

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Denmark Lake Property Geotechnical Report on 2018 Prospecting

NTS 52 F05 G

December 2018

By: Jessica Bjorkman

Karl Bjorkman

Contents

QUICK FACTS	3
Quick Facts	3
INTRODUCTION	4
LOCATION AND ACCESS	4
CLAIM GROUP	4
REGIONAL GEOLOGY	5
Figure 1: Regional Geology of Denmark Lake Property (Bernard & Keast, 2009)	6
PREVIOUS WORK	7
Figure 2: Denmark Lake Property Claim Group	8
CURRENT WORK	9
DAILY LOG FOR DENMARK LAKE PROPERTY RECONNAISANCE PROSPECTING PROGRAM	10
GRAB SAMPLE DESCRIPTIONS	11
MAP SHOWING GPS TRACKS FOR PROSPECTING TRAVERSES	12
MAP SHOWING WAYPOINTS AND SAMPLE LOCATIONS	13
SAMPLE HANDLING	14
WORK CREW LIST	14
RESULTS	14
RECOMMENDATIONS	17
REFERENCES	18
STATEMENT OF QUALIFICATIONS	19

QUICK FACTS

This prospecting report describes a short reconnaissance prospecting program completed by Bjorkman Prospecting for Ken Fenwick, Karl Bjorkman and Don Devereaux on the Denmark Lake Property located in the Kenora Mining Division in Northwestern Ontario. The objective of the Program was to locate, sample and re-establish access to the Caribou Lodge Cu-Ni Showing on Denmark Lake.

Two prospectors did a 3-day Recon Prospecting Program that commenced on November 5, 2018 and ended on November 7, 2018 and collected 12 grab samples that were submitted to Activation Laboratories Ltd. in Thunder Bay for Au 1A2-Tbay Au Fire Assay and ICP 1E3-Tbay Aqua Regia ICP (AQUAGEO) analysis. The Program was done by Karla Bjorkman and Jessica Bjorkman, of Bjorkman Prospecting.

Quick Facts

Field Program Start	2018/11/05	Total Field Days	3
Field Program Finish	2018/11/07	Laboratory	ActLabs
# of Claims	7	Elements Analysed	Au
# of Grab Samples	12	'+ 38 Element	ICP including Cu,
# of Prospectors	1 Team of 2		
Est. # Traverses	3		
Est. Trav. Length	2km		

INTRODUCTION

In the fall of 2018 Karla and Jessica Bjorkman performed a short reconnaissance prospecting program on the Denmark Lake Property from the November 5 to November 7, 2018. The purpose of the program was to locate, sample and reestablish the access trail into the main Copper Nickel Showing; and to locate mineralized boulders reported by a local geologist.

LOCATION AND ACCESS

NTS 52 F05 G

GPS Location: UTM Zone 15, 451000 Easting 5470000 Northing NAD 1983 (approx centre of claims)

The Denmark Lake Property lies approximately 30 km east of the town of Sioux Narrows. Access to property is north on Highway 71 from Sioux Narrows and east on the Mayburn Mine Road for approximately 30 kms. The Caribou Lodge Showing is accessed by a recent logging cut road (that follows the old trail into Caribou Lodge) and then a drill road into the main showing.

CLAIM GROUP

The Denmark Lake Reconnaisance Prospecting Program was performed on the following claims as listed below:

328871, 160834, 121698, 121697, 126807, 233530, 227526

The claims are located in the Kenora Mining Division. The claims are owned by Ken Fenwick, Karl Bjorkman, and Don Devereaux.

REGIONAL GEOLOGY

"The intrusive complex at Denmark Lake consists of peridotite, pyroxenite gabbro, diorite, quartz diorite, granodiorite and amphibolite, with enclosed remnants of metavolcanic rocks. Each rock type is compositionally and texturally variable and is intimately associated with other rock types. The oldest rocks of the complex appear to be ultramafic, with gabbro, diorite, quartz diorite, and granodiorite being successively younger.

Peridotite and altered pyroxenite occur south of the west end of Denmark Lake, between the headlands on the northwest shore, on the largest island in the west part of the lake, at the south shore of the narrows, and near the south shore of the eastern part of the lake. Drilling has also encountered serpentinite under the west part of the lake. The original minerals of most peridotites are olivine and pyroxene. Olivine generally occurs as round I to 2mm grains partly altered to serpentine and magnetite.

Grey to brownish grey-weathering gabbro underlies much of the western end of Denmark Lake and an area north of the narrows. It also occurs near the eastern end of the lake. Finer grained gabbro is in places indistinguishable from the basalt.

Diorites and quartz diorites in the complex at Denmark Lake appear to be hybrid rocks and contain numerous inclusions of basalt and altered gabbro. Contacts are difficult to define. In places the inclusions predominate; north of the eastern part of Denmark Lake. Granodiorite is most abundant in a zone extending along the south edge of the Denmark Lake Complex, from Rowan Lake to eastern Denmark Lake, and north of the eastern end of Denmark Lake. The granodiorite is compositionally heterogeneous, in places it grades into quartz diorite.

Within the Denmark Lake area, the metavolcanics are predominantly mafic in composition. Typically, they are greenish grey to black, fine to medium grained, massive basalt flows. In many places, very fine-grained andesitic to basaltic pillowed flows are abundant. Large areas of brecciated basalt occur north of central and eastern Denmark Lake." (Bernard & Keast, 2009)

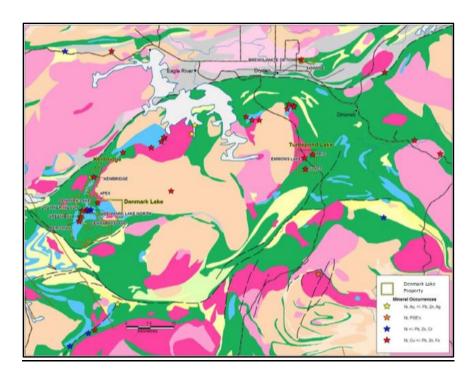


Figure 1: Regional Geology of Denmark Lake Property (Bernard & Keast, 2009)

PREVIOUS WORK

1952: International Nickel Company of Canada Ltd. Conducted a ground mag survey over the Caribou Lodge area. Anomalies were investigated in the field and with EM equipment.

1953: Prospector A. Gauthier discovered chalcopyrite in a narrow east-trending shear zone in gabbro on the north shore of Denmark Lake. A prospecting program then discovered nickel and copper in peridotite. X-ray hole 67-1 drilled east to west contained 0.78% nickel and 0.78% copper over a 15 metre interval.

1954: Huston & Associates carried out an IP survey that outlined several northwest-trending anomalous zones. A strong anomaly with a length of at least 215 metres, located under Denmark Lake southwest of the original showing, was drilled, but never explained. Another anomaly coincides with the Caribou Lodge Showing and was also drilled but with favourable results.

2007: Canadian Arrow Mines Ltd. carried out a 6-day reconnaissance prospecting and geological mapping program in the vicinity of the Caribou Lodge Ni-Cu Prospect.

2008: Canadian Arrow Mines Ltd. dug 5 trenches in January 2008 in the vicinity of the Caribou Lodge Showing that confirmed a pyroxenite body trending northwest for several metres. In March 2008, 11 holes were drilled in the Caribou Lodge Showing Area totaling 1760 metres. Four of these holes returned significant mineralized core intervals including a high-grade section assaying 4.51% Ni, 0.44% Cu, 0.15% Co over a core length of 0.75 metres.

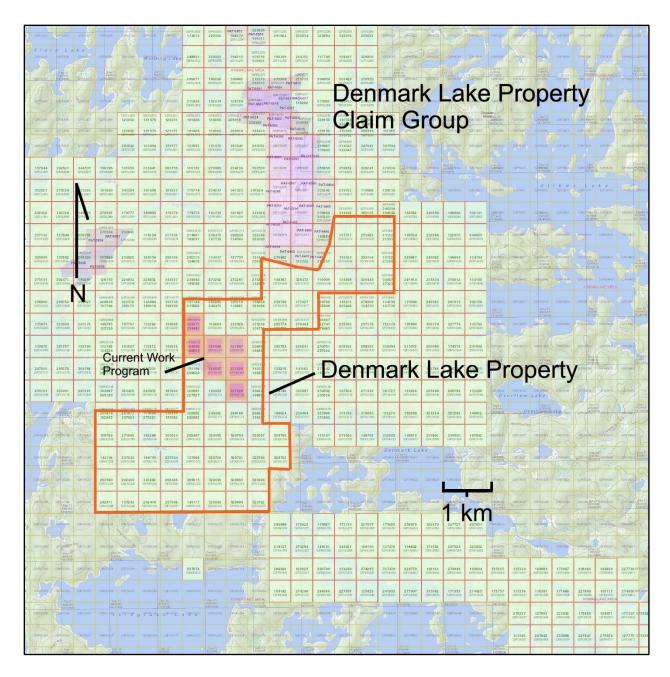


Figure 2: Denmark Lake Property Claim Group

CURRENT WORK

Current reconnaissance work focused on the main Caribou Lodge Copper Nickel Showing. Also, some time was spent looking for two mineralized boulders that had been reported by geologist Allen Raoul.

The Prospecting Program was done with one crew consisting of two prospectors. The area was accessed using a four-wheel drive pick-up truck, and an all terrain vehicle was used when required. The main access trail into the Caribou Lodge Cu-Ni Showing was located and cleared out with a chainsaw and axe so that an ATV could be driven to the showing. Trenches T5 and T3 in mineralized pyroxenite were grab sampled. Visible fine native copper was observed.

Part of a day was spent looking for mineralized boulders reported by Allen Raoul, with no success. A few samples were taken of mineralized outcrop.

Part of a day was spent prospecting the new clearcut. Most of the cut is covered in overburden with no outcrop exposed. On the northwest end of the cut, quartz-flooded fractures between the contact of the granite and volcanic containing coarse pyrite were sampled.

Photo: Karla Bjorkman observing visible copper in trench T5

DAILY LOG FOR DENMARK LAKE PROPERTY RECONNAISANCE PROSPECTING PROGRAM

November 5-7, 2018

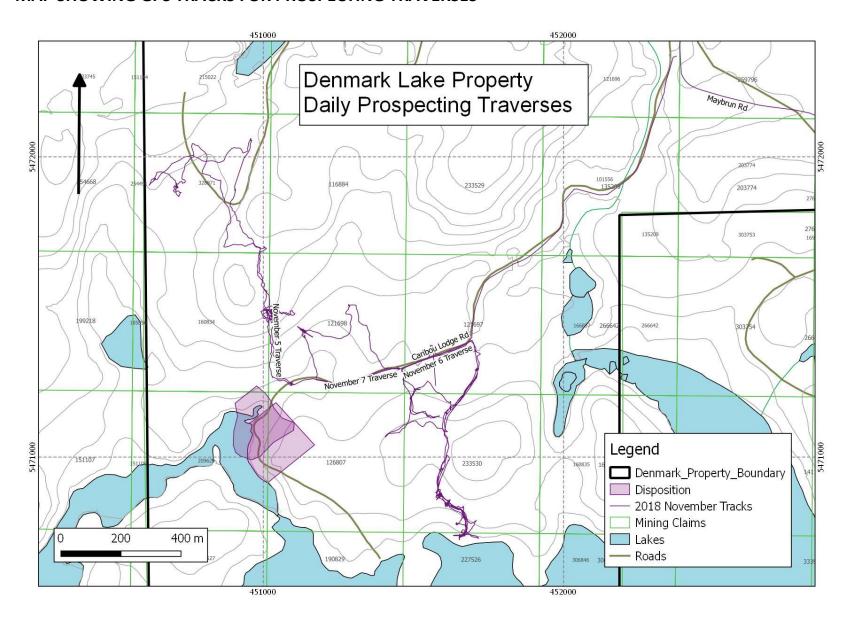
Prospectors: Karla & Jessica Bjorkman

November 5, 2018

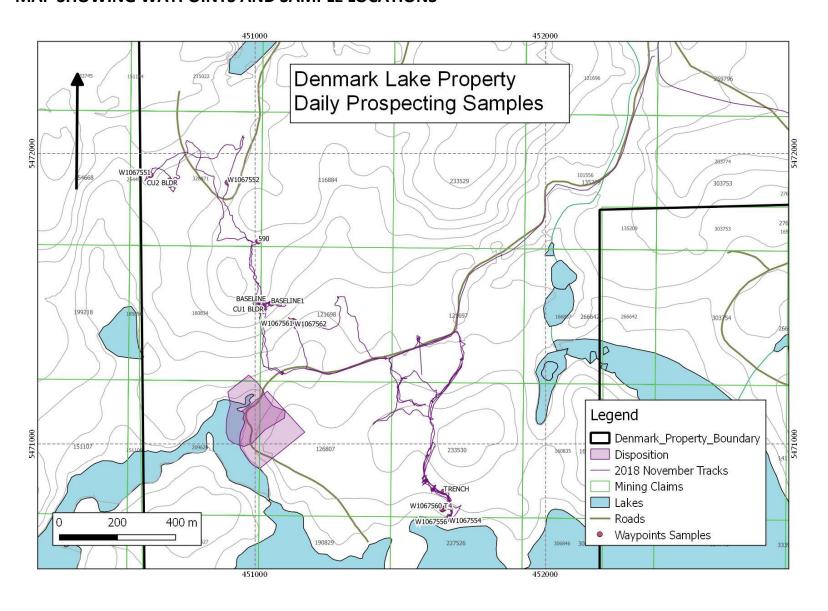
One prospecting team drove from Atikokan to Sioux Narrows. We checked into our hotel room and continued out to the field. We located the Caribou Lodge access road and spent the remainder of the day attempting to locate mineralized boulders found by geologist Allen Raoul. We were not successful. We did sample some mineralized volcanics we found while searching for the boulders. We returned to the Crystal Harbour Resort for the night.

November 6, 2018

We drove to the field and looked for the access trail into the Caribou Lodge Cu-Ni Showing. The area has been logged recently which made it difficult to find the start of the trail. Finally, by locating it in the unlogged terrain, we were able to find the rest of it in the clearcut. We used a chainsaw and axe to clean the trail out of deadfall, brush and debris. After lunch, we located Trench T5 with the highest reported mineralization. We took several grab samples in the trench and some representative samples. Karla was able to find native copper in a few samples. We also sampled Trench T3 and Karla found native copper in one sample here as well. The rock type was a coarse-grained pyroxenite with chalcopyrite, pyrrhotite, pyrite and native copper.


November 7, 2018

We woke up to snow. We decided to do a short traverse in the new clearcut. There was no outcrop in the cut as it's covered in overburden. We found some mineralized outcrop at the northwest end of the cut. There was coarse pyrite and quartz-flooded fractures in a granite contacting a mafic volcanic. We took a few grab samples of this and then drove home from the field to Atikokan.


GRAB SAMPLE DESCRIPTIONS

				Au	Cu	Ni			Mineraliza	
Sample	Easting	Northing	Description	_	_	_	Date	Туре		Photo
W1067551	450640		Mafic volcanic, dark grey, fine	41						
			grained, 4 mm felsic vein rusty with					Sub-		Denmark2018-
			1% pyrite, subcrop				5-Nov-18	crop	1% py	053753, 54
W1067552	450905	5471900	Mafic volcanic, grey, medium grained,	7	273	56				
			1-2 mm quartz vein with 0.1%					Sub-		Denmark2018-
			pyrrhotite and possibly chalcopyrite, boulder on swamp edge				5-Nov-18		0.1% py	053755, 56
W1067553	451671	5470746	T5 outcrop northeast end, strongly	243	7490	6610	J-110V-10	стор	0.1 /0 py	033733, 30
11 1007 000	401071	0470740	rusty, pyroxenite, brecciated?, coarse	240	7 430	0010				
			grained, 3-5% chalcopyrite, 1-2%						3-5% cpy, 1	Denmark2018-
			pyrrhotite, rep				6-Nov-18	OC	2% po	053759, 60
W1067554	451669	5470744	Melagabbro, medium and coarse	75	3670	1150			3-5% cpy +	
			grained, strongly rusty, 3-5%							D1-2019
			chalcopyrite, 3-5% pyrrhotite, 0.25%						po, 0.25%	Denmark2018-
			native copper, outcrop T5, Rep	ļ		L	6-Nov-18	OC	cu	053761, 62
W1067555	451669	5470744	Same as previous except no native	19	9850	773			3-5% сру	Denmark2018-
			copper, less sulfide				6-Nov-18	OC	and po	053763, 64
W1067556	451661	5470740	Pyroxenite, dark grey, coarse	38	1560	1200				
			grained, 1-3% chalcopyrite, 1-3%							
			pyrrhotite, outcrop, composite of rusty						1-3% cpy	Denmark2018-
			pieces and fresher pieces approx 1				6-Nov-18	OC	and po	053765-68
W1067557	451653	5470735	metre apart, T5 Melagabbro, weakly silica flooded,	66	4960	560	0-1NOV-10	OC.	and po	033703-08
W 1007557	451055	3470733	medium grained, moderately rusty,	00	4900	300				
			native copper on fracture 0.25%							Denmark2018-
			overall, outcrop T5				6-Nov-18	OC	0.25% cu	053771, 72
W1067558	451653	5470735	Same as previous except only weakly	34	1270	1350				
			rusty, 5% pyrrhotite, 1% chalcopyrite,						50/ 10/	D 12010
			trace native copper, outcrop, rep						5% po, 1%	Denmark2018-
							6-Nov-18	OC	cpy, tr cu	053769, 70
W1067559	451645	5470774	T4, pyroxenite, coarse grained, dark	24	1410	472				
			grey, moderately rusty, 5% coarse						5% сру,	Denmark2018-
			chalcopyrite, 0.25% native copper, very weak malachite, outcrop				6-Nov-18	OC	0.25% cu	053773
W1067560	451643	5470777	Pyroxenite, poikilitic coarse grained	79	3250	1370	0 1101 10	00	0.2370 Cu	033113
	101010	0110111	and medium grained, 5% pyrrhotite,	, ,	0200	1070				
			3% chalcopyrite, next to previous							
			sample but much fresher/less rusty						50/ 20/	D 12010
			than previous, outcrop, rep need to						5% po, 3%	Denmark2018-
			take out of sample				6-Nov-18	OC	сру	053774, 75
W1067561	451130	5471423	Granite coarse grained pink,	10	16	19				
			contacting Mafic volcanic dark grey							
			with quartz and 5-10% chunky pyrite smeared on chlorite fractures and in							
			host, rusty sulfide stain on weathered							
			surface, assay for au, outcrop, very						1	Denmark2018-
			approx trending 186/65 rep				7-Nov-18	OC	5-10% py	053776, 77
W1067562	451136	5471421	Same as previous 0.5 metre away,	11	15	29			1	Denmark2018-
			rep				7-Nov-18	OC	5-10% py	053778-81
		1				J	, 1101 10		1070 Py	000110 01

MAP SHOWING GPS TRACKS FOR PROSPECTING TRAVERSES

MAP SHOWING WAYPOINTS AND SAMPLE LOCATIONS

SAMPLE HANDLING

All sample locations were recorded by GPS and all samples were submitted to Activation Laboratories Ltd. in Thunder Bay Ontario. All samples were submitted for Au 1A2-Tbay Au Fire Assay and ICP 1E3-Tbay Aqua Regia ICP (AQUAGEO) analysis. Sample W1067555 was re-assayed for ICP-OES as it was above the detection limit of the previous method.

WORK CREW LIST

The full names and license numbers and addresses of the crew are listed below;

Prospectors:

Jessica Bjorkman, Box 338 Atikokan On POT 1CO Lic # E34360

Karla Bjorkman: Box 1814 Atikokan On POT1CO

RESULTS

The best copper and nickel values were obtained from Trench 5. The highest copper value was from Sample W1067555 at 1.0%. The highest nickel value was in Sample W1067553 which also had the highest combined copper and nickel values at 0.75% Cu and 0.66% Ni. This sample was from the most easterly edge of the trench in strongly oxidized, coarse grained pyroxenite. Sample W1067557 located in the middle of Trench 5 had a value of 0.5% Cu.

Photo: Sample W1067553, assayed 0.75% Cu and 0.66% Ni

Photo: Sample W1067555, assayed 0.99% Cu and 0.08% Ni

Photo: Trench 5 at East end looking west, Area of highest Cu & Ni values

Photo: Sample W1067557 which assayed 0.50% Cu and 0.06% Ni

RECOMMENDATIONS

The Denmark Lake Property has copper, nickel and PGE potential. The Caribou Lodge Showing corresponds with a strong IP anomaly. A second anomaly approximately 215 metres long southwest of the main showing in Denmark Lake that has not been explained by past drilling. Both of these targets should be drilled. The Caribou Lodge Showing should be drilled to better delineate mineralization. The second anomaly in Denmark Lake should be drilled to explain the anomaly.

REFERENCES

Bernard, J., & Keast, T. (2009). *Geological Report Canadian Arrow Mines Ltd. Denmark Lake Property.*

STATEMENT OF QUALIFICATIONS

I, Karl E. Bjorkman, do hereby certify:

I am a resident of Hutchinson Township (mining claim E-102), Rainy River District, Ontario, Canada with address Box 1814 Atikokan Ontario P0T1C0

I have been engaged in base and precious metal exploration as a prospector since 1985.

I hold a current valid prospector's license, Lic # E33573. Signature:

Name: Karl E Bjorkman

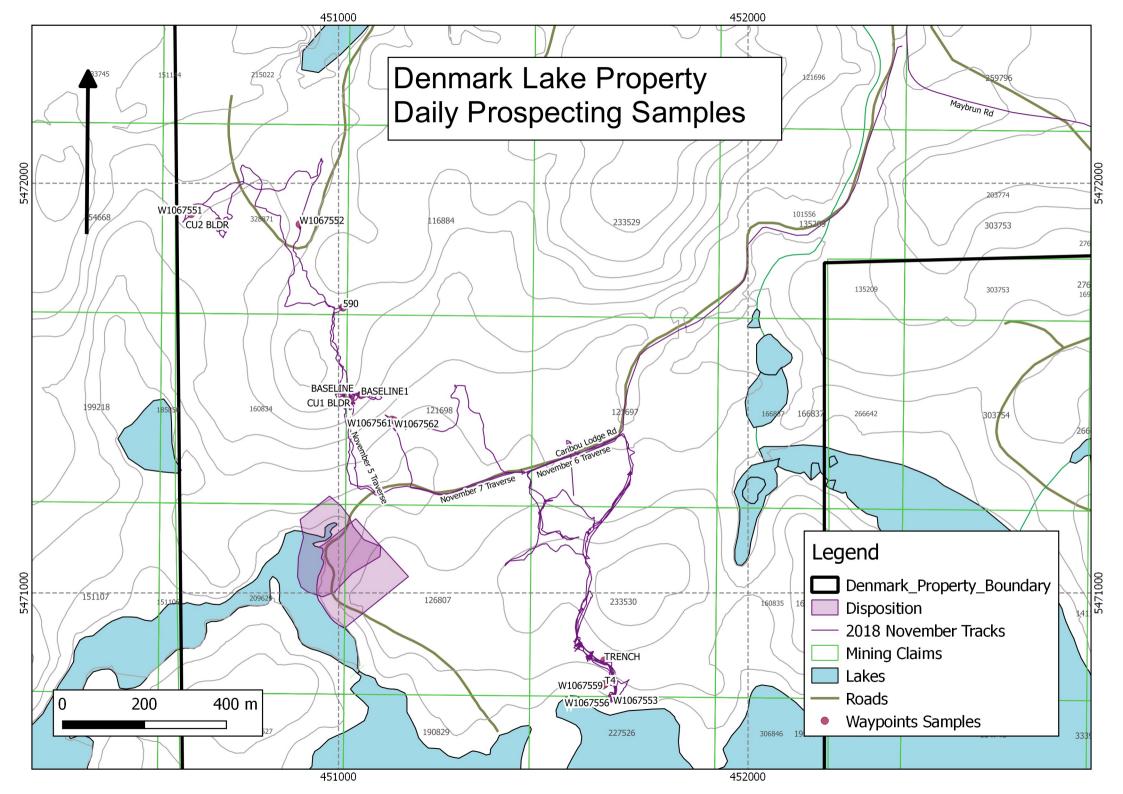
Date: December 18, 2018

Statement of Qualifications

I, Jessica L. Bjorkman, do hereby certify:

I am a resident of Hutchinson Township (mining claim E-102), Rainy River District, Ontario, Canada with address Box 338 Atikokan Ontario P0T1C0

I have been engaged in base and precious metal exploration as a prospector since 1997.


I hold a current valid prospector's license, Lic # E34360.

Signature:

Name: Jessica L. Bjorkman

Date: December 18, 2018

Appendix

Quality Analysis ...

Innovative Technologies

Date Submitted: 12-Nov-18
Invoice No.: A18-17216
Invoice Date: 06-Dec-18

Your Reference:

Karl Bjorkman PO BOX 1814 Atikokan Ontario p0t1c0 Canada

ATTN: Karl Bjorkman

CERTIFICATE OF ANALYSIS

12 Rock samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A18-17216

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Results	Activation Laboratories Ltd.	Report: A18-17216
---------	------------------------------	-------------------

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Ве	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
W1067551	41	< 0.2	< 0.5	195	504	< 1	70	< 2	33	2.88	2	< 10	14	< 0.5	< 2	3.20	33	122	3.85	< 10	< 1	0.06	< 10
W1067552	7	< 0.2	< 0.5	273	471	< 1	56	< 2	28	2.38	< 2	< 10	13	< 0.5	< 2	3.62	23	70	3.10	< 10	< 1	0.03	< 10
W1067553	243	1.7	< 0.5	7490	337	< 1	6610	< 2	69	2.19	< 2	< 10	11	< 0.5	< 2	1.09	369	821	16.5	< 10	< 1	0.04	< 10
W1067554	75	1.5	< 0.5	3670	371	< 1	1150	< 2	32	2.74	< 2	< 10	24	< 0.5	< 2	1.70	71	600	6.61	< 10	< 1	0.04	< 10
W1067555	19	3.2	< 0.5	> 10000	394	< 1	773	4	65	2.89	8	< 10	25	< 0.5	< 2	0.44	37	828	13.1	< 10	< 1	0.05	< 10
W1067556	38	0.6	< 0.5	1560	871	< 1	1200	< 2	56	3.33	< 2	< 10	18	< 0.5	< 2	2.05	81	717	9.64	< 10	1	0.05	< 10
W1067557	66	2.2	< 0.5	4960	230	< 1	560	3	26	4.85	< 2	< 10	32	< 0.5	5	2.94	32	228	3.93	< 10	< 1	0.06	< 10
W1067558	34	0.5	< 0.5	1270	789	< 1	1350	< 2	54	3.20	< 2	< 10	18	< 0.5	< 2	2.34	86	582	8.29	< 10	1	0.04	< 10
W1067559	24	0.5	< 0.5	1410	362	< 1	472	< 2	25	4.55	5	< 10	26	< 0.5	< 2	2.95	40	465	4.56	< 10	3	0.06	< 10
W1067560	79	1.7	< 0.5	3250	292	< 1	1370	< 2	29	3.60	2	< 10	28	< 0.5	< 2	2.33	69	452	4.94	< 10	2	0.06	< 10
W1067561	10	< 0.2	< 0.5	16	145	< 1	19	< 2	9	0.50	< 2	< 10	10	< 0.5	< 2	0.47	118	10	5.51	< 10	2	0.06	18
W1067562	11	< 0.2	< 0.5	15	244	< 1	29	< 2	16	0.80	< 2	< 10	13	< 0.5	2	1.27	94	55	4.29	< 10	< 1	0.03	22

Results Activation Laboratories Ltd.

Report: A18-17216

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	٧	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
W1067551	1.16	0.130	0.023	0.34	2	14	73	0.38	< 20	4	< 2	< 10	115	< 10	8	12
W1067552	1.07	0.100	0.035	0.13	< 2	8	61	0.33	< 20	2	< 2	< 10	93	< 10	8	10
W1067553	2.72	0.333	0.016	4.78	7	4	54	0.10	< 20	< 1	< 2	< 10	105	< 10	2	13
W1067554	2.69	0.378	0.015	1.17	4	5	79	0.12	< 20	< 1	< 2	< 10	111	< 10	2	6
W1067555	3.89	0.100	0.028	0.92	7	3	11	0.11	< 20	< 1	< 2	< 10	113	< 10	2	11
W1067556	7.32	0.384	0.010	0.47	5	5	96	0.08	< 20	< 1	< 2	< 10	91	< 10	1	6
W1067557	1.52	0.542	0.015	0.81	< 2	4	130	0.05	< 20	< 1	< 2	< 10	38	< 10	1	2
W1067558	7.01	0.274	0.010	0.63	5	7	91	0.07	< 20	< 1	< 2	< 10	68	< 10	2	6
W1067559	2.88	0.467	0.016	0.26	2	4	135	0.07	< 20	< 1	< 2	< 10	46	< 10	1	4
W1067560	1.87	0.426	0.017	1.04	3	5	105	0.08	< 20	4	< 2	< 10	62	< 10	2	5
W1067561	0.28	0.109	0.038	3.49	2	6	17	0.07	< 20	< 1	< 2	< 10	20	< 10	12	26
W1067562	0.64	0.127	0.027	2.38	< 2	9	24	0.06	< 20	< 1	< 2	< 10	38	< 10	13	21

Report: A18-17216

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Ве	Bi	Ca	Со	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	<u> </u>		ppm					ppm	%		ppm	ppm		ppm	%		ppm	_			%	ppm
Lower Limit	5		0.5		5	1	1		2	0.01	2	10	10	0.5		0.01	1		0.01	10		0.01	10
Method Code	FA-AA				-	AR-ICP	AR-ICP		AR-ICP	AR-ICP		AR-ICP					AR-ICP						AR-ICP
OREAS 904		0.3	< 0.5	5880	434	2	33	9	24		90		75		<u> </u>	0.05	89	24	6.24	< 10		0.93	39
(Aqua Regia) Meas																							
OREAS 904 (Aqua Regia) Cert		0.366	0.0580	6300	410	2.02	36.6	8.49	22.4	1.25	91.0		68.0	6.54	3.74	0.0404	82.0	17.5	6.40	3.40		0.603	33.9
OREAS 922 (AQUA REGIA) Meas		0.9	< 0.5	2210	764	< 1	34	58	279	3.02	6		81	0.8	7	0.42	18	44	5.28	< 10		0.51	38
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		2.3	< 0.5	4410	858	< 1	32	79	356	3.03	6		66	0.7	17	0.42	20	41	6.06	< 10		0.44	35
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 218 Meas	562																						
OREAS 218 Cert	531																						
Oreas 621 (Aqua Regia) Meas		67.0	294	3640	571	14	23	> 5000	> 10000	1.86	78			0.6	7	1.62	30	30	3.51	10	4	0.39	20
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
W1067554 Orig		1.5	< 0.5	3650	372	< 1	1150	< 2	32	2.76	2	< 10	24	< 0.5	< 2	1.71	71	605	6.63	< 10	< 1	0.04	< 10
W1067554 Dup		1.5	< 0.5	3690	369	< 1	1140	5	32	2.72	< 2	< 10	24	< 0.5	2	1.69	70	596	6.60	< 10	< 1	0.04	< 10
W1067560 Orig	77																						
W1067560 Dup	81																						
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank	< 5																						

Report:	A18-17216
iveboit.	A10-11210

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Υ	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
OREAS 904 (Aqua Regia) Meas	0.23		0.093	0.04	4	5	19		< 20		< 2	< 10	35		16	
OREAS 904 (Aqua Regia) Cert	0.143		0.0950	0.0340	0.780	3.83	16.5		7.56		0.150	5.20	21.7		17.2	
OREAS 922 (AQUA REGIA) Meas	1.45	0.031	0.061	0.36	< 2	4	16		< 20		< 2	< 10	40	< 10	19	24
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.56		0.059	0.65	< 2	4	14		< 20		< 2	< 10	38	< 10	18	35
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 218 Meas																
OREAS 218 Cert																
Oreas 621 (Aqua Regia) Meas	0.49	0.177	0.033	4.44	121	3	18		< 20		< 2	< 10	14	< 10	7	77
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
W1067554 Orig	2.69	0.378	0.015	1.17	4	5	79	0.12	< 20	< 1	< 2	< 10	110	< 10	3	6
W1067554 Dup	2.69	0.378	0.015	1.16	4	5	78	0.12	< 20	< 1	< 2	< 10	111	< 10	2	6
W1067560 Orig																
W1067560 Dup																
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.013	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank																

Quality Analysis ...

Innovative Technologies

Date Submitted: 12-Nov-18

Invoice No.: A18-17216-Assay

Invoice Date: 20-Dec-18

Your Reference:

Karl Bjorkman PO BOX 1814 Atikokan Ontario p0t1c0 Canada

ATTN: Karl Bjorkman

CERTIFICATE OF ANALYSIS

12 Rock samples were submitted for analysis.

The following analytical package(s) were requested: Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A18-17216-Assay

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results Activation Laboratories Ltd. Report: A18-17216

Analyte Symbol	Cu
Unit Symbol	%
Lower Limit	0.001
Method Code	ICP- OES
W1067555	0.985

Report: A18-17216

< 0.001

Method Blank