

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 DIAMOND DRILLING REPORT

on the

PICK LAKE Zn-Cu PROPERTY

SUPERIOR LAKE RESOURCES LIMITED (Ophiolite Holdings Pty Ltd.)

Pays Plat Lake Area Rope Lake Area Thunder Bay Mining Division NORTHWEST ONTARIO, CANADA NTS 42D14, 42E03

- by -

Dave Thomson, RPF Gerry White, BSc., P.Geo. Julie-Anne Ingram December 28, 2020

TABLE OF CONTENTS

LIST OF FIGURES

i. Title Page

Figure 1 Pick-Winston Lake Property Location	5
Figure 2 Pick – Winston Lake Property Map	7
Figure 3 Pick – Winston Lake Property Mineral Occurrences and Prospects	10
Figure 4 Superior Province within the Canadian Shield showing Subdivisions (Stott 2011)	11
Figure 5 Bedrock Geology Map	12
Figure 6 Greenstone Belts in the Northern Wawa Subprovince (Lodge et al. 2019)	13
Figure 7 Winston Lake Greenstone Belt (Lodge et al. 2019)	13
Figure 8 Drill hole PL-19-01 section and plan with Cu & Zn results	17

LIST OF TABLES

Table 1 Drill hole locations	16
Table 2 Drill hole Results	18
Table 3 Geochemical Results, 2019 Diamond Drill Program	18

APPENDICES:

APPENDIX 1: Drill Logs

APPENDIX 2: Table of Mining Claims

APPENDIX 3: Assay Certificate

APPENDIX 4: Expenses Breakdown

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectroscopy
Ag	Silver
Au	Gold
BCMC	Boundary Cell Mining Claim
CNR	Canadian National Railway
CPR	Canadian Pacific Railway
cm	Centimeter
Cu	Copper
DDH	Diamond Drill Hole
EM	Electromagnetic
GB	Greenstone Belts
GIS	Geographic Information System
GPS	Global Positioning System
GSC	Geological Survey of Canada
g/t	Grams per tonne (Metric ton, 1.000 kg)
ha	Hectare
HO	Drill Core Diameter / 63 5 mm (2 50 in)
IP	Induced Polarization
	loint Ore Reserves Committee (Australasian Reporting Code, equivalent to NI 43-101)
Kø	Kilogram
Km	Kilometre
	Land Information Ontario
m	Metre
mm	Millimetre
MDI	Mineral Denosit Inventory
	Ministry of Energy, Northern Development and Mines
Mlbs	Million nounds
	Ministry of Northern Development and Mines
MCMC	Multi-cell Mining Claim
	North American Datum 1092
NADO5	National Instrument
Ni	Nickol
	National Tonographic System
065	Ontario Coological Survey
OGS	Travenue (used for presidue metale) = 21,102 starse
Dunce	Platinum Craun Elements
PGE	Pialinum Group Elements
PVVLP	Pick-Winston Lake Property
рро	Parts Per Billion
ppm	Parts Per Million
QAQC	Quality Assurance Quality Control
SCMC	Single Cell Mining Claim
SP	Subprovince
IDEM	Time-Domain Electromagnetic (airborne geophysical survey)
UTM	Universal Transverse Mercator (map projection)
VLF	Very Low Frequency
VMS	Volcanogenic Massive Sulphide
VTEM	Versatile Time Domain Electromagnetic (airborne geophysical survey)
WLGB	Winston Lake Greenstone Belt
WSP	Wawa Subprovince
Zn	Zinc

1. INTRODUCTION

This report documents the results of a diamond drilling program conducted by Superior Lake Resources Limited on the Pick Lake Zn-Cu Property (Figure 1) between September and October 2019. The program recovered a total of 702 m of HQ core from 1 hole:

• PL-19-01 on cell claim 175304 (NAD 83, UTM Zone 16, 471758 East, 5424727 North, Elevation 426m).

The drilling was contracted to Chibougamau Diamond Drilling Ltd. from Chibougamau, Quebec and supervised by geologist Avrom Howard of Nebu Consulting (Thunder Bay, Ontario) on behalf of Superior Lake Resources.

Expenditures related to the 2019 Diamond Drilling Program totalled **\$142,047.62** (see Appendix 4 for a breakdown of these expenses). This work was conducted under Exploration Permit PR-18-000268 held by Superior Lake Resources.

Figure 1 Pick-Winston Lake Property Location

2. PROPERTY, LOCATION and ACCESS

The Pick – Winston Lake Property (PWLP) is located in Northwestern Ontario approximately 150 km northeast of the City of Thunder Bay and 20 km north northwest of the town of Schreiber along the north shore of Lake Superior. The contiguous claim group lies primarily within the northern portion of the Pays Plat Lake Area (NTS 42D14L and 14K) and partially within the southern portion of the Rope Lake Area (NTS 42E03C and 03D) (Figure 2). Access to the property is via the Trans-Canada Highway 17, 196 km east from Thunder Bay to the Winston Lake Mine access road (known as the Whitesand/Winston Road). The property can be reached by travelling north for 21 km to the mine gate along the all-weather gravel road. Numerous trails and mine access roads traverse the southern and west central portions of the property.

The PWLP is represented by 100 claims consisting of 61 Cell, 18 Multi-Cell (a total of 195 single cells) and 21 Boundary claims occupying close to 5398 ha. As a result, for assessment purposes, the property consists of 256 Cell claims and 21 Boundary claims. A complete list of all claims is provided in Appendix 2.

Reference Map for Ophiolite Claims at Pick and Winston Lakes

1.40,000
end
2019 Drillholes
Ophiolite Claims
QML Patents
QML Leases
Claims to Lease (Mining and Surface Rights)
line Access Road from Hwy 17
Dn-site Roads and Trails
Vaterbodies
Streams
ce data from Land Information Ontario and f Energy Northern Development and Mines.
Projection: NAD83 UTM Zone 16N
Map by Thomson Environmental
Dec 6, 2020
07 14 21 28
Kilometers

3. EXPLORATION HISTORY

The exploration and production history of the Pick – Winston Lake Zn-Cu Property, which stretches back over 100 years, is summarized below (Figure 3):

- 1879: Prospectors discovered high grade zinc in the Zenith Lake area, located approximately 1 km east of the Winston Lake Mine.
- 1891 to 1901: The Zenith deposit was developed and close to 3416 t of massive coarsegrained sphalerite was hand-mined (45% Zn) (Puumala et al. 2019). During this same period the Ciglen occurrence, located 2 km northwest of the Winston Lake Mine and east of Winston Lake, was discovered and exposed by 3 trenches along a 35 m strike. Sampling of the No. 1 trench from work conducted at the Ciglen occurrence in 1952 returned 5.09% Zn and 0.08% Cu over 0.9 m (Pye 1964).
- 1952 to 1953: The Anderson copper occurrence was discovered and tested by diamond drilling (129 m in 5 holes). A 6 m section of drill core was estimated to contain 0.5% Cu (Pye 1964). The Anderson occurrence is located about 400 m west of the Pick Lake deposit near the southeast end of Winston Lake.
- 1965: Zenmac Metal Mines Limited investigated both the Ciglen and Anderson occurrences. No assay results were published.
- 1966 to 1970: Zenmac Metal Mines Limited mined the Zenith deposit and produced 164,200 t at 16.5% Zn (Puumala et al. 2019).
- 1978 to 1982: Corporation Falconbridge Copper (CFC) acquired a group of claims adjacent to and west of Zenmac's Zenith deposit. The company conducted detailed mapping, lithogeochemical sampling and various geophysical surveys. This exploration work led to the discovery of the Winston Lake VMS deposit.
- 1981: The Trail occurrence, located approximately 300 m west of the Winston Lake Mine, was discovered during CFC's mapping program and was identified as hosting VMS mineralization.
- 1983: CFC initiated the development of a 3-compartment shaft for underground delineation drilling. Over an 18-month period CFC completed the shaft and underground drilling, which resulted in an initial historical resource of 2.95 MT@ 17.8% Zn, 0.94% Cu, 0.7 oz/ton Ag and 0.025 oz/ton Au (Superior Lake Resources website, 2018 News Release).
- 1984: CFC announced the discovery of the Pick Lake deposit. Exploration diamond drilling from surface following the down-dip extension of a base metal occurrence at the Anderson showing (mentioned previously) resulted in the discovery of the deposit. The discovery of the Winston Lake and Pick Lake VMS deposits were the first in this part of Northwestern Ontario since the discovery in 1954 of the Noranda Geco deposit in the Manitouwadge area, 110 km to the east. (The Geco Mine operated from 1957 to

1995 and produced 49.4 Mt at 1.85% Cu, 3.78% Zn and 56.2 g/t Ag (Puumala et al. 2019)).

- 1987: CFC changed its name to Minnova Inc.
- 1988 to 1999: In 1988 Minnova reported the completion of a 741 m shaft with a designed production capacity of 1000 metric tonnes per day. The development and operation of the Winston Lake Mine occurred over an 11- year period and resulted in the production of 3,269,698 t at 1.04% Cu (~53 Mlbs), 14.56% Zn (~900 Mlbs), 32.32 g/t Ag and 1.4 g/t Au (> 50,000 oz) (Puumala et al. 2019).
- 1993: Minnova Inc. was acquired by Metall Mining Corporation. Underground access to the Pick Lake deposit was gained via a 2,200 m drift west from the Winston Lake deposit. This was followed by the development of a 602 m internal shaft or winze (Turcotte and Verschelden 2013).
- 1995: Metall Mining Corporation changed its name to Inmet Mining Corporation. Production from the Pick Lake deposit, which consists of an Upper and Lower zone, was added to the Winston Lake ore feed from 1995 until operations were suspended in December 1998.
- 1999: The Winston Lake Mine operation was closed in February due to very low zinc prices at the time (US\$0.42/lb). During the post cessation of mining, Inmet dismantled the processing plant, sold it and began reclamation at the site. As of January 1, 1999, Inmet Mining reported a non-compliant NI 43-101 Proven and Probable ore reserve for the Lower Pick Lake zone, estimated to be 598,000 tonnes at a grade of 1.0% Cu and 21.2% Zn, including a dilution of 33% (Turcotte and Verschelden 2013).
- 2008 to 2010: Orebot Inc. acquired the Pick Lake Claims and completed several exploration programs.
- 2011: The Pick Lake property was optioned to Silvore Fox Minerals Corporation and the company initiated an airborne Versatile Time Domain Electromagnetic (VTEM) survey. Silvore Fox also complete an NI 43-101 Technical Report for the Pick Lake Project, which was released on June 19, 2013 (Turcotte and Verschelden 2013).
- 2013: Inmet Mining Corporation was acquired by First Quantum Minerals Ltd.
- 2017 to 2018: Superior Lake Resources Limited acquired the Pick Lake Licences, optioned the Winston Lake Project and acquired all mining data from First Quantum Minerals (Superior Lake Resources website, May 2020).
- 2018 to 2019: Superior Lake Resources completed geological mapping and lithogeochemical sampling, a Ground TDEM geophysical survey adjacent to the Pick and Winston Lake deposits, a 2,288 m diamond drilling program (cell claim 162598) and Borehole Electromagnetic (BHEM) geophysical surveys.
- 2019: On August 28, Superior Lake Resources released a Bankable Feasibility Study for the Pick – Winston Lake Project, which included new JORC (2012) Mineral Resource and Ore Reserve Estimates (compliant with NI 43-101). (Note: Mineral Resources are inclusive of Ore Reserves). The current Mineral Resource is stated as 2.35 Mt at 17.7% Zn, 0.9% Cu, 0.38 g/t Au and 34 g/t Ag with a Probable Ore Reserve of 1.96 Mt at 13.9%

Zn, 0.6% Cu, 0.2g/t Au and 26.2g/t Ag (Superior Lake Resources Limited, News Release, August 28, 2019).

• 2019: During September and October, 3 diamond drill holes for a total of 1944 m, were completed at Pick (1 hole) and Winston (2 holes) Properties.

Figure 3 Pick – Winston Lake Property Mineral Occurrences and Prospects

4. GEOLOGICAL SETTING

The Pick – Winston Lake Property is located in the Wawa-Abitibi terrane along the northern margin of the Wawa Subprovince and south of the Quetico metasedimentary basin or subprovince (Figure 4). The subprovinces are part of the much larger Archean-age (3.4 to 2.5 Ga) Superior Province which essentially defines the Canadian Precambrian Shield and forms the core of the North American continent (Figure 5). These continental core rocks represent the oldest and most tectonically stable group of rocks in North America.

The Wawa Subprovince (WSP) is a typical Archean greenstone-granite terrane consisting of primitive ultramafic to felsic volcanic rocks and associated metasedimentary rocks, intruded, and enclosed by granitoid rocks. The WSP contains a series of greenstone belts of similar age (ca. 2.95 to 2.68 Ga) hosting gold, nickel, and zinc deposits. The Winston Lake Greenstone Belt (WLGB), which hosts the Pick Lake and past producing Winston Lake Zn-Cu deposits, is tectonically and stratigraphically equivalent to similar aged greenstone belts (ca 2720 Ma) along the northern margin of the Wawa Subprovince. These include the Vermillion, Shebandowan

and Manitouwadge greenstone belts, the latter of which hosts the past producing Geco VMS deposit (Figure 6). Regional metamorphic grade in the WLGB is lower amphibolite facies (Lodge et al. 2019).

Figure 4 Superior Province within the Canadian Shield showing Subdivisions (Stott 2011)

The Winston Lake Greenstone Belt (Figure 7) is a small belt located directly north of, and almost connected to the Schreiber-Hemlo greenstone belt. The belt is bound to the north by the Quetico Subprovince, to the west by the Winston Lake batholith, and to the south by the Crossman Lake Batholith. Rocks in the western part of the belt that host the past-producing Winston Lake Mine and Pick Lake deposit, were initially interpreted as metasedimentary rocks because of the presence of aluminosilicate minerals (Pye, 1964). They were later interpreted to be hydrothermally altered felsic and mafic volcanic assemblages (Lodge et al. 2019).

Figure 5 Bedrock Geology Map

The Winston Lake belt has been informally subdivided into two main lithotectonic assemblages: the Winston Lake Assemblage, which occupies the extreme western portion of the belt and the Big Duck Lake Assemblage, a thick mafic unit comprising the eastern and central portions of the belt. The Big Duck Lake Assemblage consists of Mg- to Fe-rich tholeiitic basalts, quartz-feldspar porphyry dykes and sills, and their brecciated equivalents. The Big Duck Lake Assemblage is thought to conformably overly the Winston Lake Assemblage with the contact intruded by a thick differentiated gabbro. The VMS-hosting Winston Lake Assemblage is dominated by felsic volcanic and silica-rich sedimentary rocks. Despite the high degree of metamorphism and

deformation in the Winston Lake Assemblage, many primary features are preserved in the volcanic rocks. Reliable younging directions obtained from pillowed flows and cross-bedding in volcaniclastic rocks suggest an eastward-younging stratigraphy. The Pick Lake VMS deposit is associated with a quartz-feldspar porphyry flow rocks and the Winston Lake VMS deposit is hosted by altered mafic flow and interlayered felsic volcanic units. The differentiated gabbro at the contact between the 2 assemblages hosts the Zn-rich Zenith orebody (Lodge et al. 2019).

Figure 6 Greenstone Belts in the Northern Wawa Subprovince (Lodge et al. 2019)

Figure 7 Winston Lake Greenstone Belt (Lodge et al. 2019)

5. MINERALIZATION and ALTERATION

The Pick Lake deposit varies in thickness from 1.5 m to 14 m (averaging between 2 m and 4 m), is between 100 m and 400 m wide, and has a down-plunge extent of approximately 1 km, beginning from a depth of around 500 m (Doiron et al., 1997; Lodge, 2012). It consists predominantly of massive fine to medium grained sphalerite and pyrrhotite with minor chalcopyrite and pyrite, and occurs in sharp contact with metasedimentary rocks of the "Lower Clastic Succession" (Lodge et al. 2014). Doiron et al. (1997) noted the textural differences between the Winston Lake and Pick Lake deposits, and particularly the presence of durchbewegung textures at Pick Lake, indicative of sheared sulfides incorporating clasts of host or wallrock material. The timing of this deformation post-dated the emplacement of granitic dykes related to the intrusion of the granitoid complexes south and west of the Pick Lake deposit. Copper-rich, high-temperature feeder pipes have not been identified at either the Winston Lake or Pick Lake deposits, consistent with the massive sphalerite lenses having been structurally displaced from their original stratigraphic position (Nielsen 2017). Six other known mineral occurrences, located in the west and southwestern portion of the Pick – Winston Lake property (see Figure 3), some mentioned in the previous 'Exploration History' section and described by Turcotte and Verschelden (2013) in a NI 43-101 technical report, are discussed below (Nielsen 2017).

The Ciglen Zn showing lies within the "Lower Clastic Succession" along the western boundary of the property and east of Winston Lake. Turcotte and Verschelden (2013) indicate:

"It lies in and along the hanging-wall side of a narrow band of intimately interbedded garnetbiotite-quartz-feldspar gneiss and garnet-biotite-quartz schist; like these metasediments, it strikes N100W and dips 35° to 45°E. It is up to 17 feet (5.2 m) thick and has been traced alongstrike for 180 feet (54.9 m). The mineralization consists of pyrite and pyrrhotite, with some sphalerite and a little chalcopyrite. These sulphides compose 10% to 15% of the deposit and occur as either disseminations in the host rock or thin lenses and layers oriented parallel to the foliation. Associated with the sulphides is considerable fine-grained to medium-grained smoky quartz."

The Anderson Cu-Zn occurrence is also hosted within the "Lower Clastic Succession" and is located approximately 800 m west of the Pick Lake deposit. It is considered by Lodge (2012) to represent the surface expression of the Pick Lake deposit and displays a very strong electromagnetic response. The following description is taken from Turcotte and Verschelden (2013):

"From the drilling results in 1952, it is evident the Anderson occurrence lies within a narrow band of biotite gneiss, which is in part garnetiferous, in the granitic rocks in this locality. It strikes N150-200E and dips southeast. The deposit is a crudely tabular body of gneiss containing some disseminated pyrite and pyrrhotite, a little chalcopyrite, and very small amounts of sphalerite, and exhibiting an occasional stringer of quartz. It is about 40 feet (12.2 m) thick and has been tested by the drill holes over a strike-length of 250 feet (76.2 m). The up-plunge and surface expression of the Pick Lake deposit was identified as the Anderson occurrence." The Trail occurrence is located approximately 300 m west of the Winston Lake deposit. The following description of the Trail Cu showing is taken from the Ontario Ministry of Energy, Northern Development and Mines online Mineral Deposit Inventory (MDI) data base:

"The Trail occurrence is classed as a VMS deposit. The area is underlain by altered and unaltered mafic metavolcanic rocks as well as minor interflow metasedimentary rocks. Severin and Balint (1984) describe the Trail occurrence as follows: a thin sequence of bedded felsic sediments occurs locally between the base of the Ladder Flow and the underlying quartz feldspar porphyry. In this case, this material is intensely altered to a quartz-cordierite-biotiteanthophyllite-garnet±sillimanite assemblage. The primary bedded nature of the material appears preserved. Anomalous sulphide content is common. The 0.15 m thick chalcopyrite mineralized siliceous horizon carries (up to) 6,230 ppm Cu. The Trail Copper occurrence represents a thin exhalative unit between a mafic metavolcanic flow and the underlying quartz porphyry. The material is siliceous to cherty in nature."

The Creek Cu occurrence is located along Selim Creek approximately 200 m west of the surface expression of the Winston Lake deposit (Smyk and Schnieders, 1995). It consists of a gossan containing pyrite and chalcopyrite hosted by felsic rocks which have been partially altered to biotite-cordierite-anthophyllite.

The Cabin occurrence lies approximately 500 m south of the Pick Lake deposit near the contact between the "Lower Clastic Succession" and mafic flows. Turcotte and Verschelden (2013) describe it as

"...weakly anomalous base metal mineralization at the base of garnet-bearing synvolcanic felsic-derived sediments and/or tuffs and consists of an approximately 1-metre thick highly siliceous pyrrhotite-pyrite rich zone exposed intermittently over approximately 150 metres of strike length."

The Rain Mountain occurrence is located near the southwest boundary of the Pick – Winston Lake property. Very little information is available regarding this showing, but it is presumably enriched in Zn and other metals as it is interpreted to be an exhalative horizon associated with submarine hydrothermal activity (Turcotte and Verschelden, 2013).

ALTERATION

The regional metamorphic grade within the WLGB, as discussed earlier, is lower amphibolite facies. This higher degree of metamorphism vs greenschist facies (i.e. Beardmore-Geraldton and Shebandowan greenstone belts), can often mask or destroy evidence of hydrothermal alteration associated with VMS mineralization. The recognition of metamorphosed hydrothermal alteration played an important role in the discovery of the Winston Lake VMS deposit and later the Pick Lake VMS deposit (Severin, Balint and Sim, 1991). Metamorphosed mafic volcanic rocks in contact with the Zenith Gabbro were observed to have unusual mineral assemblages, including the presence of garnet, cordierite and anthophyllite. These rocks,

through chemical analysis, were also found to be enriched in Zn, K, Mg and Fe, and depleted in Na and Ca, which defined a zone of hydrothermal alteration associated with a downhole pulse EM anomaly. Drilling of this EM anomaly led to the discovery of the Winston Lake deposit (Nielsen 2017).

6. 2019 DIAMOND DRILLING PROGRAM

Superior Lake Resources Limited completed a 1-hole surface diamond drilling program on the Pick Lake Zn-Cu Property from September 2, 2019 to October 26, 2019. A total of 702 m of HQ core was drilled in hole PL-19-01 on the Pick Lake claims. Table 1 details the hole location.

Table	1	Drill	hole	locations	
-------	---	-------	------	-----------	--

Hole Id	Easting	Northing	Elevation	Azimuth	Dip	Depth	Claim
PL-19-01	471758	5424727	426	286	-75	702m	175304
NAD83 Zone	16N						

The drilling was performed by Chibougamau Diamond Drilling Ltd. of Quebec and Appendix 1 contains the diamond drill log for all core recovered during the program. Cross sections and plans of the drill hole are shown on Figure 8.

Mineralized and altered sections of the diamond drill core were split on site using a diamond saw. A total of 5, 0.35 m to 0.6 m samples, were collected of the massive and semi-massive sulphide sections, including the immediate host rocks from the footwall and hanging wall horizons. All samples were submitted to AGAT Laboratories in Mississauga, Ontario for analysis of the base metal content (Cu, Zn, etc.) and multi-element geochemistry (Appendix 3).

Drill core samples submitted to the AGAT Laboratories in Mississauga were crushed to a nominal 70% passing -2mm, followed by pulverization of a 250 g split to a nominal 85% passing 75 microns. Pulp samples were analyzed for a suite of 58 elements by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) or ICP-MS (Inductively Coupled Plasma – Mass Spectroscopy) including Ag, Cu and Zn. Au was analysed by 30 g Fire Assay with an ICP-OES finish and a suite of 14 oxides were analysed by XRF (X-ray fluorescence).

Quality of the samples assayed was controlled by inserting certified standards (OREAS 622) and blank samples which were in addition to the routine QAQC procedures used by the AGAT Laboratories. The dataset is considered acceptable for use in Mineral Resource estimation by the Competent Person.

Figure 8 Drill hole PL-19-01 section and plan with Cu & Zn results

7. RESULTS and CONCLUSION

The objectives of the 2019 diamond drilling program on the Pick Lake Property was to follow up and drill test conductors identified in a 2018 TDEM survey. A summary of the hole drilled is provided in Table 2.

Key geochemical results for all drill core samples collected during the 2019 diamond drilling program are provided in Table 3 (see Appendix 3 for complete results).

Drill Hole Number	Drilling Summary	Massive Sulphides Encountered
PL-19-01	0.35m @ 3.42% Zn & 0.25% Cu	608-608.35m

Table 2 Drill hole Results

Table 3 Geochemical Results, 2019 Diamond Drill Program

BHID	SAMPLE	FROM	то	Au PPM	Ag PPM	Cu PPM	Pb PPM	Zn PPM	ВАТСН
PL-19-01	E6096851	608	608.35	0.098	2	2480	34	34200	19B532286
PL-19-01	E6096852	609.9	610.5	0.022	1	990	-5	601	19B532286
PL-19-01	E6096853	611.3	611.7	0.006	-1	220	-5	138	19B532286
PL-19-01	E6096854	625.5	626	0.003	-1	149	7	36	19B532286
PL-19-01	E6096855	628.5	629	0.003	-1	81	38	123	19B532286

8. RECOMMENDATIONS

In conjunction with the 2018 – 2019 drilling program, a Ground EM geophysical survey was completed by the company in the area between the Pick Lake and Winston Lake deposits. Results obtained from this survey indicated the presence of several well-defined conductors. These were targeted during the second phase of diamond drilling undertaken in late 2019. Hole PL-19-01 has identified a new zone of massive sulphides outside the known Pick mineralization. Follow up drilling is required to further outline and locate massive sulphide mineralization.

Continued detailed geological mapping and lithogeochemical sampling focused on the area surrounding the Pick and Winston Lake deposits is also suggested. The identification of

hydrothermal alteration patterns associated with VMS mineralization coincident with any EM anomalies, will assist in defining additional diamond drilling targets.

9. REFERENCES

- Courtney, D., 2019. Unpublished report on the diamond drilling program completed by Superior Lake Resources Ltd. on the Pick Winston Lake Zn-Cu property, Schreiber, Ontario, 4p.
- Doiron, D., Siddiqui, M. and Smyk, M.C. 1997. Preliminary investigations of the Pick Lake deposit, Winston Lake Mine, Ontario: a remobilized massive sulphide orebody; 43rd Institute on Lake Superior Geology, Program with Abstracts, Sudbury, Ontario, p.17-18.
- Lodge, R. W. D., 2012. Winston Lake and Manitouwadge revisited: modern views of two volcanogenic massive sulphide (VMS)-endowed greenstone belts. A field trip guidebook, Ontario Geological Survey, Open File Report 6282, 34p.
- Lodge, R.W.D., Gibson, H.L., Stott, G.M., Franklin, J.M., and Hamilton, M.A. 2014. Geodynamic reconstruction of the Winston Lake Greenstone Belt and VMS deposits: New trace element geochemistry and U-Pb geochronology. Economic Geology, vol. 109, pp. 1291-1313.
- Lodge, W.D., Smyk, M. and Puumala, M. 2019. Geology of the past-producing Winston Lake Cu-Zn Mine. In; MacTavish, A. and Hollings, P. (Eds.), Institute on Lake Superior Geology Proceedings, 65th Annual Meeting, Terrace Bay, Ontario, Part 2 - Field trip guidebook, v.65, part 2, 113-126.
- Nielsen, P. 2017. Assessment Report on Geochemical Studies, Pick Lake Zn-Cu Property, Northwest Ontario, Canada for CSA Global Geosciences Canada Ltd.; Thunder Bay South District, 54p.
- Ontario Geological Survey 1991. Bedrock geology of Ontario, west-central sheet; Ontario Geological Survey, Map 2542, scale 1: 1 000 000.
- ——— 2018. Mineral Deposit Inventory; Ontario Geological Survey, Mineral Deposit Inventory (February 2018 update), online database.
- Puumala, M.A., Campbell, D.A., Tuomi, R.D., Fudge, S.P., Pettigrew, T.K. and Hinz, S.L.K. 2019. Report of Activities 2018, Resident Geologist Program, Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District; Ontario Geological Survey, Open File Report 6353, 109p.
- Pye, E.G. 1964. Mineral deposits of the Big Duck Lake area, District of Thunder Bay, Ontario; Ontario Department of Mines, Geological Report 27, 47p.

- Severin, P.W.A., and Balint, F. 1984. The geological setting of the Winston Lake massive sulphide deposit; Canadian Institute of Mining and metallurgy, District 4 Meeting Field trip, October 1984, 19 pages.
- Severin, P.W.A., Balint, F., and Sim, R. 1991. Geological setting of the Winston Lake massive sulphide deposit. In Mineral Deposits in the Western Superior Province, Ontario (Field Trip 9), Franklin, J.M., Schnieders, B.R. and Koopman, E.R. (eds), Geological Survey of Canada Open File 2164, pp. 58-73.
- Smyk, M.C., and Schnieders, B.R. 1995. Geology of the Schieber Greenstone Assemblage and its Gold and Base Metal Mineralization. Institute of Lake Supeior Geology 41st Annual Meeting, May 13018 Marathon, Ontario, Proceedings Volume 41: Part 2c – Field Trip Guidebook, 86 p.
- Stott, G.M. 2011. A revised terrane subdivision of the Superior Province in Ontario; Ontario Geological Survey, Miscellaneous Release—Data 278.
- Turcotte, B., and Verschelden, R. 2013. NI 43-101 Technical Report for the Pick Lake Property. Prepared by InnovExplo – Consulting Firm for Silvore Fox Minerals Corp., 85 p.

AUTHOR'S CERTIFICATE

I, David J. Thomson do hereby certify as follows:

- 1. I am a Registered Professional Forester and consultant to the mining industry, and I reside and carry on a business at 114 Pennock Drive, Rosslyn, Ontario P7K0E1, under Thomson Environmental;
- 2. That I have the degree of Honors Bachelor of Science in Forestry, 1977, from Lakehead University;
- 3. That I am a member in good standing of the Ontario Professional Forester's Association (Member No. 1223, effective May 28, 1982):
- 4. That, as part of my profession, I have been trained in and regularly used Geographic Information (GIS) tools since 2001;
- 5. That I am the co-author of an assessment report entitled "2018-2019 Diamond Drilling Report, Pick Lake Zn-Cu Property, Pays Plat and Rope Lakes Area, Thunder Bay District, Northwest Ontario, Canada" addressed to Superior Lake Resources Limited, with an effective date of September 30, 2019, and that I am responsible primarily for all maps in the report;
- 6. That I am Licensed Ontario Prospector (Licence Number 2000085) and regular user of the MLAS system and associated GIS data.
- 7. That, as at the effective date of the Report, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report not misleading.

Dated at Thunder Bay, Ontario This 1st day of November 2020

A Thomson

David J. Thomson, R.P.F.

AUTHOR'S CERTIFICATE

I, Gerald Dewar White (Gerry), do hereby certify as follows:

- 8. I am an independent consulting geologist, and I reside and carry on business at 28 Hill Street South, Thunder Bay, Ontario, P7B 3T5 under Superior Rift Geoconsulting Inc.;
- 9. That I have the degree of Bachelor of Science in Geology, 1979, from the University of Manitoba;
- 10. That I am a member in good standing of the Professional Geoscientists of Ontario (Member No. 0184, effective June 22, 2002)
- 11. That I have been practicing my profession in Canada continuously since 1979;
- 12. That I am the co-author of an assessment report entitled "2018-2019 Diamond Drilling Report, Pick Lake Zn-Cu Property, Pays Plat and Rope Lakes Area, Thunder Bay District, Northwest Ontario, Canada" addressed to Superior Lake Resources Limited, with an effective date of September 30, 2019, and that I am responsible for all sections of this Report;
- 13. That, as at the effective date of the Report, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report not misleading.

Dated at Thunder Bay, Ontario This 1st day of November 2020

Gerald White, BSc., P.Geo.

APPENDIX 1: Drill Logs

GEOLOGICAL CORE LOG

																		MBER:	LAIM NU
				5	CES	OUR	RES	OR LAKE	UPERI	S							'Pic	Winston/	PROJECT
													T: Pic Lal	PROSPEC					
		00	<u>m): 70</u>	<u>- 1 H (</u>				ED:	FINISH	-18-19	D: 09-		51/			ACTOR:			00050
			270	<u>/IIH:</u>											NOD		ard	A.E. Howa	JGGER: A
, A A A A A A A A A A A A A A A A A A A				: 75		r	5.003	110N: 10420	ELEVA			24727	5: 542		NOR			4/1/58	ASTING:
		Total %	Mineral 4	Mineral 3	Mineral 2	Mineral 1	Alteration style	Alteration 3	Alteration 2	Alteration 1	Beta	Alpha	Foliation TCA	Lithology texture	Lithology	Nested To (m)	Nested From (m)	Depth To (m)	Depth From (m)
MAIN FELSIC UNIT: Massive, Q-F phyric flow									В	Q		1		М	FF			223.10	3.74
Narrow intrvl slcfd with minor C strngrs									В	Q				М	FF	19.10	18.65		
Coarser-grained, denser xl packed phase of s									В	Q			60	F-M	FF	26.80	19.10		
S-C-altrd intrvl, sharp contacts, f-gnd									В	Q				М	FF	27.10	26.80		
Same as 19.10-26.80									В	Q				F-M	FF	34.84	27.10		
C-altrd intrvl w/ 1-2% orange-flesh Fe-staine									В	Q				М	FF	35.10	34.84		
Thick, massive sequence of FF w/ clearly QFF (subhedral) phases, dominated by Q & B (& p fabric/fltn. Further down the hole, @ 100+n monotonous sequence.		<1				mt			В	Q			45	М	FF	118.00	35.10		
Same as above but w/ apprnc of 1-2mm core		< 1				ср		Cd/Hb	В	Q				М	FF	123.00	118.00		
As above, w/o cordierite (disappears at ~123 with sporadic <1-2mm size pink garnets. Mi depth and consequent possible appearance		<1				mt		Cd/Hb, Gn, An(?)	В	Q				М	FF	169.48	123.00		
Fine-grained mafic dyke.									C/An	Q				М	MD	169.90	169.48		
Increased chrt altrn w/ consequent dark colo									Q	C/B/An				М	FF	170.70	169.90		
Change to a distinctly bedded/foliated non-r the appearance of muscovite with depth. Cl		<< 1				ру			Q	Hb/An/B				F	F-IV	179.30	170.70		
											300	60				-	175.00		
Fine-grained mafic dyke. Massive texture, in									Q	Hb				М	MD	180.15	179.30		
As above, variations from finer to medium-g								Mu	Q	Hb/An/Cl				М	F-IV	223.10	180.15		
											310	72			"	-	120.00		
											310	54			"	-	192.00		
											320	60			"	-	209.00		
DIFFERENTIATED GABBRO: Mostly amphibo narrow faults, stringers and breccia/stockwo		<1				Mt												352.00	223.10
F-mgnd amphibolite, pssbly/prbbly the same								CI	Q	Hb				М	GB	231.50	223.10		
As above, but with increasing amounts of bla								CI	Q	Hb]		"	"	234.50	231.50		

PL-19-01

Notes

/intrusive, rich in Q & B, sgry, not dnsly xl packed or fltd

ame unit

& swirly white Q vn

phyric phases alternating with more "crowded" less phyric orbbly sillimanite), & in intrvls w/ <1-2% magnetite. Very little , orange-flesh colored spots, very rare specks of py. A massive,

ierite (or Hb?) porphyroblasts & <<1% specks cp

.00, as does cp); around 130 m it reappears but less so, along nor mt (<1%) here and there. Increasing chlorite alteration w/ of anthophyllite at the expnese of biotite.

r and presence of An over B

nagnetic unit, less silicified w/ abundant Fe-Mg silicates, and asts (devitrified shards?) are dark green; matrix is lighter gray.

tergrowth of Hb & Q.

ained, more or less foliated, more or less Cl/An/Hb

ite with some leucocratic phases and scattered chlorite-rich rk zones scattered throughout. Minor magnetite.

unit but altrn-mtmrphsm has ovrwhlmd orgnl lithology.

ck chlorite, intense in intervals.

		234.50	235.35	"	"	ĺ			Si	Hb	CI				As above, silicified interval.
		235.35	240.40	"	"				Hb	Q	CI				F-mgnd amphblt, fractures begin in this interv
		240.40	248.75	"	"				Hb	CI	Q				As above, "breccia"/chlorite stringer zone w/ I
		249.75	252.50	"	"				Hb	Q	CI				As above, nominally more silicified interval wi
		252.50	259.70	"	"				Hb	CI	Q				Return to "typical" amphibolite characteristic
		259.70	269.75	"	"				CI						Significant increase in chlorite, with lesser Hb/ discrete intervals (stringer zone?)
		269.75	271.50	Q	"				Q						Massive white quartz vein.
		271.50	286.00	GB	"				Hb/An	CI +/- Mu	Q				Return to ampblt with varying proportions of
		286.00	352.00	"	"				Hb/An	Q	Cl+/-Mu				Amphblt, intrvls w? a bit more Mu +/- Q, and o shears.
		302.00	-				35	310							
3	52.00	389.00		FF	М				Q	Hb	CI & B				MAIN FELSIC UNIT: Sheared, chlorite-rich zon MFU, characterized by the reappearance of qu Cl-altered, feldspar phyric and areas with clots
		377.40	-				55	320							
		352.00	389.00		М				Q	B/Hb/An	CI				Typical FF with variations in Q, B, Hb/An, Cl +/
3	89.00			LCU (?)	M+/- F				Q	B/Hb/Cl	Gn	ру		<< 1	LOWER CLASTIC UNIT: Not fndamentally dissi pink garnet prphrblsts from, <5mm->1cm, wh of cordierite (?) seen after 408 m. Scattered f There are more Fe-Mg-rich intervals and more &/or hydrothermal alteration but in either cas grade metamorphism.
		410.00	-				60	310							
		428.50	-				70	360							
		435.75	-				65	330							
		479.00	-				68	310							
		497.80	-				65	330							
		503.00	-				75	360							
		389.00	500.00	LCU (?)	M+/- F										As above.
		500.00	527.42		M										Starting at ~ 500m, the appearance of poorly f from <1-5% (+/-); garnet througout, up to >10 Vestiges of pssbl clasts seen here and there; p
	527.4			FF	М				Q	В	Hb				FELSIC FLOW (Main Felsic Unit again?): Same grained intervals, absent garnets or Hb prphrb chloritic intervals.
		534.05	534.45	"	FI				CI	Q	Hb				Chloritic interval
		534.45		FF	М				Q	В	Hb				Back to above. Variatons in grain size, propor
		555.20	-				75	320							
		563.14	563.74	FD	М										Feldspar-phyric dyke. Sharp but wavy contact phyric in the middle. Second dyke interval (fir

al, culminating in the breccia that follows.

narrow inrvls of massive black chlorite.

th chlorite-rich stringers/veins here and there.

of the last several meters.

An and Q. Waxes and wanes w/ several increasely Cl-rich and

subsidiary Cl, Q, Mu including massive Cl veins/strngrs.

others with many chlorite stringers and chlorite-rich narrow

e ~0.5m wide at the end of the gabbro then back into the uartz & biotite, which increase with depth. Several variations s of hornblende. Massive & coherent.

- Mu content.

milar from the felsic unit, above, but with <10->25% subhedral ich in the literature distinguishes it. Scttrd 1-2 mm prphblsts lecks and whispy stringers of py here and there throughout. e sliceous intervals reflecting original lithological variations is overwhelmed and obscured by subsequent amphibolite

formed, isolated prphrblsts of Hb, from a few mm to a few cm, %, in some cases forming semi-massive clots or bands. roportions of Q vs Hb/An changing throughout.

as seen higher in hole. Massive, coherent, finer and less fine olsts, mainly Q & B along with subsidiary Hb/An/Ac; minor

tions of the Q, B & Hb, but otherwise the same.

suggesting that host was not fully lithified; fgnd contacts, nger/lobe of same dyke), from 566.16-566.64m

		563.74	600.00	FF	M+/- F			Q	B/Hb	Hb/B						As above, with variations in grain size, massive intervals at 581.15-581.34, 585.0-585.58 & 588
		581.00	-			73	300									
600.00	702.00							Q	B/Hb	Hb/B/An/Ac	ру				<<1	LOWER CLASTIC UNIT (?): Around 600m there respectively, and everything in between, remir alteration and metamorphism it's impossible to same.
		600.00	608.22	LCU	M+/- F			"	"	"					<<1	As described above.
		608.22	608.54	"	"			Cl/Hb	Q	Gn	ро	ру			<50	Sudden change to Cl-rich with fiims and bands 608.4, then back to much less i.e. <5% after. F as well but remains prominent along with the r
		609.90	610.37	"	"			"	"	"	ро	ру			10- 15	As above, layered, w/ alternating Gn- & Cl-rich bands <few mm.<="" td=""></few>
		611.30	611.70	"	"			"	"	"	ру	ро			<5%	Less Cl, isolated flecks and specks of py scatter
		611.50				75	20									
		625.30	629.50	"				Q	CI/Hb	Gn	ро	ру			5<10	Somewhat layered/bedded/banded, w/ Cl-rich throughout <5% & a bit more here and there, p same place.
		629.00				73	290									
		639.35	640.95	FD	Xlln											Fine to medium-grained, K feldspar-rich inrusiv
		642.00	642.50	"	"											As above.
		644.90	-			60	300									
		650.00	670.00	LCU	М			Q	Hb/An/Ac	Gn	ру	+/- po		1		By 650 m py is pretty much absent (less and less intermediate lithology, but again it's difficult to versus original lithology. Garnets gradually fizz hearted reapparence between around 659-662 back to a quartz-biotie-amphibole (Hb/An/Ac)
		657.70	-			60	320									
		670.00		LCU	М											
		670.00	702.00	LUC- FF	М											Essentially fresh felsic flow with possible tuff/volcaniclastic size. Where fgnd & mssv can be mistaken for and may in more garnets, no chlorite and no other amphibole besides
		694.10				75	320									
			702.00													End of Hole

e versus layered, more Q-rich versus more Hb-rich etc. Cl-rich 8.63-588.70.

is increased quasi-layering, melanocratic and leucratic, niscent of a more originally volcaniclastic nature, but between to say for sure. Either way, the overall lithology remains the

s of po w/ minor py, becoming nearly massive btwn 608.36-Few scattered specks and flecks of py. Cl content diminishes reappearance of garnets.

layers < 0.5 cm, mix of po & py <semi-massive in clots &

red throughout. Few very small garnets.

n seams and clotted Gn-bearind layers/zones w/ po-py scttrd persists to around 633.00. Garnets disappear around the

ive dyke w/ Q & minor Hb/chloritized biotite.

ess toward this point). Back to moderately altered felsic +/o know how much quartz present is a function of alteration zle out during this interval, as well, although they make a half-2, after which the core becomes progressively less altered, assemblage.

ic intercalations. Q-B-Hb dominant with variations in proportions and grain n fact be intrusive dykes, even though overall lithology is the same. No is Hb clearly observable.

Appendix 2: Table of Mining Claims

Claim	Туре	Status	Issue Date	Anniversary Date	Holder
117859	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
116128	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
152325	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
168944	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
169024	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
172104	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
181763	BCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
198338	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
206270	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
209404	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
214845	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
264851	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
272321	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
275425	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
284404	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
284407	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
291726	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
311369	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
321021	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
320935	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
343927	BCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535117	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535108	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535016	MCMC	Active	2018-11-15	2019-09-16	(100) OPHIOLITE HOLDINGS PTY LTD.
535116	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535119	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535120	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535121	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535106	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535109	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535110	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535111	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535118	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535113	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535115	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535107	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535112	MCMC	Active	2018-11-16	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
535017	MCMC	Active	2018-11-15	2019-09-16	(100) OPHIOLITE HOLDINGS PTY LTD.
535015	MCMC	Active	2018-11-15	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
101307	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
103721	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
110861	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.

Claim	Туре	Status	Issue Date	Anniversary Date	Holder
110862	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
114012	SCMC	Active	2018-04-10	2019-09-26	(100) OPHIOLITE HOLDINGS PTY LTD.
128641	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
135278	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
135279	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
135280	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
140125	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
143152	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
157778	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
161749	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
161750	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
161751	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
162597	SCMC	Active	2018-04-10	2019-09-26	(100) OPHIOLITE HOLDINGS PTY LTD.
162598	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
162599	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
162600	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
167794	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
175304	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
182220	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
181227	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
187277	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
202441	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
209168	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
216569	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
216570	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
216571	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
221892	SCMC	Active	2018-04-10	2019-09-26	(100) OPHIOLITE HOLDINGS PTY LTD.
221893	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
229858	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
229859	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
235678	SCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
236644	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
236645	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
238387	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
242037	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
242038	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
238291	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
238292	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
238293	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
250023	SCMC	Active	2018-04-10	2019-09-26	(100) OPHIOLITE HOLDINGS PTY LTD.
263763	SCMC	Active	2018-04-10	2019-09-16	(100) OPHIOLITE HOLDINGS PTY LTD.
264878	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
270269	SCMC	Active	2018-04-10	2019-10-10	(100) OPHIOLITE HOLDINGS PTY LTD.
275050	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
282565	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
284423	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.

Claim	Туре	Status	Issue Date	Anniversary Date	Holder
284424	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
288461	SCMC	Active	2018-04-10	2019-06-09	(100) OPHIOLITE HOLDINGS PTY LTD.
300308	SCMC	Active	2018-04-10	2019-09-16	(100) OPHIOLITE HOLDINGS PTY LTD.
308718	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
312363	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
312364	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.
318298	SCMC	Active	2018-04-10	2019-09-16	(100) OPHIOLITE HOLDINGS PTY LTD.
320958	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
320959	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
344450	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
342212	SCMC	Active	2018-04-10	2019-07-22	(100) OPHIOLITE HOLDINGS PTY LTD.
343842	SCMC	Active	2018-04-10	2019-09-09	(100) OPHIOLITE HOLDINGS PTY LTD.

Appendix 3: Assay Certificates

	5623 MADAM ROJ MISSISSAUGA, ONTAR CANADA 42 11 TEL (605501-45 http://www.agataba.co
	CLIENT NAME: MISC AGAT CLIENT ON LEVEL 1 EMERALD HOUSE, 1202 HAY STREET WEST OERTH, WA, AUSTRALIA 6005 (611) 704
	ATTENTION TO: Avrom E. Howard
	PROJECT: SLR001
	AGAT WORK ORDER: 19B532286
	SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor
*NOTES	

			Laboratories	- Certifica AGAT WORK (- PROJECT: SLI	te of Analysis ORDER: 19B532286 R001	5	, MISS	5623 McADAM ROAI ISSAUGA, ONTARIO CANADA L4Z 1N TEL (905)501-999 FAX (905)501-058
CLIENT NAME: MIS	C AGAT CL	ENT ON			ATTEN	ITION TO: Avrom E.	Howard	p.mmm.agailaba.co
				(200-) Sample Lo	ogin Weight			
DATE SAMPLED: Oc	17, 2019		DATE RECEIVED:	Oct 18, 2019	DATE REPORTED): Nov 06, 2019	SAMPLE TYPE: D	rill Core
	Analyte:	Sample Login Weight						
	Unit:	kg						
Sample ID (AGAT ID)	RDL:	0.01						
E6096851 (627810)		0.41						
E6096852 (627811)		0.87						
E6096853 (627812)		0.48						
E0090854 (62/813)		0.56						

🙀 (A C	CT Laboratorie	AGAT WORK OR PROJECT: SLR0	e of Analysis DER: 19B532286 01	5623 McADAM ROA MISSISSAUGA, ONTARI CANADA L4Z 1N TEL (905)501-095 FAX (905)501-055 FAX (905)501-055
CLIENT NAME: MISC AGAT	CLIENT ON		ATTENTION TO: Avron	n E. Howard
		(200-) Sample Logi	in Weight	
DATE SAMPLED: Oct 17, 2019	DATE RECE	EIVED: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: Drill Core
Analysis performed at AGAT Thund	er Bay (unless marked by *)			
		C	ertified By:	y af stoman

			Labor	atorie	s	Certif AGAT WC PROJECT	icate ORK ORD	of An ER: 19B5	alysis 32286	\$			MI	5623 McAD/ SSISSAUGA, CANAD/ TEL (905 FAX (905	AM ROAD ONTARIO A L4Z 1N9 0501-9998
CLIENT NAME: MIS	SC AGAT CLIE	INT ON							ATTEN	TION TO:	Avrom E.	Howard		nup.//www.aga	naps.com
			(201	I-378) Se	odium P	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 17, 2019		[ATE RECE	EIVED: Oct	18, 2019		DATE F	REPORTED	: Nov 06, 2	019	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
E6096851 (627810)		2	5.61	<5	57	200	<5	1.2	1.91	94.2	21.7	54.7	0.015	8.3	2480
E6096852 (627811)		1	5.43	<5	70	235	<5	0.8	0.55	0.8	50.6	30.3	0.005	2.5	990
E6096853 (627812)		<1	5.99	<5	32	169	<5	0.3	1.59	<0.2	57.7	14.7	0.005	1.1	220
E6096854 (627813)		<1	6.33	<5	38	206	<5	0.4	1.75	<0.2	60.3	15.3	<0.005	1.0	149
E6096855 (627814)		<1	7.10	<5	43	61.3	<5	0.3	3.83	<0.2	79.4	11.3	<0.005	0.5	81

Certified By:	<u> </u>

Jonura Page 4 of 24

AGAT CERTIFICATE OF ANALYSIS (V1)

CLIENT NAME: MIS	C AGAT CLI	ENT ON							ATTEN	TION TO:	Avrom E.	Howard			
			(201	1-378) Se	odium P	eroxide l	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oct	: 17, 2019		[DATE RECE	EIVED: Oct	18, 2019		DATER	REPORTED	: Nov 06, 2	019	SAM	PLE TYPE:	Drill Core	
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Ho	In	к	La	Li	L
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	pp
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.0
6096851 (627810)		2.30	1.33	1.28	12.8	23.5	2.72	12	2	0.46	3.9	1.65	8.8	30	0.1
6096852 (627811)		14.6	9.65	2.51	17.0	26.5	13.1	2	8	3.15	0.3	1.59	19.6	53	1.4
6006854 (627812)		20.0	11.5	5.90	0.95	24.0	19.3	2	12	3.00	<0.2	0.65	21.0	23	1.7
E0090034 (027013)		20.0	13.2	5.04	9.15	27.5	20.4	2	12	4.30	<0.2	0.00	22.7	41	1.5

Certified By:

Page 5 of 24

N stomura

Ľ

AGAT CERTIFICATE OF ANALYSIS (V1)

		T	Labor	atorie	s	Certif AGAT WC PROJECT	icate DRK ORD 1: SLR001	of An er: 19B5	alysis 32286	5			MIS	5623 McADA SSISSAUGA, C CANADA TEL (905) FAX (905) http://www.aga	M ROAD ONTARIO . L4Z 1N9 501-9998 501-0589 tlabs.com
CLIENT NAME: MIS	C AGAT CLI	ENT ON							ATTEN	TION TO:	Avrom E.	Howard			radial failer M Arganisa
			(201	1-378) Se	odium F	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 17, 2019		[DATE RECE	EIVED: Oc	18, 2019		DATE	REPORTED	: Nov 06, 2	D19	SAM	PLE TYPE:	Drill Core	
	Analyte:	Mg	Mn	Mo	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
E6096851 (627810)		2.83	632	28	3	12.5	107	0.06	34	2.77	86.1	7.15	<0.1	13	21.3
E6096852 (627811)		1.95	720	6	12	38.7	24	0.05	<5	7.46	46.6	7.40	<0.1	15	23.4
E6096853 (627812)		1.27	352	11	17	45.3	<5	0.08	<5	8.61	26.5	2.02	<0.1	16	30.2
E6096854 (627813)		1.04	479	13	20	48.0	<5	0.10	7	8.94	24.5	2.20	<0.1	21	29.5
E6096855 (627814)		1 31	1100	9	17	60.6	<5	0.13	38	11.7	18.3	1.85	<0.1	24	25.7

Certified By:

Ľ

N Jomera

Page 6 of 24

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT :	Laboratories
--------	--------------

Certificate of Analysis AGAT WORK ORDER: 19B532286

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

AGAT CERTIFICATE OF ANALYSIS (V1)

ATTENTION TO: Avrom E. Howard

Ľ

Jonura

			(201	1-378) Se	odium Pe	eroxide l	Fusion -	ICP-OES	S/ICP-MS	6 Finish					
DATE SAMPLED: Oc	t 17, 2019		C	DATE RECE	EIVED: Oct	18, 2019		DATE F	REPORTED	: Nov 06, 2	019	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Y	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
E6096851 (627810)		2.6	110	107	<0.5	0.41	1.0	0.33	0.9	0.19	0.29	114	<1	13.9	1.3
E6096852 (627811)		11.0	4	34.9	<0.5	2.25	1.8	0.33	<0.5	1.46	0.53	26	<1	88.3	9.9
E6096853 (627812)		13.3	1	91.3	0.6	2.82	2.1	0.40	<0.5	1.68	0.63	<5	<1	106	11.5
E6096854 (627813)		14.2	5	116	0.7	3.13	2.2	0.46	<0.5	1.93	0.78	<5	<1	120	13.2
E6096855 (627814)		17.2	4	146	0.5	3.44	2.3	0.51	<0.5	2.09	0.74	<5	<1	130	13.9

PROJECT: SLR001

Certified By:

Page 7 of 24

	G		Laborator	ries P	Certificate o Agat work orde PROJECT: SLR001	of Analysis R: 19B532286		562 MISSISS F	3 McADAM ROA AUGA, ONTARI CANADA L4Z 1N EL (905)501-999 AX (905)501-058
CLIENT NAME: MIS	C AGAT CLI	ENT ON	5.45 Mar. 10, 200			ATTENTION	TO: Avrom E. Ho	ward	
			(201-378) Sodium Pe	eroxide Fusion - I	CP-OES/ICP-MS Fini	sh		
DATE SAMPLED: Oct	17, 2019		DATE F	RECEIVED: Oct	18, 2019	DATE REPORTED: Nov	D6, 2019	SAMPLE TYPE: Dril	Core
	Analyte: Unit:	Zn ppm	Zr ppm						
Sample ID (AGAT ID)	RDL:	5	0.5						
E6096851 (627810)		34200	/8.9						
E6096852 (627811)		601	300						
E0090853 (627812)		138	406						
E6096855 (627814)		123	420						

AGAT L	aboratories	AGAT WORK OF PROJECT: SLR	e of Analysis RDER: 19B532286 001	5623 MAADAM ROV MISSISSAUGA, ONTAR CANADA L4Z 11 TEL (905)501-99 FAX (905)501-05 bttp://www.scribba.co
CLIENT NAME: MISC AGAT CLIENT ON			ATTENTION TO: Avrom I	E. Howard
	(201-378) Sodiu	m Peroxide Fusior	- ICP-OES/ICP-MS Finish	
DATE SAMPLED: Oct 17, 2019	DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: Drill Core
Analysis performed at AGAT Toronto (unless marked by *)				
		c	Certified By:	y al stoman

LIENT NAME: MIS	C AGAT CLI	ENT ON				PROJECT	: SLR001		ATTEN	TION TO:	Avrom E.	Howard		http://www.ag	atlabs.co
			(201-67	'6) Lithi	um Bora	te Fusior	n - Summ	nation of	Oxides	, XRF fin	ish				
ATE SAMPLED: Oct	17, 2019		ĺ	DATE REC	EIVED: Oc	t 18, 2019		DATE F	REPORTED): Nov 06, 2	019	SAM	PLE TYPE	: Drill Core	
	Analyte:	AI2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O	P2O5	SiO2	TiO2	SrO	V2C
	Unit:	%	%	%	%	%	%	%	%	%	%	%	%	%	
ample ID (AGAT ID)	RDL:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
6096851 (627810)		11.1	0.03	2.72	0.02	18.9	1.90	4.96	0.09	1.89	0.13	47.2	0.58	<0.01	0.0
6096852 (627811)		10.2	0.01	0.72	<0.01	23.5	1.72	3.34	0.10	1.52	0.11	48.8	0.55	<0.01	<0.0
6096853 (627812)		11.9	0.01	2.31	< 0.01	10.0	1.00	2.26	0.05	3.27	0.19	66.9	0.69	< 0.01	<0.0
0000055 (027813)		12.5	0.03	2.51	<0.01	13.0	0.77	1.82	0.07	3.28	0.24	64.4	0.81	<0.01	<0.0

Certified By:

Page 10 of 24

Ľ

M

Jonura

Results relate only to the items tested. Results apply to samples as received.

AGAT CERTIFICATE OF ANALYSIS (V1)

	G		Labora	tories	AGAT WORK O PROJECT: SLI	te of Analysis DRDER: 19B532286 R001		562: MISSISS (T F, bttp://	3 McADAM ROA AUGA, ONTARI CANADA L4Z 1N EL (905)501-999 AX (905)501-058 AWW adatlabs col
CLIENT NAME: MIS	C AGAT CLIE	NT ON				ATTENTION	NTO: Avrom E. Ho	oward	gaaboroo
			(201-676) Lithium B	orate Fusion - Su	ummation of Oxides, XR	F finish	-	
DATE SAMPLED: Oct	17, 2019		D4	TE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov	/ 06, 2019	SAMPLE TYPE: Drill	Core
	Analyte:	LOI TO %	ai Oxides						
Sample ID (AGAT ID)	RDI ·	0.01	0.01						
E6096851 (627810)	NDL.	5.38	94.9						
E6096852 (627811)		4.22	94.8						
E6096853 (627812)		1.52	100						
E6096854 (627813)		1.44	101						
E6096855 (627814)		1.18	101						

🙀 agat	Laboratories	AGAT WORK OF PROJECT: SLR	e of Analysis RDER: 19B532286 001	MIS	5623 McADAM RO/ SISSAUGA, ONTAR CANADA L4Z 11 TEL (905)501-99 FAX (905)501-05
CLIENT NAME: MISC AGAT CLIENT ON			ATTENTION TO: Avr	om E. Howard	tp://www.agatiabs.co
	(201-676) Lithium B	orate Fusion - Sur	nmation of Oxides, XRF finish		
DATE SAMPLED: Oct 17, 2019	DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: I	Drill Core
Analysis performed at AGAT Toronto (unless marked t	by *)				
		C	Certified By:	y el stamme	-

(A)	G		Laboratories	AGAT WORK (PROJECT: SLI	te of Analysis DRDER: 19B532286 R001		5623 McADAM ROA MISSISSAUGA, ONTARI CANADA L4Z 1N TEL (905)501-099 FAX (905)501-058 bttp://www.agtabe.co/
CLIENT NAME: MIS	C AGAT CLI	ENT ON			ATTENTION	I TO: Avrom E. How	ard
			(202-052) Fir	e Assay - Trace A	u, ICP-OES finish (ppm))	
DATE SAMPLED: Oct	17, 2019		DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov	06, 2019	SAMPLE TYPE: Drill Core
	Analyte:	Au					
Sample ID (AGAT ID)	Unit: RDI ·	0 001					
E6096851 (627810)	NDL.	0.098					
E6096852 (627811)		0.022					
E6096853 (627812)		0.006					
E6096854 (627813)		0.003					
						y	1 stomme

AGAT Lat	poratories	AGAT WORK C PROJECT: SLF	te of Analysis PRDER: 19B532286 2001		5623 McADAM ROA MISSISSAUGA, ONTAR CANADA L42 11 TEL (905)501-050 FAX (905)501-050 http://www.agatlabs.co
CLIENT NAME: MISC AGAT CLIENT ON			ATTENTION TO: Av	rom E. Howard	
	(202-052) Fire	e Assay - Trace A	u, ICP-OES finish (ppm)		
DATE SAMPLED: Oct 17, 2019	DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE T	YPE: Drill Core
Analysis penormed at AGA L Loronto (unless marked by ")					
			Certified By:	y John	

		Τ	aboratories	AGAT WORK	te of Analysis ORDER: 19B532286 R001		5623 I MISSISSA CA TEI FA2 bttp://www.	McADAM ROAI UGA, ONTARIO NADA L4Z 1N - (905)501-999 (905)501-058 W agatlabs.com
CLIENT NAME: MIS	C AGAT CL	IENT ON			ATTENTION	I TO: Avrom E. Ho	ward	and galabo.co
			Si	ieving - % Passi	ng (Crushing)			
DATE SAMPLED: Oc	: 17, 2019		DATE RECEIVED:	Oct 18, 2019	DATE REPORTED: Nov	06, 2019	SAMPLE TYPE: Drill (Core
	Analyte:	Pass %						
Sample ID (AGAT ID)	RDL:	0.01						
E6096852 (627811)		81						
E6096872 (627831)		77						

	G(Laboratories	AGAT WORK	te of Analysis ORDER: 198532286 R001		5623 McADAM RO/ MISSISSAUGA, ONTAR CANADA L4Z 11 TEL (905)501-09: FAX (905)501-05: http://www.agatiabs.cc
CLIENT NAME: MISC	AGAT CL	IENT ON			ATTENTION TO:	Avrom E. Howard	
			Sie	eving - % Passing	g (Pulverizing)		
DATE SAMPLED: Oct 1	17, 2019		DATE RECEIVED:	: Oct 18, 2019	DATE REPORTED: Nov 06, 20	019 SAMPI	LE TYPE: Drill Core
	Analyte:	Pass %					
Sample ID (AGAT ID)	RDL:	0.01					
E6096851 (627810)		94.4					
Comments: RDL - Re Analysis performed at AGA ⁻	ported Detecti T Thunder Bay	ion Limit y (unless marl	xed by *)				
						y .[₽	

Quality Assurance - Replicate AGAT WORK ORDER: 19B532286 PROJECT: SLR001 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

				(201-	378) Sod	ium Pe	roxide	Fusion	- ICP-C	ES/ICP	-MS Fin	ish		
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Ag	627811	1	1	0.0%	627835	< 1	< 1	0.0%						
AI	627811	5.43	5.31	2.2%	627835	7.83	7.94	1.4%						
As	627811	< 5	< 5	0.0%	627835	13	11	16.7%						
В	627811	70	66	5.9%	627835	41	43	4.8%						
Ва	627811	235	231	1.7%	627835	198	200	1.0%						
Be	627811	< 5	< 5	0.0%	627835	< 5	< 5	0.0%						
Bi	627811	0.8	0.8	0.0%	627835	14.2	14.4	1.4%						
Са	627811	0.55	0.52	5.6%	627835	0.674	0.691	2.5%	0					
Cd	627811	0.8	0.4		627835	< 0.2	< 0.2	0.0%						
Ce	627811	50.6	50.2	0.8%	627835	1240	1260	1.6%						
Co	627811	30.3	29.3	3.4%	627835	101	101	0.0%						
Cr	627811	0.005	0.005	0.0%	627835	0.017	0.017	0.0%						
Cs	627811	2.5	2.5	0.0%	627835	0.9	0.9	0.0%						
Cu	627811	990	972	1.8%	627835	105	107	1.9%						
Dy	627811	14.6	13.4	8.6%	627835	29.7	30.5	2.7%						
Er	627811	9.65	8.96	7.4%	627835	10.9	11.1	1.8%						
Eu	627811	2.51	2.43	3.2%	627835	6.25	6.49	3.8%						
Fe	627811	17.0	16.7	1.8%	627835	11.3	11.4	0.9%						
Ga	627811	26.5	25.7	3.1%	627835	27.6	27.2	1.5%						
Gd	627811	13.1	12.7	3.1%	627835	71.0	73.2	3.1%						
Ge	627811	2	2	0.0%	627835	2	2	0.0%						
Hf	627811	8	8	0.0%	627835	2	2	0.0%						
Ho	627811	3.15	2.96	6.2%	627835	4.68	4.78	2.1%						
In	627811	0.3	0.3	0.0%	627835	< 0.2	< 0.2	0.0%						
к	627811	1.59	1.55	2.5%	627835	0.83	0.84	1.2%						
La	627811	19.6	19.2	2.1%	627835	561	586	4.4%						
Li	627811	53	52	1.9%	627835	20	18	10.5%						
Lu	627811	1.49	1.37	8.4%	627835	1.06	1.07	0.9%						
Mg	627811	1.95	1.93	1.0%	627835	7.12	7.19	1.0%						
Mn	627811	720	712	1.1%	627835	1500	1520	1.3%						
Мо	627811	6	7	15.4%	627835	4	4	0.0%						

AGAT QUALITY ASSURANCE REPORT

Page 17 of 24

IENT NAME: MIS Nb 627 Nd 627 Ni 627 P 627 P 627 P 627 Pb 627 Pb 627 Pb 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Sc 627 Sc 627 Sn 627 Ta 627 Th 627	SC AGAT CL 811 12 811 38.7 811 24 811 0.05 811 5 811 7.46 811 7.40 811 5 811 7.40 811 23.4 811 15 811 23.4 811 44.9 811 34.9	Interpretation 11 38.3 22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	8.7% 1.0% 8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835	2 604 149 0.06 5 147 17.2 2.34 < 0.1 28	2 628 149 0.06 < 5 153 17.4 2.34 < 0.1	0.0% 3.9% 0.0% 0.0% 4.0% 1.2% 0.0%		ATTE		D: Avrom	E. Howard		
Nb 627 Nd 627 P 627 P 627 Pb 627 Pr 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Sb 627 Sc 627 Sc 627 Sn 627 Sn 627 Sn 627 Sn 627 Ta 627 Th 627 Th 627 Th 627 Ti 627 Ti 627 Th 627 Th 627 Th 627 Th 627 Th 627 Th 627 Ti 627 Ti 627 Ti 627 Ti 627 <tr< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>11 38.3 22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3</th><th>8.7% 1.0% 8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%</th><th>627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835</th><th>2 604 149 0.06 5 147 17.2 2.34 < 0.1 28</th><th>2 628 149 0.06 < 5 153 17.4 2.34 < 0.1</th><th>0.0% 3.9% 0.0% 0.0% 4.0% 1.2% 0.0%</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 38.3 22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	8.7% 1.0% 8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835	2 604 149 0.06 5 147 17.2 2.34 < 0.1 28	2 628 149 0.06 < 5 153 17.4 2.34 < 0.1	0.0% 3.9% 0.0% 0.0% 4.0% 1.2% 0.0%							
Nd 627 Ni 627 P 627 Pb 627 Pr 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Si 627 Sn 627 Sn 627 Sn 627 Sn 627 Ta 627 Th 627 Th 627 Ti 627 <t< th=""><th>811 38.7 811 24 811 0.05 811 < 5 811 7.46 811 46.6 811 7.40 811 < 0.1 811 15 811 23.4 811 11.0 811 4 811 34.9</th><th>38.3 22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3</th><th>1.0% 8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 3.1%</th><th>627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835</th><th>604 149 0.06 5 147 17.2 2.34 < 0.1 28</th><th>628 149 0.06 < 5 153 17.4 2.34 < 0.1</th><th>3.9% 0.0% 0.0% 4.0% 1.2% 0.0%</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	811 38.7 811 24 811 0.05 811 < 5 811 7.46 811 46.6 811 7.40 811 < 0.1 811 15 811 23.4 811 11.0 811 4 811 34.9	38.3 22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	1.0% 8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 3.1%	627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835 627835	604 149 0.06 5 147 17.2 2.34 < 0.1 28	628 149 0.06 < 5 153 17.4 2.34 < 0.1	3.9% 0.0% 0.0% 4.0% 1.2% 0.0%							
Ni 627 P 627 Pb 627 Pr 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Si 627 Si 627 Si 627 Si 627 Si 627 Sn 627 Ta 627 Tb 627 Th 627 Ti 627 Ti 627 Ti 627 Th 627 Ti 627 Ti 627 Ti 627 Ti 627 Th 627 Ti 627 <t< td=""><td>811 24 811 0.05 811 < 5</td> 811 7.46 811 46.6 811 7.40 811 < 0.1</t<>	811 24 811 0.05 811 < 5	22 0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	8.7% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835 627835 627835 627835	149 0.06 5 147 17.2 2.34 < 0.1 28	149 0.06 < 5 153 17.4 2.34 < 0.1	0.0% 0.0% 4.0% 1.2% 0.0%							
P 627 Pb 627 Pr 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Si 627 Si 627 Si 627 Sn 627 Sn 627 Ta 627 Tb 627 Th 627 Ti 627 Th 627 Th 627 Th 627 Ti 627 Th 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 <t< td=""><td>811 0.05 811 < 5</td> 811 7.46 811 46.6 811 7.40 811 < 0.1</t<>	811 0.05 811 < 5	0.05 < 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	0.0% 0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835 627835 627835	0.06 5 147 17.2 2.34 < 0.1 28	0.06 < 5 153 17.4 2.34 < 0.1	0.0% 4.0% 1.2% 0.0%							
Pb 627 Pr 627 Rb 627 S 627 Sb 627 Sb 627 Sc 627 Si 627 Si 627 Sr 627 Sn 627 Sn 627 Ta 627 Tb 627 Th 627 Ti 627 <	811 < 5	< 5 7.43 45.2 7.14 < 0.1 15 22.8 10.6 3	0.0% 0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835	5 147 17.2 2.34 < 0.1 28	< 5 153 17.4 2.34 < 0.1	4.0% 1.2% 0.0%							
Pr 627 Rb 627 S 627 Sb 627 Sc 627 Si 627 Si 627 Si 627 Si 627 Sm 627 Sn 627 Ta 627 Tb 627 Th 627 Ti 627 <	811 7.46 811 46.6 811 7.40 811 7.40 811 7.40 811 7.40 811 7.40 811 7.40 811 20.1 811 23.4 811 11.0 811 4 811 34.9	7.43 45.2 7.14 < 0.1	0.4% 3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835 627835	147 17.2 2.34 < 0.1 28	153 17.4 2.34 < 0.1	4.0% 1.2% 0.0%							
Rb 627 S 627 Sb 627 Sc 627 Si 627 Si 627 Sm 627 Sm 627 Sn 627 Ta 627 Tb 627 Th 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 U 627	811 46.6 811 7.40 811 <0.1	45.2 7.14 < 0.1 15 22.8 10.6 3	3.1% 3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835 627835 627835	17.2 2.34 < 0.1 28	17.4 2.34 < 0.1	1.2% 0.0%							
S 627 Sb 627 Sc 627 Si 627 Sm 627 Sm 627 Sn 627 Ta 627 Tb 627 Th 627 Tu 627 <	811 7.40 811 < 0.1	7.14 < 0.1 15 22.8 10.6 3	3.6% 0.0% 0.0% 2.6% 3.7%	627835 627835 627835 627835	2.34 < 0.1 28	2.34 < 0.1	0.0%							
Sb 627 Sc 627 Si 627 Sm 627 Sn 627 Sr 627 Ta 627 Tb 627 Th 627 Ti 627 Ti 627 Th 627 Th 627 Th 627 Ti 627 Ti 627 Tu 627 U 627	811 < 0.1	< 0.1 15 22.8 10.6 3	0.0% 0.0% 2.6% 3.7%	627835 627835 627835	< 0.1 28	< 0.1		1	1	1			1	
Sc 627 Si 627 Sm 627 Sn 627 Sr 627 Ta 627 Tb 627 Th 627 Ti 627 Tu 627 U 627	811 15 811 23.4 811 11.0 811 4 811 34.9	15 22.8 10.6 3	0.0% 2.6% 3.7%	627835 627835	28		0.0%							
Si 627 Sm 627 Sn 627 Sr 627 Ta 627 Tb 627 Th 627 Ti 627 U 627	811 23.4 811 11.0 811 4 811 34.9	22.8 10.6 3	2.6% 3.7%	627835		28	0.0%							
Sm 627 Sn 627 Sr 627 Ta 627 Tb 627 Th 627 Th 627 Ti 627 U 627	811 11.0 811 4 811 34.9	10.6 3	3.7%		21.8	21.6	0.9%							
Sn 627 Sr 627 Ta 627 Tb 627 Th 627 Th 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 Ti 627 U 627	811 4 811 34.9	3		627835	92.2	94.8	2.8%							
Sr 627 Ta 627 Tb 627 Th 627 Ti 627 U 627	811 34.9		28.6%	627835	2	2	0.0%							
Ta 627 Tb 627 Th 627 Ti 627 U 627		32.0	8.7%	627835	11.9	12.4	4.1%							
Tb 627 Th 627 Ti 627 Ti 627 Tm 627 Tm 627 U 627	811 < 0.5	< 0.5	0.0%	627835	< 0.5	< 0.5	0.0%							
Th 627 Ti 627 TI 627 Tm 627 U 627	811 2.25	2.16	4.1%	627835	7.84	8.16	4.0%							
Ti 627 TI 627 Tm 627 U 627	811 1.84	1.86	1.1%	627835	1.2	1.2	0.0%							
TI 627 Tm 627 U 627	811 0.33	0.33	0.0%	627835	0.352	0.358	1.7%							
Tm 627 U 627	811 < 0.5	< 0.5	0.0%	627835	< 0.5	< 0.5	0.0%							
U 627	811 1.46	1.32	10.1%	627835	1.30	1.31	0.8%							
	811 0.530	0.559	5.3%	627835	0.400	0.394	1.5%							
V 627	811 26	26	0.0%	627835	187	187	0.0%							1
W 627	811 < 1	< 1	0.0%	627835	< 1	< 1	0.0%		_					
Y 627	811 88.3	83.4	5.7%	627835	173	178	2.8%							
Yb 627	811 9.94	9.04	9.5%	627835	8.2	8.3	1.2%							
Zn 627	811 601	491	20.1%	627835	268	268	0.0%							
Zr 627	811 300	286	4.8%	627835	61.7	63.2	2.4%							
		(2	01-676)	Lithium	Borate	e Fusio	n - Sum	mation	of Oxid	es, XR	F finisł	1		
	REP	ICATE #1			REPLIC	ATE #2								
Parameter Samp	ole ID Origina	Replicate	RPD	Sample ID	Original	Replicate	RPD							
Al2O3 627	811 10.2	10.3	1.0%	627835	15.7	15.7	0.0%							
BaO 627	811 0.01	0.02		627835	0.14	0.14	0.0%							1
CaO 627	811 0.72	0.73	1.4%	627835	0.99	0.99	0.0%							

AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

Page 18 of 24

	((()	5 (f		Labor	atories	5	Quality AGAT WO PROJECT	Assura DRK ORI F: SLR00	nce - Re DER: 1984 1	plicate 532286				5623 Mo MISSISSAUC CAN TEL (FAX (http://www	ADAM RO. 3A, ONTAF ADA L4Z 1 905)501-99 905)501-05 905)501-05
IENT NAM	IE: MISC AC	SAT CLIE								ATTE	NTION TO	: Avrom	E. Howard	 	
Fe2O3	627811	23.5	23.6	0.4%	627835	16.9	16.7	1.2%							
K2O	627811	1.72	1.71	0.6%	627835	0.98	0.97	1.0%							
MgO	627811	3.34	3.34	0.0%	627835	12.6	12.6	0.0%							
MnO	627811	0.10	0.11	9.5%	627835	0.20	0.20	0.0%							
Na2O	627811	1.52	1.49	2.0%	627835	0.355	0.337	5.2%							
P2O5	627811	0.109	0.115	5.4%	627835	0.137	0.129	6.0%							
SiO2	627811	48.8	48.9	0.2%	627835	48.9	48.7	0.4%							
TiO2	627811	0.55	0.55	0.0%	627835	0.631	0.613	2.9%							
SrO	627811	< 0.01	< 0.01	0.0%	627835	< 0.01	< 0.01	0.0%							
V2O5	627811	< 0.01	< 0.01	0.0%	627835	0.04	0.04	0.0%							
LOI	627811	4.22	4.24	0.5%	627835	3.03	2.95	2.7%							
				(2	02-052)	Fire As	say - Tr	ace Au	, ICP-OE	S finis	n (ppm))	•	•	
		REPLIC	ATE #1	-		REPLIC	ATE #2								
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD							
Au	627811	0.0223	0.0193	14 4%	627835	0.0182	0.0187	2 7%						1	1

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19B532286 PROJECT: SLR001 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

				(201-3	878) So	dium P	eroxid	e Fusion	- ICP-O	ES/ICF	P-MS Fi	nish		
		CRM #1	(ref.SY-4)			CRM #2	(ref.Till-2)			CRM #3	8 (ref.sy-4)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
AI	10.95	10.59	97%	90% - 110%	8.47	8.02	95%	90% - 110%						
As					26	28	108%	90% - 110%						
Ba	340	334	98%	90% - 110%	540	525	97%	90% - 110%						
Be	2.6	2.9	112%	90% - 110%	4.0	3.6	89%	90% - 110%						
Ca	5.72	5.68	99%	90% - 110%	0.907	0.913	101%	90% - 110%						
Ce	122	119	97%	90% - 110%	98	101	103%	90% - 110%						
Co	2.8	2.5	90%	90% - 110%	15	14	96%	90% - 110%						
Cs	1.5	1.6	108%	90% - 110%										
Cu	7	6	87%	90% - 110%	150	158	105%	90% - 110%						
Dy	18.2	18.7	103%	90% - 110%										
Er	14.2	14.4	102%	90% - 110%	3.7	4	107%	90% - 110%						
Eu	2.0	1.95	97%	90% - 110%	1.0	1.13	112%	90% - 110%						
Fe	4.34	4.32	99%	90% - 110%	3.77	3.84	102%	90% - 110%						
Ga	35	36	104%	90% - 110%										
Gd	14	15	106%	90% - 110%										
Hf	10.6	10.7	101%	90% - 110%	11	10	91%	90% - 110%						
Ho	4.3	4.4	103%	90% - 110%										
к	1.37	1.47	107%	90% - 110%	2.55	2.6	102%	90% - 110%						
La	58	56	97%	90% - 110%	44	45	103%	90% - 110%						
Li	37	41	112%	90% - 110%	47	52	110%	90% - 110%						
Lu	2.1	2.1	100%	90% - 110%	0.6	0.6	93%	90% - 110%						
Mg	0.325	0.3	92%	90% - 110%	1.1	1.1	98%	90% - 110%						
Mn	836	808	97%	90% - 110%	780	752	96%	90% - 110%						
Мо					14	14	98%	90% - 110%						
Nb	13	13	98%	90% - 110%	20	18	91%	90% - 110%						
Nd	57	61	107%	90% - 110%										
Ni					32	30	93%	90% - 110%						
Pb	10	10	99%	90% - 110%	31	31	100%	90% - 110%						
Pr	15.0	14.5	96%	90% - 110%										
Rb	55	51	93%	90% - 110%	144	141	98%	90% - 110%						
Sb					0.8	0.8	98%	90% - 110%						

AGAT QUALITY ASSURANCE REPORT

Page 20 of 24

COGAT Laboratories				s	AGAT WORK ORDER: 19B532286 PROJECT: SLR001							CANADA L4Z TEL (905)501-9 FAX (905)501-0 bttp://www.acatlabs.u				
ENT NAM	E: MISC A	GAT CLI	ENT ON							ATT	ENTION T	O: Avrom E	. Howard	1	napsiw	ww.aganabo.
Sc			1		12	12	99%	90% - 110%								
Si	23.3	22.9	98%	90% - 110%	28.4	27.6	97%	90% - 110%								
Sm	12.7	12.8	101%	90% - 110%	7.4	8.1	109%	90% - 110%								
Sn	7.1	7.4	104%	90% - 110%												
Sr	1191	1247	105%	90% - 110%	144	156	108%	90% - 110%								
Та	0.9	1	109%	90% - 110%	1.9	1.6	82%	90% - 110%								
Tb	2.6	2.8	107%	90% - 110%	1.2	1.2	100%	90% - 110%								
Th	1.4	1	72%	90% - 110%	18.4	18.1	99%	90% - 110%								
Ti	0.172	0.17	99%	90% - 110%	0.527	0.51	97%	90% - 110%								
Tm	2.3	2.3	101%	90% - 110%												
U	0.8	0.7	91%	90% - 110%	5.7	5.3	93%	90% - 110%								
V	8	7	83%	90% - 110%	77	78	101%	90% - 110%								
W					5	5	100%	90% - 110%								
Y	119	121	102%	90% - 110%	40	38	95%	90% - 110%								
Yb	14.8	15.1	102%	90% - 110%												
Zn	93	90	97%	90% - 110%	130	123	95%	90% - 110%								
Zr	517	555	107%	90% - 110%	390	363	93%	90% - 110%								
				(201-676)	Lithiur	n Borat	te Fusi	on - Sum	mation	of Oxi	des, XF	RF finish				
		CRM #	1 (ref.sy-4)			CRM #2 (ref.GSP5G)		CRM #3	(ref.sy-4)					
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits				
AI2O3	20.7	20.7	100%	90% - 110%					20.7	20.7	100%	90% - 110%				
BaO	0.038	0.040	105%	90% - 110%					0.038	0.041	107%	90% - 110%			-	
CaO	8.05	8.07	100%	90% - 110%					8.05	8.06	100%	90% - 110%				
Fe2O3	6.21	6.23	100%	90% - 110%					6.21	6.23	100%	90% - 110%				
K2O	1.66	1.64	99%	90% - 110%					1.66	1.66	100%	90% - 110%				
MgO	0.54	0.51	94%	90% - 110%					0.54	0.53	98%	90% - 110%				
MnO	0.108	0.113	105%	90% - 110%					0.108	0.111	102%	90% - 110%				
Na2O	7.1	7.2	102%	90% - 110%					7.1	7.3	102%	90% - 110%				
P2O5	0.131	0.133	102%	90% - 110%					0.131	0.136	104%	90% - 110%				
SiO2	49.9	49.8	100%	90% - 110%					49.9	49.7	100%	90% - 110%				
TiO2	0.287	0.291	101%	90% - 110%					0.287	0.289	101%	90% - 110%				
SrO	0.141	0.141	100%	90% - 110%					0.141	0.138	98%	90% - 110%				
					4.56	4.21	92%	90% - 110%								

AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

Page 21 of 24

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19B532286 PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

	CRM #1 (ref.GS6F)				CRM #2 (ref.GSP5G)			CRM #3 (ref.sy-4)						
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	6.87	7.03	102%	90% - 110%	0.562	0.559	100%	90% - 110%						

AGAT QUALITY ASSURANCE REPORT

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON PROJECT: SLR001

AGAT WORK ORDER: 19B532286 ATTENTION TO: Avrom E. Howard SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Rb	MIN-200-12049		ICP-MS					
S	MIN-200-12001/MIN-200- 12049		ICP/OES					
Sb	MIN-200-12049		ICP-MS					
Sc	MIN-200-12001/MIN-200- 12049		ICP/OES					
Si	MIN-200-12001/MIN-200- 12049		ICP/OES					
Sm	MIN-200-12049		ICP-MS					
Sn	MIN-200-12049		ICP-MS					
Sr	MIN-200-12001/MIN-200- 12049		ICP/OES					
Та	MIN-200-12049		ICP-MS					
Tb	MIN-200-12049		ICP-MS					
Th	MIN-200-12049		ICP-MS					
Ті	MIN-200-12001/MIN-200- 12049		ICP/OES					
ті	MIN-200-12049		ICP-MS					
Tm	MIN-200-12049		ICP-MS					
U	MIN-200-12049		ICP-MS					
V	MIN-200-12001/MIN-200- 12049		ICP/OES					
w	MIN-200-12049		ICP-MS					
Y	MIN-200-12049		ICP-MS					
Yb	MIN-200-12049		ICP-MS					
Zn	MIN-200-12001/MIN-200- 12049		ICP/OES					
Zr	MIN-200-12049		ICP-MS					
AI2O3	MIN-200-12027		XRF					
BaO	MIN-200-12027		XRF					
CaO	MIN-200-12027		XRF					
Cr2O3	MIN-200-12027		XRF					
Fe2O3	MIN-200-12027		XRF					
K2O	MIN-200-12027		XRF					
MgO	MIN-200-12027		XRF					
MnO	MIN-200-12027		XRF					
Na2O	MIN-200-12027		XRF					
205	MIN-200-12027		XRF					
SiO2	MIN-200-12027		XRF					
TiO2	MIN-200-12027		XRF					
SrO	MIN-200-12027		XRF					
/205	MIN-200-12027		XRF					
LOI	MIN-200-12021		FURNACE					
Total Oxides	MIN-200-12015		CALCULATION					
Au	MIN-12006, MIN-12004		ICP/OES					
Pass %			BALANCE					

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 24 of 24

Company	Invoice Number	Date	Amount	Activity	Comments/Details						
		Explorat	tory Drilling Re	port							
Nebu Consulting LLC	2019-10-18	8/10/2019	\$17,798.06	Field Supervision, Core Logging	Drill Program Mgt. and Core Logging						
Nebu Consulting LLC	2019-10-01	1/10/2019	\$11,329.97	Field Supervision, Core Logging	Drill Program Mgt. and Core Logging						
	TOTAL		\$29,128.03		1944m						
NEBU	PL-19-1		\$10,518.44		702m						
Chibougamau Diamond Drilling LTD	25214	8/10/2019	\$60,151.63	Diamond Drilling	Final payment – fixed price contract						
"	25183	30/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment						
"	25180	26/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment						
п	25150	16/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment						
"	25216	15/10/2019	\$3,762.00	Core boxes							
Chibougamau	TOTAL		\$363,913.63		1944m						
	PL-19-1		\$131,008.68		702m						
AGAT Laboratories	19643565M	06/11/2019	\$3,123.00	Assays	Total 30 samples						
AGAT Laboratories	TOTAL		\$520.50		PL-19-01 5 samples						
\$142,047.62											

APPENDIX 5: Expenses Breakdown