

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT ON MINERAL CLAIMS

TIMMINS TWP. PROPERTY

140356, 176343, 176344, 176345, 192977, 192978, 193752, 195214, 241092, 261126, 268671, 277798, 308416, 308417, 336533, 337319

Timmins Township - Dougherty Lake / Gibson Lake Road Area Ontario

NTS 42A/07

Centre of Claims – UTM Zone 17 – 519000 E, 5350500 N

for

VVC Exploration Corporation

by

Peter M. Dimmell, P.Geo. (NL, ON) FGC

and Michel Lafrance, BSc. Geol.

Date of work - Sept. 17, 25 / 2018

Plate 1 – Terrain - Timmins Township Property – Looking NE

Plate 2 - Timmins Township Property – vehicle access – E-W road Float boulder TT-18-01 to left of truck w/ ML and GW

TABLE OF CONTENTS

1.0	SUM	IMARY	6						
2.0	THE	PROPERTY	7						
3.0	LOC	ATION AND ACCESS	8						
4.0	PREVIOUS EXPLORATION								
5.0	EXPI	LORATION 2018	10						
	5.1	General	10						
	5.2	Soil Geochemistry	10						
	5.3	Prospecting	13						
6.0	CONCLUSIONS								

APPENDICES

Appendix 1	Assessment Expenditures	16
Appendix 2	Selected Soil Geochemical Results	17
Appendix 3	Rock / Soil Locations	18
Appendix 4	Selected Assay Results – Rock	19
Appendix 5	Analytical Certificates – Soils and Rocks	20

LIST OF FIGURES

Figure 1	Location map	5
Figure 2	Claim Map	7
Figure 3	Electromagnetic (HLEM) Interpretation Map – Timmins Twp.	9
Figure 4	Claim map with soil lines, geophysical targets, legacy and new claim outlines	12
Figure 5	Soil and rock sample locations / results	14

LIST OF PLATES

Plate 1	Terrain - Timmins Township Property – Looking NE	2
Plate 2	Timmins Township Property vehicle access – E-W road, Float boulder TT-18-01 to left of truck	2
Plate 3	Soil sample L2-S-02 Note well developed red/brown B with white A above – on left and right	11
Plate 4	Float boulder TT-18-01 – pyritic zone – rusty zone on top of boulder	13
Plate 5	Float boulder TT-18-01 showing pyritic zone	18

1.0 SUMMARY

Peter Dimmell, P.Geo. (PMD) visited the Timmins Township Property (the "Property"), located between Timmins and Matheson, ON, accompanied with Michel Lafrance (ML), and a prospector, based in Timmins, Garry Windsor (GW), on September 17 after flying in from St. John's the same day. The purpose of the visit was to see the physical setting of the Property, to evaluate the exploration potential and to carry out prospecting and geochemical exploration if warranted, for VVC Exploration Corporation. PMD returned to St. John's a few days later after visiting a property in the Kirkland Lake area for another company. The cost of the transportation to and from Timmins was shared with the other company as reflected in the assessment expenditures.

The Property is located just off, to the east of, the Gibson Lake road, approximately 50 km to the east of Timmins and 35 km to the south of Highway 101, the main highway between Matheson and Timmins (see Figure 1). The area is a sand outwash plain of indeterminate thickness with no outcrop and only limited float boulders which have been exposed in the sand during road building activities.

The Property, originally a 9-unit claim, but in April 2018, with the changes in mineral tenure in ON, enlarged to 16 claim cells, is located in the Abitibi greenstone belt of Ontario. It was acquired by VVC in 2007 to cover a north-northwest trending zone of strong airborne electromagnetic responses in a complex magnetic system, as defined on government geophysical maps, deemed to be a prime target area for base metal exploration. Line cutting and detailed geophysical surveys including magnetic, VLF and HLEM electromagnetic surveys were completed in June 2008 with 2 drill targets recommended by consultant Bob Lo, P.Eng.

The first visit to the Property was by ML, GW and Mel Rennick, P.Eng. – consultant to VVC, shortly after the ground geophysical survey was completed in 2008. Their visit resulted in the conclusion that the area was covered by a sand plain (outwash sand?) and that there was no value in any type of exploration other than drilling. During this visit a possible drill site clearing was noted just off the road in the northern portion of the EM/mag target (see Figures 2 and 3). Literature searches of OGS / MNDM files has not found any indication of a drill hole or other exploration in the area.

The 2018 evaluation was carried out by walking over the area of the EM/mag anomaly which extends through the area between roads to the south, east and north (see Figs 2, 3). Excellent B horizon red/brown soils, which indicate groundwater circulation, were noted in the anomaly area so it was decided that soil samples would be taken to see if the geochemistry, generated by groundwater circulation, hopefully through the bedrock below the sand, would give any indication of base or precious metals associated with the anomaly, in spite of the sand outwash surface covering.

Three soil lines were run across the central and southern portion of the anomaly and just to the SW, off the anomaly, at 045 / 135 degrees by PMD and ML while GW also used a quad to prospect looking for outcrop or float. A total of 43 soils and 1 rock sample were acquired. All of the soils were excellent B horizon, although sandy, soils.

No strongly anomalous values in base metals or Ag were noted with most values considered background. Weak base metal values were noted associated with higher Mn values in one area.

Prospecting resulted in the discovery of a large, sub angular boulder (TT-18-01) of partially silicified mafic volcanic just off the road to the east of the geophysical anomaly. The boulder carried disseminated and fracture filling pyrite. No significant base or precious metal values were found.

2.0 THE PROPERTY

The Property, located in Timmins Township, is owned by VVC Exploration Corporation. It comprises the following 16 claim cells:

140356	176343	176344	176345
192977	192978	193752	195214
241092	261126	268671	277798
308416	308417	336533	337319

		07C078	42A010079	42A07C080	424078061	42A07B062	42A07B063	42A07B064	424078065	424078066	42A07B067	504093 42A07B068	42A07B069	Kasta Ch
296	42A07C097 Zorx 5170	42A07C098 17 00E	42407009	42A07C100 176344	42A07B081 193752	42A07B082 337319	42A 07B 063 1763 43	42A07B084 Zone 17 52000E	42A07B085	42A07B086 Zone,17 521000E	42A07B087	42A07B088 Zone 1 522200	42A07B089 7	42407
116	42A07C117	42A07C118	42A07C119	42A07C120 308416	42A07B101 176345	42A07B102 195214	42A07B103 268671	42A07B104	42A07B105	42A07B105	424078107	42A07B106	42A07B109	42407
136	42A07C 37 42A07C 37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 3 2 3	42407C138	42A07C139	42A07C140 261126	42A07B121 308417	42A07B122 241092	42A 07B 123 336533	42A07B124 Zone 17	42A07B125	42A07B126 Zone 17	ns Twp 42A07B127	42A07B128	42A07B129	42A07
156	42A07C157	0001 Doug 42A07C1582	herty 5 k#2A07C159	42A07C160 192978	42A07B141 192977	42A07B142 42A07B142 140356	42A07B143 277798	520000E 5350000N 42A07B144	42A07B145	521000E 5350000N 42A07B146	42A07B147	522000 535000 42A07B148	E 9N 42A07B449	42A07
176	42A07C177	42A07C178	42407C179	42A07C180 501779 December 7	42A07B161	42A07B162	42A 07B 163	42A07B164	42A07B165	42407B165	42407B167	42A07B168	424078169	42407
196	424070197	00E 00N 42A07C198	42A07C199	42A07C200 504141	424078181	20ne 17 519000E 5349000N 42A07B182	42A 07B 183	Zone 17 520000E 5349000N 42A07B184	-12407B185	20pe 17 521000E 5349000N 42407B186	424078187	Zone 1, 522000 42407B188	E N <mark>42A07B189</mark>	42407
2 0	0.3	0.6km SCA	LE 1:40,000	424076220	42A07B201	42A07B202 Winnett	W - L L 42A07B203	- C 1 6 0 42A07B204) 3 b 42A07B205	42A078206	3678 42A07B207 3	42A07B208 6.8 1	42A07B209 Saral Lake	42407

Figure 2 – Claim Map

On April 10, 2018, all active, unpatented recorded claims ("Legacy Claims") were converted from their legally defined location by claim posts on the ground or by township survey to a cell-based provincial grid which is latitude and longitude based. The Legacy Claim, which originally comprised the Property, was a 9-unit single claim numbered P 4220086 staked in 2007.

3.0 LOCATION AND ACCESS

The Property is located just to the east of the Gibson Lake road, 35 km to the south of Route 101, the highway between Matheson and Timmins (see Figure 1), approximately 50 km to the east of Timmins. Old cutting / bush roads, now starting to grow in as the planted jack pine grows, extend through the claim area from the Gibson Lake road. The area is a sand outwash plain of indeterminate thickness with no outcrop and only limited float boulders which have been exposed in the sand during road building activities.

4.0 **PREVIOUS EXPLORATION**

The Geological Survey of Canada flew an airborne electromagnetic (EM) and high resolution magnetic survey over the Abitibi region and the claim area in 2002. Numerous conductive zones, with and without magnetic responses, were noted in the survey. ML recommended staking, amongst others, the TT area and 9 claims covering the coincident EM / magnetic anomalies were staked in 2007.

VVC Exploration carried out line cutting (30 km) and detailed ground geophysical surveys including magnetic (30 km), VLF (28.4 km) and HLEM (28 km) electromagnetic surveys from May 21 to June 15, 2008 using contractors with David Laronde as the field supervisor who also wrote the report on the exploration program and reported on the work (Assessment File # 20000003134). The objective was to use magnetic / electromagnetic methods to identify potential exploration drill targets. The report notes that the south trending magnetic responses indicate diabase or "close cousin" mafic intrusive dikes that strike along the regional trend. A major structure running north-south through the property from Moose Lake in Bond Twp. to the north to Radisson Lake in Michie Twp. to the south of the property, along this structure. The HLEM anomaly, which is relatively continuous across the property, is a good conductor with the depth estimated at the limits of penetration (65-85 m), considered to be a good target in this volcanic environment. The VLF-EM survey did not define any conductors thought to be related primarily to the limited depth penetration of the survey and the depth of the sand overburden.

The first visit to the Property by VVC personnel was by ML, GW and Mel Rennick (MR), P.Eng. – consultant to VVC, shortly after the ground geophysical survey was completed in 2008. Their visit resulted in the conclusion that the area was covered by a sand plain (outwash sand?) and that there was no value in any type of exploration other than drilling. During this visit a possible drill site clearing was noted just off the road in the northern portion of the EM/mag target (see Figures 2 and 3) however literature searches of OGS / MNDM files has not found any indication of a drill hole or other exploration in the area.

In July 2008, consultant Bob Lo, P.Eng. (BL), was hired to review and evaluate the electromagnetic (MaxMin) data. BL picked EM anomaly axis, exported anomaly locations to spreadsheet and generated a digital map (Figure 3). He then met with ML and MR in Toronto in early August 2008, to discuss the results of the ground surveys and recommended two drill targets to test the coincident EM/magnetic anomaly.

Figure 3 – Electromagnetic (HLEM) Interpretation Map – Timmins Twp.

5.0 EXPLORATION 2018

5.1 General

Evaluation of the property was carried out by walking over the area of the EM/mag anomaly which extends through the area between roads to the south, east and north (see Figs 4 and 5). Excellent B horizon soils, which indicate groundwater circulation, were noted in the anomaly area so it was decided that soil samples would be taken to see if the geochemistry, generated by the groundwater circulation, hopefully through the bedrock below the sand, would give an indication of any base or precious metals associated with the anomaly, in spite of the sand outwash surface covering. Plate 1 shows the general terrain of the property while Plate 2 shows the road access on the East-West road at the location of the float sample.

The samples, 43 soils and 1 rock (TT-18-01), were submitted to Actlabs laboratory in Timmins in two batches – the first the 20 soils taken by PMD/ML plus the 1 rock and second the 23 soils taken by GW. Samples were analyzed using their 1E3 package (base metals) technique for 38 elements including Cu, Pb, Zn, Ag, Ni and Co. No analysis was carried out for Au on the soils although the rock sample was analyzed for Au by fire assay (1A2 - FA/AA). Selected results are given in Appendices 2 (soils) and 3 (rock) with the analytical certificates for both the rock and the soils in Appendix 4. Pictures of the soil type (Plate 3) and the float rock sample (Plates 4 and 5) are included in the report in relevant locations.

5.2 Soil Geochemistry

5.2.1 General

Two soil lines were run across the southern portion of the EM/Mag anomaly and just to the SW, off the anomaly, at 045 / 135 degrees by PMD and ML in the first visit using a compass and GPS for control and location of the samples. Line 1, at 045 degrees and Line 2, 100 m to the NW, at 135 degrees generated 20 soils in total. Since these lines did not across the best part of the anomaly, GW was contracted to return to the Property the following week (Sept. 25) to take soils on Line 3, located another 100 m the NW, over the strongest part of the magnetic anomaly. This resulted in another 23 samples for a total of 43 samples overall. The soil samples were taken using a geotul by digging through the O (humus) – if present and A (white) horizons to reach the B horizon. One gusset bag (500 grams) of soil was taken, bagged, marked with a magic marker and flagged at each location.

All samples were excellent B horizon, although sandy, red / brown soils as shown on Plate 3 below. The recce soil lines are shown on Figure 2 overlain on the EM / magnetic anomalies.

Plate 3 - Soil sample L2-S-02 (Note well developed red/brown B with white A above – on left and right)

VVC Exploration Corp.

5.2.2 Results

No strongly anomalous values in base metals or Ag were noted with most values considered background. Higher Mn values, especially on L3 – samples S07 and S08, were coincident with slightly elevated values in Cu and Zn, and weakly to moderately anomalous Ni, Co, and Cr indicating either a scavenging effect on these elements by Mn or, since the higher values bracketed the EM anomaly and were over the magnetic feature, it could also be that the EM / mag anomaly could represent a Ni/Co/Cr enriched intrusive or conductor partially defined by the EM. Other areas of elevated Mn on L2, S08 and L3 – S16 did not reflect similar values in the other elements. The location of the samples is shown on Figure 3.

5.3 Prospecting

5.3.1 General

During the first visit GW used a quad to prospect looking for outcrop or float. PMD and ML also prospected the soil lines and their vicinity while taking the geochemical samples. One large, sub angular boulder (TT-18-01) of partially silicified mafic volcanic was located by GW just off the road to the east of the geophysical anomaly. The boulder carried disseminated and fracture filling pyrite. The location is UTM NAD 83 - 519543 east, 5350359 north, as shown on Figure 3 and in Appendix 3.

5.3.2 Results

Only background values in Au, Ag and base metals were found. Ni, Co and Cr gave slightly elevated values which may give more credence to the possibility of the EM/mag anomaly being a mafic intrusive carrying elevated Ni, Co and Cr.

Plate 4 - Float boulder TT-18-01 – showing pyritic zone (rusty zone on top of boulder)

Figure 5 - Soil and Rock Sample Locations / Results

VVC Exploration Corp.

6.0 CONCLUSIONS

The soil geochemistry did not define a target or give strong anomalies over the EM/Magnetic anomaly. The higher Mn values with associated minor base metals and anomalous Ni, Co and Cr values could represent scavenging by the Mn rich B horizon in those areas, however since the highest values were also coincident with the EM/mag anomaly the results are considered ambivalent.

The EM/Magnetic anomaly still hasn't been explained or tested by the exploration to date.

Further exploration is required to test the anomalous zone. This could consist of either / all of the following dependent upon funding availability:

- 1) Geophysics gravity to determine if there is a strong gravity anomaly associated with the EM/mag anomaly.
- 2) Geochemistry basal till sampling at the bedrock interface over the EM/mag anomaly best done using a reverse circulation (RC) rig which could also provide bedrock samples over the conductive / magnetic zone.
- 3) Diamond drilling of the EM/mag anomaly probably 3 short holes dependent on the depth of the sand cover.

Respectfully submitted,

Peter M. Dimmell, P.Geo. (ON, NL)

VVCttAssRepJun19

Michel Lafrance

Michel Lafrance, BSc. Geol.

Corrected Sept. 18, 2019

APPENDIX 1 Assessment Expenditures – 2018/19

Labour					
Exploration	PMD	- 2 MD	\$1	,000.00	
-	ML	- 2 MD	\$1	,000.00	
	GW	- 2 MD	\$	500.00	\$2,500.00
Report Writing	PMD	- 2 MD	\$1	,000.00	
	ML	- 1.1 MD	\$	600.00	
	MR	- 1 MD	\$	660.00	\$2,260.00
Expenses	travel		\$1	,741.58	
-	Accom	modation	\$	431.58	
	Meals		\$	194.71	\$2,367.87
Analytical (Actlabs) - soils			\$	838.50	
- rock			\$	19.55	
Rock cutting/polishing			\$	15.00	\$ 873.05
		Total			\$8,000.82

APPENDIX 2 Selected Soil Geochemical Results

Report Number: A18-13509			Report D) ate: 15/1	0/2018				
Analyte Symbol	Ag	Cu	Mn	Ni	Pb	Zn	Co	Cr	Fe
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
Detection Limit	0.2	1	5	1	2	2	1	1	0.01
Analysis Method	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Soils L1									
TT L1-S-01	< 0.2	5	98	15	3	27	3	31	0.96
TT L1-S-02	< 0.2	6	168	55	3	25	10	112	1.78
TT L1-S-03	< 0.2	4	118	10	7	51	8	29	1.17
TT L1-S-04	< 0.2	3	149	6	5	28	3	24	0.99
TT L1-S-05	< 0.2	3	114	13	3	19	4	30	0.89
TT L1-S-06	< 0.2	3	135	10	5	23	4	30	1.21
TT L1-S-07	< 0.2	2	75	13	3	23	3	33	1.1
TT L1-S-08	< 0.2	4	174	16	4	41	4	34	1.05
TT L1-S-09	< 0.2	4	154	15	3	34	4	39	1.08
TT L1-S-10	< 0.2	4	115	25	3	26	5	46	1.04
Soils L2									
TT L2-S-01	< 0.2	3	123	12	5	16	3	41	1.81
TT L2-S-02	< 0.2	4	113	14	3	27	3	42	1.35
TT L2-S-03	< 0.2	2	122	15	3	26	3	34	0.94
TT L2-S-04	< 0.2	2	113	13	2	17	3	33	0.98
TT L2-S-05	< 0.2	2	96	7	4	21	3	30	1.54
TT L2-S-06	< 0.2	< 1	91	6	3	19	2	19	0.84
TT L2-S-07	< 0.2	1	60	4	2	17	1	18	0.83
TT L2-S-08	< 0.2	3	398	10	4	28	4	33	1.25
TT L2-S-09	< 0.2	5	296	49	5	42	9	121	2.55
TT L2-S-10	0.3	2	93	9	2	21	3	25	1.02
TT L2-S-11	< 0.2	3	239	26	3	26	6	52	1.23
TT L2-S-12	< 0.2	4	285	27	5	35	7	76	1.94
TT L2-S-13	< 0.2	2	102	21	< 2	22	4	42	1.15
Soils L3									
TT L3-S-01	< 0.2	3	111	19	3	11	4	39	1
TT L3-S-02	< 0.2	2	136	11	4	10	3	30	1.35
TT L3-S-03	< 0.2	2	150	8	4	13	2	30	1.36
TT L3-S-04	< 0.2	2	149	10	4	13	3	35	1.36
TT L3-S-05	< 0.2	4	197	40	3	17	7	67	1.62
TT L3-S-06	< 0.2	2	187	12	4	13	3	41	1.58
TT L3-S-07	< 0.2	10	366	112	3	33	15	201	2.65
TT L3-S-08	< 0.2	6	323	61	5	36	10	132	2.54
TT L3-S-09	< 0.2	4	246	34	4	25	6	75	1.86
TT L3-S-10	< 0.2	4	395	33	4	28	7	78	2.01
TT L3-S-11	< 0.2	2	274	14	4	19	4	46	1.6
TT L3-S-12	< 0.2	2	178	11	3	14	4	36	1.52
TT L3-S-13	< 0.2	2	164	9	4	13	3	35	1.57
TT L3-S-14	< 0.2	3	213	18	4	22	5	41	1.47
TT L3-S-15	< 0.2	2	211	12	3	17	3	35	1.36
TT L3-S-16	< 0.2	3	308	32	4	31	6	68	1.73
TT L3-S-17	< 0.2	2	182	13	5	12	4	45	1.94
TT L3-S-18	< 0.2	3	234	14	5	15	4	43	1.69
TT L3-S-19	< 0.2	4	169	12	4	12	3	36	1.46
TT L3-S-20	< 0.2	3	233	18	3	13	5	43	1.45

VVC Exploration Corp.

VVC	Timmins To	ownship Pr	operty	Sept. 17, 2	018	
	NAD 83		UTM	NAD 83	elevation	
Location	latitude	longitude	easting	northing	m asl	Notes
Rock						
TT-18-01	48.306	-80.736	519543	5350359	1264	
Soil						
TT-I 1-SW/	48 306	-80 739	519325	5350377	1282	
TT-I 1-S-01	48.306	-80 739	519328	5350382	1282	
TT-I 1-S-02	48.307	-80 739	519344	5350405	1281	
TT-L1-S-03	3 48.307 -80.739		519365	5350418	1284	
TT-L1-S-04			519382	5350432		
TT-I 1-S-05			519401	5350443		
TT-L1-S-06			519417	5350460		
TT-L1-S-07	48.307	-80.738	519439	5350478	1264	
TT-L1-S-08			519455	5350494		
TT-L1-S-09			519475	5350514		
TT-L1-S-10	48.308	-80.737	519493	5350532	1267	
TT-L1-NE	48.308	-80.737	519498	5350542	1268	
	49 200	00 700	E10422	E2E0C20	1207	
TT 12 C 01	48.309	-80.738	519422	5350630	1267	
TT 12 5 02	48.308	-80./38	519409	5350610	1268	
TT-L2-S-02	48.308	-80.738	519400	5350595	1270	
TT 12 S 04	48.308	-80.739	519380	5350575	1274	
TT 12 S 05	48.308	-80.739	519302	5350534	1270	
TT-12-S-06	48.308	-80.739	519340	5350537	1271	
TT-L2-S-00	48.308	-80.735	519304	5350506	1270	
TT-L2-S-07	48.307	-80.740	519304	5350483	1270	
TT-1 2-S-09	48.307	-80 740	519267	5350463	1275	
TT-12-S-10	48.307	-80 740	519246	5350446	1201	
π-12-5-11	48.307	-80.741	519227	5350428	1279	
TT-L2-S-12	48.307	-80.741	519206	5350413	1282	
TT-L2-S-13	48.306	-80.741	519186	5350396	1284	
TT-L2-SW	48.306	-80.742	519168	5350383	1287	
TT-L3-S-01	48.306	-80.744	519020	5350396		
TT-L3-S-02	48.307	-80.743	519043	5350417		
TT-L3-S-03	48.307	-80.743	519060	5350434		
TT-L3-S-04	48.307	-80.743	519077	5350452		
TT-L3-S-05	48.307	-80.743	519092	5350475		
TT 12 5 07	48.307	-80.742	519108	5350494		Mixed cand and fine gravel
TT 12 5 09	48.308	-80.742	519127	5350517		Mixed sand and fine gravel
TT-13-S-09	48.308	-80.742	519148	5350547		wikeu sanu anu nne graver
Π-13-5-10	48,308	-80 741	519187	5350547		
TT-13-S-11	48.308	-80.741	519208	5350580		
TT-L3-S-12	48,308	-80,741	519226	5350599		
TT-L3-S-13	48.308	-80.740	519246	5350614		
TT-L3-S-14	48.309	-80.740	519263	5350631		
TT-L3-S-15	48.309	-80.740	519282	5350654		
TT-L3-S-16	48.309	-80.740	519301	5350672		
TT-L3-S-17	48.309	-80.739	519320	5350689		
TT-L3-S-18	48.309	-80.739	519340	5350704		
TT-L3-S-19	48.309	-80.739	519358	5350719		
TT-L3-S-20	48.310	-80.739	519379	5350734		
T						
TT 10 T1	n Lake Road	00 740	E10010	E2E0207	1205	
11-18-11	48.30b	-80.746	518819	5350397	1265	
2) Elevation	orginates are i	nterpolated wh	ere actual GPS r cept relative to	eadings weren't each other on th	i aken. Ie property	

APPENDIX 3 Rock Location / Soil Sample Locations

VVC Exploration Corp.

APPENDIX 4 Rock Samples 2018 - Selected Assay Results

Report Number: A18-13509										
Report Date: 15/10/2018										
Analyte Symbol	Au	Ag	Cu	Mn	Ni	Pb	Zn	Co	Cr	Fe
Unit Symbol	ppb	ppm	%							
Detection Limit	5	0.2	1	5	1	2	2	1	1	0.01
Analysis Method	1A2	AR-ICP								
TT-18-01 Rock	7	0.6	50	643	75	< 2	100	25	145	7.03

Plate 5 - Float boulder TT-18-01 showing pyritic zone

APPENDIX 5 Analytical Certificates – Soils and Rocks

Innovative Technologies

Date Submitted:	18-Sep-18
Invoice No.:	A18-13509
Invoice Date:	15-Oct-18
Your Reference:	Sept 18/18

VVC Exploration Corp. 56 Carpasion Rd St john NL A1B 2R2 Canada

Quality Analysis ...

ATTN: Peter Dimmell

CERTIFICATE OF ANALYSIS

24 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1E3-Timmins Aqua Regia ICP(AQUAGEO)

REPORT A18-13509

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

Page 1/5

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

VVC Exploration Corp.

Results

Activation Laboratories Ltd.

Report: A18-13509

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
TT L1-S-01	< 0.2	< 0.5	5	98	< 1	15	3	27	0.68	< 2	< 10	24	< 0.5	< 2	0.20	3	31	0.96	< 10	< 1	0.05	< 10	0.21
TT L1-S-02	< 0.2	< 0.5	6	168	< 1	55	3	25	1.29	< 2	< 10	26	< 0.5	< 2	0.32	10	112	1.78	< 10	< 1	0.06	< 10	0.68
TT L1-S-03	< 0.2	< 0.5	4	118	< 1	10	7	51	0.86	< 2	< 10	25	< 0.5	< 2	0.23	8	29	1.17	< 10	< 1	0.05	11	0.15
TT L1-S-04	< 0.2	< 0.5	3	149	< 1	6	5	28	0.80	< 2	< 10	28	< 0.5	< 2	0.14	3	24	0.99	< 10	< 1	0.05	< 10	0.11
TT L1-S-05	< 0.2	< 0.5	3	114	< 1	13	3	19	0.73	< 2	< 10	24	< 0.5	< 2	0.20	4	30	0.89	< 10	< 1	0.05	10	0.17
TT L1-S-06	< 0.2	< 0.5	3	135	< 1	10	5	23	1.24	< 2	< 10	23	< 0.5	< 2	0.14	4	30	1.21	< 10	< 1	0.04	10	0.14
TT L1-S-07	< 0.2	< 0.5	2	75	< 1	13	3	23	1.25	< 2	< 10	24	< 0.5	< 2	0.17	3	33	1.10	< 10	< 1	0.04	< 10	0.15
TT L1-S-08	< 0.2	< 0.5	4	174	< 1	16	4	41	1.46	< 2	< 10	30	< 0.5	< 2	0.13	4	34	1.05	< 10	< 1	0.05	< 10	0.15
TT L1-S-09	< 0.2	< 0.5	4	154	< 1	15	3	34	0.91	< 2	< 10	25	< 0.5	< 2	0.19	4	39	1.08	< 10	< 1	0.05	< 10	0.22
TT L1-S-10	< 0.2	< 0.5	4	115	< 1	25	3	26	0.85	< 2	< 10	23	< 0.5	< 2	0.20	5	46	1.04	< 10	< 1	0.05	< 10	0.26
TT L2-S-01	< 0.2	< 0.5	3	123	< 1	12	5	16	1.57	< 2	< 10	27	< 0.5	< 2	0.15	3	41	1.81	< 10	< 1	0.05	< 10	0.20
TT L2-S-02	< 0.2	< 0.5	4	113	< 1	14	3	27	1.08	< 2	< 10	25	< 0.5	< 2	0.18	3	42	1.35	< 10	< 1	0.05	< 10	0.21
TT L2-S-03	< 0.2	< 0.5	2	122	< 1	15	3	26	0.82	< 2	< 10	24	< 0.5	< 2	0.14	3	34	0.94	< 10	< 1	0.04	< 10	0.17
TT L2-S-04	< 0.2	< 0.5	2	113	< 1	13	2	17	0.92	< 2	< 10	19	< 0.5	< 2	0.13	3	33	0.98	< 10	< 1	0.04	< 10	0.17
TT L2-S-05	< 0.2	< 0.5	2	96	< 1	7	4	21	0.78	< 2	< 10	25	< 0.5	< 2	0.19	3	30	1.54	< 10	< 1	0.06	12	0.16
TT L2-S-06	< 0.2	< 0.5	< 1	91	< 1	6	3	19	0.67	< 2	< 10	20	< 0.5	< 2	0.11	2	19	0.84	< 10	< 1	0.03	< 10	0.10
TT L2-S-07	< 0.2	< 0.5	1	60	< 1	4	2	17	0.81	< 2	< 10	24	< 0.5	< 2	0.12	1	18	0.83	< 10	< 1	0.04	< 10	0.08
TT L2-S-08	< 0.2	< 0.5	3	398	< 1	10	4	28	0.91	< 2	< 10	31	< 0.5	< 2	0.15	4	33	1.25	< 10	< 1	0.07	< 10	0.15
TT L2-S-09	< 0.2	< 0.5	5	296	< 1	49	5	42	1.42	< 2	< 10	34	< 0.5	< 2	0.26	9	121	2.55	< 10	< 1	0.07	12	0.67
TT L2-S-10	0.3	< 0.5	2	93	< 1	9	2	21	0.95	5	< 10	24	< 0.5	< 2	0.16	3	25	1.02	< 10	< 1	0.06	< 10	0.13
TT L2-S-11	< 0.2	< 0.5	3	239	< 1	26	3	26	1.09	< 2	< 10	25	< 0.5	< 2	0.22	6	52	1.23	< 10	< 1	0.05	< 10	0.27
TT L2-S-12	< 0.2	< 0.5	4	285	< 1	27	5	35	1.37	< 2	< 10	31	< 0.5	< 2	0.23	7	76	1.94	< 10	< 1	0.06	< 10	0.39
TT L2-S-13	< 0.2	< 0.5	2	102	< 1	21	< 2	22	1.07	< 2	< 10	27	< 0.5	< 2	0.20	4	42	1.15	< 10	< 1	0.05	< 10	0.23
TT-18-01	0.6	< 0.5	50	643	1	75	< 2	100	2.71	3	< 10	102	< 0.5	< 2	0.49	25	145	7.03	10	< 1	0.38	17	2.13

Results

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
TT L1-S-01	0.045	0.025	< 0.01	< 2	1	15	0.05	< 20	< 1	< 2	< 10	17	< 10	2	< 1
TT L1-S-02	0.040	0.044	< 0.01	< 2	3	16	0.08	< 20	2	< 2	< 10	32	< 10	3	2
TT L1-S-03	0.045	0.081	< 0.01	< 2	2	15	0.06	< 20	< 1	< 2	< 10	21	< 10	3	< 1
TT L1-S-04	0.040	0.073	< 0.01	< 2	< 1	13	0.05	< 20	1	< 2	< 10	18	< 10	1	< 1
TT L1-S-05	0.042	0.028	< 0.01	< 2	1	14	0.05	< 20	< 1	< 2	< 10	16	< 10	3	< 1
TT L1-S-06	0.034	0.116	< 0.01	< 2	1	12	0.05	< 20	2	< 2	< 10	23	< 10	2	< 1
TT L1-S-07	0.034	0.087	< 0.01	< 2	1	13	0.06	< 20	1	< 2	< 10	22	< 10	2	< 1
TT L1-S-08	0.036	0.074	0.01	< 2	1	11	0.05	< 20	< 1	< 2	< 10	20	< 10	2	< 1
TT L1-S-09	0.043	0.081	< 0.01	< 2	1	13	0.06	< 20	3	< 2	< 10	19	< 10	2	< 1
TT L1-S-10	0.040	0.034	< 0.01	< 2	1	15	0.05	< 20	< 1	< 2	< 10	19	< 10	2	< 1
TT L2-S-01	0.031	0.028	0.01	< 2	2	12	0.09	< 20	< 1	< 2	< 10	36	< 10	2	2
TT L2-S-02	0.041	0.035	< 0.01	< 2	1	15	0.06	< 20	< 1	< 2	< 10	27	< 10	2	< 1
TT L2-S-03	0.038	0.034	< 0.01	< 2	1	12	0.05	< 20	< 1	< 2	< 10	19	< 10	2	< 1
TT L2-S-04	0.036	0.045	< 0.01	< 2	1	10	0.05	< 20	4	< 2	< 10	18	< 10	2	< 1
TT L2-S-05	0.041	0.045	< 0.01	< 2	1	15	0.09	< 20	< 1	< 2	< 10	32	< 10	3	< 1
TT L2-S-06	0.025	0.069	< 0.01	< 2	< 1	8	0.05	< 20	< 1	< 2	< 10	15	< 10	2	< 1
TT L2-S-07	0.040	0.024	< 0.01	< 2	< 1	11	0.05	< 20	< 1	< 2	< 10	16	< 10	2	< 1
TT L2-S-08	0.055	0.062	< 0.01	< 2	1	15	0.05	< 20	< 1	< 2	< 10	21	< 10	2	< 1
TT L2-S-09	0.042	0.034	< 0.01	< 2	3	19	0.11	< 20	< 1	< 2	< 10	45	< 10	3	4
TT L2-S-10	0.047	0.065	< 0.01	< 2	1	14	0.05	< 20	< 1	< 2	< 10	18	< 10	2	< 1
TT L2-S-11	0.041	0.053	< 0.01	< 2	2	15	0.06	< 20	< 1	< 2	< 10	23	< 10	2	< 1
TT L2-S-12	0.040	0.063	0.01	< 2	2	16	0.08	< 20	< 1	< 2	< 10	35	< 10	2	< 1
TT L2-S-13	0.043	0.027	< 0.01	< 2	2	14	0.06	< 20	< 1	< 2	< 10	20	< 10	3	1
TT-18-01	0.057	0.090	0.78	3	8	15	0.30	< 20	5	< 2	< 10	81	< 10	11	13

Activation Laboratories Ltd.

Report: A18-13509

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%						
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP						
GXR-1 Meas	30.5	2.4	1190	899	15	27	699	764	0.34	418	< 10	238	0.9	1520	0.81	6	8	25.1	< 10	2	0.03	< 10	0.14
GXR-1 Cert	31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50	0.217
GXR-6 Meas	0.2	< 0.5	66	1090	15	20	98	128	7.12	243	< 10	950	1.0	< 2	0.17	14	85	5.88	20	< 1	1.08	11	0.39
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
GXR-6 Meas	0.3	< 0.5	64	1090	1	20	95	128	7.05	246	< 10	937	1.0	< 2	0.18	13	85	5.74	20	1	1.07	11	0.39
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
OREAS 134b (AQUA REGIA) Meas	> 100	618	1360				> 5000	> 10000		242						108		12.7					
OREAS 134b (AQUA REGIA) Cert	204	563	1360				133000	177000		221						106		12.25					
OREAS 133a (Aqua Regia) Meas	> 100	332	339				> 5000	> 10000		152		< 10				24		8.46					
OREAS 133a (Aqua Regia) Cert	97	297	324				48600. 00	106000 .00		140		59				23		7.92					
OREAS 923 (AQUA REGIA) Meas	1.5	< 0.5	4560	964	< 1	30	86	365	2.98	7		68	0.7	18	0.43	24	47	6.72	< 10		0.38	40	1.53
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 907 (Aqua Regia) Meas	1.3	0.6	6370	371	5	4	37	156	1.17	39		243	1.1	18	0.30	48	10	8.69	20		0.34	43	0.24
OREAS 907 (Aqua Regia) Cert	1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1	0.221
OREAS 907 (Aqua Regia) Meas	1.3	0.5	6360	373	6	5	38	156	1.19	36		244	1.1	17	0.31	50	11	8.68	20		0.34	44	0.24
OREAS 907 (Aqua Regia) Cert	1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1	0.221
TT L1-S-03 Orig	< 0.2	< 0.5	4	117	< 1	10	10	55	0.85	< 2	< 10	24	< 0.5	< 2	0.23	12	28	1.17	< 10	< 1	0.05	11	0.15
TT L1-S-03 Dup	< 0.2	< 0.5	4	118	< 1	10	4	47	0.87	< 2	< 10	25	< 0.5	< 2	0.23	5	29	1.18	< 10	< 1	0.05	11	0.15
TT L2-S-01 Orig	< 0.2	< 0.5	3	123	< 1	12	5	16	1.57	< 2	< 10	26	< 0.5	< 2	0.15	3	40	1.80	< 10	< 1	0.04	< 10	0.20
TT L2-S-01 Dup	< 0.2	< 0.5	3	123	< 1	12	6	16	1.57	< 2	< 10	28	< 0.5	< 2	0.15	3	41	1.81	< 10	< 1	0.05	< 10	0.20
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	0.4	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01

Page 4/5

VVC Exploration Corp.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	ТΙ	U	V	W	Y	Zr
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-1 Meas	0.053	0.043	0.19	86	1	176	< 0.01	< 20	15	< 2	31	76	146	25	15
GXR-1 Cert	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0
GXR-6 Meas	0.096	0.035	0.01	4	22	38		< 20	< 1	< 2	< 10	161	< 10	6	14
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.093	0.034	0.01	4	22	38		< 20	< 1	< 2	< 10	160	< 10	6	14
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 134b (AQUA REGIA) Meas			15.1												
OREAS 134b (AQUA REGIA) Cert			19.31												
OREAS 133a (Aqua Regia) Meas			10.4	144											
OREAS 133a (Aqua Regia) Cert			10.7	147											
OREAS 923 (AQUA REGIA) Meas		0.065	0.67	3	4	16		< 20		< 2	< 10	33	< 10	19	28
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 907 (Aqua Regia) Meas	0.102	0.026	0.06	6	2	14	0.02	< 20	1	< 2	< 10	6	< 10	7	52
OREAS 907 (Aqua Regia) Cert	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
OREAS 907 (Aqua Regia) Meas	0.103	0.026	0.06	6	3	14	0.02	< 20	2	< 2	< 10	6	< 10	8	55
OREAS 907 (Aqua Regia) Cert	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
TT L1-S-03 Orig	0.045	0.081	< 0.01	< 2	2	15	0.06	< 20	2	< 2	< 10	21	< 10	3	< 1
TT L1-S-03 Dup	0.046	0.082	< 0.01	< 2	2	15	0.07	< 20	< 1	< 2	< 10	21	< 10	3	< 1
TT L2-S-01 Orig	0.031	0.029	0.01	< 2	2	12	0.09	< 20	< 1	< 2	< 10	36	< 10	2	2
TT L2-S-01 Dup	0.032	0.028	0.01	< 2	2	12	0.09	< 20	< 1	< 2	< 10	36	< 10	2	1
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	0.013	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	0.014	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Page 5/5

VVC Exploration Corp.

Actigbs

Quality Analysis ...

 Date Submitted:
 27-Sep-18

 Invoice No.:
 A18-13953

 Invoice Date:
 18-Oct-18

 Your Reference:
 Sept 27/18

VVC Exploration Corp. 56 Carpasion Rd St John NL A1B 2R2 Canada

ATTN: Peter Dimmell

CERTIFICATE OF ANALYSIS

20 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1E3-Timmins Aqua Regia ICP(AQUAGEO)

REPORT **A18-13953**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/7

VVC Exploration Corp.

Results

Activation Laboratories Ltd.

Report: A18-13953

Ni Analyte Symbol Ag Cd Mn Мо Pb Zn AI Be Bi Ca Ga Hg Κ Mg Cu As Ba Co Fe La Unit Symbol ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm % ppm ppm % ppm ppm % ppm % 0.2 0.01 0.5 0.01 0.01 0.01 10 0.01 Lower Limit 0.5 10 10 10 AR-ICP Method Code AR-ICF AR-ICP AR-ICP AR-ICP AR-ICP TT L3-S-01 < 0.2 < 0.5 3 111 < 1 19 3 11 0.68 < 2 < 10 21 < 0.5 < 2 0.19 4 39 1.00 < 10 < 1 0.04 < 10 0.23 TT L3-S-02 < 0.2 < 0.5 2 136 < 1 11 4 10 0.91 < 2 < 10 23 < 0.5 < 2 0.16 3 30 1.35 < 10 0.05 < 1 < 10 0.13 TT L3-S-03 2 13 2 < 0.2 < 0.5 150 < 1 8 4 0.94 < 2 < 10 27 < 0.5 < 2 0.15 30 1.36 < 10 < 1 0.06 < 10 0.14 TT L3-S-04 < 0.2 < 0.5 2 149 < 1 10 4 13 0.79 < 2 < 10 25 < 0.5 < 2 0.19 3 35 1.36 < 10 < 1 0.05 10 0.15 TT L3-S-05 197 40 17 1.06 < 2 33 < 2 0.26 7 0.07 10 0.39 < 0.2 < 0.5 4 < 1 3 < 10 < 0.5 67 1.62 < 10 < 1 TT L3-S-06 2 12 13 0.65 26 3 < 0.2 < 0.5 187 < 2 < 10 < 0.5 < 2 0.17 41 1.58 < 10 < 1 0.06 < 10 0.19 < 1 4 TT L3-S-07 15 < 0.2 < 0.5 10 366 < 1 112 3 33 1.51 < 2 < 10 40 < 0.5 < 2 0.45 201 2.65 < 10 < 1 0.09 12 1.11 TT L3-S-08 < 0.2 < 0.5 6 323 < 1 61 5 36 1.17 < 2 < 10 41 < 0.5 < 2 0.31 10 132 2.54 < 10 < 1 0.08 < 10 0.74 TT L3-S-09 < 0.2 < 0.5 4 246 < 1 34 25 0.97 < 2 < 10 32 < 0.5 < 2 0.20 6 75 0.07 < 10 0.37 4 1.86 < 10 < 1 TT L3-S-10 < 0.2 < 0.5 4 395 < 1 33 4 28 0.88 < 2 < 10 39 < 0.5 < 2 0.20 7 78 2.01 < 10 < 1 0.08 < 10 0.41 TT L3-S-11 < 0.2 < 0.5 2 274 < 1 14 4 19 0.69 < 2 < 10 30 < 0.5 < 2 0.15 4 46 1.60 < 10 < 1 0.07 < 10 0.21 TT L3-S-12 < 0.2 < 0.5 2 178 11 14 1.03 < 2 < 10 31 < 0.5 < 2 0.18 4 36 1.52 < 10 0.07 < 10 0.17 < 1 3 < 1 TT L3-S-13 < 0.2 < 0.5 2 164 < 1 9 4 13 0.78 < 2 < 10 28 < 0.5 < 2 0.20 3 35 1.57 < 10 < 1 0.07 < 10 0.17 22 TT L3-S-14 < 0.2 < 0.5 3 213 < 1 18 1.09 < 2 < 10 28 < 0.5 < 2 0.20 5 41 1.47 < 10 0.06 < 10 0.21 4 < 1 TT L3-S-15 < 0.2 < 0.5 2 211 < 1 12 3 17 0.69 < 2 < 10 31 < 0.5 < 2 0.21 3 35 1.36 < 10 < 1 0.06 < 10 0.17 TT L3-S-16 < 0.2 < 0.5 3 308 < 1 32 4 31 1.02 < 2 < 10 33 < 0.5 < 2 0.23 6 68 1.73 < 10 < 1 0.07 < 10 0.38 2 13 < 2 4 TT L3-S-17 < 0.2 < 0.5 182 < 1 5 12 0.98 < 2 < 10 31 < 0.5 0.19 45 1.94 < 10 < 1 0.07 < 10 0.22 TT L3-S-18 3 15 4 < 0.2 < 0.5 234 < 1 14 5 0.86 < 2 < 10 31 < 0.5 < 2 0.27 43 1.69 < 10 < 1 0.07 13 0.24 TT L3-S-19 < 0.2 < 0.5 4 169 12 12 0.60 < 2 < 10 29 < 0.5 < 2 0.20 3 36 1.46 < 10 < 1 0.08 < 10 0.21 < 1 4 TT L3-S-20 233 0.75 39 < 2 5 < 0.2 < 0.5 3 18 13 < 2 < 10 < 0.5 0.22 43 1.45 0.07 < 10 0.24 < 1 3 < 10 < 1

Results

Activation Laboratories Ltd.

Report: A18-13953

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
TT L3-S-01	0.040	0.034	< 0.01	< 2	1	15	0.05	< 20	< 1	< 2	< 10	19	< 10	3	< 1
TT L3-S-02	0.044	0.057	< 0.01	< 2	1	14	0.05	< 20	< 1	< 2	< 10	23	< 10	2	< 1
TT L3-S-03	0.052	0.026	< 0.01	< 2	1	17	0.05	< 20	1	< 2	< 10	23	< 10	2	< 1
TT L3-S-04	0.049	0.079	< 0.01	< 2	1	17	0.05	< 20	< 1	< 2	< 10	22	< 10	3	< 1
TT L3-S-05	0.059	0.029	< 0.01	< 2	2	20	0.07	< 20	1	< 2	< 10	24	< 10	3	2
TT L3-S-06	0.049	0.026	< 0.01	< 2	2	17	0.08	< 20	< 1	< 2	< 10	35	< 10	2	1
TT L3-S-07	0.066	0.040	< 0.01	< 2	4	27	0.10	< 20	3	< 2	< 10	45	< 10	4	5
TT L3-S-08	0.056	0.031	< 0.01	< 2	3	25	0.10	< 20	2	< 2	< 10	51	< 10	3	4
TT L3-S-09	0.050	0.027	< 0.01	< 2	2	20	0.06	< 20	< 1	< 2	< 10	31	< 10	2	1
TT L3-S-10	0.060	0.028	< 0.01	< 2	2	21	0.07	< 20	< 1	< 2	< 10	34	< 10	2	1
TT L3-S-11	0.050	0.018	< 0.01	< 2	1	19	0.06	< 20	< 1	< 2	< 10	28	< 10	1	1
TT L3-S-12	0.056	0.045	0.01	< 2	2	18	0.06	< 20	< 1	< 2	< 10	24	< 10	3	< 1
TT L3-S-13	0.057	0.055	< 0.01	< 2	2	18	0.07	< 20	< 1	< 2	< 10	25	< 10	3	1
TT L3-S-14	0.053	0.043	< 0.01	< 2	2	18	0.05	< 20	< 1	< 2	< 10	21	< 10	2	< 1
TT L3-S-15	0.057	0.045	< 0.01	< 2	2	19	0.05	< 20	< 1	< 2	< 10	20	< 10	3	< 1
TT L3-S-16	0.056	0.051	< 0.01	< 2	2	20	0.06	< 20	3	< 2	< 10	27	< 10	2	< 1
TT L3-S-17	0.055	0.030	0.01	< 2	2	19	0.07	< 20	1	< 2	< 10	30	< 10	2	1
TT L3-S-18	0.053	0.040	< 0.01	< 2	2	22	0.07	< 20	< 1	< 2	< 10	26	< 10	3	1
TT L3-S-19	0.057	0.041	< 0.01	< 2	2	20	0.06	< 20	< 1	< 2	< 10	21	< 10	2	1
TT L3-S-20	0.055	0.069	< 0.01	< 2	2	19	0.05	< 20	< 1	< 2	< 10	22	< 10	3	< 1

Activation Laboratories Ltd.

Report: A18-13953

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
Lower Limit	0.2	0.5	1	5					0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-1 Meas	31.1	2.2	1230	873	16	32	693	700	0.32	426	10	220	0.9	1550	0.75	7	7	23.7	< 10	2	0.03	< 10	0.14
GXR-1 Cert	31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50	0.217
GXR-1 Meas	31.0	2.6	1210	876	16	36	697	696	0.32	425	< 10	211	0.9	1530	0.74	5	7	23.4	< 10	4	0.03	< 10	0.14
GXR-1 Cert	31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50	0.217
GXR-6 Meas	0.2	< 0.5	79	1130	2	23	99	126	6.82	257	< 10	1020	1.0	< 2	0.16	14	89	5.65	20	< 1	1,14	12	0.41
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
GXR-6 Meas	0.3	< 0.5	69	1130	1	23	101	122	6.73	252	< 10	1000	1.0	< 2	0.17	14	89	5.53	20	< 1	1.12	12	0.41
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
OREAS 134b (AQUA REGIA) Meas	> 100	566	1410				> 5000	> 10000		247						111		12.0					
OREAS 134b (AQUA REGIA) Cert	204	563	1360				133000	177000		221						106		12.25					
OREAS 133a (Aqua Regia) Meas	> 100	299	332				> 5000	> 10000		153		< 10				24		7.63					
OREAS 133a (Aqua Regia) Cert	97	297	324				48600. 00	106000 .00		140		59				23		7.92					
OREAS 13b (4-Acid) Meas	0.8		2320		8	2390		54		56						50	393						
OREAS 13b (4-Acid) Cert	0.86		2327.0 000		9.0	2247.0 000		133		57						75	8650.0 00						
OREAS 923 (AQUA REGIA) Meas	1.9	< 0.5	4730	992	< 1	34	92	352	2.83	7		70	0.8	19	0.40	24	49	6.37	< 10		0.39	42	1.57
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 923 (AQUA REGIA) Meas	1.5	0.5	4560	963	< 1	33	91	340	2.75	7		69	0.7	16	0.39	25	48	6.17	< 10		0.38	41	1.52
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 907 (Aqua Regia) Meas	1.3	0.7	6460	370	6	3	38	144	1.06	38		246	1.1	22	0.27	49	9	7.96	20		0.33	45	0.24
OREAS 907 (Aqua Regia) Cert	1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1	0.221
OREAS 907 (Aqua Regia) Meas	1.3	0.7	6380	372	5	2	36	142	1.09	38		250	1.2	24	0.27	49	9	8.03	20		0.34	44	0.24
OREAS 907 (Aqua Regia) Cert	1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7		0.286	36.1	0.221
TT L3-S-08 Orig	< 0.2	< 0.5	6	326	< 1	63	5	35	1.18	< 2	< 10	42	< 0.5	< 2	0.31	10	134	2.56	< 10	< 1	0.08	< 10	0.75
TT L3-S-08 Dup	< 0.2	< 0.5	6	320	< 1	60	4	38	1.16	< 2	< 10	40	< 0.5	< 2	0.31	10	131	2.51	< 10	< 1	0.08	< 10	0.73
1	1			1	1			1	1	1		1	1	1	1		1	1	1	1	1		

Page 4/7

VVC Exploration Corp.

Activation Laboratories Ltd.

Report: A18-13953

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5					0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01

Page 5/7

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Υ	Zr
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
GXR-1 Meas	0.054	0.044	0.20	92	1	182	< 0.01	< 20	15	< 2	34	79	152	26	16
GXR-1 Cert	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0
GXR-1 Meas	0.053	0.043	0.20	90	1	180	< 0.01	< 20	8	< 2	33	80	153	26	16
GXR-1 Cert	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0
GXR-6 Meas	0.100	0.036	0.01	5	23	40		< 20	2	3	< 10	171	< 10	6	16
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.099	0.036	0.01	4	23	40		< 20	< 1	< 2	< 10	169	< 10	6	16
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 134b (AQUA REGIA) Meas			14.2												
OREAS 134b (AQUA REGIA) Cert			19.31												
OREAS 133a (Aqua Regia) Meas			8.81	155											
OREAS 133a (Aqua Regia) Cert			10.7	147											
OREAS 13b (4-Acid) Meas			1.10												
OREAS 13b (4-Acid) Cert			1.2												
OREAS 923 (AQUA REGIA) Meas		0.067	0.70	3	4	17		< 20		< 2	< 10	35	< 10	19	27
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas		0.065	0.67	4	4	16		< 20		< 2	< 10	34	< 10	19	26
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 907 (Aqua Regia) Meas	0.103	0.025	0.06	6	3	14	0.02	< 20	< 1	< 2	< 10	6	< 10	7	44
OREAS 907 (Aqua Regia) Cert	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
OREAS 907 (Aqua Regia) Meas	0.104	0.025	0.06	6	3	14	0.02	< 20	< 1	< 2	< 10	6	< 10	7	43
OREAS 907 (Aqua Regia) Cert	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
TT L3-S-08 Orig	0.057	0.031	< 0.01	< 2	3	24	0.11	< 20	2	< 2	< 10	52	< 10	3	4
TT L3-S-08 Dup	0.055	0.031	< 0.01	< 2	3	25	0.10	< 20	3	< 2	< 10	51	< 10	3	4
			I –					I –							

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Page 7/7

Report of Peter M. Dimmell and Michel Lafrance - July 3rd, 2019

1:125,000

UTM NAD83, zone 17

		07C078	42A010079	42A07C080	42A07B061	42A07B062	42A07B063	42A07B064	42A07B065	42A07B066	42A07 <u>B067</u>	504093 42A07B068	42A07B069	A asses
996	42A07C0	097 42A07C098 Zone 17 517000E	42A07C099	42A07C100 176344	42A07B081 193752	42A07B082 337319	42A 07B 083 1763 43	42A07B084 Zone 17 52000E	42A07B085	42A07B086 Zone,17 521060E	42A07B087	42A07B088 Zone 1 522000	42A07B089 7 E	42A07
116	42A07C	117 42A07C118	42A07C119	42A07C120 308416	42A07B101 176345	42A07B102 195214	42A 07B 103 268671	42A07B104	42A07B105	42A07B106	42A07B107	42A07B108	<u>л</u> 42А07В109	42A07
36	42A076	L37 42A07C138 Zone 17	42A07C139	42A07C140 261126	42A07B121 308417	42A07B122 241092	42A 07B 123 336533	42A07B124 Zone 17	42A07B125	Timmi 42A07B126 Zone 17	ns Twp 42A07B127	42A07B128	42A07B129	- = 42A.07
156	42A07C	517 6042A07C	1 herty	42A07C160 192978	42A07B141 192977	42A07B142 140356	42A 07B143 277798	520000E 5350000N 42A07B144	42A07B145	521000E 5350000N 42A07B146	42A07B147	522000 535000 42A07B148	E 3N 42A07B449	42A07
76	42A07C	42A07C178	42A07C179	42A07C180 501779	AZA07B161	42A07B162	42A 07B 163	42A07B164	42A07B165	42A07B166	42A07B167	42A07B168	42A07B169	42407
96	Sange	201617 517000E 5349000N 197 42A07C198	42A07C199	42A07C200 504141	42A07B181	20ne 17 519000E 5349000N 42A07B182	42A 07B 183	20ne 17 520000E 5349000N 42A07B184	42A07B185	Zone 17 521000E 5849000N 42407B186	42A07B187	Zone 1 522000 5349000 42A07B188	/ E /N 42A07B189	42407
Lo	0.3	0.6km SCAL	LE 1:12,500	424070220	42A07B201	42A07B202 Winnett	W - L L 42A 07B 203	- C 1 6 0 42A07B204	3 b 42A07B205	42A07.8206	3678 42A07B207 3	42A07B208 6.8 1	42A07B209 Saral Lake	42407

Figure 2 – Claim Map

Figure 3 – Electromagnetic (HLEM) Interpretation Map – Timmins Twp.

Report of Peter M. Dimmell and Michel Lafrance - July 3rd, 2019

Report of Peter M. Dimmell and Michel Lafrance - July 3rd, 2019