{100} \frac{100}{100}$ ASSAYS: ACTLABS end. ASSAYS: ACTLABS HIT $\frac{404}{100} \frac{100}{100} \frac{19513}{100}$ HST ALS $\frac{128}{100} \frac{100}{100} \frac{100}{10}$ GRAND TOTAL $\frac{4}{9},000, -$ 31 samples $\times \frac{400}{1242}$