

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

A DIAMOND DRILLING ASSESSMENT REPORT ON THE

CAMILLERI PROPERTY, LORRAIN TWP.

PREPARED FOR

RJK EXPLORATIONS LTD

SUBMITTED BY

W.A. HUBACHECK CONSULTANTS LTD.

Author: Peter C. Hubacheck, P. Geo.

March 3, 2021 South Bruce Peninsula, Ontario

Table of Contents

1.	Executive Summary	4
2.	Terms of Engagement	5
3.	Expertise of Consultant	5
4.	Property Description and Location	6
5.	Access, Infrastructure and Physiography	7
6.	Exploration History	9
7.	Geology Setting and Mineralization	11
8.	Deposit Type	18
9.	Structural Geology	24
10.	2020 Diamond Drilling Exploration Program	26
11.	Exploration Drilling Results	27
12.	Conclusions and Recommended Drilling Program	31
13.	Assessment Work Expenditure Summary	34
14.	Acknowledgements	35
15.	Report Signatures	35
16.	References	36
AP	PENDIX A: Table of Claim Dispositions	39
AP	PENDIX B: DDH Drill Logs	40

List of Figures

Figure 4.1: Camilleri Property Land Dispositions	6
Figure 5.1: Lorrain Twp. Camilleri Property with Access and Topography	y 8
Figure 6.1: Goodwin Lake Silver Occurrence with Shaft Location	11
Figure 7.1: Huronian Cobalt Embayment in Superior Province Domain	14
Figure 7.2: Regional Geology of Coleman and Lorrain Twp.'s showing Camilleri Claims	16
Figure 7.3: Structural Cross-section A – B: Schumann Arch – Goodwin Lake Basins showing Deposit Settings (Hubacheck, 2020)	17
Figure 7.4: Structural Cross-section A – B crossing Schumann Arch	18
Figure 8.1: Sawn Specimen of Coleman Formation Conglomerate from O'Brien Mine	22
Figure 8.2 High-grade native silver from Beaver-Temiskaming Mine	22
Figure 8.3: Typical specimen of massive cobaltite / smaltite vein material from the Beaver-Temiskaming Mine	23
Figure 8.4: Deposit Settings in Cobalt and Silver Center Mining Camps (after Thorniley, 1994) Figure 9.1: Regional Geology showing Basins, Arches and Structures	24 26
Figure 10.1: Drill Hole Location Map with Drone Magnetic Imagery	27
Figure 11.1: Drill Hole Location Map showing cross-section line	30
Figure 11.2 Drill Hole Cross - Section Fence looking East	31
Figure 12.1: Compilation Map showing Exploration Targets	34
List of Tables	
Table 10.1: Camilleri Drill Hole Summary Table	27
Table 13.1 : Work Expenditure Table for Camilleri Property	35

1) EXECUTIVE SUMMARY

W. A. Hubacheck Consultants Ltd., (The Consultant) has been engaged by RJK Explorations Ltd. (The Company) to prepare an assessment report for the Camilleri Property located in Lorrain Twp. The Camilleri Property is comprised of 35 unpatented claims covering 528 hectares. The topography of Lorrain Township is undulating to rugged with a maximum relief of 340 meters. The Archean rock terrain is characterized by more rounded hills in contrast to ridges formed in the Huronian rock terrain. The ridges trend northwest or northeast; north strikes are less common. The main drainage is from the Montreal and Matabitchewan Rivers flowing along Temiskaming Rift fault structures.

In the Cobalt Mining Camp, there were 52 historical past producers with a total production of 489, 268,000 oz.'s of silver and 24,323,464 pounds of cobalt. The Cobalt area lies within the Superior structural province of the Canadian Shield. Archean basement rocks consist of northwest-southeast trending Archean volcanic intruded by mafic, ultramafic and granitic intrusives. The Archean rocks are unconformably overlain by relatively flat-lying Proterozoic sediments. The sediments consist of conglomerates, greywackes, and quartzites of the Coleman member. The Archean and Proterozoic rocks were intruded by the Nipissing diabase sill intrusive event. Nipissing diabase was intruded ~2219 Ma predominantly as sheets (sills, cone sheets and dikes). The diabase takes the shape of basins and domes intruded as a sill sheet. In the Cobalt Camp, there are three main northeasterly trending structures known as the Cobalt Lake Fault, Kerr Arch and the Schumann Arch. The adjacent basin synclinal fold axes are also aligned in a northeasterly direction shown by blue lines on figure 7.2. These basin structures are known as the Peterson Lake, the New Lake and the Goodwin Lake basins. The smaller basins are the North Lorrain, Nicol Lake and the North Cobalt basins. The Camilleri Property covers a major portion of the Goodwin Lake basin straddling the Cross Lake Fault and Schumann Arch structures.

The key controls are determining the location of silver/cobalt deposits are:

a) Host Rock Environment; b) Vertical Productive History: c) Strike of Archean Geology and Volcanic Stratigraphy

Deformation of these basin and domes, affecting not only the Nipissing diabase but also the Cobalt sediments and the underlying Archean rocks, was critical in the development of silver/cobalt vein structures. The author puts forth the conjecture that the lower contact of the Nipissing diabase sill has been under-explored in the Peterson Lake, New Lake and Goodwin Lake basin structures. RJK Explorations recent discovery of kimberlite formations identified in 7 drill holes totaling 426 meters proximal to the Cross lake Fault on the Camilleri property, emphasizes the importance of this major 1st order structure.

The author recommends a multi-faceted exploration program totaling \$300,000 to followup on the recent kimberlite discovery associated with the Paradis EM conductance anomaly target and the Suddle Lake Fault structure (figure 11.1). A diamond drilling program are recommended to follow up targets identified by the drone magnetic survey to be flown over the Suddle Lake fault and swamp gossan observed on satellite imagery. An RC program is recommended to follow up on the kimberlite discovery reported in holes RP-20-01 and RP-20-02.

2) TERMS OF ENGAGEMENT

W. A. Hubacheck Consultants Ltd., (The Consultant) has been engaged by RJK Explorations Ltd. (The Company) on January 1st, 2020 as project manager to manage the diamond drilling programs performed on the Bishop and Camilleri Property dispositions in Lorrain Twp. This report is intended for distribution for internal purposes and for reporting assessment work under the Ontario Mining Act.

3) EXPERTISE OF CONSULTANT

During the period of 1971 to 2000, W.A. Hubacheck Consultants Ltd., was engaged as prime consultant for Agnico-Eagle Silver and Gold Divisions. During the early 60's, Wencel Hubacheck was chief exploration geologist for McIntyre Mines who controlled the Castle-Trethewey Silver-Cobalt Mine in Gowganda. Paul Penna gained control of this operation in the early 70's in addition to acquiring other properties [Beaver-Temiskaming/Silver Century] in the Cobalt mining camp. The author participated in the exploration management of several exploration programs including Silver Century and the Penna Shaft exploration program on the Langis Property. These programs were under the overall supervision of Brian Thorniley, chief geologist, Doug Robinson, mine geologist, Armand Cote, mine supervisor, John Young and Gordon Kirk, mine managers.

During the 90's, the author managed the exploration team on behalf of Sudbury Contact Mines, discovering 6 diamondiferous kimberlite pipes in the Temiskaming Structural Zone. In 1996, the author managed a deep drilling program completing a 1.6km bore hole testing for PGM's in the Nipissing Diabase basin in Firstbrook Twp. In 2013, the author performed alluvial and till sampling programs for KIM'S in South Lorrain and Lorrain Twp.'s.

4) PROPERTY DESCRIPTION AND LOCATION

The Camilleri Property located in Lorrain Twp. are comprised of 35 unpatented crown claims with status of surface and mining rights covering 528 hectares as shown in figure 4.1. A complete listing of the claim numbers is listed in table 1 of the Appendix A.

Figure 4.1: Camilleri Property Land Dispositions

5) ACCESS, INFRASTRUCTURE AND PHYSIOGRAPHY

In the Cobalt region, there are two roads providing access into Lorrain Township. Hwy 567, from north Cobalt, leads to Maiden Lake and Maidens Bay on Lake Temiskaming. Another Ontario Hydro road from Cobalt follows the Montreal River south to the Hound Chutes Hydro Dam. Figure 4 illustrates the main access routes to the property.

Generally, the topography of Lorrain, South Lorrain, Coleman and Gillies Limit Townships are rugged with a maximum relief of 270 meters. The Archean rock terrain is characterized by more rounded hills in contrast to ridges formed in the Huronian rock terrain. The majority of these ridges are caused by faulting, with a steep gradient on one side and a gentle dip slope down the other side. The ridges trend northwest or northeast; north strikes are less common. The main drainage is from the Montreal and Matabitchewan Rivers flowing along Temiskaming Rift fault structures. The undulating surface is interrupted by well-marked linear depressions with directions about N.30 0W. The more pronounced of these linear depressions include that occupied by Lake Timiskaming, that known as the Lorrain Valley, and that occupied in part by Kirk, Chown and Goodwin Lakes.

The Cobalt Area properties are reasonably close to the serviced communities of Timiskaming Shores which services the agricultural, forestry, tourism and mining industries. Figure 5.1 shows the topographic contours and major waterways proximal to the claim group.

Figure 5.1: Lorrain Twp. Camilleri Property with Access and Topography

6) EXPLORATION HISTORY

Veins, some containing silver and cobalt mineralization, were discovered about 1910 and were explored by a considerable amount of pitting and trenching. Crown Reserve Mining Company Limited held the ground under option for a time and put down a 50-foot shaft, often referred to as the Goodwin Lake shaft. From about 1915 to 1955 little work appears to have been done. M, Halsted reports that about 1950, excavation of native silver occurrences were found at the old trenches particularly those near the Goodwin Lake shaft. In 1955, further exploration consisting of 13 short diamond drill holes for the most part to test the direct extensions of the known veins, was carried out under the direction of E. B. de Camps. This work did not give encouraging results and since then the claims have been dormant. The veins are in Nipissing Diabase; at surface they are not in proximity to the contacts of the intrusive body of this rock. The contact on the southwest side of this intrusive is the upper contact but no information on the amount of dip to the southwest is available. Two sets of veins are present, one striking southeast, and dipping steeply to the north is to some extent, normal 'to the attitude of the diabase contacts; the other strikes east of north and dips steeply to the west. The gangue of the veins is usually quartz and calcite and the quartz is in places in comb structure at the walls of the vein with a central filling of calcite. Chalcopyrite appeared to be the most abundant metallic mineral and it is usually accompanied by pyrite in small amounts. The Goodwin Lake shaft, (figure 6.1) carried silver to a depth of some 26 feet occurring in wall rock over a width of some six inches.

In 1955 one diamond drill hole was drilled south to intersect the vein at about 100 feet below the shaft collar. De Camps reports that there was nothing of importance encountered including 5 drill holes collared on 200' to 400' centers west of the shaft.

9

Figure 6.1: Goodwin Lake Silver Occurrence with Shaft Location

7) GEOLOGY SETTING AND MINERALIZATION

Regional Geology

The Cobalt area lies within the Superior structural province of the Canadian Shield. Archean basement rocks consist of northwest-southeast trending Archean volcanic intruded by mafic, ultramafic and granitic intrusives. The volcano-stratigraphy of the Archean rocks are predominantly mafic flows with thin interflow sedimentary units. Porphyry dykes and pyroclastic breccias occur within the mafic pile and are interpreted to represent local volcanic centers.

The Archean rocks are unconformably overlain by relatively flat-lying Proterozoic sediments. The sediments consist of conglomerates, greywackes, and quartzites of the Coleman member. This is the lowermost member of the Gowganda Formation of the Cobalt Group within the Huronian Supergroup. Huronian strata are exposed in the northeastern part of the Southern Province termed the Cobalt Embayment. [figure 5]

There is no evidence that the embayment is a separate basin. The upperpart of the Supergroup is represented by rocks of the Cobalt group, including the Gowganda, Lorrain and Gordon Lake Formations.

The Archean and Proterozoic rocks were intruded by two Nipissing diabase sill intrusive events. Nipissing diabase was intruded at ~2219 Ma predominantly as sheets(sills, cone sheets and dikes). The diabase takes the shape of basins and domes where intruded as a sill sheet sourcing from north/south feeder dikes. The diabase in sheet form, maintains a relatively uniform thickness of 300m to 355m. The sheets are differentiated into relatively consistent zones with thin bleached margins (10cm) bounding fine-grained quartz diabase. The lower quartz diabase is transitional upward into a zone of medium-grained, massive hypersthene diabase. This zone grades upward to varied texture diabase which is characterized by irregular volumes of pegmatitic material occupying the upper third of the sill. Granophyric diabase, granophyre and aplite commonly occur in this part of the sill.

All of the historic Cobalt Mining Camp. is in the Superior Province. The bedrock Precambrian Geology is divided into four main groups as shown on figure 7.1:

- 1) Archean basement rocks which are deformed with mafic to felsic volcano-stratigraphy and associated mafic intrusions, cut by felsic intrusions.
- 2) Flat-lying Cobalt Group sedimentary rocks unconformably overlying the Archean rocks
- 3) Diabase sheets or sills, and dikes which cut all older rocks
- 4) Granitic intrusions of Algoman age [Lorrain Granite]

The metavolcanics are exposed in four areas, all in the eastern half of the township, where there are local basement topographic highs. These rocks are faulted, folded and intruded by granitic rocks which are commonly referred to as Mesoarchean in age. The Cobalt Group rocks overlie the basement with variable unconformity and underlie most of the township. There are three formations; Coleman, Firstbrook and Lorrain.

The Nipissing Diabase Intrusion is a key factor associated with the silver-cobalt vein occurrences in the Cobalt camp. The Nipissing diabase intrusion is characterized by a combination of basins and domes or "arches".

Figure 7.1: Huronian Cobalt Embayment in Superior Province Domain

Property Geology

Nipissing Diabase Structures and Basement Basin and Arch Fold Axes

The position of the diabase contacts, based on field mapping and diamond drilling, outlines a combination of basins and domes expressed as sills and dikes. The direction of the longer axes of these shapes in the vicinity of Cobalt and Silver Center is northeasterly, which like the northwesterly is a common strike of the ore-bearing veins. Deformation of these basin and domes (arches), affecting not only the Nipissing diabase but also the deposition of Cobalt sediments which are likely occupy depressions in the underlying Archean rocks, was critical in the development of silver/cobalt vein structures. In the Cobalt Camp, there are three main northeasterly trending structures known as the Cobalt Lake Fault, Kerr Arch and the Schumann Arch. The adjacent basin synclinal fold axes are also aligned in a northeasterly direction shown by blue lines on figure 7.2. These basin structures are known as the Peterson Lake, the New Lake and the Goodwin Lake basins. The smaller basins are the North Lorrain, Nicol Lake and the North Cobalt basins. The Camilleri Property covers a major portion of the Goodwin Lake basin straddling the Cross Lake Fault and Schumann Arch structures.

Figure 7.2: Regional Geology of Coleman and Lorrain Twp.'s showing Camilleri Claims

Figure 7.3 depicts a structural cross-section transecting the Schumann Arch and Goodwin Lake basin Crossing over RJK's holdings. The Nipissing diabase sill intrudes Lorrain Granites with the Schumann Arch showing as an antiform then gently folding into a synform towards Goodwin Lake Basin. The Lightning Lake fault crosscuts the crest of the fold structure on the Arch and the Cross Lake fault appears to terminate the diabase sill in Goodwin Lake. East of Goodwin Lake, a steeply dipping mafic dike intrusion has been identified by recent drone magnetic surveys. The Paradis Pond kimberlite sill is shown on the east side of the dike structure draping over Lorrain granite basement rocks. The possibility for kimberlite pipe intrusions are shown proximal to the Cross Lake fault and Lightning Lake fault. On both sides of the Schumann Arch, the diabase sill transgresses the volcanic / granite contact. The upper Nipissing and Lower Nipissing contacts are prospective for Ag / Co mineralization. Section line A-B is shown on figure 7.4.

Figure 7.3: Structural Cross-section A – B: Schumann Arch – Goodwin Lake Basins showing Deposit Settings (Hubacheck, 2020)

Figure 7.4: Structural Cross-section A – B crossing Schumann Arch

8) DEPOSIT TYPES

Cobalt and Silver Mineralization and Controls [refer to figure 8.4]

Key geologic features controlling silver mineralization in the Cobalt, Gowganda, and Cobalt and Silver Center mining camps have been observed and reported with detailed descriptions by numerous exploration, prospecting, economic geologists and research geoscientists. This eclectic group include the likes of Miller (1915), Knight (1922), Mason (1959), Griffis (1962), Hellens (1962), Cunningham (1964), Thomson (1964), Sergiades (1968) Moore (1967), Ninacs (1967), Jambor (1971), McIlwaine (1970), Berry (1971), Nichols (1988), Lightfoot (1986), Thorniley (1994),

Interpretation of the data from all the sources mentioned above, indicates that the key controls are:

 b) Host Rock Environment;
b) Vertical Productive History:
c) Strike of Archean Geology and Volcanic Stratigraphy

Host Rock Environment

These controls, when considered on a statistical basis, provide effective guidelines on which to base a successful exploration program. There are four primary rock host environments in the Cobalt / South Lorrain areas: Coleman sediments, Lower Nipissing Diabase contact, Upper Nipissing Diabase contact and Granophyric Diabase.

Coleman deposits are those in which silver/cobalt ores veins occur mainly in Coleman sediments. Typically, silver/cobalt mineralization is in the lowermost sedimentary units within 50m of the Archean contact. Coleman-hosted vein seldom ore in the underlying volcanics or in the overlying Nipissing Diabase. It is estimated that **377** million oz's or **85%** of the silver produced in the Cobalt area were extracted from the Coleman-hosted deposits (Nichols).

Lower Nipissing Deposits are closely associated with the lower contact zone of the diabase over Archean volcanics. Ore shoots are located in diabase, volcanics or both. It is estimated that 31 million oz's or 7% of the silver produced in the Cobalt area were extracted from the Lower Nipissing-hosted deposits.

Upper Nipissing Deposits are closely associated with the upper contact of diabase below Archean volcanics. These ore bodies generally occur within 50 meters of the contact. Production from Upper Nipissing deposits is estimated at 38 million oz.'s or 9% of the total Cobalt area production.

Jambor (1971) conducted geochemical sampling traverses across the diabase sill exposed at the north end of the New Lake Basin extending from Brady Lake to the Kerr Lake Arch. The results of this trace element study are: the most abundant constituents of the ore minerals are cobalt, nickel, iron, copper, silver, arsenic and bismuth; the ore elements of Co, Ni, Fe, Cu, Ag, As, S, and Sb, all except Ni either increase with diabase fractionation or have migrated to the upper parts of the intrusion; the most common place for enrichment anomalies in the diabase are near the contacts and within the granophyric (varied texture) zone. Typical results in the varied texture diabase phase are Ni: 73 ppm, Co: 45 ppm, Cu: 150 ppm, Ba: 180 ppm and Ag: .8 ppm to 3 ppm.

Vertical Productive Interval

The vertical productive interval of an ore vein refers to the distance from the bottom to the top of an ore shoot. The mean range of productive intervals for ore veins in Coleman deposits is 50 meters to 60 meters. Upper and Lower Nipissing ore veins have broader range of productive intervals with a mean of 80 meters. In the Cobalt area, an estimated 84% of the silver produced was mined from ore shoots with a maximum vertical extent of 80 meters. In the Cobalt Silver Camp, silver /

cobalt vein systems extend up to 200 meters above the diabase contact into the Archean volcanics, as well as 300 meters within the Nipissing diabase.

Strike of Archean Geology and Volcanic Stratigraphy

The Archean strike relative to the strike of ore veins is highly correlative in the Cobalt and Silver Center camps. In Coleman-hosted deposits, significant silver production totaling 64% of Coleman deposit production was obtained from veins with strike at Az 0 to Az 020 and significant production at conjugate orientations of Az 070 to the underlying Archean sequence. The apparent wide scatter of preferred vein strikes are primarily due to different Archean formation trends underlying different deposits. In lower Nipissing-hosted deposits, 78% of the silver was produced from veins striking within 10 degrees of the Archean stratigraphy. In upper Nipissing deposits, only 46% of the silver originated from veins parallel to the Archean strike. Another 41% of the silver was extracted from veins striking 20 to 30 degrees to the Archean formational trend.

Cobalt and Silver Mineralization Types

The silver production is mainly sourced from native silver occurring as specks and leaves along calcite fractures to huge slabs several meters in length. Association with cobalt-nickel-arsenides is intimate, but in places native silver veinlets are exclusive to the calcite gangue material. In the wall rock, the silver is usually in the form of leaf silver along micro-fractures. A significant amount of silver was mined, not in the carbonate-Co-Ni arsenide veins, themselves but in the "country rock" on either side of the veins. This sawn section is through Coleman Formation conglomerate that was adjacent to a silver vein at the O'Brien Mine in Coleman Twp. As shown in the figure 8.1.

Figure 8.1: Sawn Specimen of Coleman Formation Conglomerate from O'Brien Mine

Figure 8.2 illustrates a high-grade native silver in a coliform-textured matrix within a

carbonate-Co-Ni arsenide veinlet (10cm wide) sourced from the Beaver-Temiskaming Mine.

The grade of this specimen in the range of 15,000 oz. Ag / tonne.

Figure 8.3: Typical specimen of massive cobaltite / smaltite vein material from the Beaver-

Temiskaming Mine

The most important cobalt-bearing minerals are cobaltite, skutterudite (smaltite), and safflorite. Cobalt content of the pure mineral can range between 9% and 33%. Typically, in veins, the cobalt minerals may occur as discontinuous bands ranging in width from millimetric ribbons to 100% of the vein widths varying from .1 m to .5m.

Figure 8.4: Deposit Settings in Cobalt and Silver Center Mining Camps (after Thorniley, 1994)

9) STRUCTURAL GEOLOGY

First Order Structures

In the Cobalt area, the Montreal, Cross Lake, Lake Timiskaming and Mackenzie faults are postulated to be of Paleozoic Age or even as old as 1 BYP associated with cratonward propagating thrusting connected to the Grenville Fault boundary. These northwest-trending faults extend for hundreds of kilometers interpreted as part of a major rift valley centered on Lake Timiskaming, known as the Timiskaming Structural Zone. Displaced blocks of Paleozoic sedimentary rocks provide evidence of post-Paleozoic movement. Kimberlite magmatism occurred at ~148Ma in the Jurassic and is interpreted to be the continental expression in the form of transform faulting linked to the Mesozoic opening of the North Atlantic spreading ridge. With respect to the Lake Timiskaming Fault, the east side has moved down relative to the west by at least 250 meters based on diamond drilling information. There are three first order north-easterly trending structures identified in geoscientific documents as: Figure 9.1 illustrates these features which are much older.

Second Order Structures

There are three second 2nd order northwest-trending structures that transect the Peterson Lake. New Lake and Goodwin Lake basins. They are named as follows from north to south:

Giroux Lake - Cobalt Lake Fault, Kerr Arch, Schumann Arch, Gleeson Lake Fault, Latour Deformation Zone and Woods-Wetlaufer Fault. Figure 9.1 illustrates these features.

Figure 9.1: Regional Geology showing Basins, Arches and Structures

10) 2020 DIAMOND DRILLING EXPLORATION PROGRAM

HOLE ID	EASTING	NORTHING	ELEVATION	Length (m)	Azimuth	Dip	Contractor	DDH Started	DDH Completed
PP-20-14	606587	5241900	309	121	255	-50	HUARD	Oct 3, 2020	Oct 8, 2020
PP-20-15	606741	5241515	309	100	255	-50	HUARD	Oct 11, 2020	Oct 17, 2020
PP-20-16	606859	5241515	318	71.15	255	-50	HUARD	Oct 18, 2020	Oct 20, 2020
PP-20-17	607173	5241281	335	26.5	360/180	-90	HUARD	Oct 22, 2020	Oct 25, 2020
PP-20-18	607025	5241500	337	24	360/180	-90	HUARD	Oct 27, 2020	Oct 28, 2020
RP-20-01	607209	5241060	322	37.6	360/180	-90	HUARD	Oct 30, 2020	Nov 5, 2020
RP-20-02	607378	5240993	321	30	360/180	-90	HUARD	Nov 5, 2020	Nov 6, 2020
PP-20-19	607583	5241157	324	16.3	360/180	-90	HUARD	Nov 7, 2020	Nov 8, 2020

Table 10.1: Camilleri Drill Hole Summary Table

Figure 10.1: Drill Hole Location Map with Drone Magnetic Imagery

11) EXPLORATION DRILLING RESULTS

Table 10.1 illustrates a summary of the 2020 diamond drilling program conducted on the Camilleri Property. Eight drill holes totaling 426.5 meters were drilled during the period of October 3rd to November 8th, 2020 (figure 10.1). A brief description of the drill hole results is listed below:

<u>PP-20-14</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as test a magnetic low centered on the Cross Lake Fault structure. The drill hole advanced through 7.1 m of glacial tills then intersected volcaniclastic kimberlite breccia from 7.1 m to 20.95 m. The kimberlite formation unconformably overlies Lorrain granite cored from 20.95 m to 121 m. The hole was terminated before reaching the Cross Lake Fault. <u>PP-20-15</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as test a magnetic low centered on the Cross Lake Fault structure. The drill hole advanced through 13.2 m of glacial tills then intersected volcaniclastic kimberlite breccia from 13.2 m to 19.3 m. The kimberlite formation unconformably overlies Nipissing Diabase cored from 19.3 m to 81.8 m. In this interval the Cross Lake fault, represented by four fault gouge zones, was intersected from 49.5 m to 63.1 m. The hole was terminated in Lorrain granite after exiting the Nipissing Diabase from 81.8 m to 100 m.

<u>PP-20-16</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as test a linear magnetic high identified by drone magnetic surveys. The drill hole advanced through 7.1 m of glacial tills then intersected volcaniclastic kimberlite breccia from 7.1 m to 40.65 m. The kimberlite formation unconformably overlies Lorrain granite cored from 40.65 m to 62 m. A magnetite-bearing mafic dike was intersected from 62 m to 68.1 m. followed by Lorrain granite where the hole was terminated at a depth of 71.15 m. <u>PP-20-17</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as test a discrete magnetic high identified by drone magnetic surveys. The drill hole advanced through 2.65 m of glacial tills then intersected Nipissing diabase from 2.65 m to 26.5 m. No kimberlite was recovered from this hole.

<u>PP-20-18</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as stepping out southeast of PP-20-16. The drill hole advanced through 4.35 m of glacial tills then intersected volcaniclastic kimberlite breccia from 4.35 m to 16.35 m. The kimberlite formation unconformably overlies Nipissing diabase cored from 16.35 m to 24 m.

<u>RP-20-01</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as stepping out southeast of PP-20-17 @ Az 155 parallel to the Cross Lake Fault structure. The drill hole advanced through 4.05 m of glacial tills then intersected volcaniclastic kimberlite breccia from 4.05 m to 37.6 m. The drill hole was terminated in the kimberlite due to sanding in of the drill rods.

<u>RP-20-02</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as stepping out southeast of RP-20-01. The drill hole advanced through 4.15 m of glacial tills then intersected volcaniclastic kimberlite breccia from 4.15 m to 28.15 m. The kimberlite formation unconformably overlies Nipissing diabase cored from 28.15 m to 30 m.

<u>PP-20-19</u>: This hole was planned to extend the kimberlite discovery on the adjoining Bishop Property as well as stepping out northeast of RP-20-02. The drill hole advanced through 11.4 m of glacial tills then intersected Lorrain syenite from 11.4 m to 16.3 m. No kimberlite was recovered from this hole. Figure 11.1 illustrates the drill holes that are included in a cross-section fence showing the stratigraphic position of the kimberlite formation. The drill hole elevation and hole depth are recorded below the drill hole ID.

Figure 11.1: Drill Hole Location Map showing cross-section line

Figure 11.2 Drill Hole Cross - Section Fence looking East

Figure 11.2 is a schematic illustration of a fence exploration drill holes with observer looking east. A dramatic thickening of the kimberlite layer in the vicinity of RP-20-01. The elevations for the drill holes are referenced to Mean Sea Level.

12) CONCLUSIONS AND RECOMMENDED EXPLORATION PROGRAM

Exploration in the Cobalt – Silver Centre mining camps was focused on structural arches and domes of the Nipissing Diabase sill sheets. The structural arches, being closer to surface were more accessible hence prospecting activity over the course of 120 years has successfully discovered a majority of the vein systems proximal to the upper contact of the diabase sheets. It is the author's opinion, that the structural basins have not been explored adequately, as drilling technology was not advanced enough and prohibitively expensive during the early era of exploration from 1904 to 1980. Remote drone magnetic geophysical methods have not been deployed until recently. Major intersecting NW / NE fault systems are the preferred targets for drill testing.

On the Camilleri property, the maximum depth for exploring the lower Diabase contact with Archean basement rocks is 300 to 400 meters. The upper contact of the Nipissing diabase sill exposed in the Schumann Arch is a prime target ideally suited for drone magnetic surveys. The airborne survey grid would be centered on the N/S Suddle Lake Fault cross-cutting the Nipissing Diabase contact covering a 800 m x 800 m area involving 16 line km @ 50m line spacing.

The author recommends a multi-faceted exploration program totaling \$300,000 to followup on the recent kimberlite discovery associated with the Paradis EM conductance anomaly target and the Suddle Lake Fault structure (figure 12.1). A diamond drilling program are recommended to follow up targets identified by the drone magnetic survey to be flown over the Suddle Lake fault and swamp gossan observed on satellite imagery. An RC program is recommended to follow up on the kimberlite discovery reported in holes RP-20-01 and RP-20-02. An exploration program budget is described as follows:

TASK DESCRIPTION	AMOUNT
First Nation Consultation / Legal Agreements	\$10,000
Geologic Mapping / Prospecting	\$25,000
Diamond Drilling: Goodwin Lake Basin – Suddle Lake Fault	
1000m @ \$130/m	\$130,000
EM Conductance Target: RC Drilling	
12 RC holes: 2 holes / day @ \$5000 / day	\$30,000
Kimberlite Bulk Sample: Mineral Processing / Caustic Fusion	\$30,000
Drone Geophysics	\$50,000
Geological Compilation / Technical Reports	<u>\$25,000</u>
TOTAL	\$300,000

Note: All-in Diamond Drilling cost of \$130/m includes basic drilling costs + ancillary drilling charges + core logging + core processing +assaying + mob/de-mob [based on actual field drilling program expenditures in Timmins-Timiskaming Region]

Figure 12.1: Compilation Map showing Exploration Targets

13) ASSESSMENT WORK EXPENDITURE SUMMARY

	RJK EXPLORATION:	DIAMOND DRI	LLING PROGRAM: E	EXPENDITURES ON CAMILLERI PROPERTY	
Category	Date	Invoice	Payee	Description	Amount
				Drill Holes PP-20-14, PP-20-15 including core	
				drilling, test, moving between holes, skidder	
Drilling - Contractor	October 15, 2020	Oct 1-15	Huard Drilling Ltd.	and dozer.	\$18,808.17
				Drill Holes PP-20-15, PP-20-16, PP-20-17, PP-20-	
				18 including core drilling, test, moving	
				between holes, travelling, materials left in	
Drilling - Contractor	October 31, 2020	Oct 16-31	Huard Drilling Ltd.	hole, skidder and dozer.	\$24,658.46
				Drill Holes PP-20-19 (RP-20-01), PP-20-20 (RP-20-	
				02), PP-20-21 (PP-20-19) including core drilling,	
				moving between holes, travelling, skidder and	
Drilling - Contractor	November 15, 2020	Nov 1-15	Huard Drilling Ltd.	dozer.	\$12,813.75
				Subtotal:	\$56,280.38
Drilling - Report	February 16, 2021	RJK-2021-01	Terry Link	Contribute to report graphics and maps	\$1,400.00
			Hubacheck		
			Consulting		
Drilling - Report	March 1, 2021	March 1, 2021	Geologists	Author of report	\$2,500.00
				Subtotal:	\$3,900.00
				TOTAL	\$60,180.38
Claim					
Claim	Cost per Claim				
15/190	\$7,227.00				
160310	\$9,466.33				
238289	\$14,276.25				
251980	\$10,820.83				
312362	\$18,389.96				
Total	\$60,180.38				

Table 13.1 : Work Expenditure Table for Camilleri Property

14) ACKNOWLEDGEMENTS

In preparation of this report, the author has relied on numerous scanned and digital material compiled by Terry Link, Allan Kon and Glenn Kasner of RJK Explorations for GIS and Geotech support from the Kirkland Lake and Haileybury exploration office. In addition, Glenn Kasner has performed peer review for this document.

15) REPORT SIGNATURES

On behalf of W.A. Hubacheck Consultants Ltd., the author, Peter Hubacheck, P. Geo., respectively submits the report entitled: "A DIAMOND DRILLING ASSESSMENT REPORT FOR THE CAMILLERI PROPERTY" to RJK Explorations Ltd.

Peter C. Hubachele

Author: Peter C. Hubacheck, P. Geo.W.A. HUBACHECK CONSULTANTS LTDDATE: March 3, 2021

Management Representative

RJK EXPLORATIONS LTD

DATE: March 3, 2021

16) **REFERENCES**

BERRY, L.G., The Silver-Arsenide Deposits of the Cobalt-Gowganda

Region, Ontario; The Canadian Mineralogist, Vol. II, Part 1, 1971.

CUNNINGHAM, L.J., A Description of Recent Silver Deposits,

Cobalt, Ontario; Can. Min. Jour., May 1964, pp. 49-53.

Fallon, M. & Guj, P.; 2011; A Time Series Audit of Ziph's Law as a Measure of Terrane Endowment and Maturity on Mineral Exploration; Economic Geology (2011), Vol.206 pp. 241-259

Folinsbee, R., World's View from Alph to Ziph; Geological Society of America, Bulletin 88, pp. 898-907

GRIFFIS, A.T., Geology of the Cobalt Silver Deposits; *Precambrian Mining in Canada. June* 1962, *pp.* 28-33.

KNIGHT, C.W., Geology of the Mine Workings of Cobalt and South

Lorrain Silver Areas; Ontario Department of Mines, Vol. 31, Part

2,1924.

Lovell, H., 1978: Cobalt Area: Possibilities for Large Tonnage Low Grade Silver

Production, MNDM Assessment Files-Unpublished Report

MASON, J., Geology of the Christopher Silver Mine; Can. Min. Jour.,

Nov. 1959, pp. 71-77.

MOORE, H.A., Silverfields Mining Corporation Limited; CIM

Centennial Field Excursion, Northwestern Quebec and Northern

Ontario, 1967, pp. 146-149.

NINACS, G.F., Glen Lake Silver Mines Limited and its subsidiaries;

CIM Centennial Field Excursion, Northwestern Quebec and

Northern Ontario, 1967, PP. /51-153.

PATTERSON, G.C., No. 521 Metallogenetic Relationships of Base

Metal Occurrences in the Cobalt Area; Ont. Geol. Survey Misc. Paper 90, 1979.

SERGIADES, A.O., Silver-Cobalt Calcite Vein Deposits of Ontario;

Mineral Resources Circular Number 10, 1968.

THOMSON, R., Cobalt Camp; Structural Geology of Canadian Ore

Deposits, Sixth Commonwealth Mining and Metallurgy Congress,

CIM, 1957; pp 376 to pp 388

THOMSON, R., Cobalt Silver Area, Northern Sheet, Temiskaming

District, Ontario; Ont. Dept. of Mines, Map 2050, scale 1 inch to 1000 feet, 1964a.

THOMSON, R., Cobalt Silver Area, Southwestern Sheet, Temiskaming

District, Ontario; Ont. Dept. of Mines, Map 2051, scale 1 inch to 1000 feet, 1964b

Goodz, M.D. 1985. Geology and isotope geochemistry of the Beaver-Temiskaming

Mine, Cobalt, Ontario. unpublished M.Sc. thesis, Carleton University,

Ottawa, Ontario. 24Gp.

Hubacheck, Peter C.: 2020: RJK Exploration Nipissing Diamond Project Video Update

Hriskevich M.E. 1968. Petrology of the Nipissing Diabase Sill of the Cobalt

Area, Ontario, Canada. Geological Society of America Bulletin 79: 1387

Jambor, J.L. 1971a. Distribution of Some Minor Elements in the Nipissing Diabase, in

Canadian Mineralogist, 11: pg. 321 to 356

Jambor, J.L. 1971b. Origin of the silver veins of the Cobalt-Gowganda region.

in Canadian Mineralogist, 11: pp 402-412.

Joyce, D. K. 2012: The Cobalt-Gowganda Silver Mining Area, Mineralogical Record, Vol. 43-No.6

Knight, C.W. 1924. Geology of the mine workings of Cobalt and South Lorrain

Silver Areas. Ontario Department of Mines, Annual Report, 1922, 31: 356p.

Lightfoot, P.C, Naldrett, A.J., 1985: Petrology, Chemical, Isotopic and Economic

Potential Studies of the Nipissing Diabase, Grant 320

Lightfoot, P.C., De Souza, H., Doherty, W. 1991: Mineral Potential of the Nipissing

Diabase – Some Geochemical Considerations; OGS MP 157, pp 237-246

Lightfoot, P.C., De Souza, H: Differentiation and the Source of Nipissing Diabase

Intrusions, 1993; Canadian Journal of Earth Science - Vol.30

Nichols, R.S 1988; Archean Geology and Silver Mineralization Controls at Cobalt,

Ontario, CIM Bulletin Vol.81, No.910; pg. 40 to 48

Thorniley, B.H 1993: Assessment of Silver Potential on the Agnico-Eagle Mines Limited,

Silver Division Properties, – In-house Report to Paul Penna & W.A. Hubacheck

Thorniley, B.H 1994: Summary of Silver Reserves and Future Prospects; - In-house

Report to Paul Penna & W.A. Hubacheck

Thorniley, B.H 1995: Proposed Areas for Future Silver Exploration in the Cobalt Area;

Agnico-Eagle Silver Division Report to Paul Penna & W.A. Hubacheck

Watkinson, D, H, 1990: Mineral Deposits of Noranda, Quebec and Cobalt, Ontario;

GSC Field Trip 4; 8th IAGOD Symposium; pp 33 to 52

OGS 2000: Airborne Magnetic and Electromagnetic Surveys, Residual Magnetic Field and Electromagnetic Anomalies, Temagami Area, Ontario; Geological Survey, Map 82 070, Scale: 1,50,000

Claim Number	Туре	Cell Grid ID	Township	Claim Holder
100291	BCMC	31M05H362	Lorrain	Jonathan Camilleri
100292	BCMC	31M05H385	Lorrain	Jonathan Camilleri
100293	BCMC	31M05A005	Lorrain	Jonathan Camilleri
115098	SCMC	31M05H384	Lorrain	Jonathan Camilleri
115099	BCMC	31M05A043	Lorrain	Jonathan Camilleri
119425	SCMC	31M05A064	Lorrain	Jonathan Camilleri
127608	BCMC	31M05A045	Lorrain	Jonathan Camilleri
144407	BCMC	31M05H381	Lorrain	Jonathan Camilleri
144408	BCMC	31M05A001	Lorrain	Jonathan Camilleri
144792	SCMC	31M05A024	Lorrain	Jonathan Camilleri
156895	SCMC	31M05H383	Lorrain	Jonathan Camilleri
156896	SCMC	31M05A023	Lorrain	Jonathan Camilleri
157190	SCMC	31M05A087	Lorrain	Jonathan Camilleri
160310	BCMC	31M05A066	Lorrain	Jonathan Camilleri
172984	BCMC	31M05G400	Lorrain	Jonathan Camilleri
179814	SCMC	31M05A085	Lorrain	Jonathan Camilleri
189654	BCMC	31M05A068	Lorrain	Jonathan Camilleri
202714	BCMC	31M05H364	Lorrain	Jonathan Camilleri
202715	BCMC	31M05A002	Lorrain	Jonathan Camilleri
210777	SCMC	31M05A003	Lorrain	Jonathan Camilleri
210778	BCMC	31M05A025	Lorrain	Jonathan Camilleri
215120	SCMC	31M05A084	Lorrain	Jonathan Camilleri
229587	BCMC	31M05H363	Lorrain	Jonathan Camilleri
233159	SCMC	31M05A065	Lorrain	Jonathan Camilleri
238289	SCMC	31M05A088	Lorrain	Jonathan Camilleri
251980	BCMC	31M05A046	Lorrain	Jonathan Camilleri
276783	BCMC	31M05H365	Lorrain	Jonathan Camilleri
276784	SCMC	31M05A004	Lorrain	Jonathan Camilleri
289223	SCMC	31M05A086	Lorrain	Jonathan Camilleri
295640	BCMC	31M05A044	Lorrain	Jonathan Camilleri
295641	BCMC	31M05A042	Lorrain	Jonathan Camilleri
312362	BCMC	31M05A067	Lorrain	Jonathan Camilleri
313743	BCMC	31M05B020	Lorrain	Jonathan Camilleri
325444	BCMC	31M05H382	Lorrain	Jonathan Camilleri
325445	BCMC	31M05A022	Lorrain	Jonathan Camilleri

APPENDIX A: Table of Claim Dispositions

Survey Type Logged By	REFLEX Peter Hubacheck, P.Geo.	Colour	orangy.brown OVERBURDEN: 7.1 m boulders /cobbles with no sand	HETEROLITHIC VOLCANCLASTIC KIMBERLITE	BRECCIA: matrix supported with only one angular /lorrs	granite blocks measuring .15m - 6% autoclasts; fine	grained tuffisitic, 79% sandy homogenous olivene matr	dark greenish brown colour with moderate calcite cem	microlitic. pelletal lapilli (.1mm2mm) in sandy matrix 1	chromite frosting on lapilli clasts; also fg irregular	ilmenite/chromite grains are 1%; tan-coloured amorph	matrix;larger autoliths are dominant; vuggy, open spac	porosity 5%; 5% carbonate-rich tan-coloured xenoclast	are mainly globular with monticellite microcrysts; 1%	phlogopite microcrysts with 10% translucent tabular	monticellite microcrysts; sharp lower contact with brok	tan gray surface of Lorrain granite	LORRAIN GRANITE: massively bedded; equigranular	pinkish feldspar phenocrysts:65% fine grained groundr	with platy foliated hornblende matrix 15%; 20% amorph	quartz; moderate to strong silicification; mg feldspar	red ochre phenocrysts up to .5cm;	
Tools	BTW	LMENITE/CHROMITE Xenocrysts %															10						
DDH End	Oct 08, 2020	CARB XENO															2						
DDH Start	Oct 02, 2020	CLAST TYPE															crater-fill						
Contractor	HUARD	BRECCIA														volcanicla	stic						
Dip	-20	KIM Texture														mass/uncon	sol/uniform						
Azimuth	255	AUTO CLAST %															%9						
Length	121	MATRIX %															62						
ELEVATION	309	ГШНО	в														HVKBX					LORGRAN	
NORTHING	5241900	P	7.1														20.95					121	
EASTING	606587	From	0														7.1					20.95	
HOLE_ID	PP-20-14	HoleID	PP-20-14														PP-20-14					PP-20-14	

APPENDIX B: SUMMARY DDH LOGS (compiled by P. Hubacheck)

		DESCRIPTION	BOULDER TLL: diabase/granitoid boulders / cobbles with no sand	HETER OLITHIC VOLCANCLASTIC KIMBERUITE BRECCOK matrix supported with mixed angular diabaselorrain grantle blocks ranging from .05cm to1m - 3% autoclasts; 80% fine grained, sandy divene microcrystic matrix(.1mm-2mm) is dark greenish brown colour with moderace facile cement; chronine frosting on lapili clasts in matrix 10%; ; also tig irregular imentiekhromite frosting on lapili clasts in matrix 10%; ; also tig irregular imentiekhromite grains are 5% of tan-coloured amorphous matrix/langer autoliths are assorted matic volcanic compositions; vuggy, open space porosity 5%, 2% carbonate-rich tan- coloured xenoclasts are mainly globular with monticellite microcrysts 1% phlogopte microcrysts with 10% translucent tabular monticellite microcrysts and forsterite macrocrysts, sharp lower contact with broken	surface of Npissing Diadase	NPDIX: Mpissing Diabase sht. fine grained to medium grained; med to dark gray; 19.3m to 49.5m. med grained fabric with massive equigranular texture; aphantitic chlorific groundmass with 20% attered feldspar lathes; chill basal contact from 80.8m to 81.8m; 1 calcite crackie veinlet @ 55 tas; Cross Lake Fault represented by four fault gouge zones from 49.5m to 63.1m;	LORRAN CRANTE: massively bedded; equigranular pinkish feldspar phenocrysts:65% fine grained groundmass with platy follated hormblende matrix 15%; 20% amorphous quartz; moderate to strong silicification; mg feldspar phenocrysts up to .5cm;	
Logged By	PCH	Colour			tan gray	gray / black	red ochre	
Survey Type	REFLEX	XENO CLAST %			9			
Tools	MLB	ILMENITE/CHRO MITE Xenocrysts %			2			
DOH End	Oct 17, 2020	CARB XENO %			2			
DOH End	Oct 11, 2020	CLAST TYPE			crater-fill			
Contractor	HUARD	BRECCIA TYPE			volcaniclastic			
ġ	8	KIM Texture		massfunconsol	uniform			
Azimuth	52	AUTO CLAST%						
Length	100	MATRIX %			8			
ELEVATION	309	ЮНП	8		HTKBX	NIPDIA	LORGRAN	
NORTHING	5241515	ъ Б	13.2		19.3	<u>8</u>	10 10	5
EASTING	606741	From	•		13.2	19. 2.0	818	
HOLE D	PP-20-15	nole id	PP-20-15		PP-20-15	PP-20-15	PP-20-15	

_		1											_		_	_	_	_		_	_					-
Logged By	Peter Hubacheck, P.Geo.	DESCRIPTION	BOULDER TILL: black mafic /granitoid boulders / cobbles with sand	HETEROLITHIC VOLCANICLASTIC KINBERLITE BRECCIA: matrix supported with mixed anoular diabase/lorrain granite blocks ranging.	from .05cm to1m - 1% autoclasts;79% fine grained olivene,	sandy microcrystic matrix is dark greenish brown colour with	moderate carcite cernent; ; critornite irosung on tapili clasts; also ig irregular ilmenite/chromite grains are 10% of tan-coloured	amorphous matrix larger autoliths are dominant. Vuody open	space porosity 10%; 9% carbonate-rich tan-coloured zenoclasts	are mainly globular with monticellite microcrysts; 1% phlogopite	microcrysts with 10% translucent tabular monticellite microcrysts	and forsterite macrocrysts; sharp lower contact with broken surface	of Lorrain granite	LORRAIN GRANITE: massively bedded; equigranular pinkish	feldspar phenocrysts:65% fine grained groundmass with platy	foliated homblende matrix 15%; 20% amorphous quartz;31.3m to	33.45m: moderate to strong silicification; mg feldspar phenocrysts	up to .5cm; 62m to 68.1m: silicified magnetite/pyrite alteration zone	MS up to 82.5 @ 67.6m. 1% dissem py	MAGNETITIC DIKE: siliceous magnetite-pyrite alteration zone;	locally 20% fg aphanitic black magnetic at 67.6m;	I OB PAIN CP ANITTE: massingly hadded: anninganular ninkich	EURINAIN UNANTE. ITIASSINGIY BEAGAGU, EQUIGIATIAIA PILINSIT	letuspart prierioci ysts:00% illite graineu groundritass wirri piaty feliated homblende matrix 15%: 20% amombouis quarta: moderate i	to strong silicification; mg feldspar phenocrysts up to .5cm;	-
Survey Type	REFLEX	Colour	orangy.brown										tan gray						red ochre		black				red ochre	
Tools	BTW	ILMENITE/CHROM ITE XENOCRYSTS %											10													
DDH End	Oct 20, 2020	CARB XENO											6													
DDH Start	Oct 18, 2020	CLAST TYPE											srater-fill													
Contractor	HUARD	BRECCIATYPE											/olcaniclastic													
diD	-20	KIM Texture										mass/unconsol/	uniform													
Azimuth	255	AUTO CLAST %											1%													
Length	71.15	MATRIX %											79													
ELEVATION	318	ПТНО	в										НТКВХ						LORGRAN		MAGDIKE				LORGRAN	
NORTHING	5241515	۴	7.1										40.65						62		68.1				71.15	EOH
EASTING	606859	From	•										7.1						40.65		62				68.1	
HOLE_ID	PP-20-16	HOLE ID	PP-20-16										PP-20-16						PP-20-16		PP-20-16				PP-20-16	

Logged by	Peter Hubacheck, P.Geo.	DESCRIPTION	OVERBURDEN: 4m cobles , peobles with no sand	NIPDIA: Nipissing Diabase sill: fine grained to medium grained; med to dark gray; 2.65m to 16.25m: med grained fabric with massive equigranular texture; aphantitic chloritic groundmass with 20% altered feldspar lathes; 16.25m to 26.5m: med to strongly silicified with aphantitic texture dominant
SurveyType	REFLEX	Colour		gray/black
Tools	BTW	(ENO CLAST %		
DH Completed	Oct 25, 2020	CLAST TYPE X		
DDH Started D	Oct 22, 2020	BRECCIATYPE		
Contractor	HUARD	KIM Texture E		
ġ	06-	AUTO CLAST %		
Azimuth	360/180	MATRIX % /		
Length	26.5	AVG MS		
ELEVATION	335	어디	B	NPDJA
NORTHING	5241281	9	2.65	26.5 EOH
EASTING	607173	From	0	2.65
HOLE_ID	PP-20-17	HoleID	PP-20-17	PP-20-17

				alcite %; \$ts;	g
b Logged By	Peter Hubacheck, P.Geo.	DESCRIPTION	OVERBURDEN: .55m cobbles , pebbles with no sand	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matri supported with mixed angular diabase/forrain granite blocks ranging from .05cm to1m - 8% autoclasts,74% fine grained olivene, sand micocrystic matrix is dark greenish brown colour with moderate ci cement; ; chromite frosting on lapill clasts; also fig irregular ill entite/chromite grains are 15% of tan-coloured amorphous matrix;larger aubliths are dominant, vuggy, open space porosity 10 3% carbonate-rich tan-coloured xenoclasts are mainly globular with monticellite microcrysts 1% phlogoptie microcrysts with 10% translucent tabular monticellite microcrysts and forsterite macrocrys sharp lower contact with broken surface of Nipissing diabase	NIPDIA: Nipissing Diabase sill: medium grained, med to dark gray, 4.35m to 16.35m: med grained variegated fabric with massive equigranular texture; aphanitic chloritic groundmass with 35% altert mg-cg feldspar fathes;
urvey Typ	REFLEX	Colour		tan gray	black
Tools	BTW	ILMENITE/CHRO MITE XENOCRYSTS %		ڻ	
DDH Completed	Oct 28, 2020	CARB XENO		m	
DDH Started	Oct 27, 2020	CLAST TYPE		crate	
Contractor	HUARD	BRECCIATYPE		volcaniclastic	
ġ	6	KIM Texture		mass/unconso /uniorm	
Azimuth	360/180	AUTO CLAST %		8	
Length	24	MATRIX %		4	
ELEVATION	337	ГЦНО	B	НТКВХ	NIPDIA
NORTHING	5241500	10	4.35	6.35 S5	24 EOH
EASTING	607025	From	0	4.35	16.35
HOLE_ID	PP-20-18	HOLE ID	PP-20-18	PP-20-18	PP-20-18

Logged By	Peter Hubacheck, P.Geo.	DESCRIPTION	OVERBURDEN: .9m cobbles , pebbles with no sand	HETEROLITHIC VOLCANICLASTIC KIMBERLITE BRECCIA: matrix supported with 7 mixed angular mafic /graniboid, quartzite blocks ranging from .25m to .45m - 10% autoclasts; largest blocks downhole at 28.45m; 77% fine grained, sandy homogenous microcrystic olivene matrix is dark greenish brown colour with moderate calcite cement; chromite frosting on lapilli clasts; also fg irregular ilmenite/chromite grains are 5% of tan-coloured amorphous matrix/arger autoliths are of dominant; vuggy, open space porosity 5%; 3% carbonate-rich tan- coloured xenoclasts are mainly globular; 1% phbgopite microcrysts with 10% translucent tabular monticellite microcrysts and forsterite macrocrysts; sharp lower contact with broken surface of kaolinized,	fractured syenite	
Survey Type	REFLEX	Colour			tan gray	
Tools	BTW	ILMENITE/CHR OMITE XENOCRYSTS %			9	
DDH End	Nov 5, 2020	CARB XENO			e	
DDH Start	Oct 30, 2020	CLAST TYPE			crater-fill	
Contractor	HUARD	3RECCIA TYPE			volcaniclastic	
Dip	06-	KIM Texture E		mass/unconso	l/uniform	
Azimuth	360/180	AUTO CLAST %			10	
Length	37.6	MATRIX %			11	
ELEVATION	322	ГШНО	8		нтквх	
NORTHING E	5241060	2	4.05		37.6	EOH
EASTING	607209	From	•		4.05	
HOLE_ID	RP-20-01	HOLE ID	RP-20-01		RP-20-01	

DESCRIPTION	es, peobles with no sand	NICLASTIC KMBERLITE BRECCIA: matrix angular mafric /grantocid, globular blocks - 3% autoclasts; largest grantitc blocks rained tuffistir, 77% sardy homogenous rix (.1mm2mm) is dark greenish brown colour menti, in matrix 82%; chromite frosting on lapili monile/chromite grains are 55% of tan-coloured autofiths are of dominant; vuggy, open space ich tan-coloured xenoclasts are mainly globular ysts 5%, 1% phlogopite microcrysts with 10% cellite microcrysts; sharp lower contact with ed Nipissing Diabase	se sill: frie grained to medium grained; med to n: med grained fabric with massive 6 aphanitic chbritic groundmass with 20% 5% quartz-rich groundmass typical of Quartz
	OVERBURDEN: .7m cobble	HETEROLITHIC VOLCA HETEROLITHIC VOLCA supported with 10 mixed ranging from 8cm to .4m downhole at 7.1m; fine gr downhole at 7.1m; fine gr downhole at 7.1m; fine gr downhole at 7.1m; fine gr downhole at 7.1m; fine downhole at 7.1m; fine downhole at 7.1m; fine gr mith moderate calcite cer clasts; also fg irregular if amorphous matrix; larger clasts; also fg irregular if amorphous matrix; larger porcesity 5%; carbonate-ri with monticellite microcy translucent tabular monti translucent tabular monti gy broken surface of fractur	NPDIA: Nipissing Diabas dark gray, 28.15m to 30n equigranular texture, 35% altered feldspar lathes; 44 Lek Diabase
Colour		tan gra	gray/bla
XENO CLAST %		5	
ILMENITE/CHRO MITE XENOCRYSTS %		טו	
CARB XENO %		מו	
CLAST TYPE		cratei-fil	
BRECCIATYPE		volcaniclastic	
KIM Texture		mass/unconsol/ uniform	
AUTO CLAST %		m	
MATRIX %		4	
ПТНО	B	НТКВХ	NIPDIA
2	4.15	28.15	8 E
From	•	4.15	28.15
HOLE ID	RP-20-02	RP-20-02	RP-20-02

Logged By	Peter Hubacheck, P. Geo.	DESCRIPTION	OVERBURDEN: 11.4m cobbles , pebbles with no sand	ORRAIN SYENITE: massively bedded; equigranular light pinkish olagioclase feldspar phenocrysts:75% fine grained groundmass with blaty foliated homblende matrix 15%; 10% amorphous quartz;31.3m to 33.45m: moderate to strong silicification;
Tools	BTW	Colour	0	pink/red
DDH End	Nov 8, 2020	XENO CLAST %		
DDH Start	Nov 7, 2020	CLAST TYPE		
Contractor	HUARD	BRECCIATYPE		
ġ	-00	KIM Texture		
Azimuth	360/180	AUTO CLAST %		
Length	16.3	MATRIX %		
ELEVATION	324	СПТЮ	B	SYEN
NORTHING	5241157	P	11.4	16.25 EOH
EASTING	607583	From	0	11.4
HOLE_D	PP-20-19	HoleID	PP-20-19	PP-20-19

Work by Terry Link

January to February 15, 2021 Camilleri Drilling Report

For RJK Explorations Ltd.

Camilleri Option Drilling Report

Jan 11, 2021	Begin compiling data for Camilleri drilling report	0.500	day	
Jan 15, 2021	Work on Camilleri drilling report and maps for drilling area claims 157190, 160310, 238289, 251980, 312362	1.000	day	
Jan 17, 2021	Work on Camilleri drilling report and maps for drilling area claims 157190, 160310, 238289, 251980, 312362	0.500	day	
Jan 18, 2021	Work on Camilleri drilling report and maps for drilling area claims 157190, 160310, 238289, 251980, 312362	0.500	day	
Feb 11, 2021	Modify maps for Camilleri Property drilling report	0.500	day	
Feb 12, 2021	Modify maps and claims table for entire Hubacheck Camilleri Property drilling report.	0.500	day	
	TOTAL DAYS	3.500	days	
			-	
	Total Truck kms			0