

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

VLF-EM SURVEY REPORT

On

Claim 261007 and 338825

(Provincial grid cells 42C07A393 and 42C07A394)

Abotossaway Township, Ontario

(Part of Jackson Lake Property)

For

First Minerals Exploration Ltd

Submitted By:

Bruce Edgar (HBSc, P. Geo)

February 08, 2019

SUMMARY

In January, 2019, the author was given the mandate by Mr. Robert Young, President- First Minerals Exploration Ltd. (FMEL), to carry out an exploration program on the company's Jackson Lake property in Abotossaway Township, Ontario.

The Jackson Lake property is believed to be located towards the northern boundary of the western domain of the Goudreau Lake Deformation Zone of the Wawa Greenstone Belt, and is located approximately 30 kilometers north- northeast of Wawa, Ontario. The Jackson Lake property consists of 19 claims and is contiguous with the Rand No. 2 Property (consisting of 12 claims) to the south. Both properties are held 100% by FMEL.

From January 29 through February 1, 2019, Mr. Philip Escher (Geologist), travelled to and from the property and completed a VLF-EM survey on hypothetical grid lines using a GPS for positioning. Readings were taken on a north-south grid pattern of 12 lines on 50 meter centers, with stations approximately every 15 meters. The survey covered the majority of claims 261007 and 338825.

In-phase data collected was plotted, and Fraser filtration was completed on the data and plotted with ten-unit contours, and this report was written by the author.

In general, the eastern portion of the work area (claim 338825) shows very little response, with the inphase data showing very little change. The Fraser filtered contours also show the area to have a very flat response.

In the western portion of the work area (eastern part of claim 261007) there is an east-west conductor which stretches approximately 150 meters from line 2175 through line 2325. The 10-unit contours of the Fraser-filtered data are much closer together on the western side, suggesting the conductor is strengthening to the west.

Considering that the local geology and foliation trends 070°, and shear zones in the area commonly exhibit directions of 090°, 110° and 140°, the author suggests that the conductor may be representative of a conductive shear zone.

The seemingly coincident VLF-EM conductor and humus gold geochem anomalous area witnessed in the Tilsley reports (1986, 1987) in the northeastern portion of current claim 338825 was not correlated by this work program. No VLF-EM response was witnessed in that area.

It has been suggested that much of the Jackson lake property held by FMEL is covered in overburden. However, geologist Philip Escher, who completed the VLF-EM survey, suggests that even in winter he was able to distinguish outcrops on the side of hills and small ridges in the survey area.

As a result, it is suggested by the author that a program of geological mapping and sampling be completed over the Jackson lake property in order to identify possible target areas for further exploration. Areas with little to no outcrop could be considered for geochemical sampling for gold. A program of geological mapping on hypothetical GPS survey lines could be completed over the 19 claims with a geologist and assistant, and would take approximately 15 days at a cost of \$22,000 including a final report and assaying of samples.

TABLE OF CONTENTS

Introduction4
Location and Access4
History6
Geological Setting
Regional Geology7
Property Geology8
Work Completed8
Results9
Discussion12
Conclusions and Recommendations13
References15
Certificate of Author16
Appendix 1, VLF-EM Raw In-Phase and Quadrature readings17

List of Figures

Figure 1, Jackson Lake Property Location Map	5
Figure 2, VLF-EM Survey, In-Phase Profiles	.10
Figure 3, VLF-EM Survey, Contoured Fraser Filtration Data	11
Figure 4, VLF-EM Survey, 1986 (Tilsley)	12
Figure 5, Humus Geochemical Survey 1987 (Tilsley)	13

INTRODUCTION

In January, 2017, the author was given the mandate by Mr. Robert Young, President- First Minerals Exploration Ltd. (FMEL), to carry out an exploration program on the Company's Jackson Lake property in Abotossaway Township, Ontario.

The property is positioned towards the northern boundary of the western domain of the Goudreau Lake Deformation Zone (GLDZ)of the Wawa Greenstone Belt and is located approximately 30 kilometers north- northeast of Wawa, Ontario. The GLDZ hosts numerous gold occurrences, past producing mines, and the current producing Island Gold Mine of Alamos Gold.

The Jackson Lake property consists of 19 claims and is contiguous with the Rand No. 2 Property (consisting of 12 claims) to the south. Both properties are held 100% by FMEL. The two properties require \$7,200 worth of work to remain in good standing.

Much of the Jackson Lake property is covered in overburden with little outcrop, and due to snow cover in the winter, it was decided to complete a VLF-EM survey over the majority of claims 261007 and 338825 in the northeast corner of the property.

From January 29 through February 1, 2019, Mr. Philip Escher (Geologist), travelled to and from the property and completed a VLF-EM survey on hypothetical grid lines using a GPS for positioning. Readings were taken on a north-south grid pattern of 12 lines on 50 meter centers, with stations every 15 meters.

This report summarizes the results of that work.

LOCATION and ACCESS

The Jackson Lake property is located in Abotossaway Township, within the Goudreau Gold District of the Sault Ste. Marie Mining Division.

The property is located approximately 13 kilometers south of Dubreuilville, Ontario, as the crow flies, and approximately 26 kilometers by road. It is easily accessed, firstly by gravel roads and then by bush roads. One route to the property is via the Goudreau road south-east from Dubreuilville, then west heading towards Goudreau, passing the Magino mine site (Prodigy Gold). The gravel bush road heading south-west out of Goudreau is taken for approximately 1 kilometer heading towards the historic "Murphy Mine". From that point the property is accessed by walking south via a bush trail.

The area is quite heavily forested and the topography change from lakes to hilltops can be approximately 50 meters. Some streams between lakes can be almost impassable during Spring melt and times of heavy prolonged rainfall.

	42C07A348	42C07A349	42C07A350	42007A351	420074352	42007A353	42007A354	/ 534800	6 Coudress 42007A356	42C07A357	42C07A358 43 7 /16	Legend Provincial Grid Cell
	42007A368	42C07A359	42007A370 4200		42C07A372	42007A373	119817 42007A374	Phil	9 9 42C07A376	42007A377	42007A378	Pending Unavailable Mining Claim
	42C07A388	PAT-5094 42007A389	42C07A390 297811	11, 986 (2007A391	F-EM Sur 42007A302 243862 PAT-19	420-54	The frag	297810 42007439	16.00	42C07A397	42C07A398	Mining Lease Surface Rights Only Mining Rights Only Surface and Mining Mining Licence of
	108851 420021008	420021009	326923 4200210 0	297812 420021011	279177 ackson L	158306	177824 42 ²⁰⁰²¹⁰¹⁴	PAT-192 PAT-192 231161 42002011		420021017	42002018	Occupation C Surface Rights Only Mining Rights Only Surface and Mining Surface and Mining
244	281407 420021028	420021029	A 231162 42002030	OTOSSAW 297813 19092031	NY 183880 42002032	103345 42008009	338826 12002004	177825 420021031	42C021036 PA	420.021087 T-48927	420021038	Mining Patent Surface Rights Only Mining Rights Only Surface and Mining
	420021048 420	420621049 921	341387 436621000	252075 42002091	160402 Rand No.	160401 2 Proper	252074 420021054	215210 420021055	420021055	420021057	42003058	Mining Division MNDM Townships ar Areas Provincial Grid Group
1 Carlos	420021068	42C 021069	271153 420021070	289813 42C02071	1 70891 42002072	232076 420021075	215211 42002/074	179890 42002107	420621076	420021077	42C021078	Non-Mining Land To Patent, Surface Rig Patent, Mining Right Patent, Surface and
PA	420021088 1-8 98	420021089	420021090	420021051	PA1 42C02l092	-50946 420021093	42002094	0001 3345000 42002009	420021096	42/2021097	42002/098	Lesse, Surface Rigi Lesse, Mining Righ Lesse, Surface and Water Power Lesse
263	79942002110	8 420021109	420021110	42002111	420021112	420321113	42002014	12002111	42C02H16	420021117	42C021118	Rights Only
				1.22 km s shall not be llab		imagery Copy Program; First	Projection: Wo	lo Ministry of Na	tural Resources a	IN ASSISTING FORESTRY; NASSISTED FORESTRY; NASSISTED FORE; U.S. GR	A Landsat	SK US ON TARIO

Jackson Lake Property Location Map

HISTORY

Gold was discovered in the Goudreau- Lochalsh area as early as 1896 in Emily Bay of Dog Lake. Other discoveries followed as claims were staked searching for iron ore bodies after the turn of the 20th century. Within a few years of the end of the First World War, gold was discovered on numerous properties in the area, most notably the Cline (1918) and Edwards (1924) mines in the eastern domain of the Goudreau Lake Deformation Zone (GLDZ), the Magino (1918) mine east of the current property, and the Murphy (1921) mine west of the current property.

Historical data for the current Jackson Lake Property of FMEL in the MNDM Assessment files is extremely limited.

In 1984 a geophysical program was completed by geologists R. G. Reid and S. M. Sears for R. J. McGowan on what was then called the "Jackson Lake" property. In the current work area in the northeastern portion of the property, the magnetometer survey showed a generally flat response. Likewise, the VLF-EM survey showed similar weak trends, but with a fair degree of continuity.

In their report, Reid and Sears mention a significant gold discovery having been made just east of Jackson lake on the Algoma Central Railway (ACR) ground (directly adjacent to the west of the current work area), but the author could find no data in the MNDM assessment files which would support this statement. Being ACR ground, there was no requirement to file work on the property with the MNDM.

In 1986, James E. Tilsley and associates carried out a comprehensive program of ground geophysical and humus geochemistry surveys on the Jackson Lake property. In the current work area the magnetometer survey correlated well with the Reid and Sears survey showing a generally flat response. The VLF-EM survey however, indicated two conductors. One conductor trending east-west was located in the west of the current work area, and a second conductor trending east north-east was located in the northeastern portion of the current work area. Results of the humus geochemistry survey for gold were disappointing in general, however, a grouping of values ranging from four to ten times the base level are located coincident with the east north-east trending conductor.

The author could find no other record of work performed on the property in the Assessment files.

From January 29 through February 1, 2019, Mr. Philip Escher (Geologist), travelled to and from the property and completed a VLF-EM survey on hypothetical north-south grid lines using a GPS for positioning. Readings were taken on a north-south grid pattern of 12 lines on 50 meter centers, with stations every 15 meters.

This report summarizes the results of that work.

GEOLOGICAL SETTING

REGIONAL GEOLOGY

The Regional geology is described by K. B. Heather and Z. G. Arias (1992) as follows:

Archean supracrustal rocks in the immediate Goudreau-Lochalsh area consist of felsic to intermediate, pyroclastic metavolcanics which are capped by pyrite-bearing iron formation. Immediately to the north are pillowed, massive and schistose mafic to intermediate metavolcanic rocks which are interpreted to be younger in age than the iron formation and felsic metavolcanic rocks. Several medium- to coarse-grained quartz dioritic to dioritic sills and/or dikes intrude all of the metavolcanic rocks. Several felsic intrusions ranging in composition from nepheline syenite to tonalite/trondhjemite occur within the study area. The metamorphic grade of the supracrustal rocks is greenschist, except for a narrow band of amphibolite grade rocks adjacent to the external tonalite-granodiorite granitoid rocks to the north. All of the rocks described above are cross-cut by northwest- and northeast-striking diabase dikes.

Two regionally extensive, subparallel zones of deformation, referred to as the Goudreau Lake Deformation Zone (GLDZ) and the Cradle Lakes Deformation Zone (CLDZ), have been defined using the deformation intensity (i.e., strain intensity) of the supracrustal rocks, the deformation style, and the distribution and density of discrete high-strain zones. The majority of the known gold deposits and occurrences are located within the GLDZ, a 4.5 km wide by over 30 km long, east-northeast- to east-striking arcuate zone which is subparallel to the major lithological and foliation trends. The CLDZ is located south of the GLDZ and is at least 5 to 10 km in length and approximately l to 2 km in width.

The GLDZ can be subdivided into four structural domains (northern, southern, western and eastern) based on style of deformation, lineation patterns, and the orientation and the sense of apparent shear displacement on sets of high-strain zones. Correspondingly, the style and geometry of the gold mineralized zones is different within each of the structural domains.

Gold mineralization occurs in all rock types (excluding diabase dikes) in the area associated with high-strain zone hosted quartz veins. There is a spatial association of gold mineralization with felsic porphyry dikes and stocks, the contacts of dikes being particularly favourable sites for shearing and gold deposition. The alteration associated with the gold mineralization is of limited areal extent, being confined to the discrete high-strain zones. Mafic rnetavolcanic and metaintrusive rocks are typically intensely altered to an assemblage of "biotite, Fe-carbonate, pyrite, pyrrhotite, quartz and minor potassium feldspar and, in other places, less intensely altered to an assemblage of chlorite, calcite, and minor pyrrhotite and/or pyrite. Felsic rnetavolcanic and metaintrusive rocks are typically intensely altered to an assemblage of quartz, sericite, pyrite, Fe-carbonate, albite, hematite, pyrite and/or pyrrhotite and, in other places, less altered to a similar assemblage except that chlorite replaces sericite as the dominant mineral.

The property lies within the Goudreau-Lochalsh area of the Wawa Greenstone Belt, which is comprised of a major succession of supracrustal rocks of Archean age, represented by several cycles of

volcanic activity and a series of sedimentary rocks. The claim is believed to be located towards the northern boundary of the western domain of the Goudreau Lake Deformation Zone (GLDZ) as defined by the Ontario Geological Survey. The majority of known gold deposits in the area are located within this 30 kilometer long, 4 kilometer wide, east-northeast trending, arcuate zone. Structural controls appear to be the most important factor in the localization of gold-bearing quartz veins in this area, and the GLDZ is comprised of numerous, systematically oriented shear zones.

The geology of the region is known from the works of E. L. Bruce (1940), in Ontario Dept. of Mines, Vol. 49, pt 3, and from various Ontario Geological Survey reports by R. P. Sage, K. B. Heather and Z. G. Arias (1987 through 1993).

PROPERTY GEOLOGY

The author has not visited the Jackson Lake property during months when snow was not covering the ground, and therefore has not witnessed the geology of the property personally. The following description of property geology is from the 1987 report by James E. Tilsley and Associates:

The Jackson Lake claims are underlain by Archean mafic volcanics with minor felsic flows, cherts, and graphitic sedimentary horizons intruded by dioritic plugs. The lavas and associated sedimentary horizons strike 070 to 100 with the most common orientation slightly north of east. Dips are steep to the north $\{-70\}$. All these early rocks have been cut by diabase dykes that strike north-northwest. The rocks of the property exibit zones of shearing which appears to post date rocks older than the diabase and may be related to late stage tectonic activity in the volcanic belt contemporaneous with intrusion of the dioritic plugs. Shearing is observed to be accompanied locally by carbonate alteration and quartz veining. Low gold values have been indicated in one such shear located in claim 841045. Much of the property is covered by overburden and water. Shear zones tend to weather low and are generally obscured. Geophysical surveys suggest several shears are present in the central part of the claim group, and some of these appear to cut bodies of diorite as well as the mafic volcanics.

WORK COMPLETED

From January 29 through February 1, 2019, Mr. Philip Escher (Geologist), travelled to and from the property and completed a VLF-EM survey on hypothetical north-south grid lines using a GPS for positioning. Readings were taken on a north-south grid pattern of 12 lines on 50 meter centers, with stations approximately every 15 meters.

A Geonics EM-16 was employed to measure the components of the EM field using NAA at Cutler, MD., U.S.A. as a signal source.

A GPS waypoint was marked for each station, the EM-16 was faced north and was operated by measuring in-phase (percent slope of the dip angles) and quadrature. Measurements were recorded in a tablet along with the GPS location.

Geonics EM-16 Specifications:

Measured Quantity - In-phase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field (Tangent of the tilt angle and ellipticity).

Sensitivity - In-phase : +- 150%

Resolution Output - Nulling by audio tone. In-phase indication from mechanical inclinometer and quadphase from graduated dial.

Operating Frequency - 17.8 kHZ radio band.

Operating Controls - On/Off switch, battery test push button, station selector switch, audio volume control, quadrature dial and inclinometer.

Power Supply - 6 Duracell 'AA' batteries

Dimensions - 42 x 14 x 9cm

Weight - Instrument: 1.6kg

A total of 12 lines on 50 meter centers were completed, varying in length from 336 to 181 meters. The grid pattern covered the majority of claims 261007 and 338825 in the northeast portion of the Jackson Lake property.

The In-phase data collected by Mr. Escher was plotted by the author (see Figure 2). The author also completed Fraser Filtration on the data in order to produce a contoured map which assists in making any conductors immediately apparent (see Figure 3).

RESULTS

In general, the eastern portion of the work area (claim 338825) shows very little response, with the inphase data showing very little change. The Fraser filtered contours also show the area to have a very flat response.

In the western portion of the work area (eastern part of claim 261007) there is an east-west conductor which stretches approximately 150 meters from line 2175 through line 2325. The 10-unit contours of the Fraser-filtered data are much closer together on the western side, suggesting the conductor is strengthening to the west.

North-east of this location, two other point conductors can be seen on lines 2325 and 2375. The Fraser-filtered data shows them as solitary highs with lower –unit contours between them.

These conductors appear to be the only responses seen in the entire work area.

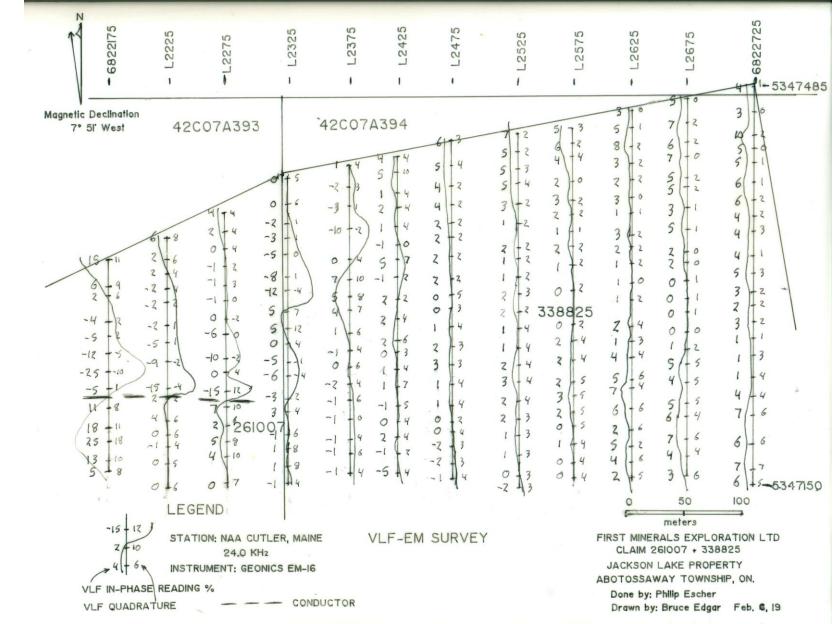
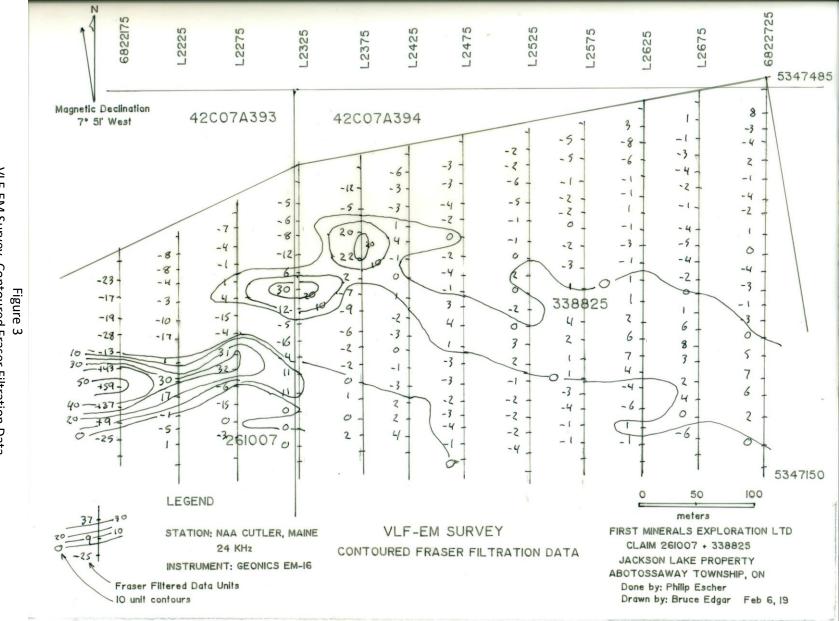



Figure 2 VLF-EM Survey, In- Phase Profiles

10

VLF-EM Survey, Contoured Fraser Filtration Data

11

Discussion

The recently completed work program consisting of a VLF-EM Survey over parts of claims 261007 and 338825 was conceived by the author after reviewing past work on the property.

A VLF-EM survey undertaken by James Tilsley and Associates in 1986 appeared to show two conductors in the current work area. The conductor in the northeast corner of claim 841005 (current claim 338825) trending at approximately 110° was coincident with an area exhibiting anomalous gold in humus values some four to ten times higher than background (See Figure 4 and 5).

It was the author's intention to attempt to locate this conductor once again, since a similar VLF-EM survey completed in 1984 (Reid and Sears) showed no conductor in this location.

The recently completed survey appears to validate the Reid and Sears survey in that no conductor appears to exist in the north-eastern portion of claim. (It must be noted that the author is not a geophysicist, but has used VLF-EM surveys in the past on a number of properties as an exploration tool) There is a distinct possibility that depth of overburden in this area, combined with varying amounts of water present depending on time of the year, could have a significant effect on a VLF-EM survey.

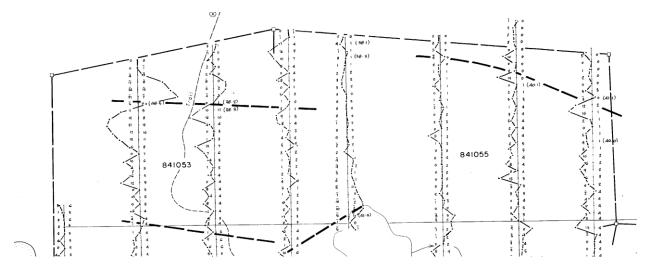


Figure 4 VLF-EM Survey 1986 (Tilsley)

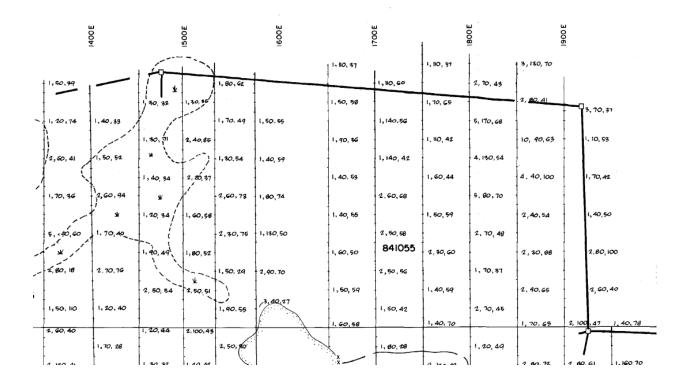


Figure 5 Humous Geochemical Survey 1987 (Tilsley)

The east-west conductor located in claim 261007 was also located in both the Reid and Sears Survey (1984), and the Tilsley Survey (1986).

Geological mapping by the OGS (Heather and Arias, 1987) indicates the major foliation direction of rock units is approximately 070° in this area of the Goudreau Lake Deformation Zone (GLDZ). Shear zones in the area commonly display trends of 090°, 110° and 140°. It is the author's belief that the east-west conductor may be representative of a conductive shear zone.

CONCLUSIONS and RECOMMENDATIONS

The majority of the current work area shows a flat VLF-EM response. However, the most western portion of the current work area shows a well- defined, east-west conductor trending approximately 150 meters. The strongest response appears on the most western completed survey line, suggesting the conductor continues to the west.

Considering that the local geology and foliation trends 070°, and shear zones in the area commonly exhibit directions of 090°, 110° and 140°, the author suggests that the conductor may be representative

of a conductive shear zone.

The seemingly coincident VLF-EM conductor and humus gold geochem anomalous area witnessed in the Tilsley reports (1986, 1987) in the northeastern portion of current claim 338825 was not correlated by this work program. No VLF-EM response was witnessed in that area.

It has been suggested that much of the Jackson lake property held by FMEL is covered in overburden. However, geologist Philip Escher, who completed the VLF-EM survey, suggests that even in winter he was able to distinguish outcrops on the side of hills and small ridges in the survey area.

As a result, it is suggested by the author that a program of geological mapping and sampling be completed over the Jackson lake property in order to identify possible target areas for further exploration. Areas with little to no outcrop could be considered for geochemical sampling for gold. A program of geological mapping on hypothetical GPS survey lines with a geologist and assistant would take approximately 15 days at a cost of \$22,000 including a final report and assaying of samples.

REFERENCES

Bruce E. L.	Geology of the Goudreau-Lochalsh Area, Forty-Ninth Annual Report of the Ontario Department of Mines, Vol XLIX, Part III, 1940
Heather, K. B. & Arias, Z. G.	Regional Structural Geology Related to Gold Mineralization in the Goudreau-Lochalsh Area, District of Algoma, Ontario, Geological Survey Paper, 1987
Reid, R. G. + Sears, S. M.	Report on a Geophysical Survey over the properties of R. J. McGowan, Abotossaway Township, SSM Mining Division, 1984
Sage, R. P.	Geology of the Goudreau-Lochalsh and Kabenung Lake Areas, District of Algoma, Ontario geological Survey Paper, 1987
Tilsley, James E.	Magnetic and VLF-EM Surveys, Jackson lake and McVeigh Creek properties, Goudreau Area, Sault Ste. Marie Mining Division, Ontario, October 10, 1986
Tilsley, James E.	Faldo Mines and Energy Corporation, Humus Geochemical Survey, Jackson Lake Property, Goudreau Area, Sault Ste. Marie Mining Division, Ontario, September 29, 1987
Various Authors	MNDM AFRI assessment file 42C02NE0950- historical data- Murphy mine under various historical names- reports, prospectus' and maps/plans from 1925 through 1964.

CERTIFICATE OF AUTHOR

I, Bruce Alexander Edgar, Honors BSc., P. Geo, do hereby certify that: I am currently employed as a Consulting Geologist residing at: 5782 Highland Avenue, Niagara Falls, Ontario, L2G-4X4

I graduated with an Honors Bachelor of Science Degree in Geological Sciences from Brock University in 1981.

I am a practising member of the Association of Professional Geoscientists of Ontario (Registration Number 2018).

I have worked as a geologist for over 30 years since graduation from Brock University. My experience includes conception, planning/budgeting, implementation and completion of numerous surface geological, geophysical, geochemical programs, and underground programs on many properties for numerous Exploration and Mining companies. The work has included the writing of project reports and technical reports.

This report is <u>not</u> an NI 43-101 technical report. This Report has been completed for First Minerals Exploration Ltd., to provide summary data on the VLF-EM survey of claims 261007 and 338825 in Abotossaway Township, Ontario, and to act as a tool to plan future exploration activities.

I have had prior involvement with the Goudreau – Lochalsh- Missinabie area having worked as a geologist for a number of companies on claims in the area over the past 30 years.

I have received no compensation for this report other than normal consulting fees.

Dated this 8th day of February, 2019.

Bruce Edgar, Honors BSc, P. Geo.

Appendix I

VLF-EM Raw In-Phase and Quadrature Readings

FID		Line	X_N83Z16	Y_N83Z16	Inphase	Quadrature	Elevation
	1	2175 E	682172	5347340	15	11	389 m
	2	2175 E	682178	5347315	6	9	389 m
	3	2175 E	682176	5347310	2	6	390 m
	4	2175 E	682178	5347288	-4	2	391 m
	5	2175 E	682176	5347273	-5	2	392 m
	6	2175 E	682175	5347261	-12	-5	392 m
	7	2175 E	682174	5347244	-25	-10	390 m
	8	2175 E	682172	5347230	-5	1	390 m
	9	2175 E	682180	5347214	11	8	391 m
	10	2175 E	682177	5347198	18	11	390 m
	11	2175 E	682184	5347186	25	18	390 m
	12	2175 E	682181	5347168	13	10	393 m
	13	2175 E	682175	5347159	5	8	394 m
	14	2225 E	682226	5347148	0	6	393 m
	15	2225 E	682225	5347164	0	5	395 m
	16	2225 E	682218	5347182	-1	4	393 m
	17	2225 E	682215	5347191	0	6	392 m
	18	2225 E	682217	5347204	4	6	392 m
	19	2225 E	682222	5347223	2	2	392 m
	20	2225 E	682227	5347241	-15	-4	392 m
	21	2225 E	682219	5347254	-9	-2	393 m
	22	2225 E	682224	5347271	-5	1	394 m
	23	2225 E	682224	5347285	-2	1	395 m
	24	2225 E	682223	5347304	-2	2	396 m
	25	2225 E	682226	5347315	-2	4	396 m
	26	2225 E	682222	5347330	2	4	393 m
	27	2225 E	682222	5347342	2	6	395 m
	28	2225 E	682226	5347360	6	8	396 m
	29	2275 E	682274	5347380	4	4	401 m
	30	2275 E	682277	5347364	2	4	402 m
	31	2275 E	682280	5347350	0	4	401 m
	32	2275 E	682278	5347334	-1	2	402 m
	33	2275 E	682272	5347319	-1	3	401 m
	34	2275 E	682267	5347304	-1	0	400 m
	35	2275 E	682275	5347290	0	-2	398 m
	36	2275 E	682275	5347277	-6	0	397 m
	37	2275 E	682272	5347256	-10	-2	392 m
	38	2275 E	682270	5347244	0	4	392 m
	39	2275 E	682269	5347228	15	12	393 m
	40	2275 E	682273	5347213	7	10	395 m
	41	2275 E	682278	5347199	2	6	394 m
	42	2275 E	682280	5347186	5	8	395 m

43	2275 E	682279	5347172	4	10	396 m
44	2275 E	682276	5347151	0	7	403 m
45	2325 E	682325	5347149	-1	4	388 m
46	2325 E	682327	5347165	1	8	390 m
47	2325 E	682327	5347180	1	8	388 m
48	2325 E	682328	5347192	-1	6	388 m
49	2325 E	682324	5347210	3	4	389 m
50	2325 E	682324	5347223	-3	2	388 m
51	2325 E	682323	5347242	-6	-4	388 m
52	2325 E	682323	5347252	-5	-1	389 m
53	2325 E	682324	5347269	0	4	389 m
54	2325 E	682327	5347282	5	12	388 m
55	2325 E	682324	5347298	5	7	389 m
56	2325 E	682319	5347316	-12	-4	389 m
57	2325 E	682327	5347327	-8	1	389 m
58	2325 E	682327	5347345	-5	0	391 m
59	2325 E	682319	5347358	-3	1	395 m
60	2325 E	682315	5347371	-2	1	398 m
61	2325 E	682320	5347388	0	6	398 m
62	2325 E	682327	5347409	0	5	396 m
63	2375 E	682370	5347419	1	4	389 m
64	2375 E	682372	5347400	-2	3	388 m
65	2375 E	682377	5347386	-3	1	388 m
66	2375 E	682370	5347368	-10	-2	387 m
67	2375 E	682376	5347339	0	4	388 m
68	2375 E	682375	5347323	7	10	387 m
69	2375 E	682372	5347307	5	8	389 m
70	2375 E	682378	5347296	4	7	392 m
71	2375 E	682376	5347278	1	6	392 m
72	2375 E	682375	5347262	-1	4	392 m
73	2375 E	682373	5347249	0	6	389 m
74	2375 E	682370	5347233	-2	4	386 m
75	2375 E	682373	5347221	-1	6	389 m
76	2375 E	682379	5347204	-1	0	392 m
77	2375 E	682372	5347186	-1	4	391 m
78	2375 E	682373	5347174	-1	6	391 m
79	2375 E	682383	5347154	-3	4	396 m
80	2425 E	682426	5347157	-5	4	395 m
81	2425 E	682422	5347173	-1	2	396 m
82	2425 E	682421	5347189	2	4	398 m
83	2425 E	682420	5347202	0	4	399 m
84	2425 E	682423	5347214	-1	5	398 m
85	2425 E	682424	5347232	1	7	399 m

86	2425 E	682417	5347246	1	4	398 m
87	2425 E	682419	5347262	0	3	395 m
88	2425 E	682420	5347261	2	6	395 m
89	2425 E	682424	5347290	2	4	390 m
90	2425 E	682423	5347305	2	2	388 m
91	2425 E	682424	5347324	-1	2	386 m
92	2425 E	682424	5347339	5	7	388 m
93	2425 E	682424	5347354	-1	0	387 m
94	2425 E	682422	5347366	1	4	386 m
95	2425 E	682425	5347383	2	4	386 m
96	2425 E	682425	5347395	1	4	384 m
97	2425 E	682425	5347413	5	10	379 m
98	2425 E	682426	5347426	4	4	381 m
99	2475 E	682471	5347440	6	3	385 m
100	2475 E	682476	5347419	5	4	394 m
101	2475 E	682475	5347401	4	2	394 m
102	2475 E	682473	5347387	4	2	394 m
103	2475 E	682474	5347371	2	2	397 m
104	2475 E	682471	5347360	2	2	399 m
105	2475 E	682475	5347343	2	2	400 m
106	2475 E	682475	5347325	2	2	398 m
107	2475 E	682465	5347311	0	5	402 m
108	2475 E	682470	5347299	0	3	403 m
109	2475 E	682475	5347283	1	4	404 m
110	2475 E	682475	5347268	2	3	398 m
111	2475 E	682472	5347251	3	3	397 m
112	2475 E	682472	5347235	1	4	397 m
113	2475 E	682472	5347217	1	4	398 m
114	2475 E	682471	5347202	0	2	397 m
115	2475 E	682479	5347193	0	4	395 m
116	2475 E	682479	5347181	-2	3	395 m
117	2475 E	682473	5347164	-2	3	396 m
118	2475 E	682472	5347154	-1	4	396 m
119	2525 E	682529	5347149	-2	3	383 m
120	2525 E	682530	5347156	0	3	379 m
121	2525 E	682523	5347173	1	3	379 m
122	2525 E	682527	5347191	1	3	379 m
123	2525 E	682521	5347203	2	4	380 m
124	2525 E	682521	5347221	2	4	386 m
125	2525 E	682524	5347238	3	4	390 m
126	2525 E	682523	5347249	2	4	395 m
127	2525 E	682525	5347265	1	4	396 m
128	2525 E	682529	5347280	1	2	396 m

129	2525 E	682524	5347295	2	3	398 m
130	2525 E	682526	5347311	2	2	399 m
131	2525 E	682524	5347325	1	2	397 m
132	2525 E	682520	5347341	1	2	396 m
133	2525 E	682529	5347349	2	2	402 m
134	2525 E	682527	5347370	1	2	399 m
135	2525 E	682523	5347387	3	2	390 m
136	2525 E	682521	5347404	5	4	389 m
137	2525 E	682521	5347417	5	3	389 m
138	2525 E	682525	5347432	5	2	390 m
139	2525 E	682529	5347446	7	2	389 m
140	2575 E	682577	5347451	5	3	400 m
141	2575 E	682574	5347436	6	2	402 m
142	2575 E	682571	5347427	4	4	407 m
143	2575 E	682575	5347405	2	0	416 m
144	2575 E	682578	5347390	3	2	418 m
145	2575 E	682579	5347378	2	2	418 m
146	2575 E	682580	5347364	1	1	420 m
147	2575 E	682583	5347349	2	2	418 m
0	2575 E	682577	5347334	1	2	410 m
148	2575 E	682576	5347312	0	2	405 m
149	2575 E	682574	5347285	0	2	403 m
150	2575 E	682581	5347271	2	4	403 m
151	2575 E	682579	5347254	2	4	403 m
152	2575 E	682577	5347237	2	5	405 m
153	2575 E	682577	5347222	3	5	402 m
154	2575 E	682575	5347210	2	5	400 m
155	2575 E	682574	5347199	0	5	398 m
156	2575 E	682576	5347184	1	4	398 m
157	2575 E	682574	5347167	0	4	397 m
158	2575 E	682573	5347156	0	4	394 m
159	2625 E	682621	5347152	2	5	396 m
160	2625 E	682624	5347166	4	6	398 m
161	2625 E	682626	5347180	5	2	402 m
162	2625 E	682626	5347196	2	6	406 m
163	2625 E	682626	5347213	6	6	410 m
164	2625 E	682622	5347231	7	4	411 m
165	2625 E	682624	5347238	5	6	412 m
166	2625 E	682626	5347255	4	4	413 m
167	2625 E	682624	5347269	1	3	413 m
168	2625 E	682622	5347282	2	4	417 m
169	2625 E	682619	5347304	1	2	421 m
170	2625 E	682625	5347319	1	0	420 m

171	2625 E	682623	5347333	1	2	420 m
172	2625 E	682622	5347349	2	2	420 m
173	2625 E	682627	5347360	3	2	420 m
174	2625 E	682627	5347379	1	1	423 m
175	2625 E	682629	5347392	3	0	419 m
176	2625 E	682627	5347408	2	2	420 m
177	2625 E	682631	5347420	3	2	420 m
178	2625 E	682624	5347437	8	2	419 m
179	2625 E	682625	5347451	5	1	409 m
180	2625 E	682624	5347464	3	0	406 m
181	2675 E	682674	5347473	5	0	406 m
182	2675 E	682678	5347457	7	2	405 m
183	2675 E	682677	5347440	6	2	409 m
184	2675 E	682674	5347428	7	0	407 m
185	2675 E	682676	5347409	5	2	410 m
186	2675 E	682675	5347400	5	2	413 m
187	2675 E	682672	5347385	3	1	412 m
188	2675 E	682673	5347366	5	1	415 m
189	2675 E	682676	5347347	2	0	415 m
190	2675 E	682678	5347338	2	0	400 m
191	2675 E	682671	5347321	0	1	400 m
192	2675 E	682674	5347305	0	1	398 m
193	2675 E	682676	5347295	0	1	397 m
194	2675 E	682674	5347279	0	0	395 m
195	2675 E	682677	5347262	1	2	392 m
196	2675 E	682671	5347250	5	5	389 m
197	2675 E	682677	5347236	4	5	388 m
198	2675 E	682680	5347217	5	5	384 m
199	2675 E	682682	5347206	6	4	382 m
200	2675 E	682686	5347187	7	6	376 m
201	2675 E	682683	5347172	4	4	376 m
202	2675 E	682673	5347157	3	6	375 m
203	2725 E	682728	5347149	6	5	384 m
204	2725 E	682724	5347162	7	7	385 m
205	2725 E	682726	5347183	6	6	383 m
206	2725 E	682724	5347210	7	6	385 m
207	2725 E	682730	5347226	4	4	388 m
208	2725 E	682725	5347242	3	4	394 m
209	2725 E	682724	5347259	1	3	395 m
210	2725 E	682726	5347275	1	1	394 m
211	2725 E	682729	5347288	3	2	394 m
212	2725 E	682722	5347302	2	2	398 m
213	2725 E	682727	5347313	3	2	398 m

214	2725 E	682721	5347330	5	3	398 m
215	2725 E	682725	5347346	4	1	398 m
216	2725 E	682725	5347365	4	3	397 m
217	2725 E	682726	5347378	4	2	397 m
218	2725 E	682725	5347390	6	2	398 m
219	2725 E	682729	5347407	6	1	396 m
220	2725 E	682727	5347425	5	1	395 m
221	2725 E	682729	5347434	5	0	394 m
222	2725 E	682731	5347447	10	2	394 m
223	2725 E	682727	5347466	3	0	392 m
224	2725 E	682734	5347485	4	1	393 m