

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report on Diamond Drilling and Prospecting Work

on the

Dome West Property Tisdale Township Porcupine Mining Division District of Cochrane Province of Ontario

For

Pelangio Exploration Inc

Timmins Ontario

J. Kevin Filo, P.Geo Filo Exploration Services Limited 1080 Michelano Drive Timmins Ontario P4P 1H9

July 9, 2019

TABLE OF CONTENTS

Summary	1
Introduction	2
Property Description and Location	2
Location	
Property Status	
Environmental Consideration and Permitting	
Accessibility, Climate, Local Resources, Infrastructure and Physiography	3
History	3
Geological Setting	4
Regional Geology	
Property Geology	
Survey Control	5
Drilling Program Discussion	6
Sampling Method and Approach	7
Sampling Preparation, Analyses and Security	8
Data Verification	8
Conclusions and Recommendations	8
References	10

Certificate

List of Figures

- Figure 1: Location Map
- Figure 2: Timmins Area Map
- Figure 3: Claim Holdings Map
- Figure 4: General Geology of the Abitibi Belt
- Figure 5: Property Geology Map
- Figure 6: Property Target Areas
- Figure 7: Timmins Area Stratigraphy Map by D.R. Pyke 1982
- Figure 8: Timmins Area Geological Map by D.R. Pyke 1982
- Figure 9: Drill Hole Plan Map for Drill DW1901
- Figure 10: Section for Drill Hole DW1901
- Figure 11: Surface Sample Location Map

List of Tables

Table 1:Drill Hole Summary Table

Appendices

Appendix 1:Diamond Drill Log

Appendix 2:Copy of Assay Sheets

Appendix 3:Copy of Litholgical Codes

Appendix 4: Copy of Oreas Standard 221 Specifications

Appendix 5:Copy of Prospecting Notes From Trench Samples

Appendix 6: Invoice Summary and Copy of Invoices

Summary:

÷

A helicopter supported diamond drill program was initiated by Pelangio Exploration Inc on its Dome West Property Option in April of 2019. Field operations including mobilization and demobilization were conducted April 15/19 to April 24/19. Planning and supervision of the drill program was carried out under the direction of J.Kevin Filo, P.Geo. The drilling contract was completed by NPLH Drilling from Timmins Ontario and all helicopter support for the program was from Expedition Helicopters from Cochrane Ontario. All core logging and sampling for the program was completed by May 15/19. A limited prospecting program was also completed in from May 29 to May 31 2019 in order to evaluate a series of small pits in the northwestern portion of the property (V1 target area Fig.6)

The purpose of the program was to drill a single hole to evaluate the gold potential of porphyritic intrusive projected to extend across the property (P1 Target Area, Fig.6) from the adjoining Paymaster Mine Property. (Assessment File T-143) The drill hole also evaluated potential new vein systems associated with the prospective Tisdale Group volcanics also projected to extend through the property (Fergueson,S.,1968) from the adjoining Paymaster and Dome Mine properties. The single hole (DDH DW1901) was successfully completed to a depth of 543 meters to evaluate the aforementioned targets.

During the course of the program there was very limited environmental impact as only a few trees were cut in the immediate vicinity of the drill hole collar. Once the hole was completed a casing was left in the hole and the casing capped. An inspection of the site was made by the environmental personnel of Newmont Goldcorp the owners of the surface rights covering the current Dome West mineral claims. Newmont Goldcorp deemed the site to be in good order and no environmental rehabilitation was required. There is very minimal historical exploration on this property and thus very little environmental damage from historical work.

Geographic control points with respect to the property boundary and actual hole location, and surface rock samples were determined using a hand held Garmin GPS unit. The property map datum utilized was Nad 83 Zone 17.

No significant mineralization was intersected in the porphyritic intrusive unit but a series of veins were intersected in the drill hole. The best intercept in hole DW1901 returned 3.21 g/t gold over 1.25 meters including 4.754 g/t gold over 0.75 meters from 471 to 472.25 meters. This intercept was associated with some narrow quartz veins and stringers. No significant values were obtained from surface prospecting efforts.

Introduction:

The author was retained by Pelangio Exploration Inc. to prepare a report to cover a recent diamond drill program and a limited prospecting program completed from mid April 15 to May 31, 2019 on Pelangio's Dome West Property. Pelangio's Dome West Property is located in Timmins Ontario; more specifically the property is in south central Tisdale Township approximately 800 meters west of the Newmont Goldcorp's Dome Mine operations. (see Figs. 1 and 2).

Pelangio completed a single 543 meter drill hole (DW1901) on the property to test the gold potential of a porphyritic intrusive projected to extend on to the property from the adjoining Paymaster Mine property. The hole was extended well beyond the porphyry target in order to test for new vein systems within the Tisdale Group volcanics extending into the property from the Dome and Paymaster properties.

This report will provide details on the property geology and the results of the recent program along with recommendations for further work.

<u>Property Description, and Location:</u>

Location:

The property is located a few kilometers southeast of the Timmins city centre. (Fig. 1 & 2). More specifically the property is comprised of 10 claims cells as shown and numbered in Fig.3 in south central portion of Tisdale Township approximately 800 meters west of the Dome Mine.

Property Status:

The property title documents show that title is currently held by Mr. Kevin Cool and 6398651 Canada Inc. At the time of writing arrangements were being made to transfer certain interests from Mr. Kevin Cool. Once this assignment is completed title documents will reflect that 1/3 of the property is controlled by Mr. Francois Desrosiers and the remaining 2/3 of the property controlled by 6398651 Canada Inc. At present, the property is under option to Pelangio Exploration Inc. Pelangio has the right to earn a 100% interest in the Dome West property by completing certain exploration expenditures, issuing shares in the corporation and making a series of cash payments. Should Pelangio complete the option there will be a retained royalty interest held proportionally by Francois Derosiers and 6398651 Canada Inc. At the time of writing the Dome West property was in good standing until June of 2020.

Surface rights to the property are currently controlled by Newmont Goldcorp.

Environmental Considerations and Permitting:

The Dome West Property has been explored since the early days of the Porcupine. Work from the early days included some shallow shaft sinking, trenching and limited diamond drilling. There has been no production or milling of ore on the property and thus the environmental impact on the lands is fairly minimal. The author has visited the property on a number of occasions and observed reported trenches and a shaft. The shaft and trenches have collapsed to some extent and have been in filled to some extent as well. These historical workings represent a very limited environmental issue.

As stated previously, the surface rights for the property are controlled by Newmont Goldcorp. Pelangio negotiated an access agreement prior to initiating a drilling program on the property. Upon completion of the program a casing left in the hole was capped and all debris disposed of. Their was minimal damage to the surface area as only a few

trees were cut for the drill pad. The site was inspected by Newmont Goldcorp environmental personnel and the site was deemed to have met Newmont Goldcorp environmental standards. No remediation of the site was requested and small report was issued reflecting the Newmont Goldcorp inspection.

In Ontario an exploration permit is required to conduct diamond drilling. The permit for the Dome West property was issued to Mr. Kevin Cool with permission granted to drill three drill holes within what is now cell 181653 (formerly claim 4216039 at time of permit issuance). The permit number issued granting permission complete the recent drilling was work permit number PR-17-11068.

Accessibility, Climate, Local Resources, Infrastructure, and Physiography:

Access to the Dome West Property is obtained from the City of Timmins by heading east from the Timmins city centre though Schumacher to Gold Centre. Immediately east of Gold Centre a hydro distribution facility is present. Along the northern edge of the hydro facility is an old rail line and this rail line cuts the north edge of the property. Access to the property can be gained on foot or ATV via the rail line. Once on the property various parts of the property can be accessed by walking along the numerous hydro lines cutting across the property. Alternatively with permission the southern portion of the property can be accessed through Newmont Goldcorp's Dome Mine Property through a series of old trails extending from where the main haul road intersects the back road highway. Note, permission to access the Dome West Property requires Newmont Goldcorp written permission as certain access points are part of an active mining operation.

The main centre with facilities and supplies proximal to the property is the City of Timmins. Timmins is a significant mining town with accommodations, restaurants and various supply and machine shops. The town also has a skilled work force for both mining and mineral exploration.

The Dome West property has variable topography with limited rock exposure and areas with substantial muskeg as well. The author observed that the property is covered by substantial jack pine forest in certain areas.

Climate is typical of northeastern Ontario with below freezing temperatures (-5 to -40 degree Celsius) from November to April and brief periods of hot weather in the summer from 10 to 30 degrees Celsius. Precipitation averages 80 cm per year, with a substantial portion in the form of snow averaging 2.4 m. per year. General exploration is restricted to the month of June to September, when the ground is not covered by snow. However, drilling and geophysical work can be carried out in the winter months when a thick snow pack improves access to otherwise swampy areas.

<u>History:</u>

The Dome West Property was originally called the Central Porcupine Property. An assessment file T-143 located in the resident geologists office in Timmins Ontario summarizes the known exploration history on the property.

In the 1930's some development work was completed on claims immediately to the west

Newmont Goldcorp Superpit

Figure 6

Pelangio Exploration Inc.

Dome West Property Target Area Map

Date: July, 2019

File: dw_jul2019_targ.mxd

Name: KF

Projection: UTM NAD83 Zone 17N

482000

48250

of current claim block on the 1000 foot level. A few flat holes were drilled to the east of this development work crossing into the current subject property. These holes tested a felsic fragmental unit (latite) for gold. No significant values were reported. Also, a few surface holes were also completed in the southwestern portion of the current subject property and again no values were reported.

The author observed a number of pits, trenches and a shallow shaft in northern portion of the property (V1 target area, Fig.6). No record of any historical sampling exists for these workings. It is the authors opinion that this work likely preceded the historical drilling described above.

In recent years Mr. Kevin Cool completed some preliminary geophysical surveys to maintain the lands in good standing. In general this project has had very little historical exploration conducted on it considering its proximity to the Dome and Paymaster Mines.

Geological Setting:

Regional Geology:

The Dome West Property is located in the Abitibi Geenstone Belt of the Superior Province of the Canadian Shield. The Abitibi Greenstone belt is a large granite-greenstone terrain some 150,000 km² in area extending from Lake Superior in north-central Ontario through into north-central Quebec. Measuring 750 km long by 200 km wide, the Abitibi Greenstone belt is the largest greenstone belt within the Canadian Shield. (see Fig.4)

Metamorphic grade varies from greenschist to lower amphibolite facies. Recent U-PB Zircon geochronology has shown that the volcanic-sedimentary pile accumulated in three major cycles over a period of 50 million years. Most of the volcanic activity is interpreted to have occurred between 2730 and 2700 Ma (Corfu et al, 1989). The Abitibi Greenstone belt is the most prolific Archean terrain in terms of copper-zinc sulphide mineralization and gold mineralization in Canada.

Major east and northeast trending faults (Destor Porcupine Deformation Zone Cadillac-Larder Deformation Zone), were active throughout the main periods of volcanism, and became the focus of a late period of alkaline volcanism and sedimentation between 2680 and 2677 Ma. These deformation zones are the focus of most of the major gold deposits found within the Timmins, Kirkland Lake, and Holloway gold camps. In excess of 120 million ounces of gold has been produced from mines associated with these two major structures.

The lithological units within the Abitibi Belt has been grouped into a series of stratigraphic groups. OGS Report 219 authored by Pyke, D.R (1982) outlined the major groups and their relative ages across the Timmins area. The main stratigraphic groups within the Timmins area were designated Tisdale and Deloro Groups historically; Pyke in 1982 revised the formations within these groups to more accurately reflect the stratigraphic relationships across a broader area of the camp. Maps from Pyke's report shown in figures 7 and 8 show the various stratigraphic relationships, structure and geology of the area including the current subject property.

The most significant structural break in the general area in the Porcupine Destor Fault which is located approximately 2km southeast of the southeast corner of the property.

Breccie. Amphibolitizea, Carbonitized. Sheared. Pillow breccia. Dominantly Fe

sive, poly

inantly Mg-tholeiltic compo MATINTIC METAVOLCANICS

> sulured, se textured pr

formation (subscripts O, S and C the whether the oxide, subplide or ionate ironstone respectively, is inant).

2n Don tion.

8 Unsubdivided 8a Quartz and / or foldspar porphyry. 8b Felsite. Bb Felsite, Bc Hornblende-biotite trandhjamile, Bd Porphynic monzonte, Be Contaminated malic-rich zone as-sociated with 8d. Bf Porphynite granodiorite, Bg Equigranular leucocratic grano-dorite, Borte,
 Be Contaminated and a second and a second and a second Be Contaminated and a second and a second and a second Be Contaminated and a second a

METAMORPHOSED MAFIC 7 Unsubdivided 7a Gabbro. 7b Quartz gabbro. 7c Pegmaloidal gabbro.

6 Unsubdivided 6a Serpentinized dunite 6b Serpentinized iherzo 6c Pyroxene-homblend 6d Carbonatized 6e Taic-magnesite altern

METAMORPHOSED ULTRAMAFIC INTRUSIVE ROCKS

ed esite alteration SIVE CONTACT

diorite. Hornblende diorite, guartz diorite. Diorite, guartz diorite containing minor blue opaline guartz.

Figure 8

Pelangio Exploration Inc.

Dome West Property Timmins Area Geology

Date: July, 2019	File: dw_PX_2455_geol.mxd
Name: KF	Projection: UTM NAD83 Zone 17N

Property Geology:

The Dome West (DW) Property has very minimal surface outcrop exposure but substantial outcrop exposure on adjoining claims and data from adjoining underground operations allows for a reasonable geological interpretation of the property geology.

The extreme northeast and southeast portion of the property are covered by Porcupine Group sediments which overlie the Tisdale Group volcanics. This sedimentary group is comprised of a series of formations. According to Pyke's report the extreme northeast and southeast portions of the property are covered by a turbidite sequence of wackes and siltstones. The central and southern portions of the property are covered by Tisdale group volcanics. More specifically the central and southern portions of the property are covered by what Pyke has designated the Upper Volcanic Formation or Formation VI. This unit is basically a felsic calc alkaline pyroclastic rock. In an earlier report by S. Furguson (ODM Report 58, 1968) this unit is referred to as a latite. The extreme southern portion of the property including area under Edwards Lake are covered by Pyke's Middle Volcanic Formation or Formation V. (see Figs. 7 & 8) This unit is basically an intercalated package of comprised of iron rich tholeiitic basalts, including a series of variolitic flows. This Formation V roughly correlates to what was designated the Vipond Subgroup documented by Ferguson.

A series of composite level plans and a few sections found in Furguson's report also confirm what is shown on Pyke's maps relative to the DW Property surface geology interpretation in the area south of the north shore of Edwards Lake. What is now Pyke's designated Formation V is shown in Furgeson's report extend northward from the Paymaster into the extreme southern boundary of the DW Property. This is of interest from an economic perspective as many of the veins mined on the adjoining Paymaster Mine are associated with this package of rocks. (see Figs.7 and 8)

The author observed numerous east west shear zone in the northern portion of the property during the course of prospecting efforts. Furguson and Pyke's maps show the Porcupine Syncline cutting across the centre of the northeastern portion of the property.

Survey Control:

The diamond drill hole set up was located using a hand held GPS device. This device was set using the datum Nad 83, Zone 17. Once the actual location of the collar was selected in the field, the drill site location was again verified using geo referenced topographic maps. A final reading on the casing site was taken after completion of the hole for a more accurate location.

Down hole azimuth and dip readings were taken on the hole upon completion of the hole, however the flexit unit used to take these reading appeared to be malfunctioning due to extremely erroneous readings. Thus azimuth readings were ignored and only dip readings were used in the plotting of he actual section.

With respect to surface sampling, all sample points were recorded using a hand held GPS, again using the map datum Nad 83, Zone 17.

Drilling and Trench Sampling Program Discussion:

The recent drill hole DW1901 was located approximately 18 m north of the southern boundary of the property. (Target Area P1, Fig.6) Details on location and orientation of the hole can be seen in the accompanying Table 1 below and in figures 9 and 10.

Table 1: Drill Hole Summary

Hole No.	Easting	Northing	Az.	Dip	Final Depth	Split & Assayed Samples
DW1901	480357	5367651	0 deg.	-88	543 meters	535 samples

The purpose of hole DW1901 was to evaluate the gold potential in a prospective porphyritic intrusive sill (Assessment File T-143) shown to cross into the DW Property from the adjoining Paymaster Mine property. (Furguson, S.,1968) The hole was also targeted to test for new vein systems within the Vipond Subgroup (Pyke Formation V) stratigraphy above and below the porphyry intrusive as this package of volcanics is known to be associated with a number of productive gold veins on the adjoining Paymaster and Dome Mines.

The drill hole was sampled continuously from 3.65 m (bottom of casing) to 543 m or the end of the hole, and a total of 535 samples of split core were taken. The main porphyritic intrusive target was intersected from 288.40-322.90 meters, or in the general area where the unit was projected to extend from the Paymaster Mine. This unit is a "quartz eye" porphyry that is green in color and sericite altered. It had no significant veining and very minimal sulphides; no significant values were noted in this unit.

A number of quartz veins both above and below the porphyry were noted. Of particular interest was a small quartz vein from 260.75 - 260.87 m with two specks of visible gold noted. The initial assay for this vein and associated wall rock returned 0.005 g/t gold, but a subsequent gold fire assay metallic screen analysis returned 0.48 g/t gold over 0.3 meters. The coarse fraction of the screen analysis (Au+100 mesh) returned 6.67 g/t gold confirming the presence of the visible gold observed. The small vein with visible gold was within 1 meter of an altered quartz eye porphyry dyke contact and the immediate vein wall rock was a leucoxene bearing mafic.

A gold intersection of 3.21 g/t Au over 1.25 meters was obtained from an interval associated with quartz stringers and a small quartz vein from 471 to 472.25 meters. This interval included a higher grade section which returned 4.754 g/t gold over 0.75 meters. The gold bearing section contained up to 5% pyrite and again the veins were hosted within a leucoxene bearing mafic volcanic flow.

Other veins of interest were also present within a leucoxene bearing mafic flow from 479.95 to 480.38 and 480.75 to 481.10; gold metallic screen fire assays on these two veins returned 0.66 g/t gold and 0.92 g/t gold respectively. These veins were located a short distance above a variolitic flow at 522.80 to 543 meters, a typical unit found within the prospective Vipond Subgroup stratigraphy.

No significant gold values were obtained in the V1 (Figure 6) from the various, quartz veins, wall rock and shear zones observed. No further work will be conducted in this area at this time.

In light of the recent results further exploration work will be recommended as discussed in the latter portion of this report.

Sampling Method and Approach:

The core handling and sampling procedures at the Dome West Project met current industry standards. Upon completion of an initial review of the core was reexamined using a consistent lithological table established by the project geologist and all pertinent geological information recorded in an excel spread sheet for easy coding and transfer to a database for plan and section work if warranted.

Intervals to be sampled were identified and marked on the core by a company geologist and the following sampling protocol carried out:

- Beginning and end of sample intervals are based on geology and mineralization logged in the core.
- Maximum individual sample length equal to 1.5 metres but majority of samples 1m. or less
- No minimum sample length.
- Contiguous samples are collected along full length of mineralized diamond core.
- Core sample intervals were divided into half lengthways.
- Half of each sample interval was collected in a new plastic bag and tagged with reference sample number. The samples were placed in rice bag sacks and sealed for delivery to the lab by company staff.
- The residual core half was returned to the original location in the core box along with a numbered sample tag for future reference.

With respect to the design of sampling intervals; the actual intervals were designed to provide contiguous sampling across the full width of the mineralized zones including shoulder samples. Particular attention was paid to the following general geological parameters to identify potential gold bearing zones for priority sampling included the following:

- Rock types: No restriction on rock type. Mineralized zones potentially occur in all rock types intersected in the project area.
- Rock deformation: Mineralized zones may include evidence for increased host rock deformation including foliation, ductile strain, and/or brittle fracturing including the following vein-filling minerals: quartz, carbonates, feldspars, sulphides (in particular chalcopyrite, sphalerite, ± pyrite and pyrrhotite).
- Rock alteration: Mineralized zones may be marked by an increase in the following alteration types within the host rock: chloritic alteration, carbonate alteration, sericitization, sulphidization (in particular chalcopyrite ± pyrite and pyrrhotite) and silicification.
- Visible native gold

It should be noted that within the sampled section of core there were rare instances of missing core due to due to drilling problems associated with poor or broken ground conditions. A notation of these ground conditions were made in logs. However, on an over all basis sample quality was considered excellent and representative of the observed mineralized intervals.

Sample Preparation, Analyses and Security:

Core from the Dome West Program was reviewed and sampled at a secure logging facility in Timmins Ontario. The core was logged and tagged for sampling by an experienced geologist and cut by a technician under the supervision of the project geologist as per protocols described in the previous section. Cutting of the core was completed by an experienced technician, Mr. D. Bryant.

For the Dome West project the standard operating procedure relative to gold assays is to record in the log and/or data base if a standard gold fire assay or pulp metallic gold fire assay was completed. If a pulp metallic assay was completed it was put into the data base and taken as the most accurate representation of the sample and recorded in both the log and data base. In the event of a duplicate assay completed on a sample such as a check by the lab the average of the two analysis was placed in the log and the data base.

Analysis for the Dome West project was completed at Actlabs in Timmins Ontario. Basically all samples were fire assayed with and AA finish using industry standard fire assay procedures. If the sample returned 5000 ppb or greater, the sample was reassayed with a gravimetric finish. In a few instances metallic sampling (Metallic Screen Assay) was performed as a check for potential free gold. Full details on the methodology utilized by Actlabs for their gold assaying procedures can be obtained from Actlabs.

Standard quality control procedures are present in the lab utilized. However, in addition to the quality control at the labs an Oreas standard and a blank sample was submitted for QA/QC requirements.

Data Verification:

As described above exploration at Pelangio's Dome West Project including core logging, sampling procedures and record keeping are industry standard. The author personally supervised the entire program and was on site during the time the work was carried out. Further, the author personally examined all drill core, and selected all surface field samples. The author also supervised sampling technicians during the course of the program. Prior to completion of this current report the author reviewed all data base entries, drill logs, plans, and sections for errors prior to submission. From the material reviewed to date no major discrepancies were noted.

Conclusions and Recommendations:

The recently completed 543 meter drill hole (DW1901) intersected the quartz eye porphyry sill target, the porphyry target unfortunately did not return any significant gold mineralization. A minor stringer with VG was noted proximal to a porphyry dyke thought

to be related to the main porphyry body. The hole also intersected a number of quartz veins; one interval of both quartz stringers and a small vein with some sulphide mineralization returned 3.21 g/t gold over 1.25 meters. Other smaller veins above and below the porphyry returned anomalous gold values ranging from 0.37 g/t gold to 0.92 g/t gold. The gold values were hosted in veins within leucoxene bearing mafic flows.

The stratigraphy hosting the veins are thought to be from Pyke's Formation V or using older terminology, the Vipond Subgroup. The Vipond Subgroup is a favorable package of volcanics known to host productive veins at the adjoining Paymaster Mine. It should be noted a variolitic flow unit typical of he Vipond Subgroup was intersected in the latter portion of DW1901 from 522.80 to 543 meters. Further, productive vein systems were were also known to be present along the porphyry volcanic contact at the former Paymaster Mine as well (Furguson, S., 1968). The limited drilling to date on the Dome West property has shown a favorable environment for gold deposition similar to the adjoining mines and in light of the fact a number of veins were intersected with some gold values of interest some further drilling is warranted.

Some consideration should be given to drilling a deep hole with a 180 degree azimuth collared from the north shore of Edwards Lake to further test for new veins systems at depth and the contact of the porphyry unit at depth as well. A few holes may be required along the same section line as it is known that the plunge of mineralized veins in this area have a steep plunge orientation and a single drill hole could easily over shoot or under shoot such a target. A staged drilling program would be the best approach so as not to waste meterage and allow the geologist to assess results in a timely fashion.

Respectfully Submitted

. Kevin Filo, P.Geo.

References:

Central Porcupine Mines, 1937, Assessment File T-143, Office of the Resident Geologist, Timmins Ontario.

Cool, K., Private Files

Corfu, F., 1989, U-Pb Zircon Geochronology ins the Southwest Abitibi Greenstone Belt, Superior Province, Canadian Journal of Earth Science, Volume 26, No. 9, p. 1747-1763.

Ferguson, S., 1968, Geology and Ore Deposits of Tisdale Township, Ontario Department of Mines, Geological Report 58.

Jensen, J.S., 1986, Mineralization and Volcanic Stratigraphy in the Western Part of the Abitibi Subprovince, Ministry of Northern Development and Mines, OGS Miscellaneous Paper 129, p.69-87.

CERTIFICATE OF AUTHOR

- I, J. Kevin Filo, P. Geo. do hereby certify that:
- 1. I am a consultant for Pelangio Exploration Inc.
- 2. I graduated with an Honours Bachelor of Science Degree in Geology from Laurentian University in Sudbury in 1980.
- 3. I am a member of the Association of Professional Geologists of Ontario (Reg. No. 0220).
- 4. I have worked as a geologist for a total of 39 years since my graduation from university.
- I am responsible for an non- independent review of the current subject report and I
 was responsible for the planning and supervision of the recent drilling and surface
 sampling program
- 6. I have had no prior involvement with the property that is the subject of the current report.
- 7. I am not aware of any material fact or material change with respect to the subject matter of the report that is not reflected in the report, the omission to disclose which would make the report misleading.
- 8. I am not independent of Pelangio Exploration as I presently control a substantial share position in Pelangio Exploration .

Dated this 9th Day of July, 2019

Signature of Qualified Person J. Kevin Filo P.Geo.

Appendix 1: Diamond Drill Log

-

,

PELANGIO EXPLORATION

Prospect DDH: DV Core Size CLAIM:C	:: Dome West V1901 e: NQ cell 181653	Azimuth/Dip: 360/-8 Tests: see last page EOH: 546m.	8	Grid Location: N/A UTM:480357E 5367651N Nad 83 Zone 17 Date Started: April 15/19 Date Completed: April 24/19 Core Storage: Pelangio Office Connaught Ontario		Drill Company: NPLH Drilling Logged by: K. Filo		Completion of Logging: May 15, 2019			
						1					
From	10	ROCK Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)	
0.00	3.65			Note, casing left in hole, capped with twist cap & steel flag.		+				_	
3.65	12.50	I Mafic Volcanic	20	grey colored unit, extremely fine grained and unit does not	855001	3.70	5.00	1.30	0.008		
		j		have any response to magnet what so ever. Moderate to	855002	5.00	6.00	1.00	0.008		
İ	i		1	strong HCL response throughout unit. Soft unit as easily	855003	16.00	17.00	1.00	0.009		
			i i	scratched with knife. Estimate of 0.5 to 1% disseminated	855004	7.00	8.00	1.00	0.01	<u> </u>	
	1		Ì	pyrite noted in unit.	855005	blank			0.008		
	1		i	A minor fault zone comprised of a series of slips, at upper	855006	18.00	9.00	1.00	0.008	<u> </u>	
i	1		1	contact at at 5.9 m oxidation and gouge and contact at 20	855007	19.00	110.00	1.00	0.007	1	
i	1			deg to CA. Lower contact at 20 deg to CA at 6.75 m. A	855008	110.00	111.00	1.00	0.007		
i	i			minor guartz stringer a cm or so wide on contact as well.	1855009	111.00	12.00	11.00	0.007	1	
	······			This unit has a number of factures though out it, these are					1		
	1			generally at 30 and 45 deg to CA in general; some minor slip					i	1	
	i			planes at about 10 deg to CA. in general. Overall good			-		1	1	
 I	1			recoverv and very competent unit. Unaltered unit.	Ì	i .		1	1	Ť	
	1			Some minor stringer and small veinlets of quartz calcite				1	1 -		
i	1			noted, these make up less than 1% of unit but they often			Ì	1	1	1	
1				contain pyrite Gradational contact to unit below.	l	İ	1	Í	1	1	
										1	
12.50	17.70	Mafic Flow Breccia	2FB	From upper contact some weak patchy sericite alteration							
				associated with fragments (flow breccia?) in this unit.		1		1			
	1			As in unit above, soft unit, similar orientation of slips &	855010	12.00	ļ13.00	1.00	0.008		
ļ	}			fractures. Overall very competent unit. Similar pyrite	855011	13.00	14.00	1.00	< 0.005		
}	1			content to unit above a fine grained and grey green color.	855012	14.00	15.00	1.00	< 0.005		
1				Again, non magnetic and has HCL reaction and easy to	855013	15.00	16.00	1.00	< 0.005	<u> </u>	
				scratch with knife, Minor rare quartz calcite stinger noted.	855014	16.00	17.00	1.00	< 0.005		
		· · · · ·		Lower contact of unit and vein at 90 deg to CA,	855015	storeas221			1.099	!	
					555016	17.00	17.70	0.70	0.005	1	
	1					1		1	1		
17.70	18.70	Quartz Vein	QV	Fine grained bull white quartz vein that has no HCL reaction.	(855017	17.70	(18.70	{1.00	< 0.005	1	
				Some very minor sulphides mainly pyrite and pyrrhotite							
				generally <1% overall. A trace of chalcopyrite noted.	1					1	
				At lower contact last 2cm of vein brecciated and some			1			1	
			_	smoky grey quartz noted, lower contact at 30 deg to CA.	<u> </u>	<u> </u>				<u> </u>	
10 70		Mofie Eleve Deserte	255	This is a fina grained grouteb group with that is wealth.	1.	1	1	1	1		
18.70	133.80	INIATIC FIOW Breccia	258	I mis is a mine grained, greyish green unit that is weakly	1955040	1	110.40	10.70		<u> </u>	
	<u> </u>	 		sericite altered. It is soft and easily scratched with Khife.	1000018	10.70	119.40	10.70	0.014	ļ	
 	<u> </u>		+		1000019	19.40	20.00	<u>טס.טן</u> ו	<u> 0.011</u> 	<u> </u>	

.

From	To	Rock Type	Code	Description	Sample#	From	То	Meters	Au q/t	Au g/t (met)
						1			7	1
10.70					055000		04.00			1
18.70	33.80	IVIATIC FIOW Breccia	258	put after 26 m. weak reaction at best. No response to	1855020	120.00	121.00	11.00	< 0.005	<u> </u>
		(continued)	_	magnet throughout. Pyrite content about 0.5 to 1% diss.	1855021	121.00	122.00	11.00	< 0.005	÷
			_	pyrite to about 26 m. beyond 26 m to lower contact more	1855022	122.00	123.00	11.00	< 0.005	
	_		_	like trace pyrite. Weak shear fabric and slightly more intense	1855023	123.00	24.00	11.00	< 0.005	<u> </u>
	_		_	sericite alteration from 26 to 30 m. Shear fabric stretches	1855024	124.00	25.00	1.00	< 0.005	
				Ifragments from 26 to 30, the weak shear fabric oriented at	1855025	25.00	26.00	1.00	0.006	-
				150 deg to CA.	855026	26.00	27.00	1.00	0.006	
			_	This unit again has some very minor quartz calcite stringers	855027	27.00	28.00	1.00	< 0.005	
	_			or small veinlets often conaining pyrite. These make up	855028	128.00	29.00	11.00	< 0.005	<u> </u>
				<pre> <1%of unit.</pre>	855029	29.00	30.00	1.00	< 0.005	
				Overall very competent unit, again a few minor slips at 10	855030	blank			< 0.005	<u> </u>
				deg or so to CA and fractures parallel fabric for most part	855031	30.00	31.00	11.00	0.005	<u> </u>
				lat 50 deg to CA,	855032	31.00	32.00	1.00	0.005	
				Lower contact at 45 deg to CA.	855033	32.00	33.00	11.00	j 0.006	1
					855034	33.00	33.80	0.80	0.006	
33.80	35.10	Fault Zone	FZ	This a distinctive but moderate fault with some gouge and	855035	33.80	35.10	[1.30	0.005	1
				ground rubble core. The rock unit is which the fault is				ł		1
				as described in unit immediately above fault except this			1	1		Τ
				section has more intense shear fabric, a moderate HCL				1		Ι
				reaction. Again a few stringers and veinlets of quartz				1		· ·
				Inoted. Sulphide content trace. Unit stil soft and note shear				1		1
				fabric 30 deg to CA. Lower contact is ground up.	1	1	1	1	i	1
					İ	1	i	İ	İ	<u>i</u>
35.10	39.40	Mafic Volcanic	2U	This is a fine gr., soft, grey green unit that is weakly ser.	855036	135.10	36.00	0.90	0.006	1
				laltered. It is a massive unit, that is non magnetic and has a	1855037	136.00	37.00	i1.00	0.005	1
				strong HCL reaction. Competent interval with a few	855038	37.00	38.00	11.00	0.006	1
				Ifractures noted generally at 60 deg to CA.	1	1	i		1	1
				Estimate of 1/2 % disseminated pyrite noted. Gradational	1	1	1	1	1	1 .
				Icontact into lower leucoxene bearing mafic volcancic as	1	1	1	í	1	<u>,</u>
				Ivery localized leucoxene noted proximal to unit where	1	1	1	· ·	1	+
				Ileucoxene becomes dominant. No significan veining	1	1	1	1	1	+
				Industryed	1	<u> </u>	1	1	1	<u>+</u>
	-				- 1 - 1	1	1	1	1	1
30 /0	43.80	MaficVolcanic	211	This is a fine grained massive unit that is a light grey color	1855039	138.00	139 40	11.40	0.005	1
39.40	43.00			It has numerous skeletal leucovenes throughout it. It is non	1855040	lstoreas221	100.10	1	1 1 006	<u> </u>
	_		-	Imagnetic but has a strong HCL reaction Competent unit	1855041	139 40	140.00	0.60	1 < 0.005	<u> </u>
			-	with a few fractures at 50 deg to CA in general. No other	1855042	100.40	141.00			<u> </u>
			_	Isignificant structures observed. No significant voining noted	1855042	141.00	142.00	11.00	0.005	<u> </u>
			_	The unit is easily seratebod with knife, moderate bardness	1855043	142.00	143.30	11.00	< 0.005	<u> </u>
			_	I have then 1/2 % discominated purity. Lower contact with	1855044	142.00	143.90	10.50	0.005	<u> </u>
				Less than 1/2 % disseminated pyrite. Lower contact with	1000040	43.30	143.00	10.50	1 < 0.005	<u> </u>
			+	I vein sharp and at 50 deg to CA.	1	1	1	1	<u> </u>	<u>.</u>
42.00	44.00			I Comply arou quartz up in that is broadiated and sut hy	1955046	142.90	144.90	1 00		1
43.80	44.80			Joniony grey quartz veni triat is Diecciated and cut by	1000040	143.00	1-++.00	11.00	1 0.007	1
l		I		secondary white quartz stringers. Numerous closts & DIEDS	1	1		l	1	1

-

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
					<u> </u>					1
					ļ					1
					1			<u> </u>		1
43.80	44.80	Quartz Vein	QV	of fine pyrite making up 3-4% of vein. Lower contact	1			Ī		1
		(continued)		variable but generally subparallel to CA.				1]
44.80	85.50	Mafic Volcanic	20	at 44.80 to 66.25	855047	44.80	45.32	0.52	0.005	1
				This is a massive greyish colored unit with some patchy	1855048	45.32	46.50	1.18	< 0.005	1
				grey green sections where there is local very weak patchy	855049	46.50	48.00	1.50	< 0.005	
				sricite alteration. Also this section has patchy areas with	1855050	48.00	49.50	1.50	< 0.005	
				leucoxene as well. The unit is fine grained and of moderate	855051	49.50	51.00	1.50	< 0.005	<u> </u>
				hardness as it can be scratched with a knife. The unit	855052	51.00	52.50	11.50	< 0.005	
				reacts to HCL, moderate to strong reaction. Unit is non	855053	52.50	54.00	1.50	< 0.005	1
		•		magnetic. There are a few quartz calcite stringers and clots	855054	54.00	55.50	1.50	< 0.005	
				noted, these occassionally have some pyrite with them. In	855055	blank			< 0.005	
				general they are only a few mm wide but in a rare instance	855056	55.50	57.00	1.50	< 0.005	1
				a couple of cm. These stringers and veinlets make up about	855057	57.00	58.50	1.50	< 0.005	1
				2% of entire interval. Overall this is a very competent unit	855058	58.50	60.00	1.50	< 0.005	1
				with excellent RQD and recovery. Very minor fault zone	855059	60.00	61.50	1.50	< 0.005]
				with a few slips at 10 deg to CA and blocky broken core	855060	61.50	63.00	1.50	< 0.005	1
				from 49.62 to 53.30, blocky broken contacts. Also in	855061	63.00	64.50	1.50	< 0.005	1
				unit other very minor slip planes at about 10 deg to CA.	855062	64.50	66.00	1.50	< 0.005	1
				Also a few fractures noted at 60 & 45 deg to CA in	855063	66.00	67.00	[1.00	< 0.005	1
				general. There is some disseminated and stringers of	855064	67.00	68.00	1.00	< 0.005	1
				pyrite noted but over all 1/2 to 1% total. Some sections over	855065	st0reas221		1	1.082	;
				0.5 meters may have a little more pyrite but in general	1855066	68.00	69.00	1.00	< 0.005	i
				minimal sulphide content.	855067	69.00	70.00	11.00	< 0.005	<u>i</u>
				· · · · ·	1855068	70.00	71.00	i1.00	< 0.005	<u>j</u>
				at 66.25 to 85.50	855069	71.00	72.00		< 0.005	1
				this interval distinctly similar to interval just described	855070	72.00	73.00	i1.00	< 0.005	
				above. Some minor differnces, like perhaps closer to 1%	855071	73.00	74.00	11.00	< 0.005	1
			-	pyrite: some patchy leucoxene still locally and again locally	1855072	74.00	75.00	11.00	< 0.005	1
				some patchy weak greenish grey sections that are sericitic	855073	75.00	76.00	11.00	< 0.005	1
	-		-	sericite alteration very weak. Again a few guartz calcite	1855074	76.00	77.00	11.00	< 0.005	1
			_	stringers & veinlets noted, these are minor and make up	1855075	77.00	78.00	11.00	< 0.005	<u> </u>
				maybe 2% of unit, the bulk of these noted from 66 to 68 m.	855076	78.00	79.00	 i1.00	< 0.005	1
				This innterval is also non magnetic, and it has a moderate	855077	79.00	80.00	11.00	< 0.005	1
·····				to weak HCL reaction. This section of unit of moderate	855078	80.00	81.00	i1.00	< 0.005	1
				hardness and can be scratched with knife but with a little	855079	81.00	82.00	11.00	< 0.005	1
	+			effort. Competent section with good recovry and RQD.	1855080	blank		1	< 0.005	<u>.</u>
	1			Again some minor slips at about 10 deg to CA and a few	1855081	82.00	83.00	11.00	< 0.005	;
	1			fractures noted at 45 deg to CA in general. A blocky broken	1855082	83.00	84.00	11.00	< 0.005	<u>.</u>
				section with a few slips (minor fault) from 77.4 to 78.30.	1855083	84.00	85.00	11.00	< 0.005	·
	1			Lower contact sharp at 40 deg to CA.	1855084	85.00	85.50	10.50	0.006	;
	-		_		1	1				<u>† </u>
	1		-		Ì	1		Ì		<u>i</u>

•

From	То	Rock Type	Code	Description	Sample#	From	To	Meters	Au g/t	Au g/t (met)
							1			
				×			1		1	
						1	1			
						1			ł	
85.50	97.35	Mafic Volcanic	2HY	This section is an excellent example of hyaloclastite textue.	855085	85.50	86.00	0.50	< 0.005	
		(Hyaloclastite)		The unit comprised of of numersous angular shards in a	855086	86.00	87.00	1.00	< 0.005	
				fine grained matrix but mainly comprised of fragments. The	855087	87.00	88.00	1.00	< 0.005	
				fragments range in size from a few mm to 15 cm but the	855088	88.00	89.00	1.00	< 0.005	1
				majority in the cm or less rannge. The color of the fragmets	855089	189.00	90.00	1.00	< 0.005	
				could me described as a dirty white color with a few tan	855090	storeas221	ł		1.071	-
				colored fragments (carb altered?). The unit is moderate	855091	J90.00	91.00	1.00	0.011	1
				Ito soft in hardness and can be scratched with a knife.	855092	91.00	92.00	1.00	< 0.005	1
				Weak to moderate HCL reaction and unit is non magnetic.	855093	92.00	193.00	1.00	< 0.005	1
				Very competent unit with excellent recovery and RQD.	855094	193.00	194.00	1.00	< 0.005	
				There are a few minor slips in unit about 20 deg to CA and	855095	94.00	95.00	1.00	< 0.005	ľ í
				locally some weak shear fabric over a couple of meters at	855096	95.00	96.00	1.00	< 0.005	1
				20 deg to CA. Also a few fractures generily 35-40 deg to	855097	96.00	96.40	0.40	< 0.005	Ι
				CA. Only one bull white colored quartz vein noted from	855098	96.40	97.35	0.95	< 0.005	
				96 to 96.40 m. associated with a slip plane at 20 deg to						
				CA. The vein was not minerlized. The unit itself has fairly		1	1			
				minor disseminated pyrite and a few tiny strigers, overall			I			1
				estimate of 1/2% pyrite at best. Hyaloclastite texture						
				becomes patchy for last meter of this unit and totally	1		1		1	
				disappears, gradational contact with unit below.	1	1	1	l	1	1
						1	1		l	1
97.35	118.50	Mafic Volcanic	2U	at 97.35 to 108.50	855099	97.35	98.00	0.65	< 0.005	
			-	at start of unit there are a number of amygdules with	855100	98.00	99.00	1.00	0.005	1
				calcite in them for a couple of meters. Th unit is very fine	855101	99.00	100.50	1.50	< 0.005	1
				grained unit that is generally grey in color but there is a tan	855102	100.50	102.00	1.50	< 0.005	
				colored section from 100 to 105.5; this section is thought	855103	102.00	103.50	1.50	< 0.005	1
				to me carb/sericite altered.	855104	103.50	105.00	1.50	0.005	<u> </u>
				This unit is non magnetic and has a strong HCL reaction.	855105	blank	1		< 0.005	1
				Also the unit is generally moderate to soft with respect to	855106	105.00	 106.50	1.50	< 0.005	•
				hardness and minimal effort required to scratch with a	855107	106.50	108.00	1.50	< 0.005	1
				knife. Very rare quartz carb stringer or veinlet noted, less	855108	108.00	109.50	1.50	< 0.005	
				Ithan 1% of this interval of unit. This is a very competent	855109	J109.50	111.00	1.00	0.01	
				unit with excellent reciovery and RQD. Again this unit has	855110	1111.00	112.00	1.00	0.023	1
				a few minor slips at 20 deg to CA and a few fractures at	855111	112.00	113.00	1.00	0.006	1
				35-40 deg to CA. No major structure observed. The unit	855112	113.00	114.00	1.00	< 0.005	1
			٠	<u>{contains <1/2% pyrite overall.</u>	855113	114.00	115.00	[1.00	< 0.005	1
				1	855114	115.00	[116.00	1.00	< 0.005	
				lat 108.5 to 118.50	855115	116.00	117.00	1.00	0.006	
				Continuartion of fine grained, grey colored unit that is	855116	117.00	118.00	1.00	0.005	
				Imoderate to soft with respect to hardness as scratched	1855117	118.00	118.50	10.50	< 0.005	1
				with knife farily easily. This section in non magnetic. Beyond		1				
				110 m to 118.50 HCL reaction becomes extremely weak to						

From	То	Rock Type	Code	Description	Sample#	From	To	Meters	Au g/t	Au g/t (met)
				non existant. From 109 to 110 & 111 to 112 m. some quartz		1		1	1	
				stringrs and veinlets making up 4 and 7 percent respectively				1		Ι
					ļ		ł		1	1
					1	1		l	ł	
97.35	118.50	Mafic Volcanic	2U	of these 1 m intervals. These intervals also have some py		1	-	1	1	1
		(continued)		minerlization associated with them; from 111-112 there is		1			1	
				significant pyrite, estimate 5-7%. Overall this section has	l		I		1	
				slightly more pyrite mineralization, estimate of 1/2-1%.		1	1	l	1	1
				Again this is a competent unit with good RQD and excellent	ľ	1	1	1		
				precovery. There are a few minor slip planes noted at 20			1	1		
				deg to CA. and a few fractures at 35 deg to CA. No major	}]	1	1	J	
		,		structure or fabric observed. Lower contact gradational.						Τ
118.50	144.90	Mafic Flow Breccia	2FB	at 118.5 to 129.65	855118	118.50	119.00	0.50	< 0.005	
				This unit initially starts off with a few fragments present	855119	119.00	120.00	1.00	< 0.005	Τ
				and thus the gradational contact from unit above and then	855120	storeas221			1.084	1
				there are substantial number of fragments. This unit	855121	120.00	121.00	1.00	< 0.005	1
				Ithought to be perhaps representative of some sort of	855122	121.00	122.00	1.00	< 0.005	1
				debris flow as there are numberous types of fragments	855123	122.00	123.00	1.00	< 0.005	
				ranging in size from a few mm to about 2.5 cm. The	855124	123.00	124.00	1.00	0.005	1
				fragments are sub angular to sub rounded. The matrix	855125	124.00	125.00	1.00	< 0.005	
				material surrounding the fragments is light grey in color	855126	125.00	126.00	1.00	< 0.005	
				and fine grained. Note, with respect to fragments some	855127	126.00	127.00	1.00	0.005	
				fushitic fragments noted and rare intrusive felsic fragment.	(855128	(127.00	(128.00	1.00	< 0.005	1
				From about 126 to the end of this interval dominantly	855129	128.00	129.00	1.00	< 0.005	1
				tan brown (carb altered?) angular volcanic fragments.	855130	Iblank			< 0.005	1
				This unit is of moderate hardness and can be scratehed	855131	129.00	130.00	1.00	< 0.005	
				with a knife. There is a rare quartz stringer or two note and	855132	130.00	131.00	1.00	< 0.005	
				pyrite content estimated to be <1/2% in general pyrite very	855133	131.00	132.00	1.00	< 0.005	
				fine grained and disseminated where present. No major	855134	132.00	133.00	1.00	< 0.005	1
				structure of fabric observed. A few slips noted at 20 deg	855135	133.00	134.00	11.00	< 0.005	1
				to CA and a few fractures at 35-40 deg in general. This	855136	134.00	135.00	1.00	< 0.005	1
				lis a very competent interval with excellent RQD & recovery.	855137	135.00	136.00	1.00	< 0.005	
				Unit has a weak to moderate HCL response and it is non	855138	136.00	137.00	1.00	< 0.005	
				magnetic.	855139	137.00	138.00	1.00	< 0.005	i –
			1.		855140	Istoreas221	j –	j	1.115	1
				at 129.65 to 144.90	855141	138.00	139.00	1.00	< 0.005	l
				This interval is a continuation of the mafic flow breccia unit.	855142	139.00	140.00	1.00	0.005	
				Beyond 131 m. to 137.30 fragments less plentiful & where	855143	140.00	141.00	1.00	< 0.005	1
				present they are less distinctive (ghost like). From 131 to	855144	141.00	142.00	1.00	< 0.005	1
				131.3 more of a tan colored unit (carb altered?). Beyond	855145	142.00	143.00	1.00	< 0.005	1
			1	137.3 numerous subangular to sub rounded fragments &	855146	J 143.00	144.00	1.00	< 0.005	1
				from 139.5 weakly fushitic appearance and a number of	855147	144.00	144.90	Į0.90	< 0.005	
				distinct fushitic fragments to 143.50. Again, fragments of		1	1	1	1	1
				various lithologies in this section. The matrix material of			1	1	1	1
				this interval is fine grained. Variable HCL response, weak to						

From	To	Rock Type	Code	Description	Sample#	From	To	Meters	Au g/t	Au g/t (met)
				strong, partciularily strong in tan colored section at 131.3 to			1	1		1
				137.3. This interval is non magenetic. A weakly sheared			1			
				section noted from 137.3 to 138, shear fabric at 20 deg			1	İ		İ
							1.	T		1
							1	1		j
118.50	144.90	Mafic Flow Breccia	2FB	to CA. Upper contact of shear associated with minor slip			1	1		
		(continued)		plane at 20 deg to CA. Overall this section is a very						1
				competent interval with a good RQD and excellent recovery.						İ
				The interval also has a few fractures present gnerally at			1.		_	
				35 deg to CA. Variable hardness of this unit ranging from						Ī
				moderate to soft. No signifiant veining observed. Some				1		
				leucoxene noted in matrix material in this section. Note, very						i
				minimal pyrite again, estimate <1/2%. Lower contact sharp						1
				and at 30 deg to CA.			1			
							1	Ī		Ī
144.90	157.60	Mafic Volcanic	2U	This is a massive, fine grained grey colored, leucoxene	855148	144.90	146.00	1.10	< 0.005	1
		(Leucoxene)		bearing mafic volcanic. A few minor guartz stringers noted	855149	146.00	147.00	1.00	< 0.005	1
				but these make up about 1% of unit at best. Unit is of mod.	855150	147.00	148.50	1.50	0.005	i
				hardness and it is non magnetic and it has a stong HCL	855151	148.50	150.00	11.50	< 0.005	Ì
				reaction. No major structure observed in unit. A few minor	855152	150.00	151.50	11.50	0.005	i
				slip planes noted at about 20 deg to CA and some fractures	855153	151.50	153.00	11.50	< 0.005	i
				noted at about 40 deg to CA in general. This unit has a good	855154	153.00	1154.50	1.50	< 0.005	I
				RQD and recovery is 100%. Note, in latter portion of this	855155	blank	1		< 0.005	1
				unit beyond 151 m. leucoxenes less pronounced. Sulphide	855156	154.50	156.00	1.50	< 0.005	i
				content mainly pyrite and estimate of trace to 1/2% at best	855157	156.00	1157.00	11.00	0.006	i
				overall.	855158	157.00	1157.60	0.60	< 0.005	i
							1	Ì		1
157.60	163.15	Mafic Flow Breccia	2FB	This unit contains a number of various types of fragments	855159	157.60	158.00	10.40	0.011	i
			1	both sub anguler to subrouned. In some portions there are	855160	158.00	1159.00	11.00	0.007	1
				only a few fragments but others distinctly more fragments	855161	159.00	160.00	11.00	0.005	1
				and very little matrix material. There are short intervals of	855162	160.00	161.00	11.00	< 0.005	İ
				hyaloclastite. Again this section thought to be some sort of	855163	161.00	162.00	1.00	< 0.005	1
				debris flow. Substantial number of fragements present	855164	162.00	163.15	11.15	< 0.005	1
				from 159.30 m. onwards. The unit has a fine grained matrix				1		1
				and it is predominantly grey in color, sections with			1			1 [°]
				hyaloclastite are tan in color. The matrix material in fine			i	i		1
				grained. The unit is non magnetic, of moderate hardness			1 .	1		1
	-			and it has a moderate reaction to HCL. Some very minor			1	i		1
			-	quartz stringers noted, these make up less than 1% of			i	1		1
				unit. No signifiant structure observed. Again a few minor			1			1
	-			slips generally at 20 deg to CA, and a few fractures at 50				1		1
	1			and 60 deg to CA. Competent interval with excellent			1	1		1
				recovery and RQD. Sparse disseminated pyrite noted			i	1		1
	-+			estimate of <1/2% overall. Lower contact sharp at 40 deg			i	i		<u> </u>
	+		+	to CA.			j	1		· ·
	1			4			1			<u> </u>
,	-				-				-	-

ν.

From	To	Rock Type	Code	Description	Sample#	From	To	Meters		Au alt (met)
163.15	164.50	Felsic Intrusive	70	This is a medium grained unit. It is light green in color and	1855165	163 15	164 50	1 35		
			1.0	lannears to be strongly sericite altered. Feldspars difficult		100.10	1104.00	1.55	1 \ 0.005	-{
				ito see due to alteration but numerous quartz grains noted			<u> </u>	1		
			•	land no significant ferro mag minerals present			1	1	1	
					-		1	1		
					-		1	1	<u></u>	
163,15	164 50	Felsic Intrusive	70	This unit is of moderate hardness: it has no HCL reaction.			1	1 1	1	
100.10	104.00	(continued)	- ' ⁻	land it is non magnetic. No significant mineralization or			1	<u> </u>	1	
	-			lyeining or structure observed Lower contact sharp and	-		1	1	1	
	1			lat 55 deg to CA	-	-	1	1		
	1				-		1	1	1	
164 50	1179.50	Mafic Flow Braccia	2EB	Again this unit has a number of angular to sub rounded	855166	164 50	165.00		< 0.005	
104.00	1119.00			fragments ranging in size from a few mm to 3.4 cm across	955167	165.00	166.50	0.50	< 0.005	
	1			There are vanying number of fragments in each section	055107	165.00	1100.50	11.50	< 0.005	<u> </u>
	1	· ·	<u> </u>	Incre are varying number of hagments in each section,	1000100	100.50	100.00	11.50	< 0.005	
	1			Isome sections having substantially more have more	1000109	100.00	1109.00	11.50	_ < 0.005	<u> </u>
	1		-	folicies. This particular interval appears to have more	1000170		1171.00	14.50	1.086	<u> </u>
	1	-		Ifeisic fragments than other sections of this same unit		169.50	1171.00	11.50	< 0.005	<u> </u>
				Igiving it a more reisic appearance. Again, this unit thought	1055172	171.00	1172.50	11.50	< 0.005	<u> </u>
		1	<u> </u>	to be some sort of debris flow. The unit is light grey in color,	1855173	172.50	1174.00	11.50	< 0.005	<u> </u>
		1		Inon magnetic, and has a moderate HCL reaction. The unit	1855174	174.00	11/5.50	1.50	< 0.005	<u> </u>
	1		<u> </u>	lis of moderate to very hard, it can be scratched with a	1855175	Diank	1477.00		< 0.005	<u> </u>
	1			Knife but with difficulty. There are only a few minor qurantz	18551/6	175.50	1177.00	11.50	< 0.005	<u> </u>
			<u> </u>	stringers noted in unit. Very sparse pyrite estimate or trace	1855177	177.00	1178.50	11.50	< 0.005	<u> </u>
				Locally some weak snear rabric observed such as at	18551/8	178.50	11/9.50	1.50	< 0.005	<u> </u>
	<u> </u>			1/4-1/5 where fragments are stretched and fabric at			<u> </u>	1	1	
			<u> </u>	40 deg to CA. This interval is very competent and core			<u> </u>		<u> </u>	<u> </u>
				recovery at 100%. Excellent RQD in this section. A few						
		1		slip planes observed at 20 deg to CA in general and a few			1			
				fractures noted at 40 deg to CA in general. Lower contact			1			<u> </u>
	1	<u> </u>	<u> </u>	on this unit sharp and at 20 deg to CA.			1			
			1							
179.50	186.25	Felsic Intrusive	170	This unit is medium grained and is light green in color due to			<u> </u>	1		<u> </u>
	1			significant sericitic alteration. This alteration has altered	855179	179.50	180.00	0.50	< 0.005	<u> </u>
	1	1		feldspars in the unit. There are sub rounded grains of	855180	180.00	181.00	j1.00	< 0.005	<u> </u>
			1	quartz evident with the hand lense. (poorly developed	855181	181.00	182.00	1.00	0.005	
	· ·	<u> </u>		quartz eye porphyry?) The unit is non magnetic and has	855182	182.00	183.00	1.00	< 0.005	
		}		no HCL reaction. The unit is of moderate hardness. No	855183	183.00	184.00	1.00	< 0.005	
	1			significant veining except for a small broken up quartz vein	1855184	184.00	185.00	1.00	< 0.005	
	1	1		from 185 to185.40. No signicantant mineralization noted.	855185	185.00	185.40	0.40	< 0.005	1
				[Very competent interval with 100% core recovery and	855186	185.40	186.25	 0.85	< 0.005	1
				lexcellent RQD. No major structure observed. Lower contact				1	1	
				has some brecciation and wall rock material proximal to				1		
			1	actual contact. Contact is at 15 deg to CA.	1			1	1	1
										1
186.25	194.90	Mafic Flow Breccia	2FB	at 186.25 to 193.94						
				Again, this unit comprised of numerous fragements ranging	855187	186.25	187.00	0.75	< 0.005	1

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
				from sub angular to sub rounded and with respect to size	855188	187.00	188.00	1.00	0.008	T
				a few mm to 5 to 6 cm across. In this section the dominant	855189	188.00	189.00	1.00	< 0.005	
				fragment type appears to be felsic in composition. The unit	855190	storeas221	1	1	1.167	1
				has a light grey color due to the amount of felsic fragments.	855191	189.00	190.50	11.50	0.005	T
				The unit is non magnetic and has and a moderate HCL	855192	190.50	192.00	1.50	< 0.005	1
				{reaction.				1		Τ
										1
186.25	194.90	Mafic Flow Breccia	2FB	The unit is difficult to scratch with knife and is considered	855193	192.00	193.50	1.50	< 0.005	1
		(continued)		to be a fairly hard unit. Only a trace of sulphde was noted.	855194	193.50	194.90	1.40	< 0.005	1.
				Some very weak shear fabric noted from 188-189 where				1	1	Т
				fragments appear stretched. Fabric at about 40 deg to CA.				1	1	Т
				This section has 100% core recovery and excellent RQD.			ł			Τ
				A few slip planes noted at 40 deg to CA.; also some				1		
				fracture planes at 40 deg to CA. in general. No significant			1			1
				veining of any sort noted. Lower contact gradational.			ł			1
										1
194.90	203.00	Mafic Volcanic	2U	This unit is a fine to medium grained mafic volcanic with	855195	194.90	196.00	1.10	< 0.005	1
		(Patchy Leucoxene)		the occassional fragment. The unit is grey in color, non	855196	196.00	197.00	[1.00	0.005	1
				magnetic and has a moderate to strong HCL reaction. The	855197	197.00	198.00	[1.00	< 0.005	1
				unit contains a number of quartz stringers & small veinlets	855198	198.00	199.00	1.00	< 0.005	1
				of quartz calcite making up about 2-3% of unit, these	855199	199.00	200.00	1.00	< 0.005	Т
				are generally sub parallel to the CA for the most part. This is	855200	200.00	201.00	1.00	< 0.005	1
				a very comepetent interval again with a few minor slips at	855201	201.00	202.00	1.00	< 0.005	1
				about 20 deg to CA and a few fractures at 40 deg to CA	855202	202.00	203.00	1.00	< 0.005	1
				in general. Recovery in this interval is about 100% and			1			· ·
				the RQD is excellent. The unit is of moderate hardness.			1	ļ		1
				Some pyrite noted but overall trace to 1/2%. Some patchy						1
				leucoxene noted in this unit. Lower contact gradatational			1			1
				as increase in fragements noted in last meter or so.				ļ		
							1	1		1
203.00	209.35	Mafic Flow Breccia	2FB	Overall this is a a light grey colored unit in general as there	855203	203.00	204.00	1.00	< 0.005	1
				are a significant number of lighter colored felsic fragments;	855204	204.00	205.00	1.00	< 0.005	1
				however this unit has fragments of various lithologies. The	855205	blank	1		< 0.005	1
				fragments range from a few mm to 6-7 cm across and are	855206	205.00	205.65	0.65	< 0.005	
				generally subangular but some sub rouned as well. There	855207	205.65	206.00	ļ 0.35	< 0.005	
				is very little matrix material as fragment dominate the make	855208	206.00	206.40	j 0.40	< 0.005	
				up of this rock. There is a small felsic dyke present from	855209	206.40	207.00	0.60	< 0.005	
				205.65 to 206.4. The upper contact is along a small slip	855210	207.00	208.00	1.00	< 0.005	1
				plane at 20 deg to CA. Slickenslides in slip plane at 90 deg	855211	208.00	209.35	1.35	0.005	1
				in slip plane. The lower contct is a distinct fault with gouge						
				also at 20 deg to CA. A quartz vein sub parallel to CA				1		1
				associated with lower conact. Felsic dyke very similar						
				Ito that described below from 209.35 to 217.50. Other than				1		1
				Ifault described above no other major structures noted. A						
				Ifew other slips at 20 deg to CA and some fractures at 55						
				Ideg to CA. Competent interval with 100% recovery and			1			1

,

From	To	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
				good RQD. This unit has a weak to moderate response to			1	1		
				HCL and it is non magnetic. Unit has a variable hardness						
				but generally moderate, can be scrathed with knife with		ļ	1	Ī	· ·	1
				some effort. Trace of pyrite at best in unit and no qurartz	1	1				
				veining of significance other that described above. Lower		1	1	1		1
				contact at 20 deg to CA.	ľ					
						1	1			1
209.35	217.50	Felsic Intrusive	70	This felsic intrusive is a light grey color with a greenish		1				
				yellow tinge due to weak sericite alteration. The unit is	855212	209.35	210.00	10.65	< 0.005	<u> </u>
				medium to fine grained. The unit is comprised of feldspar,	1855213	1210.00	211.00	11.00	< 0.005	1
	_			small quartz eyes (poorly developed quartz eye porphry?)	855214	211.00	212.00	<u> 1</u> .00	< 0.005	
				and some very minor ferro mag minerals (5%). Likely	855215	212.00	213.00	1.00	< 0.005	
				more specifically a diorite or quartz diorite in composition.	855216	213.00	214.00	1.00	< 0.005	1
				Although upper contact defined specifically at 209.35 it	855217	214.00	215.00	1.00	< 0.005	1
				appears intrusive was engulfing wall rock for a least half	855218	215.00	J216.00	1.00	< 0.005	1
				a meter above contact; sort of transitional brecciated zone.	855219	216.00	217.00	1.00	< 0.005	1
				There is a similar situation for lower contact as well. Lots of	855220	storeas221	1		1.031	
				intrusive breccia fragments present in this transition zone.	855221	217.00	217.50	0.50	< 0.005	
				This unit is of moderate hardness, and it is non magnetic.			1			1
				The unit has weak HCL reaction. Sulphide content estimated						1
				at trace. No significant veining observed. No major structure		ł	1			1
				noted in unit, some fractures at 40 deg to CA. Very	1	1	1			1
				competent unit with 100% recovery and excellent RQD.	1	1	1			1
				Within unit there was a raft of volcanic material noted from	1		1			1
				210.5 to 211.5. Transitional contact with brecciation from	1	1				
				217 to 217.5.	<u> </u>					
217.50	238.90	Mafic Flow Breccia	2FB	at 217.50 to 236.25	855222	217.50	218.00	0.50	< 0.005	
		_		This unit is simialr to previous flow breccia intervals, again	855223	218.00	219.00	1.00	< 0.005	1
				this unit thought to be some sort of debris flow. The unit	855224	219.00	220.50	1.50	< 0.005	
				is comprised of a wide spectrum of lithological types	1855225	220.50	222.00	1.50	< 0.005	
				ranging from felsic to ultramafic (fushitic fragments) and	855226	222.00	223.50	1.50	< 0.005	
				both volcanic and intrusive. The fragments range in size	855227	223.50	225.00	1.50	< 0.005	
				from a few mm to about 10 cm across. The are subangular	855228	225.00	226.00	1.00	< 0.005	
				for the most part there are some subrounded fragments as	855229	226.00	1227.00	1.00	0.005	1
				well. The matrix material appears fine grained but there is	855230	lblank	1	1	< 0.005	
				very little matrix as the unit is dominated by fragments.	855231	227.00	1228.00	11.00	< 0.005	
				The unit is very competent with 100% revcovery and an	855232	228.00	229.50	1.50	< 0.005	
				excellent RQD. No major structure observed, a few minor	855233	229.50	231.00	1.50	< 0.005	Į
				slips again noted at at 20 deg to CA. in general and a few	855234	231.00	232.00	1.00	< 0.005	1
				fractures at 45-50 deg to CA. Rare quartz veinlet noted at	855235	232.00	233.30	1.30	0.005	
				226.55, other than this no significant veining. The unit	1855236	233.30	234.25	0.95	< 0.005	
				is of variable hardness but in general moderate hardness	1855237	234.25	235.00	0.75	< 0.005	
				as it can be scratched with a knife. Weak to moderate HCL	1855238	235.00	236.00	1.00	< 0.005	1
1				reaction and unit is non magnetic. A few small felsic dykes	855239	236.00	237.00	1.00	< 0.005	1

From		Rock Type	Code	Description	Samole#	From	То	Meters	Au a/t	Au alt (met)
	1			Inoted in interval similar in composition just described above.	855240	237.00	237.55	0.55	< 0.005	- ru gri (met)
			1	Il argest of thes dykes noted from 233 30-234 25. Note	1855241	237.55	237 85	0.30	< 0.005	+
		-	1	In latter portion of unit a small felsic dyke present again from	1855242	237.85	238.40	0.55	< 0.005	+
			1	1237.23 to 237.65 and immediately below this dyke a grey	1855243	238.40	1238.90	0.50	< 0.005	<u> </u>
				white quartz vein noted from 237 65-237.8 m. Upper contact						
			1	lof dyke with 2FB at 30 deg to CA, and lower cotact of dyke		· · ·	<u> </u>		1	+
			1	with small vein at 60 deg to CA. Lower contact of main 2EB			<u> </u>	s.	1	<u>+</u>
			1	lunit with quartz vein below at 20 deg to CA	1		<u> </u> 		1	<u> </u>
							1			1
238.90	239.75	Otz/Ankerite/ Otz	Qav /	This is a smoky grey to white colored vein. White ankerite	855244	238.90	239.75	0.85	< 0.005	•
		Calcite Vein		Inoted in vein but vein also react to HCL. Very minor cubic	1000211	200.00	1		< 0.000	
			1	Invrite noted. Vein contains about 10-15% wall rock within	1		1			<u>.</u>
	+		1	tit. Lower contact associated with slip plane at 20 deg to CA			<u> </u>		1	1
			1				1			<u> </u>
239.75	240 35	Felsic intrusive	170	This particular dyke appears chilled and quartz eyes	1855245	storeas221	<u>,</u> 		1 047	1
	210.00		1	Ipresent but more difficult to find. Primarily composed of	1855246	239 75	1240 35	0.60		+
			1	Ifeldspar, guartz and very minor ferro mag minerals. Some	1	200.70	1	0.00	1 0.000	
			1	Ibrecciated volcanic wall rock noted within dyke. Some	1		1		1	+
			1	Iweak shear fabric in dyke at 20 deg to CA. Unit is non	1		1		1	<u>+</u>
			1 .	Imagnetic and has weak to non existant HCL reaction Weak	1		1			1
				Isericitic alteration noted giving a bleached greenish color	1		<u> </u>		<u> </u>	
	_		<u> </u>	No significant mineralization observed Lower contact	<u> </u>		<u> </u>		<u> </u>	<u> </u>
				is 15 den to CA	1		<u> </u> 		1	<u> </u>
			1				<u> </u>			<u> </u>
240.35	240 55	Otz Ankerite/ Otz	l Oav /	As per vein above from 238 90 to 239 75. Minor cubic pyrite	1855247	240 35	1240 55	0.20	0.008	<u>+</u>
	240.00	Calcite Vein		Intervention vein Lower contact at 40 deg to CA assoc	10002-17	240.00	1	0.20	1 0.000	1
				with slin plane	1		1		1	1
	_				1		1		1	1
240 55	241 75	Mafic Flow Braccia	12FB	las per description from 217 50-238 90 Lower contact on	1855248	240 55	1241 75	1 20	< 0.005	1
240.00	241.75		1	Ithis unit at 20 deg to CA	1000240	210.00	1	1.20	1	1
			1		1		1		1	1
241 75	249 10	Felsic intrusive	1711	This is again a felsic dyke unit comprised mainly of feldspar	1855249	241 75	1243.00	1 25	1 < 0.005	<u>+</u>
	240.10		1	quartz and minor ferro mag minerals. There is considerable	1855250	243.00	1244 00	1.20	< 0.005	
			1	amount of wall rock within this dyke and in some areas	1855251	244 00	1245.00	1.00		<u> </u>
			1	lit is a hybrid mix proximal to the actual rafts of volcanic. The	1855252	245.00	1246.00	1.00		<u>+</u>
				volcanic material is predominantly the mafic flow breccia	1855253	246.00	1247 00	1.00	1 < 0.005	<u>+</u>
				described in this hole above. When the dyke is fresh one	1855254	247.00	1248.00	1.00		<u> </u>
	-	-	1	Ican observe sub rounded quartz eves typical of this unit	1855255	blank	1	1.00	< 0.005	<u>+</u>
	_			More specifially the areas with volcanic rafts are at 246 to	1855256	248.00	1249.10	1 10	< 0.005	<u> </u>
	-		-	1246 40 and 247 65-247 85. A mixed zone with brecciation	1000200	210.00	1	1.10	0.000	<u> </u>
		-		and both volcanic and felsic intrusive material is present	1				<u> </u>	<u> </u>
	+			Ifrom 243-244 60. Similarly another mixed zone from 246 40	1		1		1	1
	-	+-	1	Ito 247. The main felsic dyke where not mixed or assoc	1	1	1		1	1
	+		1	with wall rock has distinct subrounded albeit small quartz	1	-	1		1	+
	+		<u>s</u>	leves giving a poorly developed porphyritic texture The	<u> </u>	+	1	-	1	1
	· · · ·		1	Ifelsic intursive is weak to moderately sericite altered and	1	+	1		- I - I-	1
			1	Tersic intersive is weak to moderately seriole allered and	1		1			1
From	To	Rock Type	Code	Description	Sample#	From	To	Meters	Au a/t	Au alt (met)
--------	--------	---	----------	---	----------	----------	----------	------------	----------	--------------
	1	76-		has a bleached greenish color. Both the volcanic rafts and				1		
				the felsic intrusive are non magnetic and both also have		·	1	—i	1	
	i			a weak to non existant reaction to HCI. Very sparse						
	1			pyrite noted in this section trace pyrite. Both units of						· · ·
	i			moderate hardness. The entire interval is very competent		1	1	i	-j	
	i			with good recovery (100%) and a good RQD. A number of	-	1	1			+
	İ	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		slips are present and these are generally at 20 deg to CA.			_			
	1			The lower contact of this unit at 20 deg to CA and assoc						·/
	İ			with a slip plane.		1	Ī		1	
	İ									
249.10	253.05	Mafic Flow Breccia	2FB	This unit similar to 2FB units described previously. The unit	855257	249.10	250.00	0.90	< 0.005	1
				contains nunmerous sub agular to sub rounded fragments	855258	250.00	251.00	1.00	< 0.005	1
	Ī			of various lithological types including a number of fushitic	855259	251.00	252.00	1.00	< 0.005	
				fragments. Locally there is a weak shear fabric noted in the	855260	252.00	253.05	1.05	< 0.005	1
	1			unit at 30 deg to CA, some of the fragments are stretched	i	1	1	1		1
	i			in this orientation. Overall a very competent unit with 100%		ł	ł	ł		1
	1	1	1	recovery and an excellent RQD. The unit has a few	J	}	1			1
	İ		1	fractures at 60 deg to CA in general and there are a						T
			Ì	number of slip oriented at 20 deg to CA. The unit is of	1	1	1		ł	1
			I	of moderate hardness, it is non magnetic and has a weak	1		1			T
			1	to moderate response to HCL. Traces of pyrite noted	ł				· ·	1
		and the second se		within this unit. Note, this unit has fragement of felsic i	1	1	1		1	1
	1			intrusive within it and some small felsic intrusive dykes			1			1
				as well. It is possible that this intrval represents a large		T	1			1
	1		1	raft within a larger intrusive unit. The unit is generally	1	1			1	1
	l			light grey in color but varies due to fragments Very little	ł	1	-		1	· ·
	ļ			matrix material as dominantly made up of fragments.	1	1			1	1
	1			Lower contact of this unit at 40 deg to CA along a small		1	1	1	1	
				fault with gouge, fault only a mm or two wide.	ł		1		1	
			[1	1	1	1		1
253.05	257.85	Felsic Intrusive	7U	This is a fine to medium grained felsic intrusive. There are	855261	253.05	254.00	0.95	< 0.005	
				more localized sections with sub rounded quartz eyes but	855262	254.00	255.00	1.00	< 0.005	
	_			these are not numerous; in any event this is a poorly	855263	255.00	256.00	1.00	< 0.005	
				developed porphyritic texture. The unit is made up up	855264	256.00	257.00	1.00	< 0.005	
				feldspar, quartz and minor ferro mag minerarals. There	855265	257.00	257.85	0.85	< 0.005	1
				is a distinct weak to moderate shear fabric throughout the	1	1	1	<u>· </u>	1	
				unit and it is oriented at about 45 deg to CA. The unit in very		1			1	1
				competent with 100% recovery and an excellent RQD.	1	ł		1		
				There are a number of slips at 45 deg to CA as well. Some				1		
		1		very minor quartz calcite stringers noted at 80 deg to CA		1		1	1	
		1	<u> </u>	crosscutting fabric and some parallel to fabric but overall	1			1		
		1	1	these likely do not make up more than 1-2% of unit. There		1				1
			1	is some pyrite generally disseminated pyrite that is patchy		<u> </u>				1
	· ·	1	1	and overall makes up <1/2% of unit. The unit is a light	1	1	1	1	<u> </u>	
		1	1	greenish color as there is some sericite alteration of the unit	<u> </u>	!	<u> </u>		<u> </u>	<u> </u>
		1		weak sericite alteration. The unit is soft to moderate with		1			1	

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
				respect to hardness. The unit is considered fine to medium				1		
				grained and it is non magnetic. It has a variable HCI		1				
				1		l				
				contact of the unit is sharp and at 40 deg to CA.	ł	ł	1	I		
					1	1	1	1		
257.85	262.40	MaficVolcanic	20	This is a dark grey unit that is fine to medium grained and it	855266	257.85	259.00	1.15	< 0.005	
		(Leucoxene)		contains numerous well developed skeletal leucoxenes	855267	259.00	260.20	1.20	< 0.005	
		1		throughout. The unit is of moderate hardness and can be	855268	260.20	260.70	0.50	< 0.005	
				scrathed with a knife. It is non magnetic and it has a	855269	260.70	261.00	0.30	< 0.005	0.48
				Imoderate reaction to HCL. Sulphie minralization is trace to	855270	storeas221		I	1.021	
					1	1		1		
				Inon existant. A few wispy quartz calcite stringers noted	855271	261.00	261.50	0.50	< 0.005	
				and a small vein of quartz calcite noted from 260.75 to	855272	261.50	262.00	0.50	< 0.005	
				[260.87 with two specks of visible gold. Upper contact of	855273	262.00	262.40	0.40	< 0.005	
		•		vein at 20 deg to CA. This is a competent interval with	1	1				
				100% recovery and excellent RQD. No major structure	1		1	ł		
				observed but there are a few small slip planes at 20 det to		1		l		
				ICA and a few fractures generally at 40 deg to CA. A few	1	1		1		
				small felsic intrusive dykes noted close to lower contact.		1		1		
				Lower contact at 20 deg to CA.		1		1		
							1	1		
262.40	264.55	Felsic Intrusive	70	This dyke basically as descried above from 253.05 to			1	Ĩ		
				257.85. This particular interval does not have any	855274	262.40	263.40	1.00	< 0.005	
				significant mineralization or structure. It is still has moderate	855275	263.40	264.00	10.60	< 0.005	
				to weak sericitic alteration and lower contact has a quartz	855276	264.00	264.55	0.55	0.005	
				calcite vein associated with it from 264.45 to 264.55, lower				1		
				contact at 20 deg to CA in association with a slip plane.						
				A few of thses slip planes at 20 deg present in this unit.	1		ł			
				Overall recovery in this unit 100% and RQD very good.			1			
					1	1	1	1		
264.55	280.40	MaficVolcanic	2U	Again a dark grey unit that is medium to fine grained with	855277	264.55	265.00	0.45	0.005	
		(Leucoxene)		numerous well developed skeletal leucoxenes present	855278	265.00	266.00	1.00	< 0.005	
				throughout unit. The unit is of moderate hardness and can	855279	266.00	267.00	1.00	< 0.005	
				be scratched with knife. It has a modrate to strong HCL	855280	iblank			< 0.005	
				reaction and the unit is non magnetic. No significant	855281	267.00	268.00	1.00	0.008	
				mineralization observed but there are a number of tiny	1855282	268.00	269.00	1.00	< 0.005	
			~	quartz calcite stringers at 20 and 40 deg to CA; these	855283	269.00	270.00	1.00	< 0.005	
				appear to follow orinention of slips and fractures in this	855284	270.00	271.00	1.00	< 0.005	
				lunit respectively. These stringers and occassional small	855285	271.00	272.00	1.00	< 0.005	
				veinlet estimated to make up about 3-5% of unit. This unit	855286	272 <i>.</i> 00	273.00	1.00	< 0.005	
				lis very competent with 100% recovery and excellent RQD.	1855287	Į273.00	274.00	1.00	< 0.005	
				There was no major structure observed other than at the	855288	274.00	275.00	1.00	< 0.005	
				Icontact which is marked by a small but distinctive fault	855289	275.00	276.00	1.00	< 0.005	
				lwith gouge (2 cm) and a small quartz vein. The contact is	855290	276.00	277.00	1.00	< 0.005	· ·
				<u>lat 55 d</u> eg to CA.	855291	277.00	278.05	1.05	< 0.005	
					1		1			

From	To	Rock Type	Code	Description	Sample#	From	Το	Meters		Au alt (met)
280.40	322.90	Felsic Intrusive	70	at 286.40 to 301.50	855292	1278.05	279.00	0.95	< 0.005	
				This section of felisc intrusive is thought to be the main	855293	279.00	280.00	1 00	0.005	
				Itargeted ``porphyry intrusive`` unit. It is much like the	855294	280.00	280.40	0.40	< 0.005	
				previously described felsic intrusive porphyritic intrusives	855295	storeas221			1073	+
				In this hole. This particular interval of the unit is medium	855296	280.40	281.00	0.60	0.007	
				lorained and made up of subrounded quartz eves, feldspar	855297	1281.00	1282.00	1 00	< 0.007	
				land minor ferro mag minerals. Likely a guartz diorite in	855298	282.00	283.00	1.00	< 0.005	
				Icomposition. The unit is light green in color as the unit is	855299	283.00	284 00	1.00	< 0.005	
				pervasively sericite altered. The unit has a trace of pyrite	855300	284 00	285.00	1.00	< 0.005	
				loverall at best; there are a number of small quartz calcite	855301	285.00	286.00	1.00	< 0.005	
				Istringers infilling fractures and slips. These are estimated	855302	286.00	287.00	1.00	< 0.005	
					855303	287.00	288.00	11.00	< 0.005	-{
280.40	322.90	Felsic Intrusive	70	-	855304	1288.00	1289.00	11.00	0.013	
	022.00	(continued)		to make up 2% of unit they may occassionally have some	855305	iblank	1200.00	11.00		1
				pyrite associated with them. The unit is of mod. Hardness	855306	1289.00	1290.00	1 00	0.005	1
				land can be scratched with a knife with a little effort. The	855307	1200.00	1291.00	11.00	< 0.005	1
				junit is non magnetic and has a weak HCL reaction. The unit	855308	1290.00	1292.00	11.00	< 0.005	╡───
				lis relatively competent with 100% recovery and good ROD	855309	1202.00	1293.00	11.00	0.005	
				There are a number of slins at 20 deg in general to CA	855310	1292.00	1204 00	11.00		1
				and these are particularily prominent from 291.5 to 301.5	855311	1293.00	1295.00	1.00	< 0.005	1
	<u> </u>	1		and there is some weak shear fabric present from 297 to	855312	294.00	1295.00	11.00	0.005	1
				1301 50. There are also a set of fractures in unit that are	955313	1295.00	1290.00	11.00	< 0.005	1
	1 .			Igenerally at 40 deg to CA	855314	1297.00	1298.00	11.00	1 < 0.005	<u> </u>
	-	1			855315	1298.00	1299.00	11.00	1 < 0.005	1
		1	I	lat 301 50 to 322 85	1855316	200.00	1300.00	11.00		1
		1	1	This interval is a continuation of felsic intrusive described	1855317	300.00	1301.00	11.00	1 < 0.005	+
		<u>1</u>		labove Again this section is medium grained light green in	1855318	301.00	1302.00	11.00	< 0.005	<u> </u>
				Icolor to 318 10 bleached white beyond 318 10. The light	1855319	302.00	1303.00	11.00	1 < 0.005	<u> </u>
			1	Igreen color is due to pervasive moderate sericitic alteration	1855320	storeas221	1	1.00	1 1 065	+
	_	1	1	This section has a trace of pyrite and a few quartz calcite	1855321	1303.00	1304.00		1 < 0.005	1
		<u> </u>	1	Istringers which are very minor. Interval is non magnetic and	1855322	1304.00	1305.00	11.00		1
		} 		a weak to moderate HCL reaction noted. The unit is of	1855323	1305.00	1306.00	11.00		<u>+</u>
	_			Imoderate hardeness. This integal is very competent with	1855324	1306.00	1307.00	11.00		1
		1		with 100% core recovery and a good ROD. There is a small	1855325	1307.00	1308.00	11.00	0.005	<u> </u>
				Ibroken blocky section associated with a minor fault at 20	1855326	1308.00	1309.00	11.00		1
				Idea to CA from 306 3-306 8 m, and small healed fault with	1855327	1309.00	1310.00	11.00		<u> </u>
		 t	<u> </u>	Investor and some noune from 313.40 to 314.70 also at 20	1855328	1310.00	1311 00	11.00		1
	-			Idea to CA. The unit has a number of small slin throughout at	1855320	1311.00	1312.00	11.00	< 0.005	1
	_	1		120 deg to CA in general Also within unit a series of	1855330	iblank	1	1	1 < 0.005	<u> </u>
		1		Ifractures generally at 40 deg to CA A very weak shear	1855331	1312 00	1313.00	i1 00		<u>+</u>
				Ifabric from 312 to 314 m associated with fault mentioned	1855332	1313.00	1314 00	11.00		1
		1	<u> </u>	previously A raft of leucovene volcanic wall rock noted	1855333	1314.00	1315 00	11.00		1
	_{			lat 316-316.8 From 318 10 to lower contact unit is vory	1855334	1315.00	1316.00	11.00		<u> </u>
		1	1	bleached with a few unbleached intervals. Sharp lower	1855335	1316.00	1317.00	11.00		+
		1	1	Icontact oriented at 30 degrees to core axis. A small	1855336	317.00	1318 10	11.00		<u>+</u>
		1	1	Istringer of pyrite on contact line which is basically a slip	1855337	1318 10	1319.00			
1	1	1		jatinger of pyrite on contact line which is basically a slip	1000001	1010.10	1019.00	10.30	1 20.000	1

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
				plane.	855338	319.00	320.00	1.00	< 0.005	1
					855339	320.00	321.00	1.00	< 0.005	Т
322.90	390.75	MaficVolcanic	2U	at 322.90 to 345.00 m.	855340	321.00	322.00	1.00	< 0.005	1
		(Leucoxene)		This initial section of this unit is fine to medium grained and	855341	322.00	322.90	0.90	< 0.005	T
				grey black in color. It has numerous skeletal leucoxenes	855342	322.90	324.00	1.10	< 0.005]
				throughout it. An exception to this is a short interval from	855343	324.00	325.00	11.00	< 0.005	1
				325 to 326.3 where there is a section with hyaloclastite	855344	325.00	326.00	1.00	0.009	1
				and some brecciation. The end of the interval is marked	855345	storeas221		ł	1.033	
				with a quartz ankerite vein from 326.08 to 326.23. This	855346	326.00	326.35	0.35	< 0.005	T
				quartz ankerite vein has had multiple injections marked	855347	326.35	327.00	0.65	< 0.005	1
				by chlorite partings and black hard tourmaline.	855348	327.00	328.00	1.00	< 0.005	J
							1			1
										1
322.90	390.75	MaficVolcanic	2U	The unit has small stingers and clots of quartz calcite often	855349	328.00	329.00	1.00	< 0.005	T
		(Leucoxene)		associated with pyrite. These stringers make up about 3-4	855350	329.00	330.00	1.00	< 0.005	1
		continued		percent of this section. Pyrite content overall estimated at	855351	330.00	331.00	1.00	< 0.005	1
				trace to 1/2%. The unit has a strong reaction to HCL and	855352	331.00	332.00	1.00	0.005	1
				it is non magnetic. Stringers of quartz calcite often follow	855353	332.00	333.00	1.00	< 0.005	1
				orientation of slips and fractures which are generally at 30	855354	333.00	334.00	1.00	< 0.005	1
				and 50 deg to CA respectively. A very weak shear fabric	855355	blank			< 0.005	
				evident from 339.5 to 343.80 at 30 deg to CA. This is a	855356	334.00	335.00	1.00	< 0.005	
				very comepetent interval with 100% core recovery and a	855357	335.00	336.00	1.00	< 0.005	
				good RQD. The unit is of moderate hardness.	855358	336.00	337.00	1.00	< 0.005	
					855359	337.00	(338.00	1.00	< 0.005	[
				at 345.00 to 362.40	855360	338.00	339.00	1.00	< 0.005	1
				This is a continuation of fine to medium grained leucoxene	855361	339.00	340.00	1.00	< 0.005	1
				bearing mafic volcanic described above. This particular	855362	340.00	341.00	1.00	< 0.005	
				interval is non magnetic except for a strongly magnetic	855363	341.00	342.00	1.00	< 0.005	
				section from 356.6 to 360.10. The unit has a strong reaction	855364	342.00	343.00	1.00	< 0.005	1
				to HCL. There are a number of quartz calcite stringrs and	855365	343.00	344.00	1.00	< 0.005	1
				veinlets partiuclarily between 345-352 meter where they	855366	344.00	345.00	1.00	< 0.005	
				make up about 3-4% of unit. Below 352 these stringers of	855367	345.00	346.00	1.00	< 0.005	1
				quartz calcite are sparse. Pyrte is noted in the unit but it	855368	346.00	347.00	1.00	< 0.005	1
				is again minor and makes up trace to 1/2% overall. This unit	855369	347.00	1348.00	· 1.00	< 0.005	1
				is again of moderate hardness and can be scratched with	855370	storeas221	1		1.04	1
		_		a knife. This is a competent section again with 100% core	855371	348.00	348.67	0.67	< 0.005	
				recovery and excellent RQD. A number of fractures noted	855372	348.67	349.00	0.33	< 0.005	
				generally at 40 deg to CA and occassionI minor slip planes	855373	349.00	1350.00	1.00	< 0.005	1
				at 20 deg to CA. From about 357.5 to 362.40 there is an	855374	350.00	351.00	1.00	< 0.005	
				alignment of minerals giving it a weak shear fabric or	855375	351.00	352.00	1.00	< 0.005	
				schistosity at 50 deg to CA. A few qurtz calcite stringers	855376	352.00	353.00	1.00	< 0.005	
				note here with 50 deg to CA orientation as well	855377	353.00	354.00	1.00	< 0.005	1
					855378	354.00	355.00	1.00	< 0.005	
					855379	355.00	355.30	0.30	< 0.005	
					855380	blank			< 0.005	
				$T_{}$	855381	355.30	356.00	0.70	< 0.005	

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
1					855382	356.00	356.60	0.60	< 0.005	
					855383	356.60	357.00	0.40	< 0.005	1
					855384	357.00	358.00	1.00	< 0.005	1
					855385	358.00	359.00	1.00	< 0.005	1
				· · · · · · · · · · · · · · · · · · ·	855386	359.00	360.10	1.10	< 0.005	1
					855387	360.10	361.00	0.90	< 0.005	1
					855388	361.00	362.00	1.00	< 0.005	
					855389	362.00	363.00	1.00	< 0.005	
					855390	363.00	364.00	1.00	< 0.005	
					855391	364.00	365.00	1.00	< 0.005	1
					855392	365.00	366.00	1.00	< 0.005]
					855393	366.00	367.00	11.00	< 0.005	1
							1			Ī
							1			
322.90	390.75	MaficVolcanic	2U	at 362.40 to 390.75	855394	367.00	368.00	1.00	< 0.005	1
		(Leucoxene)		This is a continuation of leucoxnene bearing mafic volcanic	855395	storeas221	1		1.038	T
		continued		unit. As per intervals above the unit is a medium grained	855396	368.00	369.00	1.00	< 0.005	1
				grey black colored unit. It is of moderate hardness. Very	855397	369.00	370.00	1.00	< 0.005	1
				rare localized magnetic response in actual volcanic but	855398	370.00	371.00	1.00	< 0.005	1
				small quartz calcite veins are magnetic such as at 378.5	855399	371.00	372.00	1.00	< 0.005	1
				and 379 meters. Some fine sulphide in these small veins/	855400	372.00	373.00	1.00	< 0.005	
				stringers likely pyrrhotite. Strong response to HCL. Noted	855401	373.00	374.00	1.00	< 0.005]
				that ferro mag minerals are extremely chlorite altered as	855402	374.00	375.00	1.00	< 0.005	1
				well. The majority of this section has analignment of	855403	375.00	376.00	 1.00	< 0.005	1
				minerals giving is a weakly sheared or scistose appearace.	855404	376.00	377.00	1.00	< 0.005	1
				This fabric is oriented at 35-40 deg to CA in general.	855405	blank	1		< 0.005	l
				Fractures, slip planes, and quartz calcite stringers/veinlets	855406	377.00	378.00	1.00	< 0.005	1
				generally conform to this orientation as well. Note, quartz	855407	378.00	378.60	0.60	< 0.005	1
				calcite stringers and veinlets only make up about 2% of	855408	378.60	379.00	0.40	< 0.005	1
				this unit. Sulphides mainly pyrite is found disseminated in	855409	379.00	380.00	1.00	< 0.005	1
	-			the unit itself and there it trace to 1/2% maximum. This unit	855410	380.00	381.00	1.00	< 0.005	<u> </u>
				is considered to be a very competent interval with 100%	855411	381.00	382.50	1.50	< 0.005	<u> </u>
				recovery and a good RQD. Lower contact at 45 deg to	855412	382.50	384.00	1.50	< 0.005	
				CA in association with a 2-3 cm quartz calcite vein	855413	384.00	385.50	1.50	< 0.005	
					855414	385.50	387.00	11.50	< 0.005	<u> </u>
					1855415	387.00	1388.50	1.50	< 0.005	<u> </u>
					855416	388.50	390.00	1.50	< 0.005	<u> </u>
					855417	390.00	390.75	10.75	< 0.005	
										<u> </u>
<u>390.75</u>	407.00	Mafic Volcanic	2U	This a very fine grained, grey colored, massive, unaltered	1855418	390.75	392.00	1.25	< 0.005	<u> </u>
			-	matic voicanic with no major structure observed. It has a	1855419	392.00	393.00	11.00	< 0.005	<u> </u>
				Istrong reaction to HCL and it is locally strongly magnetic.	1055420	Istoreas221	1204 50	14.50	1.024	<u> </u>
				I nere are a number of quartz calcite stringers and veinlets	1000421	393.00	1394.50	11.50	< 0.005	<u>+</u>
			_	In the unit, these make up about 3% of the unit. They are	1000422	394.50	1307 50	11.50	< 0.005	<u> </u>
	+			to 95 dog to CA as well They accessionally have some	1000420	390.00	1300 00	1.50	< 0.005	<u> </u>
		- <u>I</u>		Ito ob deg to CA as well. They occasionally have some	1000424	081.00	1099.00	1.50	< 0.005	

From	То	Rock Type	Code	Description	Sample#	From	To	M eters	Au g/t	Au g/t (met)
				pyrite mineralization associated with them. Overall the entire	855425	399.00	400.50	1.50	< 0.005	1
				unit is estimated to have only trace to 1/2% pyrite total. This	855426	400.50	402.00	1.50	< 0.005	<u> </u>
				in a very competent unit with 100% core recovery and an	855427	402.00	403.50	1.50	0.005	
				excellent RQD. A few fractures observed and these are	855428	403.50	405.00	1.50	< 0.005	
				generally at 45 and 80 deg to CA. Lower contact with unit	855429	405.00	406.00	1.00	< 0.005	1
				below gradational as becoming coarser in grain size and	1855430	lblank			< 0.005	
				start of leucoxenes.	855431	406.00	407.00	1.00	< 0.005	
				·		1				Ι
407.00	476.75	MaficVolcanic	20	at 407 to 427.10	855432	1407.00	408.00	1.00	< 0.005	
		(Leucoxene)		Very similar to leucoxene bearing mafic volcanics	855433	408.00	409.00	1.00	< 0.005	
				described previously. This interval is darker grey in color	855434	1409.00	410.00	1.00	< 0.005	1
		_		and more medium grained. Numerous distinctive skeletal	855435	410.00	411.00	1.00	< 0.005	1
				leucoxene troughout unit. Unit considered moderate to soft	855436	411.00	412.00	1.00	< 0.005	
				with respect to hardness. Ferro mag minerals appear	<u> </u>	1	1			
						1				<u> </u>
407.00	476.75	MaficVolcanic	20	altered to chlorite for the most part. Unit has weak patchy	855437	412.00	413.00	1.00	< 0.005	
		(Leucoxene)		fabric more like a weak schistosity or poorly developed	855438	413.00	414.00	1.00	< 0.005	<u> </u>
		continued		shear fabric. In general where this is present the oreintation	855439	414.00	415.00	1.00	0.006	<u> </u>
				of fabric at 20-30 deg to CA. This unit is a competent	855440	415.00	416.00	1.00	< 0.005	<u> </u>
				interval with 100% core recovery and a good RQD. The unit	855441	416.00	417.00	1.00	< 0.005	1
				is locally magnetic over short patchy intervals of a few cm	855442	417.00	418.00	1.00	< 0.005	1
				to about 0.5 m or so. The unit also has a strong HCL	855443	418.00	 419.00	1.00	< 0.005	
				reaction. Throughout unit there are numberous quartz	855444	419.00	420.00	1.00	< 0.005	
				calcite stringers and veinlets sometimes mineralized with	(855445	(storeas221	1		1.005	1
				pyrite. These stingers and veinlets appear to have some	855446	420.00	421.00	1.00	< 0.005	1
				minor ankerite as well but predominantly quartz calcite. The	855447	421.00	422.00	1.00	< 0.005	
				quartz calcite stringers make up about 5% of the unit and	855448	422.00	423.00	1.00	< 0.005	1
				they are is various orinetations ranging from sub parallel to	855449	423.00	424.00	1.00	< 0.005	
				CA to 40 deg to CA. Those at 40 deg to CA follow the	855450	424.00	425.00	1.00	0.006	
				predominant fracture set in this unit. There are also a	855451	425.00	 426.00	1.00	0.005	1
				few slips generally at 20 deg to CA in this unit, these are	855452	426.00	427.10	1.10	0.007	
				often associated with a quartz calcite stringer. This unit is		· ·	<u> </u>			1
				estimated to have trace to 1/2% pyrite overall including	ļ		1			<u> </u>
				pyrite within veins.	1					
							1			<u> </u>
	_			at 427.10 to 446.0	1855453]427.10	427.50	0.40	< 0.005	
	_			Continuation of grey colored medium grained leucoxene	855454	427.50	428.00	0.50	< 0.005	
				bearing matic volcanic. Leucoxenes very pronounced in	855455	Iblank			< 0.005	1
				this interval from 435-442 meters. Again a very competent	855456	428.00	429.00	1.00	< 0.005	<u> </u>
				section with 100% core recovery and good RQD. Locally	855457	429.00	430.50	1.50	< 0.005	<u> </u>
		4		within this section some alignment of minerals or weak	855458	430.50	432.00	1.50	< 0.005	<u> </u>
		· · ·		schistosity or poorly developed shear fabric, this is	855459	432.00	433.00	1.00	< 0.005	<u> </u>
				localized and generally at 30 deg to CA. A few minor slips	1855460	433.00	434.00	1.00	< 0.005	1
		1		noted again at 30 deg to CA. Some fractures noted as well	1855461	434.00	435.00	1.00	0.005	
	_			and these are generally at 45 deg to CA. Estimate of 3%	1855462	435.00	[436.50	1.50	0.008	1
1				quartz calcite stingers and small veinlets within unit	855463	436.50	438.00	1.50	< 0.005	

From	To	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
	3			ranging in oriention from sub parallel to CA to 45 deg to CA	855464	438.00	439.50	1.50	< 0.005	
				as stringers and veinlets often associated with slips and	855465	439.50	441.00	1.50	< 0.005	
				fractures. Sometimes some pyrite noted in qurartz calcite	855466	441.00	442.50	1.50	< 0.005	
				stringers & veinlets. Overall this interval estimated to trace	855467	442.50	444.00	1.50	< 0.005	
				to 1/2% pyrite overall. This unit is of moderate hardness	855468	444.00	445.00	1.00	0.005	
				overall with softer sections where ferro mag minerals	855469	445.00	445.60	0.60	0.352	0.37
				altered to chlorite. The unit has a weak to moderate HCL	855470	storeas221	1	ł	1.049	1
				reaction.Basically unit is non magnetic but a few localized	855471	445.60	446.00	0.40	0.014	-
				weak responses noted. Between this interval and next	855472	446.00	447.50	1.50	0.175	
				a 40 cm section of banded mafic tuff with a small quartz						
				vein stringers if hard black mineral possibly tourmaline	1	1	1		1	
				from 445.9 to 445.97.		1	1	ł		1
						1		ł	1	1
									1	1
]	Ì	1	1
					1	Τ		1	1	-
407.00	476.75	MaficVolcanic	2U	Jat 446 to 462		1				T
İ		(Leucoxene)		This is still a leucoxene bearing mafic volcanic except						1
		continued		this interval is distinctly a finer grained mafic flow with	855473	447.50	450.00	1.50	0.036	•
				occassional section that is fine to medium grained. It Is	855474	450.00	451.50	1.50	0.153	<u>`</u>
				a light grey color. Leucoxenes not as well formed but	855475	451.50	453.00	1.50	< 0.005	
				still evidend with hand lense. Numerous stringers and	855476	453.00	454.50	1.50	0.005	1
1				veinlets as well as clots of quartz calcite noted, these make	855477	454.50	456.00	1.50	< 0.005	
				up about 4-5% of interval. They are often associated with	855478	456.00	457.50	1.50	< 0.005	
				slips and fractures present in the unit. Fractures noted at 40	855479	457.50	459.00	1.50	< 0.005	1
				deg to CA and slips range from 20-30 deg to CA. Again	855480	blank			< 0.005	
l				this section a very competent sectiion with 100% recovery	855481	459.00	460.50	1.50	< 0.005	1
				and good RQD. This unit is of moderate hardness and it is	855482	460.50	462.00	1.50	< 0.005	1
				Inon magnetic and it has a strong HCL reaction. This	855483	462.00	463.50	1.50	< 0.005	
[section still only as trace to 1/2% pyrite. The contact with	855484	463.50	465.00	1.50	< 0.005	<u> </u>
				the more coarser grained leucoxene bearing interval below	855485	465.00	466.50	1.50	< 0.005	<u> </u>
				lis gradational.						<u> </u>
							1			
				lat 462.00 to 476.75						
				This is a darker grey colored more medium grained section	1855486	466.50	468.00	1.50	< 0.005	<u> </u>
				of leucoxene bearing matic volcanic. Leucoxenes are	1855487	468.00	469.50	11.50	0.017	
				more distinctive and larger in this section. This unit is	1855488	469.50	470.50	1.00	0.021	
				competent interval with 100% core recovery and a good	855489	470.50	471.00	0.50	0.013	
				RQD. Fracture and slip orientation as per interval	855490	[471.00	471.50	0.50	0.688	0.90
				Idescribed immediately above. Still a fair number of quartz	1855491	471.50	4/2.25	0.75	4.754	<u> </u>
	4			calcite stringers & small veinlets; these make up about 4%	1855492	472.25	4/3.00	0.75	0.041	<u> </u>
<u> </u>	4			for unit. Unit is non magnetic and has a strong HCL response	1855493	473.00	14/4.00	11.00	0.021	<u> </u>
				I race pyrite present in unit as well, and it is of moderate	1855494	474.00	4/5.00	1.00	0.019	<u> </u>
				Inaroness with some softer sections where ferro mag	1855495	Istoreas221	1	14.00	0.997	<u> </u>
		4		Iminerais altered to chlorite.Note, distinct increase in quartz	1855496	4/5.00	476.00	11.00	0.01	<u> </u>
1				calcite veining from 4/1-4/2.36 (30% of this interval).	855497	4/6.00	1410.15	0.75	0.009	1

•

From	То	Rock Type	Code	Description	Sample#	From	To	Meters	Au g/t	Au a/t (met)
				Within aformentione interval up to 5% fine pyrite stringers		1				
				within veins. Lower contact is sharp along a slip with a		1				T
				small quartz vein at 50 deg to CA.				1		Τ
						1				
476.75	479.95	Pillowed Mafic	2P	Intially about 25 cm of hyaloclastite after contact and a	855498	476.75	478.00	1.25	0.011	1
		Volcanic		series of bands of vesicles 10-20 or so cm across thought	855499	478.00	479.00	1.00	0.01	
				to represent pillow salvages. The unit is a light greenish	855500	479.00	479.95	0.95	0.061	
				color overall and the unit is fine grained. It has a distictive				1		
				shear fabric to it exemplified by the stretched varioles on		-				1
				salvages. In general the shear fabric oriented at 40 deg to		1		1		
				CA. This unit is soft and there is a lot of strong chloritic		1		1]
				altertion of the unit. The unit has a strong to moderate				i		
				reaction to HCL. It is non magnetic. There is some local				1		1
				stringers of pyrite but overall trace pyrite. Towards lower		T				1
				contact a few stringers of quartz calcite for about 25 cm						1
				above contact with some pyrite mineralization, last meter						1
						}				1
476.75	479.95	Pillowed Mafic	2P	also has a few pyrite stringers as well; perhaps 2% pyrite						1
		Volcanic		in last meter. This unit is very competent with 100%			-	I		
		(continued)		recovery and good RQD. A few slip planes noted at 40		1				
				deg to CA or parallel with fabric. Lower contact at 30 deg		1				
				to CA.		1				1
								1		
479.95	482.75	Quartz Vein	Qv	This section is thought to represent a large quartz vein with	855501	479.95	480.38	<u>í</u> 0.43	0.831	0.66
				large rafts of volcanic caught up within it. The vein is	855502	480.38	480.75	0.37	0.082	1
				mainly quartz with a weak to moderate HL reaction and	855503	480.75	481.10	0.35	0.885	0.92
				thus some calcite. The vein section are well mineralized	855504	481.10	481.60	0.50	0.045	1
				with 7% fine pyrite clots and stringers. These stringers	855505	blank			0.005	ł
				are conductive when tested with ohm meter. Wall rock	855506	481.60	482.40	0.80	0.019	1
				material within the vein is basically the pillowed mafic	855507	482.40	482.75	0.35	0.091	1
				just described above. These volcanic rafts have some						
		Ĩ		minor stringers of quartz calcite and some pyrite but						ł
				both are farily minor. The actual details of the vein area and						1
				wall rock are as follows:		ļ				1
				479.95 to 480.35- Vein		1				
				480.38 to 480.75- Volcanic wall rock.		1		1		1
				480.75 to 481.10-Vein		1		1		1
				481.10 to 482.40- Volancic wall rock		1		1		1
				482.40 to 482.75- Vein						1
				Lower contact with vein and volcanics below is at 30 deg						1
				to CA along slip plane		-				1
						1				
482.75	486.70	MaficVolcanic	2U	This is a short interval of leucoxene bearing mafic volcanic	855508	482.75	483.65	0.90	0.089	I
		(Leucoxene)		that intitially is extremely bleached below vein from	855509	483.65	484.50	0.85	0.02	
				482.75 to 483.65 and well mineralized with numerous	855510	484.50	485.00	0.50	0.009	1
				stringers of pyrite that conduct with ohm meter, estimate	855511	485.00	486.00	1.00	0.032	

From	То	Rock Type	Code	Description	Sample#	From	l To	Meters	Au g/t	Au g/t (met)
				of about 7% pyrite in this 0.9 meter section. Below 483.65	855512	486.00	486.70	0.70	0.01	
				to 485.07 distinct leucoxenes present in grey colored		1				1
				unit of moderate hardness. The unaltered section reacts			ļ		1	
				to HCL and is non magnetic. The unaltered interval has trace						
				of pyrite generally associated with a few quartz calcite		1	1		1	1
				stringers. This unit in general has good RQD and 100%		1	1			1
				core recovery and there was no major structure or fabric	1		1	1	1	1
				observed in this section. From about 485 to 486 the unit					1	1
		······································		is weak to moderately bleached and again well mineralized						
				with stringers of pyrite. This 485-486m interval contains	ľ	1	1	1	1	1
				Jabout 3% pyrite; beyond this section unit becomes I	1	1	1		1	1
				junaltered and a few leucoxenes still noted but become	1	1	ł			1
				less and less towards lower contact. Lower contact		1	1			1
				sharp and associated with quartz stringer; orientation at 50	ł	1	1			1
				deg to CA.	1	1	1			1
					i	1				1
					1	1	1	ł		
						1				
486.70	522.80	Pillowed Mafic	2P	at 486.70 to 509		1	1			1
		Volcanic		This unit again thought to be a pillowed mafic volcanic	855513	486.70	487.00	0.30	0.009	1
		(continued)		with pillow salvages likely 10-30 cm sections with vesicles.	855514	487.00	488.00	1.00	0.01	1
				This unit has a very distinct moderate fabric and/or banded	855515	488.00	489.00	1.00	0.008	<u> </u>
				appearance. In many instances vesicles appear stretched.	855516	489.00	490.00	1.00	0.006	1
				In general the shear fabric at about 40 deg to CA. This unit	855517	490.00	491.00	1.00	< 0.005	1
				has a few slips generally parallel to shear fabric and a few	855518	491.00	492.00	1.00	< 0.005	
				fractures as well also at about 40 deg to CA. This unit is	855519	492.00	492.50	0.50	< 0.005	1
				very competent and has 100% core recovery and a good	855520	storeas221		·	1.032	1
				RQD. Unit has a fair number of quartz calcite stringers	855521	492.50	493.00	1.00	0.005	
				and small veinlets cutting across it generally parallel to	855522	493.00	494.00	1.00	0.012	1
				fabric but some crosscutting fabric. These stringers and	855523	494.00	495.00	1.00	< 0.005	
		•		veinlets estimated to make up 5% of unit. In general pyrite	855524	495.00	496.00	1.00	< 0.005	
				relatively sparse trace overall, but some pyrite associated	855525	496.00	497.00	1.00	< 0.005	
				with stringers and veinlets. This unit has a light green color	855526	497.00	498.00	1.00	0.007	
				and is moderate to soft with respect to hardness, some	855527	498.00	498.50	Į0.50	0.015	1
				chloritic alteration present throughtout but not necessarily	855528	498.50	499.00	1.00	< 0.005	
				pervasive. The unit is fine grained and it has variable	1855529	J499.00	J500.00	1.00	< 0.005	
				Iresponse to HCI weak to strong. The unit is non magnetic.	855530	lblank		1	0.005	
		`		A vein at 492.3 to 492.43 has an unusual purple hew in	855531	500.00	501.00]1.00	0.005	
				certain sections. Also and unusual section from 504 to 505	855532	 501.00	 502.00	1.00	0.005	<u> </u>
		_		Imeters; this interval has little or no fabric an is massive	855533	1502.00	1503.00	1.00	0.005	1
				In appearance with a number of larger VARIOLES. Some	1855534	1503.00	1504.00	1.00	< 0.005	
				Ileucoxene noted. Towards lower portion this interval less	1855535	504.00	1505.00	1.00	< 0.005	1
		·		and less fabric noted and some hyaloclastite at 506.00	1855536	1505.00	1506.00	1.00	< 0.005	
				Ivvitnin this unit there appear to be some patches of	1855537	1506.00	1507.00	1.00	< 0.005	<u> </u>
		_		variolitic texture such as from 505 to 506 m.	1855538	1507.00	1508.00	1.00	< 0.005	<u> </u>
					855539	1508.00	1509.00	1.00	< 0.005	

From	То	Rock Type	Code	Description	Sample#	From	l To	Meters	Au g/t	Au g/t (met)
				at 509 to 522.80	855540	509.00	510.00	1.00	0.005	7
				This particular interval of pillowed mafic volcanic	855541	510.00	511.00	1.00	< 0.005	Τ
	~			still has sections of vesicles thought to represent pillow	855542	511.00	512.00	1.00	0.005	
				rims. The unit has less fabric present although a weak	855543	512.00	513.00	1.00	0.005	1
				shear fabric noted from about 514 to 517 m, this fabric at	855544	513.00	¦514.00	1.00	0.005	7
				about 30 deg to CA. Sections of this unit over 30 cm or so	855545	Istoreas221		1	1.01	
				intervals appear to have some varioles. The unit has a	855546	1514.00	515.00	1.00	< 0.005	
				greenish grey color and is fine grained; it is of moderate	855547	515.00	516.00	1.00	< 0.005	
				hardness. The unit has 100% core recovery and a good	855548	516.00	516.50	0.50	< 0.005	
				RQD but there are a number of slips peresent generally at	855549	516.50	517.00	0.50	< 0.005	
		10 C		about 30 deg to CA. Fractures are at about 40 deg to CA	855550	517.00	518.00	1.00	< 0.005	T
				in general in this interval. This interval has minor local	855551	518.00	519.00	1.00	< 0.005	1
				mineralization, trace to 1/2% overall. There are a few	855552	1519.00	520.00	1.00	< 0.005	1
				quartz calcite stringers present but these are minor as well	855553	520.00	521.00	11.00	< 0.005	Ι
				and make up maybe 1-2% of unit. Basiclly a non magnetic	855554	521.00	522.00	1.00	0.006	1
				unit with rare intstance over less than 10 cm where there	855555	blank			0.008	1
				is a magnetic response. The unit is of moderate hardness	855556	522.00	522.80	0.80	0.008	1
				and it has a weak to moderate HCL reation. Within this			1		I	Τ
						1	1		1	1
					1		1		i	1
486.70	522.80	Pillowed Mafic	2P	there are some shorth intervals with some hyaloclastite.	1		1			1
		Volcanic		Slightly softer sections of this unit were observed to be	í		1	I		Τ
		(continued)		chlorite altered. (alteration of ferro mag minerals)	1	1	1	1		Τ
,				Lower contact associated with a slip plane at 5 deg to CA.	1	1	1	1	1	1
				Note, this unit distinctly non magnetic and below contact			1	1		Ι
				in next unit very strongly magnetic.						T
										1
522.80	543.00	Mafc Volcanic	2VAR	This is a fine grained greenish grey colored unit. This	855557	522.80	524.00	1.20	0.009	1
	EOH	(Variolitic)		section has numerous sections that contain a series of	855558	524.00	525.00	1.00	0.009	1
				varioles that sometimes merge into a mass. These varioles	855559	525.00	526.00	1.00	0.007	1
				are fairly hard to scracth and sometimes have a weak	855560	526.00	527.00	1.00	0.006	Ι
				HCL reaction. Often between the sections of variolitic	855561	527.00	528.00	1.00	0.006	1
				material there are shorter intervals of hyaloclastite. This unit	855562	528.00	529.00	1.00	0.006	Ι
				has some minor shear fabric locally for example between	855563	529.00	530.00	1.00	0.007	1
				528-529 where weak shear fabric at 25-30 deg to CA.	855564	530.00	531.00	1.00	< 0.005	1
				This unit has 100% core recovery and excellent RQD. Very	J855565	J531.00	1532.00	1.00	< 0.005	1
				minimal amount of fractures and slips present. In general	855566	532.00	(533.00	1.00	< 0.005	1
				minor slip planes in this interval at 30 deg to CA & fractures	855567	533.00	534.00	1.00	< 0.005	
				at 45 deg to CA generally. Variable hardness, sections	855568	534.00	535.00	1.00	< 0.005	1
				with hyaloclastite and numerous varioles fairly hard and	855569	535.00	536.00	1.00	< 0.005	
				other sections of ferro mag minerals are altered to chlorite	855570	storeas221			1.021	1
				and softer. Pyrite content estimated at 1/2%. Some stringers	855571	536.00	537.00	1.00	< 0.005	
				and disseminated pyrite very localized. Only a few	855572	537.00	538.00	1.00	< 0.005	ł
				quartz calcite stringers noted; less than 2% of unit overall.	855573	538.00	539.00	[1.00	< 0.005	
				The unit has a weak HCL reaction and overall the unit has a	855574	539.00	540.00	1.00	< 0.005	
				very strong magnetic response.	855575	540.00	541.00	1.00	< 0.005	

From	То	Rock Type	Code	Description	Sample#	From	То	Meters	Au g/t	Au g/t (met)
				EOH 543 METERS.	855576	541.00	542.00	1.00	< 0.005	
					855577	542.00	543.00	1.00	< 0.005	1
										1
				Notes re down hold surveying:						1
				Malfunctioning flex unit after rods pulled and hole completed				1		!
				and thus only orignial azimuth used and dip tests from down				ł	-	
				hole as follows:				1		<u> </u>
										1
				27 meters: -87 deg dip				1		1
				78 meters: -86.7 deg dip						1
				129 meters: -85.9 deg dip					_	1
				180 meters: -85.3 deg dip						
				231 meters: -84.9 deg dip				ł		
				282 meters: -84.3 deg dip				1		
				333 meters: -83.8 deg dip				ł		
				384 meters:-83.6 deg dip						1
				435 meters: -83.3 deg dip						}
				486 meters: -82.8 deg dip						1
		I		537 meters: -82.1 deg dip						i

•

•

Appendix 2: Copy of Assay Sheets

Quality Analysis ...

Innovative Technologies

Date Submitted:15-May-19Invoice No.:A19-06631Invoice Date:27-May-19Your Reference:Dome West

Pelangio Exploration Inc 1080 Michelano Drive Timmins Ontario Canada

ATTN: Kevin Filo

CERTIFICATE OF ANALYSIS

577 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Timmins g/m t Au - Fire Assay AA

REPORT A19-06631

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada. P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Results

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855001	0.008
855002	0.008
855003	0.009
855004	0.010
855005	0.008
855006	0.008
855007	0.007
855008	0.007
855009	0.007
855010	0.008
855011	< 0.005
855012	< 0.005
855013	< 0.005
855014	< 0.005
855015	1.099
855016	0.005
855017	< 0.005
855018	0.014
855019	0.011
855020	< 0.005
855021	< 0.005
855022	< 0.005
855023	< 0.005
855024	< 0.005
855025	0.006
855026	0.006
855027	< 0.005
855028	< 0.005
855029	< 0.005
855030	< 0.005
855031	0.005
855032	0.005
855033	0.006
855034	0.006
855035	0.005
855036	0.006
855037	0.005
855038	0.006
855039	0.005
855040	1.096
	1 . 0 00E
855041	< 0.005

Activation Laboratories Ltd.

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855043	< 0.005
855044	< 0.005
855045	< 0.005
855046	0.007
855047	0.005
855048	< 0.005
855049	< 0.005
855050	< 0.005
855051	< 0.005
855052	< 0.005
855053	< 0.005
855054	< 0.005
855055	< 0.005
855056	< 0.005
855057	< 0.005
855058	< 0.005
855059	< 0.005
855060	< 0.005
855061	< 0.005
855062	< 0.005
855063	< 0.005
855064	< 0.005
855065	1.082
855066	< 0.005
855067	< 0.005
855068	< 0.005
855069	< 0.005
855070	< 0.005
855071	< 0.005
855072	< 0.005
855073	< 0.005
855074	< 0.005
855075	< 0.005
855076	< 0.005
855077	< 0.005
855078	< 0.005
855079	< 0.005
855080	< 0.005
855081	< 0.005
855082	< 0.005
855083	< 0.005

Results

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855085	< 0.005
855086	< 0.005
855087	< 0.005
855088	< 0.005
855089	< 0.005
855090	1.071
855091	0.011
855092	< 0.005
855093	< 0.005
855094	< 0.005
855095	< 0.005
855096	< 0.005
855097	< 0.005
855098	< 0.005
855099	< 0.005
855100	0.005
855101	< 0.005
855102	< 0.005
855103	< 0.005
855104	0.005
855105	< 0.005
855106	< 0.005
855107	< 0.005
855108	< 0.005
855109	0.010
855110	0.010
855111	0.006
855112	< 0.000
855113	< 0.005
855114	< 0.005
855115	0.000
855116	0.000
855117	0.005
955119	< 0.005
055110	< 0.005
955120	1 004
055120	1.084
000121	1< 0.005
000122	1< 0.005
800123	0.005
800124	0.005
800125	< 0.005
855126	!< 0.005

Results

1

i

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855127	0.005
855128	< 0.005
855129	< 0.005
855130	< 0.005
855131	< 0.005
855132	< 0.005
855133	< 0.005
855134	< 0.005
855135	< 0.005
855136	< 0.005
855137	< 0.005
855138	< 0.005
855139	< 0.005
855140	1.115
855141	< 0.005
855142	0.005
855143	< 0.005
855144	< 0.005
855145	< 0.005
855146	< 0.005
855147	< 0.005
855148	< 0.005
855149	< 0.005
855150	0.005
855151	< 0.005
855152	0.005
855153	< 0.005
855154	< 0.005
855155	< 0.005
855156	< 0.005
855157	0.006
855158	< 0.005
855159	0.011
855160	0.007
855161	0.005
855162	< 0.005
855163	< 0.005
855164	< 0.005
855165	< 0.005
955166	< 0.005
855100	
855167	< 0.005

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855169	< 0.005
855170	1.086
855171	< 0.005
855172	< 0.005
855173	< 0.005
855174	< 0.005
855175	< 0.005
855176	< 0.005
855177	< 0.005
855178	< 0.005
855179	< 0.005
855180	< 0.005
855181	0.005
855182	< 0.005
855183	< 0.005
855184	< 0.005
855185	< 0.005
855186	< 0.005
855187	< 0.005
855188	0.008
855189	< 0.005
855190	1.167
855191	0.005
855192	< 0.005
855193	< 0.005
855194	< 0.005
855195	< 0.005
855196	0.005
855197	< 0.005
855198	< 0.005
855199	< 0.005
855200	< 0.005
855201	< 0.005
855202	< 0.005
855203	< 0.005
855204	< 0.005
855205	< 0.005
855206	< 0.005
855207	< 0.005
855208	< 0.005
	1 . 0 00E
855209	< 0.005

Results

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855211	0.005
855212	< 0.005
855213	< 0.005
855214	< 0.005
855215	< 0.005
855216	< 0.005
855217	< 0.005
855218	< 0.005
855219	< 0.005
855220	1.031
855221	< 0.005
855222	< 0.005
855223	< 0.005
855224	< 0.005
855225	< 0.005
855226	< 0.005
855227	< 0.005
855228	< 0.005
855229	0.005
855230	< 0.005
855231	< 0.005
855232	< 0.005
855233	< 0.005
855234	< 0.005
855235	0.005
855236	< 0.005
855237	< 0.005
855238	< 0.005
855239	< 0.005
855240	< 0.005
855241	< 0.005
855242	< 0.005
855243	< 0.005
855244	< 0.005
855245	1.047
855246	< 0.005
855247	0.000
855248	0.000
955240	< 0.005
955249	< 0.005
000200	< 0.005
000201	< 0.005
055050	

•

Results

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855253	< 0.005
855254	< 0.005
855255	< 0.005
855256	< 0.005
855257	< 0.005
855258	< 0.005
855259	< 0.005
855260	< 0.005
855261	< 0.005
855262	< 0.005
855263	< 0.005
855264	< 0.005
855265	< 0.005
855266	< 0.005
855267	< 0.005
855268	< 0.005
855269	< 0.005
855270	1.021
855271	< 0.005
855272	< 0.005
855273	< 0.005
855274	< 0.005
855275	< 0.005
855276	0.005
855277	0.005
855278	< 0.005
855279	< 0.005
855280	< 0.005
855281	0.008
855282	< 0.005
855283	< 0.005
855284	< 0.005
855285	< 0.005
855286	< 0.005
855287	< 0.005
855288	< 0.005
855289	< 0.005
855290	< 0.005
855291	< 0.005
855292	< 0.005
855293	0.005

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855295	1.073
855296	0.007
855297	< 0.005
855298	< 0.005
855299	< 0.005
855300	< 0.005
855301	< 0.005
855302	< 0.005
855303	< 0.005
855304	0.013
855305	< 0.005
855306	< 0.005
855307	< 0.005
855308	< 0.005
855309	< 0.005
855310	< 0.005
855311	< 0.005
855312	< 0.005
855313	< 0.005
855314	< 0.005
855315	< 0.005
855316	< 0.005
855317	< 0.005
855318	< 0.005
855319	< 0.005
855320	1.065
855321	< 0.005
855322	< 0.005
855323	< 0.005
855324	< 0.005
855325	0.005
855326	< 0.005
855327	< 0.005
855328	< 0.005
855329	< 0.005
855330	< 0.005
855331	< 0.005
855332	< 0.005
955333	< 0.005
855334	
855335	< 0.005
955336	< 0.005
000000	< 0.005

Results

Results

Anałyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855337	< 0.005
855338	< 0.005
855339	< 0.005
855340	< 0.005
855341	< 0.005
855342	< 0.005
855343	< 0.005
855344	0.009
855345	1.033
855346	< 0.005
855347	< 0.005
855348	< 0.005
855349	< 0.005
855350	< 0.005
855351	< 0.005
855352	0.005
855353	< 0.005
855354	< 0.005
855355	< 0.005
855356	< 0.005
855357	< 0.005
855358	< 0.005
855359	< 0.005
855360	< 0.005
855361	< 0.005
855362	< 0.005
855363	< 0.005
855364	< 0.005
855365	< 0.005
855366	< 0.005
855367	< 0.005
855368	< 0.005
855369	< 0.005
855370	1.040
855371	< 0.005
855372	< 0.005
855373	< 0.005
855374	< 0.005
855375	< 0.005
855376	< 0.005
855377	< 0.005
855378	< 0.005

.

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855379	< 0.005
855380	< 0.005
855381	< 0.005
855382	< 0.005
855383	< 0.005
855384	< 0.005
855385	< 0.005
855386	< 0.005
855387	< 0.005
855388	< 0.005
855389	< 0.005
855390	< 0.005
855391	< 0.005
855392	< 0.005
855393	< 0.005
855394	< 0.005
855395	1.038
855396	< 0.005
855397	< 0.005
855398	< 0.005
855399	< 0.005
855400	< 0.005
855401	< 0.005
855402	< 0.005
855403	< 0.005
855404	< 0.005
855405	< 0.005
855406	< 0.005
855407	< 0.005
855408	< 0.005
855409	< 0.005
855410	< 0.005
855411	< 0.005
855412	< 0.005
855413	< 0.005
855414	< 0.005
855415	< 0.005
855416	< 0.005
855417	< 0.005
855418	< 0.005
055440	< 0.005
855419	

		Results	Activation Laboratories Ltd.	Report: A19-06631
_	Au			
	g/mt			
	0.005			
	FA-AA			

-	
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855421	< 0.005
855422	< 0.005
855423	< 0.005
855424	< 0.005
855425	< 0.005
855426	< 0.005
855427	0.005
855428	< 0.005
855429	< 0.005
855430	< 0.005
855431	< 0.005
855432	< 0.005
855433	< 0.005
855434	< 0.005
855435	< 0.005
855436	< 0.005
855437	< 0.005
855438	< 0.005
855439	0.006
855440	< 0.005
855441	< 0.005
855442	< 0.005
855443	< 0.005
855444	< 0.005
855445	1.005
855446	< 0.005
855447	< 0.005
855448	< 0.005
855449	< 0.005
855450	0.006
855451	0.005
855452	0.007
855453	< 0.005
855454	< 0.005
855455	< 0.005
855456	< 0.005
855457	< 0.005
855458	< 0.005
855459	< 0.005
855460	< 0.005
855461	0.005
855462	0.008

Analyte Symbol

Results

•

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855463	< 0.005
855464	< 0.005
855465	< 0.005
855466	< 0.005
855467	< 0.005
855468	0.005
855469	0.352
855470	1.049
855471	0.014
855472	0.175
855473	0.036
855474	0.153
855475	< 0.005
855476	0.005
855477	< 0.005
855478	< 0.005
855479	< 0.005
855480	< 0.005
855481	< 0.005
855482	< 0.005
855483	< 0.005
855484	< 0.005
855485	< 0.005
855486	< 0.005
855487	0.017
855488	0.021
855489	0.013
855490	0.688
855491	4.754
855492	0.041
855493	0.021
855494	0.019
855495	0.997
855496	0.010
855497	0.009
855498	0.011
855499	0.010
855500	0.061
	0.831
855501	
855501 855502	0.082
855501 855502 855503	0.082
855501 855502 855503 855504	0.082 0.885 0.045

Results

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
855505	0.005
855506	0.019
855507	0.091
855508	0.089
855509	0.020
855510	0.009
855511	0.032
855512	0.010
855513	0.009
855514	0.010
855515	0.008
855516	0.006
855517	< 0.005
855518	< 0.005
855519	< 0.005
855520	1.032
855521	0.005
855522	0.012
855523	< 0.005
855524	< 0.005
855525	< 0.005
855526	0.007
855527	0.015
855528	< 0.005
855529	< 0.005
855530	0.005
855531	0.005
855532	0.005
855533	0.005
855534	< 0.005
855535	< 0.005
855536	< 0.005
855537	< 0.005
855538	< 0.005
855539	< 0.005
855540	0.005
855541	< 0.005
855542	0.005
855543	0.005
855544	0.005
855545	1.010
855546	< 0.005
	I

lyte Symbol	Au
Symbol	g/mt
wer Limit	0.005
thod Code	FA-AA
547	< 0.005
548	< 0.005
549	< 0.005
5550	< 0.005
551	< 0.005
5552	< 0.005
5553	< 0.005
5554	0.006
5555	0.008
5556	0.008
5557	0.009
5558	0.009
5559	0.007
5560	0.006
5561	0.006
5562	0.006
5563	0.000
5564	< 0.007
5565	< 0.005
5566	< 0.005
5567	< 0.005
5569	< 0.005
5560	< 0.005
5555	< 0.005
000/0	1.021
55571	< 0.005
855572	< 0.005

< 0.005

< 0.005 < 0.005

< 0.005

< 0.005

Activation Laboratories Ltd.

Activation Laboratories Ltd.

•

•

•

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
Assay) Cert	
Oreas 221 (Fire	1.101
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cerl	
Oreas 221 (Fire	1.081
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cert	
Oreas 221 (Fire	1.089
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cert	
Oreas 221 (Fire	1.094
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cert	
Oreas 221 (Fire	1.123
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cert	1
Oreas 221 (Fire	1.096
Assay) Neas	1.00
Oreas 221 (Fire	1.06
855010 Orig	0.007
855010 Ong	0.007
	0.008
855020 Orig	< 0.005
855020 Dup	< 0.005
855030 Orig	< 0.005
855030 Dup	< 0.005
855045 Orig	0.005
855045 Dup	< 0.005
855050 Oria	< 0.005
855050 Split	< 0.005
PREP DUP	
855054 Oria	< 0.005
855054 Dun	< 0.005
855064 Orig	< 0.005
955004 Ong	0.005
000004 Dup	< 0.005
8550/9 Orig	< 0.005
855079 Dup	< 0.005
	< 0.005
855089 Orig	
855089 Orig 855089 Dup	< 0.005

Analyte Symbol	Au		
Unit Symbol	g/mt		
Lower Limit	0.005		
Method Code	FA-AA		
855099 Dup	< 0.005		
855100 Orig	0.005		
855100 Split PREP DUP	< 0.005		
855113 Orig	< 0.005		
855113 Dup	< 0.005		
855123 Orig	< 0.005		
855123 Dup	< 0.005		
855133 Orig	< 0.005		
855133 Dup	< 0.005		
855148 Orig	< 0.005		
855148 Dup	< 0.005		
855150 Orig	0.005		
855150 Split PREP DUP	0.006		
855157 Orig	0.006		
855157 Dup	0.006		
855167 Orig	< 0.005		
855167 Dup	< 0.005		
855182 Orig	< 0.005		
855182 Dup	< 0.005		
855192 Orig	< 0.005		
855192 Dup	< 0.005		
855200 Orig	< 0.005		
855200 Split PREP DUP	0.005		
855210 Orig	< 0.005		
855210 Dup	< 0.005		
855221 Orig	< 0.005		
855221 Dup	< 0.005		
855230 Orig	< 0.005		
855230 Dup	< 0.005		
855246 Orig	< 0.005		
855246 Dup	< 0.005		
855250 Orig	< 0.005		
855250 Split PREP DUP	0.005		
855254 Orig	< 0.005		
855254 Dup	< 0.005		
855264 Orig	< 0.005		
855264 Dup	< 0.005		
855279 Orig	< 0.005		
055270 Dup	< 0.005		

•

ι.

QC

•

•

Analyte Symbol	Au		
Unit Symbol	g/mt		
Lower Limit	0.005		
Method Code	FA-AA		
855289 Orig	< 0.005		
855289 Dup	< 0.005		
855299 Orig	< 0.005		
855299 Dup	< 0.005		
855300 Orig	< 0.005		
855300 Split PREP DUP	< 0.005		
855313 Orig	< 0.005		
855313 Dup	< 0.005		
855323 Orig	< 0.005		
855323 Dup	< 0.005		
855333 Orig	< 0.005		
855333 Dup	< 0.005		
855348 Orig	< 0.005		
855348 Dup	< 0.005		
855350 Orig	< 0.005		
855350 Split PREP DUP	0.006		
855357 Orig	< 0.005		
855357 Dup	< 0.005		
855367 Orig	< 0.005		
855367 Dup	0.007		
855382 Orig	< 0.005		
855382 Dup	< 0.005		
855392 Orig	< 0.005		
855392 Dup	< 0.005		
855400 Orig	< 0.005		
855400 Split PREP DUP	< 0.005		
855410 Orig	< 0.005		
855410 Dup	< 0.005		
855421 Orig	< 0.005		
855421 Dup	< 0.005		
855430 Orig	< 0.005		
855430 Dup	< 0.005		
855446 Orig	< 0.005		
855446 Dup	< 0.005		
855450 Orig	0.006		
855450 Split PREP DUP	0.007		
855454 Orig	< 0.005		
855454 Dup	< 0.005		
855464 Oria	< 0.005		

QC

•

QC

.

Analyte Symbol	Au	
Unit Symbol	g/mt	
Lower Limit	0.005	
Method Code	FA-AA	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	
Method Blank	< 0.005	

,

Quality Analysis ...

Innovative Technologies

Date Submitted:15-May-19Invoice No.:A19-06631-1A4Invoice Date:10-Jun-19Your Reference:Dome West

Pelangio Exploration Inc 1080 Michelano Drive Timmins Ontario Canada

ATTN: Kevin Filo

CERTIFICATE OF ANALYSIS

577 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A4-1000 (100mesh)-Timmins Au-Fire Assay-Metallic Screen-1000g

Code 1A2-Timmins g/m t Au - Fire Assay AA

REPORT A19-06631-1A4

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

•

		-	-			-	
Analyte Symbol	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03			
Method Code	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
855269	6.67	< 0.03	< 0.03	0.48	31.50	408.00	439.50
855469	0.44	0.33	0.39	0.37	20.67	321.00	341.6 7
855490	1.16	0.85	0.92	0.90	34.48	778.00	812.48
855501	0.76	0.69	0.63	0.66	28.82	683.00	711.82
855503	0.94	0.93	0.90	0.92	41.31	380.00	421.31

Activation Laboratories Ltd.

Analyte Symbol	Total Au	Total Weight
Unit Symbol	g/mt	g
Lower Limit	0.03	
Method Code	FA-MeT	FA-MeT
OXN117 Meas	7.70	
OXN117 Cert	7.679	1
OREAS 257 Meas	14.3	
OREAS 257 Cert	14.18	
Method Blank	< 0.03	0.00000
Method Blank	< 0.03	0.00000

.
Quality Analysis ...

Innovative Technologies

Date Submitted:03-Jun-19Invoice No.:A19-07294Invoice Date:07-Jun-19Your Reference:Dome West

Pelangio Exploration Inc 1080 Michelano Drive Timmins Ontario Canada

ATTN: Kevin Filo

CERTIFICATE OF ANALYSIS

31 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Timmins (10g/m t) Au - Fire Assay AA

REPORT A19-07294

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

			,		
		Results	Activation Laboratories Ltd.	Report: A19-07294	
Analyte Symbol	Au				
Unit Symbol	g/mt	,			
ower Limit	0.005			· · · · · · · · · · · · · · · · · · ·	
Method Code	FA-AA				
01951	0.006)	
01952	< 0.005				
01953	< 0.005				
01954	0.006				
01955	< 0.005				
01956	0.005				
701957	0.006				
701958	< 0.005				
701959	0.006				
01960	< 0.005				
01961	0.005				
01962	0.140				
701963	0.008				
01964	0.081				
01965	0.006		:		
01966	0.008			,	
01967	0.007				
01968	0.006				
01969	< 0.005				
01970	1.04				
01971	< 0.005				
701972	< 0.005				
701973	< 0.005				
· · · ·			جور رویو ویکویون رودانداندگوروییدو استروی و میشویی ویکر و بادیون و مانون و مانو این را در ایران در ایران در ای ا	nen an en en en en en en en en en en en en en	و و مد و مرد م
					· ·
			•	•	•
				the second second second second second second second second second second second second second second second s	
			•	X Barris Barris Construction	
	¹			λ.	

.

Activation Laboratories Ltd.

•

Analyte Symbol	Au
Unit Symbol	g/mt
Lower Limit	0.005
Method Code	FA-AA
Oreas 221 (Fire Assay) Meas	1.04
Oreas 221 (Fire	1.06
Assay) Cerl	
701960 Orig	< 0.005
701960 Dup	< 0.005
701971 Orig	< 0.005
701971 Dup	< 0.005
701980 Orig	< 0.005
701980 Dup	< 0.005
Method Blank	< 0.005
Method Blank	< 0.005

Appendix 3: Copy of Lithological Code

,

.

.

LEGEND	ABBREVIA	TIONS
BU Diabase (All Ages)	Textural	Veining
Tu Felsic to Intermediate Intrusive TG Granite TGD Granodiarite, Ouartz Monzonite T Tonolite TS Syenite TM Manzonite TFP Feldspar Porphyry TOFP Ouartz/Feldspar Porphyry TPA Pegmatite	ag aggiomerate AZ,az olteration zone amy amygdalaidal FB,fb flow breccia fol folioted glom glomerophyric hy hyalaclastic htr heterolithic lap lapilli ms massive p pilkowed por porphyritic sch schistose sfx spinifex	Av ankerite Cv calcite Epv epidate Hemv hemotite Mtv magnetite Qv quartz Otourv quartz-fourmaline Qav quartz ankerite Qcv quartz calcite Tourv taurmaline Intensity Code Qav 1-5% QAV 5-15%
TF Felsite	t (uffaceous ves vesicular ver varialitic	[QAV] >15%
[60] Matic to Ultramatic Intrusive [60] Diorite, Trondhjemite [60] Diorite, Trondhjemite [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [60] Gobbro [61] Anorthosite [61] Lampraphyre [50] Clastic Sediments [50] Sold Scole [50] Clastic Sediments [50] Craywocke [50] Conglomerate [500] Timiskoming Conglomerate [505] Sondstone [50] Ouartzite [50] Ouartzite [50] Arkose	Alteration Ab albitization Ank ankeritization Bi biotization Cal calcitic Carb carbon atization Cb carbon Chi chioritization Cb green carbonate Hem hematization Lx leucoxene Pot potassic Ser sericitization Ser sericitization Ser serpentinization Sil silicification To talc Tour tourmaline Intensity Code Ank weak ANK maderate [ANK] strong	bd bedded bnd banded bx breccia bxd brecciated ct contact f fault FZ,fz fault zone fit faulting fl flow fr frocture g gouge s sheor SZ,sz shear zone slk slickenside <u>OTHER</u> fg fine grained mg medium grained fmg fine to medium grained
[40] Chemical Sediments [40] Iron Formation [40] Iron Formation [40] Sulphide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [40] Oxide Facies [30] Docite [30] Docite [30] Docite [31] Andesite [32] Mafic Volcanics [20] Mafic Volcanics [21] Massive [22] Pillowed [22] Mafic Flow-Breccia [22] Mafic Hyaloclastite	Mineralization Asp arsenopyrite Cl clustered pyrite Cpy cholcopyrite Ds disseminated pyrite Gn golena Mt magnetite Mo molybdenite Pa pyrhotite Py pyrite Sw stockwork pyrite V.G. visible gold Intensity Code Cpy trace to 1% [Cpy] 1–3% CPY 3–7% [CPY] >15%	fog fine to coarse groined int intermittent loc,I_ locally (local) eg Imog magnetic mod moderate st strang vs very strong wk,w_ weak eg wmag
(<u>12VAR</u>) Variolitic (<u>12POR</u>) Porphyritic	ided	
TIC Tolc-Chlorite Altered	10 E U	
·····	·	Revised : July/97

Appendix 4: Copy of Oreas Standard 221 Specifications

CERTIFICATE OF ANALYSIS FOR

Gold Ore (Andy Well Gold Mine, Western Australia) CERTIFIED REFERENCE MATERIAL

OREAS 221

		Comaone				and the second second second second second second second second second second second second second second second
	Certified	00	95% Confid	ence Limits	95% Tolera	nce Limits
Constituent	Value	20	Low	High	Low	High
Pb Fire Assay						
Au, Gold (ppm)	1.062	0.036	1.051	1.074	1.057*	1.067*
Aqua Regia Digestion (sample	weights 10	-50g)				
Au, Gold (ppm)	1.042	0.039	1.026	1.058	1.037*	1.047*
Gas// Liquid Pychometry						
SG, Specific Gravity (Unity)	2.98	0.053	2.95	3.00	2.96	3.00

Table 1. Certified Values, SDs, 95% Confidence and Tolerance Limits for OREAS 221.

SI unit equivalents: ppm, parts per million \equiv mg/kg \equiv µg/g \equiv 0.0001 wt.% \equiv 1000 ppb, parts per billion.

*Gold Tolerance Limits for typical 30g fire assay and 25g aqua regia digestion methods are determined from 20 x 85mg INAA results and the Sampling Constant (Ingamells & Switzer, 1973).

Note 1: intervals may appear asymmetric due to rounding.

Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows.

INTRODUCTION

OREAS reference materials are intended to provide a low cost method of evaluating and improving the quality of analysis of geological samples. To the geologist they provide a means of implementing quality control in analytical data sets generated in exploration from the grass roots level through to prospect evaluation, and in grade control at mining operations. To the analyst they provide an effective means of calibrating analytical equipment, assessing new techniques and routinely monitoring in-house procedures.

SOURCE MATERIALS

Certified Reference Material (CRM) OREAS 221 was prepared from a blend of Archean greenstone-hosted Wilber Lode primary ore from the Andy Well Gold Mine and barren Cambrian greenstone sourced from a quarry north of Melbourne, Australia. The Wilber Lode is a shear-hosted, narrow vein, quartz lode-style gold deposit situated within the Meekatharra-Wydgee greenstone belt in the Archean Yilgarn Craton of Western Australia. The common primary mineral assemblage, as stated by Mason and Harris (2011, 2012, cited in Hingston et al, 2014), is quartz, calcite, chlorite, fuchsite, pyrite, galena, sphalerite, chalcopyrite and gold. The host rock consists of a complex sequence of Archean meta-basalt and meta-porphyritic rocks derived from a primary mineralogy of albite, actinolite, chlorite, sericite, biotite, calcite, zoisite, muscovite, quartz and titanate. The Andy Well deposit is located approximately 45km north of Meekatharra in the Murchison region of Western Australia.

The approximate major and trace element composition of OREAS 221 is provided in Table 2. The non-certified values contained in this table are the means of duplicate assays from one laboratory.

COMMINUTION AND HOMOGENISATION PROCEDURES

The material constituting OREAS 221 was prepared in the following manner:

- Drying to constant mass at 105°C;
- Crushing and milling of the barren materials to 98% minus 75 microns;
- Crushing and milling of the ore material to 100% minus 30 microns;
- Blending in appropriate proportions to achieve the desired grade;
- Packaging in 60g units sealed in laminated foil pouches and 1kg units in plastic jars.

ANALYTICAL PROGRAM

Thirty commercial analytical laboratories participated in the program to certify gold (as reported in Table 1) by the following methods:

- Gold via 25-50g fire assay with AAS (24 labs) or ICP-OES (4 labs) finish;
- Instrumental neutron activation analysis for Au on 20 x 1g subsamples to confirm homogeneity (1 laboratory).
- Gold via 15-50g aqua regia digestion with ICP-MS (13 labs), AAS (7 labs) or ICP-OES (1 lab) finish. It is important to note that in the analytical industry there is no standardisation of the aqua regia digestion process. Aqua regia is a partial empirical digest and differences in recoveries for various analytes are commonplace. These are caused by variations in the digest conditions which can include the ratio of nitric to hydrochloric acids, acid strength, temperatures, leach times and secondary digestions.
- Specific gravity by gas (12 labs) or liquid (4 labs) pycnometry.

For the round robin program twenty 1.5kg test units were taken at predetermined intervals during the bagging stage, immediately following final blending, and are considered representative of the entire batch. The six samples received by each laboratory were obtained by taking two 110g scoop splits from each of three separate 1kg test units. This format enabled nested ANOVA treatment of the results to evaluate homogeneity, i.e. to ascertain whether between-unit variance is greater than within-unit variance.

Table 1 presents the certified values together with their associated 1SD's, 95% confidence and tolerance limits and Table 2 shows 66 indicative values for major and trace element composition. Tabulated results of all elements (including Au INAA analyses) together with uncorrected means, medians, standard deviations, relative standard deviations and percent deviation of lab means from the corrected mean of means (PDM³) are presented in the detailed certification data for this CRM (OREAS 221 DataPack -1.1.181025_100056.xlsx).

Results are also presented in scatter plots for gold by fire assay and aqua regia digestion (Figures 1 and 2, respectively) together with ± 3 SD (magenta) and ± 5 % (yellow) control lines and certified value (green line). Accepted individual results are coloured blue and individual and dataset outliers are identified in red and violet, respectively.

No								
Constituent	Unit	Value	Constituent	Unit	Value	Constituent	Unit	Value
Pb Fire A	ssay							
Pd	ppb	9.17	Pt	ppb	9.17			
Borate Fu	ision XRF							
Al ₂ O ₃	wt.%	13.30	K₂O	wt.%	0.285	P ₂ O ₅	wt.%	0.101
CaO	wt.%	9.80	MgO	wt.%	7.13	S	wt.%	0.197
CI	ppm	10.0	MnO	wt.%	0.180	SiO ₂	wt.%	50.15
Fe ₂ O ₃	wt.%	11.70	Na ₂ O	wt.%	2.83	TiO₂	wt.%	1.08
Thermog	avimetry							
LOI ¹⁰⁰⁰	wt.%	3.36						
Laser Abl	ation ICP	-MS						
Ag	ppm	0.250	Hf	ppm	1.86	Sm	ppm	2.34
As	ppm	9.10	Ho	ppm	0.82	Sn	ppm	1.50
Ba	ppm	150	In	ppm	0.075	Sr	ppm	111
Be	ppm	0.50	La	ppm	4.12	Та	ppm	0.19
Bi	ppm	0.10	Lu	ppm	0.30	Τb	ppm	0.58
Cd	ppm	0.075	Mn	wt.%	0.146	Те	ppm	0.30
Ce	ppm	9.91	Мо	ppm	1.50	Th	ppm	0.43
Со	ppm	47.9	Nb	ppm	3.43	Ti	wt.%	0.636
Cr	ppm	254	Nd	ppm	8.12	TI	ppm	< 0.2
Cs	ppm	0.19	Ni	ppm	111	Tm	ppm	0.31
Cu	ppm	152	Pb	PPm	5.50	U.	ppm	0.025
Dy	ppm	3.53	Pr	ppm	1.55	V	ppm	306
Er	ppm	2.51	Rb	ppm	5.35	. W	ppm	1.90
Eu	ppm	0.89	Re	Ppm	0.008	Y	ppm	22.5
Ga	ppm	14.8	Sb	ppm	0.50	Yb	ppm	2.47
Gd	ppm	2.93	Sc	ppm	43.5	Zn	ppm	88
Ge	ppm	1.63	Se	ppm	< 5	Zr	ppm	63

Table 2. Indicative Values for OREAS 221.

SI unit equivalents: ppm, parts per million \equiv mg/kg \equiv µg/g \equiv 0.0001 wt.% \equiv 1000 ppb, parts per billion. Note: the number of significant figures reported is not a reflection of the level of certainty of stated values. They are instead an artefact of ORE's in-house CRM-specific LIMS.

STATISTICAL ANALYSIS

Certified Values, Confidence Limits, Standard Deviations and Tolerance Limits (Table 1) have been determined for each analyte following removal of individual, laboratory dataset (batch) and 3SD outliers (single iteration).

For individual outliers within a laboratory batch the z-score test is used in combination with a second method that determines the per cent deviation of the individual value from the batch median. Outliers in general are selected on the basis of z-scores > 2.5 and with per cent deviations (i) > 3 and (ii) more than three times the average absolute per cent deviation for the batch. In certain instances statistician's prerogative has been employed in discriminating outliers.

Each laboratory data set mean is tested for outlying status based on z-score discrimination and rejected if > 2.5. After individual and laboratory data set (batch) outliers have been eliminated a non-iterative 3 standard deviation filter is applied, with those values lying outside this window also relegated to outlying status.

Certified Values are the means of accepted laboratory means after outlier filtering. The INAA data (see Table 3) is omitted from determination of the certified value for Au and is used solely for the calculation of Tolerance Limits and homogeneity evaluation of OREAS 221.

95% Confidence Limits are inversely proportional to the number of participating laboratories and inter-laboratory agreement. It is a measure of the reliability of the certified value. A 95% confidence interval indicates a 95% probability that the true value of the analyte under consideration lies between the upper and lower limits. *95% Confidence Limits should not be used as control limits for laboratory performance.*

Indicative (uncertified) values (Table 2) are provided for the major and trace elements determined by borate fusion XRF (Al_2O_3 to TiO₂), laser ablation with 1CP-MS (Ag to Zr), LOI at 1000°C and C + S by infrared combustion furnace and are the means of duplicate assays from Bureau Veritas, Perth. Additional indicative values by other analytical methods are present where the number of laboratories reporting a particular analyte is insufficient (< 5) to support certification or where inter-laboratory consensus is poor.

Standard Deviation values (1SDs) are reported in Table 1 and provide an indication of a level of performance that might reasonably be expected from a laboratory being monitored by this CRM in a QA/QC program. The SD's take into account errors attributable to measurement uncertainty and CRM variability. For an effective CRM the contribution of the latter should be negligible in comparison to measurement errors. The SD values thus include all sources of measurement uncertainty: between-lab variance, within-run variance (precision errors) and CRM variability. OREAS prepared reference materials have a level of homogeneity such that the observed variance from repeated analysis has its origin almost exclusively in the analytical process rather than the reference material itself.

The SD for each analyte's certified value is calculated from the same filtered data set used to determine the certified value, i.e. after removal of any individual, lab dataset (batch) and 3SD outliers (single iteration). These outliers can only be removed after the absolute homogeneity of the CRM has been independently established, i.e. the outliers must be confidently deemed to be analytical rather than arising from inhomogeneity of the CRM. The standard deviation is then calculated for each analyte from the pooled accepted analyses generated from the certification program.

In the application of SD's in monitoring performance it is important to note that not all laboratories function at the same level of proficiency and that different methods in use at a particular laboratory have differing levels of precision. Each laboratory has its own inherent SD (for a specific concentration level and analyte-method pair) based on the analytical process and this SD is not directly related to the round robin program.

The majority of data generated in the round robin program was produced by a selection of world class laboratories. The SD's thus generated are more constrained than those that would be produced across a randomly selected group of laboratories. To produce more generally achievable SD's the 'pooled' SD's provided in this report include inter-lab bias. This 'one size fits all' approach may require revision at the discretion of the QC manager concerned following careful scrutiny of QC control charts.

Homogeneity Evaluation

The homogeneity of gold has been determined by INAA using the reduced analytical subsample method which utilises the known relationship between standard deviation and analytical subsample weight (Ingamells and Switzer, 1973). In this approach the sample aliquot is substantially reduced to a point where most of the variability in replicate assays should be due to inhomogeneity of the reference material and measurement error becomes negligible.

Replicate	Au	Au
No	85mg actual	30g.equivalent*
1	1.062	1.093
2	1.074	1.094
3	1.081	1.094
4	1.104	1.096
5	1.121	1.095
6	1.039	1.092
7	1.074	1.094
8	1.107	1.096
9	1.095	1.095
10	1.134	1.097
11	1.088	1.095
12	1.098	1.095
13	1.113	1_096
14	1.057	1.093
15	1.116	1.096
16	1.070	1,094
17	1.150	1.098
18	1.129	1.097
19	1.072	1.094
20	1.119	1.096
Mean	1.095	1.095
Median	1.096	1.095
Std Dev.	0.029	0.002
Rel.Std.Dev.	2.64%	0.140%

Table 3. Neutron Activation Analysis of Au (in ppm) on 20 x 85mg subsam	ples showing the
equivalent results scaled to a 30g sample mass typical of fire assay de	etermination.

*Results calculated for a 30g equivalent sample mass using the formula: $x^{30g Eq} = \frac{(x^{INAA} - \bar{X}) \times RSD@30g}{RSD@RSma} + \bar{X}$

where $x^{30g Eq}$ = equivalent result calculated for a 30g sample mass

 $(x^{INAA}) =$ raw INAA result at 85mg $\overline{X} =$ mean of 85mg INAA results

X = mean of 85mg INAA results

Table 3 above shows the INAA data determined on 20 x 85mg subsamples of OREAS 221. A subsample weight of 85 milligrams was employed and the 1RSD of 0.14% calculated for a 30g fire assay or aqua regia sample (2.64% at 85mg weights) confirms the high level of gold homogeneity in OREAS 221.

Please note that these RSD's and tolerance limits pertain to the homogeneity of the CRM only and should not be used as control limits for laboratory performance.

The gold homogeneity of OREAS 221 has also been evaluated in a **nested ANOVA** of the round robin program. Each of the thirty round robin laboratories received six samples per

3

CRM and these samples were made up of paired samples from three different, nonadjacent sampling intervals. The purpose of the ANOVA evaluation is to test that no statistically significant difference exists in the variance between-units to that of the variance within-units. This allows an assessment of homogeneity across the entire prepared batch of OREAS 221. The test was performed using the following parameters:

- Gold fire assay 180 samples (30 laboratories each providing analyses on 3 pairs of samples);
- Gold aqua regia digestion 120 samples (20 laboratories each providing analyses on 3 pairs of samples);
- Null Hypothesis, H₀: Between-unit variance is no greater than within-unit variance (reject H₀ if *p*-value < 0.05);
- Alternative Hypothesis, H₁: Between-unit variance is greater than within-unit variance.

P-values are a measure of probability where values less than 0.05 indicate a greater than 95% probability that the observed differences in within-unit and between-unit variances are real. The dataset was filtered for both individual and laboratory data set (batch) outliers prior to the calculation of the *p*-value. This process derived *p*-values of 0.47 for Au by fire assay and 0.82 for Au by aqua regia digestion. Both p-values are insignificant and the Null Hypothesis is retained.

It is important to note that ANOVA is not an absolute measure of homogeneity. Rather, it establishes whether or not the analytes are distributed in a similar manner throughout the packaging run of OREAS 221 and whether the variance between two subsamples from the same unit is statistically distinguishable to the variance from two subsamples taken from any two separate units. A reference material therefore, can possess poor absolute homogeneity yet still pass a relative homogeneity test if the within-unit heterogeneity is large and similar across all units.

Based on the statistical analysis of the results of the inter-laboratory certification program it can be concluded that OREAS 221 is fit-for-purpose as a certified reference material (see 'Intended Use' below).

Table 4 shows **Performance Gates** calculated for two and three standard deviations. As a guide these intervals may be regarded as warning or rejection for multiple 2SD outliers, or rejection for individual 3SD outliers in QC monitoring, although their precise application should be at the discretion of the QC manager concerned. A second method utilises a 5% window calculated directly from the certified value.

Standard deviation is also shown in relative percent for one, two and three relative standard deviations (1RSD, 2RSD and 3RSD) to facilitate an appreciation of the magnitude of these numbers and a comparison with the 5% window. Caution should be exercised when concentration levels approach lower limits of detection of the analytical methods employed as performance gates calculated from standard deviations tend to be excessively wide whereas those determined by the 5% method are too narrow. One approach used at commercial laboratories is to set the acceptance criteria at twice the detection level (DL) \pm 10%.

i.e. Certified Value ± 10% ± 2DL (adapted from Govett, 1983)

	Contified		Absolute	Standard	Deviation	S	Relative	Standard E	eviations	5% w	indow
Constituent	Value	1SD	2SD Low	2SD High	3SD Low	3SD High	1RSD	2RSD	3RSD	Low	High
Pb Fire Assay	l .										1. 1. j. j.
Au, ppm	1.062	0.036	0.989	1.135	0.953	1.171	3.43%	6.86%	10.28%	1.009	1.115
Aqua Regia D	ligestion										
Au, ppm	1.042	0.039	0.963	1.121	0.924	1.160	3.78%	7.55%	11.33%	0.990	1.094
Gas:/Liquid.	Pycnometry	e ta des									- <u>5</u> 25 (m.
SG, Unity	2.98	0.053	2.87	3.08	2.82	3.14	1.77%	3.53%	5.30%	2.83	3.13

Table 4. Pooled-Lab Performance Gates for OREAS 221.

SI unit equivalents: ppm, parts per million \equiv mg/kg \equiv ug/g \equiv 0.0001 wt.% \equiv 1000 ppb, parts per billion. Note 1: intervals may appear asymmetric due to rounding.

Note 2: the number of decimal places quoted does not imply accuracy of the certified value to this level but are given to minimise rounding errors when calculating 2SD and 3SD windows.

PARTICIPATING LABORATORIES

- 1. Actlabs, Ançaster, Ontario, Canada
- 2. ALS, Brisbane, QLD, Australia
- 3. ALS, Lima, Peru
- 4. ALS, Loughrea, Galway, Ireland
- 5. ALS, Perth, WA, Australia
- 6. ALS, Vancouver, BC, Canada
- 7. Bureau Veritas, Abidjan, Cote D'ivoire
- 8. Bureau Veritas Commodities Canada Ltd, Vancouver, BC, Canada
- 9. Bureau Veritas Geoanalytical, Adelaide, SA, Australia
- 10. Bureau Veritas Geoanalytical, Perth, WA, Australia
- 11. Inspectorate (BV), Lima, Peru
- 12. Intertek Genalysis, Adelaide, SA, Australia
- 13. Intertek Genalysis, Perth, WA, Australia
- 14. Intertek Testing Services, Cupang, Muntinlupa, Philippines
- 15. MinAnalytical Services, Perth, WA, Australia
- 16. Nagrom, Perth, WA, Australia
- 17. Newcrest Services Laboratory (NSL), Orange, NSW, Australia
- 18. PT Geoservices Ltd, Cikarang, Jakarta Raya, Indonesia
- 19. PT Intertek Utama Services, Jakarta Timur, DKI Jakarta, Indonesia
- 20. SGS, Randfontein, Gauteng, South Africa
- 21. SGS Australia Mineral Services, Kalgoorlie, WA, Australia
- 22. SGS Australia Mineral Services, Perth, WA, Australia
- 23. SGS del Peru, Lima, Peru
- 24. SGS Lakefield Research Ltd, Lakefield, Ontario, Canada
- 25. SGS Mineral Services, Townsville, QLD, Australia
- 26. Shiva Analyticals Ltd, Bangalore North, Kamataka, India
- 27. Sucofindo Mineral Lab, Cibitung, West Java, Indonesia
- 28. Sucofindo Mineral Lab, Timika, Papua, Indonesia

Please note: The above numbered alphabetical list of participating laboratories <u>does</u> <u>not</u> reflect the Lab ID numbering on the scatter plots below.

COA-1287-OREAS221-R1

Page: 9 of 13

COA-1287-OREAS221-R1

Page: 10 of 13

PREPARER AND SUPPLIER

Certified reference material OREAS 221 is prepared, certified and supplied by:

ORE Research & Exploration Pty Ltd	Tel:	+613-9729 0333
37A Hosie Street	Fax:	+613-9729 8338
Bayswater North VIC 3153	Web:	www.ore.com.au
AUSTRALIA	Email:	info@ore.com.au

It is available in unit sizes of 60g (single-use laminated foil pouches) and 1kg (plastic jars).

METROLOGICAL TRACEABILITY

The analytical samples were selected in a manner to represent the entire batch of prepared CRM. This 'representivity' was maintained in each submitted laboratory sample batch and ensures the user that the data is traceable from sample selection through to the analytical results that underlie the consensus values. Each analytical data set has been validated by its assayer through the inclusion of internal reference materials and QC checks during analysis.

The laboratories were chosen on the basis of their competence (from past performance in inter-laboratory programs undertaken by ORE Pty Ltd) for a particular analytical method, analyte or analyte suite, and sample matrix. Most of these laboratories have and maintain ISO 17025 accreditation. The certified values presented in this report are calculated from the means of accepted data following robust statistical treatment as detailed in this report.

Guide ISO/TR 16476:2016, section 5.3.1 describes metrological traceability in reference materials as it pertains to the transformation of the measurand. In this section it states, "Although the determination of the property value itself can be made traceable to appropriate units through, for example, calibration of the measurement equipment used, steps like the transformation of the sample from one physical (chemical) state to another cannot. Such transformations may only be compared with a reference (when available), or among themselves. For some transformations, reference methods have been defined and may be used in certification projects to evaluate the uncertainty associated with such a transformation. In other cases, only a comparison among different laboratories using the same method is possible. In this case, certification takes place on the basis of agreement among independent measurement results (see ISO Guide 35:2006, Clause 10)."

COMMUTABILITY

The measurements of the results that underlie the certified values contained in this report were undertaken by methods involving pre-treatment (digestion/fusion) of the sample. This served to reduce the sample to a simple and well understood form permitting calibration using simple solutions of the CRM. Due to these methods being well understood and highly effective, commutability is not an issue for this CRM. All OREAS CRMs are sourced from natural ore minerals meaning they will display similar behaviour as routine 'field' samples in the relevant measurement process. Care should be taken to ensure 'matrix matching' as close as practically achievable. The matrix and mineralisation style of the CRM is described in the 'Source Material' section and users should select appropriate CRMs matching these attributes to their field samples.

INTENDED USE

OREAS 221 is intended to cover all activities needed to produce a measurement result. This includes extraction, possible separation steps and the actual measurement process (the signal producing step). OREAS 221 may be used to calibrate the entire procedure by producing a pure substance CRM transformed into a calibration solution.

OREAS 221 is intended for the following uses:

- For the monitoring of laboratory performance in the analysis of gold by fire assay, gold by aqua regia digestion and specific gravity by pycnometry in geological samples;
- For the verification of analytical methods (gold fire assay, gold aqua regia digestion and specific gravity by pycnometry);
- For the calibration of instruments used in the determination of gold or specific gravity.

STABILITY AND STORAGE INSTRUCTIONS

OREAS 221 has been prepared from primary gold ore diluted with barren greenstone. It is low in reactive sulphide (~0.20 wt.%) and in its unopened state and under normal conditions of storage has a shelf life beyond ten years. Its stability will be monitored at regular intervals and purchasers notified if any changes are observed.

INSTRUCTIONS FOR CORRECT USE

The certified values for OREAS 221 refer to the concentration levels in its packaged state. There is no need for drying prior to weighing and analysis.

HANDLING INSTRUCTIONS

Fine powders pose a risk to eyes and lungs and therefore standard precautions such as the use of safety glasses and dust masks are advised.

LEGAL NOTICE

Ore Research & Exploration Pty Ltd has prepared and statistically evaluated the property values of this reference material to the best of its ability. The Purchaser by receipt hereof releases and indemnifies Ore Research & Exploration Pty Ltd from and against all liability and costs arising from the use of this material and information.

Revision No	Date	Changes applied
1	25 th Oct, 2018	Replaced original INAA data with new improved INAA data (a more precise method became available).
0	22 nd Dec, 2016	First publication.

DOCUMENT HISTORY

QMS ACCREDITED

ORE Pty Ltd is accredited to ISO 9001:2015 by Lloyd's Register Quality Assurance Ltd for its quality management system including development, manufacturing, certification and supply of CRMs.

CERTIFYING OFFICER

z - 1

 ~ 7

25th October, 2018

Craig Hamlyn (B.Sc. Hons - Geology), Technical Manager - ORE P/L

REFERENCES

Govett, G.J.S. (1983), ed. Handbook of Exploration Geochemistry, Volume 2: Statistics and Data Analysis in Geochemical Prospecting (Variations of accuracy and precision).

Hingston, R., Wellman, T. and Stemadt, G. (2014), The Geology of the Wilber Deposit, Andy Well Gold Project, Murchison District, Western Australia (pages 55-63, 9th International Mining Geology Conference 2014 - Proceedings - AusIMM).

Ingamells, C. O. and Switzer, P. (1973), Talanta 20, 547-568.

ISO Guide 30 (2015), Terms and definitions used in connection with reference materials.

ISO Guide 31 (2015), Reference materials - Contents of certificates and labels.

ISO Guide 3207 (1975), Statistical interpretation of data - Determination of a statistical tolerance interval.

ISO Guide 35 (2017), Certification of reference materials - General and statistical principals.

Appendix 5:Copy of Prospecting Notes from Trench Samples

.

•

V1 Area Sampling Details

•

Sample #	Northing	Easting	Comment 1	Comment 2: Sample Description
701951	480385	5368101	shaft area	Rock from muck pile east of shaft collar (fines)
701952	480385	5368101	shaft area	Rock from muck pile east of shaft collar mainly quartz
701953	480385	5368101	shaft area	Felsic fragmental rock with fushitic fragments from shaft muck pile
701954	480385	5368101	shaft area	Rock from muck pile west side of shaft collar mainly quartz
701955				Blank re QA/QC
701956	480385	5368101	shaft area	Rock from muck pile west side of shaft collar mainly volcanics
701957	420371	5368100	pit west of shaft	Quartz vein and felsic volcanic contact from trench in place in trench
701958	420371	5368100	pit west of shaft	Quartz vein only from pit
701959	480331	5368140	Pit A	Quartz fly rock from pit with brown mineral ZnS?
701960	480334	5368139	Pit A	Quartz vein E. wall of Pit
701961	480334	5368139	Pit A	Felsic volcanic along E.wall of pit
701962	480352	5368147	Pit B	Quartz vein fly rock from trench
701963	480352	5368147	Pit B	Felsic wall rock adjacent vein 1/2% pyrite
701964	480368	5368130	Pit C	Quartz vein in trench in shear orientation 145 deg azimuth
701965	480368	5368130	Pit C	Felsic wall rock adjacent vein
701966	480375	5368141	Pit D	Quartz vein from pit
701967	480375	5368141	Pit D	Felsic volcanic, fly rock possibly but in pit
701968	480355	5368076	Trench 1	Sheared felsic volcanic
701969	480378	5368072	Trench 1	Sheared felsic volcanic
701970				Standard re QA/QC
701971	480391	5368070	Trench 1	Sheared felsic volcanic
701972	480370	5368109	Outrcop 1	Felsic volcanic
701973	480401	5368021	Pit E	Felsic volcanic with minor quartz

•

a.

Appendix 6:Invoice Summary

.

i i

1

..

.

Program Cost Summary for Assessment

Drillling				
Company	Invoice	Amount		Comment
NPLH Dilling	inv 6145	61758.97		
	Subtotal	61758.97	61758.97	
Helicopter				
Company	Invoice	Amount		Comment
Expedition	inv104318	12140.95		
Expedition	inv104332	10843.03		
Expedition	inv104349	1202.77		
	Subtotal	24186.75	24186.75	
Assaying				
Company	Invoice	Amount		Comment
	invA1906631	18585.96		
	invA1907294	747.21		
	A1906631B	512.74		
	Subtotal	19845.91	19845.91	
Geology				: :
Company	Invoice	Amount		Comment
Filo Expl	199914	1808		Project planning work geo consulting
Filo Expl	199914	366.12		Expense re maps for project
Filo Expl	199916	1292.02		Expenses re field supply for drilling/logging
Filo Expl	199917	4859		Drill Supervison core, logging re geo consulting
Filo Expl	199918	34.99		Expenses re field supply for drilling/logging
Filo Expl	199919	2260		Core logging re geo consulting
Filo Expl	199921	904		Partial billing for report work re geo consulting
Filo Expl	199923	1582		Completion of report work billing re geo consulting
Superior	2019037	894.96		Drafting Service Expense for report
D. Bryant	WHP1901	2712		Labour for core cutting
D. Bryant	WHP1901	847.5		Core shack rental
D. Bryant	WHP1901	283.4		Expense re saw blade for core
D. Bryant	WHP1902	393.83		Electricity expense during core shack rental
	Subtotal	18237.82	18237.82	
		Total	124029.45	