

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>. TECHNICAL REPORT ON THE GERMAN AMERICAN PROPERTY LORRAIN TOWNSHIP LARDER LAKE MINING DIVISION, NORTHEASTERN ONTARIO FOR COBALT INDUSTRIES OF CANADA INC. January 22, 2019



Matthew Halliday, P.Geo. Project Geologist

First Cobalt Corp. 140 Yonge St. Suite 201 Toronto, ON M5C 1X6 Canada Main +1 416 900 3891 | info@firstcobalt.com

# Contents

| Summary                                |
|----------------------------------------|
| 2 – Introduction and Property Location |
| 3 - Regional Geology                   |
| 4 - Property Geology                   |
| 5 – History                            |
| 6 – Work Program                       |
| Purpose and Work11                     |
| Site Visits13                          |
| Accessibility14                        |
| Sampling and Testing14                 |
| Equipment14                            |
| Vanta XRF14                            |
| Magnetic susceptibility reader15       |
| 7. Interpretations and Conclusions     |
| 8. Recommendations                     |
| 9. Personnel                           |
| 10. References                         |
| APPENDIX A – XRF Data                  |
| APPENDIX B – XRF Specifications        |
| Vanta Specifications                   |

# Table of Figures

| Figure 1: Location of the Silverside property                          | 5 |
|------------------------------------------------------------------------|---|
| Figure 2: Land Tenure of the German-American Property (blue rectangle) | 6 |
| Figure 3: Regional Geology                                             | 9 |

| Figure 4: Traverse Paths and XRF Sample Locations          | 12 |
|------------------------------------------------------------|----|
| Figure 5: Field Photos – German American site and sampling | 14 |
| Figure 6: Vanta Workstation                                | 15 |
| Figure 7: MPP-EM2S+. Magnetic Susceptibility Reader        | 15 |
| Figure 8: Stereonet of fracture orientations               | 16 |
| Figure 9: Cobalt XRF map                                   | 18 |

# List of Tables

| Table 1: Tenure List for German-American Property | 6  |
|---------------------------------------------------|----|
| Table 2: Cobalt Embayment Stratigraphy            | 8  |
| Table 3: History of the German-American Property  | 11 |
| Table 4: Correlation Matrix, XRF Data             | 16 |



## Summary

This Technical Report has been prepared for the purpose of fulfilling the Technical Standards for Reporting Assessment Work, under the provisions of the Mining Act.

The German-American property is in Lorrain township, bisected by highway 567 (Silver Centre Rd.). The site is about 3.6 km from North Cobalt (Figure 1).

In the summer of 2018 First Cobalt employees examined the German American property for old workings, drill collars and confirmation of government mapping in the area. The property geology appears to be entirely Nipissing diabase. The area was highly jointed, and First Cobalt management recommended geochemical fracture analysis with the handheld XRF.

A fracture analysis survey was conducted, with some promising results, and additional work needs to be completed to validate the methods.

# 2 – Introduction and Property Location

A contiguous block of 2 cells, referred to as the Germain-American property, are held by Cobalt Industries of Canada Inc., a subsidiary of First Cobalt Corp (See Figure 2 and Table 1). These cells were previously legacy claim 4275034. This Technical Report provides a summary and description of results from the exploration work carried out by First Cobalt personnel.

The German-American property is located 3 km east of North Cobalt on Hwy 567 (Silver Center Rd.).

Two days (July 5<sup>th</sup> - 6<sup>th</sup>) were spent in 2018 prospecting and ground truthing the property. Emphasis was placed on confirming previously mapped lithology and finding old workings or drill holes. After the initial visit there was follow-up visits to use handheld XRF as a vectoring tool by analysing fractures in the diabase.

For geographical reference purposes, all UTM locations used in this Technical Report are using NAD83 Zone 17N projection. Tenure information presented in this Technical Report was valid on the MNDM website on 2019-01-28.

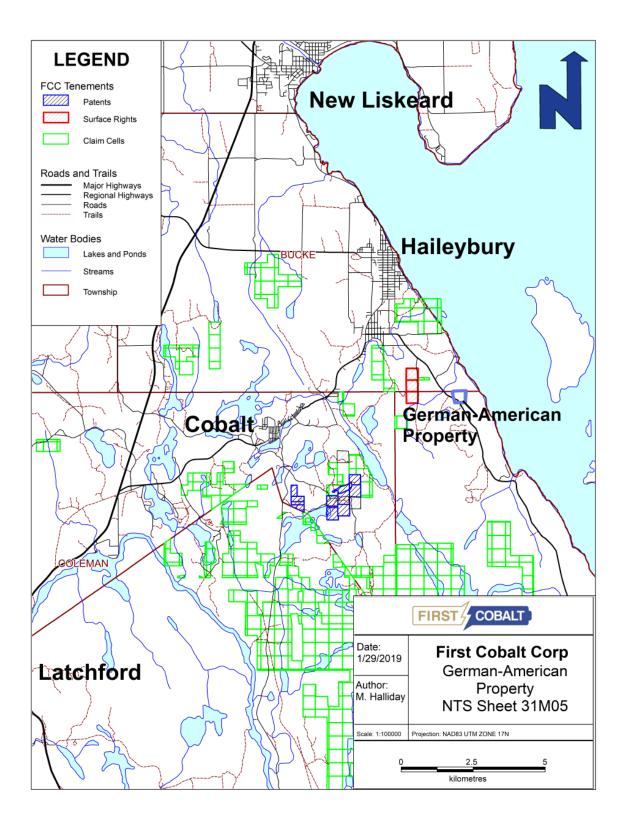
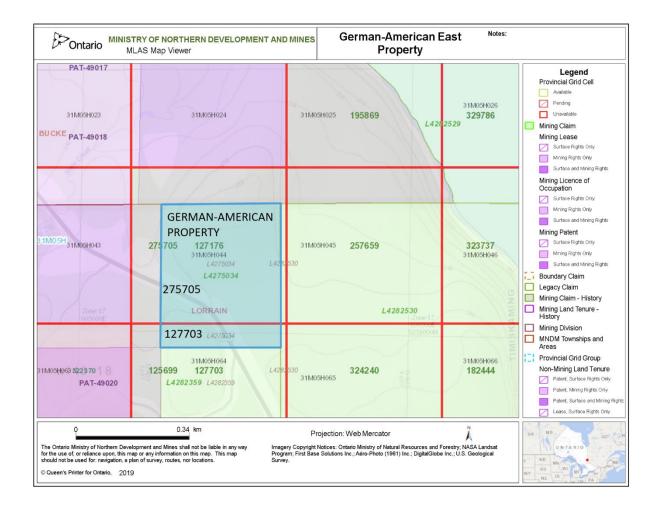




Figure 1: Location of the Silverside property





#### Figure 2: Land Tenure of the German-American Property (blue rectangle)

Table 1: Tenure List for German-American Property

| Legacy Claim ID | Township / Area | Tenure ID | Tenure Type                | Anniversary Date |
|-----------------|-----------------|-----------|----------------------------|------------------|
| 4275034         | Lorrain         | 275705    | Boundary Cell Mining Claim | Feb 2, 2019      |
| 4275034         | Lorrain         | 127703    | Boundary Cell Mining Claim | Feb 2, 2019      |

# 3 - Regional Geology

The claim block is located within the geological domain known as the Cobalt Embayment, a circular Proterozoic-age sedimentary basin. The basin is underlain by Archean volcanic, sedimentary, mafic intrusive, and granitoid units related to the southern extent of the Abitibi Subprovince. The Archean units are unconformably overlain by relatively flat-lying to openly-folded early Proterozoic Huronian Supergroup sedimentary rocks. In the Cobalt Embayment (Table 2), the Huronian Supergroup consists



solely of the Cobalt Group (lacking the underlying Elliot Lake, Hough Lake and Quirke Lake groups), and it comprises the Gowganda Formation and overlying Lorrain Formation. The Gowganda Formation consists (from bottom to top) of the glaciogenic Coleman Member (conglomeratic diamictite, rhythmite, and sandstone), and the overlying Firstbrook Member (basinal mudstone, argillite, siltstone, and sandstone). The Lorrain Formation is an unsubdivided sandstone, arenite and greywacke (Legun, 1986). The sedimentary rocks are intruded by diabase and gabbroic intrusions of the 2219-2209 Ma Nipissing sills and dykes (Corfu and Andrews, 1986; Noble and Lightfoot, 1992). Economic mineralization of the Cobalt area includes extensive historic mining of silver-bearing polymetallic (Ag-Ni-Co-Cu-Bi) carbonate and quartz veins, which occur in faults and fractures all rock types, but notably proximal to Nipissing sills and the Archean/Proterozoic unconformity. See Figure 3 for a reference map of the regional geology.

#### Table 2: Cobalt Embayment Stratigraphy

|             |                 |                 | Cobalt Embayment Strati                                    | graphy                                   |                |
|-------------|-----------------|-----------------|------------------------------------------------------------|------------------------------------------|----------------|
|             |                 | Recent          |                                                            | Fluvial and lacustrine deposits          |                |
|             |                 | Pleistocene     |                                                            | Glacial Sand, gravel, and varved clay    |                |
|             |                 |                 | Unconformity                                               |                                          |                |
| <u>.</u>    | 154-140         | Jura-Cretaceous | Kimberlites, lamprophyres                                  |                                          |                |
| ozoi        |                 |                 | Unconformity<br>Thornloe Formation                         | Dolomite, limestone                      |                |
| iero        |                 | Silurian        | Wabi Formation                                             | Limestone, shale                         |                |
| Phanerozoic |                 |                 | Disconformity                                              | Linestone, shale                         |                |
|             |                 |                 | Dawson Point Formation                                     | Shale                                    |                |
|             |                 | Ordovician      | Farr Formation                                             | Limestone                                |                |
|             |                 | Ordovician      | Bucke Formation                                            | Shale                                    |                |
|             |                 |                 | Guigues Formation                                          | Sandstone                                |                |
|             |                 |                 | Unconformity                                               |                                          |                |
|             | 1235-1238<br>Ma | Sudbury Dykes   | Olivine and quartz diabase                                 |                                          |                |
|             |                 |                 | Intrusive Contact                                          |                                          |                |
|             |                 |                 |                                                            | gabbro, quartz gabbro, hornblende        |                |
|             | 2220-           |                 | Nipissing Diabase                                          | gabbro, quartz diabase, hypersthene      | Co-Ag-As-Ni-Bi |
| U           | 2210Ma          |                 |                                                            | diabase, varied-texture diabase,         | Mineralization |
| zoi         |                 |                 | Intrusive Contact                                          | granophyric diabase                      |                |
| Proterozoic |                 |                 | Cobalt Group                                               |                                          |                |
| rot         |                 |                 | Lorrain Formation                                          | Quartz arenite, arkose                   |                |
| <u>ц</u>    |                 |                 | Gowganda Formation                                         |                                          |                |
|             |                 | Huronian        |                                                            | Laminated siltstone (grading upward from |                |
|             |                 | Supergroup      | Firstbrook Member                                          | green to red), minor sandstone at upper  |                |
|             |                 |                 |                                                            | part                                     |                |
|             |                 |                 | Colomon Manshan                                            | Polymictic conglomerate, diamictite,     |                |
|             |                 |                 | Coleman Member                                             | sandstone, laminated siltstone.          |                |
|             | ~2454 Ma        | Matachewan      | Unconformity<br>Diabase, minor lamprophyre                 |                                          |                |
|             | 2434 Ivia       | Matachewan      | Intrusive Contact                                          |                                          |                |
|             |                 | Algoman         | Granite, granodiorite, syenite                             |                                          |                |
|             |                 |                 | Intrusive Contact                                          |                                          |                |
|             | 2667 ± 27       | Haileyburian    | Dykes and sills of mafic and ultramafic rocks; lamprophyre |                                          |                |
|             |                 |                 | Intrusive Contact                                          |                                          |                |
| an          |                 |                 | Lithic and feldspathic arenites and                        |                                          |                |
| Archean     |                 | Timiskaming     | wackes; conglomerate                                       |                                          |                |
| Are         |                 |                 | Unconformity                                               |                                          |                |
|             |                 |                 | Minor interflow sediments (mainly black                    |                                          |                |
|             |                 |                 | shale, chert); iron formation                              |                                          |                |
|             | 2766 (?) -      | Volcanic Rocks  | Felsic to intermediate volcanics (flows and                |                                          | Cu-Zn-Pb       |
|             | 2682(?) Ma      |                 | pyroclastics), volcaniclastics                             |                                          | Mineralization |
|             |                 |                 | Mafic to intermediate mafic flows and                      |                                          |                |
|             |                 |                 | tuffs, volcaniclastics                                     |                                          |                |

Compiled by: M.Hewton, 2017.



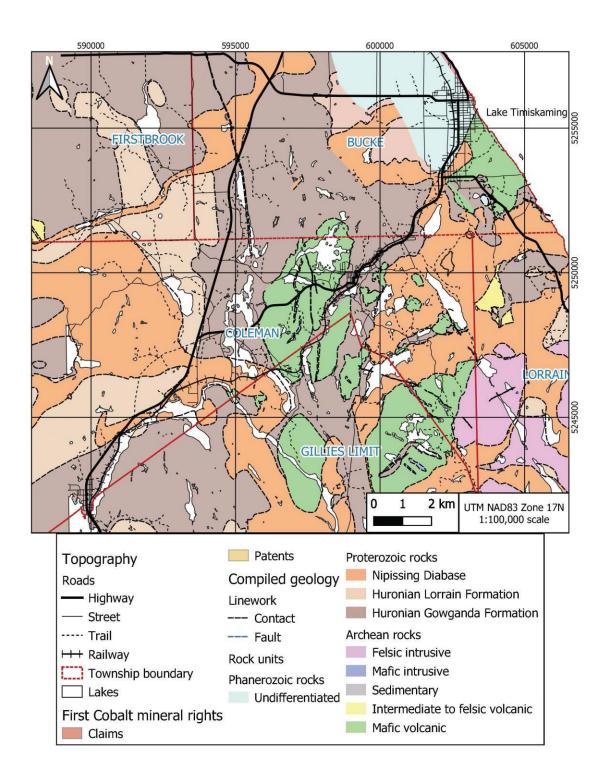



Figure 3: Regional Geology

FIRST COBALT

# 4 - Property Geology

The German-American property consisting of cells 275705 and 127703 (See Figure 2) is covered by a Nipissing diabase sill. Topographically the highway is an overburden filled topographic low, but away from the road there are two ridges where abundant Nipissing diabase outcrops. It is assumed that beneath the sill is the underlying sedimentary rock of the Coleman Formation of the Huronian Supergroup. This formation is relatively flat lying. The basement is made up of steeply dipping, northeasterly trending, Keewatin volcanic and sedimentary rocks. These are mostly mafic to intermediate metavolcanics, with some bands of felsic metavolcanics and metasediments. (Hill 1986, p.6)

The property lies between the northwesterly trending Mackenzie Fault and the Lake Temiskaming fault, with minor east-northeast, and north trending faults in the vicinity. (Thomson 1964, Map)

# 5 – History

The property is approximately 155m east from the old German American Mine (Abandoned Mine id: 02232) additionally the property is approximately 250m east from an old Big Agaunico Mines Shaft (Abandoned Mine Id: 02231) both of which were silver-cobalt occurrences. The German-American mine workings consisted of 2 exploratory shafts 60' deep sunk on NNW striking quartz-calcite veins. Co-Fe-Ni arsenides with chalcopyrite was observed. (AMIS database; Sergiades, 1968)

In 1980 a 200 foot long drillhole collared near the north-western corner of the property intersected minor quartz-carbonate veining and minor sulphides, including chalcopyrite.

There is also a shaft to the east of the property, however at the time of writing this report it is uncertain who sank the shaft. The shaft location is presented on a 2002 Cabo report as being east of the property and on the M2050 mapping as dating from 1963. It is possible that NASCO Cobalt Silver Mines Inc. who were working in the area during the 1950's developed the shaft.

Brixton completed a high-resolution magnetic airborne survey flown in 2017, unfortunately the images available are limited to the German-American property and thus of limited use.



| Year | Assessment File | Operator          | Description                       |
|------|-----------------|-------------------|-----------------------------------|
|      | Reference       |                   |                                   |
| 1980 | 31M05NE0110     | J.E. Armstrong    | Diamond drilling report           |
| 2008 | 20005000*       | International     | Geochemical Report on An MMI Soil |
|      |                 | Millennium Mining | Geochemistry Survey with Grid     |
|      |                 | Corp.             | Preparation                       |
| 2017 | 2.57484.10      | Brixton Metals    | Report - Airborne high-resolution |
|      |                 | Corporation       | quad magnetic survey              |
| 2017 | 2.57484.11      | Brixton Metals    | Maps - Airborne high-resolution   |
|      |                 | Corporation       | quad magnetic survey              |

#### Table 3: History of the German-American Property

\*May not be entirely on the property, the MMI report appears to accompany a geophysical survey which was not located at this time that may intersect the property.

The northern-western corner of the German-American property is about 800m from the Teledyne Mine and 1.2km from the Agaunico Mine using the AMIS database reference points.

# 6 – Work Program

## Purpose and Work

The German-American property was prospected and ground truthed by Matthew Halliday and Gerhard Kiessling, in an effort to confirm previous mapped lithologies, and locate historic trenching or drill casings. The property has been previously mapped as entirely Nipissing diabase on surface.

Figure 4 shows traverses and sample locations; the base geology map is from the regional compilation map P3581 (Ayer, 2006).

Based on the initial site visit it was recommended that an XRF fracture analysis on the joints/fractures in the diabase at the German-American property be done. This led to another day at German-American where XRF reading were taken at 40 stations within the claim. The traverse locations are presented in figure 4, with the results of the XRF analysis (for cobalt in ppm) presented in figure 8.



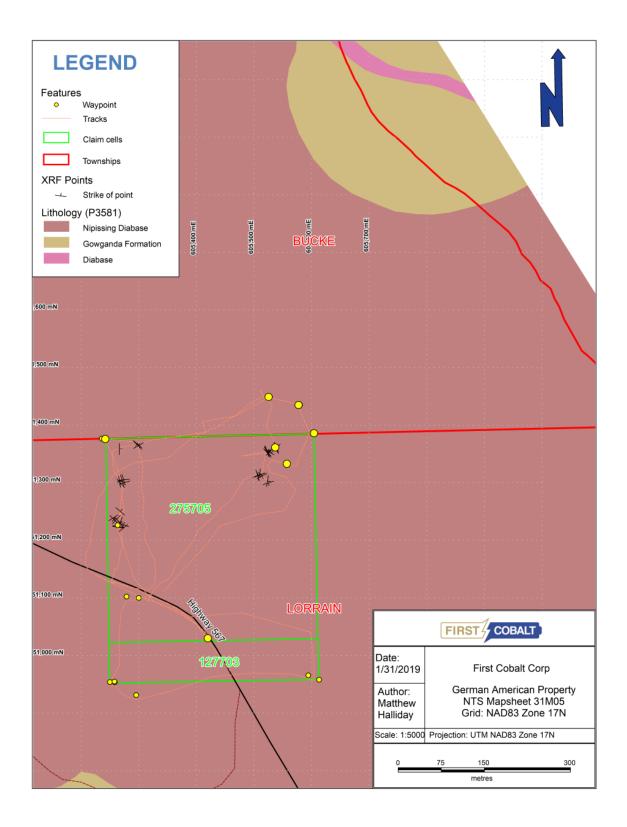



Figure 4: Traverse Paths and XRF Sample Locations



## Site Visits

July 5<sup>th</sup> - July 6<sup>th</sup>

Matthew Halliday with Gerhard Kiessling

Goal: Identify outcrops and workings on the German-American Property and confirm previously mapped lithology.

Starting Conditions: Approximately 29° Celsius, no precipitation.

#### Access:

1. Parked on HWY 567 at the edge of the claim.

### Observations:

Bedrock is diabase. Some sections are more exposed than originally shown on geologic map to the northern part of the claim. Areas with high relief and variously fractured and moderately rhombohedral jointed. One potential fault structure. A couple small boulders and floats of sedimentary rocks, including one (possibly) Coleman conglomerate near the western side of the claim. The jointing and faulting could possibly be an area of interest if it's near a fold hinge. One shaft to the east of the claim noted, near a hiking trail. Northwest claim post and nearby drill hole not found, but there was a pile of logs that could have been some sort of drill pad.

#### **Recommendations:**

Use XRF along various joints, fractures, and potential fault; a few GPS points of interested noted. Based on the success of the XRF, following up with David Lewis to map the foliation within the diabase. If the XRF and mapping is fruitful, further investigating west of the claim near the German-American mine shaft.





Diabase outcrop

Old claimpost



#### Matthew Halliday P.Geo



Conglomerate float Figure 5: Field Photos – German American site and sampling



Old drillpad?

July 5<sup>th</sup> - July 6<sup>th</sup>

Gerhard Kiessling and Matthew Brown

Goal: To find fracture surfaces in the diabase and take measurements with the portable XRF, also to record the strike and dip of the fracture.

Starting Conditions: Approximately 24° Celsius, no precipitation.

Gerhard and Matthew took 40 measurements within the claim block all on the north side of the highway where there is a large outcrop of diabase. The locations are represented by strike and dip symbols in Figure 4, a tabulated list of data is in Appendix

## Accessibility

The property is accessible from HWY 567.

## Sampling and Testing

We conducted handheld XRF testing on rock fracture surface to detect potential cobalt anomalies.

## Equipment

#### Vanta XRF

We used a Vanta handheld XRF gun. The Vanta is manufactured by Olympus. We are using the VMR model with a 50kV and 0.2mA tube rating. We use the XRF 31655 Standard disk to calibrate the machine each day and when instructed. We have an OREAS 902 standard that we run periodically.

Each of the samples were placed in the contained portable workstation. The XRF is setup to scan for 1 minute and the results are tabulated.





Figure 6: Vanta Workstation

### Magnetic susceptibility reader

Our magnetic susceptibility reader is manufactured by Instrumentation GDD Inc. We use the Multi-Parameter Probe, mode: MPP-EM2S+. The MPP probe measures the magnetic susceptibility (10-3 SI) as well as the relative and absolute EM conductivity (MHOS/M) values of small and large objects such as drill cores, samples, outcrops, etc. (https://www.gddinstrumentation.com/mpp-probe)



Figure 7: MPP-EM2S+. Magnetic Susceptibility Reader.

# 7. Interpretations and Conclusions

The property is entirely Nipissing diabase sill, which makes it difficult to determine the silver-cobalt potential of the underlying favourable Huronian/Archean unconformity.



The fracture analysis was an interesting test, and within the claim there was only 2 potential cobalt anomalies out of 40 sample locations. This seems to be a reasonable ratio to try and delineate potential targets. The 2 cobalt anomalies in the northeast corner of the claim should be followed-up with a similar sampling protocol on a grid of 10×10m spacing over the north half of the claim.

The data for base metals, silver and arsenic appear to be less useful than cobalt in terms of pathfinders for buried silver-cobalt mineralization, however with additional sampling a multi-element approach may prove effective.

With the current sample population (n=40) there are no major correlations between the strike and dip of the fractures and elemental responses. Additionally, there are no major correlations between cobalt and silver or the other base metals. However, there is a correlation as expected within the base metals Nickel, Copper and Zinc. (See *Table 4*)

#### Table 4: Correlation Matrix, XRF Data

|        | Str | r <b>ike</b> l | Dip | (    | Co p | opm  | Ag | ppm  | Ni | ppm  | Cu | ppm  | As | ppm  | Zn | ppm         |
|--------|-----|----------------|-----|------|------|------|----|------|----|------|----|------|----|------|----|-------------|
| Strike |     | 100%           |     | -4%  |      | 9%   |    | -21% |    | -6%  |    | -11% |    | 31%  |    | -3%         |
| Dip    |     | -4%            |     | 100% |      | -13% |    | 19%  |    | -11% |    | -39% |    | 5%   |    | -33%        |
| Co ppm |     | 9%             |     | -13% |      | 100% |    | -11% |    | -17% |    | -2%  |    | -6%  |    | -6%         |
| Ag ppm |     | -21%           |     | 19%  |      | -11% |    | 100% |    | -16% |    | -10% |    | 1%   |    | -16%        |
| Ni ppm |     | -6%            |     | -11% |      | -17% |    | -16% |    | 100% |    | 48%  |    | 3%   |    | 76%         |
| Cu ppm |     | -11%           |     | -39% |      | -2%  |    | -10% |    | 48%  |    | 100% |    | 18%  |    | <b>75</b> % |
| As ppm |     | 31%            |     | 5%   |      | -6%  |    | 1%   |    | 3%   |    | 18%  |    | 100% |    | 14%         |
| Zn ppm |     | -3%            |     | -33% |      | -6%  |    | -16% |    | 76%  |    | 75%  |    | 14%  |    | 100%        |

There are no dominant orientations of the fractures, see them plotted on stereonet in Figure 8.

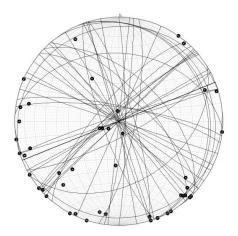



Figure 8: Stereonet of fracture orientations.



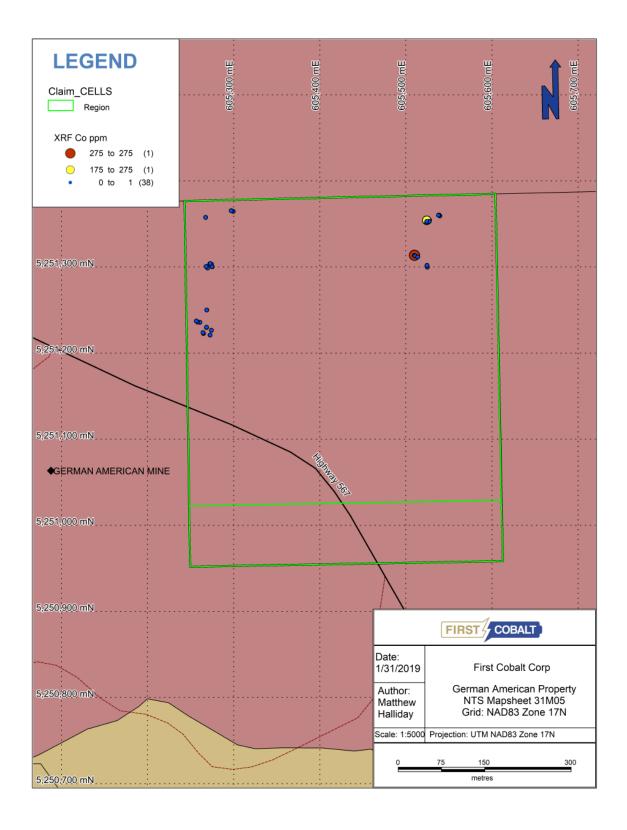





Figure 9: Cobalt XRF map

## 8. Recommendations

- Conduct additional XRF fracture analysis on a grid basis to get a good spatial spread of the data (less, but more equally spaced samples over a larger area) There are two good locations to find abundant outcrop, one is the north end of the claim. Three lines of 10m spacing for about 300m (90 samples) would be sufficient, along with an irregular grid on the east and southeast corner with similar 10m spacing for approximately another 50 samples. A total of 140 samples would give a good test case in terms of anomalies patterns and grid spacing.
- 2. Where there is soil cover conduct a selective leach soil geochemistry survey to determine any correlation with the XRF study, and provide geochemical coverage where outcrop is limited.
- 3. Potentially conduct an IP survey over the property if there are favorable results.

# 9. Personnel

| Matthew Halliday  | Project Geologist  |
|-------------------|--------------------|
|                   | First Cobalt Corp. |
| Gerhard Kiessling | Junior Geologist   |
|                   | First Cobalt Corp. |
| Matthew Brown     | Junior Geologist   |
|                   | First Cobalt Corp. |



## 10. References

- Ayer, J.A. et al. 2006. Geological Compilation of the Cobalt-Temagami Area, Abitibi Greenstone Belt. Ministry of Energy, Northern Development and Mines, Map P3581, scale: 1:100,000.
- Corfu, F., and Andrews, A.J. 1986. A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Canadian Journal of Earth Sciences, 23: 107-109.
- Cyril W. Knight, 1924. Thirty-First Annual Report of the Ontario Department of Mines, being Vol. XXXI, Part II, 1992. Geology of the Mine Workings of Cobalt and South Lorrain Silver Areas. ARV31-02.
- Ethier, Martin. 2017. Assessment Report on airborne high-resolution quad magnetic survey Conducted on the "Cobalt North Claims". 2\_57484\_10 Report.
- Ethier, Martin. 2017. Assessment Report on airborne high-resolution quad magnetic survey Conducted on the "Cobalt North Claims". 2\_57484\_11 Maps.
- Hill, George W.R. 1986. A report on the diamond drilling programme on the Silverside Resources Inc. -Silver Lake resources Inc. property. 31M05NE0009.
- Legun, A. 1986. Huronian Stratigraphy and Sedimentation in the Cobalt Area. Ontario Geological Survey Miscellaneous Paper 124, 24p. Accompanied by 3 charts.
- Noble, S.R., and Lightfoot, P.C. 1992. U-Pb baddeleyite ages of the Kerns and Triangle Mountain intrusions, Nipissing Diabase, Ontario. Canadian Journal of Earth Sciences, 29: 1424-1429.
- Sergiades, A. O. 1968. Silver Cobalt Calcite Vein Deposits of Ontario; Mineral Resources Circular No. 10, Ontario Department of Mines: 192-193.
- Thompson, R. 1960: Preliminary Report on the Geology of the North part of Lorrain Twp., District of Timiskaming; O.D.M. Preliminary Report.
- Thomson, R. 1964. Cobalt Silver Area, Northern Sheet, Timiskaming District. Ontario Department of Mines, Map M2050, scale 1:12,000.



#### CERTIFICATE OF QUALIFICATION

I, Matthew Halliday do hereby certify that:

- 1. I am a Professional Geoscientist in the Province of Ontario with an office at 335 Niven St, Haileybury Ontario.
- 2. I graduated with the degree of Bachelor of Science from the University of Dalhousie (2007).
- 3. This certificate is to accompany the report titles "TECHNICAL REPORT ON THE GERMAN-AMERICAN PROPERTY LORRAIN TOWNSHIP LARDER LAKE MINING DIVISION, NORTHEASTERN ONTARIO FOR COBALT INDUSTRIES OF CANADA INC."
- 4. I am a registered Professional Geoscientist with the Association of Professional Geoscientists of Ontario (APGO #2605)
- 5. I have worked as a geologist for 11 years since my graduation from university, on a wide variety of gold, base metal, lithium and iron exploration properties, including project management.

Dated the 12<sup>th</sup> of December 2018



Matthew Halliday, P.Geo.



# APPENDIX A – XRF Data



| Reading # | x        | У       | z        | Strike | Dip | Litho | Instrument Serial Num | Co ppm | Ag ppm | Ni ppm | Cu ppm | As ppm | Bi ppm | Zn ppm | Pb ppm |
|-----------|----------|---------|----------|--------|-----|-------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| DFA-001   | 604068.2 | 5251649 | 276.4991 | 186    | 90  | DIA   | VANTA803061           | 0      | 0      | 328    | 78     | 0      | 0      | 459    | 12     |
| DFA-002   | 605264.9 | 5251223 | 263.5045 | 278    | 79  | DIA   | VANTA803061           | 0      | 0      | 11     | 16     | 13     | 0      | 42     | 22     |
| DFA-003   | 605264.3 | 5251224 | 263.7119 | 282    | 78  | DIA   | VANTA803061           | 0      | 3      | 12     | 33     | 14     | 0      | 57     | 16     |
| DFA-004   | 605272.6 | 5251222 | 258.85   | 230    | 82  | DIA   | VANTA803061           | 0      | 5      | 30     | 30     | 35     | 0      | 93     | 45     |
| DFA-005   | 605274.2 | 5251227 | 262.9196 | 288    | 90  | DIA   | VANTA803061           | 0      | 0      | 23     | 5      | 19     | 0      | 53     | 55     |
| DFA-006   | 605268.5 | 5251230 | 260.5128 | 320    | 90  | DIA   | VANTA803061           | 0      | 0      | 28     | 27     | 22     | 0      | 110    | 58     |
| DFA-007   | 605268.5 | 5251231 | 261.016  | 24     | 90  | DIA   | VANTA803061           | 0      | 0      | 0      | 0      | 11     | 0      | 25     | 25     |
| DFA-008   | 605260.9 | 5251236 | 261.735  | 224    | 81  | DIA   | VANTA803061           | 0      | 0      | 16     | 14     | 24     | 0      | 50     | 21     |
| DFA-009   | 605258.1 | 5251237 | 259.6497 | 314    | 90  | DIA   | VANTA803061           | 0      | 0      | 28     | 13     | 27     | 0      | 47     | 41     |
| DFA-010   | 605256.7 | 5251238 | 260.0414 | 58     | 40  | DIA   | VANTA803061           | 0      | 0      | 26     | 5      | 34     | 0      | 82     | 54     |
| DFA-011   | 605268.7 | 5251251 | 261.7055 | 311    | 70  | DIA   | VANTA803061           | 0      | 0      | 31     | 0      | 53     | 0      | 74     | 51     |
| DFA-012   | 605269.7 | 5251299 | 255.9662 | 318    | 88  | DIA   | VANTA803061           | 0      | 0      | 111    | 12     | 28     | 0      | 89     | 45     |
| DFA-013   | 605268.1 | 5251301 | 258.9618 | 350    | 90  | DIA   | VANTA803061           | 0      | 5      | 10     | 27     | 28     | 0      | 71     | 38     |
| DFA-014   | 605272.3 | 5251304 | 259.5694 | 342    | 90  | DIA   | VANTA803061           | 0      | 0      | 52     | 99     | 29     | 0      | 120    | 41     |
| DFA-015   | 605274.2 | 5251304 | 261.1278 | 85     | 8   | DIA   | VANTA803061           | 0      | 0      | 126    | 380    | 9      | 0      | 401    | 7      |
| DFA-016   | 605272.9 | 5251305 | 258.0127 | 163    | 88  | DIA   | VANTA803061           | 0      | 0      | 98     | 54     | 18     | 0      | 173    | 33     |
| DFA-017   | 605275.1 | 5251301 | 257.1921 | 252    | 86  | DIA   | VANTA803061           | 0      | 3      | 70     | 26     | 26     | 0      | 84     | 34     |
| DFA-018   | 605267.4 | 5251358 | 247.7019 | 360    | 85  | DIA   | VANTA803061           | 0      | 0      | 145    | 210    | 112    | 0      | 461    | 180    |
| DFA-019   | 602152.1 | 5253318 | 261.8656 | 125    | 90  | DIA   | VANTA803061           | 0      | 0      | 16     | 18     | 6      | 0      | 50     | 9      |
| DFA-020   | 605519.9 | 5251444 | 273.3807 | 274    | 35  | DIA   | VANTA803061           | 0      | 3      | 24     | 20     | 16     | 0      | 94     | 32     |
| DFA-021   | 605299.4 | 5251365 | 254.2442 | 240    | 90  | DIA   | VANTA803061           | 0      | 0      | 46     | 22     | 18     | 0      | 99     | 33     |
| DFA-022   | 605299.4 | 5251365 | 254.2442 | 314    | 54  | DIA   | VANTA803061           | 0      | 0      | 44     | 28     | 43     | 0      | 104    | 54     |
| DFA-023   | 605297.1 | 5251366 | 256.028  | 130    | 87  | DIA   | VANTA803061           | 0      | 5      | 28     | 38     | 22     | 0      | 63     | 40     |
| DFA-024   | 605506.9 | 5251313 | 260.5809 | 252    | 10  | DIA   | VANTA803061           | 0      | 0      | 135    | 166    | 4      | 0      | 633    | 9      |
| DFA-025   | 605507.3 | 5251313 | 261.5255 | 343    | 78  | DIA   | VANTA803061           | 0      | 0      | 71     | 26     | 14     | 0      | 72     | 28     |
| DFA-026A  | 605509.8 | 5251314 | 266.7896 | 248    | 90  | DIA   | VANTA803061           | 275    | 0      | 0      | 53     | 23     | 0      | 83     | 68     |
| DFA-026B  | 605509.8 | 5251314 | 266.7896 | 248    | 90  | DIA   | VANTA803061           | 0      | 0      | 57     | 45     | 17     | 0      | 167    | 48     |
| DFA-026C  | 605509.8 | 5251314 | 266.7896 | 248    | 90  | DIA   | VANTA803061           | 0      | 0      | 63     | 52     | 19     | 0      | 135    | 62     |



| DFA-027 | 605510.5 | 5251314 | 267.3426 | 11  | 77 | DIA | VANTA803061 | 0   | 3 | 65  | 34 | 15 | 0 | 125 | 36 |
|---------|----------|---------|----------|-----|----|-----|-------------|-----|---|-----|----|----|---|-----|----|
| DFA-028 | 605513.8 | 5251312 | 271.2416 | 242 | 90 | DIA | VANTA803061 | 0   | 3 | 56  | 22 | 13 | 0 | 119 | 38 |
| DFA-029 | 605524.9 | 5251300 | 270.1173 | 252 | 90 | DIA | VANTA803061 | 0   | 0 | 49  | 7  | 10 | 0 | 68  | 23 |
| DFA-030 | 605524.6 | 5251303 | 266.7031 | 8   | 85 | DIA | VANTA803061 | 0   | 3 | 30  | 9  | 19 | 0 | 65  | 35 |
| DFA-031 | 605527.5 | 5251355 | 268.9046 | 226 | 90 | DIA | VANTA803061 | 0   | 0 | 80  | 5  | 29 | 0 | 135 | 26 |
| DFA-032 | 605523   | 5251355 | 269.0368 | 340 | 86 | DIA | VANTA803061 | 0   | 0 | 0   | 0  | 10 | 0 | 57  | 26 |
| DFA-033 | 605524.3 | 5251355 | 271.7043 | 324 | 10 | DIA | VANTA803061 | 175 | 0 | 26  | 12 | 9  | 0 | 101 | 25 |
| DFA-034 | 605524   | 5251352 | 270.9259 | 319 | 65 | DIA | VANTA803061 | 0   | 0 | 13  | 24 | 41 | 0 | 122 | 70 |
| DFA-035 | 605527.3 | 5251354 | 260.1268 | 298 | 90 | DIA | VANTA803061 | 0   | 0 | 24  | 13 | 8  | 0 | 64  | 23 |
| DFA-036 | 605524.2 | 5251354 | 264.715  | 340 | 16 | DIA | VANTA803061 | 0   | 0 | 49  | 7  | 15 | 0 | 70  | 28 |
| DFA-037 | 605539.5 | 5251360 | 272.3258 | 337 | 14 | DIA | VANTA803061 | 0   | 0 | 61  | 38 | 34 | 0 | 62  | 37 |
| DFA-038 | 605538.6 | 5251361 | 273.3253 | 160 | 77 | DIA | VANTA803061 | 0   | 0 | 73  | 46 | 18 | 0 | 51  | 42 |
| DFA-039 | 605537.9 | 5251361 | 273.5622 | 227 | 90 | DIA | VANTA803061 | 0   | 0 | 20  | 20 | 10 | 0 | 117 | 31 |
| DFA-040 | 605525.7 | 5251442 | 273.4548 | 295 | 88 | DIA | VANTA803061 | 55  | 0 | 11  | 17 | 23 | 0 | 70  | 37 |
| DFA-041 | 605525.7 | 5251442 | 273.4548 | 228 | 85 | DIA | VANTA803061 | 0   | 0 | 16  | 8  | 11 | 0 | 46  | 34 |
| DFA-042 | 605522.8 | 5251442 | 271.7161 | 62  | 78 | DIA | VANTA803061 | 0   | 8 | 63  | 29 | 16 | 0 | 78  | 31 |
| DFA-044 | 605519.9 | 5251445 | 273.3987 | 220 | 73 | DIA | VANTA803061 | 0   | 0 | 101 | 89 | 35 | 0 | 118 | 53 |
| DFA-044 | 605517.9 | 5251446 | 273.0769 | 329 | 90 | DIA | VANTA803061 | 0   | 0 | 55  | 36 | 33 | 0 | 126 | 32 |
| DFA-045 | 605512.1 | 5251458 | 273.2411 | 229 | 84 | DIA | VANTA803061 | 0   | 0 | 23  | 41 | 23 | 0 | 79  | 40 |



APPENDIX B – XRF Specifications



We used a Vanta handheld XRF gun. The Vanta is manufactured by Olympus. We are using the VMR model with a 50kV and 0.2mA tube rating. For the following specs we have the M Series, without camera.

# **Vanta Specifications**

| Dimensions (W x H<br>x D) | 8.3 x 28.9 x 24.2 cm (3.25 x 11.4 x 9.5 in.)                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight                    | 1.70 kg (3.75 lbs) with battery, 1.48 kg (3.25 lbs) without battery                                                                                                                       |
| Excitation Source         | 4-Watt X-ray tube with application optimized anode material (rhodium<br>(Rh), silver (Ag), or tungsten (W))<br>M Series (Rh & W) and C Series (Ag): 8-50 kV<br>C Series (Rh & W): 8-40 kV |
| Detector                  | M Series: Large area Silicon Drift Detector<br>C Series: Silicon Drift Detector                                                                                                           |
| Power                     | Removable 14.4 V Li-Ion battery or<br>18 V power transformer 100-240 VAC, 50-60 Hz, 70 W max                                                                                              |
| Display                   | 800 x 480 (WVGA) LCD with capacitive touch-screen supporting gesture control                                                                                                              |
| Operating<br>Environment  | Temperature: -10 °C to 50 °C (continuous duty cycle with optional fan)<br>Humidity: 10% to 90% relative humidity non-condensing                                                           |
| Drop Test                 | Military Standard 810-G 4-foot (1.3 M) drop test                                                                                                                                          |
| IP Rating                 | IP65*: dust tight and protected against water jets from all directions                                                                                                                    |
| Pressure Correction       | Built-in barometer for automatic altitude and air density correction                                                                                                                      |



| GPS                      | Embedded GPS/GLONASS receiver                                        |
|--------------------------|----------------------------------------------------------------------|
| Operating System         | Linux                                                                |
| Data Storage             | 4 GB embedded storage, micro SD slot for expandable storage          |
|                          | (2) USB 2.0 type A host ports for accessories such as Wireless LAN   |
| USB                      | Bluetooth <sup>®</sup> , and USB flash drives.                       |
|                          | (1) USB 2.0 type mini-B port for connection to computer              |
| Wireless LAN             | Supports 802.11 b/g/n (2.4 GHz) via optional USB adapter             |
| Bluetooth                | Supports Bluetooth and Bluetooth Low-Energy via optional USB adapter |
| Aiming Camera            | Full VGA CMOS camera                                                 |
| Panorama Camera          | 5-megapixel CMOS camera with autofocus lens                          |
| * M Series analyzers are | e IP64 rated.                                                        |

M Series analyzers are IP64 rated.

Additional details on the Vanta can be found at the manufacturers website: <u>https://www.olympus-</u> ims.com/en/vanta/





#### German-American Property Expense Verification

|                             |                                                                                         |                                       |                        |               |           | COST CAT                  | ATEGORIES                      |                                  |                       |                                                               |            |            |
|-----------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|------------------------|---------------|-----------|---------------------------|--------------------------------|----------------------------------|-----------------------|---------------------------------------------------------------|------------|------------|
| WORK TYPE                   | PERSONNEL                                                                               | ROLE                                  | DATES OF FIELD<br>WORK | Days/Man-days | Rate/unit | \$Supervision &<br>Labour | \$Contractors &<br>Consultants | \$Supplies & Rental<br>Equipment | \$Food and<br>Lodging | \$Transport<br>personnel/equip to work<br>site (Ontario only) | \$Assaying | \$Shipping |
| Project Planning            | Matthew Halliday                                                                        | Project Geologist                     | July 3                 | 1.0           | \$ 400.00 | \$ 400.00                 |                                |                                  |                       |                                                               |            |            |
| Supervising & XRF           | Matthew Halliday                                                                        | Project Geologist                     | July 12                | 1.0           | \$ 400    | \$ 400.00                 |                                |                                  |                       |                                                               |            |            |
| Fracture Analysis Surveying | Gerhard Kiessling                                                                       | Geologist                             | July 5,6,12            | 3.0           | \$ 350.00 | \$ 1,050.00               |                                |                                  |                       |                                                               |            |            |
| Fracture Analysis Surveying | Matthew Brown                                                                           | Geologist                             | July 12                | 1.0           | \$ 350.00 | \$ 350.00                 |                                |                                  |                       |                                                               |            |            |
| Fracture Analysis Surveying | Matthew Halliday                                                                        | Project Geologist                     | July 5,6               | 2.0           | \$ 400    | \$ 800.00                 |                                |                                  |                       |                                                               |            |            |
| Map making & Reporting      | Matthew Halliday                                                                        | Project Geologist                     | Jan 30,31              | 1.5           | \$ 400.00 | \$ 600.00                 |                                |                                  |                       |                                                               |            |            |
| Geochem                     | Reflex                                                                                  | Portable XRF Rental<br>(\$7290/month) |                        | 2.0           | \$ 243.00 |                           |                                | \$ 486.00                        |                       |                                                               |            |            |
| Truck Rental                | \$100/day in incl. truck<br>rental, fuel, insurance,<br>repairs                         |                                       |                        | 3             | \$ 100.00 |                           |                                |                                  |                       | \$ 300.00                                                     |            |            |
| Accom/Meals                 | \$100/day incl. house rental,<br>heat, hydro, groceries,<br>restaurant meals (3 people) |                                       |                        | 6             | \$ 100.00 |                           |                                |                                  | \$ 600.00             |                                                               |            |            |
|                             | -                                                                                       | •                                     | •                      | •             |           | \$ 3,600.00               | \$ -                           | \$ 486.00                        | \$ 600.00             | \$ 300.00                                                     | \$-        | \$-        |

SUM = \$ 4,986.00

| Cost Allocation |                   |                  |                |          |  |  |  |  |
|-----------------|-------------------|------------------|----------------|----------|--|--|--|--|
| Claim Cells     | Claim Holder      | % of traverses = | Total value of |          |  |  |  |  |
| 275705          | Cobalt Industries | 0.8              | \$             | 3,988.80 |  |  |  |  |
| 127703          | Cobalt Industries | 0.2              | \$             | 997.20   |  |  |  |  |
|                 |                   | 1.0              | \$             | 4,986.00 |  |  |  |  |