

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2019 DIAMOND DRILLING REPORT

on the

WINSTON LAKE Zn-Cu PROPERTY

SUPERIOR LAKE RESOURCES LIMITED (Ophiolite Holdings Pty Ltd.)

Pays Plat Lake Area Rope Lake Area Thunder Bay Mining Division NORTHWEST ONTARIO, CANADA NTS 42D14, 42E03

- by -

Dave Thomson, RPF Gerry White, BSc., P.Geo. Julie-Anne Ingram December 28, 2020

TABLE OF CONTENTS

LIST OF FIGURES

i. Title Page

Figure 1 Pick – Winston Lake Property Location Map	5
Figure 2 Pick – Winston Lake Property Map	7
Figure 3 Pick – Winston Lake Property Mineral Occurrences and Prospects	10
Figure 4 Superior Province within the Canadian Shield showing Subdivisions (Stott 2011)	11
Figure 5 Bedrock Geology Map	12
Figure 6 Greenstone Belts in the Northern Wawa Subprovince (Lodge et al. 2019)	13
Figure 7 Winston Lake Greenstone Belt (Lodge et al. 2019)	13
Figure 8 Drill hole WL-19-02 section and plan with Cu & Zn results	18
Figure 9 Drill hole WL-19-03 section and plan with Cu & Zn results	19
Figure 10 Drill hole locations	20

LIST OF TABLES

Table 1 Drill` hole locations	
Table 2 Drill hole Results	211
Table 3 Geochemical Results, 2019 Diamond Drill Program	222

APPENDICES:

APPENDIX 1: Drill Logs APPENDIX 2: Table of Mining Claims

APPENDIX 3: Assay Certificate

APPENDIX 4: Expenses Breakdown

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectroscopy
Ag	Silver
Au	Gold
BCMC	Boundary Cell Mining Claim
CNR	Canadian National Railway
CPR	Canadian Pacific Railway
cm	Centimeter
Cu	Copper
DDH	Diamond Drill Hole
EM	Electromagnetic
GB	Greenstone Belts
GIS	Geographic Information System
GPS	Global Positioning System
GSC	Geological Survey of Canada
g/t	Grams per tonne (Metric ton, 1,000 kg)
ha	Hectare
HQ	Drill Core Diameter / 63.5 mm (2.50 in)
IP	Induced Polarization
JORC	Joint Ore Reserves Committee (Australasian Reporting Code, equivalent to NI 43-101)
Kg	Kilogram
Km	Kilometre
LIO	Land Information Ontario
m	Metre
mm	Millimetre
MDI	Mineral Deposit Inventory
MENDM	Ministry of Energy, Northern Development and Mines
Mlbs	Million pounds
MNDM	Ministry of Northern Development and Mines
MCMC	Multi-cell Mining Claim
NAD83	North American Datum 1983
NI	National Instrument
Ni	Nickel
NTS	National Topographic System
OGS	Ontario Geological Survey
Ounce	Troy ounce (used for precious metals) = 31.103 grams
PGE	Platinum Group Elements
PWLP	Pick-Winston Lake Property Parts Per Billion
ppb	Parts Per Million
ppm	Quality Assurance Quality Control
QAQC SCMC	Single Cell Mining Claim
SP	Subprovince
TDEM	Time-Domain Electromagnetic (airborne geophysical survey)
UTM	Universal Transverse Mercator (map projection)
VLF	Very Low Frequency
VMS	Volcanogenic Massive Sulphide
VTEM	Versatile Time Domain Electromagnetic (airborne geophysical survey)
WLGB	Winston Lake Greenstone Belt
WSP	Wawa Subprovince
Zn	Zinc

1. INTRODUCTION

This report documents the results of a diamond drilling program conducted by Superior Lake Resources Limited on the Winston Lake Zn-Cu Property (Figure 1) between September and October 2019. The program recovered a total of 1,242 m of HQ core from 2 holes:

- WL-19-02 on Patented Claim PAT-16410 (NAD83, UTM Zone 16, 472650 East, 5424770 North, Elevation 456.44m; and
- WL-19-03 on Mining Lease LEA-107803 (NAD83, UTM Zone 16, 472860 East 5424975 North, Elevation 471.44m.

The drilling was contracted to Chibougamau Diamond Drilling Ltd. from Chibougamau, Quebec and supervised by geologist Avrom Howard of Nebu Consulting (Thunder Bay, Ontario) on behalf of Superior Lake Resources.

Expenditures related to the 2019 Diamond Drilling Program totalled \$254,117.04 (see Appendix 4 for a breakdown of these expenses). This work was conducted under Exploration Permit PR-18-000278 held by First Quantum Minerals.

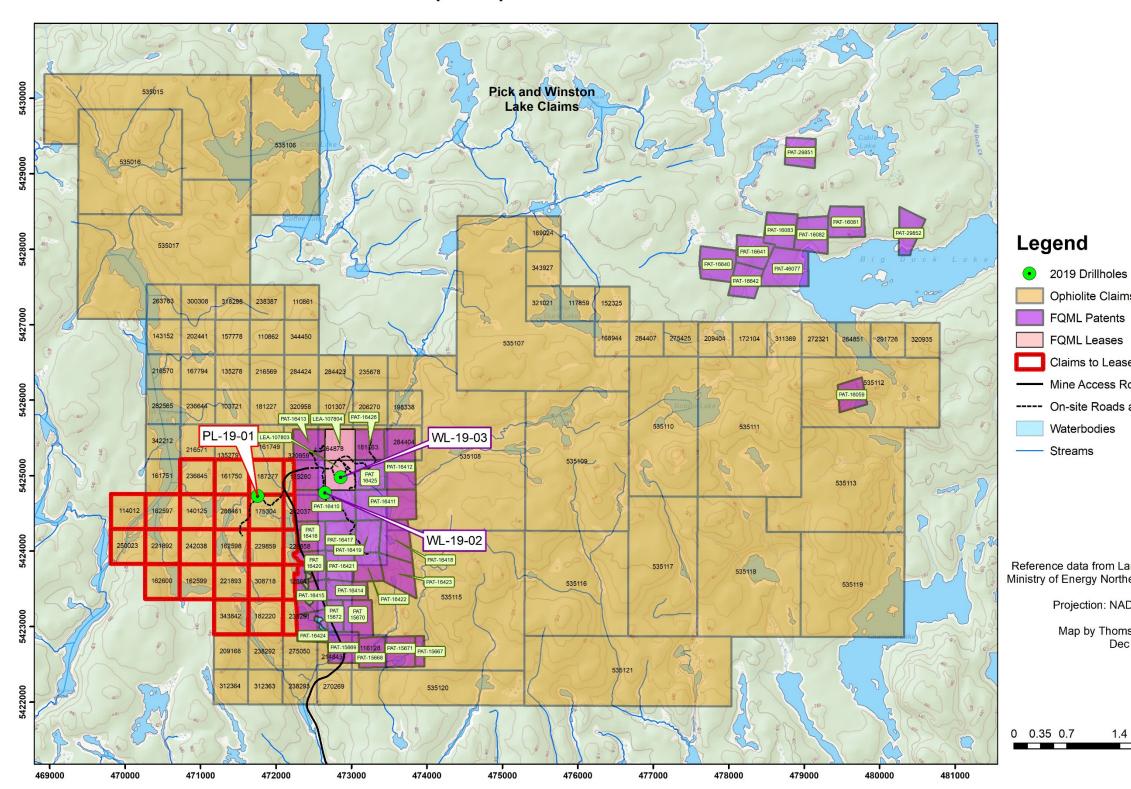


Figure 1 Pick – Winston Lake Property Location Map

2. PROPERTY, LOCATION and ACCESS

The Pick – Winston Lake Property (PWLP) is located in Northwestern Ontario approximately 150 km northeast of the City of Thunder Bay and 20 km north northwest of the town of Schreiber along the north shore of Lake Superior. The contiguous claim group lies primarily within the northern portion of the Pays Plat Lake Area (NTS 42D14L and 14K) and partially within the southern portion of the Rope Lake Area (NTS 42E03C and 03D) (Figure 2). Access to the property is via the Trans-Canada Highway 17, 196 km east from Thunder Bay to the Winston Lake Mine access road (known as the Whitesand/Winston Road). The property can be reached by travelling north for 21 km to the mine gate along the all-weather gravel road. Numerous trails and mine access roads traverse the southern and west central portions of the property.

The PWLP is represented by 36 claims consisting of 2 Mining Leases, 1 Mining Licence and 33 Patent Claims occupying close to 625 ha. A complete list of all claims is provided in Appendix 2.

Reference Map for Ophiolite Claims at Pick and Winston Lakes

Ν 1:40,000

- **Ophiolite Claims**
- FQML Patents
- FQML Leases
- Claims to Lease (Mining and Surface Rights)
- Mine Access Road from Hwy 17
- ----- On-site Roads and Trails
 - Waterbodies

Reference data from Land Information Ontario and Ministry of Energy Northern Development and Mines.

Projection: NAD83 UTM Zone 16N

Map by Thomson Environmental Dec 6, 2020

1.4	2.1	2.8
		Kilometers

3. EXPLORATION HISTORY

The exploration and production history of the Pick – Winston Lake Zn-Cu Property, which stretches back over 100 years, is summarized below (Figure 3):

- 1879: Prospectors discovered high grade zinc in the Zenith Lake area, located approximately 1 km east of the Winston Lake Mine.
- 1891 to 1901: The Zenith deposit was developed and close to 3416 t of massive coarsegrained sphalerite was hand-mined (45% Zn) (Puumala et al. 2019). During this same period the Ciglen occurrence, located 2 km northwest of the Winston Lake Mine and east of Winston Lake, was discovered and exposed by 3 trenches along a 35 m strike. Sampling of the No. 1 trench from work conducted at the Ciglen occurrence in 1952 returned 5.09% Zn and 0.08% Cu over 0.9 m (Pye 1964).
- 1952 to 1953: The Anderson copper occurrence was discovered and tested by diamond drilling (129 m in 5 holes). A 6 m section of drill core was estimated to contain 0.5% Cu (Pye 1964). The Anderson occurrence is located about 400 m west of the Pick Lake deposit near the southeast end of Winston Lake.
- 1965: Zenmac Metal Mines Limited investigated both the Ciglen and Anderson occurrences. No assay results were published.
- 1966 to 1970: Zenmac Metal Mines Limited mined the Zenith deposit and produced 164,200 t at 16.5% Zn (Puumala et al. 2019).
- 1978 to 1982: Corporation Falconbridge Copper (CFC) acquired a group of claims adjacent to and west of Zenmac's Zenith deposit. The company conducted detailed mapping, lithogeochemical sampling and various geophysical surveys. This exploration work led to the discovery of the Winston Lake VMS deposit.
- 1981: The Trail occurrence, located approximately 300 m west of the Winston Lake Mine, was discovered during CFC's mapping program and was identified as hosting VMS mineralization.
- 1983: CFC initiated the development of a 3-compartment shaft for underground delineation drilling. Over an 18-month period CFC completed the shaft and underground drilling, which resulted in an initial historical resource of 2.95 MT@ 17.8% Zn, 0.94% Cu, 0.7 oz/ton Ag and 0.025 oz/ton Au (Superior Lake Resources website, 2018 News Release).
- 1984: CFC announced the discovery of the Pick Lake deposit. Exploration diamond drilling from surface following the down-dip extension of a base metal occurrence at the Anderson showing (mentioned previously) resulted in the discovery of the deposit. The discovery of the Winston Lake and Pick Lake VMS deposits were the first in this part of Northwestern Ontario since the discovery in 1954 of the Noranda Geco deposit in the Manitouwadge area, 110 km to the east. (The Geco Mine operated from 1957 to 1995 and produced 49.4 Mt at 1.85% Cu, 3.78% Zn and 56.2 g/t Ag (Puumala et al. 2019)).

- 1987: CFC changed its name to Minnova Inc.
- 1988 to 1999: In 1988 Minnova reported the completion of a 741 m shaft with a designed production capacity of 1000 metric tonnes per day. The development and operation of the Winston Lake Mine occurred over an 11- year period and resulted in the production of 3,269,698 t at 1.04% Cu (~53 Mlbs), 14.56% Zn (~900 Mlbs), 32.32 g/t Ag and 1.4 g/t Au (> 50,000 oz) (Puumala et al. 2019).
- 1993: Minnova Inc. was acquired by Metall Mining Corporation. Underground access to the Pick Lake deposit was gained via a 2,200 m drift west from the Winston Lake deposit. This was followed by the development of a 602 m internal shaft or winze (Turcotte and Verschelden 2013).
- 1995: Metall Mining Corporation changed its name to Inmet Mining Corporation. Production from the Pick Lake deposit, which consists of an Upper and Lower zone, was added to the Winston Lake ore feed from 1995 until operations were suspended in December 1998.
- 1999: The Winston Lake Mine operation was closed in February due to very low zinc prices at the time (US\$0.42/lb). During the post cessation of mining, Inmet dismantled the processing plant, sold it and began reclamation at the site. As of January 1, 1999, Inmet Mining reported a non-compliant NI 43-101 Proven and Probable ore reserve for the Lower Pick Lake zone, estimated to be 598,000 tonnes at a grade of 1.0% Cu and 21.2% Zn, including a dilution of 33% (Turcotte and Verschelden 2013).
- 2008 to 2010: Orebot Inc. acquired the Pick Lake Claims and completed several exploration programs.
- 2011: The Pick Lake property was optioned to Silvore Fox Minerals Corporation and the company initiated an airborne Versatile Time Domain Electromagnetic (VTEM) survey. Silvore Fox also complete an NI 43-101 Technical Report for the Pick Lake Project, which was released on June 19, 2013 (Turcotte and Verschelden 2013).
- 2013: Inmet Mining Corporation was acquired by First Quantum Minerals Ltd.
- 2017 to 2018: Superior Lake Resources Limited acquired the Pick Lake Licences, optioned the Winston Lake Project and acquired all mining data from First Quantum Minerals (Superior Lake Resources website, May 2020).
- 2018 to 2019: Superior Lake Resources completed geological mapping and lithogeochemical sampling, a Ground TDEM geophysical survey adjacent to the Pick and Winston Lake deposits, a 2,288 m diamond drilling program (cell claim 162598) and Borehole Electromagnetic (BHEM) geophysical surveys.
- 2019: On August 28, Superior Lake Resources released a Bankable Feasibility Study for the Pick – Winston Lake Project, which included new JORC (2012) Mineral Resource and Ore Reserve Estimates (compliant with NI 43-101). (Note: Mineral Resources are inclusive of Ore Reserves). The current Mineral Resource is stated as 2.35 Mt at 17.7% Zn, 0.9% Cu, 0.38 g/t Au and 34 g/t Ag with a Probable Ore Reserve of 1.96 Mt at 13.9% Zn, 0.6% Cu, 0.2g/t Au and 26.2g/t Ag (Superior Lake Resources Limited, News Release, August 28, 2019).

• 2019: During September and October, 3 diamond drill holes for a total of 1944 m, were completed at Pick (1 hole) and Winston (2 holes) Properties.

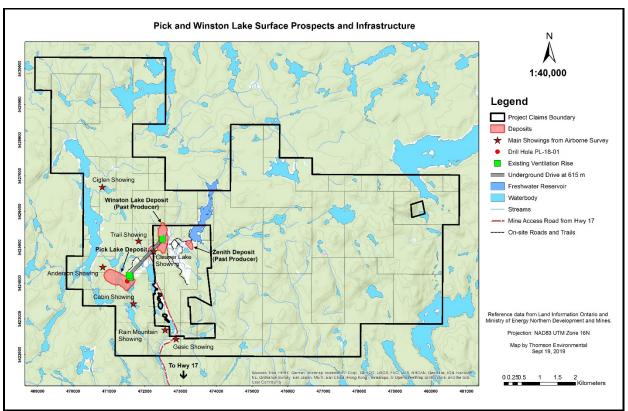
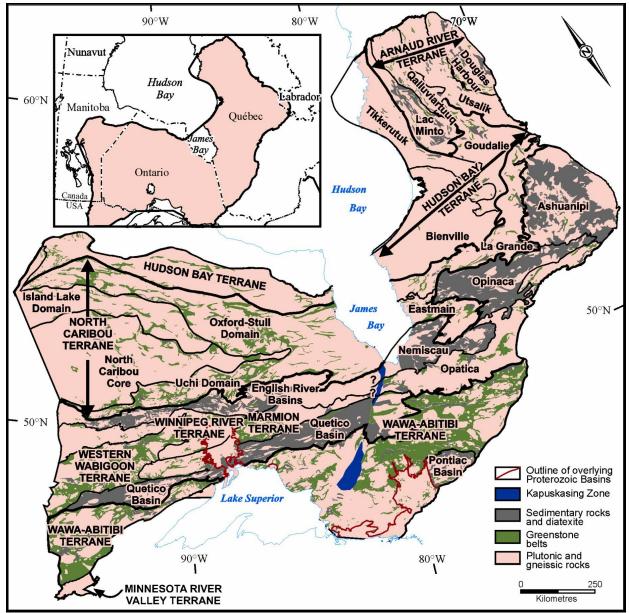



Figure 3 Pick – Winston Lake Property Mineral Occurrences and Prospects

4. GEOLOGICAL SETTING

The Pick – Winston Lake Property is located in the Wawa-Abitibi terrane along the northern margin of the Wawa Subprovince and south of the Quetico metasedimentary basin or subprovince (Figure 4). The subprovinces are part of the much larger Archean-age (3.4 to 2.5 Ga) Superior Province which essentially defines the Canadian Precambrian Shield and forms the core of the North American continent (Figure 5). These continental core rocks represent the oldest and most tectonically stable group of rocks in North America.

The Wawa Subprovince (WSP) is a typical Archean greenstone-granite terrane consisting of primitive ultramafic to felsic volcanic rocks and associated metasedimentary rocks, intruded, and enclosed by granitoid rocks. The WSP contains a series of greenstone belts of similar age (ca. 2.95 to 2.68 Ga) hosting gold, nickel, and zinc deposits. The Winston Lake Greenstone Belt (WLGB), which hosts the Pick Lake and past producing Winston Lake Zn-Cu deposits, is tectonically and stratigraphically equivalent to similar aged greenstone belts (ca 2720 Ma) along the northern margin of the Wawa Subprovince. These include the Vermillion, Shebandowan and Manitouwadge greenstone belts, the latter of which hosts the past producing Geco VMS

deposit (Figure 6). Regional metamorphic grade in the WLGB is lower amphibolite facies (Lodge et al. 2019).

Figure 4 Superior Province within the Canadian Shield showing Subdivisions (Stott 2011)

The Winston Lake Greenstone Belt (Figure 7) is a small belt located directly north of, and almost connected to the Schreiber-Hemlo greenstone belt. The belt is bound to the north by the Quetico Subprovince, to the west by the Winston Lake batholith, and to the south by the Crossman Lake Batholith. Rocks in the western part of the belt that host the past-producing Winston Lake Mine and Pick Lake deposit, were initially interpreted as metasedimentary rocks because of the presence of aluminosilicate minerals (Pye, 1964). They were later interpreted to be hydrothermally altered felsic and mafic volcanic assemblages (Lodge et al. 2019).

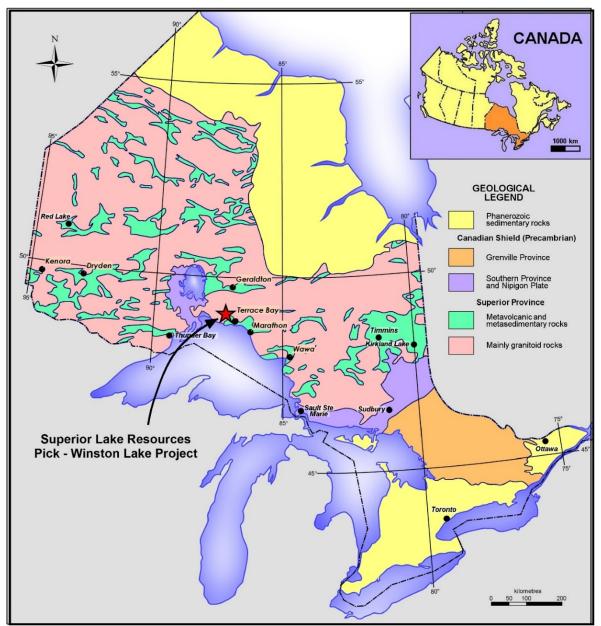


Figure 5 Bedrock Geology Map

The Winston Lake belt has been informally subdivided into two main lithotectonic assemblages: the Winston Lake Assemblage, which occupies the extreme western portion of the belt and the Big Duck Lake Assemblage, a thick mafic unit comprising the eastern and central portions of the belt. The Big Duck Lake Assemblage consists of Mg- to Fe-rich tholeiitic basalts, quartz-feldspar porphyry dykes and sills, and their brecciated equivalents. The Big Duck Lake Assemblage is thought to conformably overly the Winston Lake Assemblage with the contact intruded by a thick differentiated gabbro. The VMS-hosting Winston Lake Assemblage is dominated by felsic volcanic and silica-rich sedimentary rocks. Despite the high degree of metamorphism and deformation in the Winston Lake Assemblage, many primary features are preserved in the

volcanic rocks. Reliable younging directions obtained from pillowed flows and cross-bedding in volcaniclastic rocks suggest an eastward-younging stratigraphy. The Pick Lake VMS deposit is associated with a quartz-feldspar porphyry flow rocks and the Winston Lake VMS deposit is hosted by altered mafic flow and interlayered felsic volcanic units. The differentiated gabbro at the contact between the 2 assemblages hosts the Zn-rich Zenith orebody (Lodge et al. 2019).

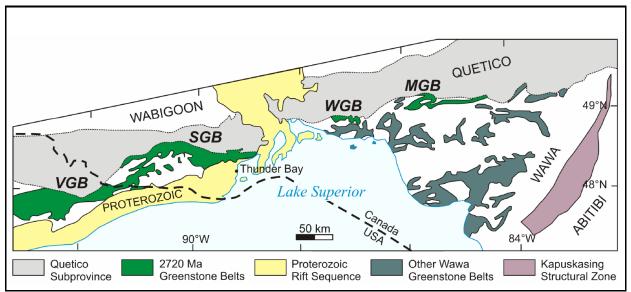


Figure 6 Greenstone Belts in the Northern Wawa Subprovince (Lodge et al. 2019)

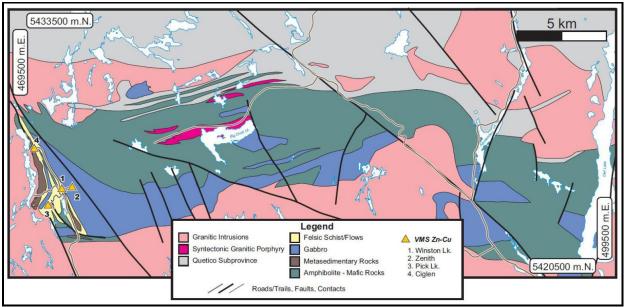


Figure 7 Winston Lake Greenstone Belt (Lodge et al. 2019)

5. MINERALIZATION and ALTERATION

The Pick Lake deposit varies in thickness from 1.5 m to 14 m (averaging between 2 m and 4 m), is between 100 m and 400 m wide, and has a down-plunge extent of approximately 1 km, beginning from a depth of around 500 m (Doiron et al., 1997; Lodge, 2012). It consists predominantly of massive fine to medium grained sphalerite and pyrrhotite with minor chalcopyrite and pyrite, and occurs in sharp contact with metasedimentary rocks of the "Lower Clastic Succession" (Lodge et al. 2014). Doiron et al. (1997) noted the textural differences between the Winston Lake and Pick Lake deposits, and particularly the presence of durchbewegung textures at Pick Lake, indicative of sheared sulfides incorporating clasts of host or wallrock material. The timing of this deformation post-dated the emplacement of granitic dykes related to the intrusion of the granitoid complexes south and west of the Pick Lake deposit. Copper-rich, high-temperature feeder pipes have not been identified at either the Winston Lake or Pick Lake deposits, consistent with the massive sphalerite lenses having been structurally displaced from their original stratigraphic position (Nielsen 2017). Six other known mineral occurrences, located in the west and southwestern portion of the Pick – Winston Lake property (see Figure 3), some mentioned in the previous 'Exploration History' section and described by Turcotte and Verschelden (2013) in a NI 43-101 technical report, are discussed below (Nielsen 2017).

The Ciglen Zn showing lies within the "Lower Clastic Succession" along the western boundary of the property and east of Winston Lake. Turcotte and Verschelden (2013) indicate:

"It lies in and along the hanging-wall side of a narrow band of intimately interbedded garnetbiotite-quartz-feldspar gneiss and garnet-biotite-quartz schist; like these metasediments, it strikes N100W and dips 35° to 45°E. It is up to 17 feet (5.2 m) thick and has been traced alongstrike for 180 feet (54.9 m). The mineralization consists of pyrite and pyrrhotite, with some sphalerite and a little chalcopyrite. These sulphides compose 10% to 15% of the deposit and occur as either disseminations in the host rock or thin lenses and layers oriented parallel to the foliation. Associated with the sulphides is considerable fine-grained to medium-grained smoky quartz."

The Anderson Cu-Zn occurrence is also hosted within the "Lower Clastic Succession" and is located approximately 800 m west of the Pick Lake deposit. It is considered by Lodge (2012) to represent the surface expression of the Pick Lake deposit and displays a very strong electromagnetic response. The following description is taken from Turcotte and Verschelden (2013):

"From the drilling results in 1952, it is evident the Anderson occurrence lies within a narrow band of biotite gneiss, which is in part garnetiferous, in the granitic rocks in this locality. It strikes N150-200E and dips southeast. The deposit is a crudely tabular body of gneiss containing some disseminated pyrite and pyrrhotite, a little chalcopyrite, and very small amounts of sphalerite, and exhibiting an occasional stringer of quartz. It is about 40 feet (12.2 m) thick and has been tested by the drill holes over a strike-length of 250 feet (76.2 m). The up-plunge and surface expression of the Pick Lake deposit was identified as the Anderson occurrence." The Trail occurrence is located approximately 300 m west of the Winston Lake deposit. The following description of the Trail Cu showing is taken from the Ontario Ministry of Energy, Northern Development and Mines online Mineral Deposit Inventory (MDI) data base:

"The Trail occurrence is classed as a VMS deposit. The area is underlain by altered and unaltered mafic metavolcanic rocks as well as minor interflow metasedimentary rocks. Severin and Balint (1984) describe the Trail occurrence as follows: a thin sequence of bedded felsic sediments occurs locally between the base of the Ladder Flow and the underlying quartz feldspar porphyry. In this case, this material is intensely altered to a quartz-cordierite-biotiteanthophyllite-garnet±sillimanite assemblage. The primary bedded nature of the material appears preserved. Anomalous sulphide content is common. The 0.15 m thick chalcopyrite mineralized siliceous horizon carries (up to) 6,230 ppm Cu. The Trail Copper occurrence represents a thin exhalative unit between a mafic metavolcanic flow and the underlying quartz porphyry. The material is siliceous to cherty in nature."

The Creek Cu occurrence is located along Selim Creek approximately 200 m west of the surface expression of the Winston Lake deposit (Smyk and Schnieders, 1995). It consists of a gossan containing pyrite and chalcopyrite hosted by felsic rocks which have been partially altered to biotite-cordierite-anthophyllite.

The Cabin occurrence lies approximately 500 m south of the Pick Lake deposit near the contact between the "Lower Clastic Succession" and mafic flows. Turcotte and Verschelden (2013) describe it as

"...weakly anomalous base metal mineralization at the base of garnet-bearing synvolcanic felsic-derived sediments and/or tuffs and consists of an approximately 1-metre thick highly siliceous pyrrhotite-pyrite rich zone exposed intermittently over approximately 150 metres of strike length."

The Rain Mountain occurrence is located near the southwest boundary of the Pick – Winston Lake property. Very little information is available regarding this showing, but it is presumably enriched in Zn and other metals as it is interpreted to be an exhalative horizon associated with submarine hydrothermal activity (Turcotte and Verschelden, 2013).

ALTERATION

The regional metamorphic grade within the WLGB, as discussed earlier, is lower amphibolite facies. This higher degree of metamorphism vs greenschist facies (i.e. Beardmore-Geraldton and Shebandowan greenstone belts), can often mask or destroy evidence of hydrothermal alteration associated with VMS mineralization. The recognition of metamorphosed hydrothermal alteration played an important role in the discovery of the Winston Lake VMS deposit and later the Pick Lake VMS deposit (Severin, Balint and Sim, 1991). Metamorphosed mafic volcanic rocks in contact with the Zenith Gabbro were observed to have unusual mineral assemblages, including the presence of garnet, cordierite and anthophyllite. These rocks,

through chemical analysis, were also found to be enriched in Zn, K, Mg and Fe, and depleted in Na and Ca, which defined a zone of hydrothermal alteration associated with a downhole pulse EM anomaly. Drilling of this EM anomaly led to the discovery of the Winston Lake deposit (Nielsen 2017).

6. 2019 DIAMOND DRILLING PROGRAM

Superior Lake Resources Limited completed a 2-hole surface diamond drilling program on the Winston Lake Zn-Cu Property from September 2, 2019 to October 26, 2019. A total of 1,242 m of HQ core was drilled in 2 holes – WL-19-02 and WL-19-03 – on the Winston Lake claims. Table 1 details the hole locations.

Hole Id	Easting	Northing	Elevation	Azimuth	Dip	Depth	Claim
WL-19-02	472650	5424770	471.44	270	-60	549m	PAT-16410
WL-19-03	472860	5424975	456.44	235	-70	693m	LEA- 107803
NAD83 Zon	e 16N						

Table 1 Drill hole locations

The drilling was performed by Chibougamau Diamond Drilling Ltd. of Quebec and Appendix 1 contains the diamond drill logs for all core recovered during the program. Cross sections, plans and locations of the drill holes are shown on Figures 2 and 8-10.

Mineralized and altered sections of the diamond drill core were split on site using a diamond saw. A total of 24, 0.25 m to 0.5 m samples, were collected of the massive and semi-massive sulphide sections, including the immediate host rocks from the footwall and hanging wall horizons. All samples were submitted to AGAT Laboratories in Mississauga, Ontario for analysis of the base metal content (Cu, Zn, etc.) and multi-element geochemistry (Appendix 3).

Drill core samples submitted to the AGAT Laboratories in Mississauga were crushed to a nominal 70% passing -2mm, followed by pulverization of a 250 g split to a nominal 85% passing 75 microns. Pulp samples were analyzed for a suite of 58 elements by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) or ICP-MS (Inductively Coupled Plasma – Mass Spectroscopy) including Ag, Cu and Zn. Au was analysed by 30 g Fire Assay with an ICP-OES finish and a suite of 14 oxides were analysed by XRF (X-ray fluorescence).

Quality of the samples assayed was controlled by inserting certified standards (OREAS 622) and blank samples which were in addition to the routine QAQC procedures used by the AGAT

Laboratories. The dataset is considered acceptable for use in Mineral Resource estimation by the Competent Person.

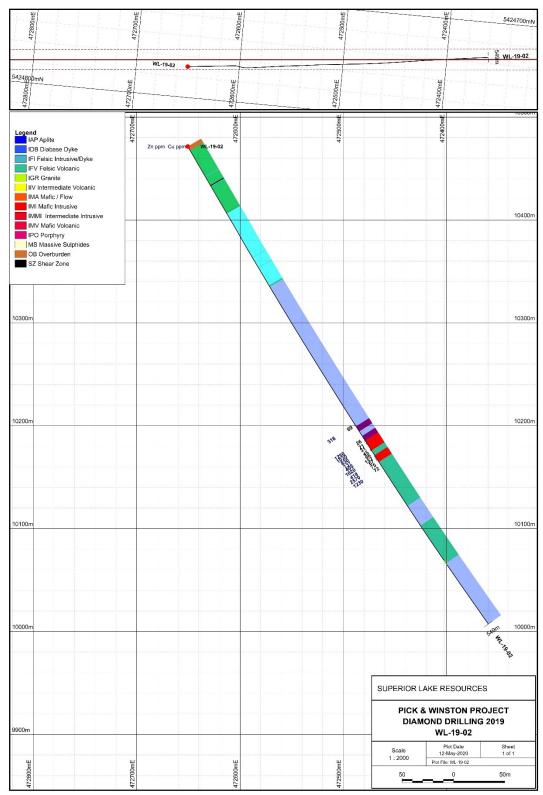


Figure 8 Drill hole WL-19-02 section and plan with Cu & Zn results

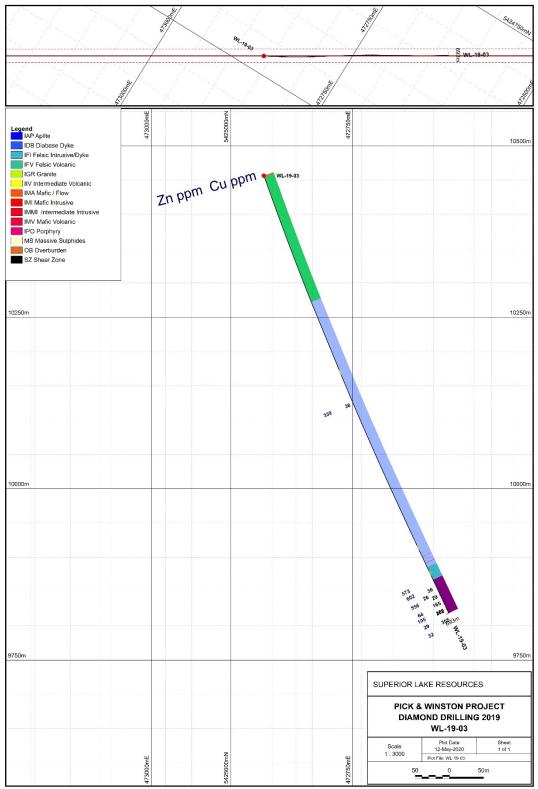


Figure 9 Drill hole WL-19-03 section and plan with Cu & Zn results

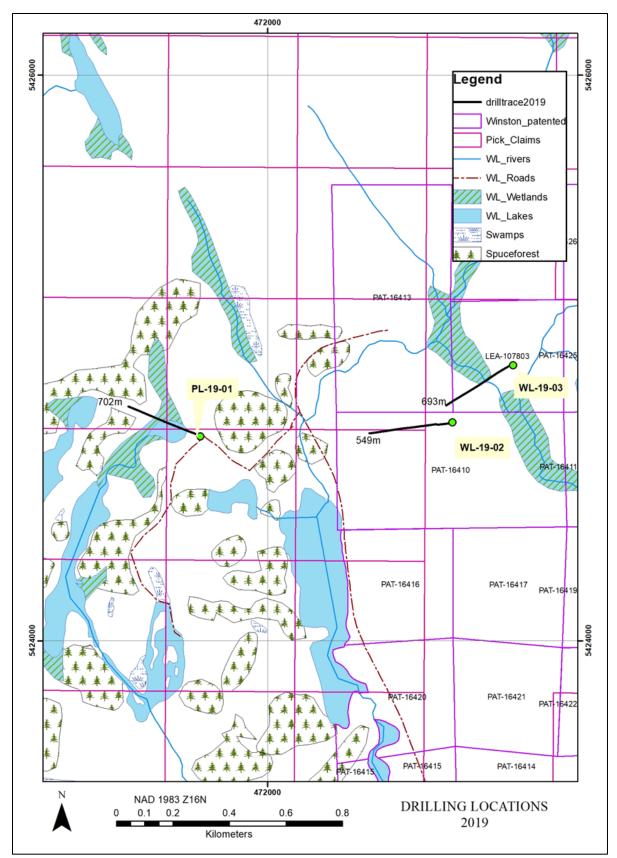


Figure 10 Drill hole locations

7. RESULTS and CONCLUSION

The objectives of the 2019 diamond drilling program on the Winston Lake Property was to follow up and drill test conductors identified in a 2018 TDEM survey. A summary of the holes drilled is provided in Table 2.

Key geochemical results for all drill core samples collected during the 2019 diamond drilling program are provided in Table 3 (see Appendix 3 for complete results).

Table 2 Drill hole Results

Drill Hole Number	Drilling Summary	Massive Sulphides Encountered
WL-19-02	No significant assays	Minor disseminated sulphides intersected
WL-19-03	No significant assays except bottom 1 m of the drill hole	Minor disseminated sulphides intersected

BHID	SAMPLE	FROM	то	Au PPM	Ag PPM	Cu PPM	Pb PPM	Zn PPM	ВАТСН
WL-19-02	E6096857	334	334.5	0.005	1	1250	-5	26	19B532286
WL-19-02	E6096858	344.5	345	0.007	1	737	-5	45	19B532286
WL-19-02	E6096859	345	345.5	0.004	2	405	-5	66	19B532286
WL-19-02	E6096860	336.65	337.15	0.007	1	1030	-5	21	19B532286
WL-19-02	E6096861	337.15	337.65	0.014	2	830	-5	31	19B532286
WL-19-02	E6096863	344.5	345	0.005	-1	519	-5	60	19B532286
WL-19-02	E6096864	352	352.5	0.01	-1	1020	-5	152	19B532286
WL-19-02	E6096865	353.5	354	0.015	-1	3640	-5	128	19B532286
WL-19-02	E6096866	354	354.5	0.014	-1	419	-5	110	19B532286
WL-19-02	E6096867	354.5	355	0.011	-1	886	-5	67	19B532286
WL-19-02	E6096868	355	355.5	0.013	-1	418	-5	79	19B532286
WL-19-02	E6096869	355.5	356	0.013	-1	2570	-5	75	19B532286
WL-19-02	E6096870	356	356.5	0.009	-1	1230	-5	72	19B532286
WL-19-03	E6096871	356.5	357	0.003	1	339	-5	36	19B532286
WL-19-03	E6096872	663.5	664	0.007	1	556	-5	29	19B532286
BHID	SAMPLE	FROM	то	Au PPM	Ag PPM	Cu PPM	Pb PPM	Zn PPM	BATCH
WL-19-03	E6096873	664	664.5	0.008	1	573	-5	26	19B532286
WL-19-03	E6096874	664.5	665	0.006	1	602	-5	36	19B532286
WL-19-03	E6096875	677.75	678.25	0.003	-1	64	-5	165	19B532286
WL-19-03	E6096876	686	686.5	0.018	-1	105	5	268	19B532286
WL-19-03	E6096877	687	687.5	0.005	-1	32	-5	302	19B532286
WL-19-03	E6096878	691.5	692	0.006	-1	29	-5	355	19B532286
WL-19-03	E6096879	992	692.25	1.77	98	4660	21300	102000	19B532286
WL-19-03	E6096880	692.25	692.75	0.003	-1	5	8	29	19B532286
WL-19-03	E6096881	692.75	693	1.75	98	4610	21500	99100	19B532286

Table 3 Geochemical Results, 2019 Diamond Drill Program

8. RECOMMENDATIONS

In conjunction with the 2018 – 2019 drilling program, a Ground EM geophysical survey was completed by the company in the area between the Pick Lake and Winston Lake deposits. Results obtained from this survey indicated the presence of several well-defined conductors. These were targeted during the second phase of diamond drilling undertaken in late 2019. Follow up drilling is required to further outline and locate massive sulphide mineralization.

Continued detailed geological mapping and lithogeochemical sampling focused on the area surrounding the Pick and Winston Lake deposits is also suggested. The identification of hydrothermal alteration patterns associated with VMS mineralization coincident with any EM anomalies, will assist in defining additional diamond drilling targets.

9. REFERENCES

- Courtney, D., 2019. Unpublished report on the diamond drilling program completed by Superior Lake Resources Ltd. on the Pick – Winston Lake Zn-Cu property, Schreiber, Ontario, 4p.
- Doiron, D., Siddiqui, M. and Smyk, M.C. 1997. Preliminary investigations of the Pick Lake deposit, Winston Lake Mine, Ontario: a remobilized massive sulphide orebody; 43rd Institute on Lake Superior Geology, Program with Abstracts, Sudbury, Ontario, p.17-18.
- Lodge, R. W. D., 2012. Winston Lake and Manitouwadge revisited: modern views of two volcanogenic massive sulphide (VMS)-endowed greenstone belts. A field trip guidebook, Ontario Geological Survey, Open File Report 6282, 34p.
- Lodge, R.W.D., Gibson, H.L., Stott, G.M., Franklin, J.M., and Hamilton, M.A. 2014. Geodynamic reconstruction of the Winston Lake Greenstone Belt and VMS deposits: New trace element geochemistry and U-Pb geochronology. Economic Geology, vol. 109, pp. 1291-1313.
- Lodge, W.D., Smyk, M. and Puumala, M. 2019. Geology of the past-producing Winston Lake Cu-Zn Mine. In; MacTavish, A. and Hollings, P. (Eds.), Institute on Lake Superior Geology Proceedings, 65th Annual Meeting, Terrace Bay, Ontario, Part 2 - Field trip guidebook, v.65, part 2, 113-126.
- Nielsen, P. 2017. Assessment Report on Geochemical Studies, Pick Lake Zn-Cu Property, Northwest Ontario, Canada for CSA Global Geosciences Canada Ltd.; Thunder Bay South District, 54p.
- Ontario Geological Survey 1991. Bedrock geology of Ontario, west-central sheet; Ontario Geological Survey, Map 2542, scale 1: 1 000 000.
- 2018. Mineral Deposit Inventory; Ontario Geological Survey, Mineral Deposit Inventory (February 2018 update), online database.
- Puumala, M.A., Campbell, D.A., Tuomi, R.D., Fudge, S.P., Pettigrew, T.K. and Hinz, S.L.K. 2019. Report of Activities 2018, Resident Geologist Program, Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District; Ontario Geological Survey, Open File Report 6353, 109p.
- Pye, E.G. 1964. Mineral deposits of the Big Duck Lake area, District of Thunder Bay, Ontario; Ontario Department of Mines, Geological Report 27, 47p.
- Severin, P.W.A., and Balint, F. 1984. The geological setting of the Winston Lake massive sulphide deposit; Canadian Institute of Mining and metallurgy, District 4 Meeting Field trip, October 1984, 19 pages.

- Severin, P.W.A., Balint, F., and Sim, R. 1991. Geological setting of the Winston Lake massive sulphide deposit. In Mineral Deposits in the Western Superior Province, Ontario (Field Trip 9), Franklin, J.M., Schnieders, B.R. and Koopman, E.R. (eds), Geological Survey of Canada Open File 2164, pp. 58-73.
- Smyk, M.C., and Schnieders, B.R. 1995. Geology of the Schieber Greenstone Assemblage and its Gold and Base Metal Mineralization. Institute of Lake Supeior Geology 41st Annual Meeting, May 13018 Marathon, Ontario, Proceedings Volume 41: Part 2c – Field Trip Guidebook, 86 p.
- Stott, G.M. 2011. A revised terrane subdivision of the Superior Province in Ontario; Ontario Geological Survey, Miscellaneous Release—Data 278.
- Turcotte, B., and Verschelden, R. 2013. NI 43-101 Technical Report for the Pick Lake Property. Prepared by InnovExplo – Consulting Firm for Silvore Fox Minerals Corp., 85 p.

AUTHOR'S CERTIFICATE

I, David J. Thomson do hereby certify as follows:

- 1. I am a Registered Professional Forester and consultant to the mining industry, and I reside and carry on a business at 114 Pennock Drive, Rosslyn, Ontario P7K0E1, under Thomson Environmental;
- 2. That I have the degree of Honors Bachelor of Science in Forestry, 1977, from Lakehead University;
- 3. That I am a member in good standing of the Ontario Professional Forester's Association (Member No. 1223, effective May 28, 1982):
- 4. That, as part of my profession, I have been trained in and regularly used Geographic Information (GIS) tools since 2001;
- 5. That I am the co-author of an assessment report entitled "2018-2019 Diamond Drilling Report, Winston Lake Zn-Cu Property, Pays Plat and Rope Lakes Area, Thunder Bay District, Northwest Ontario, Canada" addressed to Superior Lake Resources Limited, with an effective date of September 30, 2019, and that I am responsible primarily for all maps in the report;
- 6. That I am Licensed Ontario Prospector (Licence Number 2000085) and regular user of the MLAS system and associated GIS data.
- 7. That, as at the effective date of the Report, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report not misleading.

Dated at Thunder Bay, Ontario This 1st day of November 2020

A Thomson

David J. Thomson, R.P.F.

AUTHOR'S CERTIFICATE

I, Gerald Dewar White (Gerry), do hereby certify as follows:

- 8. I am an independent consulting geologist, and I reside and carry on business at 28 Hill Street South, Thunder Bay, Ontario, P7B 3T5 under Superior Rift Geoconsulting Inc.;
- 9. That I have the degree of Bachelor of Science in Geology, 1979, from the University of Manitoba;
- 10. That I am a member in good standing of the Professional Geoscientists of Ontario (Member No. 0184, effective June 22, 2002)
- 11. That I have been practicing my profession in Canada continuously since 1979;
- 12. That I am the co-author of an assessment report entitled "2018-2019 Diamond Drilling Report, Winston Lake Zn-Cu Property, Pays Plat and Rope Lakes Area, Thunder Bay District, Northwest Ontario, Canada" addressed to Superior Lake Resources Limited, with an effective date of September 30, 2019, and that I am responsible for all sections of this Report;
- 13. That, as at the effective date of the Report, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report not misleading.

Dated at Thunder Bay, Ontario This 1st day of November 2020

Gerald White, BSc., P.Geo.

APPENDIX 1: Drill Logs

	GEC)LOG	GICAL	. COF	RE LC)G	HC	DLE I	NO:	WL-1	9-02									
CLA	IM NUN	/IBER:																		
		Winstor T: Wins	n/Pic ston Sou	ıth						SU	PERI	OR L	AKE RE	CSOU	JRCE	ES				
		DRIL	L CONT	RACTO	R:		STA 2019		D Sep	26,	FINIS	HED:	Sep. 30, 20)19	DEP	PTH (m	n):600			
LOG	GER: R	. Ghade	erpanah	& A.E. H	loward		GPS	S DAT	A:						AZM	1TH: 2	65			SUPERIO
EAS	TING: 4	72647			NORTH	IING: 5424	4702				ELEV	ATION	: 10473.18	899	DIP-	-60				RESOU
	Depth From (m)	Depth To (m)	Nested From (m)	Nested To (m)	Lithology	Lithology texture	Foliation TCA	Alpha	Beta	Alteration 1	Alteration 2	Alteration 3	Alteration style	Mineral 1	Mineral 2	Mineral 3	Mineral 4	Total %		
	0.00	4.40			OB															OVERBURDEN
	4.40	75.60			GB	Mass- Fol	54	65	310	CL	с	Q		Ру					3	GABBRO: mg, dark green, massive to moderately for solidification, non- magnetic, 1-3% py. Tr- Po, With 65 d from 11-20m. After 41m the unit turns moe si the metamorphosis has over printed the textures.
			5.00	25.00							С									Strong carbonates mainly patchy with local stringer
			33.78	34.32	MD					CL										Mafic Dyke, fg, dark green, massive, non-magnetic, sulphides, UC@ 85, LC@ 83.
			43.66	44.55	Shear zone	Sheared	70- 85			CL	Mu		FF	Ру					4	Shear zone, healed, strong muscovite fracture fillin volcanic, perpery texture, UC @ 80, LC@ 75
			44.55	45.13	MD	Mass- Fol		55	320	CL				Ру					Tr	Mafic dyke or another puls of Gabbro? Green, fg, n LC@40.
			60.18	60.28	QV															Quartz vein, 10 cm wide, white with chloritic fractu contacts are @50 CA.
			74.53	74.73	Breccia					CL		Q		Ру					Tr	Breccia, siliceous, light green, trace of fg-py, upper
	75.60	156.71			MF	Mass- fol	65			CL	Q									MAFIC FLOW: fg-mg, dark green, local signs of flow moderately , mainly massive, wk-mod chloritic thro texture on and off, non magnetic, 1-2% py, trace Cp
			116.00	143.00		Mass- Fol	60	65	300	CL	Q			Ру					1	Increase in chlorite, local quartz carb veins and stri
			125.00	125.10	FX	Sheered	65			CL						Ì				Fault, choritic, minor carbonate, Trace Py.

Notes

y foliated at 54 d, locally mod- chloritic, local carbonation, wkith local fracture fillings. 2 bands of epidote fracture fillings @ e silicified and coarser grained. The contacts are gradational as es.

gers at 55 d.

tic, sharp contacts with chill margins, wk- chlorite, no visible

lings, strong chlorite, 3-4% py, there's an inclusion of Felicity

massive to wk-Foliated@ 72, wk- chlorite, tr- Py. UC@82,

cture fillings, trace of py very fine grained. Upper and lower

per and lower contacts are @50 CA.

ow in form of foliation at 84 and 96m mark, silicified hroughout, local patchy hornblends , and local gabbroic c Cpy/ P.

tringers, silicified moderately.

		136.55	135.66	FX	Fault	55			CL	С							Fault, open space with quartz Fracture fillings, mod
		141.41	146.00						CL	С							Stronger carbonate, mod-chlorite, Tr-2% Cpy spott
		144.00	154.00			_			Q	Mu		 Сру	P.O.	Ру			Up to 3% P.O., disseminated Py and Cpy 1%,. Stron
		154.00	156.71		Fol	62			CL	С		Ру				1	Stronger foliation with carbonates and stronger ch fillings.
156.71	158.13			FF	Mass- Fol	70	60	295	CL	EP		Ру				2	FELSIC FLOW: fg, grey to pinkish grey due to heme the unit. Massive to mod-floated at 70, up to 2% p
158.13	317.63			MF	Mass- Fol	82	65	310	CL	Q		P.O.	Ру	Сру		3	MAFIC FLOW(S) &/or DIFFERENTIATED GABBRO(? due to Po &/or Mt. Chloritic with rare epidote strir fracture filling and pods, but mostly disseminated. sections. Rare cp blebs and fracture fill. Local inter pyrxn phenocrysts; others foliated. Some intervals rich). Core angles and orientations quite variable w intervals throughout, particularly toward the lower
		170.00	184.00						CL	Epi		Po	Сру	Ру		4	Strongly magnetic interval with higher Po content locally patchy.
		197.00	-				62	290									
		208.75	-				30	180									
		216.25	-				35	0									
		287.95	-				73	340									
		315.81	316.07				60	290	Hb/Cl	Q	Mu	ру			5-7		bedded hyaloclastite/sedimentary interval with py 5-7% of the interval. Near lower end of mafic unit,
		316.07	317.63						Hb	Q		ру			<1		Transition zone: mafic but with quartz and scattere
317.63	318.70				M, B		70	180	Q			ру			2-3		EXHALITE HORIZON . Massive metarphosed chalce Scattered blebs and leaves of py throughout, up to
318.70	323.57				М				Q	Hb	An	ру			<1		MIXED EXHALITIVE-SEDIMENTARY-TUFFACEOUS I terminating in contact with amphibole-rich mafic s
325.57	328.72								Hb	±Q							MAFIC SEDIMENT/FLOW: Fine-grained, sugary am
328.72	334.15				М				Q	CI		ру	ро		<5		EXHALITE HORIZON: Massive metarphosed chalce cm each, with chlorite in between and scattered th together <5-8% locally. Gradational transition into eventually felsic flow-tuff mixture takes over.
334.15	345.55				M,B,F				Q	CI	Hb	ру	ро		<5		MINERALIZED MIXED EXHALITE, TUFF, FELSIC FLO exhalite decreases down the iinterval but chlorite nearly massive Cl-altered w/ py & po increases alo beneath exhalite?). Sulfides and Cl peter out by 34
345.55	351.00				М				Q	В	Р	ру			<1		FELSIC FLOW (&/OR TUFF): Massive, coherent, not

oderate carbonates.

otty and blebby, mainly disseminated.

ong mus+Q alteration.

chlorite. P to 1% py disseminated. Local bless and fracture

netization, few stringers of hematite, clhloritic in the middle of py disseminated. Upper contact 80, lower contact 70.

D(?): fg-mg, green-black, massive to foliated, locally magnetic ringers, wk- moderate Q, up to 2% po and py, with local d. Magnetic sections mostly within the massive and chloritised tervals rich in amphiboles. Some intrvls coherent w/ plag and als more leucocratic; most are melanocratic (pyrxn-amphbl e within (i.e. folding) Likely a number of interflow sedimentary ver end of this unit.

nt up to 4%, more Cpy downward, local epidote stringers and

py in a few roughly <semi-massive discrete bands, comprising it, and top of possible exhalite unit immediately below.

ered specks of py.

Icedonic quartz (exhalite?), layered/bedded 0.5-1 cm each. to 5% locally.

S INTERVAL: Decreasing exhalite component moving down, c sediments and then flow.

mphblt

Icedonic quartz (exhalite?), massive to layered/bedded 0.5-1 throughout. Scattered blebs and leaves of py & po, usually nto mix with felsic tuff, perhaps the top of a flow (?), as

.OW INTERVAL: As described above, the proportion of the stringers w/ or w/o py±po from mm to cm thcknss and then long wtih an increasing felsic tuff/flow component (top of flow 345.55.

not altered and no sulfides. Faint plagioclase phenocrysts.

351.00	358.70			М			Q	В	CI	ро	ру		<10- 20	heavily o	LIZED MIXED EXHALITE, TUFF, FELSIC FLO dsssmntd to semi-mssy in places; tuff-exha fides throughout. More po than py in this i
		350.60	-		80	270									
		353.60	-		90	n/a									
358.70	409.78			М			Q	Hb,B	CI	ро	ру		1-2	perhaps	FELSIC FLOW, TUFF± SEDIMENTARY UNIT: N with sediments/volcaniclastics, dominated me intervals more quartz-rich, some less so
		362.90	-		70	270									
409.78	432.35			М			Hb	CI					<1	mafic ro	ELOWS/INTRUSIVE: Sheared, chloritic contack. Flows indicated by fgnd banded/bedde increasingly cgnd toward the center.
		426.50	426.70	М			HB	Q		ср			2	A couple	e of narrow seams of remobilized cp squee:
		428.95	-		60	330									
432.35	477.00						Q	Hb,B	CI	ру			<1	MIXED F intervals	FELSIC FLOW, TUFF±SEDIMENTARY UNIT: 5
		437.90	-		60	330									
		462.25	-		50	280									
477.00	549.00						Hb, An	CI		ру			<<1		LOWS: Similar to above, but aphanitic-fgn 808-810 m.
		474.40	-		70	250									
		533.90			55	310									
549.00	•													END OF	HOLE

LOW INTERVAL: As described above, with py-po dissmntd to halite mix, bedded in places & mssv in others w/ some Cl along his interval.

T: Massive non-bedded to faintly bedded mix of felsic flow, tuff ted by quartz and biotite with sporadic intervals w/ <1-2% po is so.

ntact zone with possible exhalite then into fgnd to mgnd xlln dded mafic sediments/hyaloclastite btwn much wider intrvls

eezed in, in one case with a narrow1-2 cm Q vein.

: As described above w/ some more mafic tuff-sedimentary

fgnd vs xlln. Becomes more chloritic with depth. Core broken

								9-03	WL-1	10:		HC)G	ELC	COR	ICAL	LOG	GEC
			ES	JRC	SO	KE RI	OR LA	PERIC	SUI									ROJECT
	- 0) 05									DTE	0.7.4						ROSPEC
			PTH (r	1					10-01): 09-1			Ig	u Drillin	ougamo			
	0	1: 240	<u>MUTH</u> : 70		0004	10457				A:	S DAT			NODT		ard		GGER: /
SUPERIO			. 70		9224	10457.	ATION.	ELEV			0	42497	HING: 54	NUKI			12002	STING: 4
	Total %	Mineral 4	Mineral 3	Mineral 2	Mineral 1	Alteration style	Alteration 3	Alteration 2	Alteration 1	Beta	Alpha	Foliation TCA	Lithology texture	Lithology	Nested To (m)	Nested From (m)	Depth To (m)	Depth From (m)
GABBRO-DIORITE (Differentiated Gabbro?): from maround amphibolitized pyroxene phenocrysts; plagiod minor quartz. Some intervals have enough quartz to be rare specks and films of py. It's possible that this is a centers, and/or one or more layered/differentiated in mineralized. By 150 m, unit has become persistently fltd fabric. Becomes finger grained toward the end, w	<1				ру		CI	Q	Px/Hb							619.07	197.00	2.15
Quartz vein from 94.00-94.50 with sheared, chloritize on the lower contact.								CI	Q				М	QV	95.20	93.87		
		_	_							350	55				-	116.00		
										300	60				-	136.50		
	 									180	50				-	151.00		
										240	45				-	179.00		
MAFIC FLOWS/MAFIC INTRUSIVE(S): Thick, aphanitic sedimentary horizons seen in btwn; several smwht slo from 200-211. No slfds, no mt. From 225 m on becor &/or an intrusive; broken up and sheared from 248-2 260m. Starting around 325 m appears like possible o flows. Minor po-py from 462-464 m. Some internal f well as various fracture sets. More leucocratic phase pyroxenite (intrsv into the flows?).	<1						Q/CI	Ρ	Hb								693.00	197.00
										70	65				_	362.70		
Narrow intermdiate dyke.							Hb	Р	Q				М	1	371.00	370.25		
								-	~	310	65			-	-	389.30		
										180	70				-	467.05		
1-2 cm wide band of sugary, massive py±po in blocky and minor Cl. Sulfide band at shallow angle to core (2	2- 3%			ро	ру								Sheard	М	602.40	602.16		

Notes

medium to coarser grained, coherent with foliation devloped ioclase as smaller phenocrysts & in groundmass with occasional o be considered diorite, not gabbro. Not magnetic but rarely; a series of thick flows with fgnd tops and bottoms and xlln l intrusives. Either way, it's mafic, it's unalterd, and it's not cly m-gnd igneous (mtmrphsd) and gabbroic, sometimes with , with gradational contact into mafic flows below.

ized gabbro/mafic flow either side, more so and more sheared

itic to vfgnd, occsnl flow-top breccias, hyaloclastite & minor slcfd-epdtzd fractures in places. Core quite blocky-broken up comes prphrtc to m-cgnd - either the middle of a thick flow -252 m, w/ minor Q-C veining; broken again between 258original pyroxenite but by 400 m back to more like mafic al folding and areas with more than one weak foliation trend as se from 410-430 m. By 500 m is massive mgnd gabbro-

ky sheared interval between 602.0-602.5 m, with crumbly Q (20°).

		612.60	613.02	М	Sheared						ру	ро		3-4	Dssmntd to streaky bands of py-po in heavily fractured to core (25°). Discrete band <1cm wide.
619.07	639.45			FF	М			Q	В	Hb, Si					FELSIC FLOW-TUFF UNIT (MAIN FELSIC UNIT?): Fgnd, some amphiboles. Fgnd sugary, massive, some poor b flattened/stretched clasts, but further down no bedd
		620.70	-			65	360								
639.45	693.00							Q	В	CI	ро	ру		1-4	MIXED EXHALITE-TUFF-FLOW-SEDIMENTARY UNIT: A bedding/banding basis or more fluid. Po-py specks, fl with additional green chlorite.
		654.00				75	30								
		674.10	693.00								ро	±py		<10	Bands <7-8 cm wide rich in black Cl & blades of sillima proportionately less posisble exhalite versus tuff/sedi
		672.00	-			70	310								
693.00															END OF HOLE.

red interval w/ crumbly Q and minor Cl, also at shallow angle

d, massive to faintly bedded, rich in Q w/ lesser B and perhaps or bedding-banding in the uppper portion, perhaps dding or grain-size gradation.

: As described in the label with proportions varying on a 1-3 cm , flakes and rare <1 cm bands scattered throughout, usually

manite (?) w/ <semi-massive po appear in rock w/

TENURE	TITLE				AREA_IN	
NUM	TYPE	TITLE_TY_1	DISPOSIT	DISPOSIT_1	HECT	
				Mining and Surface		WINSTON
LEA-107803	LEAS	Lease	MSR	Rights	15.984	LAKE
				Mining and Surface		WINSTON
LEA-107804	LEAS	Lease	MSR	Rights	16.377	LAKE
		Mining Licence				WINSTON
MLO-12318	MLO	of Occupation	MR	Mining Rights	14.31	LAKE
						WINSTON
PAT-15667	PATN	Patent	MR	Mining Rights	4.452	LAKE
						WINSTON
PAT-15668	PATN	Patent	MR	Mining Rights	16.187	LAKE
						WINSTON
PAT-15669	PATN	Patent	MR	Mining Rights	14.569	LAKE
						WINSTON
PAT-15670	PATN	Patent	MR	Mining Rights	18.211	LAKE
						WINSTON
PAT-15671	PATN	Patent	MR	Mining Rights	16.187	LAKE
						WINSTON
PAT-15672	PATN	Patent	MR	Mining Rights	8.094	LAKE
				Mining and Surface		BIG DUCK
PAT-16059	PATN	Patent	MSR	Rights	14.366	LAKE
				Mining and Surface		BIG DUCK
PAT-16081	PATN	Patent	MSR	Rights	18.575	LAKE
				Mining and Surface		BIG DUCK
PAT-16082	PATN	Patent	MSR	Rights	19.101	LAKE
				Mining and Surface		BIG DUCK
PAT-16083	PATN	Patent	MSR	Rights	16.997	LAKE
				Mining and Surface		WINSTON
PAT-16410	PATN	Patent	MSR	Rights	31.97	LAKE
				Mining and Surface		WINSTON
PAT-16411	PATN	Patent	MSR	Rights	32.375	LAKE
				Mining and Surface		WINSTON
PAT-16412	PATN	Patent	MSR	Rights	32.375	LAKE
				Mining and Surface		WINSTON
PAT-16413	PATN	Patent	MSR	Rights	31.97	LAKE
				Mining and Surface		WINSTON
PAT-16414	PATN	Patent	MSR	Rights	13.699	LAKE
				Mining and Surface		WINSTON
PAT-16415	PATN	Patent	MSR	Rights	13.723	LAKE
				Mining and Surface		WINSTON
PAT-16416	PATN	Patent	MSR	Rights	13.355	LAKE
				Mining and Surface		WINSTON
PAT-16417	PATN	Patent	MSR	Rights	15.661	LAKE

Appendix 2: Table of Mining Claims

				Mining and Surface		WINSTON
PAT-16418	PATN	Patent	MSR	Rights	20.789	LAKE
				Mining and Surface		WINSTON
PAT-16419	PATN	Patent	MSR	Rights	14.188	LAKE
				Mining and Surface		WINSTON
PAT-16420	PATN	Patent	MSR	Rights	12.804	LAKE
				Mining and Surface		WINSTON
PAT-16421	PATN	Patent	MSR	Rights	14.055	LAKE
				Mining and Surface		WINSTON
PAT-16422	PATN	Patent	MSR	Rights	13.897	LAKE
				Mining and Surface		WINSTON
PAT-16423	PATN	Patent	MSR	Rights	18.672	LAKE
				Mining and Surface		WINSTON
PAT-16424	PATN	Patent	MSR	Rights	12.4	LAKE
				Mining and Surface		WINSTON
PAT-16425	PATN	Patent	MSR	Rights	16.179	LAKE
				Mining and Surface		WINSTON
PAT-16426	PATN	Patent	MSR	Rights	16.119	LAKE
				Mining and Surface		BIG DUCK
PAT-16640	PATN	Patent	MSR	Rights	19.506	LAKE
				Mining and Surface		BIG DUCK
PAT-16641	PATN	Patent	MSR	Rights	16.592	LAKE
				Mining and Surface		BIG DUCK
PAT-16642	PATN	Patent	MSR	Rights	14.973	LAKE
				Mining and Surface		BIG DUCK
PAT-29851	PATN	Patent	MSR	Rights	15.338	LAKE
				Mining and Surface		BIG DUCK
PAT-29852	PATN	Patent	MSR	Rights	14.852	LAKE
				Mining and Surface		BIG DUCK
PAT-46077	PATN	Patent	MSR	Rights	26.466	LAKE

Appendix 3: Assay Certificates

Image: Section of the start of the star	(GAT Laboratories	5523 McADAN ROA MISSISSAUGA, ONTAR CANADA L421 N TEL (005)501-455 FAX (005)501-455 http://www.agateabs.co
EVEL 1 EMERALD HOUSE, 1202 HAY STREET WITENTION TO: Aurom E. Howard PROJECT: SLR001 AGAT WORK ORDER: 198532283 SOLID ANALYSIS REVIEWED BY: Kovin Motomura, Data Review Supervisor DATE REPORTED: Nov 06, 2019 PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998 MOTES MOTES			
PROJECT: SLR001 ACAT WORK ORDER: 198532286 SOLD ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor DATE REPORTED: Nov 06, 2019 PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (805) 501-9998 Should you require any information regarding this analysis please contact your client services representative at (805) 501-9998 NOTES MOTES All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.		LEVEL 1 EMERALD HOU WEST OERTH, WA, AUS	JSE, 1202 HAY STREET
AGAT WORK ORDER: 198532286 SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor DATE REPORTED: Nov 06, 2019 PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (805) 501-9998 INOTES INOTES All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.		ATTENTION TO: Avrom E. Howard	
SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor DATE REPORTED: Nov 06, 2019 PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (805) 501-9998 Image: Note: State in the service of t		PROJECT: SLR001	
DATE REPORTED: Nov 06, 2019 PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998 Image: Notice and information regarding this analysis please contact your client services representative at (905) 501-9998		AGAT WORK ORDER: 19B532286	
PAGES (INCLUDING COVER): 24 Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998 INOTES INOTES All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.	so	LID ANALYSIS REVIEWED BY: Kevin Motomura, Data R	teview Supervisor
Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998		DATE REPORTED: Nov 06, 2019	
*NOTES		PAGES (INCLUDING COVER): 24	
All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.			
	<u>NOTES</u>		
AGAT Laboratories (V1) Page 1 of 24			

			Laboratories		te of Analysis DRDER: 19B532286 R001			ONTARIO A L4Z 1N 5)501-999 5)501-058
CLIENT NAME: MIS	C AGAT CL	IENT ON				TO: Avrom E. Ho		atiaps.cor
				(200-) Sample Lo	ogin Weight			
DATE SAMPLED: Oct	t 17, 2019		DATE RECEIVED	Oct 18, 2019	DATE REPORTED: Nov	06, 2019	SAMPLE TYPE: Drill Core	
	Analyte:	Sample Login						
	Unit:	Weight kg						
Sample ID (AGAT ID)	RDL:	0.01						
E6096857 (627816)		0.83						
E6096858 (627817)		0.83						
E6096859 (627818)		0.52						
E6096860 (627819)		0.73						
E6096861 (627820)		0.55						
E6096863 (627822)		0.72						
E6096864 (627823)		0.73						
E6096865 (627824)		0.53						
E6096866 (627825)		0.66						
E6096867 (627826)		0.64						
E6096868 (627827)		0.70						
E6096869 (627828)		0.51						
E6096870 (627829)		0.54						
E6096871 (627830)		0.65						
E6096872 (627831)		0.54						
		0.66						
		0.64 0.66						
E6096874 (627833)		0.00						
E6096874 (627833) E6096875 (627834)		0.68						
E6096874 (627833) E6096875 (627834) E6096876 (627835)		0.68						
E6096874 (627833) E6096875 (627834) E6096876 (627835) E6096877 (627836)		0.69						
E6096873 (627832) E6096874 (627833) E6096875 (627834) E6096876 (627835) E6096877 (627836) E6096878 (627837) E6096879 (627838)								
E6096874 (627833) E6096875 (627834) E6096876 (627835) E6096877 (627836)		0.69 0.79						

	e Cat	Laboratories	- Certificate AGAT WORK OR - PROJECT: SLR00			5623 McADAM ROA MISSISSAUGA, ONTARI CANADA L4Z 1N TEL (905)501-995 FAX (905)501-058 http://www.agatlabs.co
CLIENT NAME: M	ISC AGAT CLIENT ON				O: Avrom E. Howard	http://www.agatiabs.co
			(200-) Sample Logi	n Weight		
DATE SAMPLED: C	Oct 17, 2019 - Reported Detection Limit	DATE RECEIVED:	Oct 18, 2019	DATE REPORTED: Nov 0	6, 2019 SAMPI	LE TYPE: Drill Core
Analysis performed at <i>i</i>	AGAT Thunder Bay (unless mart	ked by *)				
			C	ertified By:	y st	

		ENT ON				PROJECT	SLRUUI		ΔΤΤΕΝ	TION TO-	Avrom E.	Howard	ł	http://www.aga	tlabs.con
			(20)	1-378) So	odium F	Peroxide	Fusion -	ICP-OE				Ioward			
DATE SAMPLED: Oc	t 17, 2019		(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish DATE RECEIVED: Oct 18, 2019 DATE REPORTED: Nov 06, 2019 SAMPL									MPLE TYPE:	Drill Core		
	Analyte:	Ag	AI	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	C
Sample ID (AGAT ID)	Unit: RDL:	ppm 1	% 0.01	ppm 5	ppm 20	ppm 0.5	ppm 5	ррт 0.1	% 0.05	ррт 0.2	ррт 0.1	ррт 0.5	% 0.005	ррт 0.1	ppn (
E6096857 (627816)		1	4.97	<5	26	39.0	<5	0.4	0.83	<0.2	132	107	<0.005	0.4	125
E6096858 (627817)		1	5.89	7	37	84.5	<5	0.7	1.67	<0.2	172	248	< 0.005	1.2	73
E6096859 (627818)		2	7.76	25	49	116	<5	0.7	3.68	<0.2	2120	153	<0.005	1.4	40
E6096860 (627819)		1	5.01	10	34	57.7	<5	0.5	0.89	<0.2	36.7	257	< 0.005	1.0	103
E6096861 (627820)		2	5.14	20	26	60.5	<5	0.5	1.51	<0.2	22.2	139	<0.005	0.4	83
E6096863 (627822)		<1	6.05	<5	37	175	<5	0.4	1.39	<0.2	14.0	133	0.011	1.6	51
E6096864 (627823)		<1	4.66	<5	51	174	<5	0.6	1.03	<0.2	8.8	119	0.011	1.1	102
E6096865 (627824)		<1	6.12	<5	46	340	<5	0.6	0.80	<0.2	21.8	89.2	0.014	0.5	364
E6096866 (627825)		<1	6.63	<5	26	253	<5	0.3	1.30	<0.2	24.2	66.0	0.015	0.8	41
E6096867 (627826)		<1	4.09	<5	39	147	<5	0.4	0.88	<0.2	7.9	95.5	0.011	0.7	88
E6096868 (627827)		<1	6.04	<5	37	206	<5	0.5	1.30	<0.2	15.1	166	0.011	0.8	41
E6096869 (627828)		<1	3.77	<5	61	106	<5	0.9	0.83	<0.2	22.6	165	0.010	0.5	257
E6096870 (627829)		<1	5.17	<5	37	200	<5	0.4	1.34	<0.2	8.4	103	0.012	0.6	123
E6096871 (627830)		1	5.49	<5	20	80.1	<5	0.2	2.51	<0.2	54.6	65.6	<0.005	0.4	33
E6096872 (627831)		1	5.42	<5	29	119	<5	0.4	1.13	<0.2	69.9	128	<0.005	0.5	55
E6096873 (627832)		1	5.41	<5	24	109	<5	0.2	1.12	<0.2	67.1	72.6	<0.005	0.4	57
E6096874 (627833)		1	5.21	<5	27	101	<5	0.3	1.67	<0.2	119	110	<0.005	0.3	60
E6096875 (627834)		<1	5.79	11	<20	205	<5	0.8	0.47	<0.2	1090	29.3	0.012	1.9	6-
E6096876 (627835)		<1	7.83	13	41	198	<5	14.2	0.67	<0.2	1240	101	0.017	0.9	10
E6096877 (627836)		<1	8.80	7	34	165	<5	1.4	0.43	<0.2	681	20.0	0.018	0.7	3
		<1	7.34	13	38	127	<5	3.7	0.69	<0.2	1160	20.5	0.015	0.7	2
E6096878 (627837)		98	5.50	120	50	2210	<5	5.2	2.07	446	36.8	37.4	< 0.005	1.8	466
E6096879 (627838)		<1	0.18	<5	<20 47	18.0 2200	<5 <5	0.2 5.0	<0.05 2.03	<0.2 443	4.8 34.9	0.7 36.9	0.005 <0.005	0.2 1.8	461
• •		98	5.43	107					203						

🔛 agat	Laboratories
--------	--------------

Certificate of Analysis AGAT WORK ORDER: 19B532286

PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MIS							ATTEN	TION TO:	Avrom E.	Howard			tlabs.con		
			(20	1-378) So	odium Pe	eroxide l	- usion	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 17, 2019			DATE RECE	EIVED: Oct	18, 2019		DATE	REPORTED	: Nov 06, 2	D19	SAM	PLE TYPE:	Drill Core	
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Ho	In	К	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
E6096857 (627816)		18.2	13.0	2.42	4.61	19.7	16.4	1	18	4.03	<0.2	0.16	59.3	<10	2.20
E6096858 (627817)		25.1	21.0	2.41	9.27	33.1	19.8	2	22	6.24	<0.2	1.00	78.5	<10	3.48
E6096859 (627818)		90.6	39.2	15.0	11.8	59.4	154	4	32	15.3	<0.2	1.43	1050	<10	5.32
E6096860 (627819)		15.8	12.8	1.46	7.58	21.5	10.2	1	19	3.83	<0.2	0.45	15.6	<10	2.36
E6096861 (627820)		26.0	20.2	1.40	5.81	23.3	13.8	1	19	6.24	<0.2	0.49	8.3	<10	3.12
E6096863 (627822)		2.94	1.64	1.19	8.20	26.3	3.11	4	2	0.59	<0.2	1.22	5.4	16	0.23
E6096864 (627823)		1.30	0.78	1.21	12.8	27.9	1.50	2	2	0.26	<0.2	0.99	3.3	<10	0.13
E6096865 (627824)		2.10	1.27	2.52	12.0	17.0	2.60	2	2	0.44	<0.2	1.31	9.5	<10	0.18
E6096866 (627825)		2.47	1.47	1.75	5.48	17.6	2.84	2	2	0.50	<0.2	1.45	10.2	15	0.21
E6096867 (627826)		2.50	2.22	1.22	8.69	11.0	1.86	1	1	0.64	<0.2	0.81	3.0	10	0.33
E6096868 (627827)		2.82	2.07	1.88	8.18	18.5	2.46	2	2	0.65	<0.2	1.10	6.0	<10	0.30
E6096869 (627828)		3.15	2.38	1.42	16.7	12.9	3.13	1	1	0.74	<0.2	0.69	9.3	13	0.34
E6096870 (627829)		1.47	1.07	1.15	6.44	11.9	1.52	1	1	0.33	<0.2	1.01	3.0	<10	0.16
E6096871 (627830)		33.5	24.1	1.55	4.13	25.5	23.2	2	20	7.57	<0.2	0.54	20.6	<10	3.55
E6096872 (627831)		39.6	28.8	2.40	6.66	19.5	25.4	1	20	9.04	<0.2	0.84	27.2	<10	4.14
E6096873 (627832)		31.7	22.2	2.03	4.11	18.2	21.3	1	19	7.12	<0.2	0.68	26.7	<10	3.15
E6096874 (627833)		36.7	25.5	2.09	6.43	19.7	26.2	1	18	8.21	<0.2	0.68	47.5	<10	3.48
E6096875 (627834)		22.7	7.59	4.78	3.86	22.8	60.7	2	2	3.44	<0.2	2.12	510	22	0.69
E6096876 (627835)		29.7	10.9	6.25	11.3	27.6	71.0	2	2	4.68	<0.2	0.83	561	20	1.06
E6096877 (627836)		20.7	9.49	3.70	8.85	24.8	39.3	1	2	3.67	<0.2	0.76	306	27	0.97
E6096878 (627837)		27.0	8.31	7.07	10.4	32.0	76.1	3	2	3.89	0.2	0.60	544	22	0.84
E6096879 (627838)		2.15	1.23	1.00	4.15	24.4	2.86	5	3	0.41	4.5	1.79	19.1	<10	0.17
E6096880 (627839)		0.44	0.28	<0.05	0.43	0.43	0.38	1	<1	0.09	<0.2	<0.05	1.9	<10	<0.05
E6096881 (627840)		2.08	1.13	0.95	4.10	24.2	2.61	5	3	0.40	4.6	1.76	18.3	<10	0.19

Certified By:

Jonura Page 5 of 24

Ľ

AGAT CERTIFICATE OF ANALYSIS (V1)

agat 🚯	Laboratories
--------	--------------

Certificate of Analysis AGAT WORK ORDER: 198532286

PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MIS	C AGAT CLI	ENT ON						ATTEN	TION TO:	Avrom E.	Howard				
			(201	I-378) Sc	odium Pe	eroxide F	usion -	ICP-OE	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 17, 2019		C	ATE RECE	IVED: Oct	18, 2019		DATE	REPORTED	: Nov 06, 2	D19	SAM	PLE TYPE:	Drill Core	
	Analyte:	Mg	Mn	Mo	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	9
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.0
E6096857 (627816)		0.20	98	6	39	67.8	19	0.02	<5	15.8	6.4	1.99	<0.1	<5	34.
E6096858 (627817)		1.03	220	5	46	90.5	<5	0.03	<5	21.1	50.9	3.65	0.5	<5	27.
E6096859 (627818)		1.47	368	4	53	1050	<5	0.08	<5	272	79.6	2.07	<0.1	<5	22.
E6096860 (627819)		0.40	106	7	32	23.3	12	0.01	<5	4.79	23.3	3.58	<0.1	<5	32.
E6096861 (627820)		0.73	171	7	53	16.5	6	0.03	<5	3.10	18.8	2.13	<0.1	<5	32.3
E6096863 (627822)		1.32	241	5	3	8.8	66	0.06	<5	1.82	40.3	2.82	<0.1	10	29.
E6096864 (627823)		0.71	350	7	2	5.2	36	0.06	<5	1.07	30.4	3.90	<0.1	8	29.
E6096865 (627824)		0.57	257	6	2	12.0	68	0.06	<5	2.65	23.5	6.48	<0.1	12	26.3
E6096866 (627825)		1.22	332	6	2	13.7	50	0.06	<5	2.99	35.2	1.84	<0.1	13	30.
E6096867 (627826)		0.53	162	8	2	4.5	66	0.03	<5	0.94	21.6	4.66	<0.1	11	32.
E6096868 (627827)		0.89	197	5	3	8.4	61	0.05	<5	1.84	27.5	4.41	<0.1	11	29.3
E6096869 (627828)		0.85	180	9	2	13.0	150	0.04	<5	2.87	18.0	9.53	<0.1	9	26.
E6096870 (627829)		0.58	195	6	2	4.9	42	0.04	<5	1.02	38.6	3.07	<0.1	17	32.3
E6096871 (627830)		1.74	322	5	37	42.7	<5	0.01	<5	7.90	18.4	0.82	<0.1	<5	33.
E6096872 (627831)		0.95	130	8	41	48.7	<5	0.01	<5	9.79	27.3	3.14	<0.1	6	32.
E6096873 (627832)		0.90	138	7	39	44.8	<5	0.01	<5	9.12	21.5	1.59	<0.1	5	33.3
E6096874 (627833)		1.41	237	6	34	72.7	<5	0.02	<5	15.9	21.3	2.61	<0.1	11	31.4
E6096875 (627834)		3.98	339	28	3	518	39	0.06	<5	127	54.0	0.27	<0.1	12	31.
E6096876 (627835)		7.12	1500	4	2	604	149	0.06	5	147	17.2	2.34	<0.1	28	21.
E6096877 (627836)		7.86	1550	3	2	314	26	0.05	<5	76.9	15.0	0.04	<0.1	27	22.
E6096878 (627837)		7.87	2210	2	2	609	42	0.06	<5	144	14.1	0.01	<0.1	26	23.
E6096879 (627838)		0.56	581	18	5	15.8	27	0.03	21300	3.98	53.4	7.38	203	7	23.
E6096880 (627839)		0.02	37	9	<1	1.7	<5	<0.01	8	0.48	2.0	<0.01	<0.1	<5	43.
E6096881 (627840)		0.55	573	17	5	15.0	24	0.03	21500	3.76	52.9	7.43	198	6	23.4

Certified By:

Page 6 of 24

Ľ

N Homena

AGAT CERTIFICATE OF ANALYSIS (V1)

	agat	Laboratories
--	------	--------------

Certificate of Analysis AGAT WORK ORDER: 19B532286

PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MIS	C AGAT CLIE	INT ON							ATTEN	TION TO:	Avrom E.	Howard			itlabs.con
			(201	1-378) So	odium Po	eroxide F	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 17, 2019		0	DATE RECE	EIVED: Oct	18, 2019		DATER	REPORTED	: Nov 06, 20	019	SAM	PLE TYPE:	Drill Core	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Y	Yt
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
E6096857 (627816)		13.9	2	98.0	2.1	2.84	6.1	0.14	<0.5	1.98	2.05	<5	<1	117	14.1
E6096858 (627817)		18.2	3	66.5	1.9	3.62	7.9	0.18	<0.5	3.27	3.09	<5	<1	182	22.8
E6096859 (627818)		187	4	103	2.9	20.2	15.6	0.25	<0.5	5.23	4.16	10	<1	443	35.9
E6096860 (627819)		6.7	2	90.9	1.8	2.10	4.8	0.16	<0.5	2.10	1.89	6	<1	113	15.0
E6096861 (627820)		6.7	3	85.4	2.1	3.35	4.9	0.15	<0.5	3.14	2.31	<5	<1	184	20.9
E6096863 (627822)		2.4	1	130	<0.5	0.49	1.4	0.22	<0.5	0.24	0.36	100	<1	16.1	1.6
E6096864 (627823)		1.3	6	100	<0.5	0.21	0.9	0.20	<0.5	0.12	0.27	79	<1	8.3	0.8
E6096865 (627824)		2.6	19	56.1	<0.5	0.38	1.1	0.26	<0.5	0.18	0.30	99	<1	14.0	1.2
E6096866 (627825)		2.9	7	99.1	<0.5	0.44	1.1	0.29	<0.5	0.21	0.32	107	<1	14.6	1.4
E6096867 (627826)		1.2	4	84.8	<0.5	0.35	0.6	0.18	<0.5	0.33	0.22	71	<1	24.1	2.2
E6096868 (627827)		2.1	4	106	<0.5	0.42	1.3	0.27	<0.5	0.30	0.39	95	<1	21.4	2.0
E6096869 (627828)		2.8	2	63.0	<0.5	0.50	1.0	0.18	<0.5	0.35	0.26	89	<1	25.7	2.3
E6096870 (627829)		1.3	<1	112	<0.5	0.24	0.8	0.23	<0.5	0.15	0.23	111	<1	10.4	1.1
E6096871 (627830)		15.0	<1	110	2.0	4.69	6.3	0.16	<0.5	3.66	2.05	<5	<1	225	24.3
E6096872 (627831)		15.1	<1	114	2.0	5.39	7.3	0.20	<0.5	4.28	1.86	<5	<1	264	28.3
E6096873 (627832)		12.6	<1	101	1.9	4.45	7.2	0.19	<0.5	3.34	1.95	<5	<1	203	21.8
E6096874 (627833)		17.7	1	108	1.8	5.37	7.5	0.17	<0.5	3.80	1.80	5	<1	237	24.2
E6096875 (627834)		79.9	3	47.6	<0.5	6.38	0.8	0.25	<0.5	0.88	0.31	91	<1	116	5.4
E6096876 (627835)		92.2	2	11.9	<0.5	7.84	1.2	0.35	<0.5	1.30	0.40	187	<1	173	8.2
E6096877 (627836)		48.8	<1	13.1	<0.5	4.71	1.1	0.40	<0.5	1.24	0.29	174	<1	140	7.5
E6096878 (627837)		100	1	16.3	<0.5	7.98	1.2	0.32	<0.5	0.98	0.35	157	<1	132	6.3
E6096879 (627838)		3.1	61	60.3	<0.5	0.41	5.2	0.18	3.5	0.18	1.53	41	3	11.6	1.2
E6096880 (627839)		0.4	<1	3.3	<0.5	0.06	0.9	0.01	<0.5	<0.05	0.31	<5	<1	2.6	0.3
E6096881 (627840)		2.9	59	58.3	<0.5	0.39	5.0	0.18	3.2	0.17	1.47	40	3	11.4	1.2

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

/ uf stomuna

XT ON Zn ppm 5 26 45 66 21 31 60 152 128		Ddium Peroxide Fusio	ATTENTION on - ICP-OES/ICP-MS Fin DATE REPORTED: Nov			ore
ppm 5 26 45 66 21 31 60 152	DATE RECE Zr ppm 0.5 587 778 1110 620 631 81.7				SAMPLE TYPE: Drill Co	bre
ppm 5 26 45 66 21 31 60 152	Zr ppm 0.5 587 778 1110 620 631 81.7	IVED: Oct 18, 2019	DATE REPORTED: Nov	r 06, 2019	SAMPLE TYPE: Drill Co	pre
ppm 5 26 45 66 21 31 60 152	ppm 0.5 587 778 1110 620 631 81.7					
5 26 45 66 21 31 60 152	0.5 587 778 1110 620 631 81.7					
26 45 66 21 31 60 152	587 778 1110 620 631 81.7					
26 45 66 21 31 60 152	587 778 1110 620 631 81.7					
45 66 21 31 60 152	778 1110 620 631 81.7					
66 21 31 60 152	1110 620 631 81.7					
21 31 60 152	620 631 81.7					
31 60 152	631 81.7					
60 152	81.7					
152						
120	65.9					
110	75.0					
67	45.3					
79	96.5					
36						
29	662					
26	620					
36	563					
165	58.0					
268	61.7					
302	66.8					
355	65.5					
102000	126					
29	32.0					
99100	123					
	75 72 36 29 26 36 165 268 302 355 102000 29	75 56.1 72 51.8 36 649 29 662 26 620 36 583 165 58.0 268 61.7 302 66.8 355 65.5 102000 126 29 32.0	75 56.1 72 51.8 36 649 29 662 26 620 36 563 165 58.0 268 66.8 355 65.5 102000 126 29 32.0	75 56.1 72 51.8 36 649 29 662 26 620 36 563 165 58.0 268 61.7 302 66.8 355 65.5 102000 126 29 32.0	75 56.1 72 51.8 36 649 29 662 26 620 36 563 165 58.0 268 61.7 302 66.8 355 65.5 102000 126 29 32.0	75 56.1 72 51.8 36 649 29 662 26 620 36 563 165 58.0 268 61.7 302 66.8 355 65.5 102000 126 29 32.0

AGAT 1	_aboratories		Ce of Analysis RDER: 19B532286 1001	5623 McADAM RC MISSISSAUGA, ONTA CANADA L4Z TEL (905)501-9 FAX (905)501-0 http://www.agatlabs.
CLIENT NAME: MISC AGAT CLIENT ON			ATTENTION TO: Avron	
			n - ICP-OES/ICP-MS Finish	
DATE SAMPLED: Oct 17, 2019 Comments: RDL - Reported Detection Limit	DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: Drill Core
Analysis performed at AGAT Toronto (unless marked by *)				
AGAT CERTIFICATE OF ANALYSIS (V1)		(Certified By:	y el tomura

	AGAT	Laboratories
--	------	--------------

Certificate of Analysis AGAT WORK ORDER: 19B532286

PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MIS	SC AGAT CLI	ENT ON							ATTEN	TION TO:	Avrom E.	Howard			
			(201-67	'6) Lithiu	um Bora	te Fusion	- Summ	nation of	f Oxides,	XRF fin	ish				
DATE SAMPLED: Oc	t 17, 2019		I	DATE REC	EIVED: Oc	: 18, 2019		DATE	REPORTED	: Nov 06, 2	019	SAM	PLE TYPE:	Drill Core	
	Analyte:	AI2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O	P2O5	SiO2	TiO2	SrO	V20
	Unit:	%	%	%	%	%	%	%	%	%	%	%	%	%	9
Sample ID (AGAT ID)	RDL:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
E6096857 (627816)		9.51	0.02	1.17	<0.01	6.51	0.19	0.34	0.02	4.67	0.06	73.2	0.25	<0.01	<0.0
E6096858 (627817)		11.6	0.03	2.40	<0.01	13.3	1.18	1.79	0.03	5.16	0.08	61.3	0.31	<0.01	<0.0
E6096859 (627818)		15.4	0.22	5.25	<0.01	16.9	1.64	2.64	0.04	5.77	0.19	48.3	0.42	<0.01	<0.0
E6096860 (627819)		9.81	<0.01	1.24	<0.01	10.5	0.52	0.69	0.02	4.67	0.04	68.2	0.27	<0.01	<0.0
E6096861 (627820)		10.4	<0.01	2.20	<0.01	8.46	0.58	1.25	0.02	4.80	0.06	72.2	0.26	<0.01	<0.0
E6096863 (627822)		12.0	0.02	2.01	0.02	11.9	1.42	2.26	0.03	3.29	0.13	64.4	0.38	<0.01	0.0
E6096864 (627823)		9.23	0.01	1.45	0.02	18.5	1.14	1.24	0.05	3.05	0.15	63.0	0.35	<0.01	0.0
E6096865 (627824)		12.2	0.04	1.15	0.02	17.2	1.57	1.01	0.04	4.78	0.14	58.3	0.45	<0.01	0.0
E6096866 (627825)		13.1	0.03	1.83	0.02	8.08	1.67	2.16	0.05	4.20	0.14	67.3	0.51	<0.01	0.0
E6096867 (627826)		8.17	0.02	1.22	0.02	12.5	0.91	0.97	0.02	2.54	0.09	70.4	0.31	<0.01	0.0
E6096868 (627827)		10.9	0.03	1.67	0.02	10.9	1.14	1.43	0.03	3.53	0.11	64.6	0.52	0.01	0.0
E6096869 (627828)		6.94	<0.01	1.07	0.01	22.9	0.74	1.40	0.03	2.12	0.10	55.2	0.29	<0.01	0.0
E6096870 (627829)		10.2	0.02	1.93	0.02	9.22	1.18	0.99	0.03	2.66	0.11	71.1	0.39	0.01	0.0
E6096871 (627830)		10.7	0.01	3.51	<0.01	5.82	0.62	3.00	0.04	4.42	0.04	70.6	0.28	<0.01	<0.0
E6096872 (627831)		10.6	0.02	1.58	<0.01	9.54	0.97	1.65	0.02	3.85	0.04	69.4	0.35	<0.01	<0.0
E6096873 (627832)		10.8	0.02	1.62	<0.01	5.93	0.79	1.53	0.02	4.20	0.04	73.0	0.32	0.01	<0.0
E6096874 (627833)		10.3	0.02	2.33	<0.01	9.20	0.79	2.43	0.03	3.75	0.05	68.9	0.30	0.01	<0.0
E6096875 (627834)		11.5	0.12	0.70	0.02	5.53	2.51	7.25	0.04	1.29	0.14	68.3	0.44	<0.01	0.0
E6096876 (627835)		15.7	0.14	0.99	0.02	16.9	0.98	12.6	0.20	0.36	0.14	48.9	0.63	<0.01	0.0
E6096877 (627836)		17.6	0.09	0.62	0.03	13.1	0.90	14.2	0.21	0.35	0.12	50.5	0.71	<0.01	0.0
E6096878 (627837)		14.6	0.12	0.96	0.02	15.1	0.69	14.2	0.30	0.63	0.13	50.8	0.56	<0.01	0.0
E6096879 (627838)		10.9	0.27	2.99	<0.01	6.13	2.08	0.95	0.08	0.67	0.08	52.0	0.31	<0.01	<0.0
E6096880 (627839)		0.35	<0.01	0.03	<0.01	0.69	0.06	0.04	<0.01	0.15	0.01	96.4	0.01	<0.01	<0.0
E6096881 (627840)		10.9	0.26	3.01	<0.01	6.16	2.08	0.95	0.08	0.70	0.08	52.1	0.31	<0.01	<0.0

Certified By:

N Homena Page 10 of 24

Ľ

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT CLIENT ON 2019 Analyte: LOI 1		6) Lithium Borate Fusion	ATTENTION TO: Avrom	http://www.agatlabs.cor E. Howard
		ATE RECEIVED: Oct 18, 2019		
Analyte: LOI		ATE RECEIVED. OCT 10, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: Drill Core
	Total Oxides			
Unit: %	%			
RDL: 0.01	0.01			
1.57	97.5			
2.60	100			
3.03	101			
1.79	100			
1.39	99.5			
6.70	83.2			
0.17	97.9			
	1.57 2.58 2.60 2.44 1.56 2.94 2.03 3.15 1.64 2.41 2.38 4.21 2.28 1.10 1.95 1.66 1.55 2.60 3.03 1.79 1.39 6.70	1.57 97.5 2.58 99.8 2.60 99.4 2.44 98.4 1.56 102 2.94 101 2.03 100 3.15 100 1.64 101 2.41 99.6 2.38 97.3 4.21 95.0 2.28 100 1.10 100 1.95 100 1.55 99.7 2.60 100 3.03 101 1.79 100 1.39 99.5 6.70 83.2	1.5797.52.5899.82.6099.42.4498.41.561022.941012.031003.151001.641012.4199.62.3897.34.2195.02.281001.101001.951001.5599.72.601003.031011.791001.3999.56.7083.2	1.57 97.5 2.58 99.4 2.60 99.4 2.44 98.4 1.56 102 2.94 101 2.03 100 3.15 100 1.64 101 2.41 99.6 2.38 97.3 4.21 95.0 2.28 100 1.10 100 1.95 99.7 2.60 100 3.03 101 1.79 100 1.39 99.5 6.70 83.2

🙀 agat	Laboratories		e of Analysis RDER: 19B532286 001	MIS	5623 McADAM ROA SISSAUGA, ONTAR CANADA L4Z 11 TEL (905)501-99 FAX (905)501-05 tp://www.agatlabs.cc
CLIENT NAME: MISC AGAT CLIENT ON			ATTENTION TO: Avr	om E. Howard	tp://www.agatiabs.co
	(201-676) Lithium B	orate Fusion - Sur	nmation of Oxides, XRF finish		
DATE SAMPLED: Oct 17, 2019 Comments: RDL - Reported Detection Limit	DATE RECEIVED	: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: I	Drill Core
Analysis performed at AGAT Toronto (unless marked t	by *)				
		C	Certified By:	y el stamme	-

AT CLIENT ON 19 Unit: ppm Dot occ	(202-052) Fir	e Assay - Trace A	ATTENTION TO: Avroi	m E. Howard	
l yte: Au Unit: ppm		e Assay - Trace A	Au. ICP-OES finish (ppm)		
l yte: Au Unit: ppm	DATE RECEIVED				
Unit: ppm		: Oct 18, 2019	DATE REPORTED: Nov 06, 2019	SAMPLE TYPE: Drill Core	
RDL: 0.001					
0.005					
0.007					
0.018					
0.005					
0.006					
1.77					
0.003					
1.75					
	0.005 0.007 0.004 0.007 0.014 0.005 0.010 0.015 0.014 0.011 0.013 0.013 0.013 0.009 0.003 0.009 0.003 0.007 0.008 0.006 0.003 0.018 0.006 0.005 0.006 0.005	0.005 0.007 0.004 0.007 0.014 0.005 0.010 0.015 0.014 0.011 0.013 0.013 0.013 0.003 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.007 0.004 0.007 0.014 0.005 0.010 0.015 0.014 0.015 0.011 0.013 0.005 0.005 0.006 0.007 0.013 0.008 0.007 0.008 0.006 0.005 0.006 0.005 0.006 0.005 0.005 0.005 0.005 0.006 1.77 0.003	0.005 0.007 0.007 0.014 0.005 0.010 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.013 0.013 0.009 0.007 0.008 0.007 0.008 0.003 0.005 0.006 0.005 0.006 0.005	0.005 0.007 0.004 0.014 0.005 0.015 0.015 0.014 0.013 0.013 0.013 0.013 0.013 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.005 0.008

	boratories	te of Analysis DRDER: 19B532286 R001		5623 McADAM ROA MISSISSAUGA, ONTAR CANADA L4Z 11 TEL (905)501-993 FAX (905)501-053 http://www.agatlabs.co
CLIENT NAME: MISC AGAT CLIENT ON			O: Avrom E. Howard	nipagata20.00
		u, ICP-OES finish (ppm)		
DATE SAMPLED: Oct 17, 2019 Comments: RDL - Reported Detection Limit Analysis performed at AGAT Toronto (unless marked by *)	DATE RECEIVED	 DATE REPORTED: Nov 0	0, 2010 SAM	PLE TYPE: Drill Core
		Certified By:	y . J. 3	mura

			Laboratories		te of Analysis ORDER: 19B532286 R001		MISSISSA C/ TE FA	McADAM ROA UGA, ONTARIO NADA L4Z 1N (905)501-999 (905)501-058 w.agatlabs.cor
CLIENT NAME: MIS	C AGAT CL	IENT ON		5 8 Note 55 5		ON TO: Avrom E. H		
				eving - % Passi				
DATE SAMPLED: Oct			DATE RECEIVED:	Oct 18, 2019	DATE REPORTED: No	ov 06, 2019	SAMPLE TYPE: Drill (Core
	Analyte: Unit:	Pass % %						
Sample ID (AGAT ID)	RDL:	0.01						
E6096852 (627811)		81						
E6096872 (627831)		77						

	6	1	Laboratories		te of Analysis DRDER: 19B532286 R001		5623 McADAM R; MISSISSAUGA, ONTA CANADA L4Z TEL (905)501- FAX (905)501- http://www.agatlabs.
CLIENT NAME: MIS	C AGAT CL	IENT ON			ATTENTIC	ON TO: Avrom E. Ho	
			Sie	ving - % Passing	g (Pulverizing)		
DATE SAMPLED: Oct			DATE RECEIVED:	Oct 18, 2019	DATE REPORTED: N	ov 06, 2019	SAMPLE TYPE: Drill Core
	Analyte:	Pass % %					
Sample ID (AGAT ID)	Unit: RDL:	% 0.01					
E6096851 (627810)		94.4					
Comments: RDL - R Analysis performed at AG/	eported Detect		ted by *)				
							1.4

Quality Assurance - Replicate AGAT WORK ORDER: 19B532286 PROJECT: SLR001 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

	-			(201-	378) Sod			usion		11311			
		REPLIC	ATE #1			REPLIC	ATE #2		-	 			_
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD					
Ag	627811	1	1	0.0%	627835	< 1	< 1	0.0%					
AI	627811	5.43	5.31	2.2%	627835	7.83	7.94	1.4%					
As	627811	< 5	< 5	0.0%	627835	13	11	16.7%					
в	627811	70	66	5.9%	627835	41	43	4.8%					
Ва	627811	235	231	1.7%	627835	198	200	1.0%					
Be	627811	< 5	< 5	0.0%	627835	< 5	< 5	0.0%					
Bi	627811	0.8	0.8	0.0%	627835	14.2	14.4	1.4%					
Са	627811	0.55	0.52	5.6%	627835	0.674	0.691	2.5%					
Cd	627811	0.8	0.4		627835	< 0.2	< 0.2	0.0%					
Ce	627811	50.6	50.2	0.8%	627835	1240	1260	1.6%					
Co	627811	30.3	29.3	3.4%	627835	101	101	0.0%					
Cr	627811	0.005	0.005	0.0%	627835	0.017	0.017	0.0%					
Cs	627811	2.5	2.5	0.0%	627835	0.9	0.9	0.0%					
Cu	627811	990	972	1.8%	627835	105	107	1.9%					
Dy	627811	14.6	13.4	8.6%	627835	29.7	30.5	2.7%					
Er	627811	9.65	8.96	7.4%	627835	10.9	11.1	1.8%					
Eu	627811	2.51	2.43	3.2%	627835	6.25	6.49	3.8%					
Fe	627811	17.0	16.7	1.8%	627835	11.3	11.4	0.9%					
Ga	627811	26.5	25.7	3.1%	627835	27.6	27.2	1.5%					
Gd	627811	13.1	12.7	3.1%	627835	71.0	73.2	3.1%					
Ge	627811	2	2	0.0%	627835	2	2	0.0%					
Hf	627811	8	8	0.0%	627835	2	2	0.0%					
Ho	627811	3.15	2.96	6.2%	627835	4.68	4.78	2.1%					1
In	627811	0.3	0.3	0.0%	627835	< 0.2	< 0.2	0.0%					1
к	627811	1.59	1.55	2.5%	627835	0.83	0.84	1.2%					1
La	627811	19.6	19.2	2.1%	627835	561	586	4.4%					\top
Li	627811	53	52	1.9%	627835	20	18	10.5%					1
Lu	627811	1.49	1.37	8.4%	627835	1.06	1.07	0.9%					1
Mg	627811	1.95	1.93	1.0%	627835	7.12	7.19	1.0%					1
Mn	627811	720	712	1.1%	627835	1500	1520	1.3%					1
Мо	627811	6	7	15.4%	627835	4	4	0.0%		1		1	1

AGAT QUALITY ASSURANCE REPORT

Page 17 of 24

		5		Labor	atories		Quality AGAT WO PROJEC	ORK OR	DER: 198	-	-				TEL FAX	NADA L4Z (905)501-9 (905)501-0 w.agatlabs.
IENT NAM	IE: MISC AC	GAT CLIE	NT ON							ATT	ENTION T	O: Avrom	E. Howar	d	nup.//ww	n agatabs.
Nb	627811	12	11	8.7%	627835	2	2	0.0%								
Nd	627811	38.7	38.3	1.0%	627835	604	628	3.9%								
Ni	627811	24	22	8.7%	627835	149	149	0.0%								
Р	627811	0.05	0.05	0.0%	627835	0.06	0.06	0.0%								
Pb	627811	< 5	< 5	0.0%	627835	5	< 5									
Pr	627811	7.46	7.43	0.4%	627835	147	153	4.0%								
Rb	627811	46.6	45.2	3.1%	627835	17.2	17.4	1.2%								
S	627811	7.40	7.14	3.6%	627835	2.34	2.34	0.0%								
Sb	627811	< 0.1	< 0.1	0.0%	627835	< 0.1	< 0.1	0.0%								
Sc	627811	15	15	0.0%	627835	28	28	0.0%								
Si	627811	23.4	22.8	2.6%	627835	21.8	21.6	0.9%								
Sm	627811	11.0	10.6	3.7%	627835	92.2	94.8	2.8%								
Sn	627811	4	3	28.6%	627835	2	2	0.0%								
Sr	627811	34.9	32.0	8.7%	627835	11.9	12.4	4.1%								
Та	627811	< 0.5	< 0.5	0.0%	627835	< 0.5	< 0.5	0.0%								
Tb	627811	2.25	2.16	4.1%	627835	7.84	8.16	4.0%								
Th	627811	1.84	1.86	1.1%	627835	1.2	1.2	0.0%								
Ti	627811	0.33	0.33	0.0%	627835	0.352	0.358	1.7%								
TI	627811	< 0.5	< 0.5	0.0%	627835	< 0.5	< 0.5	0.0%								
Tm	627811	1.46	1.32	10.1%	627835	1.30	1.31	0.8%								
U	627811	0.530	0.559	5.3%	627835	0.400	0.394	1.5%								
V	627811	26	26	0.0%	627835	187	187	0.0%								
W	627811	< 1	< 1	0.0%	627835	< 1	< 1	0.0%								
Y	627811	88.3	83.4	5.7%	627835	173	178	2.8%								
Yb	627811	9.94	9.04	9.5%	627835	8.2	8.3	1.2%								
Zn	627811	601	491	20.1%	627835	268	268	0.0%								
Zr	627811	300	286	4.8%	627835	61.7	63.2	2.4%								
			(2	01-676)	Lithium	Borate	e Fusio	n - Sun	mation	of Oxi	des, XF	RF finis	n			
		REPLIC	ATE #1			REPLIC	ATE #2									
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD								
AI2O3	627811	10.2	10.3	1.0%	627835	15.7	15.7	0.0%		1						1
BaO	627811	0.01	0.02		627835	0.14	0.14	0.0%								
CaO	627811	0.72	0.73	1.4%	627835	0.99	0.99	0.0%						1		

AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

Page 18 of 24

	(((((((((((((5 (,		Labor	atories		Quality Assurance - Replicate AGAT WORK ORDER: 19B532286 PROJECT: SLR001								MISSISSAUGA, ONTAF CANADA L4Z TEL (905)501-0 FAX (905)501-0 http://www.agatlabs.c			
LIENT NAM	IE: MISC AC		NT ON							ATTE	ENTION TO	D: Avrom	E. Howard	1	nup3/www	ayanabs.		
Fe2O3	627811	23.5	23.6	0.4%	627835	16.9	16.7	1.2%										
K2O	627811	1.72	1.71	0.6%	627835	0.98	0.97	1.0%										
MgO	627811	3.34	3.34	0.0%	627835	12.6	12.6	0.0%										
MnO	627811	0.10	0.11	9.5%	627835	0.20	0.20	0.0%										
Na2O	627811	1.52	1.49	2.0%	627835	0.355	0.337	5.2%										
P2O5	627811	0.109	0.115	5.4%	627835	0.137	0.129	6.0%										
SiO2	627811	48.8	48.9	0.2%	627835	48.9	48.7	0.4%										
TiO2	627811	0.55	0.55	0.0%	627835	0.631	0.613	2.9%										
SrO	627811	< 0.01	< 0.01	0.0%	627835	< 0.01	< 0.01	0.0%										
V2O5	627811	< 0.01	< 0.01	0.0%	627835	0.04	0.04	0.0%										
LOI	627811	4.22	4.24	0.5%	627835	3.03	2.95	2.7%										
				(2	02-052)	Fire As	say - Tr	ace Au	, ICP-O	ES finis	sh (ppm)			•			
		REPLIC	ATE #1			REPLIC	ATE #2											
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD										
Au	627811	0.0223	0.0193	14.4%	627835	0.0182	0.0187	2.7%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19B532286 PROJECT: SLR001 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9988 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

				(201-3	378) So	dium P	eroxide	• Fusion	- ICP-O	ES/ICF	P-MS Fi	nish			
		CRM #1	(ref.SY-4)			CRM #2	(ref.Till-2)			CRM#	3 (ref.sy-4)				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			
AI	10.95	10.59	97%	90% - 110%	8.47	8.02	95%	90% - 110%							
As					26	28	108%	90% - 110%							
Ва	340	334	98%	90% - 110%	540	525	97%	90% - 110%							
Be	2.6	2.9	112%	90% - 110%	4.0	3.6	89%	90% - 110%							
Ca	5.72	5.68	99%	90% - 110%	0.907	0.913	101%	90% - 110%							
Ce	122	119	97%	90% - 110%	98	101	103%	90% - 110%							
Co	2.8	2.5	90%	90% - 110%	15	14	96%	90% - 110%							
Cs	1.5	1.6	108%	90% - 110%											
Cu	7	6	87%	90% - 110%	150	158	105%	90% - 110%							
Dy	18.2	18.7	103%	90% - 110%											
Er	14.2	14.4	102%	90% - 110%	3.7	4	107%	90% - 110%							
Eu	2.0	1.95	97%	90% - 110%	1.0	1.13	112%	90% - 110%							
Fe	4.34	4.32	99%	90% - 110%	3.77	3.84	102%	90% - 110%							
Ga	35	36	104%	90% - 110%											
Gd	14	15	106%	90% - 110%											
Hf	10.6	10.7	101%	90% - 110%	11	10	91%	90% - 110%							
Ho	4.3	4.4	103%	90% - 110%											
к	1.37	1.47	107%	90% - 110%	2.55	2.6	102%	90% - 110%							
La	58	56	97%	90% - 110%	44	45	103%	90% - 110%							
Li	37	41	112%	90% - 110%	47	52	110%	90% - 110%							
Lu	2.1	2.1	100%	90% - 110%	0.6	0.6	93%	90% - 110%							
Mg	0.325	0.3	92%	90% - 110%	1.1	1.1	98%	90% - 110%				i e			
Mn	836	808	97%	90% - 110%	780	752	96%	90% - 110%							
Мо					14	14	98%	90% - 110%							
Nb	13	13	98%	90% - 110%	20	18	91%	90% - 110%							
Nd	57	61	107%	90% - 110%											
Ni					32	30	93%	90% - 110%							
Pb	10	10	99%	90% - 110%	31	31	100%	90% - 110%							
Pr	15.0	14.5	96%	90% - 110%											
Rb	55	51	93%	90% - 110%	144	141	98%	90% - 110%							
Sb					0.8	0.8	98%	90% - 110%				6		1	

AGAT QUALITY ASSURANCE REPORT

Page 20 of 24

	(出)	9 (,		Labor	atorie	S		NORK ORE CT: SLR00		3532286					TE F <i>i</i>	CANADA L4Z 11 EL (905)501-99 AX (905)501-05 www.agatlabs.cc
IENT NAM	E: MISC A	GAT CLIF	ENT ON							ATT	ENTION "	FO: Avrom E	. Howard	ł	neparti	in magadabe.oe
Sc					12	12	99%	90% - 110%								
Si	23.3	22.9	98%	90% - 110%	28.4	27.6	97%	90% - 110%								
Sm	12.7	12.8	101%	90% - 110%	7.4	8.1	109%	90% - 110%								
Sn	7.1	7.4	104%	90% - 110%												
Sr	1191	1247	105%	90% - 110%	144	156	108%	90% - 110%								
Та	0.9	1	109%	90% - 110%	1.9	1.6	82%	90% - 110%								
Tb	2.6	2.8	107%	90% - 110%	1.2	1.2	100%	90% - 110%								
Th	1.4	1	72%	90% - 110%	18.4	18.1	99%	90% - 110%								
Ti	0.172	0.17	99%	90% - 110%	0.527	0.51	97%	90% - 110%								
Tm	2.3	2.3	101%	90% - 110%												
U	0.8	0.7	91%	90% - 110%	5.7	5.3	93%	90% - 110%								
ν	8	7	83%	90% - 110%	77	78	101%	90% - 110%								
W					5	5	100%	90% - 110%								
Y	119	121	102%	90% - 110%	40	38	95%	90% - 110%								
Yb	14.8	15.1	102%	90% - 110%												
Zn	93	90	97%	90% - 110%	130	123	95%	90% - 110%								
Zr	517	555	107%	90% - 110%	390	363	93%	90% - 110%								
			((201-676)	Lithiur	n Borat	te Fusi	on - Sum	mation	of Oxi	des, XI	RF finish				
		CRM #1	l (ref.sy-4)			CRM #2 (ref.GSP5G)		CRM #3	8 (ref.sy-4)					
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits				
AI2O3	20.7	20.7	100%	90% - 110%					20.7	20.7	100%	90% - 110%				
BaO	0.038	0.040	105%	90% - 110%					0.038	0.041	107%	90% - 110%				
CaO	8.05	8.07	100%	90% - 110%					8.05	8.06	100%	90% - 110%				
Fe2O3	6.21	6.23	100%	90% - 110%					6.21	6.23	100%	90% - 110%				
K2O	1.66	1.64	99%	90% - 110%					1.66	1.66	100%	90% - 110%				
MgO	0.54	0.51	94%	90% - 110%					0.54	0.53	98%	90% - 110%				
MnO	0.108	0.113	105%	90% - 110%					0.108	0.111	102%	90% - 110%				
Na2O	7.1	7.2	102%	90% - 110%					7.1	7.3	102%	90% - 110%				
P2O5	0.131	0.133	102%	90% - 110%					0.131	0.136	104%	90% - 110%				
SiO2	49.9	49.8	100%	90% - 110%					49.9	49.7	100%	90% - 110%				
TiO2	0.287	0.291	101%	90% - 110%					0.287	0.289	101%	90% - 110%				
SrO	0.141	0.141	100%	90% - 110%					0.141	0.138	98%	90% - 110%				
LOI					4.56	4.21	92%	90% - 110%								

AGAT QUALITY ASSURANCE REPORT

Results relate only to the items tested. Results apply to samples as received.

Page 21 of 24

agat 🚯	Laboratories
--------	--------------

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 19B532286 PROJECT: SLR001

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Avrom E. Howard

[CRM #1 (ref.GS6F)			CRM #2 (ref.GSP5G)			CRM #3 (ref.sy-4)							
	Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
[Au	6.87	7.03	102%	90% - 110%	0.562	0.559	100%	90% - 110%						

AGAT QUALITY ASSURANCE REPORT

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON PROJECT: SLR001

AGAT WORK ORDER: 19B532286 ATTENTION TO: Avrom E. Howard SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Rb	MIN-200-12049		ICP-MS					
6	MIN-200-12001/MIN-200- 12049		ICP/OES					
Sb	MIN-200-12049		ICP-MS					
Sc	MIN-200-12001/MIN-200- 12049		ICP/OES					
Si	MIN-200-12001/MIN-200- 12049		ICP/OES					
Sm	MIN-200-12049		ICP-MS					
Sn	MIN-200-12049		ICP-MS					
Sr	MIN-200-12001/MIN-200- 12049		ICP/OES					
Та	MIN-200-12049		ICP-MS					
Тb	MIN-200-12049		ICP-MS					
Th	MIN-200-12049		ICP-MS					
Ті	MIN-200-12001/MIN-200- 12049		ICP/OES					
ТІ	MIN-200-12049		ICP-MS					
Tm	MIN-200-12049		ICP-MS					
U	MIN-200-12049		ICP-MS					
V	MIN-200-12001/MIN-200- 12049		ICP/OES					
w	MIN-200-12049		ICP-MS					
Y	MIN-200-12049		ICP-MS					
Yb	MIN-200-12049		ICP-MS					
Zn	MIN-200-12001/MIN-200- 12049		ICP/OES					
Zr	MIN-200-12049		ICP-MS					
AI2O3	MIN-200-12027		XRF					
BaO	MIN-200-12027		XRF					
CaO	MIN-200-12027		XRF					
Cr2O3	MIN-200-12027		XRF					
Fe2O3	MIN-200-12027		XRF					
K2O	MIN-200-12027		XRF					
MgO	MIN-200-12027		XRF					
MnO	MIN-200-12027		XRF					
Na2O	MIN-200-12027		XRF					
P2O5	MIN-200-12027		XRF					
SiO2	MIN-200-12027		XRF					
TiO2	MIN-200-12027		XRF					
SrO	MIN-200-12027		XRF					
V2O5	MIN-200-12027		XRF					
LOI	MIN-200-12021		FURNACE					
Total Oxides	MIN-200-12015		CALCULATION					
Au	MIN-12006, MIN-12004		ICP/OES					
Pass %			BALANCE					

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 24 of 24

Company	Invoice Number	Date	Amount	Activity	Comments/Details					
	Exploratory Drilling Report									
Nebu Consulting LLC	2019-10-18	8/10/2019	\$17,798.06	Field Supervision, Core Logging	Drill Program Mgt. and Core Logging					
Nebu Consulting LLC	2019-10-01	1/10/2019	\$11,329.97	Field Supervision, Core Logging	Drill Program Mgt. and Core Logging					
NEBU	TOTAL		\$29,128.03		1944mm					
	WL-19-2, 3	-	\$18,609.59		1242m					
Chibougamau Diamond Drilling LTD	25214	8/10/2019	\$60,151.63	Diamond Drilling	Final payment – fixed price contract					
	25183	30/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment					
u	25180	26/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment					
	25150	16/09/2019	\$100,000.00	Diamond Drilling	Fixed price contract payment					
п	25216	15/10/2019	\$3,762.00	Core boxes						
Chibougamau	TOTAL		\$363,913.63		1944m					
	WL-19-2, 3		232,904.95		1242m					
AGAT Laboratories	19643565M	06/11/2019	\$3,123.00	Assays	30 samples					
AGAT Laboratories	TOTAL		\$2,602.50		25 samples					
		Ś	\$254,117.04							

APPENDIX 4: Expenses Breakdown