

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. NTS 31 M/4

PROSPECTING REPORT

ARSENIC LAKE PROPERTY R. Comstock, F. Blake, W. Adair

Strathy Twp. Sudbury Mining Division

November 3, 2019.

Table of Contents

Summary

Property History

Property Description

Daily Log and Work Description

Sample Descriptions

Conclusions and Recommendations

List of Figures

Figure 1	Prospecting Map	1:5000
Figure 2	Sample Location Map Prospecting GPS Traverse	1:1000
Figure 3	MLAS Claim Map	1:14,000

Appendix

Sample Results QC Certificate

PROSPECTING REPORT

Summary:

On July 8 and 9, 2019 prospecting was undertaken on the Arsenic Lake Property by Robert Comstock, Wayne Adair and Fred Blake. The group prospected and subsequently sampled an area surrounding a historic showing 240 meters south of the west side of Arsenic Lake about a mile north of the town of Temagami.

Property History

A 76 meter long and up to 12 meter wide trench was presumably worked by Manitoba and Eastern Mines or successor Penrose Mines Limited before or after 1948 when the takeover occurred. Pyrite and chalcopyrite massive stringers and blebs occur within sheared and fractured metavolcanics (Map 2323 OGS Report 163 p100). The zone strikes east west and dips vertically. A sample taken in 1970 by Ontario Division of Mines geologist contained 5.6 percent copper, 0.26 percent zinc, 0.08 oz/ton gold and 3.78 oz/ton silver.

Property Description and Access

The property consists of 6 boundary claims situated in central Strathy Township in the Sudbury Mining Division. The legacy claim number is 4281730. The claims are owned by Robert Comstock, Wayne Adair and Fred Blake sharing 1/3 each. Access to the property was by way of a good quality gravel bushroad passing within a few hundred meters to the west of the area of interest.

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Status	Tenure Percentage	Work Required	Work Applied
4281730	STRATHY	131343	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3	200	0

Legacy Claim Id	Township / Area	Tenure ID	Tenure Type	Anniversary Date	Tenure Status	Tenure Percentage	Work Required	Work Applied
4281730	STRATHY	131344	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3	200	0
4281730	STRATHY	249326	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3	200	0
4281730	STRATHY	270046	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3	200	0
4281730	STRATHY	329998	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3	200	0
4281730	STRATHY	329999	Boundary Cell Mining Claim	2019-05- 25	Hold Pending extension of time	33.3		

Daily Log and Work Description:

July 8th, 2019. As part of the prospecting programme, 300 meters of trail-clearing, stripping and cleaning was required to get fresh rock at the sample sites in and around a historic trench. Grub-hoes, pick-axes and shovels were the implements of choice to clear away accumulative wood debris, vegetation and dirt. R. Comstock, W. Adair and F. Blake worked a long day on July 8th, 2019.

Nature and Content of Rocks: sheared and fractured zone in mafic metavolcanics containing massive stringers of pyrite and chalcopyrite

Topography, Ground Cover, Vegetation: rugged locally, uneven ground, thin overburden with large birch, spruce, poplar and balsam

July 9th, 2019 As part of the prospecting programme, further prospecting in and around the trench was done and a series of 5 grab samples were taken in and around the perimeter of a historic trench 70 meters of length and 3 meters in width and up to 3 meters deep . R. Comstock, W. Adair and F. Blake worked another long day on July 9th, 2019 to finish prospecting and subsequent sampling.

The five samples were crushed to 20 lbs. and then rolled into a representative analysis of the total of the five samples. The intent was to get some idea of representative content and Au grade over the spread of samples.

Nature and Content of Rocks: sheared and fractured zone in mafic metavolcanics containing massive stringers of pyrite and chalcopyrite

Topography, Ground Cover, Vegetation: rugged locally, uneven ground, thin overburden with large birch, spruce, poplar and balsam

Sample Description

A whole rock analysis was done on one sample (Arsenic Lake). Five separate samples were crushed and put together and analyzed. GPS Garmin Map 76CsX NAD 83 sample locations as follows:

057	17 T 590212 E 5215811 N
058	17 T 590217 E 5215825 N
059	17 T 590245 E 5215823 N
060	17 T 590233 E 5215815 N
061	17 T 590213 E 5215818 N

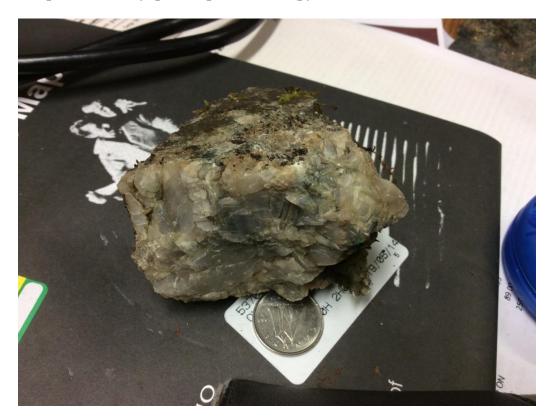
Sample 057 Mafic metavolcanic with pyrite stringers

Sample Description

A whole rock analysis was done on one sample (Arsenic Lake). Five separate samples were crushed and put together and analyzed. GPS Garmin Map 76CsX NAD 83 sample locations as follows:

057	17 T 590212 E 5215811 N
058	17 T 590217 E 5215825 N
059	17 T 590245 E 5215823 N
060	17 T 590233 E 5215815 N
061	17 T 590213 E 5215818 N

Sample 057 Mafic metavolcanic with pyrite stringers



Sample 058 Massive pyrite and assenopyrite in intermediate metavolcanic rock

Sample 059 mafic metavolcanic with quartz carbonate veining and pyrite blebs

Sample 060 smoky quartz speckled with pyite

Sample 61 Intermediate volcanic with chalcopyrite blebs

Meegwich Consultants Inc. P.O. Box 482, Temagami, Ontario POH 2HO Tel (705) 569-2904 fax 2817

Conclusions and Recommendations

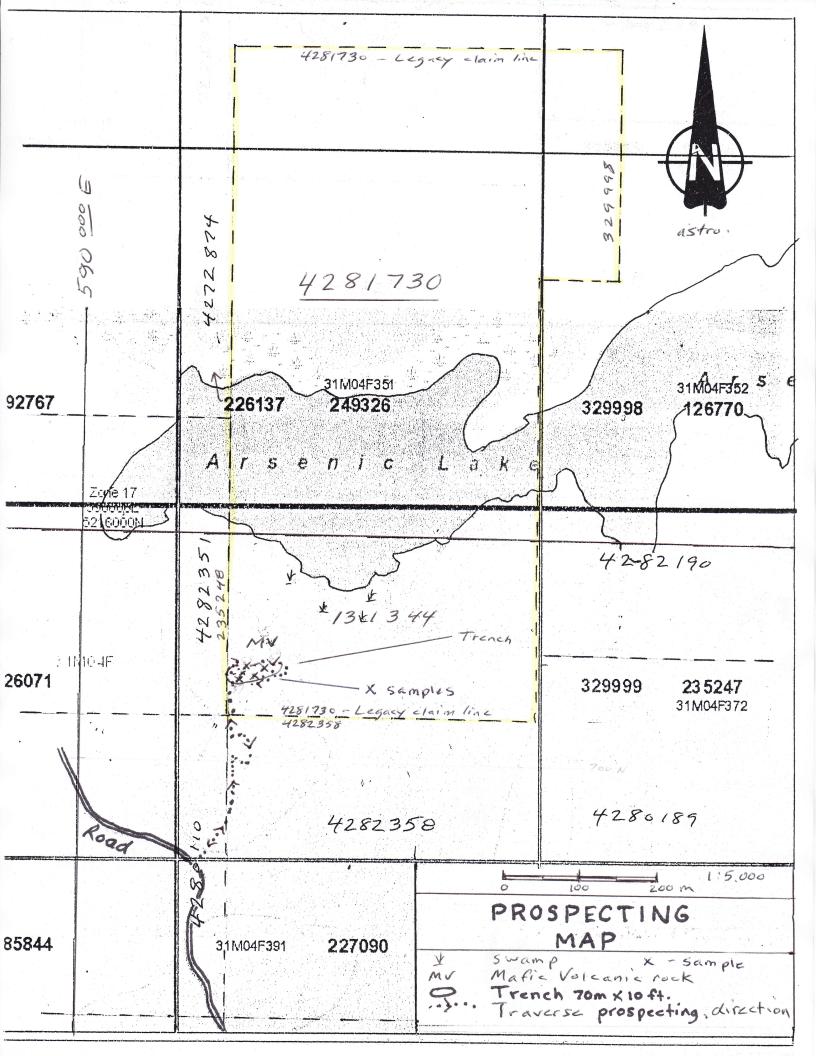
The property is located within a highly prospective area with the Leckie gold deposit about one km to the east. Further work is certainly warranted.

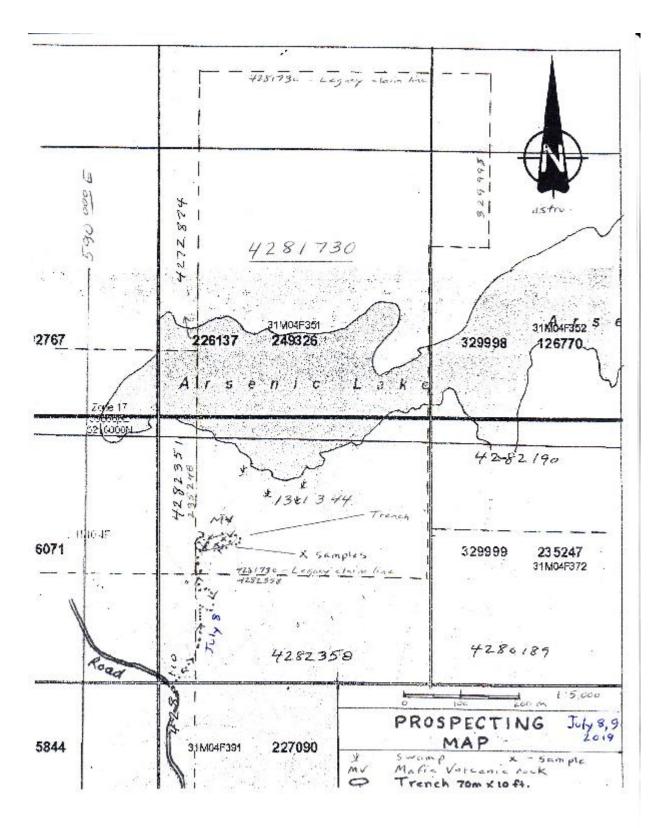
The property should be covered with a magnetic and electrical survey to map further prospective structure and mineralization. In addition the prospect would benefit immensely from a mechanical stripping program at the occurrence. An excavator could be walked in 200-300 meters from the bush road to the west.

References

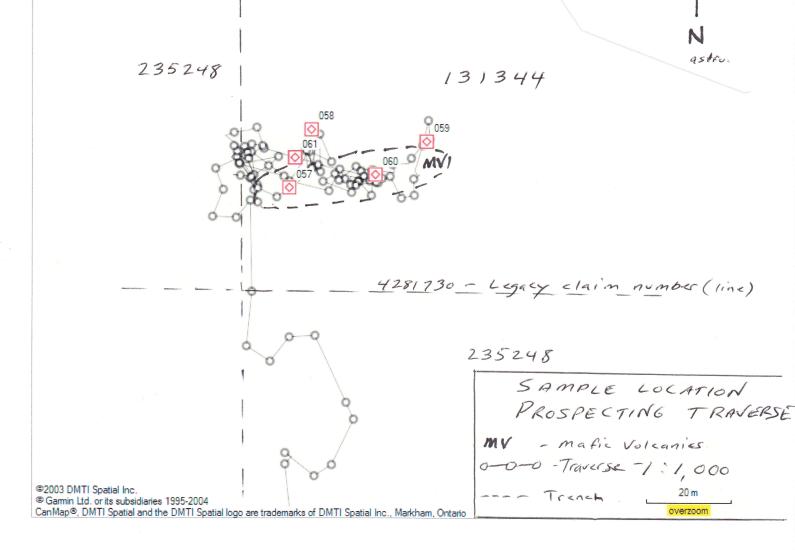
Bennett, G. 1978 Ontario Geological Survey Report No. 163 Geology of Northeast Temagami Area

CERTIFICATE OF AUTHOR


I, David Laronde of the town of Temagami, Ontario hereby certify:


- That I am a geology engineering technologist and have been engaged in the mineral exploration industry for the past 40 years.
- 2. That I am a graduate of Cambrian College in Sudbury with a diploma in Geology Engineering Technology 1979
- 3. That my knowledge of the property described herein was acquired by documentation.

Dated at Temagami this 3rd day of November 2019.


Lacende

David Laronde



Meegwich Consultants Inc. P.O. Box 482, Temagami, Ontario POH 2HO Tel (705) 569-2904

ARSENIC LAKE PROPERTY

ALE
(ALS)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ROBERT COMSTOCK BOX 43 TEMAGAMI ON POH 2H0 Page: 1 Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 7-AUG-2019 Account: RCAMRGWN

CERTIFICATE SD19180282

Project: Arsenic Lake

This report is for 1 Rock sample submitted to our lab in Sudbury, ON, Canada on 23-JUL-2019.

The following have access to data associated with this certificate:

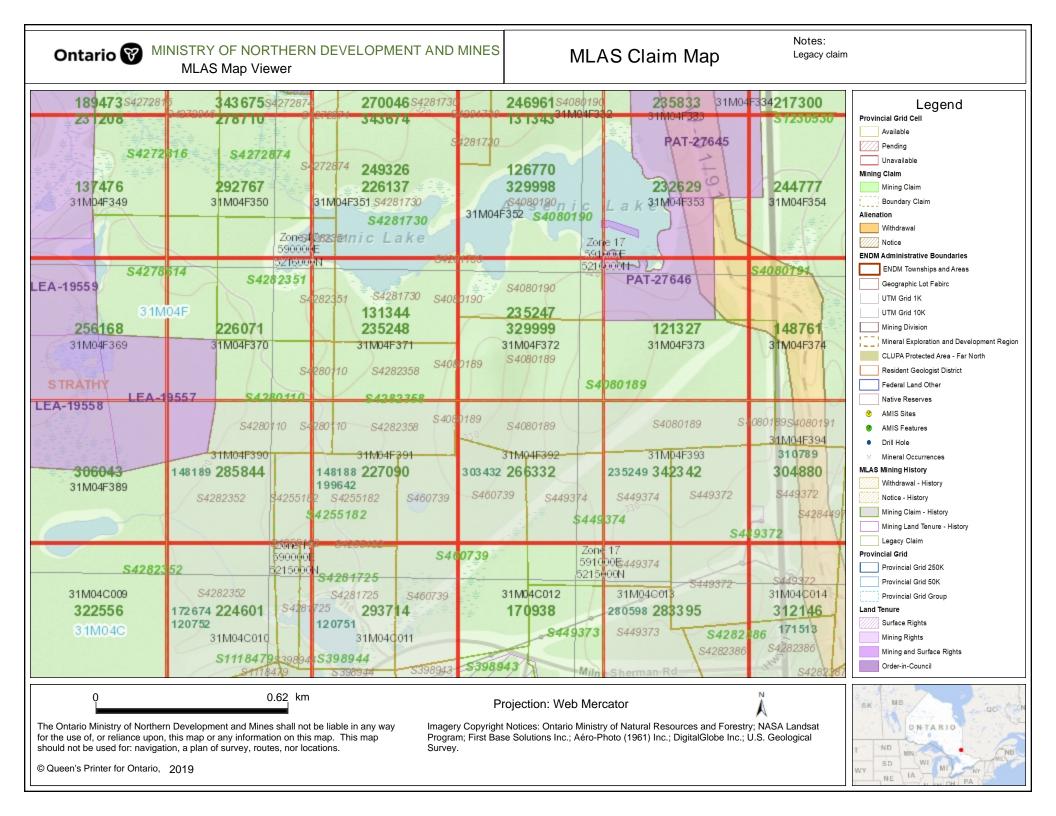
SAMPLE PREPARATION					
DESCRIPTION					
Received Sample Weight					
Sample login - Rcd w/o BarCode					
Fine crushing - 70% <2mm					
Split sample - riffle splitter					
Pulverize split to 85% <75 um					
Crush entire sample					
Crushing QC Test					
Pulverizing QC Test					
	DESCRIPTION Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% -75 um Crush entire sample Crushing QC Test				

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES					
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ					
TOT-ICP06	Total Calculation for ICP06						
Au-AA23	Au 30g FA-AA finish	AAS					

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager


(ALS)			-	+1 (604) 98 try			Proj	ect: Arsen		_				count: RC	
									C	ERTIFIC	CATE O	F ANAI	LYSIS	SD191	80282	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	Au-AA23 Au ppm 0.005	ME-ICP06 SIO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP P2O5 % 0.01
Arsenic Lake		6.90	83.9	90.9	0.088	36.2	10.50	25.9	9.28	4.96	0.02	0.02	0.013	1.36	0.43	0.01

***** See Appendix Page for comments regarding this certificate *****

A		Phone: +1 (rton Hwy ouver BC V7 604) 984 02	1H 0A7 221 Fax: geochemis	+1 (604) 984 0218 try	т	BOX 43 TEMAGAI	COMSTOCK MI ON POH 2H0		Page: 2 - Total # Pages: 2 (A - E Plus Appendix Page Finalized Date: 7-AUG-201 Account: RCAMRGW
ALS)						Project: A	rsenic Lake	OF ANALYSIS	SD19180282
Sample Description	Method Analyte Units LOD	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01					5515100202
Arsenic Lake		<0.01	<0.01	7.44	96.29					

***** See Appendix Page for comments regarding this certificate *****

		ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	То	N: ROBERT COMSTOCK BOX 43 TEMAGAMI ON POH 2H0	Page: Ap Total # Appendix Finalized Date: 7-A Account: RCA
(ALS)			Project: Arsenic Lake CERTIFICATE OF ANALYSIS	SD19180282
		CERTIFIC	CATE CO	OMMENTS	
	Applies to Method:	Processed at ALS Sudbury located at 1351-B Kelly CRU-21 CRU-31 PUL-31 PUL-QC		ORATORY ADDRESSES d, Unit #1, Sudbury, ON, Canada. CRU-QC SPL-21	LOG-22 WEI-21
	Applies to Method:	Processed at ALS Vancouver located at 2103 Dolla Au-AA23 ME-ICP06	rton Hwy,		TOT-ICP06

189473 \$427281	343675S427287	270046 54281730	24696184080190	235833 31M04F334217300
23 208 S4272 31M04F349	292767 31M04F350 Zones 59000		13 13 43 314001730 1281730 126770 329998 31400190 r i c 3140047352 54080190 Zone Zone	311004/333 PAT-27645 232629 a k 311004F353 311004F354
S4278 S4278 31M 256168 31M04F369 STRATHY	54282351 S- 226071 31M04F370 S-	- New York	54080190 235247 329999 31M04F372 54080189	Introduction S4080794 PAT-27646 S4080794 121327 148761 31M04F373 31M04F374 80189 S189
306043 31M04F389	S4280110 S- 31M04P390 148189 285844 S4282352 S425511	280 10 54282358 5406 31M04F391 148188 227090 199642	31M04F392 303432 266332 2	S4080189 S-080189 S4080191 31M04F393 310789 35249 342342 304880 S449374 S449372 S42844972 74 S42844972 S42844972
<u>\$42823</u> 31M04C009 322556 31M04C	52 52 52 52 52 52 52 52 52 52	N <mark>S4281725</mark> S4281725 S460739 725 293714 120751 31M04C011	31M04C012 170938 9449373	E449374