

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

GOLDON RESOURCES LTD.

REPORT ON THE SUMMER 2019 PROSPECTING PROGRAM

ON THE

SLATE FALLS PROPERTY

(Sample 00251116)

WESLEYAN LAKE AREA & FRY LAKE AREA SLATE FALLS ONTARIO, CANADA NTS 520/03 & 520/04

Bruce MacLachlan Timmins, Ontario

September 11th, 2019

TABLE OF CONTENTS

1.0	SUMMARY	
2.0	INTRODUCTION	1
3.0	CELLS-CLAIMS	1
4.0	LOCATION, ACCESS and TOPOGRAPHY	1
5.0	LOCAL GEOLOGY	4
6.0	EXPLORATION HISTORY	5
7.0	WORK PROGRAM DESCRIPTION	7
8.0	RESULTS and CONCLUSIONS	11
9.0	RECOMMENDATIONS	12
10.0	PERSONNEL	14
11.0	STATEMENT of QUALIFICATIONS	15
12.0	REFERENCES	16

List of Figures

Figure	1: Access Map	2
_	2 : Claim Map	
_	3 : Sample Location Map-1	
_	4 : Sample Location Map-2	
_	5 : Sample Location Map-3	

List of Appendices

I	Rock Sample Descriptions (Table 1)
II	Rock Assay Certificates (SGS Labs)
III	Points of Interest (Table 2)
IV	SGS Labs Analytical Descriptions
V	List of Claims (Table 3)
VI	Photos
	III IV V

1.0 SUMMARY

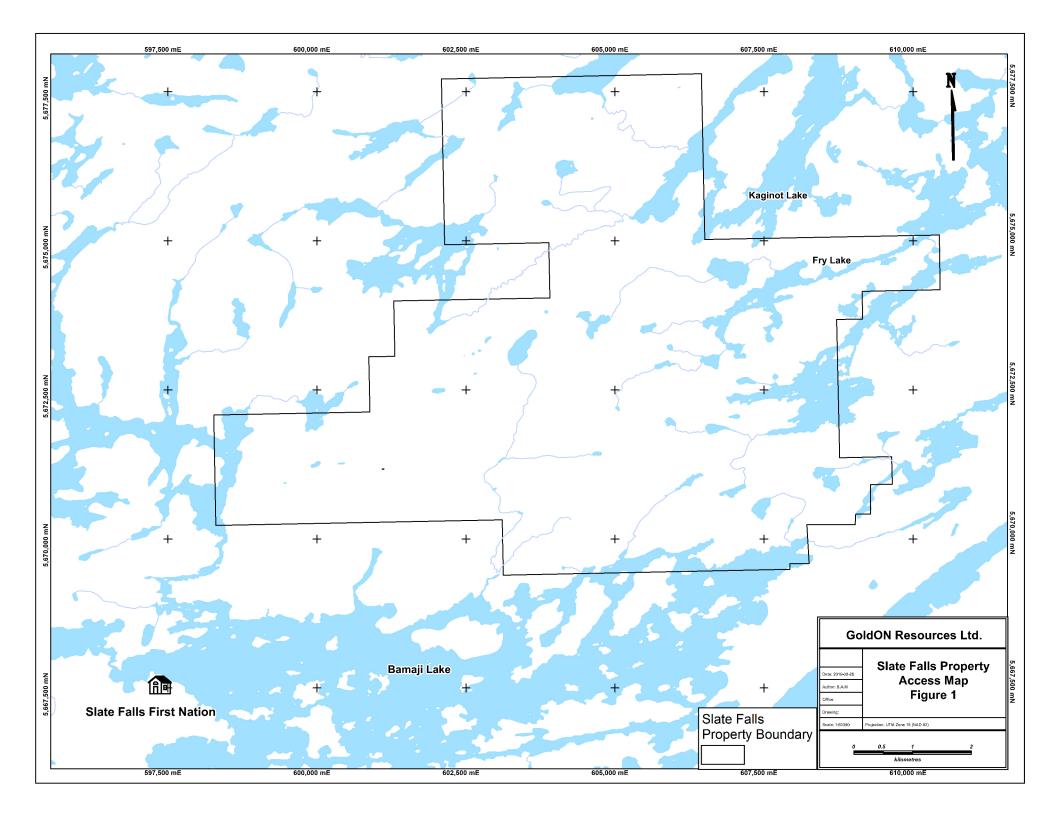
A prospecting and sampling program was carried out by Bruce MacLachlan and Coleman Robertson on the Slate Falls property from July 23rd to August 3rd to prospect for new targets in areas of magnetic fold features. Thirty-nine rock grab samples were collected during the exploration program, five of which were collected on open ground.

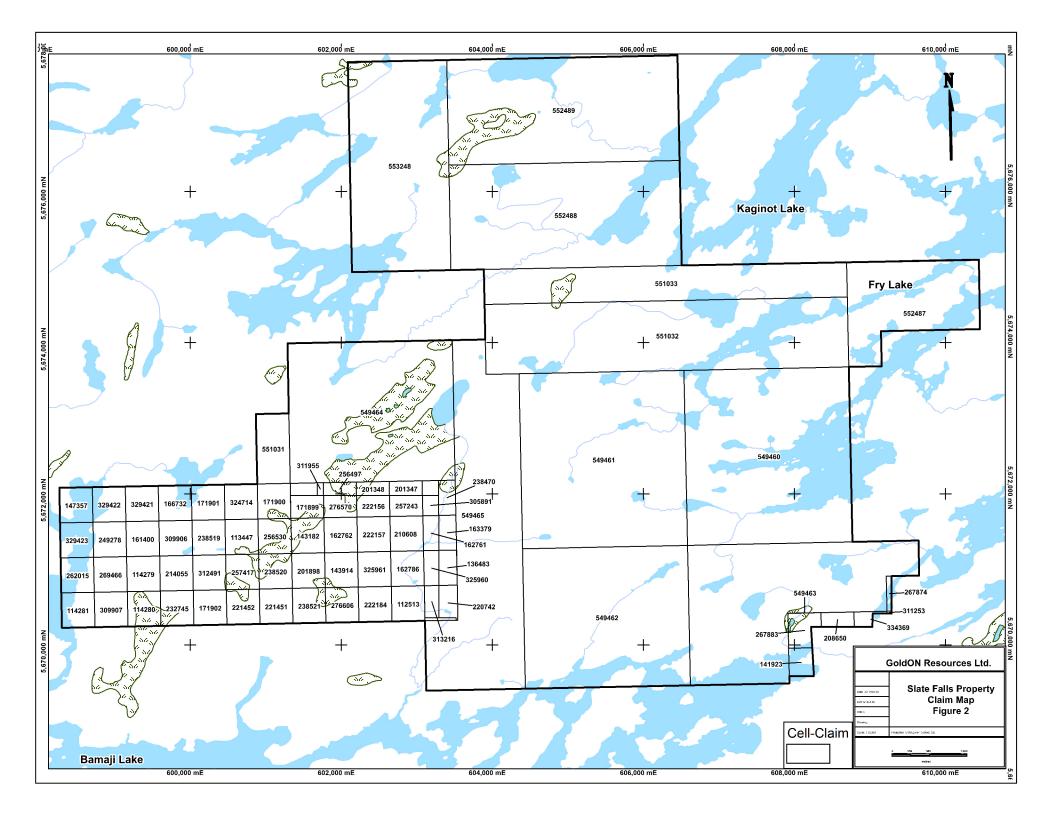
2.0 INTRODUCTION

The objective of the program was to locate and review historical areas of interest based on historical reports, conduct some follow-up rock sampling in these areas and document any other historical work such as outcrop stripping/trenching.

All the work and sample locations were defined using a handheld Garmin GPS. The measurements were plotted using UTM: NAD 83 in Zone 15 metric coordinates. All foot and truck traverses were collected by GPS, saved as separate files and plotted on the various Figures.

The following report details the results of the July 23rd to August 3rd, 2019 prospecting program along with the recommendations for additional exploration programs.


3.0 CELLS-CLAIMS


The Slate Falls Property consists of 13 Multi-cell Mining Claims, 40 Single-Cell Mining Claims and 22 Boundary-Cell Mining Claims, located in the Wesleyan Lake Area and Fry Lake Area. A list of the claims can be found in Table 3 (Appendix V).

4.0 LOCATION, ACCESS, AND TOPOGRAPHY

The Slate Falls property is located approximately 8km's northeast of the First Nation community of Slate Falls, Ontario (Figure 1). The Slate Falls property is accessible by travelling approximately 120km's north of the town of Sioux Lookout along Hwy 516, then turning north on an all-weather road for approximately 140 kilometres to the community of Slate Falls. From Slate Falls access to the central portion of the property is best achieved by boat across to the north shore of Bamaji Lake, then on foot walking north across the east – west trending power line, continuing north to where an old back hoe trail works it's way to the Trail, Sanderson Main, Sanderson East and Sanderson North Zones. Access to the northern portion of the property is best achieved by float plane, see attached maps.

The topography in the area is comprised of moderately flat-lying ground with gentle - moderate rolling hills. The vegetation is generally comprised of a variety of first growth trees. The result is poor-moderate outcrop exposure.

5.0 LOCAL GEOLOGY

5.1 Regional Geology

As per Dinel & Pettigrew (2008).

The Slate Falls Property is located in the central Uchi Subprovince along the Meen-Dempster Greenstone Belt in northwestern Ontario.

The age of volcanic and sedimentary rocks in the Fry Lake area range from 2699 to 2816 Ma, based on 4 U/Pb age dates (Stott and Wilson 1986; Scharer 1989), and represent a volcano-sedimentary sequence of folded mafic to felsic metavolcanic and chemical to clastic metasedimentary rocks, which have historically been interpreted to belong to the Woman, Bamaji, and Billet Lake assemblages (Young 2003; Stott and Corfu 1991).

They are intruded by subvolcanic mafic sills, dikes and stocks, and pretectonic to syntectonic mafic to felsic intrusive rocks and syntectonic to posttectonic, mafic to ultramafic intrusive rocks.

5.2 Property Geology

The Slate Falls property is underlain by a sequence of Archean rocks of the Williams Suite in the Woman Assemblage. These rocks comprise the south-western part of the Meen-Dempster greenstone belt in the Uchi Subprovince of the Superior Structural Province.

Stratigraphic and chronologic relationships of the Meen-Dempster belt and is based upon data from Stott et al 1991. Stott suggests that the Woman Assemblage represents the most primitive crustal rocks of the belt and that they are indicative of oceanic volcanism with local subaqueous to subaerial arc sequences.

The supracrustal rocks in this area are dominated by mafic volcanics with minor amounts of more felsic volcanics and elastic and chemical sediments. Wallace (1985) subdivides the volcanics on the basis of chemistry into two rock groups. A group of tholeitic to komatiitic rocks underlays most of the property and is comprised predominantly of mafic volcanic units, elastic sediments and oxide and sulphide iron formation.

A second group of calc-alkalic rocks, characterized by mafic and intermediate units and extensive banded iron formations, occurs north of the property. A large body of trondhjemite, the North Bamaji Pluton, intrudes the greenstone in the Slate Falls area and is considered part of the supracrustal package.

A broad transition zone occurs at the contact of the intrusion and is typified by an abundance of volcanic xenoliths and roof pendants within the pluton and numerous dykes within the volcanic rocks. The supracrustal rocks are flanked to the north and south by younger granitic complexes.

The supracrustal rocks display a regional foliation which generally strikes east-west with variable dips and is commonly observed to parallel lithological contacts. Two regional fold structures have been identified by Wallace (1985).

The fold axial trace of the Rockmere-Wesleyan Synform strikes east-west across the length of the property with a gentle to moderate eastwardly plunging fold axis. The fold axis of an antiformal structure strikes northeast from the central-northern part of the property in the area of the Sanderson Showing.

6.0 EXPLORATION HISTORY

The first prospecting in the area was during the 1920s following on discoveries in the Red Lake and Pickle Lake areas. Geological mapping was carried out by the Ontario Department of Mines in 1935, and by the Geological Survey of Canada in 1960. Mineral exploration of the property has been carried out by various companies from 1966 - 2017, with most exploration being carried out in the 1980's and 1990's.

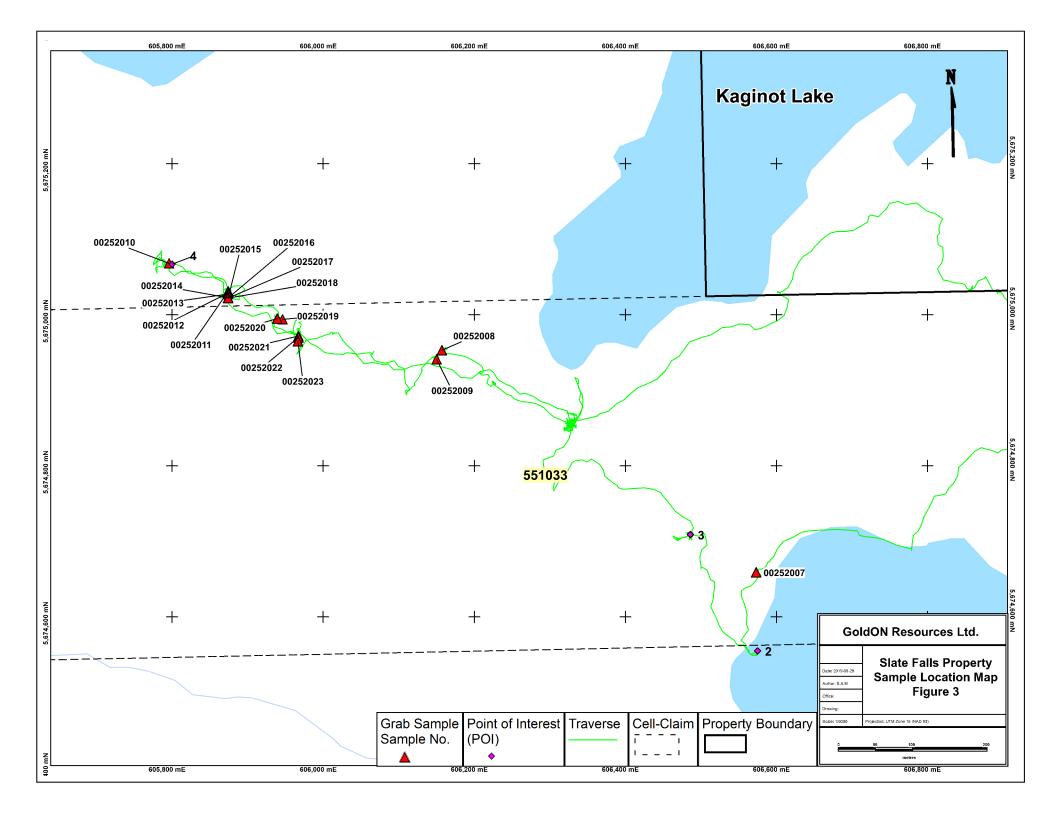
- **1966**: Cochenour Exploration Ltd. drilled 7 holes totaling 369.36m, AFRI Report 52O04NE9642.
- **1966**: Dome Exploration (Canada) Ltd. carried out trenching, AFRI Report 52O04NE9639.
 - **1974**: Umex Corp. drilled 1 hole totaling 70.71m, AFRI Report 52O04NE0012.
- **1981**: Sulpetro Minerals carried out geological mapping, trench mapping and sampling, AFRI Report 52O04NE0010.
- **1983**: D.R. Bell Geological Services carried out a Helicopter-borne aeromagnetic and airborne VLF survey, AFRI Report 52O04NW0037.
- **1984**: D.R. Bell Geological Services carried out a mapping program on a four-claim group held by FTM Resources Inc. They located a vein of economic interest that assayed up to 2.88 oz/ton Au. AFRI Report 52O03NW0035.
- **1984**: Sulpetro Minerals drilled 14 holes totaling 684.07m, AFRI Report 52O04NE0009.
- **1984:** Sulpetro Minerals carried out rock sampling and drill core assay certificates, AFRI Report 52O04NE0008.

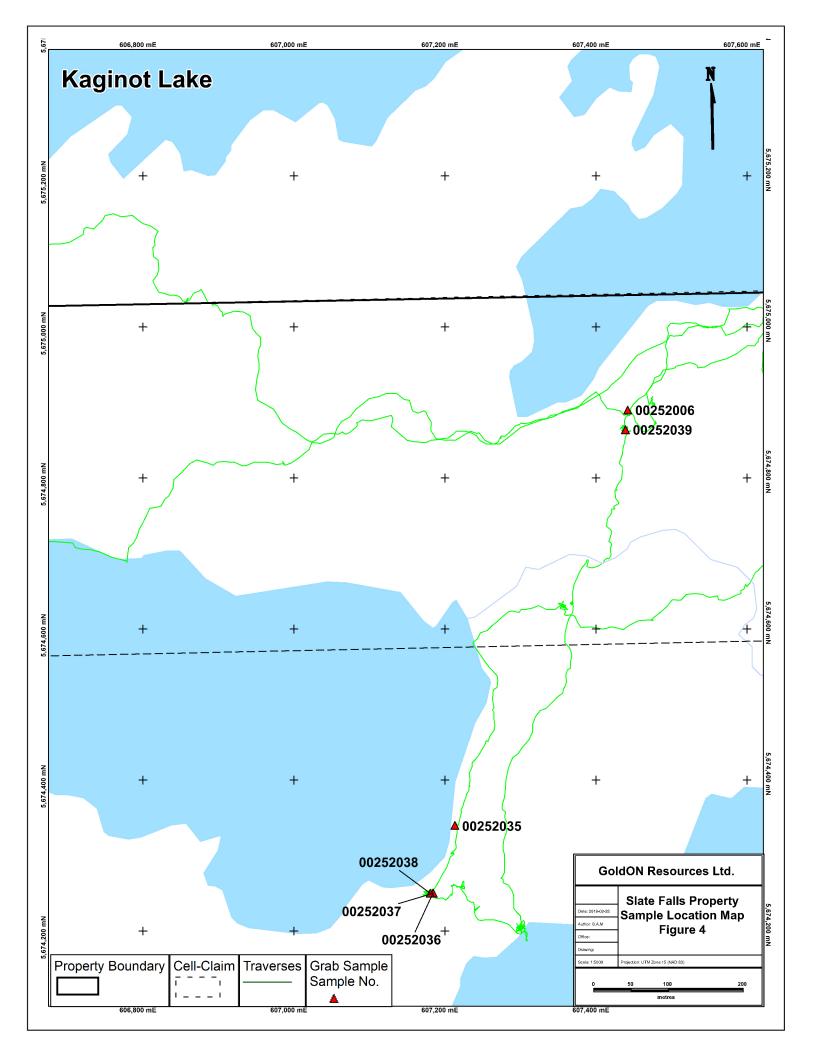
- **1987:** Canlorm Resources carried out a Magnetic and VLF survey, AFRI Report 52O04NE0006 & 52O04NW0023.
- **1988:** Gold Fields Canada Mining Ltd. carried out a helicopter borne aeromagnetic and VLF survey, AFRI Report 52O04NW0014.
- **1989:** Umex Inc. carried out an Airborne magnetic and VLF survey, AFRI Report 52O06SE0017.
- **1995:** D. Parker carried out geological mapping, rock and humus sampling, AFRI Report 52O03NW0001.
- **1996:** D. Parker carried out rock geochemical sampling, AFRI Report 52003NW2001.
- **1997:** Orezone Resources Inc. carried out a helicopter-borne aeromagnetic and VLF survey, AFRI Report 52O03NW0004.
- **1997:** Orezone Resources Inc. carried out prospecting, geological mapping, humus sampling and relogging of historical drill core from Sulpetro Minerals, AFRI Report 52O04NW0019.
- **1997:** Orezone Resources Inc. carried out power stripping at Trail, Sanderson Main, East and North Zones, AFRI Report 52O04NE2001.
- **1997:** D. Parker carried out linecutting and a magnetic survey, AFRI Report 52O04NE2001.
- **2000:** D. Parker carried out trenching, sampling, grid mapping and a mineralogical study on vein material, AFRI Report 52O04NE2002.
- **2002:** Gold Summit Mines Ltd. carried out trenching, channel sampling and trench mapping, AFRI Report 52O03NW2005.
 - **2014:** Twomey carried out a geological review.
- **2017:** Selway and B. Singh carried out an interpretation of historical grab sampling, drilling and geophysics.
- **2017:** GoldON Resources Ltd. carried prospecting and sampling in the southern portion of the property.

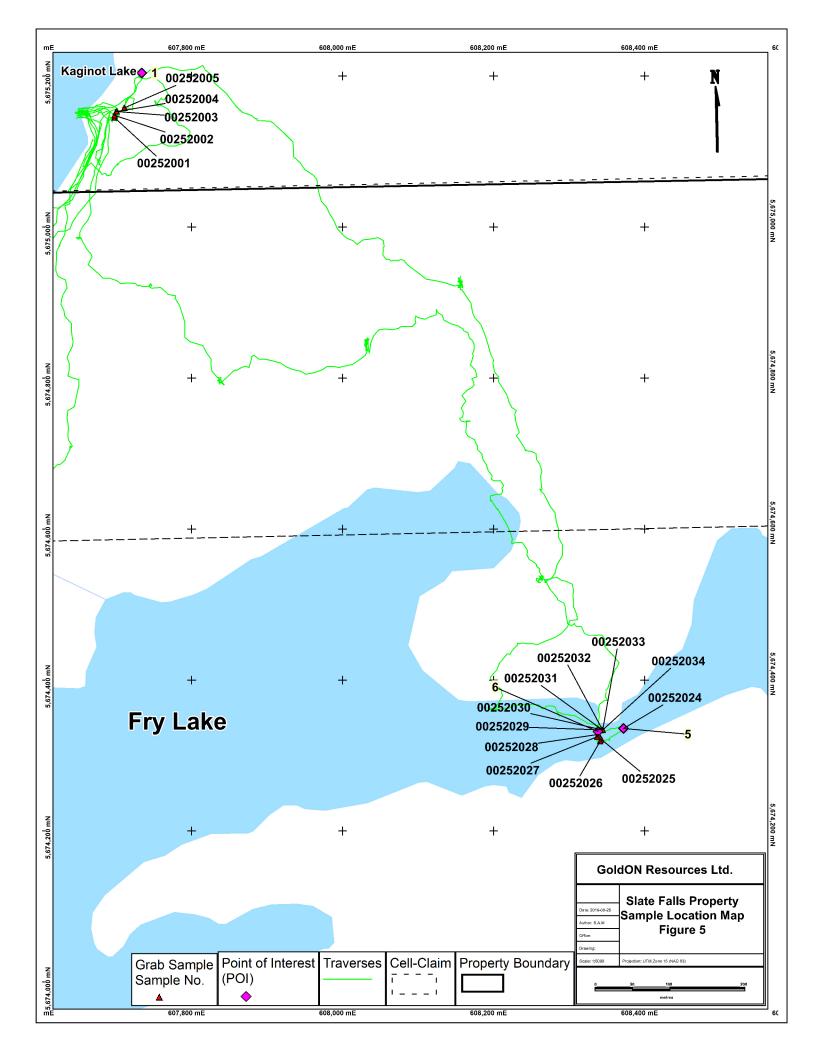
7.0 WORK PROGRAM DESCRIPTION

The program consisted of 4 days of travel, eight days of reconnaissance prospecting/rock and sampling and 2 days of data analyses on the Slate Falls Property.

Thirty-nine rock grab samples were collected during the current work program of which 5 samples were collected on open ground (see Table 1). Grab samples were collected mainly in areas of interpreted magnetic fold axis and hinges.


In addition to the rock samples collected, several "Points of Interest" were collected at various locations, see Table 2. The "Points of Interest" table includes a variety of geological and non-geological information including outcrop photos, notes on local terrain, structural observations etc. and are plotted on Figure 10. More than 70 photos were taken during the prospecting program, a few are presented in Appendix VI. Of the thirty-nine samples collected during the current program, five samples (00252001-00252005) were collected on open ground.


All samples were photographed in the field and a representative sample of each rock sample was kept for future reference.


The work program was based out a fly camp located on the southeast side Kaginot, from here travelling on foot for up to 1.5km's.

All 39 rock samples collected were dropped off at SGS Laboratories in Thunder Bay and sent to Burnaby B.C from there. Rock analysis was by analytical Method Code GE_FAI30V5 & GE_ICP40Q12.

Table 1 (Appendix I) provides a list of the 2019 rock sample numbers (00252001 to 00252039), rock type, alteration, mineralization, and UTM co-ordinates. The rock assay Certificate of Analysis from SGS Laboratories are presented in Appendix II. Table 2 (Appendix III) provides a list of the 2019 Points of Interest and Appendix IV a description of the SGS Laboratories analytical packages.

8.0 RESULTS and CONCLUSIONS

The main objectives of the current program were to prospect several magnetic features located approximately five kilometres northeast of the historical Sanderson Showing.

- -Eleven grab samples (00252024-00252034) were collected in the centre of the west arm of Fry Lake along an interpreted fold-hinge. The eleven samples were collected along an iron-formation situated at the contact between lapilli tuff and gabbro. vicinity of the historical Trail Zone. Four of the eleven samples returned gold grades up to 6ppb Au (sample 00252032). Nine of the eleven samples returned copper grades up to 162ppm Cu (sample 00252031) and five samples returned anomalous Zn grades up to 607ppm (sample 00252033).
- One grab sample (00252007) was collected on the west shore of a rectangular shaped lake located approximately 360 metres south of Kaginot Lake. This sample did not return any anomalous gold grades but did return 2ppb Pd, 43.9ppm Cu, 102ppm Zn & 65.4ppm Zr.
- One grab sample (00252035) was collected on the east shore area of the same lake mentioned above and returned 1ppb Au.
- Three grab samples (00252036-00252038) were collected in the southeast corner of the same lake mentioned above. No anomalous gold grades were returned from the three samples however copper grades up to 82.8ppm were returned from sample 00252036.
- Two grab samples (00252006 & 00252039) were collected approximately 350 metres south of the camp. Sample 00252006 returned <1ppb Au, 11ppb Pd, 126ppm Cu, 138ppm Ni. Sample 00252039 returned <1ppb Au.
- Sixteen grab samples (00252008-00252023) were collected in the vicinity of an interpreted fold axis which is located immediately south of Kaginot Lake. Glassy white quartz veining up to 50 centimeters wide was observed in several locations as well orange colored quartz, samples 00252014-00252018. Three of the sixteen samples returned gold grades up to 5ppb Au (sample 00252021) and two of the sixteen samples returned anomalous Pd grades up to 12ppb (sample 00252015). Sample 00252008 returned 174ppm Cu, 111ppm Zn, 31.6ppm Zr & 18ppm Sb and sample 00252015 returned 87.6ppm Cu, 109ppm Ni, 33ppm Pb & 26ppm W. Sample 00252014 returned 129ppm Ni & 20ppm Pb.
- Five grab samples (00252001-00252005) were collected immediately east of the camp on open ground. Sampling here returned back-ground gold grades from smoky grey-black quartz hosted in weak-moderately sheared intermediate tuff but did return antimony grades up to 15ppm (sample 00252006 & 00252007).

9.0 **RECOMMENDATIONS**

- Conduct additional prospecting.
- Carry out several orientation soil sampling surveys.
- Conduct a lake sediment sampling program.
- Carry out a high-resolution magnetic survey over the entire property.

10.0 PERSONNEL

The following is a list of persons that carried out the prospecting and sampling program on the Slate Falls Property:

Bruce MacLachlan (Supervisor) 222 Emerald Street, Timmins, Ontario, P4R 1N3 (Travel & field work, 12 days)

(1 day's report preparation)

Coleman Robertson 815a Maitland Ave. Ottawa, Ontario K2A 2S2 (Travel & field work, 10 days) (1 day's report preparation) 11 Days

13 Days

Total Days 24

12.0 STATEMENT of QUALIFICATIONS

- I, Bruce A. MacLachlan, of the City of Timmins, Province of Ontario do hereby certify that:
- I am a geological technician and prospector residing at: 222 Emerald Street, Timmins, Ontario, P4R 1N3.
- I have continuously practised my profession for over 36 years. I have prepared reports, conducted, supervised and managed exploration programs for several major and junior mining companies including Noranda Exploration Company Limited, CanAlaska Uranium Ltd., Noront Resources Ltd., Bold Ventures Inc. and Canadian Orebodies Inc.
- As author of this report and supervisor of the work program, I am familiar with the material covered in the report.
- 5. I have no direct or indirect interest in the Slate Falls Property.
- Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements.

DATED at Timmins, Ontario, this 11th day of September 2019.

"Bruce A. MacLachlan" P-Geo (Limited) APGO No. 1025

(Limited) APGO No. 1023

(Signed and Sealed)

Bruce A. MacLachen CE A. MacLachlan C 2099840 Ontario Inc. 1025

"Emerald Geological Services"

13.0 REFERENCES

Dinel, E. and Pettigrew, N. 2008. Ontario Geological Survey, MAP P.3587, Precambrian Geology of the Fry Lake Area, West sheet, North-western Ontario, scale 1:20,000.

Dinel, E. and Pettigrew, N. 2008. Ontario Geological Survey, Open File Report 6208, Archean Bedrock Mapping in the Fry Lake Area, Meen-Dempster Greenstone Belt, North-western Ontario.

Previous government work and past mineral exploration of the Fry Lake area is summarized by Sage, Breaks and Troop (1973), Wallace (1983), Sage and Breaks (1982), Stott and Wallace (1984), Wallace (1985), Stott and Corfu (1991), Corfu and Stott (1993a), Seim (1993), and Corfu and Stott (1996).

Additional geological and geophysical data is also available from assessment files located in the Resident Geologist Office, Ministry of Northern Development and Mines, Thunder Bay, and in the Geology of Ontario Special Volume (Ontario Geological Survey 1991).

Hamilton, M.A., Stott, G.M., Dinel, E. and Pettigrew, N. 2007. Geochronology and revised tectonic assemblage subdivisions of the Fry Lake area, central Uchi Subprovince; in Summary of Field Work and Other Activities 2007, Ontario Geological Survey, Open File Report 6213, p.39-1 to 39-24.

Dome Exploration (Canada) Limited, 1966: Trenching on Claims, Wesleyan Lake. Ontario Ministry of Northern Development and Mines, AFRI 52004NE9639.

Gertzbein, P. M., B. V. D'Silva and D. P. Parker, 1999: Report of work, Linecutting and magnetic survey, Slate Falls Project, North Bamaji Lake area, Patricia Mining Division, District of Kenora, Ontario. Ontario Ministry of Northern Development and Mines, AFRI 52003NW2002.

D'Silva, B. V. and D. P. Parker, 2000: Ontario Prospectors Assistance Program, 1999 Final submission, Slate Falls Project, North Bamaji Lake Area, Patricia Mining Division, District of Kenora, Ontario. Ontario Ministry of Northern Development and Mines, AFRI 52004NE2002.

Nelson, B., 2002: Report on 2002 summer exploration program at the Slate Falls Property of Gold Summit Mines Ltd., Wesleyan Lake and Fry Lake Areas, Patricia Mining Division, Ontario, NTS 52O/3 and 52O/4. Ontario Ministry of Northern Development and Mines, AFRI 52O03NW2005.

Orezone Resources Inc., 1997: Slate Falls Project: Report on prospecting, sampling and mapping, June 18 to July 3, 1997. Ontario Ministry of Northern Development and Mines, AFRI 52O03NW0019.

Parker, D. P., B. V. D'Silva and P. M. Gertzbein, 1995: Geological Report of the Slate Falls Property, North Bamaji Lake Area, Patricia Mining Division, District of Kenora, Ontario. Ontario Prospectors Assistance Program, 1995 Final Report. Ontario Ministry of Northern Development and Mines, AFRI 52O03NW0001.

Parker, D. P., 1997: Slate Falls Property, Report of stripping program for Orezone Resources Inc. Ontario Ministry of Northern Development and Mines, AFRI 52004NE2001.

Sulpetro Minerals Ltd., 1984: Diamond Drilling, Wesleyan Lake Area. Ontario Ministry of Northern Development and Mines, AFRI 52O04NE0009.

Sulpetro Minerals Ltd., 1984: Assay certificates, Wesleyan Lake Area diamond drilling. Ontario Ministry of Northern Development and Mines, AFRI 52O04NE0008.

Umex Corporation Limited, 1974: Diamond Drilling, Area of Wesleyan Lake. Ontario Ministry of Northern Development and Mines, AFRI 52004NE0012.

Zalnieriunas, R. V., 1983: Report on geological survey, Bamaji Lake Option, Project 3357, NTS 52 O/4, Sulpetro Minerals Limited. Ontario Ministry of Northern Development and Mines, AFRI 52O04NE0010.

APPENDIX I

Rock Sample Descriptions (Table 1)

Grab Sample Descriptions	Table-1
---------------------------------	---------

Sample_No.	Date	Easting	Northing	Elevation	Au (ppb) GE_FAI30V5	Area	Description	Claim_Cell	Sample_Type	Rock_Type	Rock_Code
00252001	28-Jul-19	607698	5675145	389	<1	East of Kaginot Lake	Glassy white-grey-black quartz vein in outcrop, difficult to determine orientation. Host rock is possibly intermediate tuff, bands of fine-grained biotite in places, possible trace pyrite specks, minor rust.	-	Outcrop	Quartz Vein	QV
00252002	28-Jul-19	607698	5675148	389	<1	East of Kaginot Lake	Sugary to glassy smoky grey-black quartz, minor kspar.	-	Outcrop	Quartz Vein	QV
00252003	28-Jul-19	607700	5675153	391	<1	East of Kaginot Lake	Glassy white-grey-black quartz vein in intermediate tuff, minor-moderate fine biotite in the wall rock.	-	Outcrop	Quartz Vein	QV
00252004	28-Jul-19	607701	5675153	391	<1	East of Kaginot Lake	Smoky dark grey-black-white quartz bleb in weakly-moderately sheared intermediate tuff. Shear is ~0.5m wide, strikes 000/50 degrees E.	-	Outcrop	Quartz Vein	QV
00252005	28-Jul-19	607711	5675158	396	<1	East of Kaginot Lake	Smoky black quartz in weakly sheared outcrop.	-	Outcrop	Quartz Vein	QV
00252006	30-Jul-19	607442	5674890	398	<1	Southeast of Kaginot Lake	Intermediate tuff with minor-moderate carb, trace-1% fine pyrite, trace chalcopyrite. Quartz eyes in places, fine-grained/siliceous in places.	551033	Outcrop	Intermediate Tuff	INT
00252007	30-Jul-19	606573	5674659	386	<1	South of Kaginot Lake	Intermediate tuff with minor rust, trace pyrite. Weakly foliated at 080 degrees.	551033	Outcrop	Intermediate Tuff	INT
00252008	30-Jul-19	606157	5674953	400	<1	South of Kaginot Lake	Intermediate tuff with minor-moderate rust, weak-moderate foliation, trace pyrite. Minor orange-brown rusty band.	551033	Outcrop	Intermediate Tuff	INT
00252009	30-Jul-19	606150	5674941	398	<1	South of Kaginot Lake	5cm quartz vein in foliated/sheared outcrop at 050/55 degrees SE. Glassy, white to smoky grey-black, trace pyrite.	551033	Outcrop	Quartz Vein	QV
00252010	30-Jul-19	605796	5675068	403	<1	South of Kaginot Lake	~10cm quartz vein in E-dipping tuff. Glassy, white, local hematite, local granular texture.	552488	Outcrop	Quartz Vein	QV
00252011	30-Jul-19	605874	5675031	410	<1	South of Kaginot Lake	0.5m grey-white quartz vein in shear. Minor tourmaline patches and hematite or kspar patches/stringers. 180/fairly steep dip to W, some 40 degree fractures as well.	552488	Outcrop	Quartz Vein	QV
00252012	30-Jul-19	605874	5675029	410	<1	South of Kaginot Lake	Same vein as previous. Glassy, white, minor-moderate tourmaline patches, minor hematite. ~30cm wide here.	552488	Outcrop	Quartz Vein	QV
00252013	30-Jul-19	605874	5675027.5	410	<1	South of Kaginot Lake	Same vein as previous. Glassy, white-grey, minor-moderate tourmaline patches, minor hematite. ~10-15cm wide here.	552488	Outcrop	Quartz Vein	QV
00252014	30-Jul-19	605874	5675022.5	410	<1	South of Kaginot Lake	Same vein/location as previous. Glassy to sugary orange-red-white quartz. Minor <1mm black stringers/fractures (tourmaline?), minor-moderate hematite.	552488	Outcrop	Quartz Vein	QV
00252015	30-Jul-19	605874	5675022.4	410	2	South of Kaginot Lake	Same vein/location as previous. Glassy to sugary, orange-white to grey-black quartz. Minor-moderate hematite, trace-1% pyrite.	552488	Outcrop	Quartz Vein	QV
00252016	30-Jul-19	605874	5675022.3	410	<1	South of Kaginot Lake	Same vein as previous. Glassy to sugary, orange-white quartz, minor-moderate hematite. Trace-0.5% visible pyrite cubes, some large cubic rusted out spaces within the quartz.	552488	Outcrop	Quartz Vein	QV
00252017	30-Jul-19	605874	5675022.2	410	<1	South of Kaginot Lake	Same vein/location as previous. Glassy to sugary orange-pink-white quartz. Trace-1% pyrite, some rusty other sulphides with orange rust (sphalerite?). Some yellow alteration, minor black quartz with pyrite.	552488	Outcrop	Quartz Vein	QV
00252018	30-Jul-19	605874	5675022.1	410	<1	South of Kaginot Lake	Same vein/location as previous. Glassy to sugary pink-orange-white quartz. Minor-moderate hematite, minor <1mm tourmaline stringers and patches.	552488	Outcrop	Quartz Vein	QV
00252019	30-Jul-19	605946	5674994	404	<1	South of Kaginot Lake	Glassy white quartz from fractured outcrop, minor-moderate tourmaline, 1cm vein and patches. Outcrop below shows a 16cm, 155 degree subvertical vein.	551033	Outcrop	Quartz Vein	QV
00252020	30-Jul-19	605939	5674995	406	3	South of Kaginot Lake	Glassy white to locally orange quartz vein. 30cm wide, 115 degrees.	551033	Outcrop	Quartz Vein	QV
00252021	30-Jul-19	605967	5674972	410	5	South of Kaginot Lake	0.5m glassy white quartz vein, locally orange, 010 degrees/subvertical.	551033	Outcrop	Quartz Vein	QV
00252022	30-Jul-19	605967	5674970	410	<1	South of Kaginot Lake	Same vein as previous, 2m to S. 0.5m, glassy, white, locally orange.	551033	Outcrop	Quartz Vein	QV
00252023	30-Jul-19	605966.5	5674965	410	<1	South of Kaginot Lake	Same vein as previous. 0.5m, glassy, white, locally orange, minor tourmaline.	551033	Outcrop	Quartz Vein	QV

1						North Shore of West Arm 1	Banded Iron Formation with minor-moderate Fe-carb fractures. More				ı
00252024	31-Jul-19	608372	5674336	377	<1	of Fry Lake	chert than iron minerals in this sample.	551032	Outcrop	Banded Iron Formation	BIF
00252025	31-Jul-19	608343	5674321	379	<1	North Shore of West Arm of Fry Lake	~10cm glassy, white-grey to smoky grey quartz block taken from lake but basically in places on top of shear.	551032	Outcrop	Quartz Vein	QV
00252026	31-Jul-19	608341	5674319	379	<1	North Shore of West Arm of Fry Lake	Up to 8cm glassy, white-grey quartz vein in sheared iron formation. Some wall rock and minor black tourmaline (?).	551032	Outcrop	Quartz Vein	QV
00252027	31-Jul-19	608337	5674325	381	<1	North Shore of West Arm of Fry Lake	Glassy, white-orange to locally smoky grey quartz vein/bleb in shear.	551032	Outcrop	Quartz Vein	QV
00252028	31-Jul-19	608339	5674328	379	<1	North Shore of West Arm of Fry Lake	Moderately sheared, quartz-rich iron formation.	551032	Outcrop	Iron Formation	IF
00252029	31-Jul-19	608344	5674334	380	<1	North Shore of West Arm of Fry Lake	Glassy, orange-white quartz block with moderate Fe-carb and minor-moderate hematite alteration.	551032	Frost Heave	Quartz Vein	QV
00252030	31-Jul-19	608344.1	5674334	380	2	North Shore of West Arm of Fry Lake	Glassy, white-grey quartz block with moderately sheared wall rock, moderate Fe-carb alteration, minor green-coloured mica.	551032	Frost Heave	Quartz Vein	QV
00252031	31-Jul-19	608344.2	5674334	380	<1	North Shore of West Arm of Fry Lake	Glassy white-orange to grey-black quartz block with minor sheared wall rock, minor-moderate Fe-carb and hematite alteration.	551032	Frost Heave	Quartz Vein	QV
00252032	31-Jul-19	608344.3	5674334	380	6	North Shore of West Arm of Fry Lake	Quartz-carb flooded iron formation (?) with minor-moderate Fe-carb alteration, 2-3% pyrite.	551032	Frost Heave	Iron Formation	IF
00252033	31-Jul-19	608344.4	5674334	380	3	North Shore of West Arm of Fry Lake	3-4cm glassy, white-grey quartz vein with minor sheared wall rock, moderate Fe-carb.	551032	Frost Heave	Quartz Vein	QV
00252034	31-Jul-19	608344.5	5674334	380	2	North Shore of West Arm of Fry Lake	Glassy, white-grey, rusty quartz block with moderate Fe-carb alteration, some pyritic fragments of wall rock within, trace-1% pyrite overall.	551032	Frost Heave	Quartz Vein	QV
252035	01-Aug-19	607213	5674340	380	1	North of West Arm of Fry Lake	5-10cm glassy, white-grey to locally smoky black quartz vein in intermediate volcanic shear. Some slivers of sheared wall rock. Shear trends 255 degrees/subvertical or steep dip to W.	551032	Outcrop	Quartz Vein	QV
252036	01-Aug-19	607184	5674250	386	<1	North of West Arm of Fry Lake	Sugary dark grey-white quartz vein in sheared mafic volcanic. Trace pyrite, chalcopyrite and 0.5% of an unknown grey sulphide, more concentrated in mafic chloritic fragments. Frost heave on beach.	551032	Frost Heave	Quartz Vein	QV
252037	01-Aug-19	607184.5	5674250	386	<1	North of West Arm of Fry Lake	Sugary dark grey-white, rusty quartz vein in sheared mafic volcanic. Trace pyrite, trace-0.5% unknown grey sulphide. Frost heave on beach.	551032	Frost Heave	Quartz Vein	QV
252038	01-Aug-19	607180.5	5674250	386	<1	North of West Arm of Hry	Sugary, dark grey-white quartz vein with numerous rusty fractures. Trace-0.5% fine pyrite, 5-10% of unknown grey sulphide. Frost heave on beach.	551032	Frost Heave	Quartz Vein	QV
252039	01-Aug-19	607439	5674864	397	<1	Southeast of Kaginot Lake	Glassy-sugary, white-grey quartz vein in intermediate volcanic outcrop. Minor-moderate orange-brown rust, minor chloritic fragments. Orientation difficult to determine.	551033	Outcrop	Quartz Vein	QV

APPENDIX II

Rock Assay Certificates (SGS Labs)

ANALYSIS REPORT BBM19-00645

COD SGS MINERALS - GEOCHEM VANCOUVER GOLDON RESOURCES- BRUCE MACLACHLAN SGS CANADA INC 3260 PRODUCTION WAY **BURNABY V5A 4W4** BC

CANADA

Order Number GoldON-1/39 Rocks Date Received 07-Aug-2019 **Project GOLDON RESOURCES** Date Analysed 08-Aug-2019 - 28-Aug-2019 Submission Number GoldON-1/39 Rocks **Date Completed** 28-Aug-2019 SGS Order Number BBM19-00645 Number of Samples 39

Methods Summary	Methods Summary									
Number of Sample	Method Code	<u>Description</u>								
39	G_LOG	Sample Registration Fee								
39	G_WGH_KG	Weight of samples received								
39	GE_FAI30V5	Au, Pt, Pd, FAS, exploration grade, ICP-AES, 30g-5mL								
39	GE_ICP40Q12	4 Acid Digest (HCL/HCLO4/HF/HNO3), ICP, 0.2g-12ml								

Storage

Store for 90 days **Pulp** Reject Store for 30 days

Authorised Signatory

Gerald Chik Laboratory Manager

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

> - not analysed -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 1 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	Wtkg	@Au	@Pt	@Pd	@Ag	@AI
Method	G_WGH_KG	GE_FAI30V5	GE_FAI30V5	GE_FAI30V5	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.01	1	10	1	2	0.01
Upper Limit		10,000	10,000	10,000	100	15
Unit	kg	ppb	ppb	ppb	ppm m / m	%
00252001	0.53	<1	<10	<1	<2	0.23
00252002	0.57	<1	<10	<1	<2	1.59
00252003	0.49	<1	<10	<1	<2	2.75
00252004	0.32	<1	<10	<1	<2	3.09
00252005	0.67	<1	<10	<1	<2	7.50
00252006	0.43	<1	<10	11	<2	8.74
00252007	0.44	<1	<10	2	<2	9.45
00252008	0.63	<1	<10	<1	<2	8.66
00252009	0.33	<1	<10	<1	<2	1.88
00252010	0.47	<1	<10	<1	<2	0.2
00252011	0.31	<1	<10	<1	<2	0.45
00252012	0.34	<1	<10	<1	<2	0.34
00252013	0.56	<1	<10	<1	<2	0.32
00252014	0.61	<1	<10	<1	<2	0.09
00252015	0.36	2	<10	12	<2	0.45
00252016	0.55	<1	<10	<1	<2	0.0
00252017	0.43	<1	<10	3	<2	0.12
00252018	0.60	<1	<10	<1	<2	0.02
00252019	0.48	<1	<10	<1	<2	1.7
00252020	0.34	3	<10	<1	<2	0.0
00252021	0.31	5	<10	<1	<2	0.06
00252022	0.50	<1	<10	<1	<2	0.02
00252023	0.59	<1	<10	<1	<2	0.12
00252024	0.46	<1	<10	<1	<2	0.6
00252025	0.52	<1	<10	<1	<2	0.0
00252026	0.73	<1	<10	<1	<2	0.4
00252027	0.39	<1	<10	<1	<2	0.1
00252028	0.38	<1	<10	<1	<2	0.59
00252029	0.27	<1	<10	<1	<2	0.1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 2 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	Wtkg	@Au	@Pt	@Pd	@Ag	@AI
Method	G_WGH_KG	GE_FAI30V5	GE_FAI30V5	GE_FAI30V5	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.01	1	10	1	2	0.01
Upper Limit		10,000	10,000	10,000	100	15
Unit	kg	ppb	ppb	ppb	ppm m / m	%
00252030	0.35	2	<10	<1	<2	1.1
00252031	0.33	<1	<10	<1	<2	0.29
00252032	0.75	6	<10	<1	<2	0.50
00252033	0.56	3	<10	<1	<2	2.0
00252034	0.39	2	<10	<1	<2	1.2
00252035	0.47	1	<10	<1	<2	0.4
00252036	0.56	<1	<10	<1	<2	0.0
00252037	0.26	<1	<10	<1	<2	0.0
00252038	0.60	<1	<10	<1	<2	0.0
00252039	0.42	<1	<10	<1	<2	0.2
*Dup 00252039	-	<1	<10	<1	<2	0.2
*Std OREAS520	-	-	-	-	<2	5.9
*BIk BLANK	-	<1	<10	<1	-	
*Rep 00252016	-	<1	<10	1	-	
*Rep 00252024	-	<1	<10	<1	-	
*Std PGMS-24	-	855	1090	4830	-	
*BIk BLANK	-	<1	<10	<1	-	
*Std OREAS520	-	-	-	-	<2	5.9
*Std OREAS502B	-	-	-	-	<2	7.4
*Blk BLANK	-	-	-	-	<2	<0.0

Element Method Lower Limit Upper Limit	@As GE_ICP40Q12 3 10,000	@Ba GE_ICP40Q12 1 10,000	@Be GE_ICP40Q12 0.5 2,500	@Bi GE_ICP40Q12 5 10,000	@Ca GE_ICP40Q12 0.01 15	@Cd GE_ICP40Q12 1 10,000
Unit	ppm m / m	ppm m / m	ppm m / m	ppm m/m	%	ppm m / m
00252001	<3	19	<0.5	<5	0.23	<1
00252002	<3	1497	<0.5	<5	0.24	<1
00252003	<3	14	<0.5	<5	0.40	<1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 3 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@As	@Ba	@Be	@Bi	@Ca	@Cd
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	3	1	0.5	5	0.01	1
Upper Limit	10,000	10,000	2,500	10,000	15	10,000
Unit	ppm m / m	%	ppm m / m			
00252004	<3	46	<0.5	<5	1.12	<1
00252005	<3	145	1.1	<5	4.90	<1
00252006	<3	45	0.5	<5	5.45	<1
00252007	<3	18	1.1	7	6.09	<1
00252008	<3	113	1.3	23	4.61	<1
00252009	<3	38	<0.5	<5	1.47	<1
00252010	<3	10	<0.5	<5	0.16	<1
00252011	<3	3	<0.5	<5	0.03	<1
00252012	<3	<1	<0.5	<5	0.02	<1
00252013	<3	1	<0.5	<5	0.02	<1
00252014	<3	3	<0.5	<5	0.04	<1
00252015	<3	22	<0.5	<5	0.01	<1
00252016	<3	<1	<0.5	<5	<0.01	<1
00252017	<3	4	<0.5	<5	0.01	<1
00252018	<3	2	<0.5	<5	0.01	<1
00252019	<3	<1	<0.5	13	0.50	<1
00252020	<3	2	<0.5	<5	0.04	<1
00252021	<3	2	<0.5	<5	0.01	<1
00252022	<3	2	<0.5	<5	0.02	<1
00252023	<3	2	<0.5	<5	0.02	<1
00252024	<3	<1	1.5	<5	1.40	1
00252025	<3	15	<0.5	<5	0.22	<1
00252026	<3	10	<0.5	<5	0.46	<1
00252027	<3	<1	<0.5	<5	0.21	<1
00252028	<3	11	<0.5	14	>15.00	<1
00252029	<3	<1	69.6	<5	0.21	<1
00252030	<3	27	0.6	6	8.49	<1
00252031	<3	<1	12.8	<5	0.09	<1
00252032	3	3	<0.5	6	5.91	<1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 4 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@As	@Ba	@Be	@Bi	@Ca	@Cd
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	3	1	0.5	5	0.01	1
Upper Limit	10,000	10,000	2,500	10,000	15	10,000
Unit	ppm m / m	%	ppm m / m			
00252033	<3	<1	<0.5	<5	0.73	2
00252034	<3	1	<0.5	<5	0.04	<1
00252035	<3	11	<0.5	<5	6.01	<1
00252036	<3	5	<0.5	<5	0.93	<1
00252037	<3	12	<0.5	<5	1.18	<1
00252038	<3	8	<0.5	<5	1.42	<1
00252039	4	8	<0.5	<5	0.08	<1
*Dup 00252039	<3	7	<0.5	<5	0.08	<1
*Std OREAS520	164	806	1.5	14	4.11	<1
*Std OREAS520	167	362	1.6	7	4.15	<1
*Std OREAS502B	15	964	3.0	10	2.73	<1
*BIk BLANK	<3	<1	<0.5	<5	<0.01	<

Element	@Co	@Cr	@Cu	@Fe	@K	@La
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	1	1	0.5	0.01	0.01	0.5
Upper Limit	10,000	10,000	10,000	15	15	10,000
Unit	ppm m / m	ppm m / m	ppm m / m	%	%	ppm m / m
00252001	<1	18	1.2	0.66	0.04	<0.5
00252002	2	29	1.3	1.27	0.27	<0.5
00252003	23	34	<0.5	5.08	0.03	<0.5
00252004	21	93	2.6	4.30	0.12	0.6
00252005	30	75	1.2	6.14	0.25	0.9
00252006	50	240	126	8.04	0.12	0.9
00252007	34	47	43.9	8.17	0.07	8.2
00252008	37	120	174	7.50	0.26	15.9
00252009	9	30	15.6	1.39	0.06	1.8
00252010	<1	19	3.0	0.70	0.02	0.6
00252011	<1	15	1.0	0.81	0.02	<0.5

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 5 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@Co	@Cr	@Cu	@Fe	@K	@La
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	1	1	0.5	0.01	0.01	0.5
Upper Limit	10,000	10,000	10,000	15	15	10,000
Unit	ppm m / m	ppm m / m	ppm m / m	%	%	ppm m / m
00252012	<1	6	1.2	0.80	<0.01	<0.5
00252013	4	27	4.1	1.03	<0.01	<0.5
00252014	2	39	5.5	2.36	<0.01	<0.5
00252015	9	34	87.6	5.88	0.09	<0.5
00252016	42	37	8.8	2.27	<0.01	<0.5
00252017	4	35	34.3	3.96	0.01	<0.5
00252018	<1	30	3.0	1.09	<0.01	<0.5
00252019	3	22	2.4	1.22	<0.01	<0.5
00252020	<1	28	3.2	0.72	<0.01	<0.5
00252021	2	30	3.5	0.90	<0.01	<0.5
00252022	<1	28	1.6	0.65	<0.01	<0.5
00252023	<1	20	1.4	0.69	<0.01	<0.5
00252024	<1	28	93.6	>15.00	0.02	4.7
00252025	<1	37	1.4	0.83	<0.01	<0.5
00252026	2	42	2.3	1.75	<0.01	0.7
00252027	1	55	32.7	2.79	<0.01	2.5
00252028	3	4	83.2	13.94	0.04	2.5
00252029	2	30	63.6	2.79	<0.01	5.7
00252030	5	146	61.8	8.83	0.29	14.2
00252031	1	38	162	3.72	<0.01	1.0
00252032	7	38	156	7.93	0.03	7.0
00252033	9	39	146	9.03	0.01	6.0
00252034	2	62	73.9	5.84	0.04	<0.5
00252035	1	24	3.2	0.73	0.01	<0.5
00252036	4	24	82.8	1.97	0.02	3.4
00252037	4	27	71.1	1.74	0.03	1.7
00252038	1	18	43.3	8.49	0.01	1.9
00252039	1	19	5.8	1.00	0.02	<0.5
*Dup 00252039	1	15	4.2	0.99	0.02	<0.5

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 6 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Order Number Project Submission Number

Number of Samples

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@Co	@Cr	@Cu	@Fe	@K	@La
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	1	1	0.5	0.01	0.01	0.5
Upper Limit	10,000	10,000	10,000	15	15	10,000
Unit	ppm m / m	ppm m / m	ppm m / m	%	%	ppm m / m
*Std OREAS520	200	28	2872	>15.00	3.51	86.6
*Std OREAS520	206	28	2990	>15.00	3.35	79.2
*Std OREAS502B	19	62	7223	5.72	3.01	29.0
*BIk BLANK	<1	1	<0.5	<0.01	<0.01	<0.5

Element	@Li	@Mg	@Mn	@Mo	@Ni	@Na
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	1	0.01	2	1	1	0.01
Upper Limit	10,000	15	10,000	10,000	10,000	15
Unit	ppm m / m	%	ppm m / m	ppm m / m	ppm m / m	%
00252001	<1	0.06	100	3	3	0.10
00252002	2	0.34	142	3	8	0.60
00252003	12	2.10	745	3	49	0.13
00252004	12	1.83	704	3	51	0.31
00252005	18	2.85	1268	1	68	2.48
00252006	17	4.76	1316	<1	138	1.90
00252007	10	2.15	1358	1	41	2.0
00252008	15	3.39	1143	1	82	2.58
00252009	3	0.34	363	3	26	0.82
00252010	<1	0.03	133	3	3	0.16
00252011	<1	0.11	79	2	2	0.05
00252012	<1	0.08	76	2	3	0.05
00252013	<1	0.08	78	3	7	0.04
00252014	<1	0.04	76	6	129	0.02
00252015	<1	0.07	80	5	109	0.03
00252016	<1	<0.01	68	5	56	<0.01
00252017	<1	0.03	73	6	117	0.0
00252018	<1	<0.01	58	4	43	<0.0
00252019	<1	0.41	104	3	4	0.1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 7 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@Li	@Mg	@Mn	@Mo	@Ni	@Na
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	1	0.01	2	1	1	0.01
Upper Limit	10,000	15	10,000	10,000	10,000	15
Unit	ppm m / m	%	ppm m / m	ppm m / m	ppm m / m	%
00252020	<1	<0.01	80	3	2	<0.01
00252021	<1	0.02	72	4	4	0.01
00252022	<1	<0.01	75	4	2	0.01
00252023	<1	0.03	74	3	2	0.02
00252024	1	1.07	890	1	5	<0.01
00252025	<1	0.03	307	4	2	<0.01
00252026	<1	0.18	398	4	5	0.01
00252027	<1	0.04	315	4	4	<0.01
00252028	<1	3.15	7951	<1	14	<0.01
00252029	<1	0.05	404	2	5	<0.01
00252030	5	1.79	2152	2	54	<0.01
00252031	<1	0.12	206	3	10	<0.01
00252032	2	1.49	1135	3	43	<0.01
00252033	3	0.65	739	4	23	<0.01
00252034	3	0.31	162	4	6	<0.01
00252035	<1	0.08	615	3	2	0.16
00252036	<1	0.14	192	3	4	<0.01
00252037	<1	0.12	218	3	2	<0.01
00252038	<1	1.01	950	2	<1	0.02
00252039	<1	0.14	120	3	4	0.05
*Dup 00252039	<1	0.16	119	3	4	0.04
*Std OREAS520	18	1.23	2569	56	72	1.33
*Std OREAS520	18	1.18	2458	59	66	1.32
*Std OREAS502B	30	1.50	578	237	37	2.00
*BIk BLANK	<1	<0.01	<2	<1	<1	0.01

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 8 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Order Number Project Submission Number

Number of Samples

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@P	@Pb	@S	@Sb	@Sc	@Sn
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.01	2	0.01	5	0.5	10
Upper Limit	15	10,000	5	10,000	10,000	10,000
Unit	%	ppm m / m	%	ppm m / m	ppm m / m	ppm m / m
00252001	<0.01	<2	<0.01	<5	<0.5	<10
00252002	<0.01	<2	<0.01	<5	0.6	<10
00252003	<0.01	<2	<0.01	<5	1.5	<10
00252004	0.03	<2	<0.01	5	12.2	<10
00252005	0.03	<2	<0.01	11	19.5	<10
00252006	0.02	<2	<0.01	15	35.4	<10
00252007	0.06	<2	0.09	15	28.2	<10
00252008	0.09	<2	0.30	18	28.4	<10
00252009	0.06	<2	0.02	<5	2.5	<10
00252010	0.01	<2	<0.01	<5	0.6	<10
00252011	<0.01	<2	<0.01	<5	0.7	<10
00252012	<0.01	<2	<0.01	<5	<0.5	<10
00252013	<0.01	<2	0.13	<5	<0.5	<10
00252014	<0.01	20	0.14	<5	<0.5	<10
00252015	<0.01	33	0.32	<5	1.3	<10
00252016	<0.01	6	0.78	<5	<0.5	<10
00252017	<0.01	32	0.23	<5	<0.5	<10
00252018	<0.01	8	<0.01	<5	<0.5	<10
00252019	<0.01	<2	<0.01	<5	1.3	<10
00252020	<0.01	<2	<0.01	<5	<0.5	<10
00252021	<0.01	<2	0.02	<5	<0.5	<10
00252022	<0.01	<2	<0.01	<5	<0.5	<10
00252023	<0.01	<2	<0.01	<5	<0.5	<1(
00252024	0.02	15	0.10	<5	2.5	<10
00252025	<0.01	<2	<0.01	<5	<0.5	<10
00252026	0.01	<2	<0.01	<5	1.5	<10
00252027	<0.01	<2	0.03	<5	0.6	<10
00252028	0.05	5	0.35	<5	1.1	<10
00252029	0.02	3	0.05	<5	<0.5	<10

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 9 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@P	@Pb	@S	@Sb	@Sc	@Sn
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.01	2	0.01	5	0.5	10
Upper Limit	15	10,000	5	10,000	10,000	10,000
Unit	%	ppm m/m	%	ppm m / m	ppm m / m	ppm m / m
00252030	0.11	35	<0.01	<5	5.8	<10
00252031	<0.01	<2	0.05	<5	0.7	<10
00252032	0.02	9	0.99	<5	2.4	<10
00252033	0.02	<2	0.15	<5	2.8	<10
00252034	<0.01	3	0.11	<5	1.4	<10
00252035	0.03	<2	<0.01	<5	1.5	<10
00252036	<0.01	<2	0.09	<5	<0.5	<10
00252037	<0.01	<2	0.16	<5	<0.5	<10
00252038	<0.01	<2	0.07	<5	<0.5	<10
00252039	<0.01	<2	<0.01	<5	0.7	<10
*Dup 00252039	<0.01	<2	<0.01	<5	0.7	<10
*Std OREAS520	0.08	6	0.96	9	16.5	<10
*Std OREAS520	0.09	3	0.99	11	16.5	<10
*Std OREAS502B	0.11	32	0.99	14	13.8	<10
*BIk BLANK	<0.01	<2	<0.01	<5	<0.5	<10

Element	@Sr	@Ti	@V	@W	@Y	@Zn
Method	GE ICP40Q12					
Lower Limit	0.5	0.01	2	10	0.5	1
Upper Limit	10,000	15	10,000	10,000	10,000	10,000
Unit	ppm m / m	%	ppm m / m			
00252001	6.3	<0.01	3	<10	<0.5	20
00252002	33.5	<0.01	18	<10	<0.5	21
00252003	6.4	<0.01	83	<10	<0.5	55
00252004	24.6	0.20	101	<10	6.2	42
00252005	141	0.32	174	<10	9.1	67
00252006	167	0.33	215	14	12.0	54
00252007	75.0	0.55	198	<10	16.5	102
00252008	245	0.57	201	<10	17.1	111

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 10 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@Sr	@Ti	@V	@W	@Y	@Zn
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.5	0.01	2	10	0.5	1
Upper Limit	10,000	15	10,000	10,000	10,000	10,000
Unit	ppm m / m	%	ppm m / m			
00252009	82.7	0.05	17	<10	1.8	18
00252010	11.0	0.01	5	<10	<0.5	6
00252011	16.2	<0.01	11	<10	<0.5	5
00252012	12.1	<0.01	8	<10	<0.5	5
00252013	12.5	<0.01	8	<10	<0.5	8
00252014	6.6	<0.01	3	<10	1.3	56
00252015	10.3	0.01	14	26	2.5	48
00252016	4.3	<0.01	<2	<10	0.6	21
00252017	6.2	<0.01	4	20	1.9	40
00252018	4.2	<0.01	<2	<10	<0.5	29
00252019	42.2	0.02	36	<10	0.7	16
00252020	3.7	<0.01	<2	<10	<0.5	2
00252021	3.0	<0.01	3	<10	<0.5	3
00252022	6.8	<0.01	<2	<10	<0.5	4
00252023	7.3	<0.01	4	<10	<0.5	3
00252024	23.5	0.03	20	23	10.5	146
00252025	3.2	<0.01	3	<10	<0.5	9
00252026	5.7	<0.01	15	<10	0.7	24
00252027	0.9	<0.01	4	<10	1.1	9
00252028	110	0.02	6	17	10.9	37
00252029	2.6	<0.01	2	<10	2.0	51
00252030	157	0.09	28	11	8.5	173
00252031	2.0	<0.01	7	<10	0.6	39
00252032	119	0.03	20	<10	3.7	146
00252033	8.9	0.02	26	<10	2.5	607
00252034	3.5	0.03	21	<10	1.3	162
00252035	14.8	0.02	9	<10	1.0	4
00252036	6.7	<0.01	<2	<10	1.5	24
00252037	10.2	<0.01	2	<10	2.3	12

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 11 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Order Number Project Submission Number

Number of Samples

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks 39

ANALYSIS REPORT BBM19-00645

Element	@Sr	@Ti	@V	@W	@Y	@Zn
Method	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12	GE_ICP40Q12
Lower Limit	0.5	0.01	2	10	0.5	1
Upper Limit	10,000	15	10,000	10,000	10,000	10,000
Unit	ppm m / m	%	ppm m / m			
00252038	4.2	<0.01	<2	14	4.1	61
00252039	5.9	0.02	10	<10	0.5	6
*Dup 00252039	5.8	0.02	10	<10	0.5	6
*Std OREAS520	108	0.42	257	60	19.0	20
*Std OREAS520	100	0.41	260	69	19.5	21
*Std OREAS502B	354	0.43	129	<10	22.9	13′
*BIk BLANK	<0.5	<0.01	<2	<10	<0.5	<1

Element	@Zr
Method	GE_ICP40Q12
Lower Limit	0.5
Upper Limit	10,000
Unit	ppm m / m
00252001	<0.5
00252002	<0.5
00252003	<0.5
00252004	3.8
00252005	6.9
00252006	12.5
00252007	65.4
00252008	31.6
00252009	1.6
00252010	1.2
00252011	<0.5
00252012	<0.5
00252013	<0.5
00252014	<0.5
00252015	4.8
00252016	<0.5

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 12 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Order Number Project

Submission Number

GoldON-1/39 Rocks **GOLDON RESOURCES** GoldON-1/39 Rocks

Number of Samples

39

ANALYSIS REPORT BBM19-00645

Element Method	@Zr GE_ICP40Q12
Lower Limit Upper Limit	0.5 10,000
Unit	ppm m / m
00252017	1.6
00252018	<0.5
00252019	0.7
00252020	<0.5
00252021	<0.5
00252022	<0.5
00252023	<0.5
00252024	19.0
00252025	<0.5
00252026	1.9
00252027	<0.5
00252028	13.4
00252029	0.9
00252030	36.6
00252031	1.9
00252032	17.1
00252033	4.9
00252034	24.2
00252035	1.0
00252036	0.9
00252037	1.2
00252038	1.3
00252039	2.0
*Dup 00252039	1.8
*Std OREAS520	144
*Std OREAS520	127
*Std OREAS502B	71.5
*BIk BLANK	<0.5

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

28-Aug-2019 10:59AM BBM_U0000935429

Page 13 of 14

Order Number GoldON-1/39 Rocks Project **GOLDON RESOURCES**

Submission Number GoldON-1/39 Rocks

Number of Samples 39

SGS Canada Minerals Burnaby conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs

ANALYSIS REPORT BBM19-00645

Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

28-Aug-2019 10:59AM BBM_U0000935429 Page 14 of 14 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

APPENDIX III

Point of Interest (Table 2)

	Point of Interest Table-2						
POI#	Date	Easting	Northing	Elevation	Description	Photo	
1	28-Jul-19	607734	5675204	397	Pillows, seem to be partly replaced by kspar, fractures which dip shallowly to E. Photo E.	yes	
2	30-Jul-19	606575	5674555	378	Tuff in outcrop, weak-moderate foliation at 060 degrees, stretched fragments. Folded stringer x-cutting at ~100 degrees. Other wavy fractures at 035 degrees. Fairly steep dip to SE. Photos SW, NE.	yes	
3	30-Jul-19	606486	5674709	397	Outcrop of quartz porphyry? See what appear to be quartz eyes, may just be tuff. Slight rust.		
4	30-Jul-19	605800	5675067	405	5cm quartz vein in E-dipping tuff.		
5	31-Jul-19	608372	5674336	377	Banded Iron Formation, numerous bands of magnetite/hematite/chert, strikes 283/63 degrees N. Cleavage at 035 degrees with moderately steep dip to SE. Photo S.	yes	
6	31-Jul-19	608338	5674332	382	070 degree subvertical shear, silicate facies iron formation? Numerous microfolds in outcrop, axis plunging 070/46 degrees NE from one measurement. Photos NE and SW.	yes	
7	01-Aug-19	607255	5674452	380	Chloritic shear in outcrop, intermediate to mafic volcanic?		
8	01-Aug-19	607303	5674202	391	Frost heave moderate-strongly sheared mafic volcanic, some rust, minor quartz-carb along layers, no visible sulphides.		

APPENDIX IV

SGS Labs Analytical Descriptions

G PHY03V Specific gravity - pycnometer G_PHY06V
G PHY05V Specific gravity - volumetric G_PHY07V
G PHY14V Specific Gravity - pycnometer bottle G_PHY08V
G PHY04V Bulk density - immersion G_PHY18V

Note: If samples are porous, PHY04V will require a pre-preparation charge if it is necessary to coat samples with a sealant or wax coating.

PARTICLE SIZE ANALYSIS

Particle size analysis is used to determine the size classification and structural properties of an ore sample or to produce sized fractions for additional testing/analyses. SGS offers particle size analysis by wet screening, dry screening, a combination of both, or laser diffraction.

Wet screening is preferable to dry screening for materials containing a high percentage of clays which tend to agglomerate and thus give erroneous dry screening results. Dry screen tests can be performed on a variety of materials, but the sample must be free flowing and the particles separate (e.g. unagglomerated).

Often wet and dry methods are combined. Wet screening is performed to remove excessive fines then dry screening is performed to remove the oversize. Depending upon the nature of the material, dry screening, wet screening or a combination of both can be used.

Laser diffraction is recommended for very fine grained samples, as it is capable of measuring particle sizes at very low limits (0.02 microns). Laser diffraction is suitable for use with both wet and dry flows.

G PHY06V Particle size, sieve analysis (dry or wet)

G_PHY15V

G PHY07V Particle size, laser diffraction

G_PHY16V

PRECIOUS METALS

Precious metals (gold, silver and platinum group elements) can be analyzed by many techniques. Procedures for gold determination must take into account the sample type, sample concentration, purpose of the analysis, sample mineralogy and form of the gold (if known). Lead collection fire assay is considered the most definitive technique while acid digests and accelerated cyanide leaches can be effective for specific purposes. Similarly, silver can be determined by fire assay or acid digest techniques.

Please discuss your particular circumstance with an SGS chemist so you can choose the most appropriate technique. For more details, see our publication, Rocks to Results, Chapter 4.3.

Some platinum group elements (PGE) can also be determined by lead collection fire assay but this is not recommended. The six element PGE suite is best determined by nickel sulphide collection fire assay and neutron activation or ICP-MS. Sulphide-rich samples can require a reduction in sample weight to fuse properly.

Note: Lower and upper reporting limits of a given method can vary slightly among SGS laboratories due to reagent quality, access to consumables and instrument availability. Please inquire.

GOLD

EXPLORATION-GRADE ANALYSIS

FIRE ASSAY GOLD			
CODE	ELEMENT	LIMIT(S)	DESCRIPTION
GE FAA313 GE_FAA30V5		5 - 10,000 ppb	30 g, Fire assay, AAS finish
GE FAA515 GE_FAA50V5	Au	5 - 10,000 ppb	50 g, Fire assay, AAS finish
GE FAI313* GE_FAI30V5	Au**	1 - 10,000 ppb	30 g, Fire assay, ICP-AES finish
GE FAI515* GE_FAI50V5	Au**	1 - 10,000 ppb	50 g, Fire assay, ICP-AES finish
GE FAI323 GE_FAI31V5	Au**	5 - 10,000 ppb	30 g, Fire assay, ICP-AES finish

GE FAI525 Au** GE_FAI51V5	5 - 10,000 ppb	50 g, Fire assay, ICP-AES finish
GE FAM313 Au** GE_FAM30V5	1 - 2,000 ppb	30 g, Fire assay, ICP-MS finish
GE FAM515 Au** GE_FAM50V5	1 - 2,000 ppb	50 g, Fire assay, ICP-MS finish

Note: *GE FAI313/515 methods use new fire assay pots to achieve lower limits. ** Pt and Pd can be included, refer to page 33.

Gold in soils and/or sediments can be determined by aqua regia digest and DIBK extraction. This is a partial leach and can require a pre-treatment such as roasting if samples contain significant sulphur bearing phases. This gold analytical method has the following advantages:

- Use of large sample sizes (25 g 50 g) which ensures representative results for materials exhibiting nugget effect.
- The digest used for gold can also be used for a large suite of additional elements.

GOLD BY ACID DIGESTION (AQUA REGIA)

ELEMENT	LIMIT(S)	DESCRIPTION
Au	2 - 200 ppb	50 g, Aqua regia digest, DIBK extraction, AAS finish
Au	0.02 - 200 ppm	25 g, Aqua regia digest, DIBK extraction, AAS finish
Au	0.01 - 100 ppm	50 g, Aqua regia digest, DIBK extraction, AAS finish
Au*	1 - 500 ppb	25 g, Aqua regia digest, ICP-MS finish
Au*	1 - 500 ppb	50 g, Aqua regia digest, ICP-MS finish
	Au Au Au	Au 2 - 200 ppb Au 0.02 - 200 ppm Au 0.01 - 100 ppm Au* 1 - 500 ppb

^{*} Note: Refer to page 39 for additional elements that can be determined by this method.

Cyanide leach procedures are used to enhance small gold anomalies during exploration and to monitor gold extraction efficiencies in metallurgical applications.

Bulk Leach Extractable Gold (BLEG) is a cyanide-based partial leach procedure that uses a large sample size (0.5 kg to 5 kg). It is used to enhance small gold anomalies during exploration. The cyanide leachate solution is extracted into an organic solvent and measured by flame AAS

or ICP-MS. Our active cyanide leach packages are available with a variety of sample sizes, detection limits and finishing methods. The mini cyanide leach package is available for smaller sample sizes, allowing for faster TAT than active cyanide leach.

Other elements are also partially extracted with the cyanide leach and can be measured on request.

CYANIDE EXTRACTABLE GOLD

CODE	ELEMENT	LIMIT(S)	DESCRIPTION
GE BLE643 GE_MBLA65	Au <mark>/30</mark>	0.1 - 1000 ppm	Hot, 30 g, Mini cyanide leach, ICP-AES or AAS finish
GE BLE61K GE_BLE61K	Au	0.02 - 100 ppm	500 g, Active cyanide leach, Solvent extraction, AAS finish
GE BLE61N GE_BLE61N	Au	1 ppb - 100 ppm	2000 g, Active cyanide leach, Solvent extraction, AAS finish
GE BLL61K	Au	0.05 ppb - 100 ppm	500 g, Active cyanide leach, ICP-MS finish
GE BLL61N	Au	0.05 ppb - 100 ppm	2000 g, Active cyanide leach, ICP-MS finish

The Leachwell™ tab is a proprietary product and Leachwell™ is a patented process. Accelerated cyanide leach techniques are used to determine bulk leachable gold in exploration samples using modified cyanide leach (Leachwell™). The large sample is mixed with water and Leachwell™ tabs and tumbled. The gold is extracted into DIBK and analyzed by flame AAS or ICP-MS. Other elements (Cu, Ag, Pb and Zn) are also partially extracted by the cyanide leach and can be measured on request.

ACCELERATED CYANIDE LEACH FOR GOLD

CODE	ELEMENT	LIMIT(S)	DESCRIPTION
GE LWL69J GE_LWE69J	Au	0.01 - 1,000 ppm	200 g, Accelerated cyanide leach, AAS
GE LWL69K GE_LWE69K	Au	0.01 - 1,000 ppm	500 g, Accelerated cyanide leach, AAS
GE LWL69L GE_LWE69L	Au	0.01 - 1,000 ppm	800 g, Accelerated cyanide leach, AAS
GE LWL69M GE_LWE69M		0.01 - 1,000 ppm	1000 g, Accelerated cyanide leach, AAS

GO FAG323 GO_FAG32V	Au	0.01 - 100 ppm	30 g, Fire assay, AAS finish (Au) gravimetric finish (Ag)
	Ag	10 - 10000 ppm	
GO FAG333 GO_FAG33V	Au	0.5 - 10000 ppm	30 g, Fire assay, gravimetric finish (Au, Ag)
	Ag	10 - 10000 ppm	
GO FAG525 GO_FAG52V	Au	0.01 - 100 ppm	50 g, Fire assay, AAS finish (Au), gravimetric finish (Ag)
	Ag	10 - 10000 ppm	

CONTROL AND CONCENTRATE-GRADE ANALYSIS

INSTRUMENTAL AND GRAVIMETRIC ANALYSIS

CODE	ELEMENT	LIMIT(S)	DESCRIPTION
GC AAS42V GC_AAS43V1	0	1 - 1000 ppm	Variable wt, 4-acid digest, AAS finish
GC FAG323 GC_FAG32V	Au	0.02 ppm	30 g, Fire assay, AAS finish (Au) gravimetric finish (Ag)
	Ag	10 ppm	
GC FAG333 GC_FAG33V	Au	0.5 ppm	30 g, Fire assay, gravimetric finish (Au, Ag)
	Ag	10 ppm	
GC ARS12D GC_ACA22D	Ag 100V	2 - 2,000 ppm	Carbon, 1 g, ash, acid digest, extract, AAS finish
GC BUL37V GC_BUL36V	Ag	0.01 - 99.5%	250-500 mg, Fire assay, gravimetric finish

GOLD, PLATINUM, PALLADIUM AND OTHER PRECIOUS METALS

EXPLORATION-GRADE ANALYSIS

GOLD, PLATINUM AND PALLADIUM

CODE	ELEMENT	LIMIT(S)	DESCRIPTION
GE FAI313* GE_FAI30V5	Au	1 - 10,000 ppb	30 g, Fire assay, ICP-AES finish
	Pt	10 - 10,000 ppb	
	Pd	1 - 10,000 ppb	
GE FAI515* GE_FAI50V5	Au	1 - 10,000 ppb	50 g, Fire assay, ICP-AES finish
	Pt	10 - 10,000 ppb	
	Pd	1 - 10,000 ppb	
GE FAM313 GE_FAM30V5	Au	1 - 2,000 ppb	30 g, Fire assay, ICP-MS finish
	Pt	0.5 - 2,000 ppb	
	Pd	0.5 - 2,000 ppb	
GE FAM515 GE_FAM50V5	Au	1 - 2,000 ppb	50 g, Fire assay, ICP-MS finish
	Pt	0.5 - 2,000 ppb	
	Pd	0.5 - 2,000 ppb	
GE FAI323 GE_FAI31V5	Au	5 - 10,000 ppb	30 g, Fire assay, ICP-AES finish
	Pt	10 - 10,000 ppb	
	Pd	5 - 10,000 ppb	
GE FAI525 GE_FAI51V5	Au	5 - 10,000 ppb	50 g, Fire assay, ICP-AES finish
	Pt	10 - 10,000 ppb	
	Pd	5 - 10,000 ppb	

Note: *GE FAl313/515 methods use new fire assay pots to achieve lower limits.

Very low detection limits can be obtained by aqua regia digest and ICP-MS finish. This technique is applicable to exploration work as it yields rapid and accurate data.

Note: GE ARM133 and GE ARM155 are not available in all SGS laboratories. Please inquire.

MULTI-ACID (FOUR ACID) DIGESTION PACKAGES

NITRIC, HYDROFLUORIC, PERCHLORIC AND HYDROCHLORIC ACID DIGEST

Multi-acid (Four acid) digestion is a very effective dissolution procedure for a large number of mineral species and is suitable for a wide range of elements. Multi-acid digestion uses a combination of HNO₃ (nitric acid), HF (hydrofluoric acid), HClO₄ (perchloric acid) and HCl (hydrochloric acid). Because hydrofluoric acid dissolves silicate minerals, these digestions are often referred to as "near-total digestions". For more details, see our publication, Rocks to Results, Chapter 4.

NOTE: Requires a minimum sample weight of 0.5g. Detection and upper limit can vary slightly among SGS laboratories because some laboratories may not have access to high purity reagents and consumables and/or they can have slight differences in instrumentation. Please talk with your local lab manager to make sure you get the reporting limits you need.

NOTE: Refractory minerals such as oxides have limited solubility in multi-acid (Four acid) digestions. Often elements can precipitate or volatilize during digestion. These factors can compromise analytical results for Al, Ba, Cr, Hf, Mo, Mn, Nb, Pb, Si, Sn, Ti, Ta, W, Zr, As, Sb, Se and Te in some sample types.

MULTI-ACID (FOUR ACID) DIGESTION / ICP-AES PACKAGE (33 ELEMENTS)

GE ICP40B GE_ICP40Q12							
ELEMENTS AND LIMIT(S)							
Ag	2 - 100 ppm	Fe	0.01 - 15%	S	0.01 - 5%		
Al	0.01 - 15%	Κ	0.01 - 15%	Sb	5 - 10000 ppm		
As	3 - 10000 ppm	La	0.5 - 10000 ppm	Sc	0.5 - 10000 ppm		
Ва	1 - 10000 ppm	Li	1 - 10000 ppm	Sn	10 - 10000 ppm		

Ве	0.5 - 2500 ppm	Mg	0.01 - 15%	Sr	0.5 - 10000 ppm
Bi	5 - 10000 ppm	Mn	2 - 10000 ppm	Ti	0.01 - 15%
Ca	0.01 - 15%	Мо	1 - 10000 ppm	V	2 - 10000 ppm
Cd	1 - 10000 ppm	Na	0.01 - 15%	W	10 - 10000 ppm
Со	1 - 10000 ppm	Ni	1 - 10000 ppm	Υ	0.5 - 10000 ppm
Cr	1 - 10000 ppm	Р	0.01 - 15%	Zn	1 - 10000 ppm
Cu	0.5 - 10000 ppm	Pb	2 - 10000 ppm	Zr	0.5 - 10000 ppm

Note: Additional elements can be added. Please inquire.

MULTI-ACID (FOUR ACID) DIGESTION / COMBINED ICP-AES AND ICP-MS PACKAGE (49 ELEMENTS)

GE I	CM40B				
ELE	MENTS AND LIMIT(S)				
Ag	0.02 - 100 ppm	Κ	0.01 - 15%	Sn	0.3 - 1000 ppm
Al	0.01 - 15%	La	0.1 - 10000 ppm	Sr	0.5 - 10000 ppm
As	1 - 10000 ppm	Li	1 - 10000 ppm	Та	0.05 - 10000 ppm
Ва	1 - 10000 ppm	Lu	0.01 - 1000 ppm	Tb	0.05 - 10000 ppm
Ве	0.1 - 2500 ppm	Mg	0.01 - 15%	Те	0.05 - 1000 ppm
Bi	0.04 - 10000 ppm	Mn	2 - 10000 ppm	Th	0.2 - 10000 ppm
Ca	0.01 - 15%	Мо	0.05 - 10000 ppm	Ti	0.01 - 15%
Cd	0.02 - 10000 ppm	Na	0.01 - 15%	TI	0.02 - 10000 ppm
Се	0.05 - 1000 ppm	Nb	0.1 - 1000 ppm	U	0.05 - 10000 ppm
Cs	1 - 1000 ppm	Ni	0.5 - 10000 ppm	V	2 - 10000 ppm
Со	0.1 - 10000 ppm	Р	0.01 - 15%	W	0.1 - 10000 ppm
Cr	1 - 10000 ppm	Pb	0.5 - 10000 ppm	Υ	0.1 - 10000 ppm
Cu	0.5 - 10000 ppm	Rb	0.2 - 10000 ppm	Yb	0.1 - 1000 ppm
Fe	0.01 - 15%	S	0.01 - 5%	Zn	1 - 10000 ppm
Ga	0.1 - 500 ppm	Sb	0.05 - 10000 ppm	Zr	0.5 - 10000 ppm
Hf	0.02 - 500 ppm	Sc	0.1 - 1000 ppm		
In	0.02 - 500 ppm	Se	2 - 1000 ppm		

Note: Select packages for rare earth elements can be found on pg 59.

APPENDIX V

List of Claims (Table 3)

Table-3		Claim I	List
Tenure ID	Title Type	Anniversary Date	TOWNSHIP / AREA
136483	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
141923	Boundary Cell Mining Claim	2019-05-26	FRY LAKE AREA
162761	Boundary Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
163379	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
171899 201347	Boundary Cell Mining Claim Boundary Cell Mining Claim	2019-11-01 2019-05-26	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
201347	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
208650	Boundary Cell Mining Claim	2019-05-26	FRY LAKE AREA
220742	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
222156	Boundary Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
238470	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
256497	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
257243 267874	Boundary Cell Mining Claim Boundary Cell Mining Claim	2019-11-01 2019-05-26	WESLEYAN LAKE AREA FRY LAKE AREA
267883	Boundary Cell Mining Claim	2019-05-26	FRY LAKE AREA
276570	Boundary Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
305891	Boundary Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
311253	Boundary Cell Mining Claim	2019-05-26	FRY LAKE AREA
311955	Boundary Cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
313216	Boundary Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
325960 334369	Boundary Cell Mining Claim Boundary Cell Mining Claim	2019-11-01 2019-05-26	WESLEYAN LAKE AREA FRY LAKE AREA
549460	Multi-cell Mining Claim	2019-05-26	FRY LAKE AREA
549461	Multi-cell Mining Claim	2019-05-26	FRY LAKE AREA, WESLEYAN LAKE AREA
549462	Multi-cell Mining Claim	2019-05-26	FRY LAKE AREA, WESLEYAN LAKE AREA
549463	Multi-cell Mining Claim	2019-05-26	FRY LAKE AREA
549464	Multi-cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
549465	Multi-cell Mining Claim	2019-05-26	WESLEYAN LAKE AREA
551031	Multi-cell Mining Claim	2021-06-04	WESLEYAN LAKE AREA
551032 551033	Multi-cell Mining Claim Multi-cell Mining Claim	2021-06-04 2021-06-04	FRY LAKE AREA, WESLEYAN LAKE AREA FRY LAKE AREA, WESLEYAN LAKE AREA
552487	Multi-cell Mining Claim	2021-06-22	FRY LAKE AREA
552488	Multi-cell Mining Claim	2021-06-22	FRY LAKE AREA, WESLEYAN LAKE AREA
552489	Multi-cell Mining Claim	2021-06-22	FRY LAKE AREA, WESLEYAN LAKE AREA
553248	Multi-cell Mining Claim	2021-07-09	WESLEYAN LAKE AREA
112513	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
113447	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
114279 114280	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01 2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
114281	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
143182	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
143914	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
147357	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
161400	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
162762	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
162786 166732	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01 2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
171900	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
171901	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
171902	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
201898	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
210608	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
214055	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
221451 221452	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01 2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
222157	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
222137	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
232745	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
238519	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
238520	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
238521	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
249278	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
256530 257417	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01 2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
262015	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
269466	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
276606	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
309906	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
309907	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
312491	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
324714	Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA
325961 329421	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01 2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
329421	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
329423	Single Cell Mining Claim Single Cell Mining Claim	2019-11-01	WESLEYAN LAKE AREA WESLEYAN LAKE AREA
347443	Single Cen winning Claim	2017-11-U1	WEDELIAN LAKE AKEA

APPENDIX VI

Photos

Banded Iron Formation on North Shore of Fry Lake

Mineralized Quartz North of West Arm of Fry Lake

Quartz South of Kaginot Lake

Quartz Vein in Shear Looking West

	Daily Log Slate Falls Project July 2019		
		B. Maclachlan	
Date	Activities	days	C. Robertson days
23-Jul-19	Travel to Marathon	1	
24-Jul-19	Travel to Thunder Bay	1	
25-Jul-19	Travel to Sioux Lookout	1	1
26-Jul-19	Wait in Sioux Lookout due to bad weather	1	1
27-Jul-19	Fly to Kaginot Lake, Prospecting	1	1
28-Jul-19	Prospecting	1	1
29-Jul-19	Prospecting	1	1
30-Jul-19	Prospecting	1	1
31-Jul-19	Prospecting	1	1
01-Aug-19	Prospecting	1	1
02-Aug-19	Fly camp out	1	1
03-Aug-19	Travel to Thunder Bay	1	1

		Expenditure Summary (Per Cost Catego	ry)						Eligible for	
Primary Cost Category Secondary Cost Categor		Secondary Cost Category	Work Performed Billing Unit		Total Unit		Total Cost	Invoice Reference #	Double	Total for	
Primary Exploration Activity	Work Subtype	Associated Cost Type	Start Date	End Date	Dilling Offic	Units	Price	(No Tax)	mvoice Reference #	Assessment	Submissio
		Personal Transportation	July 23, 2019	July 24, 2019	Days	2	\$ 525	\$ 1,050	Emerald Geological Services #671	No	\$ 1,0
		Personal Transportation	July 25, 2019	July 25, 2019	Days	1	\$ 975	\$ 975	Emerald Geological Services #671	No	\$ 9
		Personal Transportation	July 26, 2019	July 26, 2019	Days	1	\$ 975	\$ 975	Emerald Geological Services #671	No	\$ 9
		Personal Transportation	August 3, 2019	August 3, 2019	Days	1	\$ 975	\$ 975	Emerald Geological Services #671	No	\$ 9
Prospecting	Grass_Roots_Prospecting		July 27, 2019	August 2, 2019	Days	7	\$ 975	\$ 6,825	Emerald Geological Services #671	Yes	\$ 13,6
		Rental	July 24, 2019	August 3, 2019	Days	11	\$ 50	\$ 550	Emerald Geological Services #671	No	\$ 5
		Personal Transportation	July 23, 2019	August 4, 2019	Kms	2199	\$ 0.05	\$ 1,100	Emerald Geological Services #671	No	\$ 1,1
		Supplies	July 23, 2019	August 3, 2019	Supplies	1	\$ 117	\$ 117	Emerald Geological Services #671	No	\$ 1
		Food	July 23, 2019	August 3, 2019	Food	1	\$ 737	\$ 737	Emerald Geological Services #671	No	\$ 7
		Lodging	July 23, 2019	August 3, 2019	Accomodations	1	\$ 714	\$ 714	Emerald Geological Services #671	No	\$ 7
		Personal Transportation	July 23, 2019	August 3, 2019	Gas	1	\$ 71	\$ 71	Emerald Geological Services #671	No	\$
		Personal Transportation	July 18, 2019	August 3, 2019	Flights	1	\$ 3,855	\$ 3,855	Emerald Geological Services #671	No	\$ 3,8
		Supplies	July 23, 2019	August 3, 2019	Supplies	1	\$ 464	\$ 464	Emerald Geological Services #671	No	\$ 4
·		Report/Map	July 23, 2019	September 4, 2019	Report	1	\$ 525	\$ 525	Emerald Geological Services #675	No	\$ 5
·		Report/Map	July 23, 2019	September 4, 2019	Report	1	\$ 450	\$ 450	Emerald Geological Services #675	No	\$ 4
		Assays	July 23, 2019	August 8, 2019	Samples	34	\$ 50	\$ 1,700	SGS	No	\$ 1,7

\$ 21,083 \$ 27,908