

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Geological Mapping and Prospecting on the Golden Loon Property, Red Lake Mining District, Ontario

November 5th, 2020

Presented to:

Pacton Gold Inc.

Presented By:

Andrew Tims, PGO

for

GoldSpot Discoveries Corp.

69 Yonge St, Suite 1010 Toronto, ON M5E 1K3

Table of Contents

Intr	oduction4			
1	Location and Access7			
2	Claims and Ownership			
3	PREVIOUS WORK			
4	REGIONAL GEOLOGY11			
5	PROPERTY GEOLOGY			
6	WORK PROGRAM16			
D	aily Field Log20			
7	CONCLUSION AND RECOMMENDATIONS			
8	SUMMARY OF EXPENSES			
9	REFERENCES			
10	STATEMENT OF QUALIFICATIONS			
APPENDIX 1 – Geology and Assay Maps				
APPENDIX 2 – Analytical Certificates				
APPENDIX 3 – Outcrop Data Spread				

Table of Figures

Figure 1 - Golden Loon Property Location	5
Figure 2 - Golden Loon Claims	9
Figure 3 - Golden Loon Regional Geology. After Stone (1998a).	12
Figure 4 - Golden Loon Magnetics from Pacton Gold's 2020 geophysical survey - first vertica	1
derivative shown; waved, grey lines indicate interpreted structural lineaments	14
Figure 5 - Interpreted geology of Golden Loon Property based on geophysical data from the	
2020 magnetics survey	15
Figure 6 - 2020 tracks from field work and rock samples of Golden Loon Lake Property.	
Geology after Stone (1998a)	25

Table of Tables

Table 1 - Gold production in the Red Lake District to September 30, 2019. (Paterson et al.,	
2020)	6
Table 2 - Golden Loon Property Claims List	8
Table 3 - Sample descriptions, locations and assay results for gold	26
Table 4 - Summary of Expenses.	26

Table of Photos

Photo 1 - Rare outcrop sticking out of sands in the foreground and boulder field in the
background18
Photo 2 - Typical terrain with regrowth started
Photo 3 - A brittle, sinistral fault cutting a foliated granodiorite offsetting 2 sets of aplite dykes.
Photo 4 - Centimetre-scale dextral shear that transects the earlier foliation

Introduction

The Golden Loon Property is located in the Coli Lake, Hanton Lake, Nungesser Lake and Sobeski Lake areas approximately 50 km north of Red Lake, Ontario, in the Red Lake Mining District (Figure 1). Gold mining in the Red Lake Gold Camp has generated over 29 million ounces (Table 1; Paterson et al., 2020). The property consists of 9 claims encompassing 108 cells that total 2,167 hectares.

The property covers the projected northeast extension of the Red Lake Greenstone belt of the Archean Wabigoon Greenstone Belt between the Trout Lake Batholith and the Little Vermillion Batholith. The geology of the belt in the vicinity of Golden Loon is poorly understood due to the extensive quaternary glacial cover. A forest fire in 2019 burned most of the ground cover and has made the search for outcrop easier.

Outcrop mapping and prospecting was carried out during the month of July 2020 by the author, and a crew of 3 others. Over a three-week period 245 outcrops were mapped and 13 samples were collected and submitted for gold assay plus ICP multi-element analysis.

Figure 1 - Golden Loon Property Location

Table 1 - Gold production in the Red Lake District to September 30, 2019. (Paterson et al., 2020)

MINE	PERIOD			GRADE
Red Lake Gold Mines	2006_present	10.093.122	6 194 290	20.28
Campbell Mine	1949–2006	19 944 241	11 216 443	17 49
Goldcorp (Dickenson)	1948-2006	8 715 228	5 962 948	21.28
Madsen	1938-1976, 1997-1999	7.872.679	2 452 388	9.69
Cochenour–Willans	1939–1971	2.096.654	1 244 279	18.46
McKenzie Red Lake	1935–1966	2,135,361	651 156	9.48
Howey	1930–1941, 1957	4,200,972	421 592	3.12
Hasaga	1938–1952	1,374,641	218 213	4.94
Starratt Olsen	1948–1956	823,554	163 990	6.19
Berens River	1939–1948	508,574	157 341	9.62
Uchi	1939–1943	686,806	114 467	5.18
Jason (Argosy)	1934–1952	250,903	101 875	12.63
H.G. Young	1960–1963	261,432	55 244	6.57
Sachigo River	1938–1941	42,145	52 560	38.79
McMarmac	1940–1948	138,779	45 246	10.14
Gold Eagle	1937–1941	163,379	40 204	7.65
Jackson Manion	1934–1940	95,578	27 142	8.83
Red Lake Gold Shore	1936–1938	78,320	21 100	8.38
Phoenix	2015	57,793	4906	2.64
Hudson Patricia	1936–1937	10,186	1857	5.67
Buffalo	1981–1982	29,017	1656	1.78
Abino	1985–1986	2,479	1397	17.53
Lake Rowan	1986–1988	11,814	1298	3.42
Kostynuk Brothers	1963–1966	577	1126	60.7
Mount Jamie	1976	882	377	13.3
Bobjo	1929	N/A	362	N/A
Bathurst	1927–1937	510	307	18.73
Red Summit	1935–1936	536	277	16.07
Sol d'Or	1933–1936	415	258	19.31
TOTALS		58,324,578	29 153 937	15.55

1 Location and Access

The Golden Loon property is located approximately 50 km north of Red Lake, on the east side of Nungesser Road south of Nungesser Lake. The property is oriented approximately north-south, 9.8 km long x 2.2 km wide (Figure 2).

The property is located within an area of land that has had significant logging activities in past decades. As a result, there are several logging roads in the area providing vehicle access to the property. Logging on the property was done approximately 20 years ago.

The Golden Loon property is accessed from Red Lake via 30 km of paved all seasoned roads (Nungesser Rd.), and then approximately 13 km of primary logging roads (Sidace Lake Road and Coli Lake Road). The northern two thirds of the property are accessed by a primary logging road (Coli Lake Road) located NW of Zimring Lake, which transects the property from south to north. From the access point, Coli Lake Road continues northwards 10 km to the northern extent of the property. The south shore of Nungesser Lake is an additional 2 km north. The portion of Coli Lake Road through the property is rarely used, and has been overgrown by shrubs in many parts, especially the northern portion of the property. There are also two creeks that run east-west across the road, which have had their culverts either removed or washed out. The entire length of the road can be accessed by either ATV or Side-by-Side. Almost all secondary logging roads through the property are overgrown or have significant deadfall that prevent vehicle access.

The southern third of the property, east and south of Zimring Lake, were inaccessible by vehicle as the old secondary logging roads are heavily overgrown. This area was accessed by motorboat during the summer 2020 field season. The access point for the lake was a secondary logging road off Coli Lake Road.

In the summer of 2019, a significant forest fire burned through the Nungesser Lake area, including a large portion of the property. Based on field traverses done during the 2020 field program, it is estimated that at least 50% of the property was burned. Many parts of the forest floor were burned off which permitted easy access by foot to many areas of the property, especially in the centre of the property where forest fires were the most intense. Many of the low-lying areas and swamps were untouched.

Outcrop exposure on the property is rare being largely covered by unconsolidated glacial, glaciofluvial and glaciolacustrine sediments. Outcrops were most found to be most abundant within a NNW-SSE trending corridor, along ridges or steep inclines. Due to the forest fire, which burned off much of the ground cover, many additional outcrops have now been exposed and are easier to locate.

2 Claims and Ownership

According to Ontario's MLAS site on October 26, 2020, the properties are held jointly by Pacton Gold and Perry English in a 50:50 split. The Golden Loon property consists of 9 claims (Table 2; Figure 2), totaling an area of approximately 2175 ha and centered at 464806nE, 5695286mN (NAD83).

Township / Area	Tenure ID	Tenure Type	Anniversary Date	Work Required	Total Reserve
COLI, HANTON, NUNGESSER and SOBESKI LAKE AREAS	542332	Multi-cell Mining Claim	2021-02-17	8400	0
COLI, SOBESKI LAKE AREAS	542388	Multi-cell Mining Claim	2021-02-18	2000	0
HANTON LAKE, NUNGESSER LAKE AREAS	542331	Multi-cell Mining Claim	2021-02-17	7200	0
HANTON LAKE, NUNGESSER LAKE AREAS	542330	Multi-cell Mining Claim	2021-02-17	7600	0
HANTON LAKE, NUNGESSER LAKE AREAS	542329	Multi-cell Mining Claim	2021-02-17	8800	0
NUNGESSER LAKE AREA	542362	Single Cell Mining Claim	2021-02-18	400	0
NUNGESSER LAKE AREA	542361	Single Cell Mining Claim	2021-02-18	400	0
NUNGESSER LAKE AREA	542359	Single Cell Mining Claim	2021-02-18	400	0
NUNGESSER LAKE AREA	542328	Multi-cell Mining Claim	2021-02-17	8000	0

Table 2 - Golden Loon Property Claims List

Figure 2 - Golden Loon Claims

3 PREVIOUS WORK

The Golden Loon Property has had limited exploration activity in the past. Much of the work conducted on the area has been regional style exploration target generation using geophysics, soil sampling, and regional drilling. The following is a summary of known work activities.

Work in the area started in 1977 by Dome Exploration Ltd. The company conducted an airborne magnetic survey in 1977 performed by Questor Surveys Limited, using the input method (Pollock, 1978)). This survey covered an area of 629 km² (243 square miles) of about 30 x 25 km with a goal of targeting base metal occurrences. Dome Exploration Ltd. followed up on targets generated by airborne surveys using electromagnetic and magnetic surveys in 1988 (Bergmann, 1978a; 1978b; Woodard, 1979a; 1979b). In 1980, they completed 11 drillholes in the area targeting geophysical anomalies (Dome Exploration Limited, 1980a; 1980b. None of the holes were drilled on the current extents of the property, however, three of these holes are within 1 km of the property boundary.

In 2003, Consolidated Abaddon Resources Inc. conducted gold grain counts in till samples. None of the data is on the property, although some points are nearby to the south of the property (Busch, 2003).

During the winter of 2004, Rampart Ventures Ltd. subcontracted Terraquest Ltd. and flew an aeromagnetic survey on and near the Golden Loon Property (formerly referred to as the North Red Lake Property) (Barrie, 2004). During the summer of the same year, they conducted prospecting, geological mapping, soil geochemical surveying and ground geophysical surveys (Bowdidge, 2005). Rampart Venture Ltd. conducted a trenching and soil sampling program in 2005 on two areas on and near the Golden Loon Property (Collins et al., 2005). The samples were obtained using an excavator and several were collected using hand-digging methods.

4 **REGIONAL GEOLOGY**

Due to the economic significance of gold in the Red Lake region, the regional geology of the area has been well explored, studied, and documented (Figure 3).

The Golden Loon property is situated in the Red Lake greenstone belt, which is an accumulation of Archean aged supracrustal volcanic and sedimentary rocks and synvolcanic to late tectonic intrusive rocks. These rocks comprise a portion of the Uchi sub-province of the Superior Province. The volcanic rocks have been subdivided into two main groups; a lower, older suite of tholeiitic-komatiitic volcanic rocks with chemical and clastic sedimentary rocks (Balmer Assemblage), and an upper, younger suite of calc-alkaline volcanic rocks and derived sediments (Confederation Assemblage). This stratigraphy is largely east-west trending extending from Lake Winnipeg in the west and the James Bay lowlands to the east.

The Uchi subprovince is bound to the south by metasedimentary rocks of the English River subprovince and the Berens River subprovince to the north which is dominated by granitic rocks with subordinate greenstone belts. The Red Lake greenstone belt is divided by several major tectonic divisions which include; the Red Lake belt, the Birch-Uchi Lake belt, the Confederation Lake belt, the Trout Lake batholith, and the Little Vermillion batholith.

Geochronology of these rocks place the history of volcanism between 2992 Ma and 2732 Ma (Corfu and Wallace, 1986). Much of the mafic and ultramafic rocks of the Red Lake and some of the Birch-Uchi belts are made up of older rocks of the approximately 3 Ga Balmer Assemblage. The balance, which include volcanic and sedimentary rocks of the Confederation Assemblage were deposited at a significantly younger timing in the 2.7 Ga range.

Figure 3 - Golden Loon Regional Geology. After Stone (1998a).

5 PROPERTY GEOLOGY

The Golden Loon property is predominantly covered by unconsolidated till, glaciofluvial, and glaciolacustrine sediments generated by the Laurentide ice sheet. The average field measurement of glacial striae is 065°. The ice front was in direct contact with glacial Lake Agassiz and did not recede steadily, depositing several NW-SE trending moraines. The largest in NW Ontario is the Lac Seul Moraine. This moraine is up to 80 m high and was beached almost to its summit by Lake Agassiz when the lake was at its maximum. Younger beaches developed on the lower slopes as the lake level receded. Once at the toe of the moraine, the lake receded rapidly across the relatively level adjoining terrain with minimal disturbance of the previously deposited glacial sediments. This deposited hummocky sediments on the uplands and varved glaciolacustrine sediments in the lowlands which are now covered by lakes and bogs.

The targeted areas of the property occur in a transitional apron between the Lac Seul Moraine approximately 10 km to the west and the DeGeer moraines to the east. The DeGeer moraines formed in the open flats north and south of Nungesser Lake as a succession of low (seldom greater than 1.5 m), regularly spaced ridges that developed annually during ice recession.

In rare windows through the till cover, the Golden Loon property 2020 bedrock is characterised by a sequence of intermediate to felsic intrusive with entrained xenoliths and enclaves of relic supracrustal rocks. The only mapped exposures of supracrustal rocks are in the south-east corner of the property and in a single outcrop in the centre of the property. Sulphide occurrences are rare. Potassic and epidote alteration is present throughout the granodiorite exposures in fractures and contacts; rare chlorite alteration is observed in the mafic lithologies.

Across the property, the magnetic highs are associated with felsic and intermediate intrusive rocks, while the magnetic lows are typically in topographic lows and are poorly exposed on surface. Prior to under-taking field work on the Golden Loon Property, a GoldSpot geophysicist evaluated and interpreted the newly acquired magnetics survey data for the property that Pacton had commissioned (Figure 4). Both structural lineaments and interpreted lithological contacts were mapped (Figure 5). The premise was to provide the field crew with geophysical context that could be ground-truthed. The geological interpretations from the fieldwork provide rock-type designations for the distinct units identified in the geophysical survey.

Figure 4 - Golden Loon Magnetics from Pacton Gold's 2020 geophysical survey - first vertical derivative shown; waved, grey lines indicate interpreted structural lineaments.

Figure 5 – Interpreted geology of Golden Loon Property based on geophysical data from the 2020 magnetics survey.

6 WORK PROGRAM

During the month of July 2020, a field mapping program was initiated on the Golden Loon property. The goals of the project included mapping all exposed outcrops, confirming or updating previous mapping performed in the area, and collect grab samples for geochemical analysis. This work was carried out by 2 mapping geologists, Andrew Tims and Kacper Halama with assistance from Lakehead University geology students Nina Buchanan and Megan Landman.

The property was accessed mostly by side-by-side, with only the southeast requiring a boat to access. Traverses were pre-determined the day before using satellite imagery and compiled historic data. Many outcrops were exposed due to the fire, which helped to better observe the geology of the property (Photo 1; Photo 2).

Geotools were used where necessary to strip moss from outcrop and hammer and chisel to collect grab samples. Field observations were made and recorded in field books and a rugged tablet.

From geophysical interpretation (Figure 5), lithologic contacts on the property were expected to trend approximately north-northwest to south- southeast necessitating east-west traverses. A total of 18 days were spent mapping on the property. A total of 13 samples were gathered and sent for geochemical analysis using a 30 g Au Fire Assay with an Atomic Absorption finish and a Gravimetric re-assay for assays greater than 10 g. Samples were also analyzed using a 34 multi-element ICP-OES analysis. These samples were submitted to SGS Laboratories in Red Lake, Ontario. See Appendix 2 for analytical certificates.

Based on geophysical interpretation (Figure 5), the structural trend across the property is generally south- to south-southeast striking. This is manifested in outcrop by a regional penetrative foliation averaging 173°/75W°. Geophysical interpretation identified various faults across the property (Figure 5), but, due primarily to the paucity of outcrop, were not identified in outcrop. Some outcrops in the area exhibited S and Z type, asymmetrical, isoclinal folds suggesting a larger regional fold pattern.

Veins across the property are rare, composed of saccharoidal quartz \pm feldspar \pm tourmaline are commonly boudinaged, sometimes ptygmatic, and rarely folded. They are typically mm – cm in scale, very rarely greater than 2 cm in width. They are barren of sulphides, and sometimes have selvages of altered country rock.

A total of 9 distinct bedrock lithologic units were described during the 2020 field mapping program. Below are major lithologies observed:

Gran1: This unit is dominant in the southwest portion of the Golden Loon property, west of Zimring Lake. Its characteristics include a felsic composition, typically in the granodiorite range. It is distinct from other granitic rocks on the property in that it is also moderately magnetic. It is medium to coarse grained, very weakly foliated to massive, and weak to moderately epidote altered.

Granodiorite: This unit is the dominant rock type across the northwestern side of the property. The composition of the rock is predominantly granodioritic, however, it does have internal variability in feldspar and biotite content as well as grainsize. Occurrences of xenoliths of intermediate volcanic rocks are observed within the granodiorite and were observed most commonly near interpreted contacts. It is typically medium to coarse grained, non to weakly magnetic, weakly foliated to locally banded and is commonly crosscut by younger felsic dykes and rare quartz veins.

Felsic Dykes: This unit is observed commonly throughout the property. The unit is characteristically high in feldspars (K-Feldspar dominant), some quartz, and rare biotite. The grainsize is often coarse to pegmatitic, lacking foliation, and contacts are commonly parallel to the foliation of the host rock, and less commonly orthogonal to foliation. These dykes are typically boudinaged, ptygmatic when crosscutting the fabric, and rarely dismembered. Rare xenoliths of host rock are observed within the unit.

Quartz Diorite: This rock is most exposed in the northeastern portion of the property. Its distinctive features are its moderate to strong magnetism and its intermediate composition ranging from dioritic to quartz-diorite. It is fine to medium grained, weakly foliated, and locally gneissic. Rare xenoliths of granodioritic rocks occur.

Intermediate Intrusive/Diorite: This unit is similar to the Quartz-Diorite unit. It appears distinctive in that it is strongly magnetic, fine grained, and containing more amphiboles and biotite. The magnetics survey data indicate it occurs as a linear feature parallel to the quartz-diorite and may be an adjacent sill or dike generated from the same source.

Intermediate Volcanic: This unit is characterized by fine grained, banded rocks, with a high feldspar content. They are weakly to moderately magnetic and are moderately foliated. Rocks of this type were only observed east of Zimring Lake in the southeast end of the property.

Metasediment/Wacke: This unit is observed on the far south east end of the property, east of Zimring Lake. Based on grain size and mineral composition, it is that of a metamorphosed arkosic arenite to wacke. Characteristics of the rock include moderate magnetism, fine to medium-grained, and has weak to moderate foliation.

Chert: This unit is only observed in the southeast end of the property, bound within the metasedimentary units. It is very fine grained to aphanitic, thinly laminated, non- magnetic, highly siliceous and very hard.

Mafic Tuff: This unit was observed in only one outcrop west of the centre of the property. It has a schistose texture, is strongly foliated, non-magnetism, fine-grained with a chlorite-rich matrix and rounded, elongate feldspar phenocrysts or feldspathic clasts.

Mafic Intrusive: This unit was observed in the southwest of the property, north of the access point. It is porphyritic, with a fine-grained groundmass and coarse feldspar phenocrysts, weak to moderately magnetic and has xenoliths of granodiorite entrained within it.

Photo 1 - Rare outcrop sticking out of sands in the foreground and boulder field in the background.

Photo 2 - Typical terrain with regrowth started

In reconciling the interpreted geological unit map from geophysics (Figure 5) with the rock-types mapped in the field some conclusions could be drawn. While seven distinct magnetic signatures were mapped out, two main lithological groupings can be made: felsic intrusive and intermediate intrusive. Differences in the background magnetic signatures within these two main groupings can be interpreted to result from distinct phases of intrusion as well as the relative abundances of entrained supracrustal xenoliths within them.

Daily Field Log

Geologists: Andrew Tims & Kacper Halama; Assistants: Megan Landman & Nina Buchanan

July 1st: Regional geology discussion and observations including Golden Loon property scouting and access. Forestry roads are overgrown with alders where fire was less intense. Otherwise ground cover is burnt right down to the glacial alluvial sands. UTV's will be required to access the northern area of the property.

July 2nd: The While waiting for the UTV's to be available the crew did a traverse into the south end of the property along an overgrown tertiary access road into Zigrim Lake on claim 542332. Numerous outcrops of massive to weakly foliated grandiorite which was weakly magnetic with centimetre-scale syenitic dykes were observed and mapped.

July 3rd: The main road access was driven by UTV's. Only two outcrops were noted along the road. Mapping methods were reviewed and a lithology nomenclature was agreed upon. One roadside outcrop on claim 542331 was mapped in as a weakly foliated granodiorite cut by centimetre-scale pegmatite and kspar aplite dykes. The second outcrop was found north of the road on claim 542328. It consisted of a weakly foliated homogeneous quartz-diorite. I was also noted that the property is covered by regularly spaced boulder ridges with 100-200 m wide glacial fluvial outwash sand plains between the 10-30 m high recessional moraines.

July 4th: Halama and Buchanan accessed the northwest corner of the property and completed a traverse on claim 542328 west of the access trail. Weak to moderately foliated granodiorite cut by centimetre-scale pegmatite and aplite dykes were mapped throughout. Tims and Landman traversed east of the access trail on claim 542330 through an area where all ground cover had been burnt off leaving a landscape of nicely lined-up blacken trunks sticking out of a sandy desert. Not a single outcrop was could be located. A second traverse to the west of the access trail was then completed. A single large ridge of outcrop of weak to moderately foliated granodiorite was mapped.

July 6th: Halama, Buchanan, and Landman, accessed northeastern area of property where predominantly quartz diorite outcrops were observed. An additional traverse was made on the west side of the road, locating a large syenitic outcrop.

July 7th: Halama and Landman traversed east of the access road immediately north of Twin Lakes on claim 542328. Tims and Buchanan traversed through a burnt clear cut on claims 542330 and 542329. Numerous outcrops of variably foliated granodiorite cut by centimetre-scale pegmatite and kspar aplite dykes (Photo 3). The foliation transects both the dykes and host granodiorite indicating that the deformation occurred after the dykes were emplaced. A late, discrete sinistral offset of the small dikes is also evident, note the narrow (less than 1 cm) bleaching and positive weathering flanking the brittle fault, evidence of silica-bearing alteration fluids.

Photo 3 - A brittle, sinistral fault cutting a foliated granodiorite offsetting 2 sets of aplite dykes.

Oldest set of granitic dykes show open folding. Minor faults with meter-scale offsets noted (Photo 4).

Photo 4 - Centimetre-scale dextral shear that transects the earlier foliation.

July 8th: Halama and Buchanan traversed south of the access road between Twin Lakes on claim 542328. The goal was to determine the extent of the quartz diorite body and to trace out the north-south diorite dyke with the strong magnetic signature.

Tims and Landman completed a number of short traverses targeting outcrops visible in the BingMap view on claims 542330 and 542331 and outcrops mapped in previous work reports. Weather on this day was overcast, hot, and windy.

July 9th: Halama and Landman traversed the northeastern area of the property and targeting outcrop evidence of a fault interpreted from Magnetics (Figure 4). All rocks observed were granodiorites with syentic dykes and sills.

Tims and Buckanan targeted outcrops in a burnt clearcut on claims 542329 & 542330.

July 10th: Halama, Buchanan, Landman: Long traverse from primary logging road towards outcrops observed at the southern end of lake during previous two days of traverses. Outcrops along traverse were observed with intermediate intrusive lithologies containing disseminated pyrite. All other outcrops were

granodiorites. Long day, traverse and end of day skipped some outcrops to be traversed another day. Weather for the day was windy, hot, and overcast.

July 11th: Halama, Buchanan, Landman traversed through area north of the July 10th traverse. Many more swamps and low-lying areas were encountered. Dioritic outcrops were observed on or near magnetic high feature observed in geophysical maps. Granodiorites observed in outcrop near lake.

July 12th: Halama, Buchanan, Landman traversed area south of the July 10th traverse and revisited and mapped outcrops. Observed a possible mafic tuff unit and intermediate intrusive with pyrite. All other outcrops observed were granodiorites.

July 14th: Halama and Buchanan traversed eastern area in the centre of the property on claim 542330. Area appears to have been intensely burnt, all organic matter has been burnt off. No outcrop was observed on this day. Weather was hot and partly sunny.

Tims and Landman completed three traverses covering 3.9 km between the access trail and the eastern property boundary on claims 542329 and 542330. No outcrop was located. Access to Zimring Lake was undertaken with the discovery of a cached 14 ft boat. Arrangements were made to rent an outboard motor.

July 15th: Halama and Landman traversed between the access road and the eastern property boundary on claim 542331. The traverse was through an area of intense burn with all organic material burned off the alluvial sands. A quartz diorite outcrop was located on the edge of a swamp and is the only observed surface expression of a large magnetic feature. The weather was hot and partly cloudy.

Tims and Buckanan installed the boat and motor on Zimring Lake and mapped the islands and lakeshore on claim 542332. The fine-grained margin of the granite beneath Zimring lake was identified in two outcrops. A burned trappers cabin was also found.

July 16th: Both crews used the boat on Zimring Lake to access the eastern side of the lake on claim 542332. Large, exposed outcrops of felsic intrusive and intermediate volcanic rocks were observed. Some bands contained blebs of pyrite within strongly foliated rock.

July 17th: The crews accessed the area south and east of Zimring Lake by boat to undertake multiple traverses. A longer traverse was hiked south of Zimring Lake which was also accessed by boat and utilized a secondary logging road for part of the hike. Granodioritic rocks and a large outcrop of

metasedimentary rock (wacke) with a narrow chert bed were observed in the far south east of the property. Tims and Buchanan completed the southern-most traverse on claims 542332 and 542388. Two samples (253415 & 253416) were taken for assay.

July 18th: Buchanan and Landman traversed area near the property access point observing large outcrops of coarse grained, porphyritic granodioritic rocks. ATV's were demobilized out to Nungesser Road.

Figure 6 - 2020 tracks from field work and rock samples of Golden Loon Lake Property. Geology after Stone (1998a).

SampleID	UTM_E	UTM_N	Rock_type	Au_ppm	Comments
00253263	463238	5697757	Intermediate int	<0.005	Dk green-grey, Fsp porphyritic. <1mm mag crystals, trace pyrite.
00253264	463190	5697746	Intermediate int	0.023	Strongly foliated. 5% disseminated subhedral pyrite with trace spec hematite.
00253272	463355	5698096	Intermediate int	<0.005	Fine grained. Trace pyrite and Fe staining on fracture surfaces.
00253265	463115	5697969	Felsic int	<0.005	Syenitic composition. Moderate to strong foliation. Siliceous? Hard
00253266	463522	5697189	Mafic tuf	<0.005	Chl rich, strongly foliated matrix with ~30% rounded clasts or phenos, stretched along foliation.
00253267	463503	5697190	Intermediate int	<0.005	Schistose. Moderately foliated.1% pyrite.
00253268	466356	5692260	Intermediate volc	0.005	Strongly foliated with parallel veining. S-folded. 1% pyrite.
00253269	467214	5691455	Wacke	<0.005	Z-folding. Weak to moderate foliation.
00253270	467303	5691455	Chert	<0.005	Finely laminated, hard. Z-folded.
00253271	464246	5694416	Mafic Int	<0.005	1% pyrite, abundant phenocrysts.
00253414	464212	5693379	Felsic int	<0.005	Trace disseminated Py
00253415	466591	5690556	Intermediate volc	<0.005	Trace disseminated Py, Hm
00253416	466175	5690543	Granite	<0.005	Trace disseminated Py

7 CONCLUSION AND RECOMMENDATIONS

The 2020 mapping program identified the major units at Golden Loon. On outcrop, the dominant foliation across the property is N-S trending and obscures any earlier structure. Locally, there are some structures that indicate tight isoclinal folding which are likely related to this foliation. The property geophysics map indicates magnetic lows and faults in areas across the property, but no outcrops were found where these features occur. This is consistent with faulting resulting in topographic lows that are susceptible to burial by till and water bodies.

Based on the mapping completed, there are no targets with significant mineralization to warrant followup investigations. The extensive glacial cover and the lack of outcrop over areas of linear magnetic lows may warrant further scrutiny using ground-based geophysical techniques such as IP. After refining the locations of potential fault zones stripping and/or drilling could be considered. Reverse circulation drilling is of limited use as till sampling by previous workers reveal no pristine gold grains were present (Collins et al, 2005). Prospecting the magnetic lows by diamond drilling will be more useful in mapping the buried bedrock for lithology and alteration pathfinder data. This method worked well in the Rainy River gold deposit area. Mapping does indicate that additional volcanic lithologies may be found further to the east. At the time of report writing this ground is available for staking.

8 SUMMARY OF EXPENSES

A summary of expenses for the work included in this assessment report is included in Table 4

Туре	Expense
Geological Consultants (58 man days x 1000\$ per day)	\$57,960.00
Supplies and Equipment Rental	\$442.06
Food and Lodging	\$3,064.66
Transportation to/from Mining Lands	\$990.84
Geochemical Analysis	\$450.45
Total	\$62,908.01

Table 4. Summary of Expenses

9 REFERENCES

- Barrie, C.Q., 2004; Operations Report Tri-Sensor High Sensitivity Magnetic Airborne Survey – North Red Lake Project, for Rempart Ventures Ltd., 16 pg, MNDM Assessment File 20000000484.
- Bergmann, H.J., 1978a; Report on geophysical surveys for Dome Exploration (Canada) Ltd.
 Project 122C Northred Area, Ont., 11 pg, MNDM Assessment File 52N06NW0006.
- Bergmann, H.J., 1978b; Report on geophysical surveys for Dome Exploration (Canada) Ltd.
 Project 122B Northred Area, Ont., 19 pg, MNDM Assessment File 52N12SE0001.
- Bowdidge, C., 2005; Report on the 2004 Exploration Program for Rampart Ventures & Inlet Resources Ltd. on the North Red Lake Property – Nungesser-Trout Lakes Area, 87 p, MNDM Assessment file 2000000582.
- Busch, D.J., 2003; Results of Till Sampling Sidace Lake Property, for Consolidated Abaddon Resources Inc. and Skyharbour Resources Ltd., 40 pg, MNDM Assessment file 52N06SW2001.
- Clarke, J.G., 2002; Report to evaluate and recommend an exploration program on the Sidace Lake property of Planet Exploration Inc., Red Lake area, Red Lake Mining Division, Ontario by Clarke Exploration Consulting, October, 2002. Assessment files, MNDM.
- Clarke, J.G. and Nelson, B., 1997; Report on prospecting, mapping and sampling, Red Lake eastern extension property, Northwestern, Ontario for Corsair Exploration, January, 1997. Assessment files, MNDM.
- Collins, P.A. & Averill, S.A., 2005; Rampart Ventures Ltd. North Red lake Project, Ontario, Canada - Report on Overburden Trenching and Heavy Mineral Sampling for Gold. 53 pg, MNDM Assessment file 2000000516.
- Dome, 1980; Diamond Drill Logs, Project 122 in MNDM Assessment Files: Nungesser Lake 4; Nungesser Lake 5; Pringle Lake 2; Hanton Lake 6; Hanton Lake 7; Hanton Lake 8 (Red Lake Resident Geologist Office file numbers).

Dome Exploration Limited, 1980a; Diamond Drill Logs - Area: Hanton Lake, Report No 10,

12 pg. MNDM Assessment File 52N06NW0001.

- Dome Exploration Limited, 1980b; Diamond Drill Logs Area: Nungesser Lake, Report No 10, 15 pg. MNDM Assessment File 52N06NW0003.
- Paterson, W.P.E., Ravnaas, C., Lewis, S.O., Paju, G.F., Fudge, S.P., Daniels, C.M. and Pettigrew, T.K. 2020. Report of Activities 2019, Resident Geologist Program, Red Lake Regional Resident Geologist Report: Red Lake and Kenora Districts; Ontario Geological Survey, Open File Report 6363, 112p.
- Pollock, F.W., 1978; Airborne Magnetic Survey Dome Exploration (CAN) Ltd. Trout Lake Area, Ontario – File No: 19043 – March,1978. 25 pg, MNDM Assessment File 52N12SE0252.
- Sanborn-Barrie, M., Rogers, N., Skulski, T., Parker, J., McNicoll, V., and Devaney, J. 2004; Geology and Tectonostratigraphic Assemblages, East Uchi Subprovince, Red Lake and Birch-Uchi belts, Ontario; Geological Survey of Canada, Open File 4256; Ontario Geological Survey, Preliminary Map P3460, scale 1:250 000.
- Stone, D., 1998a; Precambrian geology, Trout Lake area, Ontario Geological Survey, Map P.3383, scale 1:250 000
- Stone, D., 1998b; Precambrian Geology of the Berens River Area, Northwest Ontario.Ont. Geol. Surv. Open File Rept. 5963.
- Terraquest Ltd., 2004. Operations Report, Tri-Sensor High-Sensitivity Airborne Magnetic Survey, North Red Lake Red Lake Area, for Rampart Ventures Ltd.
- Woodard, J.A., 1979a; Electromagnetic and Magnetic Survey for Dome Exploration (Canada) Limited on Project 122A, Northred – Red Lake Area, Ontario, 8 pg, MNDM Assessment File 52N06NW0002.
- Woodard, J.A., 1979b; Electromagnetic and Magnetic Survey for Dome Exploration (Canada) Limited on Project 122B, Northred – Red Lake Area, Ontario, 15 pg, MNDM Assessment File 52N06NW0004.

10 STATEMENT OF QUALIFICATIONS

I, Andrew A. B. Tims, of 317 Sillesdale Cr., Thunder Bay Ontario hereby certify that:

- 1.) I am the co-author of this report.
- 2.) I graduated from Carleton University, in Ottawa, with a Bachelor of Science Degree in Geology (1989).
- 3.) I possess a lifetime prospector's license and have been practising my profession in mineral exploration industry for the past 35 years.
- 4.) I am a practising member of the Association of Professional Geoscientist of Ontario as well as a Fellow of the Geological Association of Canada.

Thunder Bay, Ontario September 4, 2020

malutur

Andrew Tims, P.Geo Northern Mineral Exploration Services

I, Kacper Halama, of 44 Jameson Cres., Brampton Ontario hereby certify that:

1.) I am the co-author of this report.

2.) I graduated from Acadia University, in Wolfville Nova Scotia, with a Bachelor of Science Degree in Geology (2012).

pyer Her

Brampton, Ontario 2020

Kacper Halama September 14,

APPENDIX 1 – Geology and Assay Maps

Mafic Flow, pillowed	1a
Mafic Flow, massive	1b
Mafic Tuff	1c
Intermediate Flow, massive	2a
Intermediate Tuff	2c
Felsic Flow, massive	3a
Felsic Tuff	3c
Sediment, siltstone or wacke	4
Conglomerate	4c
Granite to Granodiorite	6
Quartz Vein	10

Lithology Map Codes

Golden Loon Property
 Structural Interpretation
 Fault
 Geological Interpretation
 Unit 1a - Felsic Intrusive
 Unit 1b - Felsic Intrusive
 Unit 1c - Felsic Intrusive
 Unit 1d - Felsic Intrusive
 Unit 1d - Felsic Intrusive
 Unit 2a - Intermediate Intrusive
 Unit 2b - Intermediate Intrusive
 Unit 2c - Intermediate Intrusive

Farrer Lake

| Nungesser Lake

APPENDIX 2 – Analytical Certificates

ANALYSIS REPORT YRL20-00182

То PACTON GOLD INC KARLY OLIVER 1680-200 BURRARD ST VANCOUVER V6C 3L6 BC CANADA

Order Number	System Testing	Date Received	21-Aug-2020
Submission Number	Red Lake 08212020	Date Analysed	21-Aug-2020
Number of Samples	13	Date Completed	22-Aug-2020
		SGS Order Number	YRL20-00182

Methods Summary

Number of Sample	Method Code
13	G_WGH_KG
13	GE_FAA30V5

Description Weight of samples received Au, FAS, exploration grade, AAS, 30g-5ml

Authorised Signatory

Dennis Dykin **Operations Manager**

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

> - not analysed -- element not determined

| L.N.R. listed not received

22-Aug-2020 4:28PM YRL_U0003273817

Page 1 of 2

| I.S. insufficient sample

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

Redlake 16 A Young Street PO Box 1349 Red Lake Ontario POV 2M0 CANADA t +001 (807) 727 2939 f +001 (807) 727 3183

www.sgs.com

Order Number Submission Number Number of Samples

System Testing Red Lake 08212020 13

Element Method Lower Limit Upper Limit Unit	Wtkg G_WGH_KG 0.01 ka	@Au GE_FAA30V5 0.005 10 ppm m / m
253263	0.74	< 0.005
253264	0.94	0.023
253265	0.69	<0.005
253266	1.21	<0.005
253267	1.20	<0.005
253268	1.11	0.005
253269	0.65	<0.005
253270	0.84	<0.005
253271	0.94	<0.005
253272	0.95	<0.005
253414	2.94	<0.005
253415	1.88	<0.005
253416	1.28	<0.005
*Blk BLANK	-	<0.005
*Rep 253265	-	<0.005
*Std OREAS222	-	1.257

SGS Canada Minerals Redlake conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs

Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

22-Aug-2020 4:28PM YRL_U0003273817

Page 2 of 2

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

Redlake 16 A Young Street PO Box 1349 Red Lake Ontario POV 2M0 CANADA t +001 (807) 727 2939 f +001 (807) 727 3183

www.sgs.com

Member of the SGS Group (SGS SA)

ANALYSIS REPORT YRL20-00182

ANALYSIS REPORT YRL20-00182

То PACTON GOLD INC **KRIS RAFFLE** 1680-200 BURRARD ST VANCOUVER V6C 3L6 BC CANADA

Project	Red Lake	Date Received	21-Aug-2020
Submission Number	*BBY* Red Lake Project / 13 Rocks	Date Analysed	02-Sep-2020 - 04-Sep-2020
Number of Samples	13	Date Completed	04-Sep-2020
		SGS Order Number	YRL20-00182
Mathada Summany			
memous Summary			

Number of Sample	Method Code
13	G_LOG
13	GE_ICP90A50

Description Sample Registration Fee Na2O2 Fusion, ICPAES, 0.1g-50ml

Authorised Signatory

John Chiang Laboratory Operations Manager

This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement puposes.

> - not analysed 1 -- element not determined

| I.S. insufficient sample | L.N.R. listed not received

6-Sep-2020 4:07PM BBM_U0003497079

Page 1 of 5

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

Red Lake *BBY* Red Lake Project / 13 Rocks 13

ANALYSIS REPORT YRL20-00182

Element Method Lower Limit Upper Limit	Al GE_ICP90A50 0.01 25	As GE_ICP90A50 30 100,000	Ba GE_ICP90A50 10 50,000	Be GE_ICP90A50 5 25,000	Ca GE_ICP90A50 0.1 25	Cd GE_ICP90A50 10 50,000
Unit	%	ppm m / m	ppm m / m	ppm m / m	%	ppm m / m
253263	7.97	<30	470	<5	4.6	<10
253264	9.92	<30	154	<5	2.3	<10
253265	7.40	<30	631	<5	0.6	<10
253266	6.13	<30	762	<5	5.7	<10
253267	8.33	<30	602	<5	2.4	<10
253268	7.25	<30	116	<5	8.8	<10
253269	7.20	<30	676	<5	0.6	<10
253270	7.32	<30	728	<5	0.7	<10
253271	7.91	<30	294	<5	5.5	<10
253272	8.28	<30	451	<5	2.9	<10
253414	7.32	<30	676	<5	0.8	<10
253415	7.78	<30	32	<5	2.8	<10
253416	8.90	<30	822	<5	3.3	<10
*Blk BLANK	<0.01	<30	<10	<5	<0.1	<10
*Std OREAS 927	6.42	<30	292	<5	0.4	<10
*Rep 253267	8.36	<30	620	<5	2.4	<10
*Std MP-2a	6.08	5326	11	<5	3.2	10
*Std OREAS 623	5.30	80	1329	<5	1.4	48

Element Method Lower Limit Upper Limit	Co GE_ICP90A50 10 50,000	Cr GE_ICP90A50 10 50,000	Cu GE_ICP90A50 10 50,000	Fe GE_ICP90A50 0.01 25	K GE_ICP90A50 0.1 25	La GE_ICP90A50 10 50,000
Unit	ppm m / m	ppm m / m	ppm m / m	%	%	ppm m / m
253263	29	36	13	8.66	0.9	18
253264	38	75	113	5.00	1.0	21
253265	<10	29	<10	1.17	4.5	33
253266	39	754	<10	4.43	1.5	12
253267	18	43	54	3.56	1.8	29
253268	17	110	246	8.48	0.8	10

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

6-Sep-2020 4:07PM BBM_U0003497079

Page 2 of 5

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

Red Lake *BBY* Red Lake Project / 13 Rocks 13

ANALYSIS REPORT YRL20-00182

Flement	Co	Cr	Cu	Fe	ĸ	l a
Method	GE ICP90A50					
Lower Limit	10	10	10	0.01	0.1	10
Upper Limit	50,000	50,000	50,000	25	25	50.000
Unit	ppm m / m	ppm m / m	ppm m / m	%	%	ppm m / m
253269	<10	12	<10	1.14	4.8	27
253270	<10	32	12	1.27	4.7	62
253271	21	58	23	5.73	0.6	33
253272	14	65	27	2.11	1.5	17
253414	<10	25	<10	0.93	3.5	<10
253415	13	28	<10	3.14	0.2	51
253416	18	36	16	3.42	2.2	28
*Blk BLANK	<10	<10	<10	<0.01	<0.1	<10
*Std OREAS 927	30	72	10356	8.45	1.9	36
*Rep 253267	19	45	52	3.57	1.8	28
*Std MP-2a	<10	148	471	5.11	1.3	157
*Std OREAS 623	215	23	16702	13.37	1.5	26

Element Method Lower Limit Upper Limit Unit	Li GE_ICP90A50 10 50,000 ppm m / m	Mg GE_ICP90A50 0.01 25 %	Mn GE_ICP90A50 10 100,000 ppm m / m	Mo GE_ICP90A50 10 50,000 ppm m / m	Ni GE_ICP90A50 10 100,000 ppm m / m	P GE_ICP90A50 0.01 25 %
253263	17	2.08	1646	<10	11	0.12
253264	16	1.19	683	<10	23	0.12
253265	<10	0.14	287	<10	<10	0.03
253266	37	7.20	827	<10	343	0.17
253267	31	0.96	634	<10	<10	0.09
253268	<10	1.29	2119	<10	18	0.04
253269	18	0.13	215	<10	<10	0.02
253270	26	0.18	215	<10	<10	0.02
253271	17	1.65	848	<10	<10	0.22
253272	48	0.94	540	<10	13	0.04
253414	<10	0.19	135	<10	<10	<0.01
253415	19	1.10	498	<10	<10	0.09

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

6-Sep-2020 4:07PM BBM_U0003497079

Page 3 of 5

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

Red Lake *BBY* Red Lake Project / 13 Rocks 13

ANALYSIS REPORT YRL20-00182

Element	Li	Mg	Mn	Мо	Ni	Р
Method	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50
Lower Limit	10	0.01	10	10	10	0.01
Upper Limit	50,000	25	100,000	50,000	100,000	25
Unit	ppm m / m	%	ppm m / m	ppm m / m	ppm m / m	%
253416	55	1.43	675	<10	<10	0.08
*BIk BLANK	<10	<0.01	<10	<10	<10	<0.01
*Std OREAS 927	35	2.15	1192	<10	29	0.06
*Rep 253267	31	0.97	631	<10	<10	0.08
*Std MP-2a	92	0.09	1053	1423	<10	0.01
*Std OREAS 623	19	1.22	604	10	<10	0.04

Element Method Lower Limit Upper Limit Unit	Pb GE_ICP90A50 20 100,000 ppm m / m	Sb GE_ICP90A50 50 100,000 ppm m / m	Sc GE_ICP90A50 5 50,000 ppm m / m	Si GE_ICP90A50 0.1 30 %	Sn GE_ICP90A50 50 50,000 ppm m / m	Sr GE_ICP90A50 10 5,000 ppm m / m
253263	<20	<50	14	23.3	<50	785
253264	<20	<50	17	27.2	<50	518
253265	28	<50	<5	>30.0	<50	118
253266	<20	<50	14	22.9	<50	1139
253267	<20	<50	13	29.2	<50	415
253268	<20	<50	23	24.4	<50	484
253269	20	<50	<5	>30.0	<50	161
253270	<20	<50	<5	>30.0	<50	170
253271	<20	<50	14	26.0	<50	687
253272	<20	<50	5	>30.0	<50	388
253414	<20	<50	<5	>30.0	<50	169
253415	<20	<50	7	>30.0	<50	605
253416	<20	<50	11	29.1	<50	715
*BIk BLANK	<20	<50	<5	<0.1	<50	<10
*Std OREAS 927	216	<50	11	27.2	<50	28
*Rep 253267	<20	<50	13	29.2	<50	415
*Std MP-2a	2678	<50	5	>30.0	454	12
*Std OREAS 623	2556	<50	7	22.8	<50	85

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

6-Sep-2020 4:07PM BBM_U0003497079

Page 4 of 5

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

Red Lake *BBY* Red Lake Project / 13 Rocks 13

ANALYSIS REPORT YRL20-00182

Element	Ti	V	W	Y	Zn
Method	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50	GE_ICP90A50
Lower Limit	0.01	10	50	5	10
Upper Limit	25	50,000	40,000	25,000	50,000
Unit	%	ppm m / m			
253263	0.41	156	<50	15	122
253264	0.54	178	<50	16	78
253265	0.13	10	<50	9	29
253266	0.34	96	<50	10	70
253267	0.34	109	<50	13	70
253268	0.44	177	<50	11	65
253269	0.13	12	<50	8	24
253270	0.13	14	<50	12	23
253271	1.00	113	<50	14	114
253272	0.19	46	<50	9	49
253414	0.08	<10	<50	<5	24
253415	0.23	71	<50	13	57
253416	0.26	89	<50	11	67
*Blk BLANK	0.02	<10	<50	<5	<10
*Std OREAS 927	0.34	78	<50	22	731
*Rep 253267	0.34	109	<50	13	71
*Std MP-2a	0.03	<10	3025	214	5652
*Std OREAS 623	0.16	28	<50	17	9672

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

6-Sep-2020 4:07PM BBM_U0003497079

Page 5 of 5

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2349 f

www.sgs.com

Member of the SGS Group (SGS SA)

APPENDIX 3 – Outcrop Data Spread

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
2-Jul-20	Golden Loon	GL066	Kacper Halama	02-Jul-20 10:43:48AM		15U	464547.6163	5690877.242	446.895264	Granite1
2-Jul-20	Golden Loon	GL067	Kacper Halama	02-Jul-20 11:23:45AM		15U	465190.36	5691192.953	436.561157	Granite1
2-Jul-20	Golden Loon	GL068	Kacper Halama	02-Jul-20 12:13:13PM		15U	465175.4457	5691109.027	432.715942	Granite1
2-Jul-20	Golden Loon	GL069	Kacper Halama	02-Jul-20 12:16:11PM		15U	465202.6467	5691067.787	433.196533	Granite1
2-Jul-20	Golden Loon	GL070	Kacper Halama	02-Jul-20 12:18:16PM		15U	465194.7686	5691004.303	431.754517	Granite1
2-Jul-20	Golden Loon	GL071	Kacper Halama	02-Jul-20 12:22:22PM		15U	465167.7664	5691003.751	429.831909	Granite1
2-Jul-20	Golden Loon	GL072	Kacper Halama	02-Jul-20 12:38:55PM		15U	465290.6209	5691005.356	439.925659	Granite1
2-Jul-20	Golden Loon	GL073	Kacper Halama	02-Jul-20 12:51:01PM		15U	465393.3356	5690981.522	450.259766	Granite1
2-Jul-20	Golden Loon	GL074	Kacper Halama	02-Jul-20 12:58:57PM		15U	465451.0076	5691040.866	436.561157	Granite1
2-Jul-20	Golden Loon	GL075	Kacper Halama	02-Jul-20 1:01:36PM		15U	465544.8255	5691098.541	434.398193	Granite1
3-Jul-20	Golden Loon	GL076	Kacper Halama	03-Jul-20 11:04:50AM		15U	464614.7257	5694374.801	428.390015	Felsic int
3-Jul-20	Golden Loon	GL077	Kacper Halama	03-Jul-20 12:36:31PM		15U	463994.8178	5698899.81	405.078125	Qtz Diorite
4-Jul-20	Golden Loon	GL078	Kacper Halama	04-Jul-20 9:18:57AM		15U	462469.659	5699787.595	435.840088	Felsic int
1 101 20	Calden Lann	C1 070	K	04 1-1 20 0-40-20484		4511	462402 5062	500720 400	427 522220	Falsta tak
4-Jui-20	Golden Loon	GL079	Kacper Halama	04-JUI-20 9:48:20AW		150	462402.5063	5699739.168	437.522339	Feisic Int
4-Jul-20	Golden Loon	GL080	Kacper Halama	04-Jul-20 9:56:54AM		15U	462189.0931	5699702.155	415.171997	Felsic int
4-Jul-20	Golden Loon	GL081	Kacper Halama	04-Jul-20 10:00:24AM		15U	462103.1958	5699699.736	425.505981	Felsic int
4-Jul-20	Golden Loon	GL082	Kacper Halama	04-Jul-20 10:02:03AM		15U	462040.6958	5699698.607	423.583374	Felsic int
4-Jul-20	Golden Loon	GL083	Kacper Halama	04-Jul-20 10:18:51AM		15U	461975.9404	5699708.263	417.815552	Felsic int
4-Jul-20	Golden Loon	GL084	Kacper Halama	04-Jul-20 10:21:45AM		15U	461948.7975	5699706.191	418.055908	Felsic int
4-Jul-20	Golden Loon	GL085	Kacper Halama	04-Jul-20 10:27:52AM		15U	461873.9028	5699667.077	414.931641	Felsic int
4-Jul-20	Golden Loon	GL086	Kacper Halama	04-Jul-20 10:34:32AM		15U	461913.7898	5699547.474	407.962036	Felsic int
4-Jul-20	Golden Loon	GL087	Kacper Halama	04-Jul-20 10:35:55AM		15U	461918.9064	5699517.362	414.450928	Felsic int
4-Jul-20	Golden Loon	GL088	Kacper Halama	04-Jul-20 10:38:06AM		15U	461972.2013	5699508.686	415.652588	Felsic int
4-Jul-20	Golden Loon	GL089	Kacper Halama	04-Jul-20 11:06:11AM		15U	462125.0295	5699555.033	411.086304	Felsic int
4-Jul-20	Golden Loon	GL090	Kacper Halama	04-Jul-20 11:46:30AM		15U	463641.0781	5698824.13	415.412354	Qtz Diorite
4-Jul-20	Golden Loon	GL091	Kacper Halama	04-Jul-20 12:04:22PM		15U	464576.2166	5698601.23	406.520142	Qtz Diorite
6-Jul-20	Golden Loon	GL092	Kacper Halama	06-Jul-20 8:56:49AM		150	463661.1219	5699002.411	421.180176	Qtz Diorite
6-Jul-20	Golden Loon	GL093	Kacper Halama	06-Jul-20 9:17:51AM		15U	463758.0247	5699021.437	405.558838	Qtz Diorite
6 Jul 20	Caldan Laan	C1004	Kaanas Halama	06 101 20 0122-24484		1511	462822 5854	FC000F3 FC7	410.265256	Ota Diovito
6-Jui-20	Golden Loon	GL094	Kacper Halama	06-JUI-20 9:22:24AIVI		150	463833.5854	5699052.567	410.365356	Qtz Diorite
6-Jul-20	Golden Loon	GL095	Kacper Halama	06-Jul-20 9:25:34AM		15U	463851.6801	5699058.274	407.000732	Qtz Diorite
6-Jul-20	Golden Loon	GL096	Kacper Halama	06-Jul-20 9:42:37AM		15U	463905.8721	5699059.176	414.691284	Qtz Diorite
6-Jul-20	Golden Loon	GL097	Kacper Halama	06-Jul-20 9:51:22AM		15U	463956.2787	5699059.444	416.613892	Qtz Diorite
6-Jul-20	Golden Loon	GL098	Kacper Halama	06-Jul-20 9:54:14AM		15U	463965.4493	5699110.613	414.931641	Qtz Diorite
6-Jul-20	Golden Loon	GL099	Kacper Halama	06-Jul-20 11:37:12AM		15U	462968.1083	5699017.089	396.666748	Felsic int
6-Jul-20	Golden Loon	GL100	Kacper Halama	06-Jul-20 11:52:53AM		15U	462920.5918	5698977.779	408.442749	Felsic int
6-Jul-20	Golden Loon	GL101	Kacper Halama	06-Jul-20 12:32:52PM		15U	463272.2147	5698747.688	402.43457	Qtz Diorite
6-Jul-20	Golden Loon	GL102	Kacper Halama	06-Jul-20 12:37:48PM		15U	463256.0584	5698796.083	409.884644	Qtz Diorite

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
7 1 4 00		01400						500005.074	100 200220	
7-Jul-20	Golden Loon	GL103	Kacper Halama	07-Jul-20 8:45:55AM		150	463569.9259	5698825.971	406.760376	Feisic int
7-Jul-20	Golden Loon	61104		07-Jul-20 9:12:50AM		150	403734.2014	5098029.005	392.581055	Piesite
7-Jul-20	Golden Loon	GL105	Kacper Halama	07-Jul-20 9:39:54AM		150	463388.757	5698653.096	399.069946	Diorite
7-Jui-20	Golden Loon	GL106	Kacper Halama	07-Jul-20 10:15:07AM		150	463381.7636	5698621.237	404.116821	
7-Jul-20	Golden Loon	GL107	Kacper Halama	07-Jul-20 10:17:11AM		150	463347.6441	5698618.705	407.721802	Diorite
7-Jul-20	Golden Loon	GL108	Kacper Halama	07-Jul-20 10:35:27AM		15U	463152.5233	5698591.615	401.473267	Felsic int
7-Jul-20	Golden Loon	GL109	Kacper Halama	07-Jul-20 10:55:03AM		15U	463132.0467	5698576.727	401.953979	Felsic int
7-Jul-20	Golden Loon	GL110	Kacper Halama	07-Jul-20 11:06:08AM		150	463121.4604	5698572.73	393.302002	Felsic int
7-Jul-20	Golden Loon	GL111	Kacper Halama	07-Jul-20 11:39:32AM		15U	463069.8214	5698457.034	385.371338	Felsic int
8-Jul-20	Golden Loon	GI 112	Kacper Halama	08-1ul-20 8·43·33AM		150	462748 7926	5699250 241	430 312622	Felsic int
0 301 20		otiiz		00 Jul 20 0.43.33AW		150	402740.7520	5055250.241	450.512022	
8-Jul-20	Golden Loon	GL113	Kacper Halama	08-Jul-20 8:55:14AM		15U	462731.0323	5699189.208	429.831909	Felsic int
8-Jul-20	Golden Loon	GL114	Kacper Halama	08-Jul-20 9:04:06AM		15U	462789.087	5699124.909	428.630371	Felsic int
8-Jul-20	Golden Loon	GL115	Kacper Halama	08-Jul-20 9:12:29AM		15U	462813.0931	5699081.591	422.862427	Felsic int
8-Jul-20	Golden Loon	GL116	Kacper Halama	08-Jul-20 9:14:38AM		15U	462771.6628	5699091.523	429.351318	Felsic int
8-Jul-20	Golden Loon	61117	Kacher Halama	08-101-20 9-20-584M	0.23	1511	462745 0189	5608082.071	400 511963	Eelsic int
8 Jul 20	Golden Loon	GL117	Kacper Halama	08-Jul 20 9:26:16AM	0.23	150	402745.0185	EC09096 241	400.511505	Folsic int
8-Jul-20	Golden Loon					150	402713.3328	5050500.341	402.074927	Felsic int
8-Jul-20	Golden Loon	GL119	Kacper Halama	08-Jul-20 9:41:46AM		150	462618.3042	5698919.171	399.791016	Feisic int
8-Jul-20	Golden Loon	GL120	Kacper Halama	08-Jul-20 9:46:56AM		15U	462579.295	5698888.462	400.511963	Felsic int
8-Jul-20	Golden Loon	GL121	Kacper Halama	08-Jul-20 10:13:35AM		15U	462743.9214	5698679.941	405.799194	Felsic int
8-Jul-20	Golden Loon	GL122	Kacper Halama	08-Jul-20 10:23:03AM		15U	462766.7301	5698651.099	412.768677	Felsic int
8-Jul-20	Golden Loon	GL123	Kacper Halama	08-Jul-20 10:31:22AM		15U	462753.9085	5698640.221	414.691284	Felsic int
8-Jul-20	Golden Loon	GL124	Kacper Halama	08-Jul-20 10:33:07AM		15U	462755.4953	5698609.437	411.567017	Felsic int
8-Jul-20	Golden Loon	GL125	Kacper Halama	08-Jul-20 10:35:26AM		15U	462740.7515	5698555.626	416.854248	Felsic int
8-Jul-20	Golden Loon	GL126	Kacper Halama	08-Jul-20 10:39:33AM		15U	462751.9688	5698443.511	403.876587	Felsic int
8-Jul-20	Golden Loon	GL127	Kacper Halama	08-Jul-20 10:40:49AM		15U	462761.364	5698428.75	408.92334	Felsic int
8-Jul-20	Golden Loon	GL128	Kacper Halama	08-Jul-20 10:50:36AM		15U	462809.9983	5698311.487	400.992554	Felsic int
8-Jul-20	Golden Loon	GL129	Kacper Halama	08-Jul-20 12:06:42PM		15U	462753.0009	5697995.008	400.031372	Felsic int
8-Jul-20	Golden Loon	GL130	Kacper Halama	08-Jul-20 12:07:09PM		150	462522.6626	5698560.992	399.791016	Felsic int
8-Jul-20	Golden Loon	GL131	Kacper Halama	08-Jul-20 12:20:41PM		15U	462608.7321	5698654.13	406.039429	Felsic int
8-Jul-20	Golden Loon	GL132	Kacper Halama	08-Jul-20 12:26:43PM		15U	462519.2054	5698777.617	401.713623	Felsic int
8-Jul-20	Golden Loon	GL133	Kacper Halama	08-Jul-20 12:36:47PM		15U	462428.4464	5698919.842	408.442749	Felsic int
8-Jul-20	Golden Loon	GL134	Kacper Halama	08-Jul-20 12:46:11PM		15U	462287.0911	5698974.181	401.473267	Felsic int
8-Jul-20	Golden Loon	GL135	Kacper Halama	08-Jul-20 12:53:10PM		15U	462164.1296	5698970.311	407.241089	Felsic int
8-Jul-20	Golden Loon	GL136	Kacper Halama	08-Jul-20 1:01:34PM		15U	462036.3975	5699008.774	401.713623	Felsic int
8-Jul-20	Golden Loon	GL137	Kacper Halama	08-Jul-20 1:11:14PM		150	462005.91	5699071.935	404.116821	Felsic int
8-Jul-20	Golden Loon	GL138	Kacper Halama	08-Jul-20 1:13:11PM		150	461999.712	5699134.477	410.125	Felsic int
8-Jul-20	Golden Loon	GL139	Kacper Halama	08-Jul-20 1:14:55PM		150	462042.472	5699158.582	405.078125	Felsic int
8-Jul-20	Golden Loon	GL140	Kacper Halama	08-Jul-20 1:18:36PM		150	462095.4993	5699211.239	406.520142	Felsic int

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
8-Jul-20	Golden Loon	GL141	Kacper Halama	08-Jul-20 1:23:01PM		15U	462262.7582	5699160.757	403.876587	Felsic int
8-Jul-20	Golden Loon	GL142	Kacper Halama	08-Jul-20 1:25:03PM		15U	462281.8678	5699108.225	405.799194	Felsic int
9-Jul-20	Golden Loon	GL143	Kacper Halama	09-Jul-20 8:55:19AM		15U	463676.1274	5699970.572	420.699463	Felsic int
9-Jul-20	Golden Loon	GL144	Kacper Halama	09-Jul-20 9:06:35AM		15U	463703.9636	5699968.08	418.776855	Felsic int
9-Jul-20	Golden Loon	GL145	Kacper Halama	09-Jul-20 9:14:26AM		15U	463805.8143	5699926.999	403.63623	Felsic int
9-Jul-20	Golden Loon	GL146	Kacper Halama	09-Jul-20 9:27:00AM		15U	463826.5457	5699825.483	410.605591	Felsic int
9-Jul-20	Golden Loon	GL147	Kacper Halama	09-Jul-20 9:40:37AM		15U	463837.8685	5699708.103	412.047729	Felsic int
9-Jul-20	Golden Loon	GL148	Kacper Halama	09-Jul-20 9:53:53AM		15U	463726.8183	5699671.903	416.854248	Felsic int
9-Jul-20	Golden Loon	GL149	Kacper Halama	09-Jul-20 9:59:23AM		15U	463584.5762	5699654.917	412.52832	Felsic int
9-Jul-20	Golden Loon	GL150	Kacper Halama	09-Jul-20 10:45:44AM		15U	463200.4203	5699259.794	418.776855	Diorite
9-Jul-20	Golden Loon	GL151	Kacper Halama	09-Jul-20 10:55:38AM		15U	463083.9665	5699187.383	408.92334	Qtz Diorite
9-Jul-20	Golden Loon	GL152	Kacper Halama	09-Jul-20 1:38:03PM		15U	462794.6827	5693103.942	414.931641	Felsic int
9-Jul-20	Golden Loon	GL153	Kacper Halama	09-Jul-20 1:39:26PM		15U	462779.4711	5693117.523	416.854248	Felsic int
10-Jul-20	Golden Loon	GI 154A	Kacher Halama	10-Jul-20 10:10:55 M	0.19	1511	463238 3601	5607757 246	409 163696	Ealsis int
10-501-20	Golden Loon	6L134A		10-Jul-20 10.10.33AW	0.19	130	403238.3001	5057757.240	405.105050	
10-Jul-20	Golden Loon	GL154B	Kacper Halama	10-Jul-20 10:10:55AM	77.7	15U	463238.3601	5697757.246	409.163696	Intermediate int
10-Jul-20	Golden Loon	GL155A	Kacper Halama	10-Jul-20 11:03:32AM		15U	463190.6894	5697746.273	397.628052	Felsic int
10-Jul-20	Golden Loon	GI 155B	Kacner Halama	10-Jul-20 11:03:324M	1 23	1511	463190 6894	5697746 273	397 628052	Intermediate int
10 301 20		021350		10 501 20 11:05:52/101	1.23	150	405150.0054	5057740.275	357.020032	
10-Jul-20	Golden Loon	GL156	Kacper Halama	10-Jul-20 12:02:29PM		150	462919.7103	5697819.431	390.658447	Felsic int
10-Jul-20	Golden Loon	GL157	Kacper Halama	10-Jul-20 12:21:00PM		15U	462801.0417	5697867.708	396.186157	Felsic int
10-Jul-20	Golden Loon	GL158	Kacper Halama	10-Jul-20 12:25:59PM		15U	462759.1851	5697806.33	403.63623	Felsic int
10-Jul-20	Golden Loon	GL159	Kacper Halama	10-Jul-20 12:27:40PM		15U	462786.7574	5697793.264	400.271606	Felsic int
10-Jul-20	Golden Loon	GL160	Kacper Halama	10-Jul-20 12:29:11PM		15U	462848.0331	5697764.785	396.666748	Felsic int
10-Jul-20	Golden Loon	GL161	Kacper Halama	10-Jul-20 12:32:54PM		15U	462836.1965	5697715.064	391.860107	Felsic int
10-Jul-20	Golden Loon	GL162	Kacper Halama	10-Jul-20 12:41:17PM	0.21	150	462783.4039	5697650.092	399.310303	Felsic int
10-Jul-20	Golden Loon	GL163	Kacper Halama	10-Jul-20 12:46:36PM		15U	462747.0341	5697663.521	401.713623	Felsic int
10-Jul-20	Golden Loon	GL164	Kacper Halama	10-Jul-20 12:58:19PM	9.79	15U	462799.8422	5697491.142	407.481445	Felsic int
10-Jul-20	Golden Loon	GL165	Kacper Halama	10-Jul-20 1:24:32PM		15U	462879.212	5697502.057	396.666748	Felsic int
10-Jul-20	Golden Loon	GL166	Kacper Halama	10-Jul-20 1:39:45PM		15U	463216.1697	5697322.979	413.489746	Felsic int
11-Jul-20	Golden Loon	GL167A	Kacper Halama	11-Jul-20 10:29:44AM		15U	463686.3595	5697973.568	409.644409	Qtz Diorite
11-Jul-20	Golden Loon	GL167B	Kacper Halama	11-Jul-20 10:29:44AM		15U	463686.3595	5697973.568	409.644409	Intermediate int
11-Jul-20	Golden Loon	GL168	Kacper Halama	11-Jul-20 10:39:12AM		15U	463645.8615	5697993.964	411.807251	Qtz Diorite
11-Jul-20	Golden Loon	GL169	Kacper Halama	11-Jul-20 10:49:49AM		15U	463477.7622	5698027.869	396.907104	Felsic int
11-Jul-20	Golden Loon	GL170A	Kacper Halama	11-Jul-20 10:54:13AM		15U	463355.3635	5698096.286	399.310303	Felsic int
11-Jul-20	Golden Loon	GL170B	Kacper Halama	11-Jul-20 10:54:13AM	0.16	15U	463355.3635	5698096.286	399.310303	Intermediate int
11-Jul-20	Golden Loon	GL171	Kacper Halama	11-Jul-20 11:14:16AM		15U	463155.9505	5698056.148	386.092285	Felsic int
11-Jul-20	Golden Loon	GL172	Kacper Halama	11-Jul-20 11:39:49AM		15U	463119.5065	5698030.888	387.293945	Felsic int
11-Jul-20	Golden Loon	GL173	Kacper Halama	11-Jul-20 11:46:05AM	4.67	15U	463115.3622	5697969.541	393.302002	Felsic int
11-Jul-20	Golden Loon	GL174	Kacper Halama	11-Jul-20 12:47:51PM		15U	463970.1603	5697399.439	403.876587	Diorite
12-Jul-20	Golden Loon	GL175	Kacper Halama	10-Jul-20 1:52:12PM		150	463527.8119	5697205.974	422.62207	Felsic int
12-Jul-20	Golden Loon	GL176A	Kacper Halama	12-Jul-20 9:46:52AM		150	463522.7367	5697189.818	431.514282	Felsic int

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
12-Jul-20	Golden Loon	GL176B	Kacper Halama	12-Jul-20 9:46:52AM	0.39	15U	463522.7367	5697189.818	431.514282	Mafic tuf
12 101 20	Caldan Laan	CI 177	Kaanar Halama	12 101 20 10:05:10414		1511	462504 0121	F C 0 7 2 0 1 2 8 8	424 62855	Folsiaint
12-Jul-20	Golden Loon	GL177	Kacper Halama	12-Jul-20 10:03:10AW	4.3	150	463504.0121	5697201.288	434.03033	Intermediate int
12-301-20		GLI/8		12-Jul-20 10.23.43AW	4.5	150	403303.0420	5057150.584	455.51748	internetiate int
12-Jul-20	Golden Loon	GL179	Kacper Halama	12-Jul-20 10:53:02AM		15U	463245.4199	5697252.778	422.141357	Felsic int
12-Jul-20	Golden Loon	GL180	Kacper Halama	12-Jul-20 11:21:54AM		15U	463177.5039	5697218.375	392.34082	Felsic int
12-Jul-20	Golden Loon	GL181	Kacper Halama	12-Jul-20 11:35:28AM		15U	462964.2096	5697279.48	392.581055	Felsic int
12-Jul-20	Golden Loon	GL182	Kacper Halama	12-Jul-20 11:40:51AM		15U	462914.1603	5697282.715	404.597534	Felsic int
12-Jul-20	Golden Loon	GL183	Kacper Halama	12-Jul-20 11:42:29AM		15U	462853.609	5697305.091	391.619751	Felsic int
12-Jul-20	Golden Loon	GL184	Kacper Halama	12-Jul-20 11:49:09AM		15U	462834.3647	5697430.399	398.348999	Felsic int
12-Jul-20	Golden Loon	GL185	Kacper Halama	12-Jul-20 11:58:09AM		15U	462802.9293	5697430.284	401.713623	Felsic int
12-Jul-20	Golden Loon	GL186	Kacper Halama	12-Jul-20 11:59:58AM		15U	462754.5817	5697425.333	403.155518	Felsic int
12-Jul-20	Golden Loon	GL187	Kacper Halama	12-Jul-20 12:11:09PM		15U	462710.9177	5697358.03	406.520142	Felsic int
12-Jul-20	Golden Loon	GL188	Kacper Halama	12-Jul-20 12:14:16PM		15U	462703.6454	5697267.36	410.125	Felsic int
12-Jul-20	Golden Loon	GL189	Kacper Halama	12-Jul-20 12:25:07PM		15U	462952.6412	5697238.594	407.000732	Felsic int
12-Jul-20	Golden Loon	GL190	Kacper Halama	12-Jul-20 12:34:22PM	1.76	15U	463167.6208	5697134.669	406.279785	Intermediate int
15-Jul-20	Golden Loon	GL191	Kacper Halama	15-Jul-20 10:55:36AM		15U	465456.8106	5693879.092	416.854248	Qtz Diorite
15-Jul-20	Golden Loon	GL192	Kacper Halama	15-Jul-20 12:07:00PM		15U	464585.6063	5694386.73	426.467285	Felsic int
15-Jul-20	Golden Loon	GL193	Kacper Halama	15-Jul-20 12:30:31PM		15U	464338.6358	5693984.836	423.583374	Felsic int
16-Jul-20	Golden Loon	GI 194A	Kacner Halama	16-Jul-20 9:09:384M	0.49	1511	466334 91	5692152 986	451 221069	Felsic int
10 301 20				10 Jul 20 5.05.50AW	0.45	150	400554.51	5052152.500	451.221005	
16-Jul-20	Golden Loon	GL194B	Kacper Halama	16-Jul-20 9:09:38AM		150	466334.91	5692152.986	451.221069	Intermediate volc
16-Jul-20	Golden Loon	GL195	Kacper Halama	16-Jul-20 9:35:57AM	0.23	150	466362.0393	5692216.262	447.856567	Intermediate volc
16-Jul-20	Golden Loon	GL196	Kacper Halama	16-Jul-20 10:28:01AM	0.66	15U	466356.7334	5692260.912	449.779175	Intermediate volc
16 101 20	Calden Leen	CI 107	Kaanar Halama	16 1.1 20 10:44:28484		1511	466425 0597	FC02088.000	444.072656	Intermediate int
16 Jul 20	Golden Loon	GL197	Kacper Halama	16 Jul 20 11:12:05 AM	4.09	150	400433.5387	5601020 714	444.572050	Intermediate int
16 Jul 20	Golden Loon	GL198	Kacper Halama	16-Jul 20 11:40:15AM	4.56	150	400403.7201	5051550.714	430.300122	Intermediate int
10-301-20	Golden Loon	GL133		10-Jul-20 11.49.13AW		150	400500.2209	5051855.448	448.577515	
17-Jul-20	Golden Loon	GL200	Kacper Halama	17-Jul-20 9:12:14AM		15U	466011.2338	5691555.069	428.630371	Felsic int
17-Jul-20	Golden Loon	GL201	Kacper Halama	17-Jul-20 9:37:49AM		15U	466126.7003	5691634.992	431.033569	Felsic int
17-Jul-20	Golden Loon	GL202	Kacper Halama	17-Jul-20 10:08:36AM		15U	466071.0014	5691448.103	433,196533	Felsic int
17-Jul-20	Golden Loon	GL203	Kacper Halama	17-Jul-20 10:16:35AM		150	466049.2166	5691427.209	425.265625	Felsic int
17-Jul-20	Golden Loon	GL204	Kacper Halama	17-Jul-20 10:18:51AM		150	466027.1901	5691406.828	430.312622	Felsic int
17-Jul-20	Golden Loon	GL205	Kacper Halama	17-Jul-20 10:22:48AM		150	465970.1758	5691414.768	431.514282	Felsic int
				-						
17-Jul-20	Golden Loon	GL206	Kacper Halama	17-Jul-20 10:25:31AM	0.26	150	465945.4143	5691442.75	427.428589	Felsic int
17-Jul-20	Golden Loon	GL207	Kacper Halama	17-Jul-20 10:40:01AM		150	465945.2284	5691500.594	419.257568	Felsic int
17-Jul-20	Golden Loon	GL208	Kacper Halama	17-Jul-20 12:24:22PM	4.32	15U	467214.7009	5691455.284	438.243408	Wacke
17-Jul-20	Golden Loon	GL209	Kacper Halama	17-Jul-20 12:43:01PM	1.98	150	467303.2955	5691455.135	446.414551	Chert
17-Jul-20	Golden Loon	GL210	Kacper Halama	17-Jul-20 1:07:33PM		15U	467305.988	5691403.661	444.972656	Wacke
18-Jul-20	Golden Loon	GL211A	NB & ML	18-JUL-20 9:35:57AM		15U	464006	5693780	420	Felsic int

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
18-Jul-20	Golden Loon	GL211B	NB & ML	18-JUL-20 9:35:57AM		15U	464006	5693780	420	Felsic int
18-Jul-20	Golden Loon	GL212	NB & ML	18-JUL-20 10:23:09AM		15U	464004	5693811	415	Felsic int
18-Jul-20	Golden Loon	GL213	NB & ML	18-JUL-20 10:28:50AM		15U	464029	5693864	416	Felsic int
18-Jul-20	Golden Loon	GL214	NB & ML	18-JUL-20 10:29:59AM		15U	464054	5693903	419	Felsic int
18-Jul-20	Golden Loon	GL215	NB & ML	18-JUL-20 10:36:51AM		15U	464082	5694031	419	Felsic int
18-Jul-20	Golden Loon	GL216	NB & ML	18-JUL-20 10:46:41AM		15U	464072	5694095	416	Felsic int
18-Jul-20	Golden Loon	GL217	NB & ML	18-JUL-20 10:57:28AM		15U	464027	5694073	411	Felsic int
18-Jul-20	Golden Loon	GL218	NB & ML	18-JUL-20 11:08:09AM		15U	464082	5694121	413	Felsic int
18-Jul-20	Golden Loon	GL219A	NB & ML	18-JUL-20 11:40:34AM		15U	464145	5694193	418	Felsic int
18-Jul-20	Golden Loon	GL219B	NB & ML	18-JUL-20 11:40:34AM		15U	464145	5694193	418	Mafic volc
18-Jul-20	Golden Loon	GL220	NB & ML	18-JUL-20 11:49:56AM		15U	464169	5694249	422	Felsic int
18-Jul-20	Golden Loon	GL221	NB & ML	18-JUL-20 11:56:44AM		15U	464181	5694363	423	Felsic int
18-Jul-20	Golden Loon	GL222	NB & ML	18-JUL-20 12:00:09PM		15U	464212	5694408	423	Felsic int
18-Jul-20	Golden Loon	GL223	NB & ML	18-JUL-20 12:09:22PM		15U	464282	5694431	430	Felsic int
18-Jul-20	Golden Loon	GL224	NB & ML	18-JUL-20 12:19:05PM	23.2	15U	464246	5694416	427	Mafic volc
18-Jul-20	Golden Loon	GL225	NB & ML	18-JUL-20 12:57:27PM		15U	464467	5694150		Felsic int
18-Jul-20	Golden Loon	GL226	NB & ML	18-JUL-20 1:05:45PM		15U	464461	5694072	417	Felsic int
18-Jul-20	Golden Loon	GL227	NB & ML	18-JUL-20 2:29:26PM		15U	464715	5693248	431	Felsic int
18-Jul-20	Golden Loon	GL228	NB & ML	18-JUL-20 2:42:33PM		15U	464609	5693256	432	Felsic int
18-Jul-20	Golden Loon	GL229	NB & ML	18-JUL-20 3:13:10PM		15U	464387	5693695	437	Felsic int
2-Jul-20	Golden Loon	GL000a	AT,KH,NB & ML			15U	464632.0401	5694373.337		Felsic int
2-Jul-20	Golden Loon	GL000c	AT,KH,NB & ML			15U	464001.7442	5698955.784		Qtz Diorite
4-Jul-20	Golden Loon	GL001	AT, ML			15U	464125.8277	5696053.205		Felsic int
7-Jul-20	Golden Loon	GL002	AT, NB			15U	464232.0837	5696233.748		Felsic int
7-Jul-20	Golden Loon	GL002a	AT, NB			15U	464321.4026	5696275.47		Felsic int
7-Jul-20	Golden Loon	GL002b	AT, NB			15U	464402.8468	5696322.35		Felsic int
7-Jul-20	Golden Loon	GL002c	AT, NB			15U	464439.5903	5696357.453		Felsic int
7-Jul-20	Golden Loon	GL003	AT, NB			15U	464462.7117	5696428.069		Felsic int
7-Jul-20	Golden Loon	GL003a	AT, NB			15U	464414.2096	5696412.842		Felsic int
7-Jul-20	Golden Loon	GL003b	AT, NB			15U	464394.8319	5696446.005		Felsic int
7-Jul-20	Golden Loon	GL003c	AT, NB			15U	464334.6949	5696478.458		Felsic int
7-Jul-20	Golden Loon	GL004	AT, NB			15U	464450.5655	5696502.433		Felsic int
7-Jul-20	Golden Loon	GL004a	AT, NB			15U	464441.5281	5696498.014		Felsic int
7-Jul-20	Golden Loon	GL004b	AT, NB			15U	464424.319	5696506.303		Felsic int
7-Jul-20	Golden Loon	GL004c	AT, NB			15U	464438.6503	5696477.508		Felsic int
7-Jul-20	Golden Loon	GL004d	AT, NB			15U	464437.166	5696483.307		Felsic int
8-Jul-20	Golden Loon	GL005	AT, ML			15U	464474.4208	5693780.237		Felsic int
8-Jul-20	Golden Loon	GL005a	AT, ML			15U	464583.0515	5693763.451		Felsic int
8-Jul-20	Golden Loon	GL005b	AT, ML			15U	464410.7464	5693567.511		Felsic int
8-Jul-20	Golden Loon	GL005c	AT, ML			15U	464406.6482	5693361.183		Felsic int
8-Jul-20	Golden Loon	GL006	AT, ML			15U	464211.9968	5693379.159		Felsic int
8-Jul-20	Golden Loon	GL006a	AT, ML			15U	464303.1793	5693570.71		Felsic int
8-Jul-20	Golden Loon	GL007	AT, ML			15U	464402.3191	5694468.757		Felsic int

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
8-Jul-20	Golden Loon	GL008	AT, ML			15U	464207.9151	5694414.398		Felsic int
9-Jul-20	Golden Loon	GL009	AT, NB			15U	463986.8687	5696165.282		Felsic int
9-Jul-20	Golden Loon	GL010	AT, NB			15U	464094.0647	5696346.655		Felsic int
9-Jul-20	Golden Loon	GL011	AT, NB			15U	463778.6117	5696519.46		Felsic int
9-Jul-20	Golden Loon	GL011a	AT, NB			15U	463615.7645	5696560.752		Felsic int
9-Jul-20	Golden Loon	GL012	AT, NB			15U	463762.3262	5696607.182		Felsic int
9-Jul-20	Golden Loon	GL012a	AT, NB			15U	463850.6474	5696684.466		Felsic int
9-Jul-20	Golden Loon	GL012b	AT, NB			15U	463822.628	5696659.331		Felsic int
9-Jul-20	Golden Loon	GL013	AT, NB			15U	463845.5185	5696540.956		Felsic int
9-Jul-20	Golden Loon	GL013a	AT, NB			15U	463821.5313	5696551.593		Felsic int
9-Jul-20	Golden Loon	GL013b	AT, NB			15U	463837.2561	5696524.869		Felsic int
9-Jul-20	Golden Loon	GL013c	AT, NB			15U	463838.0312	5696503.073		Felsic int
14-Jul-20	Golden Loon	GL014	AT, NB			15U	465225.6749	5692642.879		Felsic int
14-Jul-20	Golden Loon	GL014a	AT, NB			15U	465252.7872	5692683.151		Felsic int
14-Jul-20	Golden Loon	GL015	AT, NB			15U	465064.6006	5692673.403		Felsic int
14-Jul-20	Golden Loon	GL015a	AT, NB			15U	465058.6553	5692658.656		Intermediate int
14-Jul-20	Golden Loon	GL015b	AT, NB			15U	465106.036	5692904.986		Felsic int
14-Jul-20	Golden Loon	GL016	AT, NB			15U	465729.2651	5692521.114		Intermediate int
14-Jul-20	Golden Loon	GL016a	AT, NB			15U	465696.9414	5692561.106		Felsic int
14-Jul-20	Golden Loon	GL017	AT, NB			15U	465742.7636	5692785.9		Felsic int
14-Jul-20	Golden Loon	GL018	AT, NB			15U	465816.0361	5692759.415		Felsic int
16-Jul-20	Golden Loon	GL019	AT, ML			15U	465866.0719	5692682.051		Felsic int
16-Jul-20	Golden Loon	GL020	AT, ML			15U	465469.084	5692885		Felsic int
16-Jul-20	Golden Loon	GL021	AT, ML			15U	465936.1616	5690570.231		Granite1
16-Jul-20	Golden Loon	GL021a	AT, ML			15U	465988.9267	5690522.151		Granite1
16-Jul-20	Golden Loon	GL021b	AT, ML			15U	466004.5279	5690481.179		Granite1
16-Jul-20	Golden Loon	GL021c	AT, ML			15U	466005.8885	5690475.62		Granite1
16-Jul-20	Golden Loon	GL021d	AT, ML			15U	466003.893	5690470.131		Granite1
16-Jul-20	Golden Loon	GL021e	AT, ML			15U	465994.7236	5690461.063		Granite1
16-Jul-20	Golden Loon	GL021f	AT, ML			15U	466002.9282	5690448.536		Granite1
16-Jul-20	Golden Loon	GL022	AT, ML			15U	466081.9893	5690503.205		Granite1
16-Jul-20	Golden Loon	GL023	AT, ML			15U	466174.7056	5690543.296		Granite1
16-Jul-20	Golden Loon	GL023a	AT, ML			150	466206.6005	5690524.39		Granite1
16-Jul-20	Golden Loon	GL023b	AT. ML			15U	466145.5483	5690579.529		Granite1
16-Jul-20	Golden Loon	GL023c	AT, ML			150	466266.0448	5690372.561		Granite1
16-Jul-20	Golden Loon	GL023d	AT, ML			15U	466303.5304	5690445.056		Granite1
16 Jul 20	Calden Leen	C1022a				1511	400200 2004	FC0046F 083		Cronito1
16-Jui-20	Golden Loon	GLUZSE	AT, IVIL			150	400366.3664	5090405.082		Graniter
16-Jul-20	Golden Loon	GL024	AT, ML			150	466547.0715	5690527.05		Granite1
16-Jul-20	Golden Loon	GL024a	AT, ML			15U	466591.2609	5690556.804		Intermediate volc
16-Jul-20	Golden Loon	GL025	AT, ML			15U	466906.8459	5690537.298		Intermediate int
16-Jul-20	Golden Loon	GL025a	AT, ML			15U	467019.2862	5690507.774		Intermediate int

Date	Project Name	Station_ID	Logger	Date and Time	Mag Sus	DATUM	UTM_E	UTM_N	Ele	Rock_type
16-Jul-20	Golden Loon	GL025b	AT, ML			15U	467013.6213	5690667.651		Intermediate int
16-Jul-20	Golden Loon	GL025c	AT, ML			15U	466918.1922	5690721.05		Intermediate int
16-Jul-20	Golden Loon	GL026	AT, ML			15U	466244.0037	5690820.77		Granite1
16-Jul-20	Golden Loon	GL026a	AT, ML			15U	466242.3628	5690842.775		Granite1
16-Jul-20	Golden Loon	GL026b	AT, ML			15U	466244.1356	5690822.45		Granite1
16-Jul-20	Golden Loon	GL026c	AT, ML			15U	466207.8044	5690859.952		Granite1
16-Jul-20	Golden Loon	GL026d	AT, ML			15U	466152.9283	5690842.775		Granite1
16-Jul-20	Golden Loon	GL026e	AT, ML			15U	466015.1568	5690850.094		Granite1

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL066	medium	massive						
GL067	medium	massive	epidote	weak	fracture		Moderate	
GL068	Medium-Coarse	massive	epidote	Moderate	fracture		Moderate	
GL069	medium	massive	epidote	Moderate	fracture		Moderate	
GL070	coarse	massive	epidote	Moderate	fracture		Moderate	
GL071	coarse	massive	epidote	Moderate	fracture		Moderate	
GL072	medium	massive	enidote	Moderate	fracture		Moderate	
GL073	medium	massive	epidote	Moderate	fracture		Moderate	quartz
GL074	medium	massive	epidote	Moderate	fracture		Moderate	
GL075	medium	massive	epidote	Moderate	fracture		Moderate	
GL076	Medium-Coarse	massive	Epidote	Weak	fracture		Moderate	
GL077	medium	massive					strong	quartz
GL078	fine-medium	massive	epidote	weak	fracture		Weak	quartz
01.070	c 1.				c .			
GL079	fine-medium	massive	epidote	weak	fracture		Weak	quartz
GL080	fine-medium	massive	epidote	weak	fracture		Weak	quartz
GL081	fine-medium	massive	epidote	weak	fracture		Weak	quartz
GL082	fine-medium	massive	epidote	weak	fracture		Weak	quartz
GL083	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL084	coarse	massive	epidote	weak	fracture		Weak	
GL085	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL086	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL087	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL088	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL089	Medium-Coarse	massive	epidote	weak	fracture		Weak	
GL090	medium	massive	epidote	weak	fracture			
GL091	fine-medium	massive					Strong	
GL092	medium	massive	epidote	Moderate	fracture		Strong	
GL093	medium	massive	epidote	Moderate	fracture		Strong	
GL094	medium	massive					moderate	
CLODE	fina madium	marcivo					Strong	
GL095	modium	massive					modorato	
GL097	modium	massive					moderate	
GL097	medium	massive					moderate	
GL098	mealum	massive					moderate	
GL099	fine-medium	massive					weak	quartz
GL100	fine-medium	massive					weak	quartz
GL101	fine-medium	massive					weak	
GL 102	fine-medium	massive			1		moderate	
02102	e meaiain						moderate	

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL103	medium	massive					moderate	
GL104	medium	massive					moderate	
GL105	Medium-Coarse	massive					weak	
GL106	coarse	massive					weak	
GL107	medium	massive						
GL108	fine-medium	banded	epidote	weak	pervasive		moderate	quartz
GL109	Medium-Coarse	massive	epidote	weak	fracture		moderate	quartz
GI 110	Medium-Coarse	massive	enidote	weak	fracture		moderate	quartz
GL111	Medium-Coarse	massive	epidote	weak	fracture		none	quartz
GL112	fine-medium	banded					moderate	
GL113	medium	massive	epidote	weak	fracture		moderate	quartz
GL114	medium	massive	epidote	weak	fracture		moderate	quartz
GL115	medium	massive	epidote	weak	fracture		moderate	
GL116	medium	massive	epidote	weak	fracture		moderate	
GL117	medium	massive					weak	
GL118	medium	massive	epidote	Weak	fracture			
GL119	medium	massive					moderate	
GL120	Medium-Coarse	massive					weak	
GL121	Medium-Coarse	banded	epidote	Moderate	fracture			quartz
GL122	Medium-Coarse	banded						quartz
GL123	Medium-Coarse	banded						quartz
GL124	Medium-Coarse	banded						quartz
GL125	Medium-Coarse	banded						quartz
GL126	Medium-Coarse	banded						quartz
GL127	Medium-Coarse	banded						quartz
GL128	Medium-Coarse	banded						
GL129	Medium-Coarse	banded						
GL130	Medium-Coarse	massive					weak	
GL131	coarse	banded						
GL132	Medium-Coarse	massive						quartz
GL133	Medium-Coarse	massive	epidote	weak	fracture			quartz
GL134	coarse	massive	epidote	weak	fracture			quartz
GL135	Medium-Coarse	massive						
GL136	Medium-Coarse	massive					weak	
GL137	Medium-Coarse	massive						
GL138	Medium-Coarse	massive					weak	
GL139	Medium-Coarse	massive						
GL140	Medium-Coarse	massive						

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL141	Medium-Coarse	massive						
GL142	Medium-Coarse	massive						
GL143	medium	massive	epidote	weak	fracture		moderate	
GL144	Medium-Coarse	banded						
GL145	Medium-Coarse	banded						quartz
GL146	Medium-Coarse	banded					weak	quartz
GL147	Medium-Coarse	banded					weak	
GL148	Medium-Coarse	banded					weak	
GL149	Medium-Coarse	banded					moderate	
GL150	medium	massive	epidote	weak	fracture		moderate	quartz
GL151	fine-medium	massive					moderate	
GL152	Medium-Coarse	massive					none	
GL153	Medium-Coarse	massive					none	
GL154A	medium	banded	epidote	weak	fracture		moderate	quartz
GL154B	fine-medium	porphyritic	chlorite	Moderate	pervasive		strong	
GL155A	medium	banded	epidote	weak	fracture		moderate	
GL155B	fine	massive					moderate	
GL156	coarse	massive					none	
GL157	Medium-Coarse	massive					weak	
GL158	Medium-Coarse	massive	epidote	weak	fracture			
GL159	Medium-Coarse	massive						
GL160	Medium-Coarse	massive						quartz
GL161	Medium-Coarse	massive					moderate	
GL162	Medium-Coarse	massive	epidote	weak	fracture			
GL163	Medium-Coarse	massive	epidote	weak	fracture			quartz
0.464					c .			
GL164	medium	massive	epidote	weak	fracture		weak	quartz
GLI65	Madium-Coarse	massive	epidote	weak	fracture		weak	quartz
GL100	Medium Cearse	handed	epidote	weak	Inacture		nene	quartz
GL167P	fine	marsivo	chlorito	Madarata	poruaciuo		strong	quartz
GL168	Medium-Coarse	handed	chionte	Moderate	pervasive		none	
GL160	Medium Coarso	macsivo					none	quartz
GL109	fine	massive						quartz
GLIYON	inie	111035176						
GL170B	fine	massive	chlorite	Moderate	pervasive		none	
GL171	medium	massive						
GL172	medium	massive						
GL173	medium	massive	epidote	weak	fracture		weak	
GL174	fine	massive	epidote	weak	fracture		strong	
GL175	Medium-Coarse	massive	epidote	weak	fracture			
GL176A	Medium-Coarse	massive	epidote	weak	fracture			

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL176B	fine	porphyritic	chlorite	Strong	pervasive		none	
61177	fine-medium	handed					moderate	quartz
GL178	fine	massive					weak	quartz
		massive					weak	
GL179	Medium-Coarse	massive	epidote	weak	fracture			quartz
GL180	medium	massive						quartz
GL181	medium	banded	epidote	weak	fracture		weak	
GL182	medium	banded	epidote	weak	fracture		weak	quartz
GL183	coarse	banded						
GL184	coarse	banded						
GL185	Medium-Coarse	banded						
GL186	coarse	banded						
GL187	coarse	banded						
GL188	Medium-Coarse	banded						
GL189	Medium-Coarse	banded						
GL190	fine	porphyritic	epidote	weak	fracture			quartz
	_							
GL191	fine	porphyritic					strong	
GL192	coarse	massive	chlorite	weak	fracture		none	
GL193	coarse	massive					weak	
GL194A	medium	banded	epidote	weak	fracture		weak	quartz
GI 194B	fine	porphyritic					weak	
011340	inie	porphynic					weak	
GL195	fine	banded				strong	weak	quartz
GL196	fine	banded	chlorite	weak	fracture	strong	none	quartz
GL197	Medium-Coarse	porphyritic	epidote	weak	fracture		weak	quartz
GL198	coarse	porphyritic	epidote	weak	fracture		moderate	quartz
GL199	coarse	porphyritic	epidote	weak	fracture		weak	quartz
GL200	fine-medium	fragmental					moderate	quartz
GL201	coarse	massive						
GL202	coarse	massive						
GL203	coarse	massive						
GL204	coarse	massive						
GL205	coarse	massive						
GL206	medium	fragmental					moderate	
GL207	coarse	massive						
GL208	medium	massive				moderate	weak	quartz
GL209	aphanitic	laminated				strong	weak	
GL210	medium	massive				moderate	weak	quartz
GL211A	coarse					None	Moderate	
0.2111	coarse						mouchate	

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL211B	medium					None	None	
GL212	coarse					None	Moderate	
GL213	coarse					None	Moderate	
GL214	coarse					None	Moderate	
GL215	coarse					None	Moderate	
GL216	coarse		Epidote	Moderate	fracture	None	Moderate	quartz
GL217	pegmatitic		Epidote	Moderate	fracture	None		
GL218	coarse		Epidote	Strong	vein	None		
GL219A	coarse		calcite	weak	pervasive	None	Weak	
GL219B	fine	porphyritic				None		
GL220	coarse	porphyritic				None		quartz
GL221	coarse					None		quartz
GL222	fine	porphyritic				None		quartz
GL223	coarse					None		quartz
GL224	fine	porphyritic				None	Moderate	quartz
GL225	coarse					None		
GL226	coarse					None		
GL227	coarse	porphyritic				None		
GL228	coarse		Epidote	Moderate	fracture	None		
GL229	coarse					None		
GL000a	medium	porphyritic				None	moderate	
GL000c	medium	medium				None	moderate	
GL001	coarse	porphyritic				None	moderate	
GL002	coarse	porphyritic				None	weak	
GL002a	coarse	porphyritic				None		
GL002b	coarse	porphyritic				None		
GL002c	coarse	porphyritic				None		
GL003	coarse	porphyritic				None		
GL003a	coarse	porphyritic				None		
GL003b	coarse	porphyritic				None		
GL003c	coarse	porphyritic				None		
GL004	coarse	porphyritic				None		
GL004a	coarse	porphyritic				None		
GL004b	coarse	porphyritic				None		
GL004c	coarse	porphyritic				None		
GL004d	coarse	porphyritic				None		
GL005	coarse	porphyritic				None	moderate	
GL005a	coarse	porphyritic				None	moderate	
GL005b	coarse	porphyritic				None	moderate	
GL005c	coarse	porphyritic				None	moderate	
GL006	coarse	porphyritic				None	moderate	
GL006a	coarse	porphyritic				None	moderate	
GL007	coarse	porphyritic				None		

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL008	coarse	porphyritic				None	weak	
GL009	coarse	porphyritic				None	moderate	
GL010	coarse	porphyritic				None		
GL011	coarse	porphyritic				None	none	
GL011a	coarse	porphyritic				None	none	
GL012	coarse	porphyritic				None	moderate	
GL012a	coarse	porphyritic				None	moderate	
GL012b	coarse	porphyritic				None	moderate	
GL013	coarse	porphyritic				None	None	
GL013a	coarse	porphyritic				None	None	
GL013b	coarse	porphyritic				None	None	
GL013c	coarse	porphyritic				None	None	
GL014	coarse	porphyritic				None	moderate	
GL014a	coarse	porphyritic				None	moderate	
GL015	coarse	porphyritic				None	None	
GL015a	medium	porphyritic				None	None	
GL015b	fine	massive				None	None	
GL016	medium	porphyritic				None		
GL016a	fine	massive				None		
GL017	coarse	porphyritic				None		
GL018	coarse	porphyritic				None		
GL019	coarse	porphyritic				None	weak	
GL020	coarse	porphyritic				None		
GL021	coarse	porphyritic				None	Moderate	
GL021a	coarse	porphyritic				None	Moderate	
GL021b	coarse	porphyritic				None	Moderate	
GL021c	coarse	porphyritic				None	Moderate	
GL021d	coarse	porphyritic				None	Moderate	
GL021e	coarse	porphyritic				None	Moderate	
GL021f	coarse	porphyritic				None	Moderate	
GL022	coarse	porphyritic				None	Moderate	
GL023	coarse	porphyritic				None	Moderate	
GL023a	coarse	porphyritic				None	Moderate	
GL023b	coarse	porphyritic				None	Moderate	
GL023c	coarse	porphyritic				None	Moderate	
GL023d	coarse	porphyritic				None	Moderate	
GL023e	coarse	porphyritic				None	Moderate	
GL024	coarse	porphyritic	Sericite	Weak	pervasive	None	None	
GL024a	fine	fine	Sericite	Weak	pervasive	Weak	moderate	
GL025	coarse	porphyritic				None	moderate	
GL025a	coarse	porphyritic				None	moderate	

Station_ID	GrainSize	Rock_alternative	Alt_type	Alt_intensity	Alt_distrib	Silicification	Magnetism	Vein_Type
GL025b	coarse	porphyritic				None	moderate	
GL025c	coarse	porphyritic				None	moderate	
GL026	coarse	porphyritic				None	weak	
GL026a	coarse	porphyritic				None	weak	
GL026b	coarse	porphyritic				None	weak	
GL026c	coarse	porphyritic				None	weak	
GL026d	coarse	porphyritic				None	weak	
GL026e	coarse	porphyritic				None	weak	

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL066									
GL067									
GL068									
GL069									
GL070									
GL071									
61072							foliation	176	
61073	0.5	V mass	V boud	1				1/0	
GL074	0.5	<u></u>							
GL075									
GL076					pyrite	0.5	foliation	150	61
GL077	0.5	V_mass	V_boud	1			foliation	176	64
GL078	0.1	V_mass	V_boud	1			foliation	146	77
GL079	0.1	V_mass	V_boud	1					
GL080	0.1	V mass	V boud	1					
GL081	0.1	V_mass	V_boud	1					
GL082	0.1	V_mass	V_boud	1			foliation	158	62
GL083							foliation	153	89
GL084									
GL085							foliation	20	88
GL086									
GL087									
GL088							foliation	0	80
GL089									
GL090							foliation	150	84
GL091									
GL092							foliation	162	52
GL093									
GL094									
GL095							foliation	156	
GL096							foliation	245	77
GL097									
GL098									
GL099	0.1	v_mass	v_boud	1			foliation	164	84
GL100	0.1	v_mass	v_boud	1			shear		
GL101									
GL102							foliation	290	89

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL103							foliation	202	71
GL104							foliation	188	73
GL105							foliation	130	73
GL106									
GL107							shear	332	74
GL108	0.1	v_mass	v_boud	1			foliation	310	79
GL109	0.1	v_mass	V_folded	1			foliation	132	75
GL110	0.1	v mass	v boud	1					
GL111	0.1	– v_mass	_ v_boud	1			foliation	145	72
01440							6 H		
GL112							Toliation	146	//
GL113	0.1	v_mass	v_boud	1					
GL114	0.1	v_mass	v_boud	1					
GL115							foliation	122	88
GL116									
GL117							foliation	184	78
GL118							foliation	298	82
GL119									
GL120							foliation	162	58
GL121	0.1	v_mass	v_boud	1			foliation	114	80
GL122	0.1	v_mass	v_boud	1			foliation	142	60
GL123	0.1	v mass	v boud	1					
GL124	0.1	v_mass	v_boud	1					
GL125	0.1	v_mass	v_boud	1					
GL126	0.1	v_mass	v_boud	1					
GL127	0.1	v_mass	v_boud	1			foliation	162	72
GL128									
GL129									
GL130							foliation	342	87
GL131									
GL132	0.1	v_mass	v_boud	1					
GL133	0.1	v_mass	v_boud	1			foliation	142	60
GL134	0.5	v_mass	v_boud	1					
GL135								126	
GL136							foliation	150	72
GL137									
GL138									
GL139									
GL140									

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL141									
GL142									
GL143									
GL144							foliation	140	85
GL145	0.1	V_mass	V_boud	1			foliation	143	71
GL146	0.1	V_mass	V_boud	1			foliation	315	85
GL147									
GL148									
GL149									
GL150	1	V_mass	V_boud	1			foliation	355	80
GL151									
GL152									
GL153									
GL154A	0.5	V mass	V boud	1			shear	166	70
GL154B					pyrite	0.1	shear	141	66
GL155A							foliation	154	77
GL155B					pyrite	5			
					F7				
GL156							foliation	139	66
GL157									
GL158									
GL159									
GL160	0.1	v_mass	V_Boud	2					
GL161									
GL162							foliation	177	88
GL163	0.1	v_mass	V_Boud	1					
									
GL164	0.1	v_mass	V_Boud	1			Jointing	282	88
GLI65	0.1	v_mass	V_Boud	1					
GL100	0.1	v_mass	V_Boud	1			foliation	140	77
GL167R	0.5	v_mass	v_bodu	1			Ionation	140	
GL168									
GL169	0.1	v mass	V Boud	1					
GL170A							foliation	168	79
GL170B					pyrite	0.5			
GL171									
GL172									
GL173									
GL174							foliation	140	۶n
GL175								140	
GL176A							foliation	121	ฐา
GLI/UM								151	٥2

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL176B							contact	340	88
GL177	0.1	v mass	V boud	1					
GL178					pyrite	1			
GL179	0.1	v_mass	V_boud	1			foliation	147	74
CI 100	_		M have	10			f-1:	450	70
GLI80		v_mass	v_bouu	10			ionation	150	/6
GL181							foliation	190	84
GL182	0.1	v_mass	V_boud	1					
GL183									
GL185									
GL186							foliation	180	70
GL187									
GL188									
GL189									
GL190	0.1	v_mass	V_boud	1					
GL191					pyrite	2			
GL192									
GL193									
GL194A	0.1	v_mass	V_boud	1			foliation	114	82
GL194B									
GL195	5	V_mass	V_boud	1	pyrite	0.5	foliation	129	83
GL196	5	V_mass	V_boud	1	pyrite	1			
GL197	1	V_mass	V_boud						
GL198	1	V_mass	V_boud				foliation	318	86
GL199	1	V_mass	V_boud						
61300	0.1	V marc	V boud	2			foliation	174	00
GL200	0.1	v_111a33	v_bodd				Ionation	1/4	65
61202							faliation	196	72
GL202							Ionation	100	72
GL203									
GL205									
GL206									
GL207									
GL208	0.1	V_Mass	V_boud	1			foliation	145	52
GL209							bedding	140	78
GL210	0.1	V_mass	V_boud	1					
GL211A							foliation	152	85
			1					192	55

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL211B							foliation	175	76
GL212									
GL213									
GL214									
GL215									
GL216	0.5	V_Mass	V_boud	3			foliation	168	76
GL217									
GL218									
GL219A									
GL219B									
GL220	1	V_Mass	V_boud				foliation	190	89
GL221	1	V_Mass	V_boud				foliation	172	86
GL222	1	V_Mass	V_boud						
GL223	1	V_Mass	V_boud						
GI 224	0.1	V Mass	V boud	0.1	Pyrite	1			
GL224	0.1	v_1v1a33	v_bodd	0.1	rynte	1	foliation	162	87
GL226							dike	320	02
GL227							foliation	160	40
GL228							foliation	130	67
GL229							foliation	165	71
GL000a									
GL000c									
GL001							foliation	136	75
GL002							foliation	318	85
GL002a									
GL002b									
GL002c									
GL003							foliation	158	80
GL003a							contact	120	80
GL003b							shear	120	80
GL003c							foliation	120	60
GL004									
GL004a									
GL004b									
GL004c									
GL004d									
GL005							foliation	350	80
GL005a									
GL005b									
GL005c									
GL006							contact	170	87
GL006a									
GL007							F1 axial plane	180	50

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL008							foliation	175	88
GL009							foliation	146	88
GL010							foliation	145	60
GL011							foliation	134	86
GL011a									
GL012							foliation	314	75
GL012a									
GL012b									
GL013							foliation	309	85
GL013a									
GL013b									
GL013c									
GL014							foliation	338	85
GL014a									
GL015							foliation	158	58
GL015a									
GL015b									
GL016							foliation	150	85
GL016a									
GL017							foliation	330	86
GL018									
GL019							brittle fault sinistral	218	90
GL020							foliation	160	78
GL021							foliation	308	75
GL021a									
GL021b									
GL021c									
GL021d									
GL021e									
GL021f									
GL022							brittle fault sinistral	236	86
GL023								172	68
GL023a									
GL023b									
GL023c									
GL023d									
GL023e									
GL024							Brittle fault	188	65
GL024a									
GL025								110	QE
51023								119	60
GL025a									

Station_ID	Vein_Proportion	Vein_Text	Vein_Morp	Vein_width_cm	Mineralization	Min_percent	Planar_structure	Az	Dip
GL025b									
GL025c									
GL026									
GL026a									
GL026b									
GL026c									
GL026d									
GL026e									

Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
GL066						Weakly foliated.
GL067						Very weak foliation. Qz-Fs dykes, parallel to crosscutting. Granitic-Granodioritic.
GL068						Granitic-Granodioritic.
GL069						Granitic-Granodioritic.
GL070						K_Spar rich dyke, dominating outcrop.
GL071						Western extent of 070.
GL072						Granitic-Granodioritic. Outcrop contains Fs Dykes up to 50 cm in thickness. Very weak foliation.
GL073						Grey qtz vein.
GL074						Western extent of outcrop.
GL075						Eastern extent of outcrop.
GL076						Local gneissic banding. Moderate to strong foliation. <20 cm wide pegmatitic dykes.
GL077						Extentional veins. Very weak foliation. Some Fs Dykes.
GL078						Local gneissic banding, undulating. Some epidote alteration on margins of Fs dykes.
GL079						Local gneissic banding, undulating. Some epidote alteration on margins of Fs dykes.
GL080						same as above. Possible erosive unit (dyke?) between 079 and 080.
GL081						Some Fs dykes.
GL082						Moderate to strong foliation.
GL083						Xeno of host rock within Fs dyke.
GL084						Same as above.
GL085						Moderate to strong foliation, local gneissic textured bands.
GL086						
GL087						
GL088						
GL089						Southern extent of outcrop observed to the north.
GL090						Small outcrop.
GL091						Weakly foliated, intense mag.
GL092						Swamp crossed to west, at mag low. Many Kspar rich dykes.
GL093						Some local gneissic banding, <10cm.
GL094						Weakly foliated with very coarse grained Fs dykes.
01005						Dioritic dyke ~4 m wide. Xenolith of granodioritic/surrounding rock. Moderately foliated. Fel. Int2 contains ~15% Kenar
GL095						Variable foliation up to 295d
GLU96						variable fonation up to 2350.
GL097						
GL099						Foliation locally variable and folded. Some veins are z-folded. Several FS dykes. Local vfg bands, strongly foliated. Pink to pinkish coloured outcrop. Glacial striations 249d.
GL100						Continuation of 099 outcrop.
GL101						Some Fs dykes.
GL102						Weak foliation.

Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
GL103						Possible large erratic, proximal. Mod foliated. 25% of outcrop has m-cg dioritic dykes.
GL104						Moderately foliated. 25% of outcrop has cg. dioritic dykes. 5% are mg FS dykes.
GL105						dykes.
GL106						Some Fs dykes.
GL107						Possible ridel shear?
GL108						Moderately foliated. Grey qtz vein. Bands of M-Cg Fs rich rock.
GL109	hinge	13	302			Banded, some moderately foilated, some strong. More foliated bands host more veining. Veins z- folded.
GL110						Extention of 109 outcrop. However, with weakly magnetic intermediate intrusive rock.
GL111						~10% FS dykes.
GL112						~50% fg, weak-moderate foliation, mod mag. Fragments/boudins/bands of M-Cg, weak mag, dioritic rocks. Some Fs dykes, Cg.
					20200708 085422	Chapita faliation dispation deflecting around
GL113					20200708_085432, 20200708_085824	Chaoite foliation direction, deflecting around boudins and Fs dykes. Qtz vns dismembered.
GL114					20200708_090213	Continuation of 113 outcrop. More foliated.
GL115					20200708_091056	Moderate to strong foliation. More M-Cg FS dykes.
GL116						Fine to coarse grained.
GL117						interstitial alteration.
GL118						Medium to strong foliation.
GL119						
GL120					20200708_094643	Very weakly mag intermediate intrusive with xeno of host rock.
GL121						Moderate foliation. Some fg granodiorite bands and FS dykes.
GL122						More banding than before.
GL123						Continuation of 122 outcrop. Some rock from 117.
GL124						
GL125						
GL126						
GL127						
GL128						
GL129						~30% fg granodiorite and 15% FS dyke.
GL130						Mg porphyry ~ 1m wide.
GL131						3m wide mg granodiorite band.
GL132						
GL133						Foliation and composition is internally variable. Qtz veins are boudinaged and x-cutting foliation.
GL134						
GL135						Dyke x-cutting @96d. Xenolithic.
GL136						Internediate intrusive dyke ~ 3m wide.
GL137						Continuation of 136 oc.
GL138						Continuation of 136 oc.
GL139						
GL140						With fg FS dykes.

Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
GL141						With cg FS dykes.
GL142						
GL143						Poorly foliated, syenitic.
GL144						Bands are ~10 cm wide. Granitic to syenitic in composition.
GL145						Dismembered qtz veins. Minor FS dykes.
GL146						Weak foliation.
GL147						Weak foliation.
GL148						
GL149						Weak foliation.
GL150						Moderate foliation.
GL151						
GL152						
GL153						
GL154A						Very strong schistocity. Multiple bands and intrusives (dk green, FS dykes). Dark green bands have xeno's of host rock within.
GL154B				253263		Dk green-grey, ~2 m wide. weathered surface is whitish-pink and appears porphyritic. <1mm mag crystals
GL155A						Tight s-folding.
GL155B				253264		~ 2m wide with brownish staining, strongly foliated. 5% disseminated subhedral pyrite with trace spec hematite.
GL156						2 folds and dextral movement observed. Moderately foliated. Mostly GRDI, with fg GRDI and FS dykes.
GL157						~35% of outcrop is fg GRDI.
GL158						
GL159						
GL160						
GL161						S-folding.
GL162						Weak to moderate mag with FS dykes and with 20 cm int intrusive dykes.
GL163						
GL164						intermediate intrusive, weakly magnetic with specular hematite.
GL165						Same as 164.
GL166						
GL167A						Swarms of FS dykes xcutting all units.
GL167B						3m wide interval.
GL168						Moderate to strong foliation.
GL169						Weak to moderate foliation.
GL170A						Moderately foliated. S-folded.
GL170B				253272		Boudinaged and dismembered, trace py. Fe staining on fracture surface.
GL171						Moderately foliated. Rare FS dykes.
GL172						Moderate to strong foliation.
GL173				253265		Syenitic composition. Moderate to strong foliation. Siliceous? Hard
GL174						Some FS dykes. Moderate to strong foliation.
GL175						
GL176A						

NATARNATARNATARNATARNATARNATARImage	Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
ALT70Image: Antiperformance intermediate and record i	GL176B				253266		Chl rich matrix with ~30% clasts/phenos, stretched along folaition, rounded, strongly foliated. Phenos are more resistive to weathering than matrix.
LLT28Image: Sector of the sector	GL177						Framental lenses of intermediate int. rock. Moderate to strong foliation.
ALT79Image to page bic right with a for committee with a start of page bic right with a monotone infuture.GL130Image and the start of t	GL178				253267		Schistose. Moderate foliated.
ALIAOImage: Lange March Mark ALIAOImage: Lange Mark Mark ALIAOImage: Lange Mark 	GL179						Large topographic ridge with outcrop midway up feature. Weak to moderate foliation.
AL1141Image of the set of the	GL180						Strongly foliated/gneissic. Variable foliation around veining. Large 20 cm vein oriented at 62Azi/60d.
AL122Image: stand	GL181						Bands of Mg, Cg GRDI and Fg dioritic rocks.
AL13Constraint of the second of t	GL182						
BialsImage: Bials	GL183						Some Fg dioritic dykes.
BarlesImage: BarlesImage: BarlesSome Fg donitic dykes.GLISGImage: BarlesImage: BarlesIma	GL184						
ALLBACINCOMEINCOM	GL185						Some Fg dioritic dykes.
GLIARINCINCINCSome Fg dionic dykes.GLIARINCINCINCINCINCINCGLIARINCINCINC	GL186						Moderate foliation, gneissic.
GLISSIMAIMAIMAIMAIMAIMAGLISDIMAIMAIMAIMAIMAIMAIMAGLISDIMAIMAIMAIMAIMAIMAIMAIMAGLISTIMAIMAIMAIMAIMAIMAIMAIMAIMAGLISAIMAIMAIMAIMAIMAIMAIMAIMAIMAIMAGLISAIMA </td <td>GL187</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Some Fg dioritic dykes.</td>	GL187						Some Fg dioritic dykes.
GLI39InclInclInclInclInclInclGLI30Incl<	GL188						
GL130Image: Constraint of the sector of the sec	GL189						
GL191Image: Subset of the state	GL190						Weak foliation. Some Fg dioritic dykes.
G1192Image: Section of the sectin of the section of the	GL191						disseminated py. Coarse, weakly epi altered KS dykes.
GLI 39Image: Constraint of the sector of the se	GL192						Trace FS dykes - quartz dominant.
GLI9AAImage: State of the state	GL193						Some FS dykes - quartz dominant.
G1948Image: stand strainImage: stand strainMajority of OC. Locally M-Cg and porphyritic.G195Image: strainStrongly foliated, 10-50cm bands. Veining parallel, dismembered. 5-folding observed.G196Image: strainStrongly foliated, 10-50cm bands. Veining parallel, dismembered. 5-folding observed.G196Image: strainStrongly foliated, 10-50cm bands. Veining parallel, dismembered. 5-folding observed.G197Image: strainStrongly foliated, 10-50cm bands. Veining parallel, 	GL194A						Pinkish granitic rock. Z-folding observed. Intruding internediate volcanic rock.
GL195Image: Strongly foliated, 10-50cm bands. Veining parallel, dismembered. S-folding observed.GL196Image: Strongly foliated, 10-50cm bands. Veining parallel, dismembered. S-folding observed.GL196Image: Strongly foliated, 10-50cm bands. Veining parallel, dismembered. S-folding observed.GL197Image: Strongly foliated, 10-50cm bands. Veining parallel, 	GL194B						Majority of OC. Locally M-Cg and porphyritic.
GL196Image: style	GL195						Strongly foliated, 10-50cm bands. Veining parallel, dismembered. S-folding observed.
GL197Image: Section of the	GL196				253268		Continuation of above outcrop.
Gi198Image: Section of the	GL197						Rare FS dykes. Weak to locally moderate chlorite.
Gi199Image: series of the series	GL198						Moderate foliation.
GL200Granodiorite rock within syenitic dykes, GRU is weak to moderately foliated. Syenites are very weakly foliated.GL201Image: Stress of the system of	GL199						
GL201Image: sector of the sector	GL200						Granodioritic rock within syenitic dykes. GRDI is weak to moderately foliated. Syenites are very weakly foliated.
GL202Image: Constraint of the synthetic / FS dykes, stockwork, most 2-3 cm up to 50 cm.GL203Image: Constraint of the synthetic / FS dykes, F-Mg.GL204Image: Constraint of the synthetic / FS dykes, F-Mg.GL205Image: Constraint of the synthetic / FS dykes, F-Mg.GL206Image: Constraint of the synthetic / FS dykes, F-Mg.GL207Image: Constraint of the synthetic / FS dykes, F-Mg.GL208Image: Constraint of the synthetic / FS dykes, F-Mg.GL209Image: Constraint of the synthetic / FS dykes, F-Mg.GL200Image: Constraint of the synthetic / FS dykes, F-Mg.GL201Image: Constraint of the synthetic / FS dykes, F-Mg.GL202Image: Constraint of the synthetic / FS dykes, F-Mg.GL203Image: Constraint of the synthetic / FS dykes, F-Mg.GL204Image: Constraint of the synthetic / FS dykes, F-Mg.GL205Image: Constraint of the synthetic / FS dykes, F-Mg.GL206Image: Constraint of the synthetic / FS dykes, F-M	GL201						
G1203Image: Constraint of the synthetic of the synthet	GL202						With Syentic/FS dykes, stockwork, most 2-3 cm up to 50 cm.
GL204 Image: Constraint of the synthematic constraint constraint constraint of the synthe synthematic constrai	GL203						With Syentic/FS dykes, F-Mg.
GL205Image: Sector of the sector	GL204						With Syentic/FS dykes, F-Mg.
GL206 Image: Constraint of the symptotic	GL205						With Syentic/FS dykes, F-Mg.
GL207 Image: Constraint of the state	GL206						Gabbroic xenolith within syenitic rock, BI rich, porphyritic, < 0.5 py, no mag. Weakly foliated.
GL208 Variable Foliation (NE 145/52, SE129/56), 2-folding. Glacial striations @ 241d. Weak to moderate foliation. GL209 253269 GL200 Jointing @ 371/64. Z-folded. GL210 S-folded. Unknown eroded area on western area of outcrop. GL211A GL211A	GL207						Possible erratic.
GL209 253270 Jointing @ 371/64. Z-folded. GL210 S-folded. Unknown eroded area on western area of outcrop. GL211A Setter and the setter area of outcrop.	GL208				253269		Variable foliation (NE 145/52, SE129/56), z-folding. Glacial striations @ 241d. Weak to moderate foliation.
GL210 S-folded. Unknown eroded area on western area of outcrop. GL211A GL211A	GL209				253270		Jointing @ 371/64. Z-folded.
GL211A possible movement along strike slip plane	GL210						S-folded. Unknown eroded area on western area of outcrop.
	GL211A						possible movement along strike slip plane
Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments	
------------	------------------	--------	-------	-----------	---------------------------------	---	
GL211B							
GL212						Containing some FS and fg GRDI dykes.	
GL213						~15% KS dykes, 30% fg granodioritic dykes.	
GL214						~15% KS dykes, 30% fg granodioritic dykes.	
GL215						Xenolith observed. Stockwork of KS dyke, crosscut by GRDI dyke.	
GL216							
GL217						Pegmatitic GRDI dykes observed.	
GL218					8718	Strongly epidote altered KS dyke?	
GL219A							
GL219B						hornblende phenocrysts	
GL220							
GL221							
GL222						Increased bi content. Large, up to 3cm FS pheno's.	
GL223							
GL224				253271	8720, 8721, 8723, 8724, 8725	Xenoliths of granodiorite in dyke, suggesting that it intruded later. fine grained granodiorite around contact suggests cooling margin. Abundance of FS pheno's.	
GL225					8727, 8728	S-folds in feldspar dyke	
GL226						k-spar dyke, medium grained	
GL227						k-spar dyke, medium grained. large (2-5cm) kspar phenocrysts in granodiorite	
GL228						k-spar dyke, medium grained	
GL229							
GL000a							
GL000c							
GL001							
GL002							
GL002a							
GL002b							
GL002c							
GL003							
GL003a							
GL003b							
GL003c							
GL004							
GL004a							
GL004b							
GL004c							
GL004d							
GL005							
GL005a							
GL005b							
GL005c							
GL006				253414			
GL006a		ļ					
GL007							

Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
GL008						
GL009						
GL010						
GL011						
GL011a						
GL012						
GL012a						
GL012b						
GL013						
GL013a						
GL013b						
GL013c						
GL014						
GL014a						
GL015						
GL015a						
GL015b						
GL016						
GL016a						
GL017						
GL018						
GL019						
GL020						
GL021						
GL021a						
GL021b						
GL021c						
GL021d						
GL021e						
GL021f						
GL022						
GL023				253416		Minor centimetre-scale zenoliths of int vol.
GL023a						east till 25-30% of unit
GL023b						east till 25-30% of unit
GL023c						east till 25-30% of unit
GL023d						Amount and size of int vol zenolith increase to east till 25-30% of unit
GL023e						east till 25-30% of unit
GL024						Brecciated th-o, 4 different sets of millimetre-scale Qx veinlets,Specular Hm covered surfaces
GL024a				253415		
GL025						Homogeneous body,rare chloritic zenliths, minor pink aplite dyklets, similar to GL021
						Homogeneous body,rare chloritic zenliths. minor
GL025a						pink aplite dyklets, similar to GL021

Station_ID	Linear_structure	Plunge	Trend	sample_ID	Photos	Comments
GL025b						Homogeneous body,rare chloritic zenliths, minor pink aplite dyklets, similar to GL021
GL025c						Homogeneous body,rare chloritic zenliths, minor pink aplite dyklets, similar to GL021
GL026						
GL026a						
GL026b						
GL026c						
GL026d						
GL026e						

