

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 Stripping and Sampling on the Cluster 1 Zone: Bending Lake Iron Property, AMI Project by

Ambershaw Metallics Inc

Allen J. Raoul, P.Geo. Project Geologist February 19, 2020

TABLE OF CONTENTS

		ng (
Section 1	Summary	pg 4
Section 1 1	Introduction Regis of Report	pg 7
Section 1.1	Author Qualifications	py o
Section 2	Author Qualifications	py o
Section 2.1	Discrete Location	pg 9
Section 2.1	Property Location	pg 9
Section 2.2	Ontario Mineral Tenuro	pg 10
Section 2.3		pg 14
Section 2.4	Lost of Maintenance	pg 38
Section 2.5	Underlying Royallies	pg 38
Section 2.6	Finite research and Deresitting	pg 38
Section 2.7	Environment and Permitting	pg 38
Section 3	Access, Physiography, Intrastructure and Local Resources	pg 39
Section 3.1	Access	pg 39
Section 3.2	Climate	pg 39
Section 3.3	Physiography	pg 39
Section 3.4	Local Resources	pg 40
Section 3.5	Infrastructure	pg 40
Section 4	First Nation and Metis Consultation	pg 41
Section 4.1	First Nation Engagement	pg 41
Section 4.2	Metis Engagement	pg 42
Section 5	Property History	pg 43
Section 5.1	Historical Resources	pg 49
Section 5.2	Steep Rock Resources	pg 50
Section 5.3	Historical Capital and Operation Cost Estimate	pg 50
Section 6	Geology	pg 51
Section 7	Geophysics	pg 55
Section 8	Geochemistry	pg 56
Section 9	Historical Diamond Drilling	pg 57
Section 10	2019 Synchrotron Testing	pg 63
Section 11	2019 Stripping, Mapping and Sampling	pg 67
Section 11.1	Northwest Fe Zone	pg 67
Section 11.2	Wilcott Fe Zone	pg 71
Section 11.3	Road Fe Zone	pg 75
Section 12	Conclusions	pg 80
Section 13	References	pg 82
Section 14	Budget	pg 84
Section 15	Certificate of Author	pg 85

Table 1	Ambershaw Mining Patents on the Bending Lake Area	pg 11
Table 2	Ambershaw Mining Claims	pg 14
Table 3	Historical Work on the Bending Lake Property	pg 44
Table 4	Historical Geology Legend (Fladgate & BLIG)	pg 53
Table 5	1954-2013 drilling for Fe on the Bending Lake Property	pg 57
Table 6	Historical drilling for base metals near Bending Lake	pg 61
Table 7	Ambershaw sampling NW Zone	pg 67
Table 8	Ambershaw Partial Analyses of the NW Zone	pg 70
Table 9	Ambershaw sampling Wilcott Zone	pg 71
Table 10	Ambershaw Partial Analyses of the Wilcott Zone	pg 74
Table 11	Ambershaw sampling Road Zone	pg 75
Table 12	Ambershaw Partial Analyses of the Road Zone	pg 77
Table 13	Three Zone comparison vs Synchrotron Analysis	pg 81
Table 14	Kenora Assessment Files at ENDM	pg 83
Table 15	Budget for the 2019 Stripping Program	pg 84
Figure 1	Local Map of the Bending Lake Property	pg 9
Figure 2	Patent Map of the Bending Lake Property	pg 12
Figure 3A	North Claim Map of the Bending Lake Property	pg 36
Figure 3B	South Claim Map of the Bending Lake Property	pg 37
Figure 4	Geology of the Bending Lake Property	pg 52
Figure 5	Total Magnetics and Electromagnetic Anomalies	pg 55
Figure 6	2006 Lake Sediment Anomalies	pg 56
Figure 7	1954-2013 drilling for Fe on the Bending Lake Property	pg 60
Figure 8	Historical drilling for base metals near Bending Lake	pg 62
Figure 9	Ambershaw Synchrotron testing Phase I	pg 64
Figure 10	Cell display results from Phase I & II testing	pg 66
Figure 11	Diffractograms for different Clusters	pg 66
Figure 12	Northwest Fe Zone photo	pg 68
Figure 13	Northwest Fe Zone sampling map	pg 69
Figure 14	Wilcott Fe Zone photo	pg 72
Figure 15	Wilcott Fe Zone sampling map	pg 73
Figure 16A	Road Fe Zone – North BIF photo	pg 76
Figure 16B	Road Fe Zone – South BIF photo	pg 76
Figure 15	Wilcott Fe Zone sampling map	pg 73

Appendix A: Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program (phase I) located the following from the Aug 20th Powerpoint Presentation from Nordmin (pg1-20).

Appendix B: The Phase II program of drill-core pulps testing using the Synchrotron method was defined in the October 3rd of 2019 Technical Memo in the *Site Visit* - *Bending Lake Deposit* by Nordmin Engineering.

Appendix C: Assay Certificates from SGS Canada

SUMMARY

The Bending Lake area was worked intermittently by Jalore Mining and Algoma Steel from 1954 to 1977 and the Bending Lake Iron Ore Deposit was located during this period. Work included geological mapping, ground geophysical surveys and three separate drill programs. Algoma Steel and their Joint Venture Partner Steep Rock Iron Mines produced a Historical Resource of 247 Million tonnes of 23% Fe (Sept. 1977). Other studies (Metallurgical Testing, Mining Estimate and Impact Study) were completed at this time.

From 2003 to 2014, the property was acquired H. Wetelainen and Associates and became known as the Bending Lake Iron Group Ltd. They acquired the 60 historical patents (Sells and NTV) and staked a large group of claims in the area. In February of 2009, Behre Dolbear Ltd produced the *Preliminary Review, Valuation and Cash Flow Projection Bending Lake Deposit and the Bending Lake Project.* This included a Historical Resource of 245.5 Million tonnes of 25.08% Fe exists on the property however, this review does not meet current N143-101 Measured Resource standards.

In 2011, Fladgate Exploration produced an *NI 43-101 Independent Technical Report Resource Estimate: Bending Lake Property* (Nov.16, 2011) yielding: 1) 185.2 Million Tonnes Indicated at an average in-situ grade of 29.59% Magnetite, 2) 151.4 Million Tonnes Inferred at an average in-situ grade of 30.38% Magnetite.

On September 11 of 2014, the Bending Lake Iron Group Ltd went into receivership to A. Farber & Partners. On November 27 of 2015, Legacy Hill Resources (assigned to Ambershaw Metallics Inc) began purchasing the assets of the Bending Lake Iron Group Ltd, including the Bending Lake Iron Deposit, from the receivership group. In November 18 of 2016, this purchase was finalized.

The Bending Lake property, aka AMI Project, is 100% owned by Ambershaw Metallics Inc. and consists of 49 mining patents, 902 mining claims and 3 Mining licences. These mining lands consisted of 16,249 Hectares or 162.49 km2. The main block of the property is located in the Bending Lake area, on Ontario highway 622, approximately 24km south of the junction with the Highway 17, or 32km southwest of the town of Ignace.

The Bending Lake Iron Deposit comprises 2km section from a 14km long, magnetitebearing, iron formation. The Ambershaw Metallics Inc. activity in 2019 focused on evaluating the mineral potential of the Bending Lake iron deposit. The following 2019 activities were done to investigate this deposit:

• In 2018, Ambershaw Metallics Inc. applied for an Advanced Exploration permit under the Ontario Mining Act to remove a bulk sample up to 100,000 tonnes from exposures representative of the Bending Lake iron deposit (Ambershaw Metallics Inc., news release, March 6, 2018). The permitting process continued in 2020.

- Ambershaw Metallics Inc received a positive *Resource Review and Due Diligence* report by Nordmin Engineering (Sept.17, 2019), based on a historical review completed of the property,
- In 2019, Ambershaw Metallics Inc. initiated a program where 47 drill-core pulps samples were analysed from 15 historical diamond drill holes, which tested the iron deposit between 1964 and 1977, were re-submitted for analysis using the synchrotron method. Based on the assay results, two distinct grades of magnetite:
 - a. Cluster 1 averaged 48% Fe_2O_3 and 43% SiO_2 and the Cluster 2 averaged 25% Fe_2O_3 and 54% SiO_2 were identified using this analytical technique.
 - b. The Cluster 1 is representative of "fine to medium grained sandstone with magnetite bands from centimeter to meter scale banding".
 - c. Cluster 2 is representative of "siltstone (and minor fine sandstone) with finer interstitial magnetite between the grains".
- The basis of the current report is to <u>test the surface potential of the Cluster 1</u> <u>zone</u>. Mechanical removal of overburden, pressure-washing, channel-cutting and sampling was completed on three areas which are located west of the planned Advanced Exploration permit bulk sample site.
- In 2019, metallurgical testing was initiated on a 100 kg sample of Cluster 1 grade rocks collected from the Northwest Fe Zone.
- Since acquired the AMI property in 2017, Ambershaw Metallics Inc. have reshelved 81 diamond drilling holes totaling 17,730 m. These drill-holes tested the mineral potential of the iron deposit between 1954 and 2011.
 - a. In 2019, a program of re-logging and sampling was initiated on many of these sixty 1954-2008 historical drill-holes. In total, 2,021 samples were collected from 4,468 m of core that had not been sampled.
 - b. In 2019, Ambershaw Metallics Inc. re-shelved an additional 21 drill-holes from the 2011 drilling program. During this 2011 program, 1365 drill-core samples were collected from these holes but not submitted for analysis.
 - c. All of these drill-core samples were submitted for assay. The results from these sampling program are pending
- In 2019, Ambershaw Metallics Inc. initiated an independent National Instrument 43-101 technical report on the AMI property. This report will provide a revised mineral resource estimate on the Bending Lake iron deposit which will include the assay results of samples submitted for analysis in 2019.
- The permitting and approval process for developing the Bending Lake iron deposit was initiated in 2019. On August 21, 2019, the Canadian Environmental

Assessment Agency (CEAA) invited public comments until September 20, 2019 on the Project Description submitted by Ambershaw Metallics Inc. CEEA mention "comments received will be taken into consideration in finalizing the Environmental Impact Statement (EIS) Guidelines" (Canadian Environmental Assessment Agency, news release, August 21, 2019). The environmental assessment process continues in 2020.

- The environmental baseline study initiated in 2017 on the AMI property continued in 2019. These studies include air quality, noise, wildlife, ecosystem, soil, vegetation, fish habitat, sediment and water-quality surveys. In 2019, Pinchin Ltd was hired to complete a hydrogeology program on the property: well monitoring and ground water monitoring at the South part of the orebody
- In 2019, Ambershaw Metallics Inc., also initiated an acid rock drainage testing program, under the direction of Dr. Kevin Morin, on samples collected from the Cluster 1 and 2 grade rocks.

Section 1 Introduction

This author (Allen J. Raoul, PGeo) was engaged by Ambershaw Metallics Inc. to evaluate the following programs on the Bending Lake Property to get a better understanding of the geology and mineralogical characteristics of the AMI Project. All of the historical metallurgical testing (1977 & 2010) has been from the old bulk sample, on the east side of the deposit, with limited work on the west end of the deposit.

In 2019, Ambershaw Metallics Inc. hired Nordmin Engineering to initiate a sampling program of 47 drill-core pulps for samples analysed from 15 historical diamond drill holes. This tested the 1964 and 1977 drilling and encompassed the entire deposit. Analysis used the Synchrotron method. Based on the assay results, two distinct grades of magnetite:

- a. Cluster 1 averaged 48% Fe₂O₃ and 43% SiO₂ and the Cluster 2 averaged 25% Fe₂O₃ and 54% SiO₂ were identified using this analytical technique.
- b. Three other Clusters (3, 4, 5) were located but they appear to be subunits of Group 2 and make up a small portion of the sampling.
- c. The Cluster 1 is representative of "fine to medium grained sandstone with magnetite bands from centimeter to meter scale banding". This group appears to make up the majority (over 60%) of the Bending Lake Deposit.
- d. Cluster 2 is representative of "siltstone (and minor fine sandstone) with finer interstitial magnetite between the grains".

In July of 2019, Ambershaw Metallic Inc. had completed surface stripping on the <u>Northwest Fe Zone</u>, 600m west from the old bulk sample, to confirm the consistency of the ore deposit. Based upon preliminary mapping, this exposure appeared to be representative of the Cluster 1 Group, after the release of the Synchrotron data. After a field visit by the Nordmin Group, this was confirmed and more areas of testing were needed to test the surface potential of the Cluster 1 zone.

A sampling program was commenced 400m northwest of the Northwest Fe Zone, on the 2011 <u>Wilcott Fe Zone</u>. A BSc thesis (University of Manitoba) tested the northwest extension of the deposit. A 70m long x 10m wide zone was stripped, mapped with limited sampling for academic purposes. Mapping and 20m of channel sampling located more Cluster 1 exposure.

A sampling program was commenced 450m southeast of the Northwest Fe Zone, on the 2019 <u>Road Fe Zone</u>. Stripping along a 60m long x 8m wide zone was completed adjacent to the access road to the Old Bulk Sample. Mapping and 31m of channel sampling located more Cluster 1 exposure.

These Fe-bearing samples were sent to SGS Canada for testing and representative samples were sent to ALS labs for ARD/ML testing.

Section 1.1 Basis of Report

This report is prepared for Ambershaw Metallics to update all historical information on the geological mapping, geochemistry, geophysics, diamond drilling, deposit estimates and update on the 2019 mapping of three new exposures of the Cluster 1 Group.

This report and recommendations are based on the following data as made available to this author based upon the following sources:

- geological information supplied from government sources and personnel experience,
- historical exploration data supplied by this author and web searches,
- site stripping, mapping and sampling on the 3 iron zones (July October, 2019),
- various reports as listed in the References section of this report

Significant portions of the report have been taken from previous reports by this author for the Bending Lake Iron Group Ltd (BLIG). Several of these reports were not paid for by BLIG therefore the information contained are the property of this author, Allen J. Raoul, PGeo.

Section 1.2 Author Qualifications

Allen J Raoul is consulting geologist, registered as a PGeo (#1925), based in Fort Frances, Ontario, Canada. This author has 29 years' experience working in Northwest Ontario and Northern Manitoba as a government geologist and project geologist. Duties include prospecting, mapping, sampling, drill supervision and core logging, producing Ontario Assessment Reports and NI43-101 Technical Reports for gold, base metals and iron.

Section 2 Location and Claims

Section 2.1 Property Location

The Bending Lake Property is located in the Kenora Mining Division and the Dryden Ministry of Natural Resources District, Ontario, Canada, approximately 285 km northwest of Thunder Bay, Ontario, the closest port of Lake Superior for seaboard access. The property is located approximately 49 km southwest of Ignace, Ontario and 80 km north of Atikokan, Ontario and can be accessed via Highway 622 (Figure 1).

The property spans approximately 12 km's northwest to southeast and covers parts of Bending Lake Area with claims spilling into Kawashegamuk Lake Area and Wapageisi Lake Area. A series of contiguous claims staked for infrastructure purposes extends northeast from the Bending Lake Area into the Revell Lake Area, Raleigh Lake Area, Isley Township and Bradshaw Township. The area is covered by National Topographic System (NTS) map sheets *52F/08, 52G/05* and *52G/12.* The centre of the property has approximate geographic coordinates of 49°32'00"N, 92°17'00'W, UTM NAD 83, Zone 15N, 559700mE, 5463800mN (Figure 1).

Figure 1: Location of the Bending Lake Deposit, AMI Project, Northwest Ontario.

Section 2.2 Ontario Mineral Policy

In Ontario, the ownership of surface rights and mining rights can vary from one property to another, particularly in regions where settlement and industry have a long history. The Canada Constitution Act, 1867 gave the then existing provinces, including Ontario, ownership of the public property in their boundaries (i.e. to the provincial Crown), which then issued grants of land known as "Crown Patents". In 1913, the province of Ontario amended its Public Lands Act so that any title granted by the Crown before the amendment was deemed to include mining rights ownership. Any parcels of land granted by the Crown after May 6, 1913, mayor may not include the mining rights depending on how the title is worded. Ontario's current Public Lands Act authorizes the Minister of Natural Resources to sell or lease land. Today, the province's policy is to reserve mining rights to the Crown in the majority of land grants (ENDM website www.endm.gov.on.ca).

At the time of writing the core portions of the long established mining areas in Ontario, including the Bending Lake project, are dominated by long standing 49 Patented Mining Claims, which may or may not include other ownership titles such as surface and timber rights. On Crown lands, and private lands that do not include mining rights, mineral exploration rights may be acquired by claim staking.

New Patent	Old Patent	Size (Ha)	New Patent	Old Patent	Size (Ha)
PAT-6276	K17531	19.20	PAT-6301	K17557	12.11
PAT-6277	K17532	12.96	PAT-6302	K17558	16.77
PAT-6278	K17533	13.79	PAT-6303	K17559	19.55
PAT-6279	K17534	12.10	PAT-6304	K17560	13.22
PAT-6280	K17535	15.56	PAT-6305	K17561	14.74
PAT-6281	K17536	16.74	PAT-6306	K17562	18.25
PAT-6282	K17537	13.23	PAT-6307	K17563	18.12
PAT-6283	K17538	9.88	PAT-6308	K17878	12.92
PAT-6284	K17539	8.90	PAT-6309	K17879	27.23
PAT-6285	K17540	12.52	PAT-6310	K17880	23.30
PAT-6286	K17541	12.42		K17881	10.60
PAT-6287	K17542	10.03	PAT-6311	K17882	16.44
PAT-6288	K17543	16.61	PAT-6312	K17883	18.85
PAT-6289	K17544	17.04	PAT-6313	K17884	21.49
PAT-6290	K17545	13.00	PAT-6314	K17885	12.69
PAT-6291	K17546	13.09	PAT-6315	K17887	13.52
PAT-6292	K17547	11.38	PAT-6316	K17888	13.22
PAT-6293	K17548	19.43	PAT-6317	K17889	10.77
PAT-6294	K17549	20.42	PAT-6318	K17890	8.87
PAT-6295	K17550	10.33	PAT-6319	K17891	11.98
PAT-6296	K17551	21.33	PAT-6320	K17892	9.09
PAT-6297	K17552	11.26	PAT-6321	K183	15.83
PAT-6298	K17553	16.80	PAT-6322	K184	16.63
PAT-6299	K17555	14.89	PAT-6323	K185	16.47
PAT-6300	K17556	11.95	PAT-6324	K186	16.55
TOTAL					733.47 Ha
New Patent	MLO	Patent	Size (Ha)		
PAT-6317	12768	PAT-6317			
PAT-6311	12767	n/a			
PAT-6280	12766	PAT-6280			
TOTAL			378 Ha		

Table 1: Patents on the AMI Project

A staked mining claim provides the owner the exclusive right to explore for minerals. Once a claim is staked, the owner must perform exploration work to maintain it in good standing. This is called assessment work. This work must amount to at least CAD\$400 per claim unit (1 unit = 18 ha) per year and be reported to the Mining Lands Section of the ENDM. Assessment work is not required in the first year after recording a mining claim. Assessment work credits can be banked and used in future years. Under the ENDM system, each claim comes due on the anniversary of the date the claim was recorded. Claims are forfeited if the assessment work is not done. The mining rights affected by the forfeiture then return to the Crown and may be staked by another party.

Patented claims do not have assessment work expenditure or reporting requirements. These claims remain in good standing as long as applicable taxes are paid to the local municipality. The claim holder's right is only to explore for minerals on mining claims. Mining (Le. extraction of the minerals) cannot take place until the claims are brought to lease. Mining leases are issued for the express purpose of undertaking mineral exploration, development or mining. The claim holder is entitled to a lease upon fulfilling the requirements of the Mining Act. Currently mining leases are issued for 21-year terms and may be renewed for further 21-year periods. In the past however, lease terms for as long as 99 years were common. Leases can be issued for surface and mining rights only or surface rights only. Once issued, the lessee pays an annual rent to the province. Further, prior to a mine coming into production, the lessee must comply with all applicable federal and provincial legislation.

Mining Licenses of Occupation ("MLO") were granted for portions of patented mining claims that lie beneath a water body, and in rare occasions for the land portion of the patent. Once issued, the MLO owner pays annual rent to the province of \$5/ha to maintain the MLO in perpetuity as they have no expiry date. In rare cases where the land and water portions of a patent are covered by an MLO they are no longer subject to annual property taxes and simply the annual rent of the MLO; in these cases if the MLO is not maintained in good standing the patented ground returns to the Crown. It should be noted that MLO's have been grandfathered into the new Mining Act and are no longer granted to mineral exploration companies in Ontario.

Ontario's Mining Act is the legislation which provides for acquiring land for mineral exploration and development. Ontario's ENDM administers the Mining Act, which sets out rules for all aspects of mineral exploration and development.

Section 2.3 Ontario Mineral Tenure

As of January 17th of 2020, the Bending Lake Property (aka Ambershaw Metallics Inc. Project) consists of:

- 902 contiguous, unpatented mining Claims, covering 14,958 hectares,
- 49 freehold patents covering 733 hectares,
- 3 Mining Licenses of Occupation (MLO) which allow mining rights under water bodies for 25 of the freehold patents, for a total land area of <u>16,249 hectares</u>.

The unpatented mining claims are staked in the name of Ambershaw Metallics Inc. The freehold patents are registered in the name of Ambershaw Metallics Inc

Township / Area	Tenure	Tenure Type	Anniversary Date	Work Required	Work Applied	Total Reserve	Size (Ha)
BENDING LAKE AREA	118340	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	335409	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	287067	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	227722	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	219822	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	103154	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126464	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126505	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	154975	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	171595	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	173826	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	206945	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	227160	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	227761	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	267003	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	274381	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	286961	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	287066	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	323581	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	335360	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	118339	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	118340	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126407	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	126408	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	154357	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	170997	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	173181	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	173182	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	173183	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	189762	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	206944	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	206945	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219718	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	227160	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	266879	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	266880	Single Cell Claim	2021-02-24	400	800	0	18

Table 2: Mining Claims on the Bending Lake Property, AMI Project

BENDING LAKE AREA	274380	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	274381	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	286960	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	286961	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	293773	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	293774	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	322997	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	345386	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	345387	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	103176	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117296	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	117297	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	117298	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	117299	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	154993	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	171614	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	173183	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	173842	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	189891	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	208925	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219834	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219835	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219836	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	267531	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	267532	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	335423	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117296	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	152627	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	173183	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	208926	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	219718	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	293773	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	293774	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	104220	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117298	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	121877	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	137619	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	137620	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	143666	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	143667	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	190272	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	190273	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	190274	Boundary Claim	2021-02-24	200	400	0	9

BENDING LAKE AREA	202452	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	208925	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219834	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	219836	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238398	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238399	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	257086	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	258472	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	258473	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	271112	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	293610	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	312461	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	344467	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	344468	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	104220	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	118651	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	121875	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	121876	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	121877	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	179851	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	179852	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	215165	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	245903	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	252037	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	271112	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271113	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271114	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	271135	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	281183	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	328952	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	340850	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	107508	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	128117	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	128118	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	145619	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	145620	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	145621	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	174199	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	179851	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	192172	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	204272	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	210914	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	229449	Boundary Claim	2021-02-24	200	400	0	9

BENDING LAKE AREA	314888	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	328952	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	335751	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	107508	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	123061	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	128118	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	142487	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	142488	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	145621	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	167670	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	180997	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	181610	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	189050	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	208570	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	237711	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	335751	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101032	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	123061	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	123062	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	167670	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	180997	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	180998	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	197586	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	197587	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	205028	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	216361	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	216362	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	234894	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	234895	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	234896	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	263572	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271529	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	283647	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	330225	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	118412	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	287024	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	274941	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	266953	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	227722	Single Cell Claim	2021-02-24	400	800	0	18
BENDING / WAPAGEISI	207022	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	118413	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126464	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126465	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	173778	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	189820	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	189821	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	207021	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	227723	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	266952	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	274940	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	286961	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	293834	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	293835	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	335360	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	208926	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	219718	Single Cell Claim	2021-03-06	400	800	0	18
BENDING LAKE AREA	274940	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	286961	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	293774	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	294397	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126465	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	154996	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	154997	Single Cell Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	171619	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	171620	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	189892	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	189893	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	208926	Boundary Claim	2021-03-06	200	400	0	9
BENDING LAKE AREA	227784	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	266952	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	267535	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	267536	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	274940	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	275009	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	293834	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	294397	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	335426	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	105271	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124688	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124689	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124690	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	126465	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	152581	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	152582	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	217985	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	217986	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	221025	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	238071	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238072	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238073	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238074	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238075	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	255319	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	267536	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	275009	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	276237	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	284461	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	304720	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	321204	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	336675	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	344120	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117299	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	124362	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	171620	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	172328	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	191111	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	217664	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	221025	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	228511	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	235691	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	241166	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	241167	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	257725	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	267535	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	275009	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	276234	Single Cell Claim	2021-02-24	200	400	0	18
BENDING LAKE AREA	276235	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	276236	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	276237	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	288293	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	320979	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	324311	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	336675	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	106652	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124384	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	178075	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	178076	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	178077	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	217664	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	224644	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	238074	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	255319	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	257725	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	276237	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	284461	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	291757	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	321204	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	339654	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124362	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	124384	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	152362	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	152363	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	168966	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	181800	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	206295	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	217664	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235691	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235709	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235710	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	264894	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	272367	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	272368	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291757	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291780	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	320979	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101089	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	182229	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	182230	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	197633	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	206295	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	209180	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271587	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	305064	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	330266	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101089	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124384	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	144442	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	178076	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	181800	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	191063	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	206295	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	209180	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	224644	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235709	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235710	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	276422	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	276423	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291780	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	306966	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	306967	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	326460	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	345253	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101089	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101090	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	116415	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	123106	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	151641	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	168225	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	197633	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	205588	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	234945	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	263623	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	263624	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271587	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	271588	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	283701	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291020	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291021	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	330266	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	330267	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	101090	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	110705	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	110706	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117818	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117819	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	182188	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	201803	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	201804	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	237711	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	256961	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	263624	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	271588	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	274527	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	284948	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	291020	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	291603	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	343377	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	102493	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117818	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	117819	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124368	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124369	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	124370	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	152365	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	168973	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	168974	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	181781	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	235698	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	263624	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	264896	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	264897	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	272870	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	272871	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	284948	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	343377	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	343378	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	343379	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	102493	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	130980	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	168974	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	176799	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	195797	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	197587	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	213026	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	242889	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	262460	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	298045	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	298046	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	310271	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	310272	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	338365	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	343377	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	343378	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	120172	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	130999	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	176799	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	197587	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	205028	Single Cell Claim	2021-02-24	400	800	0	18

BENDING LAKE AREA	279473	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	310271	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	310272	Single Cell Claim	2021-02-24	400	800	0	18
BENDING LAKE AREA	206295	Boundary Claim	2021-02-24	200	400	0	9
BENDING LAKE AREA	532275	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532276	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532277	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532278	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532279	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532280	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532281	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532282	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532283	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532284	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532285	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532286	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532287	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532288	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532289	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532290	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532291	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532292	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532293	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532294	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532300	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532301	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532302	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532303	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532304	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532305	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532306	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532307	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532308	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532309	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532314	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532315	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532316	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532317	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532318	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532319	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532320	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532321	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532322	Single Cell Claim	2020-10-08	400	0	0	18

BENDING LAKE AREA	532323	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532324	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532325	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532326	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532327	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532328	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532329	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532330	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532331	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532332	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532333	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532334	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532335	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532336	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532337	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532338	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532339	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532340	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532341	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532342	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532343	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532344	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532389	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532390	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532391	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532392	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532393	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532394	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532592	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532594	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532596	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532598	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532642	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532644	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532646	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532648	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	532692	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532264	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532265	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532266	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532267	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532268	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532269	Single Cell Claim	2020-10-08	400	0	0	18

BENDING / REVELL	532270	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532271	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532272	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532273	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532274	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532297	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532298	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532299	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532311	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532312	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532313	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532384	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532385	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532386	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532387	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532388	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532552	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532591	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532593	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532595	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532597	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532616	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532628	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532640	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532641	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532643	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532645	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532647	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / REVELL	532660	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / WAPAGEISI	532672	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / WAPAGEISI	532684	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / WAPAGEISI	532690	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / WAPAGEISI	532691	Single Cell Claim	2020-10-08	400	0	0	18
BENDING / WAPAGEISI	532704	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532445	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532446	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532447	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532448	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532449	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532450	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532451	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532452	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532454	Single Cell Claim	2020-10-08	400	0	0	18

ILSLEY	532455	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532456	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532457	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532458	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532459	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532460	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532461	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532462	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532463	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532464	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532465	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532466	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532467	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532468	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532469	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532470	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532471	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532472	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532473	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532474	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532475	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532476	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532477	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532478	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532479	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532480	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532481	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532482	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532483	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532484	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532485	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532486	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532487	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532488	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532489	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532490	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532491	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532495	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532496	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532497	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532498	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532499	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532500	Single Cell Claim	2020-10-08	400	0	0	18

ILSLEY	532501	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532502	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532503	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532504	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532505	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532506	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532507	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532508	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532509	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532510	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532511	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532512	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532513	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532514	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532515	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532516	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532517	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532518	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532519	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532520	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532521	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532522	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532523	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532524	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532525	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532526	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532527	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532528	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532529	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532530	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532531	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532532	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532533	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532534	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532535	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532536	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532537	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532538	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532539	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY	532540	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY / RALEIGH LAKE	532493	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY / RALEIGH LAKE	532494	Single Cell Claim	2020-10-08	400	0	0	18
ILSLEY / RALEIGH LAKE	532453	Single Cell Claim	2020-10-08	400	0	0	18

ILSLEY / RALEIGH LAKE	532492	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532406	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532407	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532409	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532410	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532412	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532413	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532415	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532416	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532418	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532420	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532422	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532423	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532425	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532426	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532428	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532429	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532431	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532432	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532434	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532435	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532437	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532438	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532440	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532441	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532443	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH LAKE AREA	532444	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532395	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532396	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532397	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532398	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532400	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532402	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532403	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532404	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532405	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532408	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532411	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532414	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532417	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532419	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532421	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532424	Single Cell Claim	2020-10-08	400	0	0	18

RALEIGH / REVELL	532427	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532430	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532433	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532436	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532439	Single Cell Claim	2020-10-08	400	0	0	18
RALEIGH / REVELL	532442	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532245	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532246	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532247	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532248	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532249	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532250	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532251	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532252	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532253	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532254	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532255	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532256	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532257	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532258	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532259	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532260	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532261	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532262	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532263	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532295	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532296	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532310	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532345	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532346	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532347	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532348	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532349	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532350	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532351	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532352	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532353	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532354	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532355	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532356	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532357	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532358	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532359	Single Cell Claim	2020-10-08	400	0	0	18

REVELL LAKE AREA	532360	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532361	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532362	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532363	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532364	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532365	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532366	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532367	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532368	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532369	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532370	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532371	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532372	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532373	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532374	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532375	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532376	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532377	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532378	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532379	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532380	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532381	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532382	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532383	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532399	Single Cell Claim	2020-10-08	400	0	0	18
REVELL LAKE AREA	532401	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532541	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532542	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532543	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532544	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532545	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532546	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532547	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532548	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532549	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532550	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532551	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532553	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532554	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532555	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532556	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532557	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532558	Single Cell Claim	2020-10-08	400	0	0	18

WAPAGEISI LAKE	532559	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532560	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532561	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532562	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532563	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532564	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532565	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532566	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532567	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532568	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532569	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532570	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532571	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532572	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532573	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532574	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532575	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532576	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532577	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532578	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532579	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532580	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532581	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532582	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532583	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532584	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532585	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532586	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532587	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532588	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532589	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532590	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532599	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532600	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532601	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532602	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532603	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532604	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532605	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532606	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532607	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532608	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532609	Single Cell Claim	2020-10-08	400	0	0	18

WAPAGEISI LAKE	532610	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532611	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532612	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532613	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532614	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532615	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532617	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532618	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532619	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532620	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532621	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532622	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532623	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532624	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532625	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532626	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532627	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532629	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532630	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532631	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532632	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532633	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532634	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532635	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532636	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532637	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532638	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532639	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532649	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532650	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532651	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532652	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532653	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532654	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532655	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532656	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532657	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532658	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532659	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532661	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532662	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532663	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532664	Single Cell Claim	2020-10-08	400	0	0	18

WAPAGEISI LAKE	532665	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532666	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532667	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532668	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532669	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532670	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532671	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532673	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532674	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532675	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532676	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532677	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532678	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532679	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532680	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532681	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532682	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532683	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532685	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532686	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532687	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532688	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532689	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532693	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532694	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532695	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532696	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532697	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532698	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532699	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532700	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532701	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532702	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532703	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532705	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532706	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532707	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532708	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532709	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532710	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532711	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532712	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532713	Single Cell Claim	2020-10-08	400	0	0	18

WAPAGEISI LAKE	532714	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532715	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532716	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532717	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532718	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532719	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532720	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532721	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532722	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532723	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532724	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532725	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532726	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532727	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532728	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532729	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532730	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532731	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532732	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532733	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532734	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532735	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532736	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532737	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532738	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532739	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532740	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532741	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532742	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532743	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532744	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532745	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532746	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532747	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532748	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532749	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532750	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532751	Single Cell Claim	2020-10-08	400	0	0	18
WAPAGEISI LAKE	532752	Single Cell Claim	2020-10-08	400	0	0	18
BENDING LAKE AREA	569631	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569632	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569633	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569634	Single Cell Claim	2022-01-17	400	0	0	18

BENDING LAKE AREA	569635	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569636	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569637	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569638	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569639	Single Cell Claim	2022-01-17	400	0	0	18
BENDING LAKE AREA	569640	Single Cell Claim	2022-01-17	400	0	0	18
total				336200	258000	0	15138

Figure 3B: South claim map of the Bending Lake Property, AMI Project

Section 2.4 Costs of Maintenance

Unpatented mining claims are subject to annual exploration expenditures to be filed as assessment work of \$400/claim unit. Minimum annual exploration expenditures are \$336,200.00 CDN. The freehold patents are subject to annual taxes of \$4/ha. Minimum annual taxes are \$3,315.28. The mineral exploration licenses (MLO) are subject to an annual license fee of \$5/ha. Minimum annual license fees are CAD\$1,891.00.

Section 2.5 Underlying Royalties and Property Agreements

At this time, there are no third party agreements for the Ambershaw Metallics Inc. Project.

Section 2.6 Mining License of Occupation

A mining license of occupation ("MLO") is granted for the water portion of patents overlying a water body. Ambershaw Metallics Inc. has acquired three MLO's, 12766 through 12768, which have no expiry dates provided Bending Lake maintain annual rent payments of CAD\$1,891.00. The land area under water covered by MLO 12766 through MLO 12768 is 378 hectares.

Section 2.7 Environmental and Permitting

All phases of Bending Lake exploration activities are subject to environmental regulation in the jurisdictions in which it operates. These regulations mandate, among other things, the maintenance of air and water quality standards and land reclamation and provide for restrictions and prohibitions on spills, releases or emissions of various substances produced in association with certain exploration and mining industry activities and operations. They also set forth limitations on the generation, transportation, storage and disposal of hazardous waste. A breach of such regulations may result in the imposition of fines and penalties. In addition, certain types of exploration and mining activities require the submission and approval of environmental impact assessments.

Section 3 Accessibility, Physiography, Infrastructure and Local Resources

Section 3.1 Accessibility

The Bending Lake Property may be accessed by Ontario Provincial Highway No. 622 which crosses the northwestern part of the Property between Bending Lake and Stormy Lake at a point some 80 km north from the town of Atikokan, Ontario, and 24 km south from the junction of Highway 622 and the Trans-Canada Highway (Ontario Highway # 17). The town of Ignace, Ontario is located 32km east of this junction. A considerable amount of logging (3 stages) has been done over approximately 60% of the property in the last 40 years, and a system of logging roads provides access to the Property from two points on Highway 622.

Section 3.2 Climate

The climate is temperate, humid, continental, with a cold winters when temperatures may fall as low -40°C with accumulations of snow may reach in excess of 2m in depth. The snow free months extend from May to September, and summer temperatures may rise to +30°C. Average annual precipitation ranges from 80 to 160 cm. A mature growth of mixed deciduous and coniferous forest covers the claims area. Over 50% of the southern portion of the mining claims have undergone multiple stages of tree harvesting (1970s and 2000s).

Section 3.3 Physiography

The Bending Lake Property lies within the Severn Upland physiographic subdivision of the Canadian Shield. The Property lies along and parallel to the southwestern most arm of Bending Lake. Although ice sheets moved in a southwesterly direction through the area, topography at the property consists of a northwesterly trending, subparallel series of glacially sculptured ridges and topographic depressions that are controlled by underlying geology. A steep escarpment along the southwest shore of southwestern most arm of Bending Lake trends northwesterly through the centre of the claim group. A succession of small hills define a resistant ridge that extends northwest wards from and includes the escarpment mentioned above. Continuing from the northwest extremity of this arm of Bending Lake, there is a topographic depression that extends along the northeast side of the claim block through Staurolite Lake, Herman Lake, and several other small unnamed lakes. Relief varies from approximately 395 m (level of Bending Lake) to 445 m (hills) above sea level.

Topography in the region is strongly influenced by bedrock lithology and structure. Outcrop is estimated to be approximately 10% of the total land area with up to 30% locally. The region was glaciated by southward and southwestward moving ice sheets during the Pleistocene. Glacial erosion modified the uplands and glacial deposition in filled the lowlands with till and glaciofluvial deposits. The claims are extensively covered with a mantle of glaciofluvial deposits and glacial till and colluvium derived from the underlying bedrock but large amounts of the property have only thin veneers of approximately one to two metres.

Section 3.4 Local Resources

Resources in the immediate area of the claims is limited to seasonally accessible roads and trails which provide access to within one or two kilometres of most parts of the claims area. There are no nearby power lines, natural gas pipelines, rail lines, motels, stores or restaurants. The closest such facilities are approximately 80 km by road to the south in the community of Atikokan, or 56km by road to the north and east to the town of Ignace. There is no agriculture or mining in the immediate area. Local lakes provide a recreational fishery. Several private cabins and a fishing lodge are located on nearby lakes.

Section 3.5 Infrastructure

There is no infrastructure located on the property other than the level one highway which crosses the northwestern corner of the Property, however, regionally there is significant infrastructure in the towns of Atikokan and Ignace, 80 km and 56 km by road respectively. As well, the city of Thunder Bay, Ontario, the closest port of Lake Superior for seaboard access, is located approximately 285 km southeast of the property.

Section 4 First Nations Engagement and Consultation Activities

A summary of consultation activities carried out to January 31, 2020 is as follows. Multiple methods were used to contact and engage with First Nations and Metis, including meetings, mail, e-mail and telephone.

Section 4.1 First Nation Engagement

The following First Nation Treaty Signatories have requested active and ongoing engagement:

- Wabigoon Lake Ojibway Nation
- Seine River First Nation
- Nigigoonsiminikaaning First Nation
- Eagle Lake First Nation
- Lac des Mille Lac First Nation
- Rainy River First Nation
- Couchiching First Nation
- Lac La Croix First Nation
- Mitaanjigamiing First Nation
- Lac Seul First Nation
- Naicatchewenin First Nation
- Grand Council Treaty 3
- Whitefish Bay First Nation

Each the above communities have been directly engaged by Ambershaw and Federal Regulatory Agencies with respect to Ambershaw's CEAA with respect to Ambershaw's Draft Project Description submitted to and accepted by CEAA in June 2019.

The above noted First Nations were provided direct input to IAAC Bending Lake Project Public Comment portal in the fall of 2019. These comments have been received and will be used to assist Ambershaw in its efforts to develop the project in a responsible manner which avoids, minimizes or mitigates potential environmental impact. These comments will serve as a basis for continued, continuous engagement with each respective First Nation.

The Impact Assessment Agency of Canada (IAAC) has appointed a Senior Program Officer – Funding Programs, to encourage and assist each of the above noted First Nations with capacity funding to conduct a preliminary review of Ambershaw's CEAA Draft Project Description. Ambershaw strongly supports these efforts and has offered additional capacity to First Nations to complete their respective reviews if so required and desired.

Both Ambershaw and the IAAC have engaged and will continue to fully engage with all First Nations expressing interest in any proposed development activity in our efforts to develop the project in a manner which eliminates, avoids or mitigates and potential

impacts to indigenous rights and way of life. Ambershaw expects this engagement process to remain in full effect throughout the entire duration of the project, as desired each respective First Nation.

Section 4.2 Metis Engagement

The following Metis Nation of Ontario points of contact have requested active and ongoing engagement:

- Metis Nation of Ontario Provincial Office Lands
- Metis Nation of Ontario Region One Consultation Committee

Each the above communities have been directly engaged by Ambershaw and Federal Regulatory Agencies with respect to Ambershaw's CEAA with respect to Ambershaw's Draft Project Description submitted to and accepted by CEAA in June 2019.

The Metis Nation of Ontario provided direct input to IAAC Bending Lake Project Public Comment portal in the fall of 2019. These comments have been received and will be used to assist Ambershaw in its efforts to develop the project in a responsible manner which avoids, minimizes or mitigates potential environmental impact. These comments will serve as a basis for continued, continuous engagement with the Metis Nation of Ontario provincial and regional contact points.

The Impact Assessment Agency of Canada (IAAC) has appointed a Senior Program Officer – Funding Programs, to encourage and assist each of the Metis Nation of Ontario with capacity funding to conduct a preliminary review of Ambershaw's CEAA Draft Project Description. Ambershaw strongly supports these efforts and has offered additional capacity to the Metis Nation of Ontario to complete their respective reviews if so required and desired. We encourage the Metis Nation of Ontario to utilize this opportunity to assist with the completion of an MNO focused, Traditional Ecological Knowledge and Land Use in the spring of 2020.

Both Ambershaw and the IAAC have engaged and will continue to fully engage with the provincial and regional contact points provided by the Metis Nation of Ontario in our efforts to develop the project in a manner which eliminates, avoids or mitigates and potential impacts to indigenous rights and way of life. Ambershaw expects this engagement process to remain in full effect throughout the entire duration of the project, as desired by the Metis Nation of Ontario.

Section 5 Property History

Magnetic iron formation occurrences in the Bending Lake area have been known at least since the 1890's, and reference was made to the Bending Lake iron range in the Geological Survey of Canada Summary Report for 1891. Iron mineralization in the area was again mentioned in the Report of the Ontario Iron Ore Committee in 1923, which refers to surface work and diamond drilling done in the Bending Lake area, but no other details of this work are available in the Ontario Geological Survey's data-base.

The Bending Lake area geology was displayed in the 2011 mapping by Stone et. al. in maps P2513 (Stormy Lake Area), map P3624 (Bending Lake South) and map P3623 (Bending Lake North) by the Ontario Geological Survey. Before this program, all of the historical mapping of the Manitou Lake-Stormy Lake region to the west and northwest was mapped at a scale of 1 mile to 1 inch by J. E. Thompson in 1932 with results published as Map 42C in the Ontario Annual Report of Mines for 1933. The geology of the Bending Lake area shown on a 1:253,440 scale regional compilation map published by the OGS in 1981 (Map 2443 "Kenora-Fort Frances") relied on reconnaissance geological data as well as data from mineral exploration programs, and in other areas where there was no data, bedrock geology was interpreted extensively based on geophysics. OGS Open File Report 5659 includes geological coverage of Kawashegamuk Lake area in the northwest quadrant of N.T.S. map-area 52-F-8, to the north of Bending Lake (OGS maps P2569, P2570, and P3100).

In 1980, an airborne electromagnetic and total field magnetic survey was flown by Kenting Earth Sciences Limited over the Manitou-Stormy Lakes area for the OGS, utilizing a Scintrex/Kenting Tridem system and a Gulf MK V flux gate magnetometer; compiled survey data was published at a scale of 1:20,000. Map M80476 of this survey covers the Bending Lake area. Most of the southwest arm of Bending Lake was covered, but coverage extended just to the east of the east end of Staurolite Lake, and consequently the survey covered only the southeastern portion of the claim block. In 2001 an airborne electromagnetic and total field magnetic survey was again flown over the Manitou-Stormy Lakes area for the OGS by Fugro Airborne Surveys utilizing a Scintrex CS-2 Cesium vapour magnetometer and GEOTEM III and MEGATEM electromagnetic survey systems. Portions of maps M82170, M82171, M82175, and M82176 cover the claims with most of the property covered on maps M82170, M82171, and M82176.

Table 3: Historical Work on the Bending Lake Project and Bending Lake Area (January 2019, ENDM files)

Historical Files on AMI Project (Bending Lake, ON)								
OGS Earth (digital)	Kenora Assessment Files (KAF)	Company	Work	Description				
n/a	52F08SE A-1	ODM 1933	Geological mapping	Geological Report with Iron Formation located with Thompson's 1933 mapping. Bending Lake Iron map (1":1/4 mi.) shows numerous magnetite bands from 1" to 36". Formation traced 5.75 miles (9.2 km).				
n/a	52F08SE B-1	SMDR (MDF)	Summary	Outline only of previous work on BL Prospect				
52F08SE0004	52F08SE D-1	Jalore 1954-55	Geology, Dip Needle Survey, 7 ddh (5055'),	Geological, Drilling, Dip Needle Survey (Feb.1955) located NW-SE, 6 miles long survey and separate into two pieces that are 300' apart that merge. 1954 -1956 (patented 1957) the magnetic zone varies from 190' to 1530' wide in Geology. Report (Dec. 1955). 7 drill holes & 3 mini-bulk samples.				
n/a	52F08SE E-1	Stratmat 1957	Ground Mag	Ground Magnetometer Dip Needle survey (1": 200') from Sells patents to the east, Stratmat as three separate anomalies; Anomaly A is > 1800', Anomaly B is >3000', Anomaly C is not plotted				
52F08SE0007	n/a	Canadian Nickel 1970 / INCO	4 holes (187m)	These 4 holes were drilled southeast end of Bending Lake, after the base metal mineralization. No significant mineralization located and assays not given.				
52F08SE0008	n/a	Canadian Nickel 1970 / INCO	1 holes (55m)	1 hole were drilled east of Bending Lake, after the base metal mineralization. No significant mineralization located and assays not given.				
52F08SE0657	n/a	Canadian Nickel 1970 / INCO	2 holes (98m)	2 holes drilled over 1km north of patents, for base metal. No significant mineralization located and assays not given.				
n/a	52F08SE C-2	Canadian Nickel 1971 / INCO	8 holes (390m)	These 8 holes (EXT winke) were drilled north of the above-mentioned patents and along Bending Lake. No mineralization located and assays not given.				
52F08SE0009	52F08SE C-1	Canadian Nickel 1973 / INCO	1 hole (52m)	Drilled 1 hole, about 1200m north of patents along Hwy 622, with disseminated py +/- cpy-sph over 6.0m.				

				Beard & Rivett visited the Algoma Steel site on March 2, 1977 (OGS Property Visit) with their geologist Mohammed Khan. Visits: 1) A 600-ton bulk sample just completed with 10,600' of 1977 drilling done and another 1000' scheduled. Possible production of 4.0 Mt / yr, 2) Drill program of Algoma is 500' centre to a depth of 800' with over 30,000' of drilling in 1975-1977 with 15,000' of Jalore drilling. 3) Current indicated resource of 200 Mt of 25% soluble iron with concentrate of 69% Fe and 2.5-3.0% silica with 80-90% recovery. 4) Ore is magnetite and chert interbedded with greywacke metasediment. Contacts between ore and waste are gradational and dependant upon relative proportions of mgt-chert bands to sediment bands. 5) The ore zone results from tight isoclinal folding and repetition of the narrow IF. Dip is 52-57° with the fold plunges at 15-20° SE. Folding has given a maximum width of 1100' to the ore body with wider sections 5000' long. 6) A proposed pit is to be 9000' long by ramping down the NW limb and extending the other to a depth of 300-400'; total depth at the centre would be 800'. Maximum overburden was 80' thick. 7) Perimeter drilling (vertical holes on 1000' centres of BX core with 10'
n/a	52F08SE	OGS Visit 1977	geology	into bedrock) is being carried out for engineering purposes.
n/a	Kenora office	Lakefield Nov 1960	LR 1960	An Investigation of The Recovery of Iron from the Bending Lake samples submitted by Steep Rock Iron Ore Mines Ltd. Progress Report No.1 (per Canadian Bechtel Ltd)
n/a	Kenora office	Lakefield July 1977	LR 1999	A Pilot Plant Investigation of the Recovery of Iron by Grinding and Magnetic Separation from Bending Lake samples submitted by Steep Rock Iron Ore Mines Ltd. Progress Report 2. Vol 1 (per Canadian Bechtel Ltd)
n/a	Kenora office	Lakefield	I R 1999	A Pilot Plant Investigation of the Recovery of Iron by Grinding and Magnetic Separation from Bending Lake samples submitted by Steep Rock Iron Ore Mines Ltd. Progress Report 3 (per Canadian Bechtel Ltd)

n/a	Kenora office	Lakefield Oct 1977	LR 2005	A Laboratory Investigation of the Recovery of Iron by Flotation from the Bending Lake Samples submitted by Steep Rock Iron Ore Mines Ltd. Progress Report 4 (per Canadian Bechtel Ltd)
n/a	n/a	Algoma, Oct 1977	Geology Report	Geology Report, Bending Lake Project. Define 3 zones: Main Zone - 2805m long with tight isoclinal folding over 1159m causing IF thickening, Southeast Zone - 2256m at 45-150m width at 18.1% magnetic Fe, Northwest Zone - 732m length @ 60m width.
n/a	Kenora office	Lakefield Oct 1977	LR 2005	Mineralogical Examination of the Bending Lake samples submitted by Steep Rock Iron Mines Ltd. Progress Report 5
n/a	Kenora office	Steep Iron Mines 1977	Impact Study	Environmental Impact Study on the Bending Lake area
n/a	Kenora office	Steep Iron Mines Nov 1977	Mining Estimate	Steep Rock Iron Mines Ltd: Bending Lake Mining Estimate, November 1977
n/a	n/a	Algoma, 1978	Mineral Resource (missing)	M. Khan produced finalized Mineral Resource Estimate for the Bending Lake Deposit: 249 Mt @ 28.19% Mgt
52F08SW 0004	52F08SE F-1	Sulpetro Minerals 1982	Geological Report	Bending Lake - in area (800m east of Stormy Lake) - the Sulpetro Minerals mineralized shear zones with Py, Po and Mgt cumulate 1982 zones (airborne EM responses) in shear zone of the felsic volcanics.
n/a	52F08SE G-1	Ken Simard 1990	Prospecting	Sampled Hwy 622 located cherty-py-po zones with low Au-Ag & Cu-Ni-Zn, associated with the iron formation
n/a	52F08SE I-1	D. Calvert, A. Wing, A. Wallace 1990	Prospecting, Sampling	Sampled Hwy 622 north of the patents for 2.5 km and located 1.5m Py zones in basalt, quartz veins with Cu mineralization
52F16NE0003	52F08SE K-1	Alex Glatz 1993	Ground Mag & EM, Geology & Sampling	Prospected the altered felsic volcanic rocks SE of Stormy Ground VLF-EM & Lake (south of patents). Located 0.62-0.73% In ir altered, IVIAG felsic volcanics with andesite. Part 3 of OPAP report covering several areas.
52F08SE0015	52F08SE J-1	Noranda Expl, 1994	Ground Mag & EM	Geophysical report on Sells patents with 7 possible sulphide targets identified.
52F08SE0013	52F08SE J-2	Noranda Expl, 1994	Geology and Lithogeochem.	Same area as J-1; Mapping (1:5000) locate gossan zones. Lithogeochemical zones (>25m) in gnt-chl altered felsic metavolcanic with <2m massive Po zones were located and an assay of 1.2% Zn.

52F08SE0014	52F08SE J-3	Noranda Expl, 1994	Geology and Lithogeochem.	Mapping surveys (1:5000) on the Sells Option located 700m lithogeochemical wedge of felsic metavolcanics with alteration and narrow sediments; suggests a proximal volcanic environment.
52F08SE0001	52F08SE J-7	Noranda Expl, 1994	Ground Mag & EM	Sells Re-interpretation identified: 1) a 1000m long target with high Mag- conductivity, 2) a 450m long target with highly conductivity zone with flanking magnetic high. Drill Report 4 holes (511 m) drilled to test HLEM conductors
52F08SE0016	52F08SE J-4	Noranda Expl, 1995	Drill Report	4 holes (511 m) drilled to test HLEM conductors on main patents. Drilling hit banded- massive Po and lesser Py with altered felsic volcanics (FV) with best value of 0.26% Zn.
52F08SE0010	52F08SE J-5	Noranda Expl, 1995	Drill Report	2 holes (250m) drilled to test HLEM conductors on the Sells patents. Drilling hit >6m massive Po with lesser Py in altered FV but no economic assays.
52F08SE0012	52F08SE J-6	Noranda Expl, 1995	Ground Mag & EM	Surveys covered southern Bending Lake to better define the 1994 surveys for massive sulphide targets on the claims.
n/a	52F08SE	Allen Raoul 2000 OGS Property Visit	Mapping and Lithogeochem.	A. Raoul completed mapping of Highway 622 from the Islets Intrusion to the Revell Batholith for VMS Potential. Sampling a 52m section of sulphide-oxide iron formation with 55m of underlying VMS alteration. Assays to 0.25% Cu, 0.18% Zn and 9 gpt Ag.
n/a	52F08SE	OGS 2001	Airborne Mag & EM	Ontario Geological Survey releases an airborne magnetic & electromagnetic survey covering the property with many EM targets with associated magnetics. Maps M82170 & M82171 cover the iron formation with maps M82166 & M82167 to the north and maps M82175 and M82176 to the south.
n/a	52F08SE	OGS 2002	Mapping and geology tour	A. Raoul & C. Ravnaas completed detailed mapping and analysis of the sulphide and oxide horizon to produce a type section of a VMS deposit for teaching purposes.
n/a	52F08SW	B Holmstrom 2003	Prospecting, Sampling	Prospecting located high-grade altered basalt boulder with 20% Py +/- Cpy located on Gold Lake with assay of 7.49 opt Au.
n/a	52F08SE	Wetelainen 2005-2006	Property Acquisition	H. Wetelainen purchased the LTV patents and the Holmstrom (Sells) patents.

n/a	52F08SE	OGS 2007	Lake Sediment Report (OFR 6194)	Ontario Geological Survey releases a lake- sediment survey covering the Manitou Lake to Bending Lake. Located several base- metal anomalies to SW, gold anomaly to SE.
n/a	52F08SE	Windigo Ridge 2007-2008	Property Acquisition	Staking of the claims around the patents by Windigo Ridge Resources Inc
2009601	52F08SE M-1	Bending Lake Iron 2008	8 drill holes & Drill Report	Completed 8 holes (2355m) from 2008. 5 holes for confirmation of historic and 3 holes for extensions. The results were very similar to the historic values.
n/a	n/a	Bending Lake Iron Feb 2009	Property Evaluation	Behre Dolbear hired to complete the Preliminary Review, Valuation, Cash Flow Projection, Bending Lake Iron Ore Deposit, Bending Lake Project. Reviewed data to produce historical resource: 249 Mt @ 28.19% Mgt
n/a	Kenora office	DST Eng. Jun 2009	Report	Steep Rock Iron Processing Plant: Project Definition (BLIG website)
2009298	52F08SE M-6	Bending Lake Iron 2010	Prospecting Report	Testing 7 old showings and located 25 new showings in the bending lake area for Fe, Au, Ag, Cu, Ni and Zn anomalies.
2001280	52F08SE	Bending Lake Iron 2011	Line Cutting, Mapping and Drill Report (8 holes)	Completed line cutting on the Northwest, Main and Southeast Zones. Geological mapping on the Northwest Zone and 5 drill holes (1639m) on the Northwest Zone and 3 holes (672m) on the Southeast zone.
n/a	52F08SE M-4	Bending Lake Iron	Drilling of Main Zone (Proposed Open Pit)	Drilling 11 holes (4073m) for infill drilling on west end of the pit and 2 holes (582m) on the east end of the pit. The core was sampled but not sent in for assay, at this time.
n/a	52F08	OGS 2011	New Maps (P3623, P2324, P2515)	Produced 3 new geology maps at 1: 50K for the bending lake north, bending lake south and stormy lake sheets.
2001155, 2001156, 2001157, 2001158	52F08SE M-3	Fladgate Exploration	NI43-101 Resource	An update of the historical resource was reported by Fladgate Exploration, NI 43-101 Independent Technical Report Resource Estimate: Bending Lake Property (Nov.16, 2011) yielded • 185.2 Million Tonnes Indicated at an average in-situ grade of 29.59% Magnetite • 151.4 Million Tonnes Inferred at an average in-situ grade of 30.38% Magnetite

n/a	n/a	DST Engineering	Hydrology Scoping Student	DST report (Jun 2011) on a scoping student for water access within the Bending Lake area.
n/a	n/a	Bending Lake Iron	Geochemical Report	Raoul report (Feb 2013) on DST sampling for environmental testing on the Bending Lake deposit.
52G12SW 0001	n/a	Hemlo Gold	Line Cutting, Prospecting and Sampling	Hemlo mines did prospecting and sampling at the junction of Hwy 622 & 17 for over 8km (NW-SE), north of the highway to the CN rail-line, with weak gold results.
n/a	n/a	Bending Lake Iron	finance	BLIG goes into receivership Sept 2014. Farber takes over assets.
n/a	n/a	Ambershaw Metallics Inc	finance	Ambershaw Metallics Inc completes purchase of BLIG assets November 2018

Section 5.1 Historical Resources of the Bending Lake Deposit

Three historical or resource estimates have been released of the Bending Lake Project:

- 1. A historical estimate by Steep Rock Mines, *Bending Lake Mining Estimate, November 1977* (Nov 29, 1977) yielded 245,574,000 tonnes at an average of 25.08% Magnetite.
- 2. Behre Dolbear hired to complete the *Preliminary Review, Valuation, Cash Flow Projection, Bending Lake Iron Ore Deposit, Bending Lake Project.* Reviewed data to produce historical resource: 249 Mt @ 28.19% Magnetite
- 3. An NI43-101 compliant update of the historical resource was reported by Fladgate Exploration, *NI 43-101 Independent Technical Report Resource Estimate: Bending Lake Property* (Nov.16, 2011) yielded...

• 185.2 Million Tonnes Indicated at an average in-situ grade of 29.59% Magnetite

• 151.4 Million Tonnes Inferred at an average in-situ grade of 30.38% Magnetite

Section 5.2 Steep Rock Iron Mines Ltd.

A series of ten reports was done by Steep Rock Mines, using SGS laboratories, was completed in 1976 and 1977 on the 612 tonne bulk sample taken by Steep Rock Mines in February of 1977. The results of these reports was a positive assessment of the Bending Lake Iron Deposit however, Algoma used their resources to develop another project at this time.

Section 5.3 Historical Capital and Operating Cost Estimate

In 2009, Behre Dolbear was hired to complete the *Preliminary Review, Valuation, Cash Flow Projection, Bending Lake Iron Ore Deposit, Bending Lake Project.* Reviewed data to produce historical resource: 249 Mt @ 28.19% Mgt. Their financial projections were the basis of Bending Lake Iron Group's activities from 2008 to 2013, until work terminated due to lack of funding.

Section 6 Geology

The Bending Lake property is located within the western region of the Wabigoon Subprovince of the Archean Superior Province. The property is located within the 70km long by 30km wide area known as the Stormy – Bending Lake Greenstone Belt. It consists of differentiated mafic to felsic volcanic rocks, that have been intruded by mafic to ultramafic intrusive units. They are overlain and interbedded with clastic and chemical metasedimentary rocks with a broad, southwest dipping synform. This package is bounded to the north by the Revell Batholith and to the south by the Irene-Eltrut Batholitic Complex.

Bending Lake patents' host the Bending Lake Iron Deposit; a classical Algoma type iron ore deposit. This deposit has undergone folding and a thickening event has produced large volumes of economic iron ore. The banded iron formation is blue-grey to black, fine-grained, well-bedded unit of magnetite with minor hematite, specularite, biotite, amphibole, chlorite, garnet, pyrite or pyrrhotite. It is interbedded with quartz-biotite garnet schist. The iron formation average thickness is 90m and has been traced over 9km in outcrop but aerial magnetic surveys show it extents up to 14km. Behre Dolbear produced a 2009 Historical Resource with average Fe weight recovery of 28.19% Fe has been located along a 1150m long by 330m wide, thickened zone containing 249 Million tons of iron ore.

In 2008-2010, the Ontario Geological Survey conducted a mapping program in the Bending Lake Area. In 2011, three maps (P.2515, P.2623 and P.2624) have been published at 1:20,000 scale with standardized lithologic legend, structural geology data, geochronological sample locations with age dates and Mineral Deposits Inventory occurrences where available (see figure 6).

In the 1990s, it became a target for base metals by mining companies and prospectors alike. From 1993-1995, three Cu-Zn showings were identified associated with Volcanogenic Massive Sulphide (VMS) environments. In 2000, the Ontario Geological Survey (OGS) identified a 105m thick type section for Cu-Zn mineralization associated with VMS and produced an unpublished fieldtrip guide. Assays up to 0.25% Cu, 0.18% Zn and 9 gpt Ag from grab samples. In 2003, prospector B. Holmstrom located a highly altered basalt boulder with 20% pyrite and traces of chalcopyrite, located on Gold Lake (1km west of Hwy 622), with high-grade gold assay of 7.49 opt.

Bending Lake Iron Group Ltd had a two-phase prospecting program on these patents and claims. In November of 2008, seven mineralized zones were located along Highway 622 with best assays of 3.80m of 0.10% Zn with elevated Cu, Ni. In May of 2009, twenty-five new mineralized zones were located with best assays of 1.05m of 1.01% Cu-Zn with elevated Pt in silica altered gabbro. These preliminary prospecting and sampling programs have located elevated precious metal (Au, Ag, Pt) and anomalous base metal (Cu, Mo, Ni, Pb) values around the Bending Lake area that require further testing.

Figure 4: Geology of the Bending Lake Property, AMI Project

The following geological units, youngest to oldest, were located during the 2009 - 2012 prospecting and mapping by this author, while working with Bending Lake Iron Group:

Table 4: Historical Geology Legend

Unit	Name	Description
6	Granodiorite to Granite (Revell Batholith)	Fine to medium-grained, light grey to pink, equigranular, granite to granodiorite with >2% pegmatite pods of Kspar-quartz.
5B	Quartz Diorite (Islet Intrusion)	Medium-grained, light grey to grey, massive, equigranular, quartz diorite to diorite with little to no fracturing. Typical "grey granite" but less quartz and more mafic minerals.
4C	Quartz Diorite to Gabbro	Fine-grained, light grey, massive, equigranular, quartz diorite to monzodiorite with moderate to intense fracturing @ 0900; possibly intruded along structural trend.
4B	Ultramafic to Gabbro	Fine to medium-grained, black, massive unit of >90% hornblende- pyroxene rich gabbro to melanogabbro, with weak magnetism.
4A	Gabbro	Fine to medium-grained, grey to black, gabbro with >20% plagioclase and non-magnetic. Weathers a tan to greenish-tan.
3B	Iron Formation (Magnetite)	Fine-grained, blue-grey to black, well-bedded unit of 25-40% magnetite +/- hematite or specularite in a chert host, that transitions to schistose, metagreywacke beds. Theses beds contain biotite, amphibole, chlorite, garnet with minor pyrite-pyrrhotite with minor quartz-biotite garnet schist.
ЗA	Metasediments (Greywacke, Argillite)	Fine to medium-grained, grey to dark grey, massive bedded to thinly bedded, units of greywacke with thinner units of dark grey to black, argillite to siltstone
2C	Sulphide Formation (Main Zone)	Fine-grained, oxidized zone over 6m of 25-80%, semi-massive to massive Po-Py breccia with recrystallized chert fragments and 2% stringers of Cpy Sph. This could be overlain by an Exhalite Horizon of chert with banded magnetite or similar sulphide zones in altered felsic volcanics over the next 22m. Total width is <25m true thickness.
2B	Felsic Porphyries (Quartz Feldspar or Feldspar)	Fine-grained, tan to light grey, massive to foliated, felsic porphyries with 2-5% medium-grained quartz-orthoclase crystals or 5-8% medium-grained, plagioclase crystals in a felsic to intermediate, foliated matrix.
2A	Felsic Volcanics (Tuffs, Fragmentals)	Fine-grained, light grey, well to poorly foliated, units of dominated fine- grained, felsic crystal tuffs or thinner units of felsic pyroclastics with 10- 40% clasts of felsic and lesser mafic units.
1B	Garnet-Chlorite Altered Mafic Volcanics	Fine-grained, green, moderate to highly chloritized, mafic units with 5- 30% fine to medium-grained, red garnet with trace-5% Py +/- Po.
1A	Mafic Volcanics (Massive to Pillowed Flows, Tuffs)	Fine-grained, grey to dark green, weakly to moderately chloritized, massive to pillowed flows and minor interbedded mafic tuffs and fragmentals

In 2019, Ambershaw Metallics Inc. hired Nordmin Engineering to initiate a Phase I sampling program of 47 drill-core pulps for samples analysed from 15 historical diamond drill holes to confirm the geology and mineralogy of the Bending Lake Deposit. This tested the 1964 and 1977 drilling and encompassed the entire deposit. Analysis used the Synchrotron method.

Based on the assay results, two distinct grades of magnetite (iron formation) were located:

- Cluster 1 averaged 48% Fe₂O₃ and 43% SiO₂. Mapping has shown this group is representative of "fine to medium grained sandstone with magnetite bands from centimeter to meter scale banding". This was seen at the new Northwest Fe Zone.
- Cluster 2 averaged 25% Fe₂O₃ and 54% SiO₂. Mapping has shown this group is representative of "siltstone (and minor fine sandstone) with finer interstitial magnetite between the grains". This was seen at the old Bulk Sample Pit.
- Three other Clusters (3, 4, 5) were located but they appear to be subunits of Group 2 and make up a small portion of the sampling.

This was confirmed with a Phase II sampling of these pulps and a fieldtrip with the Nordmin Engineering staff in September of 2019.

Section 7 <u>Geophysical Surveys</u>

Several generations of geophysical surveys have been completed on the Bending Lake Property. They have been:

- Jalore (1954) and Stratmat (1957) completed Dip Needle Surveys over the Iron Formation, east of the present-day Highway 622.
- In 1961, the Ontario Department of Mines completed a province-wide Airborne Total Magnetic Survey at 1:63,360 (1 inch:1 mile). The magnetic feature of the Iron Formation was delineated along with a few other broad lithological features.
- In 1993, A. Glatz performs magnetic and electromagnetic surveys on his south claims.
- In 1994, Noranda completed ground magnetic and electromagnetic (HLEM) over all of the patents. Seven possible sulphides targets were located on the SELLS claims.
- In 1995, Noranda completed further ground magnetic and electromagnetic (VLF-EM) over the southwest part of the property.
- In 2001, the Ontario Geological Survey releases an airborne magnetic and electromagnetic survey (GeoTem) covering the property at 1:20,000. This survey located over 300 EM targets with associated magnetic high and low anomalies.

Figure 5: Bending Lake Total Magnetics and Electromagnetic Anomalies (after OGS Stormy Lake Survey, 2001)

Section 8 Geochemical Surveys

In 1996, Noranda discovered an 8 km long by 500-1000m thick unit of geochemical alteration associated with volcanogenic massive sulphide environments (VMS). "The alteration consisted of silicification, chloritization, sericitization, carbonatization and sulphidization related to subconformable or conformable, synvolcanic alteration zones, which were coeval with and have been metamorphosed with the massive sulphides" (Felix, 1995). This is defined by Noranda 1994's whole rock geochemistry with silica, magnesium, potassium, calcium enrichment with intense sodium depletion. This altered unit has numerous untested electromagnetic (EM) targets associated with it.

In 2006, the OGS completed a Lake Sediment survey from Upper Manitou to Stormy Lake (OFR 6194). The following values were considered anomalous using the Ontario Geological Survey guidelines:

Au >9ppbAg >0.27ppmCu >94ppmNi >45ppmPb >9ppmZn >102ppmThe most significant anomalies were:

1) There is 1 gold anomaly associated with mafic volcanics.

- 2) There are 8 silver anomalies associated with mafic-felsic volcanics and granites.
- 3) There are 9 copper anomalies associated with mafic-felsic volcanics and granite.

Mo >6ppm

- 4) There are 3 lead anomalies associated with mafic-felsic volcanics and granites.
- 5) There is 5 molybdenum anomalies associated with mafic volcanics and granite.
- 6) There is 2 nickel anomalies associated with metasedimentary rocks.
- 7) There are 12 zinc anomalies associated with mafic-felsic volcanics and granites.

Figure 6: 2006 Lake Sediment Anomalies (after Felix 2006 in OFR 6194)

Section 9 Historical Diamond Drilling

Numerous holes were drilled into the Bending Lake area for iron potential:

- Jalore Mining / Algoma Steel for iron between 1954-1977
- Bending Lake Iron Group Iron Ltd between 2008-2013

Ambershaw Metallics Inc and Nordmin Engineering were have issues checking the field co-ordinates of the historical drill holes. The following steps were taken:

- 1. Ambershaw geology staff completed a search for historical drill holes in May of 2019. The location results were not a good match with historical records.
- 2. Reflex Instruments North America, with the aid of the geological staff, completed 18 downhole surveys and 7 surface location surveys of the drill holes.
- 3. Ambershaw geological staff recut 3km of the historical baseline (BLIG and Algoma) to locate an additional 12 drill collars on site.
- 4. Many suspect sites were located but drilling in 1954-1955 and 1964 did not leave the drill collars in the ground, according to personnel communications with former Algoma geologist M. Khan.
- 5. Three stages of forestry / tree harvesting may have destroyed several of the 1976-1977 drill collars.

The following location data for the drill collars was produced:

DDH	Easting	Northing	Elevation	YEAR	COMPANY	DEPTH	AZM	DIP
BL-1-54	559569	5463985	407.39	1954	Jalore	192.00	39	-35
BL-2-54	559437	5463829	410.00	1954	Jalore	249.90	39	-35
BL-3-54	561026	5462713	404.94	1954	Jalore	210.30	39	-35
BL-4-55	560011	5463565	400.00	1955	Jalore	277.40	39	-35
BL-5-55	559932	5463475	400.00	1955	Jalore	246.90	39	-40
BL-6-55	560381	5463081	400.00	1955	Jalore	265.20	39	-30
BL-7-55	561883	5462044	420.00	1955	Jalore	219.50	39	-30
BL-8-64	560075	5463619	400.00	1964	Jalore	129.50	39	-35
BL-9-64	559498	5463900	410.00	1964	Jalore	221.00	39	-38
BL-10-64	559911	5463452	401.03	1964	Jalore	129.54	39	-60
BL-11-64	559399	5463786	411.69	1964	Jalore	243.80	39	-48
BL-12-64	559777	5463758	404.33	1964	Jalore	213.40	39	-37.5
BL-13-64	559715	5463686	408.52	1964	Jalore	251.50	39	-48.5
BL-14-64	559259	5464084	410.00	1964	Jalore	266.70	39	-42
BL-15-64	559190	5464005	414.44	1964	Jalore	266.70	39	-49.5
BL-16-64	559642	5463602	414.59	1964	Jalore	304.80	39	-47
BL-17-64	559170	5463984	416.16	1964	Jalore	182.90	39	-64
BL-18-64	560212	5463437	400.00	1964	Jalore	289.60	39	-40.5
BL-19-64	558918	5464161	417.86	1964	Jalore	167.60	39	-55
BL-20-64	560063	5463265	400.00	1964	Jalore	213.40	39	-55
BL-21-64	558954	5464201	415.35	1964	Jalore	121.92	39	-48

Table 5: 1954 – 2013 drilling for Iron on the Bending Lake Property

BL-22-64	560096	5463301	400.00	1964	Jalore	152.40	39	-45
BL-23-76	559544	5463482	424.40	1976	Algoma	550.00	40	-60
BL-24-76	559564	5463701	412.70	1976	Algoma	373.40	40	-45
BL-25-76	559326	5463708	424.30	1976	Algoma	515.70	40	-54
BL-26-76	559817	5463347	410.00	1976	Algoma	487.70	40	-40
BL-27-76	559301	5463903	413.24	1976	Algoma	371.90	40	-45
BL-28-76	559799	5463541	404.65	1976	Algoma	20.00	40	-45
BL-29-76	559799	5463541	404.65	1976	Algoma	20.00	40	-50
BL-30-76	559074	5463875	421.30	1976	Algoma	297.20	40	-55
BL-31-76	559788	5463531	405.82	1976	Algoma	365.80	40	-50
BL-32-76	559625	5463804	410.00	1976	Algoma	259.10	40	-45
BL-33-76	559951	5463320	401.51	1976	Algoma	411.50	40	-50
BL-34-76	560098	5463476	400.00	1976	Algoma	213.40	40	-45
BL-35-76	559379	5464120	409.45	1976	Algoma	33.53	40	-45
BL-36-76	559383	5464079	410.00	1976	Algoma	121.90	40	-45
BL-37-76	559484	5464098	410.00	1976	Algoma	121.92	40	-45
BL-38-76	560183	5463591	400.00	1976	Algoma	129.54	40	-45
BL-40-77	559994	5463366	400.00	1977	Algoma	200.00	40	-50
BL-41-77	559903	5463655	400.00	1977	Algoma	213.40	40	-50
BL-42-77	559688	5463424	424.33	1977	Algoma	495.30	40	-50
BL-43-77	559726	5463915	402.90	1977	Algoma	335.30	40	-45
BL-44-77	559447	5463604	419.09	1977	Algoma	472.44	40	-50
BL-45-77	559884	5463249	409.23	1977	Algoma	512.10	40	-60
BL-46-77	560118	5463325	400.00	1977	Algoma	320.00	40	-60
BL-47-77	559210	5463800	425.00	1977	Algoma	304.80	40	-50
BL-48-77	560248	5463187	400.00	1977	Algoma	361.20	40	-50
BL-49-77	559066	5464093	420.00	1977	Algoma	175.30	40	-45
BL-51-77	560594	5462948	400.00	1977	Algoma	160.00	40	-50
BL-52-77	558740	5464321	408.85	1977	Algoma	125.00	40	-45
BL-53-77	558786	5464282	413.44	1977	Algoma	125.00	40	-47
BL-54-77	560799	5462812	401.14	1977	Algoma	167.60	40	-47
BL-55-77	558636	5464389	409.91	1977	Algoma	137.20	40	-47
BL-G-2-77	560340	5463592	400.00	1977	Algoma	288.00	40	-50
BL-G-3-77	559405	5463792	410.59	1977	Algoma	260.00	40	-50
BL-08-01	559461	5463625	418.40	2008	BLIG	464.00	54	-55
BL-08-02	559681	5463870	405.00	2008	BLIG	215.00	30	-55
BL-08-03	559011	5464020	418.80	2008	BLIG	200.00	45	-55
BL-08-04	559652	5463605	414.10	2008	BLIG	400.00	45	-55
BL-08-05	560166	5463566	402.90	2008	BLIG	214.00	38	-55
BL-08-06	559542	5463985	415.90	2008	BLIG	203.00	45	-55
BL-08-07	559640	5463382	433.90	2008	BLIG	428.00	45	-80
BL-08-08	558649	5464156	426.18	2008	BLIG	233.00	40	-55
BL-11-01	556751	5466056	404.60	2011	BLIG	225.00	40	-50
BL-11-02	557210	5465665	412.20	2011	BLIG	428.00	40	-50
BL-11-03	557727	5465448	406.10	2011	BLIG	264.00	40	-50

BL-11-04	558137	5464896	430.40	2011	BLIG	297.00	40	-50
BL-11-05	558476	5464451	417.20	2011	BLIG	425.10	40	-50
BL-11-06	561181	5462436	425.65	2011	BLIG	240.20	40	-50
BL-11-07	561463	5462272	431.70	2011	BLIG	240.20	40	-50
BL-11-08	561688	5462155	440.00	2011	BLIG	192.00	40	-50
BL-11-09	558690	5464342	406.80	2011	BLIG	236.00	40	-50
BL-11-10	558737	5464082	415.90	2011	BLIG	378.00	40	-50
BL-11-11	558863	5463986	420.00	2011	BLIG	342.00	40	-50
BL-11-12	559833	5464174	401.50	2011	BLIG	462.00	40	-50
BL-11-13	558976	5464100	422.50	2011	BLIG	405.00	40	-50
BL-11-14	559022	5463920	420.00	2011	BLIG	357.00	40	-50
BL-11-15	559119	5464046	420.00	2011	BLIG	390.20	40	-50
BL-11-17	559198	5463898	418.74	2011	BLIG	468.00	40	-50
BL-11-18	559319	5463798	411.10	2011	BLIG	443.00	40	-50
BL-11-19	559686	5463767	408.03	2011	BLIG	200.60	40	-50
BL-11-19A	559685	5463767	408.07	2011	BLIG	381.00	40	-50
BL-11-34	560938	5462664	419.90	2011	BLIG	231.00	40	-50
BL-11-35	560861	5462567	434.60	2011	BLIG	351.00	40	-50
BL-13-01	556354	5466418	417.83	2013	BLIG	197.00	40	-50
BL-13-02	556210	5466494	416.25	2013	BLIG	202.50	40	-50
Chan-WZ	558578	5464478	409.91	2019	AMI	20.00	238	0
Chan-NWZ	558930	5464264	412.49	2019	AMI	12.90	203	0
Chan-RZ	559261	5464036	411.75	2019	AMI	30.10	218	0

Figure 7: 1954 – 2013 drill hole location map

Table 6: Historic drilling for base metals in the Bending Lake area

Year	Company	Commodity	Results
1971	Canadian Nickel	Cu, Ni, PGE	Hole 42752-0 (60m) – Diorite to hornblende-biotite-garnet schist with bands of Po-Py +/- trace Cpy.
			Hole 42753-0 (40m) – Biotite-hornblende +/- garnet schist with bands Py-Po-QV.
			Hole 42754-0 (41m) – Hornblende-biotite-garnet schist with bands of Py-Po +/- trace Cpy.
			Hole 42755-0 (59m) – Biotite-garnet schist to biotite quartzite with bands of QV-Po-Py +/- trace Cpy; located southeast of map.
			Hole 42756-0 (40m) – Andesite to greywacke to feldspar porphyry with bands of QV-Py-Po +/- Sph; located southeast of map.
			Hole 42757-0 (46m) – Paragneiss with garnet +/- disseminated Py or Py-Po in bands or quartzite.
			Hole 42770-0 (49m) – Dacite to mafic tuffs with graphite-Py; located southeast of map.
			Hole 42771-0 (55m) – Andesite with porphyry with QV +/- Po- Py
1971	Canadian Nickel	Cu, Ni, PGE	1 hole (52m) 1200m north of the patents along Highway 622. They intersected disseminated Py +/- Cpy-Sph over 6.0m but no assays given.
1995	Noranda Exploration	Cu, Zn	Drilled 4 holes (511m) to test HLEM conductors on main LTV patents. Drilling hit banded- massive Po and lesser Py with altered felsic volcanics (FV) with best value of 0.26% Zn. They intersected:
			Hole B95-1 hit 12.5m of 3-5% Po in chlorite altered FV with Cu 215-60 ppm.
			Hole B95-2 hit 10m of 10% Po in chlorite altered FV with Zn 220-2600 ppm; west of the map (south of Stormy Lake).
			Hole B95-3 hit 0.7m and 4.4m of massive sulphide but no Cu or Zn
			Hole B95-4 hit 13.5m of <20% Py & 2-3% Py in FV-argillite but no Cu or Zn
1995	Noranda Exploration	Cu, Zn	Drilled 2 holes (250m) to test HLEM conductors on the Sells patents. Drilling hit >6m massive Po with lesser Py in altered FV but no economic assays. They intersected:
			Hole SO-1 hit 6.3m of massive Po-Py with garnet-chlorite- amphibole altered FV with no Cu-Zn.
			Hole SO-2 hit 3.3m of massive Po with garnet-chlorite- amphibole altered FV with no Cu-Zn.

The following figure shows the location of drill holes for base metals:

Figure 8: Historical Drilling for base metals (by Inco and Noranda) near Bending Lake

Section 10 Synchrotron Testing

In the summer of 2019, Ambershaw Metallics Inc hired Nordmin Engineering to complete a *Phase I Resource Review and Due Diligence of the Bending Lake Property* (Sept 17, 2019). A positive response was received on this review however, several issues were noted:

- Old logs show missing core when actual overburden. These were mislabelled.
- Missing assays from sampled sections. Review of core showed sections not sampled.
- Drill hole locations may not be accurate. Completed 18 downhole reflex surveys, reflex locations on 7 drill holes and AMI staff located another 12 drill collars in field to line-up historical collar locations.
- Lithology issues with 2011 logging vs 2008 Fladgate logging of the historical drill holes. The Fladgate legend did not line up with the 2011 drill core logs of this author. This variance was due to the presence of different lithologies not previously recognized.
- Sampling gaps in the iron formation and very little in hangingwall and footwall tested. A large scale core sampling program (over 3300 samples) was completed in November and December of 2019 to fill in these sampling gaps

Due to these issues of potential different lithologies, Nordmin suggested a sampling program of 47 drill-core pulps for samples analysed from 15 historical diamond drill holes. This tested the 1964 and 1977 drilling and encompassed the entire deposit. Analysis used the Synchrotron method.

Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program (phase I) located the following from the Aug 20th Powerpoint Presentation from Nordmin (20 pages in Appendix A):

- 27 samples plotted as Cluster 1
- 16 samples plotted as Cluster 2
- 1 sample each as Cluster 3, Cluster 4, Cluster 5

Based on the Synchrotron results, two distinct grades of magnetite were located:

- Cluster 1 averaged 48% Fe_2O_3 and 43% SiO_2
- Cluster 2 averaged 25% Fe_2O_3 and 54% SiO_2
- Three other Clusters (3, 4, 5) were located and may be subunits of Group 2.

Figure 9: AMI Synchrotron testing of Phase I

Based upon mapping by this author, the following was located:

- Group / Cluster 1 is representative of a fine to medium grained, sandstone with magnetite bands from centimeter to meter scale banding. This unit was separated by a gravity concentration within the water column, due to the courser grain size, and may be easier to liberate the iron from the ore at a courser grain size (200 mesh?). This courser grain size was highly evident in the recent stripping and sampling at the Northwest Fe Zone. The unit was sampled for Fe assays at SGS Canada, a 100 kg sample sent for metallurgical testing at SGS Canada and a second phase of pulp testing using the synchrotron method.
- 2. Group / Cluster 2 is representative of a siltstone and minor fine sandstone and chert bands with finer, interstitial magnetite between the grains. As this unit is finer grained, with more clay particles, and iron banding less prevalent. This unit may reflect a more exhalative origin of finer particles (SiO₂ and Fe₃O₄) suspended in the water column and slowly setting with a different geochemical signature. This unit had all of the historical metallurgical sampling (1977 & 2010 bulk samples) and reflects a finer iron separation, 325 mesh or greater, but may account for a smaller portion of the ore (approximately 30-35%).

The Phase II program of drill-core pulps testing using the Synchrotron method was defined in the October 3rd of 2019 Technical Memo in the *Site Visit - Bending Lake Deposit* by Nordmin Engineering (See Appendix B). The following was located

"September 2019, Nordmin and Lisa CAN Solutions (Lisa CAN) completed various geochemical and mineralogical analyses (synchrotron) that confirmed the location of the samples chosen for the previous metallurgical studies was not representative of the Deposit. The synchrotron testing focused on differentiating the mineralogy and determining how the mineralogical changes throughout the Deposit may be affecting the grinding characteristics outlined in previous metallurgical test programs. The testing has identified various minerals that will affect overall recoveries, which include quartz, iron oxides (magnetite, hematite, titanium-magnetite, and jacobsite), manganese-rich biotite, cordierite, and manganese/barium-rich phlogopite.

Results from both batches of testing identified two predominant and distinctive mineralogical "clusters" (Cluster 1 and Cluster 2), and three tentative clusters (Cluster 3, Cluster 4, and Cluster 5), which may be analytical anomalies. Cluster 3, Cluster 4, and Cluster 5 may be subsets of Cluster 1 and Cluster 2.

- Cluster 1: Magnetite rich zones
- Cluster 2: Quartz- rich zones

The synchrotron testing confirmed there is a direct 2:1 inverse relationship between magnetite (Fe3O4) and silicon dioxide (SiO2) content. As magnetite increases, quartz decreases. Figure 1 is a plan view of the Northwest stripping area that was exposed to outline Cluster 1 for comparison to Cluster 2, which is associated with the footwall (FW) banded iron formation (BIF) located in the old bulk sample location.

Cluster 1 Metallurgical Domain

Cluster 1 consists of a minimum of two subdomains within the overall deposit. Nordmin reviewed the outcrop that contains both subdomains and associated characteristics (Figure 2):

- Subdomain 1: High grade magnetite bearing BIF. The structure ranges from ~90-250 m in thickness and has little to no silica or clay minerals.
- Subdomain 2: hanging wall 8-25% magnetite bearing intermixed sandstone and BIF. The structure ranges from 10-60 m in thickness and has little to no silica or clay minerals.

Cluster 2 Metallurgical Domain

Cluster 2 consists of multiple subdomains that are ~50-100 m in thickness, ranging between 10-30% magnetite BIF, 50-60% SiO2 and 5-15% clay material within the domain. As seen in Figure 6, the material tends to oxide in the environment, mineral grain size is significantly smaller, and the unit is interbedded and does not appear to be massive, as seen in Cluster 1."

Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program located the following from the October 3, 2019 memo from Nordmin. Total of phase I & II sampling found:

- 78 samples plotted as Cluster 1
- 45 samples plotted as Cluster 2
- 2 samples in Cluster 3,
- 4 samples in Cluster 4,
- 1 sample in Cluster 5.

Figure 10 is a cell display of the results from the cluster analysis from both round 1 and 2. In the cell display, each sample is represented as a pie chart coloured to match the colours in the dendrogram. Five groups were identified, the groups in green, light blue, and dark blue are tentative due to too few samples. The magnetite-rich samples are identified in red, and the quartz-rich samples are identified in yellow.

Figure 11 is outlining a series of diffractograms for the various clusters. Five groups were identified, group 1 is green, group 2 is blue, and the minor groups are in red, orange and purple.

Section 11 2019 Stripping, Mapping and Sampling

The following mineralized zones were stripped, mapped and channel sampled by Ambershaw Metallics Inc. in 2019 (See Figure 7):

Section 11.1 Northwest Fe Zone

In July of 2019, Ambershaw Metallic Inc. had completed surface stripping on the Northwest Fe Zone (UTM 558921E, 5464240N, Zone 15, WGS84), approximately 600m west from the old bulk sample. This stripping program was completed for several reasons:

- 1. To confirm the consistency of the ore deposit as most of the stripping and sampling had been near of the Old Bulk Sample.
- 2. The 2011 drill logs showed this area to have different lithologies within the Iron Formation than previously defined by Fladgate, away from the Old Bulk Sample.
- 3. Potential site for metallurgical testing, at least 500m away from the proposed AdEx, if further smaller-scale mineralogical and metallurgical sampling needed.

After a September 27th of 2019 field visit by the Nordmin Group, this was confirmed and more areas of testing were needed to test the Cluster 1 Zone.

The following samples were taken:

Table 7: AMI sampling of the Northwest Fe Zone on	Bending Lake Property
---	-----------------------

Northwest Fe Zone (NWZ) - July 2019							
Sample No	Easting	Northing	Length (m)	Description			
NWZ01	558924E	5464249N	0.90	BIF with 40-50% massive Mgt			
NWZ02			1.00	BIF with 40-50% massive Mgt			
NWZ03			1.00	BIF with 40-50% massive Mgt			
NWZ04			1.00	BIF with 40-50% massive Mgt			
NWZ05			1.00	BIF with 40-50% massive Mgt			
NWZ06			1.00	BIF with 40-50% massive Mgt			
NWZ07	558920E	5464240N	1.00	BIF with 40-50% massive Mgt			
NWZ08	558920E	5464238N	1.00	Sandstone with 20-25% Mgt bands			
NWZ09			1.00	Sandstone with 5-7% Mgt bands			
NWZ010			1.00	Sandstone with 5-7% Mgt bands			
NWZ011			1.00	Sandstone with 8-10% Mgt bands			
NWZ012			1.00	Sandstone with 8-10% Mgt bands			
NWZ013	558917E	5464232N	1.00	Sandstone with 8-10% Mgt bands			
Not Sampled			1.00	Sandstone with 8-10% Mgt bands			
Not Sampled			3.80	Sandstone with 15-20% Mgt bands			

Figure 12: Northwest Fe Zone photo, AMI Stripping, July 2019

Figure 13: Northwest Fe Zone sampling, AMI Project

Sample	Int. (m)	Description	SiO2	Fe2O3	Fe Mag	MgO	CaO	Na2O	K2O
NWZ01	0.90	40% mgt-BIF	41.80	56.50	39.50	0.86	0.87	0.04	0.27
NWZ02	1.00	40% mgt-BIF	40.00	56.30	39.40	1.00	1.03	0.07	0.31
NWZ03	1.00	40% mgt-BIF	40.70	51.90	36.30	1.71	1.33	0.50	0.96
NWZ04	1.00	40% mgt-BIF	40.40	54.30	38.00	1.23	1.26	0.25	0.44
NWZ05	1.00	40% mgt-BIF	41.40	53.30	37.30	1.33	1.37	0.30	0.36
NWZ06	1.00	40% mgt-BIF	41.00	53.50	37.40	1.34	1.47	0.42	0.32
NWZ07	1.00	40% mgt-BIF	39.00	55.80	39.00	1.59	1.41	0.48	0.33
	6.90	BIF average	40.60	54.49	38.11	1.31	1.27	0.30	0.43
NWZ08	1.00	20% mgt-sandstone	45.10	40.60	28.40	2.15	1.06	1.42	1.74
NWZ09	1.00	5% mgt-sandstone	52.80	25.10	17.50	2.34	1.32	1.45	3.18
NWZ10	1.00	5% mgt-sandstone	55.50	18.80	13.20	2.57	1.03	1.41	4.11
NWZ11	1.00	8% mgt-sandstone	55.30	19.90	14.00	2.07	0.88	1.16	4.60
NWZ12	1.00	8% mgt-sandstone	62.50	9.33	6.53	2.45	0.99	2.17	4.43
NWZ13	1.00	8% mgt-sandstone	49.20	27.60	19.30	2.61	1.38	1.68	3.43
none	1.00	8% mgt-sandstone							
none	1.00	15% mgt-sandstone							
none	1.00	15% mgt-sandstone							
none	0.80	15% mgt-sandstone							
	6.00	Mgt - Sandstone	53.40	23.56	16.49	2.37	1.11	1.55	3.58

Table 8: Partial Assay Results of AMI Testing of Northwest Fe Zone, AMI Project

Mapping and sampling by AMI geological staff located:

- 6.90m of Banded Iron Formation (BIF) with 40-50% magnetite with thin sandstone beds. This unit averaged 54% Fe₂O₃ and 41% SiO₂ over the sampling width. This confirms this unit is part of the Cluster 1, which averaged 48% Fe₂O₃ and 43% SiO₂.
- 6.00m of Arkosic Sandstone with 5-25% magnetite beds. This unit averaged 24% Fe₂O₃ and 53% SiO₂ over the sampling width. Cluster 2 averaged 25% Fe₂O₃ and 54% SiO₂. The values for the Hangingwall Magnetite-Sandstone units had lower Fe₂O₃ and higher SiO₂ as expected, but lower MgO, CaO, Na₂O and K₂O values than the Cluster 2 samples.

Section 11.2 Wilcott Fe Zone

In October of 2019, a second sampling program of the Cluster 1 Zone was commenced 400m northwest of the Northwest Fe Zone, on the 2011 Wilcott Fe Zone (UTM 558570E, 5464460N, Zone 15, WGS84). A BSc thesis by Sarah Wilcott (University of Manitoba) tested the northwest extension of the deposit for the Bending Lake Iron Group Ltd. A 70m long x 10m wide zone was stripped, mapped with limited sampling for academic purposes.

The following samples were taken:

Sample	Easting	Northing	Int. (m)	Description	
WZ01	558573	5464464	2.00	BIF with 40% mgt	
WZ02	558572	5464463	2.00	BIF with 40% mgt	
WZ03	558571	5464462	2.00	BIF with 40% mgt	
WZ04	558571	5464461	2.00	BIF with 40% mgt	
WZ05	558570	5464460	2.00	BIF with 40% mgt	
			10.00	BIF average	
WZ06	558566	5464459	2.00	Sandstone with 12% mgt bands	
WZ07	558564	5464458	2.00	Sandstone with 27% mgt bands	
WZ08	558563	5464457	2.00	Sandstone with 20% mgt bands	
WZ09	558562	5464456	2.00	Sandstone with 38% mgt bands	
WZ10	558560	5464455	2.00	Sandstone with 15% mgt bands	
			10.00	Sandstone-Mgt average	

Table 9: AMI sampling of the Northwest Fe Zone on Bending Lake Property

Figure 14: Wilcott Fe Zone photo, AMI Stripping, Oct 2019 – channelling BIF (WZ01 to WZ05)

Figure 15: Wilcott Fe Zone sampling, AMI Stripping, map, Oct 2019

Sample	Description	Int. (m)	SiO2	Fe2O3	Fe Mag	MgO	CaO	Na2O	K2O
WZ01	BIF with 40% mgt	2.00	40.20	53.00	37.10	1.51	1.24	0.55	0.52
WZ02	BIF with 40% mgt	2.00	41.30	52.40	36.60	1.56	1.01	0.40	0.42
WZ03	BIF with 40% mgt	2.00	40.80	53.70	37.60	1.58	1.63	0.22	0.35
WZ04	BIF with 40% mgt	2.00	41.20	52.80	37.00	1.67	1.37	0.45	0.42
WZ05	BIF with 40% mgt	2.00	39.30	53.70	37.60	1.99	1.78	0.40	0.52
	BIF average	10.00	40.56	53.12	37.18	1.66	1.41	0.40	0.45
WZ06	sandstone + 12% mgt	2.00	51.90	27.90	19.50	2.24	1.60	1.37	2.52
WZ07	sandstone + 27% mgt	2.00	50.10	31.90	22.30	1.81	1.62	1.08	2.40
WZ08	sandstone + 20% mgt	2.00	51.80	29.00	20.30	1.98	1.17	2.30	2.34
WZ09	sandstone + 38% mgt	2.00	55.00	20.90	14.60	2.47	3.34	1.56	2.61
WZ10	sandstone + 15% mgt	2.00	55.10	22.20	15.50	1.90	1.57	1.61	3.21
	Magnetite-Sandstone	10.00	52.78	26.38	18.44	2.08	1.86	1.58	2.62

Table 10: Partial Assay Results of AMI Testing of Wilcott Fe Zone, AMI Project

A 60m plus wide section was exposed by the 2011 stripping program by Wilcott and the Bending Lake Iron Group Ltd. A representative 10m section was taken of each rock type was taken by AMI geological staff:

- 10m of Banded Iron Formation (BIF) with 40-50% magnetite with thin sandstone beds. This unit averaged 53% Fe₂O₃ and 41% SiO₂ over the sampling width. This confirms this unit is part of the Cluster 1, which averaged 48% Fe₂O₃ and 43% SiO₂.
- 10m of Arkosic Sandstone with 5-25% magnetite beds. This unit averaged 26% Fe₂O₃ and 53% SiO₂ over the sampling width. Cluster 2 averaged 25% Fe₂O₃ and 54% SiO₂. The values for the Hangingwall Magnetite-Sandstone units had lower Fe₂O₃ and higher SiO₂ as expected, but lower MgO, CaO, Na₂O and K₂O values than the Cluster 2 samples.

Section 11.3 Road Fe Zone

In October of 2019, a third sampling program on the Cluster 1 Zone was commenced 450m southeast of the Northwest Fe Zone, on the Road Fe Zone (UTM 558247E, 5464021N, Zone 15, WGS84). Stripping along a 60m long x 8m wide zone was completed adjacent to the access road to the Old Bulk Sample and AMI's AdEx. Mapping and 31m of channel sampling located more Cluster 1 exposure.

The following samples were taken:

Sample	Easting	Northing	Int. (m)	Description
RZ-N2	559252	5464027	1.00	30% Mgt in BIF
RZ-N1	559251	5464026	1.00	30% Mgt in BIF
RZ01	559250	5464025	1.50	15% Mgt in BIF
RZ02	559249	5464024	1.50	30% Mgt in BIF
RZ03	559248	5464023	1.50	30% Mgt in BIF
RZ04	559247	5464022	1.50	30% Mgt in BIF
RZ05	559247	5464021	0.33	30% Mgt in BIF
			8.33	North BIF average
RZ06	n/a	n/a	1.67	not sampled
RZ07	559244	5464019	2.00	40% Mgt in BIF
RZ08	559243	5464018	1.50	40% Mgt in BIF
RZ09	559242	5464017	1.50	40% Mgt in BIF
RZ10	559241	5464016	1.50	40% Mgt in BIF + QV
RZ11	559240	5464014	1.50	40% Mgt in BIF
RZ12	559239	5464012	1.50	40% Mgt in BIF
RZ13	559238	5464010	1.70	40% Mgt in BIF
RZ14	559238	5464009	1.50	40% Mgt in BIF
RZ15	559237	5464008	1.50	40% Mgt in BIF
			15.87	South BIF average
RZ16	559237	5464007	1.50	> 20% Mgt in Sandstone
RZ17	559236	5464005	2.00	< 40% Mgt in Sandstone
RZ18	559235	5464003	2.40	> 20% Mgt in Sandstone
			5.90	Mgt-Sandstone

Table 11: AMI sampling of the Road Fe Zone on Bending Lake Property

Figure 16A: Road Fe Zone photo, AMI Project – North BIF Stripping (Oct 2019)

Figure 16B: Road Fe Zone photo, AMI Project – South BIF Stripping (Oct 2019)

Figure 18: Road Fe Zone sampling, AMI Stripping, Oct 2019

Sampl	Description	Int. (m)	SiO2	Fe2O	Fe Mag	MaO	CaO	Na2O	K20
RZ-N2	30% Mat in BIF	1.00	38.00	56.70	39.70	1.30	0.65	0.09	0.70
RZ-N1	30% Mgt in BIF	1.00	42.10	52.10	36.50	1.49	1.24	0.17	0.70
RZ01	15% Mgt in BIF	1.50	48.90	37.20	26.00	1.47	1.26	0.80	2.02
RZ02	30% Mgt in BIF	1.50	40.80	53.50	37.40	1.41	1.23	0.29	0.68
RZ03	30% Mgt in BIF	1.50	40.10	54.40	38.10	1.43	1.15	0.37	0.49
RZ04	30% Mgt in BIF	1.50	41.30	53.90	37.70	1.30	1.25	0.39	0.24
RZ05	30% Mgt in BIF	0.33	42.80	52.90	37.00	1.28	1.90	0.32	0.14
	North BIF average	8.33	42.12	50.99	35.68	1.40	1.18	0.38	0.79
	not sampled	1.67							
RZ07	40% Mgt in BIF	2.00	42.90	44.30	31.00	2.31	2.39	1.05	0.88
RZ08	40% Mgt in BIF	1.50	37.60	52.30	36.60	1.71	2.28	0.70	0.68
RZ09	40% Mgt in BIF+QV	1.50	60.40	16.80	11.70	2.53	2.47	1.60	2.49
RZ10	40% Mgt in BIF	1.50	40.80	54.10	37.90	2.01	1.65	0.37	0.39
RZ11	40% Mgt in BIF	1.50	48.10	47.70	33.30	1.47	1.27	0.38	0.29
RZ12	40% Mgt in BIF	1.50	38.40	54.70	38.30	1.68	1.78	0.29	0.36
RZ13	40% Mgt in BIF	1.70	41.80	49.20	34.40	2.05	1.11	0.71	0.85
RZ14	40% Mgt in BIF	1.50	40.10	54.80	38.40	1.38	1.07	0.31	0.34
RZ15	40% Mgt in BIF	1.50	41.50	50.00	35.00	1.80	1.39	0.62	0.52
	South BIF average	15.87	38.89	42.08	29.44	1.70	1.55	0.61	0.68
RZ16	>20% Mgt in Sandstone	1.50	62.10	8.10	5.66	2.29	3.24	4.00	2.99
RZ17	<40% Mgt in Sandstone	2.00	53.40	24.80	17.40	1.99	2.29	2.66	2.28
RZ18	>20% Mgt in Sandstone	2.40	62.90	6.94	4.85	2.23	3.04	3.54	3.33
	Mgt-Sandstone	5.90	59.48	13.29	9.31	2.16	2.84	3.36	2.89

Table 12: Partial Assay Results of AMI Testing of Wilcott Fe Zone, AMI Project

A 31m plus wide section of bedrock was exposed by the new stripping program by AMI. on the Road Fe Zone. Ambershaw geological staff located the following from northeast to southwest:

- 8.33m of the Northern Banded Iron Formation (BIF) with 30% magnetite, 3-5% hematite, minor graphite (>2%) with cm to meters sandstone beds. This unit averaged 51% Fe₂O₃ and 42% SiO₂ over the sampling width. This confirms this unit is part of the Cluster 1, which averaged 48% Fe₂O₃ and 43% SiO₂.
- A 1.67m section could not be sampled due to excess water and mud, even after 6 hours of drainage with pumps. This would be the location of RZ06 but not taken.
- 15.87m of the Southern Banded Iron Formation (BIF) with 40% magnetite, rare quartz veins and thin sandstone beds. This unit averaged 42% Fe₂O₃ and 39%

SiO₂ over the sampling width. This confirms this unit is part of the Cluster 1, which averaged 48% Fe₂O₃ and 43% SiO₂

5.90m of Arkosic Sandstone with 15-40% magnetite beds. This unit averaged 13% Fe₂O₃ and 59% SiO₂ over the sampling width. The values for the Hangingwall Magnetite-Sandstone units had lower Fe₂O₃ and higher SiO₂ as expected, but lower MgO, CaO, Na₂O and K₂O values than the Cluster 2 samples.

Section 12 Conclusions

In the summer of 2019, Ambershaw Metallics Inc hired Nordmin Engineering to complete a *Phase I Resource Review and Due Diligence of the Bending Lake Property* (Sept 17, 2019). A positive response was received on this review however, several issues were noted:

- Old logs show missing core when actual overburden. These were mislabelled.
- Missing assays from sampled sections. Review of core showed sections not sampled.
- Drill hole locations may not be accurate. Completed 18 downhole reflex surveys, reflex locations on 7 drill holes and AMI staff located another 12 drill collars in field to line-up historical collar locations.
- Lithology issues with 2011 logging vs 2008 Fladgate logging of the historical drill holes. The Fladgate legend did not line up with the 2011 drill core logs of this author. This variance was due to the presence of different lithologies not previously recognized.
- Sampling gaps in the iron formation and very little in hangingwall and footwall tested. A large scale core sampling program (over 3300 samples) was completed in November and December of 2019 to fill in these sampling gaps.

In the summer and fall of 2019, Ambershaw Metallics Inc. had Nordmin Engineering initiated a two phase program where 130 drill-core pulps samples were analysed from historical diamond drill holes (1954-2008) to tested the consistency of the iron deposit. The Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program located the following from the October 3, 2019 memo from Nordmin. Total of phase I & II sampling found:

- 78 samples plotted as Cluster 1
- 45 samples plotted as Cluster 2
- 2 samples in Cluster 3,
- 4 samples in Cluster 4,
- 1 sample in Cluster 5.

The results of the program showed two distinct geochemical (and mineralogical) groups were located:

- Cluster 1 averaged 48% Fe₂O₃ and 43% SiO₂ and is representative of "fine to medium grained sandstone with magnetite bands from centimeter to meter scale banding".
- Cluster 2 averaged 25% Fe₂O₃ and 54% SiO₂ and is representative of "siltstone, very fine sandstone and chert with finer interstitial magnetite between the grains". This unit has been the basis of the metallurgical sampling (Algoma 1977 and BLIG 2010) on the old bulk sample pit.
- Clusters 3, 4 & 5 may be subunits of Cluster 2.

With this new discovery by Ambershaw Metallics Inc., a program was designed to test the test the surface potential of the Cluster 1 zone. Mechanical removal of overburden, pressure-washing, channel-cutting and sampling was completed on three areas which are

located west of the planned Advanced Exploration permit bulk sample site (and the Old Bulk Sample pit).

The following three exposures (zones) of Cluster 1 were sampled and assayed:

Zone	Description	Interval (m)	SiO2	Fe2O3
Northwest Zone	BIF average	6.90	40.60	54.49
Northwest Zone	Mgt-Sandstone	6.00	53.40	23.56
Wilcott Zone	BIF average	10.00	40.56	53.12
Wilcott Zone	Mgt-Sandstone	10.00	52.78	26.38
Road Zone	North BIF avg.	8.33	42.12	50.99
Road Zone	South BIF avg.	15.87	38.89	42.08
Road Zone	Mgt-Sandstone	5.90	59.48	13.29
Synchrotron	Cluster 1 BIF		43.00	48.00
Synchrotron	Cluster 2 BIF		54.00	25.00

 Table 13: Three zones assays vs Synchrotron assays, Cluster 1 testing

All three zones (Northwest, Wilcott and Road) have Fe2O3 and SiO2 values at or above the values located by the Synchrotron testing. The western portion of the deposit appears to be consist with Cluster 1 values and may represent 65-70% of the deposit. Further testing is required to confirm this hypothesis.

2019 exploration program by Ambershaw Metallics Inc. has advanced the AMI Project:

- The Cluster 1 mapping and sampling has shown higher magnetite / iron contents, courser grain size and low pellitic / clay content (>10%). This zone may be easier to liberate the iron from the ore. In October of 2019, metallurgical testing was initiated on a 100 kg sample of Cluster 1 zone rocks collected from the Northwest Fe Zone.
- Historical metallurgical testing (1977 & 2010 bulk samples) has focused on the Cluster 2 testing of the old bulk sample. This has shown lower magnetite / iron contents, finer grain size and higher pellitic / clay content (10-30%). This zone will require more grinding and processing of the ore to liberate the ore.

Section 13 References

Arnold, J., HBSc., P.Geo. et. al., Sept. 13/11. NI43-101 Independent Technical Resource Estimate: Bending Lake Property *for* Bending Lake Iron Group Ltd by Fladgate Exploration Consulting Corporation Exploration Consulting Corporation, 138p.

Behre Dolbear & Company (USA) Inc., Dec. 2008. Preliminary Review, Valuation, and Cash Flow Projection: Bending Lake Iron Ore Deposit and the Bending Lake Project (Behre Dolbear Project 08-149), 74p.

Felix, R. 1994. Noranda Mining and Exploration Inc. *in* Report on Geology and Geochemical Surveying 1994, Bending Lake Option, NTS 52F8, West Precambrian District.

Felix, V.E. 2006. Upper Manitou Lake area high-density regional lake sediment and water geochemical survey, northwestern Ontario; Ontario Geological Survey, Open File Report 6194, 77p.

Raoul, A. and Ravnaas, C. 2002. An Introduction to Volcanogenic Massive Sulfides: Bending Lake Area, an unpublished Fieldtrip Guide by the Kenora District Geologist's Office, Ontario Geological Survey.

Stone, D., Hellebrandt, B. and Lange, M. 2011. Precambrian geology of the Bending Lake area (south sheet); Ontario Geological Survey, Preliminary Map P.3624, scale 1:20 000.

Stone, D., Hellebrandt, B. and Lange, M. 2011. Precambrian geology of the Bending Lake area (north sheet); Ontario Geological Survey, Preliminary Map P.3625, scale 1:20 000.

Stone, D., Paju, G. and Smyk, E. 2011. Precambrian geology of the Stormy Lake area; Ontario Geological Survey, Preliminary Map P.2515, scale 1:20 000

Thompson, Michael, HBSc., P.Geo. Nov.1/08. Independent Technical Report on the Bending Lake Property *for* Bending Lake Iron Group Ltd by Fladgate Exploration Consulting Corporation Exploration Consulting Corporation, 51p.

Wilcott, S., HBSc. 2012. Stratigraphy of the Northwest Zone of an iron formation near Bending Lake, Northwestern Ontario, University of Manitoba, Honors Bachelor of Science Thesis 2012.

The following assessment files were located the Kenora District Geologist's Office at 810 Robertson Street, Kenora ON:

Assessment File No.	Company / Name	Year
52F08SE A-1	Bending Lake Iron Formation	
52F08SE B-1	Bending Lake Prospect	
52F08SE D-1	Jalore Mining Co.	1954-56
52F08SE E-1	Stratmat	1957
52F08SE C-2	Canadian Nickel / Inco	1971
52F08SE C-1	Canadian Nickel / Inco	1971
52F08SE	OGS Property Visit	1977
52F08SE F-1	Sulpetro Minerals	1982
52F08SE I-1	D. Calvert, A. Wing, A. Wallace	1990
52F08SE K-1	Alex Glatz	1993
52F08SE J-1	Noranda Exploration	1994
52F08SE J-2	Noranda Exploration	1994
52F08SE J-3	Noranda Exploration	1994
52F08SE J-7	Noranda Exploration	1994
52F08SE J-4	Noranda Exploration	1995
52F08SE J-5	Noranda Exploration	1995
52F08SE J-6	Noranda Exploration	1995
52G12SW 0001	Line Cutting, Prospecting, Geological	1995
	Mapping and Trenching on Raleigh	
	Lake Project by Hemlo Gold	
52F08SE	OGS Property Visits	2000
52F08SE	OGS Property Visits	2002
52F08SE M-6	Bending Lake Prospecting Report	2010
52F08SE	Bending Lake Petrography Report	2010
52F08SE M-1	Bending Lake 2008 Drill Report	2011
52F08SE M-2	2011 Line Cutting, Mapping and Drill	2011
	Report	
52F08SE M-3	NI43-101 Independent Technical	2011
	Resource Estimate: Bending Lake	
	Property for Bending Lake Iron Group	
	Ltd by Fladgate Exploration	
52F08SE M-4	2011 Bending Lake Main Zone Drilling	2013
52F08SE	Project Description of the Bending	2012
	Lake Iron Deposit	
52G12SW 0001	Line Cutting, Prospecting, Geological	1995
	Mapping and Trenching on Raleigh	
	Lake Project by Hemlo Gold	

Table 14: Assessment Files at the Kenora District Geologist Office, ENDM

Section 14 Budget for the 2019 Stripping Program

The following was spent of the 2019 stripping program on the Bending Lake property:

	Ambershaw Metallics Inc 2019 Stripping Program Budget								
Person/Company	Job	19-Jun	Jul-19	Sep-19	Oct-19	Nov-19	Jan-20	Feb-20	Subtotal
Allen Raoul PGeo	Mapping & Sampling	2570	2110	860	4430	600	0	0	10570
Allen Raoul PGeo	Expenses	524	193	0	1789	0	0	0	2506
Allen Raoul PGeo	Report Writing						6900	3600	10500
(Bill) Bone Field Services	Washing & Channelling	537	1424	0	3848	0	0	0	5809
Tyson Piccinato	Channelling helper				1000				1000
Wildwoods Contracting	Mob & Demob & Mechanical Stripping	4040			1777				5817
Nordmin Engineering	Synchrotron report (Appendix A), Sept 26th fieldtrip report (Appendix B), 2 phases of Synchrotron assays			33720					33720
SGS Canada	Fe assay cost & certificates						4115		4115
ORIX	GIS map production							5091	5091
UPS	report prod. & printing	40	94	36				311	481
TOTALS									79609

Table 15: Budget for the 2019 Stripping Program

Synchrotron testing was 130 samples from the 81 historic drill holes over most of the Ambershaw patents. Over 80% of the work was carried on the 3 zones and their surrounding patents. The distribution of assessment work was divided up by percentage of work done on those patent

Patent	Zone	# Samp	%	cost
PAT6322	Wilcott Zone	10	23.81	18955
PAT6323	Northwest Zone	13	30.95	24641
PAT6302	Road Zone	19	45.24	36014
totals		42	100.00	79609

Section 15 Certificate of Author

I, Allen J. Raoul, of the city of Fort Frances, in the province of Ontario, do certify as follows:

- I am the Project Geologist with Ambershaw Metallics Inc. with a field office at... 321 Second Street East Fort Frances, ON P9A 1M9 807-274-7917
- 2) I spent the previous 13 months in the Thunder Bay and Kenora Districts of Ontario for Ambershaw Metallics Inc as Project Geologist (Dec 2018 Jan 2020)
- 3) I spent the previous 4 years in the Kenora Districts of Ontario for NuVision Resources ULC as Project Geologist (Jan 2014 - May 2018)
- 4) I spent the previous 4 years in the Kenora Districts of Ontario for Bending Lake Iron Group Ltd as Project Geologist (Oct 2008 - May 2013)
- 5) I spent the previous 6 months in the Kenora District in Ontario for Rainy River Resources as Project Geologist (May 2008 – Sept 2008)
- I spent the previous 13 months in the Kenora District of Ontario for Western Warrior Resources Inc as Project Geologist and then Exploration Manager (Mar 2007 – Apr 2008).
- I spent the previous seven years in the Kenora District of Ontario for the Ontario Geological Survey as Acting District Geologist and District Support Geologist (Jul 2000 – Feb 2007)
- 8) I have practiced my profession since 1990 and achieve by PGeo (#1925) in October of 2010.
- 9) I am a graduate of Mount Allison University, Sackville, New Brunswick with a B.Sc. in Geology in 1990.
- 10) I am a graduate Mineral Technologist from the University College of Cape Breton, Sydney, Nova Scotia in 1987.

Permission is granted to Ambershaw Metallics Inc. to publish this report dated February 19, 2020 for assessment purposes, raising of funds and other corporate purposes.

A. Rasan

Allen J. Raoul

APPENDICES

Appendix A: Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program (phase I) located the following from the Aug 20th Powerpoint Presentation from Nordmin (pg 1-20).

Appendix B: The Phase II program of drill-core pulps testing using the Synchrotron method was defined in the October 3rd of 2019 Technical Memo in the *Site Visit - Bending Lake Deposit* by Nordmin Engineering.

Appendix C: Assay Certificates from SGS Canada

APPENDIX A

Synchrotron-based X-ray Diffraction (SR-XRD) Analysis program (phase I) located the following from the Aug 20th Powerpoint Presentation from Nordmin (pg 1-20).

Bending Lake

August 20 2019

Western 😽 Science

Preliminary SR-XRD analysis of 47 iron ore samples

Prepared by Lisa Van Loon and Neil Banerjee August 15, 2019

Bending Lake – Plan view of sample locations for Synchrotron Sampling

Sample Selection

 Selected ~ 47 sample pulps (2/3 logged as BIF and 1/3 as Schist)

Western 🐼 Science

47 samples were sent for synchrotron-based X-ray diffraction (SR-XRD) analysis:

Initial cluster analysis classifies the samples into 5 groups:

- I. 101, 102, 103, 107, 108, 109, 110, 111, 113, 115, 116, 117, 119, 120, 124, 125, 129, 130, 131, 132, 138, 139, 140, 144, 145, 146, 147
- II. 104, 105, 106, 112, 114, 118, 121, 122, 123, 126, 127, 133, 134, 135, 142, 143
- III. 136
- IV. 137
- V. 128

Please note: Clusters III, IV, V are tentative due to too few analyses.

Preliminary minerals identified include: Quartz

> Iron Oxides (magnetite, hematite, Ti-magnetite, jacobsite) Biotite (Mn-rich) Cordierite Phlogopite (Mn-Ba rich)

> > Dr. Neil R. Banerjee & Dr. Lisa L. Van Loon
> >
> >
> > c. 519.933.3298
> > c. 306.229.5297
> >
> >
> > neil.banerjee@uwo.ca
> > lisavanloon@gmail.com

Western 😽 Science

Five samples were selected for initial mineral identification to represent the identified groups of samples.

Observed differences in the diffractograms include the intensity of peaks at 20 ~ 4, 9, 11 - 15, 26-30. Observed differences are related to the mineralogy of the samples.

Dr. Neil R. Banerjee & Dr. Lisa L. Van Loon c. 519.933.3298 c. 306.229.5297 neil.banerjee@uwo.ca lisavanloon@gmail.com

BL-53-77 Sample A892101,02 Zone 10 Mid

BIF

BL-19-64 Sample A892110,11 Zone 10 Mid BIF

BL-37-76 Sample A892133 Waste gap between Zone 20 and 30 GBS/mag

 BL-25-76
 BL-25-76

 Sample A892123
 Sample A892124,25

 HW (contact Zone 10)
 HW of Zone 10

 GBS/mag
 BIF

BL-11-64 Sample A892126,27,28 Zone 10 BIF

ABS/mag (to BIF)

[BIF]

[GBS and BIF]

[GBS/mag]

[25,30]

[30,40] [40,100]

Zone 10 BIF

Zone 10 BIF

Block Model	Zone 10 Zone 20	BL-26-76	BL-26-76	BL-26-76
BL_Fe [ABSENT] [0,0.1]	Drillholes ROCKCODE [ABSENT]	Sample A892107	Sample A892108	Sample A892
[0.1,8] [8,15] [15,20]	[ABS/mag] [ABS/mag and BIF]	HW at contact w/Z10	Z10 at HW contact	Z10 near FW
[20,26] [26,30] [30,40] [40,100]	[BIF] [GBS and BIF] [GBS/mag]	ABS/mag	BIF	ABS/mag w/E

BL-26-76 2144 Sample A892145 Contact Z10 near FW contact BIF BIF

BL-33-76 Sample A892105 HW (deep) GBS/mag BL-33-76 Sample A892106 HW GBS/mag BL-33-76 Sample A892129 Z10 near HW contact BIF

BL_Fe Drillholes Zone 30 [ABSENT] [0,0.1] [0.1,8] ROCKCODE [ABSENT] [ABS/mag] [8,15] [ABS/mag and BIF] [20,25] [BIF] [25,30] [GBS and BIF] [30,40] [GBS/mag] [40,100]

BL-45-77 Sample A892114 HW at Z10 contact GBS/mag BL-45-77 Sample A892115 Z10 nr Z10 contact BIF BL-45-77 Sample A892116 Z10 BIF BL-33-76 Sample A892141 Z10 BIF

Block Model BL_Fe	Zone 10 Zone 20	BL-34-76	BL-34-76	BL-34-76
[ABSENT] [0,0.1] [0 1 8]	ROCKCODE [ABSENT]	Sample A892103,04	Sample A892139	Sample A892140
[8,15] [15,20]	[ABS/mag] [ABS/mag and BIF]	HW/Z10 contact	Zone 10	Zone 10
[25,30] [30,40] [40,100]	[GBS and BIF] [GBS/mag]	GBS/mag and BIF	BIF	BIF

BL-20-64 Sample A892148 Zone 10 FW Contact BIF

BIF

BL-48-77 Sample A892112,13 Zone 20 HW contact (with Z10/20 gap)

TiO2 vs. SiO2 in groupings
Bending Lake – Initial Summary Results

- The bending lake orebody chemistry is essentially broken down into two main groups (group 1 red/group 2 green) and three minor phases. These phases control the distribution of Fe, MgO, Silica, Ti, regardless if its in BIF or schist or its its been logged as 100, 200 etc.
- Instead it's a combination of a variety of items which demonstrate clustering of data which is highly beneficial to blending plant feeds, etc.
- The met testing to date focused on a few lenses within the FW of the pit and represent no more than 5-10% of the total tonnage available for mining.
- The highest grades within the open pit which are in mostly within group 1 and group 2 represent >80% of the tonnage which has not been tested for metallurgy.

Suggested next steps:

- Ore grinding characteristics for the samples should be compared with the groupings identified based on mineralogical content. If they correlate, further analysis including additional bulk rock SR-XRD and petrographic analysis may help identify mineralogical causes of the grinding issues.
- SR-XRD analysis of a larger sample set will provide increased confidence in group assignments and provide a more robust cluster analysis. (50-100 samples)
- Complete identification of minerals in representative samples for each group.

APPENDIX B

The Phase II program of drill-core pulps testing using the Synchrotron method was defined in the October 3rd of 2019 Technical Memo in the *Site Visit - Bending Lake Deposit* by Nordmin Engineering.

То:	Jagdish Parekh, Ambershaw Metallics Inc.
From:	Glen Kuntz, Nordmin Engineering Ltd.
Date:	October 3, 2019

Re: Site Visit - Bending Lake Deposit

Contents

Introduction	2
Mineralogical Analyses (Synchrotron)	3
Cluster 1 Metallurgical Domain	4
Cluster 2 Metallurgical Domain	6
Recommendations	8

Figures

Figure 1: Cluster 1 exposed area within the northwest stripping area	3
Figure 2: Cluster 1 metallurgical domain outcrop outlining both subdomains for Cluster 1	4
Figure 3: Cluster 1 metallurgical domain outcrop outlining subdomain 2	5
Figure 4: Dendrogram diagram displaying the result of the cluster analysis	5
Figure 5: Cell display results of the cluster analysis	6
Figure 6: Cluster 2 demonstrates the silica-rich areas are interbedded and have a relatively high clay content. This portion of the pit has been backfilled demonstrates evidence of environmental oxidization .	6
Figure 7: Previous metallurgical testing programs' bulk sample location outlining the intermixed high silica material (101, 201 and 301)	7

Introduction

Glen Kuntz of Nordmin Engineering Ltd. (Nordmin) was retained by Ambershaw Metallics Inc. (AMI) to complete a Preliminary Economic Assessment (PEA) NI 43-101 Compliant Technical Report), for the Bending Lake Iron Deposit (the Deposit) located near Ignace, Ontario. As part of the required 43-101 requirements, a site visit was conducted on September 26, 2019, by Stan Emms, Christian Ballard, John McKenzie and Glen Kuntz of Nordmin, accompanied by Allen Raoul of AMI.

This technical memo outlines Nordmin's initial observations as a result of the site visit respecting:

- the synchrotron analysis results completed during August and September 2019; and
- the outcomes within the 19103-01 Resource Review and Due Diligence Report, effective September 17, 2019.

The reviews conducted during the site visit included:

- local geology and structural information;
- historical areas of previous bulk sampling;
- survey pickups of various drill collars;
- project history, procedures used for data collection, QA/QC procedures, sample chain of custody;
- deposit geology, mineralization and structural controls, how they drive the project economics;
- interpretation of the results from the synchrotron cluster analysis and the impact on iron content;
- review of open pit mining infrastructure locations, including potential tailings management facility locations; and
- hydrogeological hole locations and previously established environmental aspects.

Mineralogical Analyses (Synchrotron)

September 2019, Nordmin and Lisa CAN Solutions (Lisa CAN) completed various geochemical and mineralogical analyses (synchrotron) that confirmed the location of the samples chosen for the previous metallurgical studies was not representative of the Deposit. The synchrotron testing focused on differentiating the mineralogy and determining how the mineralogical changes throughout the Deposit may be affecting the grinding characteristics outlined in previous metallurgical test programs. The testing has identified various minerals that will affect overall recoveries, which include quartz, iron oxides (magnetite, hematite, titanium-magnetite, and jacobsite), manganese-rich biotite, cordierite, and manganese/barium-rich phlogopite.

Results from both batches of testing identified two predominant and distinctive mineralogical "clusters" (Cluster 1 and Cluster 2), and three tentative clusters (Cluster 3, Cluster 4, and Cluster 5), which may be analytical anomalies. Cluster 3, Cluster 4, and Cluster 5 may be subsets of Cluster 1 and Cluster 2.

- Cluster 1: Magnetite rich zones
- Cluster 2: Quartz-rich zones

The synchrotron testing confirmed there is a direct 2:1 inverse relationship between magnetite (Fe_3O_4) and silicon dioxide (SiO_2) content. As magnetite increases, quartz decreases. Figure 1 is a plan view of the Northwest stripping area that was exposed to outline Cluster 1 for comparison to Cluster 2, which is associated with the footwall (FW) banded iron formation (BIF) located in the old bulk sample location.

Figure 1: Cluster 1 exposed area within the northwest stripping area

Cluster 1 Metallurgical Domain

Cluster 1 consists of a minimum of two subdomains within the overall deposit. Nordmin reviewed the outcrop that contains both subdomains and associated characteristics (Figure 2):

- Subdomain 1: High grade magnetite bearing BIF. The structure ranges from ~90-250 m in thickness and has little to no silica or clay minerals.
- Subdomain 2: hanging wall 8-25% magnetite bearing intermixed sandstone and BIF. The 0 structure ranges from 10-60 m in thickness and has little to no silica or clay minerals.

Sub Domain 2: Hanging wall ~50m wide 8-25% Magnetite sandstone/BIF (Cluster 1)

Cluster 1 Subdomain 1 ranges from 100-250m in thickness and grades between 20-50% Magnetite BIF

Figure 2: Cluster 1 metallurgical domain outcrop outlining both subdomains for Cluster 1

Subdomain 2: Hanging wall- ~50m wide 8-25% sandstone/BIF (Cluster 1)

Figure 3: Cluster 1 metallurgical domain outcrop outlining subdomain 2

The Cluster 1 domain has moderately to high Fe concentrations, low SiO_2 content and very little clay content when compared to Cluster 2. Based upon the synchrotron testing completed, the majority of the samples tested indicate that approximately 2/3 of the tonnage is magnetite rich (Cluster 1) relative to the quartz-rich zones (Cluster 2) as outlined in the Figure 4 dendrogram diagram and Figure 5 cell display diagram.

Figure 4 provides the dendrogram diagram of the result of the cluster analysis of the diffractograms from both the round 1 and round 2 analyses. Five groups were identified, the groups in green, light blue, and dark blue are tentative due to too few samples. The magnetiterich samples are identified in red, and the quartz-rich samples are identified in yellow.

Figure 4: Dendrogram diagram displaying the result of the cluster analysis

Figure 5 is a cell display of the results from the cluster analysis from both the round 1 and round 2 analyses. In the cell display, each sample is represented as a pie chart coloured to match the colours in the dendrogram. Five groups were identified, the groups in green, light blue, and dark blue are tentative due to too few samples. The magnetite-rich samples are identified in red, and the quartz-rich samples are identified in yellow.

Figure 5: Cell display results of the cluster analysis

Cluster 2 Metallurgical Domain

Cluster 2 consists of multiple subdomains that are ~50-100 m in thickness, ranging between 10-30% magnetite BIF, 50-60% SiO₂ and 5-15% clay material within the domain. As seen in Figure 6, the material tends to oxide in the environment, mineral grain size is significantly smaller, and the unit is interbedded and does not appear to be massive, as seen in Cluster 1.

Footwall: ~50-100 m wide 10-30% magnetite BIF with 5-15% clay minerals and 50-60% Sio2 (Cluster 2)

Figure 6: Cluster 2 demonstrates the silica-rich areas are interbedded and have a relatively high clay content. This portion of the pit has been backfilled demonstrates evidence of environmental oxidization

Figure 7 outlines the area of the old bulk sample location outlining the intermixed high silica material (101, 201 and 301). All previous metallurgical testing programs used this area.

Figure 7: Previous metallurgical testing programs' bulk sample location outlining the intermixed high silica material (101, 201 and 301)

Recommendations

Based upon the synchrotron analysis and follow up site visit, it is highly apparent that Cluster 1 is distinctly different than Cluster 2, both visually and microscopically. Since Cluster 2 has been the basis for all metallurgical testing programs and financial modelling to date, Nordmin recommends that further metallurgical testing is completed within Cluster 1 to optimize recoveries and to advance the analysis of the grinding and geological domaining.

Nordmin is currently working with SGS Canada and AMI to organize the collection of the Cluster 1 samples and finalize the overall testing program within the next 4-6 weeks. Upon receipt of the results of the testing, Nordmin will incorporate the results into the geological bock model and the various open pit optimization runs, which will create several tonnage/financial scenarios that will require further review.

Signature

This report was prepared by:

In A

Glen Kuntz, P.Geo. Consulting Specialist - Geology/Mining

APPENDIX C

Assay Certificates from SGS Canada

LR Internal Dept 14

Attn : John Patsias

------, ---

Phone: ---Fax:---

18-February-2020

Date Rec. :14 January 2020LR Report :CA02331-JAN20Project :CA20M-00000-110-17785-01Client Ref :Ambershaw Metallics
Benidng Lake Fe

0002041286

CERTIFICATE OF ANALYSIS

Final Report

Sample ID	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2
	%	%	%	%	%	%	%	%
2: NWZ01	41.8	0.96	56.5	0.86	0.87	0.04	0.27	0.03
3: NWZ02	40.0	1.04	56.3	1.00	1.03	0.07	0.31	0.05
4: NWZ03	40.7	2.96	51.9	1.71	1.33	0.50	0.96	0.12
5: NWZ04	40.4	1.57	54.3	1.23	1.26	0.25	0.44	0.06
6: NWZ05	41.4	1.50	53.3	1.33	1.37	0.30	0.36	0.06
7: NWZ06	41.0	1.65	53.5	1.34	1.47	0.42	0.32	0.07
8: NWZ07	39.0	1.75	55.8	1.59	1.41	0.48	0.33	0.07
9: NWZ08	45.1	7.04	40.6	2.15	1.06	1.42	1.74	0.28
10: NWZ09	52.8	12.0	25.1	2.34	1.32	1.45	3.18	0.44
11: NWZ010	55.5	14.2	18.8	2.57	1.03	1.41	4.11	0.55
12: NWZ011	55.3	13.5	19.9	2.07	0.88	1.16	4.60	0.51

Sample ID	P2O5	MnO	Cr2O3	V2O5	LOI	Sum F	e2O3 as Fe	Spec.Grav	Weight
	%	%	%	%	%	%	%		g
2: NWZ01	0.15	0.07	0.01	< 0.01	-0.08	101.4	39.5	3.65	1849
3: NWZ02	0.17	0.07	< 0.01	< 0.01	-0.41	99.6	39.4	3.67	2116
4: NWZ03	0.22	0.06	< 0.01	< 0.01	-0.23	100.3	36.3	3.57	3146
5: NWZ04	0.17	0.06	0.01	< 0.01	-0.41	99.3	38.0	3.63	3890
6: NWZ05	0.14	0.06	0.01	< 0.01	-0.47	99.4	37.3	3.59	4162
7: NWZ06	0.15	0.06	0.02	< 0.01	-0.35	99.6	37.4	3.60	2537
8: NWZ07	0.17	0.06	< 0.01	< 0.01	-0.47	100.2	39.0	3.64	3584
9: NWZ08	0.17	0.07	0.01	0.02	-0.03	99.7	28.4	3.31	3251
10: NWZ09	0.17	0.07	0.02	0.02	0.78	99.7	17.5	3.06	3681
11: NWZ010	0.15	0.07	0.02	0.03	1.35	99.8	13.2	2.95	4219
12: NWZ011	0.17	0.06	0.02	0.02	1.44	99.7	14.0	2.98	3339

Page 1 of 3

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample vertex of the client are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Sample ID	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2
	%	%	%	%	%	%	%	%
13: NWZ012	62.5	15.9	9.33	2.45	0.99	2.17	4.43	0.63
14: NWZ013	49.2	12.4	27.6	2.61	1.38	1.68	3.43	0.49
15: WZ01	40.2	2.58	53.0	1.51	1.24	0.55	0.52	0.11
16: WZ02	41.3	2.16	52.4	1.56	1.01	0.40	0.42	0.09
17: WZ03	40.8	2.19	53.7	1.58	1.63	0.22	0.35	0.09
18: WZ04	41.2	2.06	52.8	1.67	1.37	0.45	0.42	0.08
19: WZ05	39.3	2.46	53.7	1.99	1.78	0.40	0.52	0.09
20: WZ06	51.9	10.7	27.9	2.24	1.60	1.37	2.52	0.42
21: WZ07	50.1	9.57	31.9	1.81	1.62	1.08	2.40	0.38
22: WZ08	51.8	10.4	29.0	1.98	1.17	2.30	2.34	0.42
23: WZ09	55.0	12.2	20.9	2.47	3.34	1.56	2.61	0.46
24: WZ10	55.1	12.9	22.2	1.90	1.57	1.61	3.21	0.50
25: RZ-N2	38.0	1.69	56.7	1.30	0.65	0.09	0.70	0.07
26: RZ-N1	42.1	2.09	52.1	1.49	1.24	0.17	0.70	0.08
27: RZ01	48.9	7.16	37.2	1.47	1.26	0.80	2.02	0.27
28: RZ02	40.8	2.40	53.5	1.41	1.23	0.29	0.68	0.10
29: RZ03	40.1	2.10	54.4	1.43	1.15	0.37	0.49	0.09
30: RZ04	41.3	1.59	53.9	1.30	1.25	0.39	0.24	0.06
31: RZ05	42.8	1.26	52.9	1.28	1.90	0.32	0.14	0.05
32: RZ07	42.9	5.87	44.3	2.31	2.39	1.05	0.88	0.24

Sample ID	P2O5	MnO	Cr2O3	V2O5	LOI	Sum F	e2O3 as Fe	Spec.Grav	Weight
	%	%	%	%	%	%	%		g
13: NWZ012	0.12	0.06	0.02	0.02	1.81	100.4	6.53	2.82	2200
14: NWZ013	0.20	0.08	0.02	0.02	0.82	100.0	19.3	3.11	2733
15: WZ01	0.16	0.06	< 0.01	< 0.01	-0.39	99.6	37.1	3.59	8162
16: WZ02	0.16	0.06	< 0.01	< 0.01	-0.57	99.0	36.6	3.59	13215
17: WZ03	0.16	0.06	0.01	< 0.01	-1.09	99.7	37.6	3.61	12987
18: WZ04	0.16	0.07	< 0.01	< 0.01	-0.65	99.7	37.0	3.58	11370
19: WZ05	0.17	0.07	< 0.01	< 0.01	-0.55	100.0	37.6	3.60	13455
20: WZ06	0.19	0.08	0.02	0.01	0.39	99.3	19.5	3.11	10498
21: WZ07	0.25	0.09	0.01	0.01	0.25	99.5	22.3	3.16	9675
22: WZ08	0.15	0.08	0.02	0.02	0.24	99.9	20.3	3.11	11164
23: WZ09	0.33	0.14	0.02	0.02	0.94	99.9	14.6	2.99	9848
24: WZ10	0.21	0.10	0.02	0.02	0.70	100.0	15.5	3.01	9748
25: RZ-N2	0.16	0.07	< 0.01	< 0.01	-0.54	98.9	39.7	3.68	5828
26: RZ-N1	0.17	0.07	0.02	< 0.01	-0.17	100.1	36.5	3.57	6179
27: RZ01	0.17	0.05	0.02	< 0.01	0.08	99.4	26.0	3.28	6664
28: RZ02	0.17	0.06	0.01	< 0.01	-0.53	100.1	37.4	3.60	6336
29: RZ03	0.16	0.06	< 0.01	< 0.01	-0.68	99.7	38.1	3.62	6202
30: RZ04	0.16	0.06	0.02	< 0.01	-0.63	99.6	37.7	3.62	6450
31: RZ05	0.15	0.06	0.01	< 0.01	-0.57	100.3	37.0	3.57	1815
32: RZ07	0.23	0.08	0.02	0.01	-0.52	99.8	31.0	3.42	8115

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample were liability of the client are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-6

42: 43: RZ18

705-652-6365								
Sample ID	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2
	%	%	%	%	%	%	%	%
33: RZ08	37.6	4.87	52.3	1.71	2.28	0.70	0.68	0.19
34: RZ09	60.4	12.0	16.8	2.53	2.47	1.60	2.49	0.49
35: RZ10	40.8	2.30	54.1	2.01	1.65	0.37	0.39	0.10
36: RZ11	48.1	1.94	47.7	1.47	1.27	0.38	0.29	0.07
37: RZ12	38.4	2.14	54.7	1.68	1.78	0.29	0.36	0.08
38: RZ13	41.8	3.72	49.2	2.05	1.11	0.71	0.85	0.17
39: RZ14	40.1	1.84	54.8	1.38	1.07	0.31	0.34	0.07
40: RZ15	41.5	2.88	50.0	1.80	1.39	0.62	0.52	0.12
41: RZ16	62.1	15.6	8.10	2.29	3.24	4.00	2.99	0.49
42: RZ17	53.4	12.1	24.8	1.99	2.29	2.66	2.28	0.42

Sample ID	P2O5	MnO	Cr2O3	V2O5	LOI	Sum F	e2O3 as Fe	Spec.Grav	Weight
	%	%	%	%	%	%	%		g
33: RZ08	0.19	0.09	0.01	< 0.01	-0.58	100.0	36.6	3.58	6956
34: RZ09	0.24	0.12	0.03	0.03	0.98	100.2	11.7	2.93	6875
35: RZ10	0.18	0.07	0.02	< 0.01	-0.77	101.3	37.9	3.59	6664
36: RZ11	0.16	0.05	0.02	< 0.01	-0.26	101.2	33.3	3.46	7290
37: RZ12	0.18	0.06	0.02	< 0.01	-0.28	99.5	38.3	3.66	6575
38: RZ13	0.21	0.06	0.01	0.01	-0.12	99.8	34.4	3.53	8009
39: RZ14	0.16	0.05	0.01	< 0.01	-0.57	99.7	38.4	3.65	8272
40: RZ15	0.16	0.06	< 0.01	< 0.01	-0.30	98.8	35.0	3.54	6258
41: RZ16	0.25	0.07	0.01	0.01	0.91	100.1	5.66	2.79	4575
42: RZ17	0.24	0.07	< 0.01	0.01	0.22	100.5	17.4	3.03	4584
43: RZ18	0.23	0.08	0.01	0.01	1.07	99.9	4.85	2.76	6730

6.94

2.23

3.04

3.54

3.33

0.52

Control Quality Analysis - not suitable for commercial exchange

62.9

16.0

0002041286

LR Report :

CA02331-JAN20

Nicole Mozola, B.Sc. (Eng) **Project Coordinator** Mineral Services, Analytical

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample vertex the client are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Internal Dept 14

Attn : ---

---, ------, ---Phone: ---, Fax:--- 18-February-2020

Date Rec. :30 January 2020LR Report :CA02862-JAN20Project :CA20M-00000-110-17785-011Client Ref :Ambershaw Metallics
Benidng Lake Fe

0002041287

CERTIFICATE OF ANALYSIS

Final Report

Sample ID	Mag Fe	SAT
	%	%
2: NWZ01	17.0	23.5
3: NWZ02	23.0	31.7
4: NWZ03	23.9	33.0
5: NWZ04	26.9	37.2
6: NWZ05	28.6	39.5
7: NWZ06	27.2	37.6
8: NWZ07	31.3	43.3
9: NWZ08	26.8	37.0
10: NWZ09	15.0	20.7
11: NWZ010	9.8	13.6
12: NWZ011	11.3	15.6
13: NWZ012	2.8	3.9
14: NWZ013	16.0	22.2
15: WZ01	27.8	38.4
16: WZ02	25.3	35.0
17: WZ03	35.3	48.7
18: WZ04	33.6	46.4
19: WZ05	36.5	50.4
20: WZ06	16.1	22.3
21: WZ07	18.9	26.0
22: WZ08	17.3	23.9
23: WZ09	9.8	13.5
24: WZ10	10.5	14.5
25: RZ-N2	26.3	36.4
26: RZ-N1	23.7	32.7
27: RZ01	22.8	31.5

Page 1 of 2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample vertex the client are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Sample ID	Mag Fe %	SAT %
28: RZ02	28.2	39.0
29: RZ03	28.8	39.8
30: RZ04	25.7	35.5
31: RZ05	34.1	47.2
32: RZ07	29.0	40.1
33: RZ08	33.7	46.6
34: RZ09	7.5	10.3
35: RZ10	35.4	48.8
36: RZ11	21.0	29.0
37: RZ12	24.9	34.4
38: RZ13	17.7	24.4
39: RZ14	22.4	30.9
40: RZ15	21.0	29.0
41: RZ16	3.1	4.2
42: RZ17	14.9	20.6
43: RZ18	2.1	2.9

Control Quality Assay Not Suitable for Commercial Exchange

Nicole Mozola, B.Sc. (Eng) Project Coordinator Mineral Services, Analytical

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The Findings report on the sample vertex the client are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

Page 2 of 2

LR Report : CA02862-JAN20

Figure: Locations of 2019 Stripping Program and Synchrotron testing on the Bending Lake Property. Synchrotron testing was 130 samples from the 81 historic drill holes over most of the Ambershaw patents. Over 80% of the work was carried on the 3 zones and their surrounding patents. The distribution of assessment work was divided up by percentage of work done on those patent areas.