

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report of 2020 Surface Exploration on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada

Prodigy Gold Inc.

(First Minerals Exploration Ltd. Option)

Prepared By:

Geordie Hamilton, M.Sc., G.I.T. Prodigy Gold, Inc.

> Isaac Riddle, B.Sc. Prodigy Gold, Inc.

With Contributions From: Stephen Roach, B.Sc., P.Geo Prodigy Gold, Inc.

March 8, 2021

PRODIGY GOLD INCORPORATED TODAY'S DISCOVERY, TOMORROW'S FUTURE.

Table of Contents

SUMMARY	page I
1.0 Survey Overview	page 1
1.1 Introduction	page 1
1.2 Activities Undertaken	page 1
2.0 Property Description and Access	page 1
2.1 Location, Access, and Accommodations	page 1
2.2 Description of Mining Claims	page 2
3.0 Physiography and Vegetation	page 4
4.0 Historical Exploration	page 6
5.0 Geological Setting	page 7
5.1 Regional Geology	page 7
5.2 Property Geology	page 9
5.3 Deposit Styles	page 10
6.0 Summary of Geological Mapping and Prospecting Program	page 12
7.0 Analytical Quality Control and Quality Assurance	page 13
7.1 Sample Preparation	page 13
7.2 Gold Analysis	page 13
7.3 Multi-Scan Analysis	page 13
7.4 Laboratory Quality Control and Quality Assurance (QC/QA)	page 13
7.5 Company Quality Control and Quality Assurance (QC/QA)	page 14
8.0 Discussion of Geological Mapping and Prospecting Results	page 15
8.1 Lithology and Alteration	page 15
8.2 Structure	page 15
8.3 Mineralization	page 19
10.0 Conclusions	page 20
11.0 Recommendations	page 21
References	page 22
Qualifications	page 24

GOLD INCORPORATED

Instrument Specifications

Figures

Figure 1: Aguonie Property Location Map	page 2
Figure 2: Aguonie Property Claim Map with Legacy Claim Boundary	page 3
Figure 3: Aguonie Property Digital Elevation Model	page 5
Figure 4: Regional Geology Map of Wawa Sub-province of the Superior Craton	page 7
Figure 5: R-Linear Regression Plot for Standards and Blanks	page 14
Figure 6: Geology/Sample Locations/Track Compilation of 2020 Activities	page 16
Figure 7: Z-Symmetry Parasitic Fold in Mafic Metavolcanics	page 19

Tables

Table 1: Summary of Work Activities	page 1
Table 2Aguonie Property Claim Distribution	page 4
Table 3: Historical Exploration Work on Aguonie Property	page 6
Table 4: Historical & Current Gold Producers in Michipicoten Greenstone Belt	page 11
Table 5: 2020 Surface Exploration Personnel	page 12
Table 6: Aguonie Property Observed Lithologies	page 17
Table 7: Pearson (R) Correlation Comparison Matrix	page 20

Appendices

- Appendix 1 Geology-Tracks-Sample Locations-Abbreviations Map Scale at1:2500
- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- Appendix 4 Daily Logs
- Appendix 5 Expenditure & Invoices

GOLD INCORPORATED

Summary

The Aguonie property is located 36 kilometers northeast of Wawa and 9 kilometers south of Dubreuilville, and 1 kilometer east of Goudreau. The site is easily accessible by truck from Dubreuilville, via the Goudreau road from Highway 519. The Aguonie Property consists of 7 unpatented mining claims, covering approximately 40 hectares. Gold was first discovered in the Goudreau-Michipicoten area in 1896 along the shore of Dog Lake (Edgar, 2017). Exploration carried out by Madoc Mining began in the Goudreau area in 1913, and focused exploiting sulfur hosted in iron formations from 1914 to 1919 (Black, 1952). Documented exploration on the property did not commence again until 1979 when Noranda Exploration conducted a regional scale ground VLF-EM survey followed by geological mapping and a small 190 m drill program in 1982, returning sporadic anomalous results. Following this, Faldo Mines explored throughout 1987, uncovering several mineralized zones directly north of McVeigh Creek. These zones were mechanically stripped and sampled, returning variable results from 0.050 g/t Au to 4.87 g/t Au. Corona Corporation then followed up on these results in 1989, undergoing a 188 m diamond drill program to test the strike and depth extent of mineralized zones in the McVeigh Creek area. The most noteworthy results of this program were 3.3 g/t Au over a core length of 1.0 meter within a quartz porphyry and 0.80 g/t Au over a core length of 2.0 meters hosted in a chert-sulphide-argillite.

The Aguonie Property is located on the Superior Craton's southern margin within the Michipicoten Greenstone Belt, as part of the Wawa Sub-province. The Michipicoten Greenstone Belt comprises an assemblage of metavolcanic, metasedimentary, and intrusive rocks that have undergone greenschist to amphibolite facies metamorphism. The Goudreau-Lochalsh Deformation Zone (GLDZ) is the principal structure and comprises of multiple shear zones spanning up to 25 km long and roughly 4.5 km wide, oriented 250° to 280°. This deformation zone separates felsic metavolcanic assemblages to the south and mafic metavolcanic assemblages to the north. The Aguonie Property is underlain directly by mafic metavolcanic, gabbro, quartz porphyry, chertmagnetite iron formation, and mudstone. Mafic metavolcanic comprise >70% of the surficial exposure with lesser gabbro, quartz porphyry, and rare occurrences of mudstone and chert-magnetite iron formation. Gabbro and quartz porphyry are seen to be forming foliation parallel, with gabbro units appearing to be in excess of 10 meters thick and quartz porphyry ranging from 1 to 2 meters and up to 10 meters in apparent thickness. Mudstone and chert-magnetite iron formation are rarer than other observed lithologies on the property and appear to be relatively discontinuous. Shear zones across the property are trending predominantly west southwest-west with steep dips to the north. Zones are usually from 3 to 5 meters wide and generally occur at the contact between mafic metavolcanic and quartz porphyry units as well as mafic volcanic and chert-magnetite iron formation units.

A total of 7.5 kilometers of GPS geological mapping and a total 64 samples were taken over the course of 14 days from July 15 to August 11, 2020 to help delineate gold-bearing structures. The field mapping and prospecting program was successful in confirming the occurrence of gold-bearing structures associated with historical zones on the property. Of all the surface samples collected the highest assays values show a range from 0.62 to 2.69 g/t Au, all of which were collected from the McVeigh Occurrence area. Field mapping also aided in characterizing shear structures associated with anomalous gold. These structures are trending west-southwest to west with steep dips to the north. Gold is found to be anomalously forming within high strain areas along lithological breaks where there is a significant competency change between lithologies.

Validation of results from the 2020 field program would be best achieved with a follow-up ground VLF-EM and magnetic survey (9.68 line-km). A modern ground VLF-EM and magnetic survey would have significantly better resolution and help delineate gold bearing structures and lithologies. Collection of fresh rock samples of both unaltered and altered mafic metavolcanics and quartz porphyry for whole-rock analyses would be designed to quantify the alteration zones, which show similarities to an inherent volcanogenic hosted massive sulphide (VHMS) environment.

1.0 Survey Overview

1.1 Introduction

Geological mapping and prospecting activities were undertaken over the course of several weeks to verify historical gold and base metal showings with the purpose of building a geological framework in addition to finding new prospective zones. Prospecting focussed on finding new prospective zones for gold and base metal mineralization. This report describes and interprets the results from the geological mapping/prospecting and geochemical data obtained during the 2020 field season.

Activity	Dates	Details	Performed By
Geological Surveying	August 2 - 4, 2020, August 6 - 9, 2020 August 11, 2020	7.5km of traversed line 16 rock samples	Contracting geologists
Prospecting	July 15 – 21, 2020,	48 rock samples	Prospectors
Assaying	July – August 2020	64 samples for gold and multi-element analysis	Activation Laboratories Ltd.

Table 1 - Summary of Field Work Activities

1.2 Activities Undertaken

2.0 Property Description and Access

2.1 Location, Access, and Accommodations

The Aguonie Property is located within Aguonie Township, in the Sault Ste. Marie Mining District, Ontario, Canada (Figure 1). The property is located approximately 36 kilometers northeast of Wawa, 9 kilometers south of Dubreuilville, and 1 kilometer east of Goudreau. This property is accessible by vehicle from Dubreuilville via Goudreau Road, where it can be followed for 20 kilometers. From the Goudreau Road, further access can be maintained by a north-bearing old logging trail for approximately 300 meters. The property boundary is 100 meters east of the first fork of this trail. Accommodations during the field program were provided at the Magpie Relay Motel in Dubreuilville.

Figure 1 - Aguonie Property Location Map

2.2 Description of Mining Claims

The property is comprised of seven (7) unpatented mining claims with a total working area of approximately 40 hectares. These claims are currently under option from First Minerals Exploration Ltd. (67 Third Street, Timmins, Ontario, Canada P4N 1C2) to Prodigy Gold Inc., a subsidiary of Argonaut Gold Inc. (9600 Prototype Court, Reno, Nevada, United

States 89521). The transfer of claim ownership to Prodigy Gold Inc. has been consummated, and currently, Prodigy Gold Inc. has 100% of mining rights to the seven (7) unpatented claims.

Figure 2 – Aguonie Property Claim Map with Legacy Claim Boundary

Township	Claim Number	Provincial Grid Cell	Claim Holder	Claim Due Date	Work Required (\$)	Total Reserves (\$)
Aguonie	179251	42C07A278	First Minerals Exploration Ltd.	2021-04-12	200	0
Aguonie	166330	42C07A296	First Minerals Exploration Ltd.	2021-04-12	200	0
Aguonie	121272	42C07A297	First Minerals Exploration Ltd.	2021-04-12	200	749
Aguonie	121271	42C07A298	First Minerals Exploration Ltd.	2021-04-12	200	0
Aguonie	119373	42C07A316	First Minerals Exploration Ltd.	2021-04-12	200	0
Aguonie	104120	42C07A317	First Minerals Exploration Ltd.	2021-04-12	200	0
Aguonie	119372	42C07A318	First Minerals Exploration Ltd.	2021-04-12	200	0

Table 2. Aguonie Property Claim Distribution

3.0 Physiography and Vegetation

The Aguonie Property covers a small area of approximately 40 hectares. It is centrally located in the McVeigh Creek area, which drains west to southwest from Spring Lake to Summit Lake. The property exhibits moderate topographic changes with a topographic high of 406 meters above sea level and a topographic low of 370 meters above sea level (Figure 3). Most of the forest cover around the property is old growth such as large jack pine, poplar, and birch trees, with moderate outcrop exposure. Several topographic lows run through the property, generally running parallel to McVeigh Creek. Topographic lows are reflected by swampy areas with small growth vegetation such as alders and black spruce. Little to no outcrop is found within these areas except on the margins where steep but relatively short ridges are usually present. Two topographic highs stand out, both to the north and south-central parts of the property. These topographic highs exhibit significant outcrop exposure with old-growth forest between large rolling outcrops.

Figure 3 - Aguonie Property Digital Elevation Model

4.0 Historical Exploration

Historical work on the Aguonie Property is somewhat limited. Documented exploration of the claims did not begin until the early 1980's with Noranda Exploration Ltd.

From 1979 to 1981, Noranda Exploration Ltd. undertook geological mapping and a ground VLF-EM survey program on a larger claim group that encompasses the Aguonie Property. In 1982, Noranda followed up on their results from the previous years by drilling five diamond drill holes, totaling 190 meters. Three of the five drill holes were located directly north of McVeigh Creek on the Aguonie Property. This program's most significant intercept was in hole AG-82-4, which intersected a 'mineralized zone' containing \geq 20% sulphide over a core length of 4.5 meters, which returned a thin intercept 0.213% Cu over 0.60 meters with no significant gold values. Also, drill hole AG-82-1 returned 0.44 g/t Au over a core length of 1.1 meter, including 0.69 g/t Au over a core length of 0.30 meters.

In 1987, Faldo Mines undertook a prospecting, humus sampling, and mechanical stripping program. This consisted of 53 chip samples, 221 humus samples, and roughly 2500 square meters of stripping. Prospecting was carried out to follow up on VLF-EM anomalies. As a result, two mineralization areas were identified and sampled directly north of McVeigh Creek in the central portion of the property. Chip samples returned wide-ranging values from 0.05 g/t Au to 4.87 g/t Au. These zones were then stripped to understand the variable nature of the results. It was concluded that those auriferous zones are erratic and discontinuous. Humus sampling had similar results with only several samples containing anomalous gold, none of which had adjacent support values.

Corona Corporation continued work around the McVeigh Creek trench area over the winter of 1989 by drilling two holes, totaling 188 meters. These drill holes were targeting sheared chert-sulphide argillite units directly along strike with the McVeigh Creek stripping area. However, the best results were found in a quartz porphyry unit in hole AG-89-4, which returned 3.3 g/t Au over a core length of 1.0 meter, including 5.1 g/t Au over a core length of 0.50 meter. A chert-sulphide-argillite unit was also intersected, which returned 0.80 g/t Au over a core length of 2.0 meters.

In the fall of 2017, geologists from First Minerals Exploration Ltd. visited the Aguonie property for one day and collected ten rock samples along the McVeigh Creek showing. The most noteworthy sample of the program being a surface grab sample (sample # 952), which returned 1.31 g/t Au.

Company	Year	Area	File No	Description of Work
First Minerals Exploration	2017	Aguonie Property	20000015281	Prospecting (10 samples). The highest grab sample returned 1.31 g/t Au.
Corona Corporation	1989	Aguonie Property	42C07SE0820	Two diamond drill holes totaling 188m and 106 core samples. This program's best results include 5.1 g/t Au over 0.50m and 1.2 g/t Au over 0.53.
Faldo Mines & Energy	1987	Aguonie Property	42C07SE0508	Geological mapping, mechanical stripping, and geophysical surveying. Highlights of the program include 4.87 g/t Au and 2.95 g/t Au chip samples.
Noranda Exploration	1982	Aguonie Property	42C08SW8693	Five drill holes totaling 190m and 79 core samples. The highest-grade core sample returned 0.69 g/t Au over 0.30m.
Noranda Exploration	1981	Aguonie Property	42C08SW8692	VLF-EM survey and geological mapping.
Candela Development Company	1952	Goudreau - Michipicoten Area	42C07SE0008	Representative of Candela Development sent to Goudreau - Michipicoten area to assess properties for sulfur potential.

Table 3 - Historical Exploration on Aguonie Property

5.0 Geological Setting

5.1 Regional Geology

The Aguonie Property occurs within the late Archean Michipicoten Greenstone Belt (MGB) (2660-2900 Ma). The belt is part of the Wawa Sub-province, situated along the southern margin of the Superior Craton in the Precambrian Shield (Figure 4).

The belt is east-west striking with an approximate length of 141 km and a maximum width of 38 km (Sage, et al., 1996).

The MGB consists of an assemblage of metavolcanic, metasedimentary, and intrusive rocks that have undergone greenschist to amphibolite facies metamorphism (Williams et al., 1991). Supracrustal rocks are intruded by subvolcanic tonalite to granodiorite and post-supracrustal granitoid stocks that range from syenite, monzonite to granodiorite in composition (Sage, et al., 1996). Metavolcanic rocks occur in three bimodal cycles that have been dated at 2900, 2750, and 2700 Ma in age (Turek et al., 1984; 1992; Arias and Helmstaedt, 1990; Sage, 1994). These metavolcanic cycles are included in the Hawk Lake, Wawa, and Catfish assemblages of Williams et al. (1991) (Sage, 1994). The Hawk Lake and Wawa assemblages are comprised of an ultramafic-mafic metavolcanic base with an overlying intermediate-felsic metavolcanic unit capped by iron formation. Similarly, the Catfish assemblage consists of a tholeiitic mafic-intermediate metavolcanic base and an intermediate-felsic upper portion. Iron formations do not cap the Catfish assemblage but occur at the contact between the mafic and felsic intervals (Sage, 1994).

Figure 4 - (a) Map of the Superior Province. (b) Simplified geological map of the Wawa Sub-Province showing the location of the MGB and other greenstone belts in the area (modified from Polat and Kerrich (2000), after Williams et al. (1991) and Stott (1997).

The Doré assemblage is a sequence of metasedimentary rocks that unconformably overly the Catfish and Wawa assemblages. The Doré assemblage is dominated by greywackes and conglomerates. Clasts in the conglomerate are largely felsic-intermediate metavolcanic and granitic in composition (Sage, 1994). All units are crosscut by ~north to northwest striking, Paleoproterozoic Matachewan diabase dykes that are relatively undeformed.

The principal structure in the area is the Goudreau-Lochalsh Deformation Zone (GLDZ). The Goudreau-Lochalsh Deformation Zone comprises multiple shear zones with an approximate width of 4.5 km that can be followed along a strike length of 25 km. This steeply dipping northerly deformation zone is oriented between 250°- 280° and occurs along the contact between Cycle 2 metavolcanic rocks to the south and Cycle 3 to the north (Heather and Arias, 1992). Other notable structures include three brittle fault zones: 1) McVeigh Creek Fault, 2) Herman Lake Fault, and 3) Maskinonge Lake Fault. The McVeigh Creek Fault trends approximately north-south, while the Herman Lake and Maskinonge faults are northwest trending.

5.2 Property Geology

The property geology has been mapped and summarized by Sage (1993). The area is chiefly underlain by mafic metavolcanics with lesser intermediate-felsic fragmentals and clastic and chemical metasediments (including banded iron formation), with mafic to felsic intrusive bodies. Mafic metavolcanics are typically massive to pillowed flows with thin units of pillow/flow breccia and volcaniclastics. Intermediate-felsic units consist of massive volcaniclastic tuff, laminated tuff, feldspar/quartz-feldspar crystal tuffs, lapilli-tuff, and tuff breccia. Metasedimentary rocks are of restricted distribution in Aguonie Township, occurring as greywackes and conglomerates. Banded iron formations occur as sulphide and carbonate facies, as well as Algoma-type chert-magnetite facies. Mafic intrusions range from gabbro to quartz diorite in composition. Porphyritic felsic to intermediate dyke form both sill and dyke-like bodies. Late northwest-striking diabase dykes also cut stratigraphy.

The Aguonie claim block is situated along the southwestern edge of the Goudreau-Lochalsh Deformation Zone (GLDZ). Foliations are generally strongly developed and trend approximately east-west, dipping sub vertically between north and south. Pillow shapes have been interpreted by Sage (1993) to indicate a north-facing sequence of rocks. The property also occurs crosscut by the McVeigh Creek Fault, a north-south oriented lineament, which offsets the Michipicoten Iron Range by approximately 1900 m. The Rand Fault also occurs to the west, where it cuts off the south band of the Rand No. 2 iron formation at approximately 330° and is occupied by a diabase dyke. This fault also displays sinistral movement with an inferred displacement >800m.

5.3 Deposit Types

The Michipicoten Greenstone Belt hosts numerous precious metal deposits within several discrete deformation zones (Table 4). The rocks underlying the Aguonie Property underly the Goudreau-Lochalsh Deformation Zone (GLDZ). Other productive regional deformation zones in the area include the Eagle River Deformation Zone, Mishibishu Lake Deformation Zone, and zones within the Missanabie-Renabie District. Two distinct gold mineralization styles are recognized; 1) orogenic lode-gold greenstone hosted mesothermal gold, 2) intrusive-related 'porphyry' disseminated gold. Examples of orogenic gold deposits are Wesdome's Eagle River Mine (Eagle River Deformation Zone) and Harte Gold's Sugar Zone in the Dayohesarrah (Sugar Deformation Zone). Intrusive-related hosts are like the Moose Lake Porphyry Complex at Hemlo and Webb Lake Intrusive at Magino. The Missanabie-Renabie Gold District, which includes the past-producing Renabie Mine, has been proposed by McDivitt et al., (2017) to be a form of hybrid mineralization that involves a gold-bearing, preorogenic veining event, followed by regional deformation and a later orogenic stage of gold enrichment.

Nearly 2.4 million ounces of gold has been produced across the Michipicoten greenstone belt to date (Table 4). The currently producing Island Gold Mine has produced 3,456,299 tonnes at an average head grade of 7.62 g/t, yielding 812,188 oz. Au and has a proven and probable reserve of 3,643,000 tonnes at 10.37 g/t for 1,215,000 oz, as of December 31, 2019 (Bourgeault et al., 2020). The Magino Mine was historically active between 1988-1992 and produced 803,135 tonnes of ore yielding 114,319 ounces Au at 4.43 g/t Au. The Magino Deposit currently has a proven and probable reserve of 58.9 Mt @ 1.13 g/t for 2.14 Moz Au and a total measured and indicated gold reserve of 144 Mt @ 0.91 g/t Au for 4.2 Moz Au (Makarenko et al., 2017).

Potential for gold mineralization on the Aguonie Property favours orogenic style gold hosted in mafic volcanics and/or iron formation associated with high strain zones within the Goudreau-Lochalsh Deformation Zone.

Mine Name	Township	In Production	Tons Milled	Oz. Au	Grade (opt)
Alden-Goudreau	Cowie	1937, 1940, 1943, 1945	13,479	3220	0.24
Centennial	Naveau	1939-40	8,612	610	0.07
Cline	Jacobson	1938-40, 47-48	331,842	63,328	0.19
Darwin/Grace	McMurray	1902-03, 1907- 1908, 1910, 1923, 1925, 1930, 1935, 1937, 1940, 1943- 44	45,528	15,191	0.33
Deep Lake	McMurray	1936-38, 43	2790	1633	0.59
Edwards	Jacobson	1938, 1997-2002	1537	485	0.32
			389,309	140,258	0.36
Holdsworth Prospect	Corbiere	1933	60	10	0.17
Island Gold*	Finan	2007-2019	3,809,917	812,188	0.245
Kremzar	Finan	1988-90	392,858	37,678	0.1
Magino/Algoma Summit	Finan	1930-40, 1988-92	>768,679	113,228	0.15
Minto (includes Jubilee and Cooper)	McMurray	1929-42	184,600	37,678	0.2
Murphy/Algold/Amherst	Abotossaway	1926-32, 1936-38, 1940	23,211	2,450	0.11
Norwalk/Manxman	Naveau	1904, 10	820	60	0.07
Parkhill	McMurray	1902, 1929, 1930- 38, 1940-44	125,778	54,301	0.43
Ranson	Rabazo	1939	774	156	0.2
Renabie	Leeson	1947-70, 1981-91	5,583,895	1,100,000	0.2
Smith/Van Sickle	McMurray	1935-36	9228	536	0.06
Stanley	McMurray	1936	1963	84	0.04
Surlaga	McMurray	1968-69, 88-89	87,460	8898	0.1
Total			11,013,661	2,391,992	0.21

Table 4 - Historical Gold Production (Atkinson et al., 2003) and Current Producers in
the Michipicoten Greenstone Belt.

Production statistics for Eagle River are as of December 2018 and Island Gold are as of December 2019.

6.0 Summary of Geological Mapping and Prospecting

From July 14 to August 11, 2020, Prodigy Gold Inc. conducted a detailed geological mapping and prospecting program on the Aguonie Property. The 2020 surface exploration program was initiated to evaluate the potential for gold mineralization around the historic McVeigh Occurrence. Field work focused on establishing relationships between structural features and alteration zones to develop an understanding of gold distribution.

Mapping was conducted by Geordie Hamilton and Isaac Riddle with the aid of Shane O'Neil and Brian Wright, who carried out prospecting and sampling. Exploration work was under the supervisions of Stephen Roach (Table 5).

Mapping and prospecting/sampling were completed using a GPS (Garmin GPSMAP 64S) and compass. Geological surveying was completed over 100-meter intervals along north-south oriented lines. All mapping was performed using Nad 83 in UTM Zone 16N with GPS accuracy of approximately 3-6 meters. A total of 7.5 kilometers of geological mapping was completed with localized in-fill geological mapping, sampling, and prospecting.

Name	Title	Residence
Stephen Roach	Chief Geologist	Ottawa, ON
Geordie Hamilton	Junior Geologist	Sudbury, ON
Isaac Riddle	Junior Geologist	Ottawa, ON
Shane O'Neil	Prospector	Sudbury, ON
Brian Wright	Prospector	Markstay, ON

Table 5 - 2020 Surface Exploration Personnel.

The following is presented in the appendices at the back of the report:

Appendix 1 – Geology-Tracks-Sample Locations-Abbreviations with Map Scales at 1:2000

Appendix 2 – 2020 Rock Sample Descriptions

Appendix 3 – 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates

Appendix 4 – Daily Logs

Appendix 5 – Expenditure Invoices & Receipts

7.0) Analytical Quality Control and Quality Assurance

An aggregate total of 64 rock samples (including both grab and standards/blanks) were analyzed from this surface exploration program. Samples were analyzed by Activation Laboratories (Actlabs) with gravimetric assay completed Thunder Bay (1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6) and ICP-OES analyses completed in Ancaster (41 Bittern St, Ancaster, Ontario, Canada, L9G 4V5).

All samples were bagged and secured with security twist tags in rice bags. The samples were delivered to the Actlabs laboratory in Thunder Bay for sample preparation for gold and ICP-OES analyses. All samples were analyzed for gold by fire assay/A.A. and a 38 element ICP-OES rock package. All methods used, analyses, and detection limits are on hand in the form of assay certificate A20-08247 and A20-09588 (Appendix 3).

Actlabs are accredited by the Standards Council of Canada to ISO 17025 for specific registered tests or certification to ISO 9001:2015 certifications for accredited methods. Sample preparation, analytical and quality control procedures employed are mutually similar in procedure and are as follows:

7.1 Sample Preparation

Once the samples have been received, they are entered into the Actlabs Quality Management System and given an internal sample control number. The samples are then checked for dryness before any sample preparation and dried if needed. The samples are split off 1.0 kg and pulverized split to better than 85% passing 75 microns using a Jones Rifler. Silica cleaning between each sample is also performed to prevent any cross-contamination. Random screen analysis is performed daily to check for attainable mesh size.

7.2 Gold Analysis

All Au analysis is performed at a 50g charge by fire assay using lead collection with a silver inquart. The detection limit is 20 ppb. Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

7.3 Multi Scan Analysis

Multi-scan analysis (38 elements) was performed using an aqua regia "partial" digestion which uses a combination of hydrochloric and nitric acids. It is then analyzed by ICP-OES method.

7.4 Laboratory Quality Control / Quality Assurance (QC/QA)

Certified standard and blank assays are usually run for each rack of samples. A nonreproducible check assay is an indication of nugget problems within the sample and both laboratories recommend that further analysis be performed to generate a better representation of the sample.

All standards run are graphed to monitor the performance of the laboratory. Actlabs warning limit is 2 times the standard deviation and our control limit is 3 times the standard deviation. Any work order with a standard running outside the warning limit will have selected re-assays performed, and any work order with a standard running outside the control limit will have the entire batch of samples re-analyzed.

All QC/QA data run with each work order is kept with the clients' file. If desired, the client may have all the blanks and certified standards reported on a certificate to correspond to the client's samples. All quality control graphs are available upon request.

The laboratory also keeps daily logbooks for the sample throughput. These logs record all information pertaining to; 1) who performed the analysis, 2) when the analysis was done, 3) how the analysis was performed, and 4) what other sample were analyzed at the same time. This is done to help eliminate the possibility of misrepresentation and cross-contamination of the client's samples.

Actlabs instruments are calibrated using ISO traceable calibration standards and our quality control standards are created from separate stock solutions. Their instruments are directly tied to their quality control program eliminating the need for manual data entry, hence, reducing human error.

7.5 Company Quality Control / Quality Assurance (QC/QA)

Prodigy Gold Inc. inserted and alternated one sample standard and blank every 10 samples. An R-linear regression plot was used to assess the accuracy of standards and blanks inserted by the company (Figure 5).

Sample data displays an R value of 0.998, which indicates assays have a high degree of accuracy. The author believes that the results of sampling and analysis of core samples collected during this program reliably reflect the nature of mineralization observed.

Figure 5 - R-Linear Regression Plot for Standards and Blanks.

8.0 Discussion of Geological Mapping and Prospecting Results

The following describes the key observations made during mapping and sampling with respect to structure, mineralization, and alteration. A geological map complete with tracks and sample locations is presented at a scale of 1:2000 in Appendix 1. Sample descriptions with gold and ICP geochemistry and Actlabs assay certificates are presented in Appendix 2 and 3, respectively.

8.1 Lithology and Alteration

The dominant lithologies underlying the Aguonie Property include mafic metavolcanics, gabbro, quartz porphyry, chert-magnetite iron formation, and minor mudstone (Figure 6 & Table 6). Mafic volcanic flows comprise of approximately 80% of the surficial exposure and are chiefly massive flows with localized pillowed sections. Gabbroic rocks are massive, occur as sill-like bodies within the mafic metavolcanic sequence, and have been observed up to 30 meters wide. Quartz porphyry units are also sill-like bodies that display sharp, conformable contacts that typically range from 1 to 2 meter widths, but up to 10 meters in thickness. Iron formation units are comprised of alternating bands of chert and magnetite, occur as discontinuous lenses ranging from 1 to 10 meters wide, and typically occur within zones of high strain. Mudstone is of restricted distribution on the property with only two observed outcrops in the southwestern corner. These units occur as inter-flow metasedimentary horizons within the mafic metavolcanic sequence up to 5 meters wide and are massive to weakly bedded.

Alteration is largely confined to shear zones in the form of moderate to strong, pervasive chlorite-ankerite-biotite in the mafic volcanic and iron formation units. Sericite-calcite alteration predominates in sheared quartz porphyry units.

Magnetic highs observed on the property are dominantly associated with magnetitebearing mafic volcanic rocks (up to 2-3% locally) and iron formations. Ground VLF-EM anomalies outlined by Faldo Mines and Energy (1987) largely highlight the main shear structures discussed above. Conductors that occur in the north and far south of the main trenches remain unexplained. These anomalies may be a result of conductive overburden.

8.2 Structure

Geological mapping of the property has identified structural elements that indicate ductile to brittle-ductile deformation, which is characteristic of the Goudreau-Lochalsh Deformation Zone. Two west southwest-west striking shear zones occur within the property. These zones range from 3 to 5 meters wide. Rock units present a weakly to strongly developed schistosity that is locally crenulated. This fabric is oriented between 250° to 270° , with steep dips to the north approximately 60° to 70° . Shear intensity is strong within the shear domain but weakens within 2 to 5 meters from adjacent wall rock. High strain zones appear to be localized to lithological contacts between contrasting rheology units such as the mafic metavolcanic and

Figure 6 – Geology/Sample Location/Track Compilation of 2020 Activities

GOLD INCORPORATED

Lithology	Description	Photograph
Quartz Porphyry	Light green-tan, very-fine grained with 2-4 mm quartz phenocrysts, foliation development, ranges from weak to strong, typically non- magnetic with variably developed (weak to strong) sericite and carbonate alteration, unit locally hosts up to 10% quartz-tourmaline and quartz-carbonate veins and associated with up to 2-3% disseminated pyrite. These units are in sharp, conformable contact with mafic volcanics.	
Gabbro	Medium-dark green-grey, fine to medium-grained, equigranular, massive, non-magnetic with weak- moderate patchy carbonate and chlorite alteration. No contacts were observed with this unit.	
Iron Formation	Strongly weathered on the surface, weathers rusty orange, fresh surfaces are dark grey with white to light grey bands, fine- grained, strongly-magnetic, localized chert and magnetite-rich bands. Unit can be moderately to strongly sheared with associated moderate to strong ankerite- chlorite alteration. Disseminated to semi-massive pyrite and pyrrhotite occur locally up to 5%. Contacts are sharp and typically sheared with mafic volcanics.	

Table 6 - Aguonie Property Observed Lithologies

Mudstone	Dark grey, very fine-grained, non- magnetic, localized weak carbonate alteration, unit is locally cut by cm- scale quartz-carbonate veining associated with up to 0.5% chalcopyrite and 5% pyrrhotite. No contacts were observed with this unit.	
Mafic Volcanic	Dark grey-green, very fine to fine- grained, massive to strongly foliated, locally pillowed, non- magnetic to strongly magnetic, unit is variably (weak to strong) silicified, chloritized, and carbonate altered. Unit contains up to 2-3% disseminated magnetite locally.	

quartz-porphyry. The most extensive exposure of these zones extends approximately 40-50 meters along strike.

Parasitic z-folding is pervasive throughout the property with localized m-folding (Figure 6). Measurement of fold axes yields an average plunge/orientation of $25^{\circ} \rightarrow 270^{\circ}$. An additional, much less prominent set of parasitic z-folds shows an average plunge/orientation of $40^{\circ} \rightarrow 340^{\circ}$. This data indicates at least two generations of folding are present. Fold structures are evident in regional magnetic data (total magnetic intensity - (TMI)) with magnetic highs outlining a tight, property-scale fold that converges to the southeast. Two sets of spaced cleavage are present throughout the property. One is oriented north-northwest to north, ranging from 340° to 358° , dipping 78° to 84° , while another is northeast-southwest ranging from 034° to 044° with dips between 57° to 60° . The first set may represent an axial planar cleavage related to the north-northwest trending folds discussed above.

Figure 7 – Z-Symmetry Parasitic Fold in Mafic Metavolcanics

8.3 Mineralization

Mineralization in these structures is dominated by pyrite + pyrrhotite \pm chalcopyrite \pm sphalerite \pm arsenopyrite. The sulphides occur as disseminations within shears, typically <1% to2%, and as vein-hosted sulphides (5% to 10%) associated with smoky grey quartz veins. The veining is often milky-white quartz with minor calcite, and locally, smoky grey quartz veins occur. These veins show boudin-type structures and have undergone folding as evidenced by parasitic z-folds. Most veins are cm-scale but locally occur up to 0.5 meters wide.

Three different types of veining were noted: 1) milky-white quartz veins, 2) smoky grey quartz veins, and 3) laminated quartz-tournaline veins. Milky-white quartz veins dominantly occur in a northwest orientation, ranging from 5 to 50 cm, usually with no associated sulphide mineralization. Smoky grey quartz veins were often 5 to 30 cm wide and are typically associated with iron formation units. All quartz-tournaline veins varied from 2 to 15 cm wide and were found to be limited to quartz-porphyry units, with up to 0.5% disseminated pyrite.

All anomalous values were collected from the main trench, known as the McVeigh Occurrence, to follow up on historical values from Noranda Exploration and Faldo Mines and Energy. Anomalous gold assays ranged from 0.62 g/t to 2.69 g/t Au with base metals returning Cu (up to 2350 ppm), Zn (up to 6160 ppm), and As (>10,000 ppm)

Vein sets highlighted in geological mapping completed by FME were also sampled, yielding no significant results. Assay results were analyzed for pathfinder elements associated with gold mineralization using a Pearson (R) correlation matrix (Table 7). Gold was plotted against zinc, copper, silver, lead, sulfur, and arsenic. There is a strong correlation between Au-Ag and Ag-Cu-Zn with a moderate correlation between Cu-Zn-As-S.

	Au (g/t)	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	S %
Au (g/t)	1.000						
Ag ppm	0.636	1.000					
Cu ppm	0.385	0.708	1.000				
Pb ppm	0.378	0.494	0.232	1.000			
Zn ppm	0.431	0.696	0.524	0.132	1.000		
As ppm	-0.027	0.357	0.566	0.039	0.143	1.000	
S %	0.406	0.458	0.597	0.058	0.576	0.078	1.000

Table 3. Pearson (R) Correlation Comparison Matrix

McVeigh Occurrence

Gold and base metal mineralization on the Aguonie Property appears to be limited to the McVeigh Occurrence. This zone is a high strain corridor defined by one main shear zone along the McVeigh Creek that spans roughly 400 meters along strike and 3 to 5 meters wide. This strongly deformed zone is strongly to intensely sheared with many units have been partially or completely altered to chlorite \pm calcite \pm iron-carbonate \pm biotite. Veining within this zone is primarily light grey to white quartz veining and quartz-carbonate stringers seen locally up to 10%. Sulphides includes pyrite, pyrrhotite and lesser chalcopyrite which are typically hosted within the chemical metasedimentary horizons. These horizons are interpreted to be lens shaped and discontinuous. Chemical metasediments along with quartz porphyry intrusives acted as a competency/rheology contrast, which was conducive for strain partitioning and focusing mineralizing fluids. Gold values along the McVeigh Occurrence trend line ranged from 0.18 g/t to 2.69 g/t Au.

9.0 Conclusions

The mapping and prospecting program was successful in confirming the occurrence of goldbearing structures associated with historical zones on the Aguonie Property. It was also successful in characterizing shear structures associated with anomalous gold values, which include the following features:

- A strong shear/schistosity that is oriented between 250° to 270° with steep dips to the north from 60° to 70°.
- Strata-bound implications to gold/base metal mineralization to shears along lithological contacts (i.e., iron formation and quartz porphyry/mafic metavolcanic contacts)

• Zones display strong alteration including pervasive chlorite-ankerite-biotite and sericitecalcite alteration

10.0 Recommendations

Geochemical data should be followed up with selective sampling of unaltered and altered mafic metavolcanics and quartz porphyry in order to quantify and outline zones of Na₂O-depletion. This would facilitate the understanding of the prospectivity of both precious and base metals in a volcanogenic hosted massive sulphide(VHMS) environment and its relationship to structurally controlled gold mineralization in the Aguonie Property area.

In addition, a ground VLF-EM and magnetics survey totalling 9.7 lines kilometers is recommended. The survey consists of 16 north-south lines at 50 meter centers and 3 east-west lines. This would provide higher resolution data compared to the regional airborne magnetics and 1981 ground VLF-EM survey completed by Noranda Exploration. With higher resolution data, structures that control Au mineralization may become more apparent, which will further support exploration efforts, including follow-up fieldwork and/or drilling.

11.0 References

Black, N.H. 1952. Report on the Examination of Pyrite Properties in the Goudreau-Michipicoten Area, Ontario, dated June 1, 1962; Ministry of Northern Development, Mines and Forestry, assessment file No. 42C07SE0008.

Edgar, B. 2017. Prospecting Report on the McVeigh Creek Property, McVeigh Creek Property, Claim 4279213, Aguonie township, Ontario. Ministry of Northern Development, Mines and Forestry, assessment file No. 20000015281Arias, Z.G., and

Heather, K. B. and Arias, Z. 1992. Geological and Structural Setting of Gold Mineralization in the Goudreau-Lochalsh Area, Wawa Gold Camp; Ontario Geological Survey, Open File Report 5832, 159p.

Helmstaedt, H. 1990. Grant 343 Structural Evolution of the Michipicoten (Wawa) Greenstone Belt, Superior Province: Evidence for an Archean Fold and Thrust Belt. In Geoscience Research Grant Program Summary of Research 1989-1990. Edited by V.G. Milne. Ontario Geological Survey, Miscellaneous Paper 150, pp. 107-114.

McDivitt, J. A., Lafrance, B., Kontak, D. J., & Robichaud, L. 2017. The Structural Evolution of the Missanabie-Renabie Gold District: Pre-orogenic Veins in an Orogenic Gold Setting and Their Influence on the Formation of Hybrid Deposits. Economic Geology, 112(8), 1959–1975.

Pryslak, A. P. 1990. Gold Mineralization in the McVeigh Creek Area and Results of Diamond Drilling. Ministry of Northern Development, Mines and Forestry, assessment file No. 42C07SE0820

Sage, R. P., Lightfoot, P. C., & Doherty, W. 1996. Geochemical Characteristics of Granitoid Rocks from within the Archean Michipicoten Greenstone Belt, Wawa Subprovince, Superior Province, Canada: implications for source regions and tectonic evolution. Precambrian Research, 76(3-4), 155–190.

Sage, R.P. 1994. Geology of the Michipicoten Greenstone Belt; Ontario Geological Survey, Open File Report 5888, 592p.

Tilsley, J. E. 1988. Exploration Program 1987, Faldo Mines & Energy Corp., McVeigh Creek Property, Sault Ste. Marie Mining Division Ontario. Ministry of Northern Development, Mines and Forestry, assessment file No. 42C07SE0508.

Tilsley, J. E. Summary Report, Exploration Program 1987, Faldo Mines and Energy Corporation, McVeigh Creek and Jackson Lake Properties, February 12, 1988

Turek, A., Sage, R.P., and Van Schmus, W.R. 1992. Advances in the U-Pb zircon Geochronology of the Michipicoten Greenstone Belt, Superior Province, Ontario. Canadian Journal of Earth Sciences, 29: 1154-1165.

Turek, A., Smith, P.E., and Van Schmus, W.R. 1984. U-Pb Zircon Ages and the Evolution of the Michipicoten Plutonic-Volcanic Terrane of the Superior Province, Ontario. Canadian Journal of Earth Sciences, 21: 457-464.

Williams, H. R., Scott, G. M., Heather, K. B., Muir, T. L., and Sage, R. P., 1991. Wawa Subprovince; in Geology of Ontario, (eds.) P. C. Thurston, H. R. Williams, R. H., Sutcliffe, and G. M. Scott; Ontario Geological Survey, Special Paper 4, pt.1, pages 485 539.

Qualifications

STATEMENT OF QUALIFICATIONS

I, Isaac Riddle, of 340 Gilmour Street, Ottawa, Ontario K2P 0R3, certify that;

- 1) I obtained a Bachelor's Degree in Geological Sciences from Acadia University in 2016.
- 2) I have worked as a geologist for 4 years since my graduation from university in 2016.
- I am responsible for writing this report entitled, Report of 2020 Surface Exploration on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada.

4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>

5) I have no beneficial interest, direct or indirect in the Agounie Project that is the subject of this report.

Dated March 8, 2021

Isaac Riddle

Isaac Riddle

STATEMENT OF QUALIFICATIONS

I, Geordie Hamilton, of 1770 Paris Street, Sudbury, Ontario P3E 3C3, certify that;

- 1) I acquired an Honours Bachelor's Degree specializing in Earth Sciences from Laurentian University in 2018. I also obtained my Master's Degree in Applied Mineral Exploration from Laurentian University in 2020.
- 2) I have worked as a geologist for approximately 2.5 years.
- I am responsible for writing this report entitled, Report of 2020 Surface Exploration on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>
- 5) I have no beneficial interest, direct or indirect in the Agounie Project that is the subject of this report.

Dated March 8, 2021

<u>Geordíe Hamílton</u>

Geordie Hamilton

STATEMENT OF QUALIFICATIONS

I, Stephen Roach, of 47 Crantham Crescent, Stittsville, Ontario K2S 1R2, certify that;

- I obtained a Bachelor's Degree in Geological Sciences from Concordia University in 1977. In addition, I attended Carleton University from 1981-83 in a Graduate Program.
- 2) I have worked as a geologist for more than 45 years since my graduation from university been in the practice of my profession as an exploration Geologist since 1977.
- I am responsible for the contributions in this report entitled, Report of 2020 Surface Exploration on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) I have no beneficial interest, direct or indirect in the Agounie Project that is the subject of this report.

Dated March 8, 2021

Stephen Roach

Stephen Roach

Instrument Specifications

Garmin 64s GPS

• Specifications obtained from www.garmin.com

Physical dimensions	2.4" x 6.3" x 1.4" (6.1 x 16.0 x 3.6 cm)
Display size	1.43" x 2.15" (3.6 x 5.5 cm); 2.6" diag (6.6 cm)
Display resolution	160 x 240 pixels
Display type	Transflective, 65K color TFT
Weight	8.1 oz (230 g) with batteries
Battery	2 AA batteries (not included); NiMH or Lithium
Battery life	16 hours
Water rating	IPX7
Memory/History	4 GB
High-sensitivity receiver	Yes
Interface	high speed mini USB and NMEA 0183 compatible

Appendices

- Appendix 1 Geology-Tracks-Sample Locations-Abbreviations with Map Scales at 1:2000
- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- Appendix 4 Daily Logs
- Appendix 5 Expenditure Invoices & Receipts

APPENDIX 1

Appendix 7: List of Abbreviations

- IF Iron Formation
- Carb Carbonate
- Cpy Chalcopyrite
- Py Pyrite
- Mod Moderate
- VLF Very low frequency
- E.M. Electromagnetic

APPENDIX 2

Appendix 2: Rock Sample Descriptions

Sample Number	Date	Easting	Northing	Elevation	Description	Au (g/t)
		*	NAD 83, Zon	e 16 *		
A852001	17-Jul-20	684083	5349444	387	Sheared banded iron formation, black dark green fine-grained quartz veins striking 280 dipping 85 N. Quartz veins Smoky grey sugary texture weak carb	< 0.02
A852002	17-Jul-20	684122	5349528	391	Quartz vein Shear zone not magnetic weak carb.	0.04
A852003	17-Jul-20	684123	5349528	391	Strong sheared mafic volcanics fine grained black weak carb alteration with 1 5 quartz veining	< 0.02
A852004	17-Jul-20	684121	5349531	389	Strongly sheared and weathered, fine grained, non- magnetic mafic volcanic, rusty brown, shear is oriented 268/78, mod-strong silica and carbonate, mod chlorite, and weak ankerite alteration.	2.69
A852005	17-Jul-20	684120	5349530	393	Strongly sheared and weathered, fine grained, weakly magnetic mafic volcanic, medium-dark grey with rusty brown, shear is oriented 269/84, strong silica and carbonate, mod-strong chlorite, and weak ankerite alteration.	< 0.02
A852006	17-Jul-20	684123	5349528	393	Strongly sheared and weathered, fine grained, non- magnetic mafic volcanic, medium-dark grey with rusty brown, shear is oriented 266/80, mod-strong silica and carbonate, mod chlorite, and weak ankerite alteration.	< 0.02

A852007	17-Jul-20	684123	5349531	392	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, dark grey with rusty brown, shear is oriented 261/75, mod-strong silica and carbonate, mod chlorite, and weak ankerite alteration. Appears to be upper contact of shear zone.	< 0.02
A852008	17-Jul-20	684124	5349522	Laminated quartz-carbonate vein displays crack-seal texture with biotite altered wall rock filaments parallel to vein margins, up to 10 cm in thickness oriented 268/85 subparallel to shear direction of 262/84.	< 0.02	
A852009	17-Jul-20	684116	5349526	388	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, dark grey with rusty brown, shear is oriented 262/84, mod silica and carbonate with mod chlorite alteration. Quartz- carbonate veinlets occur 5-8% up to 1 cm wide parallel to shear direction.	< 0.02
A852011	17-Jul-20	684126	5349526	385	Light grey-white, crystalline quartz- carbonate vein. Vein is 10 c wide and is trending 269/28 and occurs much shallower than surrounding shear, which is oriented 260/57.	< 0.02
A852012	17-Jul-20	684130	5349532	391	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, dark grey with rusty brown, shear is oriented 266/78, mod-strong silica and carbonate with mod chlorite and weak ankerite alteration.	< 0.02
A852013	17-Jul-20	684131	5349532	384	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, dark grey with rusty brown, shear is oriented 264/77, 1% disseminated pyrite, mod silica and weak carbonate with mod chlorite alteration.	0.94
A852014	014 17-Jul-20 684137 5349531		382	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, light-medium grey with rusty brown, shear is oriented 267/74, mod silica and chlorite with weak carbonate and sericite alteration.	1.51	

A852015	17-Jul-20	684136	5349535	380	Strongly sheared and weathered, fine grained, non-magnetic mafic volcanic, medium-dark grey with rusty brown, shear is oriented 257/60 with <5% 1-5 cm wide quartz veining oriented 250/48, mod silica and chlorite with strong carbonate and weak sericite alteration.	< 0.02
A852016	17-Jul-20	684102	5349524	378	Strongly sheared mafic volcanic with cm- scale intercalations of iron formation (?), fine grained, locally strongly magnetic, dark grey-brown with rust, shear is oriented 268/64 with 50% 5-8 cm wide shear-parallel boudinaged quartz veining.	0.18
A852017	17-Jul-20	684030	5349481	373	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 251/70, mod sericite(?) with weak-mod chlorite and ankerite alteration, >10% banded magnetite.	0.72
A852018	17-Jul-20	684031	5349473	392	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 245/60, weak-mod chlorite and mod-strong ankerite alteration, 5-10% banded magnetite.	0.87
A852019	17-Jul-20	684030	5349477	391	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 260/65, mod chlorite and ankerite alteration, 5-10% banded magnetite.	0.62
A852021	17-Jul-20	684032	5349478	388	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 246/69, mod chlorite and ankerite alteration, 10% banded magnetite.	0.91
A852022	17-Jul-20	684032	5349479	390	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 246/69, mod chlorite and ankerite alteration, 10% banded magnetite.	0.66

A852023	17-Jul-20	684028	5349472	395	Sheared and strongly weathered banded magnetite-chert iron formation, strongly magnetic with alternating bands of fine- grained white and dark grey-rust, shear is oriented 262/88, mod chlorite and ankerite alteration, 5-10% banded magnetite.	1.31
A852024	17-Jul-20	684031	5349475	394	Sheared and strongly weathered banded magnetite-chert iron formation, moderately magnetic with alternating bands of fine-grained white and dark grey-rust, shear is oriented 242/72, mod chlorite and ankerite alteration, <0.5% disseminated pyrite with 5-10% banded magnetite.	0.24
A852025	19-Jul-20	684048	5349551	391	Light grey-white, laminated, and fractured quartz vein with <5% biotite-altered wall rock clasts. Vein occurs parallel to shear direction of 300/69 up to 35 cm wide and is strongly boudinaged.	< 0.02
A852026	19-Jul-20	684057	5349545	393	Dark grey-green, fine-grained, non- magnetic, sheared mafic volcanic. Chlorite and carbonate alteration are moderate-strong. <1 cm quartz-carbonate stringers occur parallel to shear direction of 297/84.	< 0.02
A852027	19-Jul-20	684280	5349725	393	Dark grey-black, fine-grained, moderately magnetic, massive, jointed diabase.	< 0.02
A852028	19-Jul-20	684275	5349719	394	Cloudy white, fractured quartz vein up to 30 cm wide oriented 117/80.	< 0.02
A852029	19-Jul-20	684353	5349716	374	Dark grey-rusty, fine-grained, non- magnetic, sheared mafic volcanic with shear-parallel boudinaged veins 1-3 cm wide. Chlorite and carbonate alteration are mod-strong with quartz-carbonate veining. Shear is oriented 238/51.	< 0.02
A852031	19-Jul-20	684196	5349543	375	Quartz-carbonate vein hosted in dark grey-green fine-grained, non-magnetic, sheared mafic volcanic. Chlorite and carbonate alteration is mod-strong in wall rock. Quartz-carbonate veins are 3-5 cm wide, are strongly boudinaged, and are shear-parallel oriented 233/47.	< 0.02

A852032	20-Jul-20	683695	5349262	372	Dark grey-rusty brown, fine-grained, sheared, non-magnetic mafic volcanic with moderate sericite, mod-strong chlorite, and weak-mod ankerite alteration.	< 0.02					
A852033	20-Jul-20	683695	5349260	3349260Smoky grey, crystalline quartz vein with <0.5 % pyrite. Veins are boudinaged along strike of shear which was unable to be measured due to poor exposure.							
A852034	20-Jul-20	683701	5349259	372	Dark grey-green, fine-grained, sheared, and folded, non-magnetic mafic volcanic with 1-5 cm wide Smoky grey quartz veins parallel to shear direction of 214/48. Sericite, chlorite, and ankerite alteration are moderate. Fold axes are trending 30 - -> 272.	< 0.02					
A852035	20-Jul-20	683710	5349277	378	Dark grey-green, fine-grained, sheared, and folded, non-magnetic mafic volcanic with 1-5 cm wide Smoky grey quartz veins parallel to shear direction of 252/34. Sericite, chlorite, and ankerite alteration are moderate. Pyrrhotite occurs disseminated throughout up to 1%. Graphite occurs throughout and may be correlated with fault like structure oriented 357/81 that crosscuts shear.	< 0.02					
A852036	20-Jul-20	683710	5349280	374	Dark grey-green, fine-grained, sheared, and folded, weakly magnetic mafic volcanic. Shear direction is 252/34. Sericite, chlorite, and ankerite alteration are moderate.	< 0.02					
A852037	37 20-Jul-20 68		5349275	369	Medium brown-rusty, fine-grained, sheared, and folded, weakly magnetic mafic volcanic with 1-5 cm wide Smoky grey quartz veins parallel to shear direction of 252/34. Sericite, chlorite, and ankerite alteration are moderate.	< 0.02					
A852038	38 20-Jul-20 683715 53492		5349271	369	Beige-brown, fine-grained, non-magnetic, sheared mafic volcanic with 1-5 cm wide shear-parallel, boudinaged quartz veins with <0.5% pyrite. Sericite is mod-strong with moderate chlorite and ankerite alteration. Shear is oriented 255/62.	0.1					

A852039	20-Jul-20	683733	5349259	364	Light grey-white, milky-cloudy, boudinaged quartz vein parallel to shear direction in mafic volcanics. Shear is oriented 250/57. Vein ranges from 5-10 cm.	< 0.02
A852041	20-Jul-20	683724	5349235	367	Dark grey-green, fine-grained, sheared, and folded, non-magnetic mafic volcanic. Chlorite and carbonate alteration are mod-strong. Pyrite occurs disseminated throughout up to 0.5%. Shear is oriented 266/68 with fold axes oriented 28>261.	< 0.02
A852042	20-Jul-20	683895	5349264	400	Light grey-white, crack-seal/laminated quartz vein with vein parallel chloritized wall rock filaments. Vein is up to 5 cm wide and contains up to 5% pyrrhotite and 0.5% Cpy? Vein was found in wall of small pit. Pit is surrounded by rubble composed of semi-massive pyrrhotite- pyrite and may be a sulfide-facies iron formation horizon within the mafic volcanics.	< 0.02
A852043	20-Jul-20	683892	5349265	400	Dark grey-green, fine-grained, sheared, and folded, non-magnetic mafic volcanic. Chlorite alteration is moderate with weak carbonate, and ankerite. Pyrite occurs disseminated throughout up to 0.5%. Shear is oriented 261/76 with fold axes oriented 20>254.	< 0.02
A852044	21-Jul-20	683766	5349388	384	Smoky grey quartz vein within dark-green grey sheared mafic volcanic with moderate chlorite and carbonate alteration. Quartz vein is 10 cm wide oriented 261/63 parallel to shear direction. 5-10% pyrrhotite occurs within veins.	< 0.02
A852045	21-Jul-20	683767	5349386	390	Smoky grey, crystalline quartz vein oriented 261/63 parallel to shear direction.	< 0.02
A852046	21-Jul-20	683815	5349352	377	Light grey-white quartz veins within dark grey-green, fine-grained, sheared, and folded, non-magnetic mafic volcanic. Sericite and chlorite alteration are moderate with 2-30 cm wide folded and boudinaged quartz veins. Shear is oriented 256/62 with fold axes oriented 25 >258.	< 0.02

A852047	21-Jul-20	683958	5349293	390	Light grey-white, crystalline quartz vein hosted in fine-grained, dark green-grey mafic volcanic. Veins are folded and outcrop is at a poor orientation for structural measurements.	< 0.02
A852048	21-Jul-20	683971	5349045	395	Dark grey-black with light grey-white bands, banded, strongly magnetic magnetite-chert iron formation. Carbonate alteration is moderate with 3-5cm boudinaged quartz veins parallel to foliation 261/76. Up to 5% blebby- disseminated pyrite throughout.	< 0.02
A852079	3-Aug-20	684114	5349455	387	Light grey-white, crystalline quartz- carbonate vein, up to 5cm wide oriented 244/64 oblique to shear of 270/74.	< 0.02
A852081	3-Aug-20	684320	5349443	389	Light grey-white, crystalline, folded quartz vein, up to 15 cm wide and occurs within sheared quartz-porphyry. Shear is oriented 116/54.	< 0.02
A852082	3-Aug-20	684320	5349443	389	Tan-rusty brown, non-magnetic, sheared quartz porphyry, sericite alteration is moderate, and carbonate is strong, shear is oriented 116/54 and contains 2-3% disseminated pyrite.	< 0.02
A852083	4-Aug-20	684000	5349450	378	Light grey with black stringers, laminated quartz-tourmaline vein hosted in sheared quartz porphyry, veins are 2-4 cm wide and trend parallel to shear of 262/42.	< 0.02
A852084	4-Aug-20	684000	5349450	378	Light green-tan, very-fine grained with 2-4 mm quartz phenocrysts, non-magnetic quartz porphyry, sericite and carbonate alteration are strong with up to 10% quartz-tourmaline and quartz-carbonate veins, 0.5% disseminated pyrite within shear.	0.02
A852085	4-Aug-20	683893	5348971	398	Rusty brown-light grey, crystalline quartz- carbonate vein hosted in argillite (?), veins are up to 5 cm wide trending 117/74 oblique to bedding (?) of 092/62, veins contain up to 5% pyrrhotite and <1% chalcopyrite.	0.02
A852086	36 7-Aug-20 683709 534		5349277	370	Light-Smoky grey, crystalline quartz vein with minor ankerite, veins are boudinaged and occur along shear direction of 252/72. Veins are 5-10 cm wide and contain up to 10% pyrrhotite.	0.02

A852087	7-Aug-20	683709	5349277	370	Rusty brown, sheared silicate facies iron formation with semi-massive pyrrhotite (5%) and lesser chalcopyrite (2-3%), moderate-strong ankerite alteration, shear is oriented 252/72.	0.22
A852088	8-Aug-20	683834	5349417	389	Smoky grey, sugary quartz vein hosted in sheared mafic volcanic, veins occurs up to 30 cm wide parallel to shear direction of 257/76, blebby pyrrhotite occurs up to 3%, chalcopyrite along fractures up to 1%, and patchy disseminated arsenopyrite <1%.	< 0.02
A852089	8-Aug-20	683841	5349416	386	Medium green, fine grained, foliated, non- magnetic mafic volcanic with strong pervasive chlorite and carbonate alteration, carbonate stringers occur parallel to shear direction of 246/56.	0.08
A852091	8-Aug-20	683836	5349417	385	Medium-dark grey, weakly laminated/foliated, weakly magnetic, silicate facies iron formation with strong pervasive carbonate alteration and moderate fracture-filling ankerite, 2-3% patchy pyrrhotite and 1% disseminated chalcopyrite, foliation is oriented 259/57.	0.26
A852092	11-Aug-20	683894	5349396	360	Light grey-white, laminated quartz vein with black tourmaline stringers, vein is up to 15 cm wide and is trending 272/65 parallel to shear direction.	< 0.02
A852093	11-Aug-20	683910	5349394	377	Light grey-green, sheared quartz porphyry with 2-3 mm quartz phenocrysts, sericite and carbonate alteration are moderate, quartz stringers occur parallel to shear trending 262/60, contact with mafic volcanics is oriented 263/56.	< 0.02
A852094	A852094 11-Aug-20 6839		5349374	381	Tan-light grey, crenulated/sheared quartz porphyry with moderate-strong carbonate and sericite alteration, quartz vein cuts unit at multiple orientations and range from 1-10 cm wide, shear is trending 116/46.	0.04

APPENDIX 3

Appendix 3: Assay Certificates

Quality Analysis ...

Innovative Technologies

Report No.:A20-08247Report Date:26-Aug-20Date Submitted:27-Jul-20Your Reference:Aguonie (AG)

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Paul Dunbar

CERTIFICATE OF ANALYSIS

48 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-08-11 18:37:55
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-08-14 12:50:29

REPORT A20-08247

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648,9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

Report: A20-08247

Analyte Symbol	Aa	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Ha	К	La	Ma
Unit Symbol	mag	ppm	mag	mag	maa	maa	mag	mag	%	mag	maa	mag	maa	maa	%	maa	maa	%	maa	maa	%	maa	%
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP									
A852001	< 0.2	< 0.5	198	679	< 1	15	< 2	65	1.60	< 2	< 10	< 10	< 0.5	< 2	0.52	18	27	4.69	< 10	1	< 0.01	< 10	1.03
A852002	< 0.2	< 0.5	40	771	< 1	48	3	50	0.56	9	< 10	22	< 0.5	< 2	0.12	8	11	2.31	< 10	< 1	0.06	< 10	0.33
A852003	0.2	< 0.5	11	772	< 1	97	< 2	397	7.01	63	< 10	21	< 0.5	4	0.71	60	79	15.3	20	< 1	0.10	< 10	4.85
A852004	1.6	2.5	1150	347	3	319	13	755	1.25	141	< 10	18	< 0.5	< 2	0.15	87	47	11.5	< 10	1	0.10	< 10	0.75
A852005	0.2	4.4	138	2930	< 1	500	< 2	1220	2.43	421	< 10	< 10	< 0.5	< 2	7.92	60	742	10.1	< 10	2	< 0.01	14	3.17
A852006	< 0.2	< 0.5	131	942	< 1	130	< 2	426	4.56	53	< 10	110	0.6	3	1.08	53	167	11.4	10	3	0.27	< 10	3.11
A852007	0.3	4.6	319	860	1	288	< 2	773	4.77	22	< 10	10	< 0.5	< 2	0.82	67	1090	14.0	20	< 1	< 0.01	15	3.35
A852008	< 0.2	< 0.5	48	670	< 1	24	< 2	44	1.17	18	< 10	29	< 0.5	< 2	2.66	16	20	2.86	< 10	< 1	0.12	< 10	0.77
A852009	0.7	0.6	399	1070	< 1	52	< 2	119	4.43	43	< 10	51	< 0.5	2	4.29	47	52	9.92	10	2	0.38	< 10	3.12
A852010	19.2	0.9	326	544	6	180	216	129	3.71	11	< 10	94	< 0.5	< 2	2.82	20	191	3.49	< 10	1	0.21	12	1.86
A852011	< 0.2	< 0.5	7	314	< 1	6	< 2	12	0.14	6	< 10	< 10	< 0.5	2	0.61	3	10	1.00	< 10	< 1	< 0.01	< 10	0.09
A852012	1.0	1.1	1320	1200	2	294	7	536	2.55	14	< 10	13	< 0.5	3	2.38	76	47	14.1	< 10	< 1	0.04	< 10	1.68
A852013	1.1	14.2	1390	775	3	345	7	4850	2.93	8	< 10	12	< 0.5	5	0.34	88	721	14.1	10	< 1	0.14	< 10	1.41
A852014	0.9	< 0.5	246	317	< 1	46	6	249	1.88	392	< 10	57	< 0.5	3	0.08	12	595	9.77	< 10	< 1	0.17	12	1.19
A852015	< 0.2	< 0.5	46	1180	< 1	62	< 2	85	3.59	< 2	< 10	18	< 0.5	2	4.56	35	73	8.46	10	2	< 0.01	< 10	2.66
A852016	0.7	< 0.5	967	645	2	132	4	322	2.01	36	< 10	52	< 0.5	< 2	0.61	57	89	9.42	< 10	1	0.09	< 10	1.19
A852017	1.7	< 0.5	348	181	1	8	53	123	0.59	11	< 10	< 10	< 0.5	< 2	0.02	6	29	14.5	< 10	2	0.02	< 10	0.35
A852018	2.0	< 0.5	598	415	2	39	48	803	0.97	12	< 10	12	< 0.5	< 2	0.01	29	53	17.8	< 10	< 1	0.04	< 10	0.51
A852019	1.0	< 0.5	189	174	< 1	7	153	127	0.35	6	< 10	< 10	< 0.5	< 2	0.01	3	24	9.73	< 10	2	0.01	< 10	0.16
A852020	< 0.2	< 0.5	33	503	< 1	36	< 2	45	2.22	< 2	< 10	60	< 0.5	< 2	1.44	15	58	3.47	< 10	< 1	0.26	12	1.09
A852021	1.1	< 0.5	136	251	< 1	18	204	302	0.27	6	< 10	< 10	< 0.5	< 2	0.01	9	29	12.1	< 10	< 1	0.02	< 10	0.15
A852022	1.7	< 0.5	1540	481	2	52	136	484	0.56	5	< 10	14	< 0.5	< 2	0.03	79	68	14.4	< 10	1	0.11	< 10	0.20
A852023	3.9	15.9	964	339	4	94	57	6160	0.53	293	< 10	15	< 0.5	2	0.57	291	70	9.37	10	3	0.08	< 10	0.40
A852024	0.7	< 0.5	412	213	< 1	26	10	151	1.21	7	< 10	77	< 0.5	3	0.04	21	84	9.95	10	2	0.53	< 10	0.55
A852025	< 0.2	< 0.5	30	331	< 1	5	< 2	34	0.81	3	< 10	12	< 0.5	< 2	0.07	11	7	2.60	< 10	< 1	< 0.01	< 10	0.53
A852026	< 0.2	< 0.5	316	1090	< 1	40	< 2	89	4.55	< 2	< 10	14	< 0.5	3	2.59	46	28	10.5	20	2	0.01	< 10	3.32
A852027	< 0.2	< 0.5	69	1080	< 1	34	< 2	85	4.07	< 2	< 10	20	< 0.5	3	3.03	42	25	10.1	10	2	0.02	< 10	2.90
A852028	< 0.2	< 0.5	27	442	< 1	8	< 2	33	1.22	< 2	< 10	10	< 0.5	< 2	0.50	15	9	3.18	< 10	< 1	< 0.01	< 10	0.84
A852029	< 0.2	< 0.5	44	1150	< 1	29	< 2	61	2.61	< 2	< 10	12	< 0.5	< 2	5.71	26	31	6.25	< 10	< 1	0.01	< 10	2.03
A852030	1.4	< 0.5	1900	492	88	11	18	61	1.60	8	< 10	16	< 0.5	< 2	3.72	17	17	4.06	< 10	< 1	0.38	15	1.41
A852031	< 0.2	< 0.5	53	1190	< 1	30	< 2	113	4.11	< 2	< 10	27	< 0.5	3	5.34	29	40	9.06	10	1	0.14	< 10	3.02
A852032	0.8	1.0	381	824	18	14	44	310	0.48	131	< 10	23	< 0.5	< 2	0.90	18	11	9.48	< 10	2	0.05	31	0.34
A852033	< 0.2	< 0.5	47	69	< 1	< 1	7	33	0.06	7	< 10	< 10	< 0.5	< 2	0.04	< 1	4	1.24	< 10	< 1	0.01	< 10	0.02
A852034	2.3	3.6	2350	216	3	11	28	1350	0.09	> 10000	23	12	< 0.5	< 2	0.41	189	5	2.93	< 10	< 1	0.02	< 10	< 0.01
A852035	0.6	1.3	249	431	3	24	23	584	0.79	140	< 10	47	< 0.5	< 2	0.54	19	144	6.13	< 10	1	0.08	< 10	0.46
A852036	1.0	< 0.5	164	357	3	15	36	345	0.73	132	< 10	53	< 0.5	< 2	0.09	11	35	12.0	< 10	< 1	0.07	< 10	0.33
A852037	< 0.2	< 0.5	82	83	2	1	24	74	0.67	26	< 10	140	< 0.5	< 2	0.02	3	12	3.25	< 10	< 1	0.17	< 10	0.05
A852038	0.6	< 0.5	555	463	< 1	13	11	264	0.22	4	< 10	< 10	< 0.5	< 2	0.01	10	16	8.93	< 10	1	0.01	< 10	0.09
A852039	< 0.2	< 0.5	33	512	1	6	< 2	10	0.16	2	< 10	11	< 0.5	< 2	0.52	5	18	1.50	< 10	< 1	< 0.01	< 10	0.16
A852040	< 0.2	< 0.5	39	483	< 1	42	< 2	48	1.88	< 2	< 10	49	< 0.5	< 2	1.15	17	68	3.12	< 10	< 1	0.24	11	1.12
A852041	< 0.2	< 0.5	107	1390	< 1	39	< 2	101	3.55	< 2	< 10	15	< 0.5	< 2	4.09	39	55	7.75	10	1	< 0.01	< 10	2.58
A852042	0.2	< 0.5	104	744	< 1	29	< 2	96	4.79	< 2	< 10	61	< 0.5	4	0.44	40	66	10.6	20	1	0.07	< 10	1.22
A852043	< 0.2	< 0.5	150	605	< 1	28	< 2	94	4.42	< 2	< 10	24	< 0.5	5	0.37	34	53	8.97	10	2	0.18	< 10	1.20
A852044	0.3	< 0.5	297	625	< 1	247	10	102	0.81	26	< 10	< 10	< 0.5	< 2	2.44	23	42	3.83	< 10	< 1	0.01	< 10	0.54
A852045	0.3	< 0.5	228	358	1	146	4	130	1.29	130	< 10	24	< 0.5	< 2	0.18	39	363	5.55	< 10	1	0.06	< 10	0.82
A852046	< 0.2	< 0.5	27	763	< 1	37	< 2	135	4.31	< 2	< 10	69	< 0.5	3	0.30	34	52	10.5	10	2	0.21	< 10	1.59
A852047	< 0.2	< 0.5	13	539	< 1	9	< 2	30	0.90	4	< 10	27	< 0.5	< 2	0.26	12	23	2.64	< 10	< 1	0.03	< 10	0.45
A852048	0.3	< 0.5	256	1170	< 1	20	< 2	98	3.53	3	< 10	< 10	< 0.5	2	3.07	39	8	9.61	10	1	< 0.01	< 10	2.17

Results

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr	Au
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm	g/tonne							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02
Method Code	AR-ICP	FA- GRA														
A852001	0.049	0.028	0.04	2	7	9	0.15	< 20	4	< 2	< 10	133	< 10	5	2	< 0.02
A852002	0.019	0.003	0.01	< 2	3	2	0.02	< 20	< 1	< 2	< 10	26	< 10	4	1	0.04
A852003	0.015	0.049	0.01	4	28	8	0.06	< 20	< 1	< 2	< 10	297	< 10	3	4	< 0.02
A852004	0.016	0.025	3.34	5	5	2	0.05	< 20	2	< 2	< 10	37	< 10	2	20	2.69
A852005	0.014	0.048	0.46	6	16	48	0.07	< 20	< 1	< 2	< 10	141	< 10	6	6	< 0.02
A852006	0.030	0.037	0.22	5	15	12	0.10	< 20	< 1	< 2	< 10	151	< 10	4	8	< 0.02
A852007	0.013	0.063	0.36	7	28	10	0.14	< 20	< 1	< 2	< 10	268	< 10	6	24	< 0.02
A852008	0.018	0.012	0.02	< 2	5	30	0.08	< 20	< 1	< 2	< 10	54	< 10	5	4	< 0.02
A852009	0.032	0.039	0.09	4	26	52	0.14	< 20	< 1	< 2	< 10	256	< 10	6	4	< 0.02
A852010	0.422	0.032	0.11	7	5	106	0.11	< 20	< 1	< 2	< 10	74	< 10	9	4	3.94
A852011	0.016	0.002	< 0.01	< 2	1	7	0.01	< 20	< 1	< 2	< 10	7	< 10	2	< 1	< 0.02
A852012	0.015	0.026	0.30	4	8	21	0.06	< 20	< 1	< 2	< 10	85	< 10	7	10	< 0.02
A852013	0.016	0.044	3.14	8	13	3	0.18	< 20	2	< 2	< 10	137	< 10	4	33	0.94
A852014	0.023	0.051	0.22	6	6	4	0.10	< 20	< 1	< 2	< 10	81	11	3	6	1.51
A852015	0.052	0.034	0.01	2	29	65	0.15	< 20	< 1	< 2	< 10	259	< 10	9	3	< 0.02
A852016	0.022	0.020	0.36	4	7	8	0.07	< 20	< 1	< 2	< 10	58	< 10	3	18	0.18
A852017	0.014	0.022	0.17	6	3	2	0.04	< 20	< 1	< 2	< 10	36	< 10	< 1	11	0.72
A852018	0.027	0.024	0.25	7	6	1	0.05	< 20	< 1	< 2	< 10	47	< 10	1	17	0.89
A852019	0.021	0.018	0.09	3	2	1	0.02	< 20	< 1	< 2	< 10	26	< 10	< 1	7	0.62
A852020	0.143	0.041	0.02	< 2	7	91	0.23	< 20	2	< 2	< 10	71	< 10	7	14	< 0.02
A852021	0.015	0.020	0.12	5	3	1	0.03	< 20	4	< 2	< 10	30	< 10	< 1	6	0.91
A852022	0.034	0.027	0.51	6	6	5	0.06	< 20	1	< 2	< 10	47	< 10	< 1	14	0.66
A852023	0.065	0.017	2.66	4	9	12	0.05	< 20	6	< 2	< 10	52	< 10	1	18	1.31
A852024	0.141	0.070	0.34	4	32	16	0.21	< 20	2	< 2	< 10	347	< 10	2	7	0.24
A852025	0.023	0.004	0.01	< 2	6	1	0.03	< 20	< 1	< 2	< 10	66	< 10	< 1	< 1	< 0.02
A852026	0.039	0.041	0.02	5	29	27	0.20	< 20	< 1	< 2	< 10	311	< 10	13	3	< 0.02
A852027	0.043	0.048	0.02	3	27	35	0.34	< 20	< 1	< 2	< 10	283	< 10	15	5	< 0.02
A852028	0.034	0.012	< 0.01	< 2	7	8	0.14	< 20	< 1	< 2	< 10	95	< 10	4	1	< 0.02
A852029	0.035	0.031	0.01	< 2	19	117	0.15	< 20	< 1	< 2	< 10	168	< 10	8	3	< 0.02
A852030	0.052	0.166	2.63	3	7	324	0.07	< 20	< 1	< 2	< 10	121	< 10	9	7	2.03
A852031	0.024	0.037	0.01	3	22	53	0.12	< 20	< 1	< 2	< 10	194	< 10	8	3	< 0.02
A852032	0.031	0.021	1.03	3	2	14	< 0.01	< 20	1	< 2	< 10	22	< 10	4	13	< 0.02
A852033	0.018	0.003	0.03	< 2	< 1	2	< 0.01	< 20	1	< 2	< 10	2	< 10	< 1	1	< 0.02
A852034	0.021	0.016	1.13	< 2	< 1	3	< 0.01	< 20	18	< 2	< 10	1	< 10	2	8	< 0.02
A852035	0.036	0.028	0.80	3	3	8	< 0.01	< 20	1	< 2	< 10	27	< 10	2	12	< 0.02
A852036	0.041	0.022	0.44	4	3	8	< 0.01	< 20	1	< 2	< 10	24	< 10	1	10	< 0.02
A852037	0.088	0.025	0.06	< 2	< 1	17	< 0.01	< 20	< 1	< 2	< 10	6	< 10	1	8	< 0.02
A852038	0.016	0.017	0.11	4	3	1	< 0.01	< 20	< 1	< 2	< 10	23	< 10	1	3	0.10
A852039	0.019	0.001	< 0.01	< 2	2	5	< 0.01	< 20	< 1	< 2	< 10	7	< 10	< 1	< 1	< 0.02
A852040	0.093	0.044	0.03	< 2	5	47	0.19	< 20	< 1	< 2	< 10	67	< 10	6	8	< 0.02
A852041	0.052	0.041	0.05	2	32	74	0.21	< 20	< 1	< 2	< 10	261	< 10	6	3	< 0.02
A852042	0.118	0.053	0.65	3	45	46	0.19	< 20	< 1	< 2	< 10	338	< 10	7	3	< 0.02
A852043	0.141	0.054	0.90	4	21	47	0.17	< 20	< 1	< 2	< 10	212	< 10	5	3	< 0.02
A852044	0.017	0.003	0.96	< 2	3	54	0.02	< 20	< 1	< 2	< 10	28	< 10	4	2	< 0.02
A852045	0.018	0.019	0.37	3	4	6	0.08	< 20	1	< 2	< 10	50	< 10	3	12	< 0.02
A852046	0.039	0.027	0.05	5	16	10	0.18	< 20	< 1	< 2	< 10	187	< 10	4	4	< 0.02
A852047	0.035	0.018	< 0.01	< 2	5	7	0.10	< 20	2	< 2	< 10	53	< 10	3	1	< 0.02
A852048	0.043	0.043	0.64	5	24	58	0.16	< 20	< 1	< 2	< 10	243	< 10	8	5	< 0.02

QC

Activation Laboratories Ltd.

Report: A20-08247

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
GXR-6 Meas	0.3	< 0.5	68	1000	1	23	95	122	7.01	221	< 10	698	0.9	3	0.13	13	78	5.48	20	2	1.11	< 10	0.39
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
GXR-6 Meas	0.4	< 0.5	75	1060	1	25	99	127	7.43	228	< 10	734	0.9	3	0.14	14	81	5.87	20	2	1.18	10	0.42
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
OREAS 922 (AQUA REGIA) Meas	1.0	< 0.5	2230	735	< 1	34	62	257	2.93	7		79	0.8	10	0.42	19	46	5.15	< 10		0.49	39	1.36
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OREAS 922 (AQUA REGIA) Meas	0.8	< 0.5	2170	729	< 1	34	61	253	2.89	6	2	77	0.8	9	0.41	19	44	4.99	< 10	~	0.48	38	1.33
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OREAS 923 (AQUA REGIA) Meas	1.7	< 0.5	4400	851	< 1	33	84	339	3.00	7		67	0.7	27	0.43	22	42	6.00	< 10		0.43	36	1.45
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 923 (AQUA REGIA) Meas	1.8	< 0.5	4300	842	< 1	33	81	326	2.97	6		66	0.7	21	0.43	22	42	5.84	< 10		0.42	36	1.43
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
Oreas 621 (Aqua Regia) Meas	69.7	297	3630	526	13	26	> 5000	> 10000	1.83	79			0.6	7	1.68	30	34	3.36	10	4	0.39	20	0.44
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
Oreas 621 (Aqua Regia) Meas	69.7	296	3630	528	13	25	> 5000	> 10000	1.83	77			0.6	7	1.71	30	32	3.33	< 10	4	0.38	20	0.44
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
(Fire Assay) Meas								-														3	
(Fire Assay) Cert				-																	-	9	
(Fire Assay) Meas OREAS 229b																							
(Fire Assay) Cert OREAS 45f (Aqua			350	166	1	224	5	27	7.48			134	1.1	5	0.07	39	343	13.9	20	< 1	0.11	11	0.18
Regia) Meas OREAS 45f (Aqua			336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7	0.152
Regia) Cert OREAS 45f (Aqua Regia) Meas			346	161	< 1	221	9	26	7.39			133	1.0	3	0.07	37	338	13.6	20	< 1	0.11	11	0.18
OREAS 45f (Aqua Regia) Cert			336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7	0.152
OREAS 257b (Fire Assay) Meas																							
OREAS 257b (Fire Assay) Cert																							
OREAS 257b (Fire Assay) Meas																							
0.12102010									12						1	22							

QC

Activation Laboratories Ltd.

Report: A20-08247

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
(Fire Assay) Cert																						°	
A852009 Orig																							
A852009 Dup																							
A852013 Orig	1.1	14.1	1380	770	3	341	5	4840	2.92	8	< 10	11	< 0.5	5	0.33	88	716	14.0	10	< 1	0.14	< 10	1.42
A852013 Dup	1.1	14.3	1390	779	3	349	8	4860	2.95	9	< 10	12	< 0.5	4	0.34	88	726	14.3	10	< 1	0.14	< 10	1.41
A852018 Orig		3				3							3		3								
A852018 Dup	2		2								2	2		2		5	2	2		2			
A852027 Orig	< 0.2	< 0.5	69	1080	< 1	34	< 2	85	4.07	< 2	< 10	20	< 0.5	3	3.03	43	24	10.1	10	1	0.02	< 10	2.90
A852027 Dup	< 0.2	< 0.5	69	1080	< 1	34	< 2	85	4.07	< 2	< 10	20	< 0.5	3	3.02	42	25	10.2	10	2	0.02	< 10	2.89
A852033 Orig	20		20					100				20			20	20	20	10		20			
A852033 Dup]							
A852040 Orig	< 0.2	< 0.5	39	484	< 1	42	< 2	48	1.89	< 2	< 10	50	< 0.5	< 2	1.17	17	68	3.13	< 10	< 1	0.24	11	1.12
A852040 Dup	< 0.2	< 0.5	39	482	1	42	< 2	48	1.86	< 2	< 10	48	< 0.5	< 2	1.14	16	67	3.11	< 10	< 1	0.24	11	1.11
A852044 Orig																							
A852044 Dup																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr	Au
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm	g/tonne							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02
Method Code	AR-ICP	FA- GRA														
GXR-6 Meas	0.134	0.033	0.01	3	20	29		< 20	< 1	< 2	< 10	168	< 10	4	7	
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110	
GXR-6 Meas	0.137	0.035	0.01	3	21	30		< 20	< 1	< 2	< 10	175	< 10	5	6	
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110	
OREAS 922 (AQUA REGIA) Meas	0.033	0.061	0.37	3	4	16		< 20		< 2	< 10	36	< 10	20	18	
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3	
OREAS 922 (AQUA REGIA) Meas	0.033	0.059	0.38	< 2	4	16		< 20		< 2	< 10	35	< 10	19	10	
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3	
OREAS 923 (AQUA REGIA) Meas		0.060	0.68	2	4	15		< 20		< 2	< 10	36	< 10	18	30	
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5	
OREAS 923 (AQUA REGIA) Meas		0.059	0.67	2	4	14		< 20		< 2	< 10	36	< 10	18	24	
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5	
Oreas 621 (Aqua Regia) Meas	0.176	0.033	4.72	126	3	18		< 20		< 2	< 10	13	< 10	7	67	
Oreas 621 (Aqua Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0	
Oreas 621 (Aqua Regia) Meas	0.177	0.033	4.68	109	3	18		< 20		3	< 10	13	< 10	7	60	
Oreas 621 (Aqua Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0	
OREAS 229b (Fire Assay) Meas																11.9
OREAS 229b (Fire Assay) Cert																11.9
OREAS 229b (Fire Assay) Meas																11.8
(Fire Assay) Cert																11.9
OREAS 45f (Aqua Regia) Meas	0.051	0.020	0.02		29	14	0.12	< 20	2	< 2	< 10	202		5	13	
OREAS 45f (Aqua Regia) Cert	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0	
OREAS 45f (Aqua Regia) Meas	0.051	0.020	0.02		29	14	0.10	< 20		< 2	< 10	198		5	11	
OREAS 45f (Aqua Regia) Cert	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0	
OREAS 257b (Fire Assay) Meas																14.1
OREAS 257b (Fire Assay) Cert																14.2
OREAS 257b (Fire Assay) Meas																14.3

QC

Activation Laboratories Ltd.

Analyte Symbol	Na	P	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr	Au
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm	g/tonne							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	FA- GRA
OREAS 257b (Fire Assay) Cert																14.2
A852009 Orig																< 0.02
A852009 Dup																< 0.02
A852013 Orig	0.017	0.044	3.11	8	13	3	0.18	< 20	3	< 2	< 10	137	< 10	4	33	
A852013 Dup	0.016	0.045	3.18	8	13	3	0.18	< 20	1	< 2	< 10	137	< 10	4	33	
A852018 Orig																0.87
A852018 Dup																0.91
A852027 Orig	0.043	0.048	0.02	3	27	35	0.34	< 20	< 1	3	< 10	284	< 10	15	5	
A852027 Dup	0.043	0.048	0.02	3	28	34	0.34	< 20	< 1	< 2	< 10	282	< 10	15	4	
A852033 Orig																< 0.02
A852033 Dup	2 2		8						2	2	8	2			2	< 0.02
A852040 Orig	0.094	0.044	0.03	< 2	5	48	0.19	< 20	< 1	2	< 10	68	< 10	6	8	
A852040 Dup	0.093	0.044	0.03	< 2	5	47	0.19	< 20	4	< 2	< 10	66	< 10	5	8	
A852044 Orig				8									9 			< 0.02
A852044 Dup																< 0.02
Method Blank																< 0.02
Method Blank				-	2											< 0.02
Method Blank																< 0.02
Method Blank	0.010	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	
Method Blank	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	
Method Blank	0.011	< 0.001	< 0.01	< 2	<1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	

Quality Analysis ...

Innovative Technologies

Report No.:A20-09588FinalReport Date:02-Sep-20Date Submitted:18-Aug-20Your Reference:Aguonie (AG)

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Paul Dunbar

CERTIFICATE OF ANALYSIS

16 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A3-50-Geraldton	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-08-22 11:20:52

REPORT A20-09588Final

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

801 Main Street, P.O. Box 999, Geraldton, Ontario, Canada, POT 1M0 TELEPHONE +807 854-2020 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Geraldton@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis

Innovative Technologies

Report No.:A20-09588FinalReport Date:02-Sep-20Date Submitted:18-Aug-20Your Reference:Aguonie (AG)

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Paul Dunbar

CERTIFICATE OF ANALYSIS

16 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-08-31 11:29:34

REPORT A20-09588Final

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

Report: A20-09588

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
A852079	< 0.2	< 0.5	21	654	< 1	4	2	32	0.71	< 2	< 10	11	< 0.5	< 2	2.15	12	2	2.28	< 10	< 1	< 0.01	< 10	0.58
A852080	< 0.2	< 0.5	38	516	< 1	34	3	54	2.11	< 2	< 10	55	< 0.5	< 2	1.46	18	49	3.31	< 10	< 1	0.25	12	1.20
A852081	< 0.2	< 0.5	< 1	129	< 1	< 1	4	< 2	0.02	< 2	< 10	< 10	< 0.5	< 2	0.35	< 1	2	0.50	< 10	< 1	< 0.01	< 10	0.01
A852082	< 0.2	< 0.5	32	187	< 1	5	9	25	1.09	2	< 10	42	< 0.5	< 2	0.24	11	2	2.06	< 10	< 1	0.17	< 10	0.52
A852083	< 0.2	< 0.5	5	792	< 1	4	< 2	30	1.06	< 2	< 10	24	< 0.5	< 2	6.26	8	2	2.08	< 10	< 1	0.13	< 10	0.52
A852084	< 0.2	< 0.5	2	411	< 1	9	< 2	65	1.69	< 2	< 10	44	< 0.5	< 2	1.88	11	2	2.59	< 10	< 1	0.30	13	0.73
A852085	< 0.2	< 0.5	115	919	< 1	32	< 2	50	2.23	< 2	< 10	11	< 0.5	2	3.13	34	21	4.90	< 10	3	0.07	< 10	1.42
A852086	0.6	0.9	822	1720	< 1	49	13	540	0.36	2	< 10	< 10	< 0.5	< 2	1.64	54	7	7.00	< 10	2	< 0.01	< 10	0.60
A852087	1.0	3.6	1130	423	2	83	22	1640	0.81	10	< 10	< 10	< 0.5	< 2	0.41	73	17	9.01	< 10	3	0.04	< 10	0.45
A852088	0.3	< 0.5	246	225	< 1	81	10	46	0.11	5	< 10	< 10	< 0.5	< 2	0.14	30	25	3.77	< 10	< 1	0.01	< 10	0.05
A852089	0.3	< 0.5	61	1510	< 1	26	5	75	2.45	13	< 10	19	< 0.5	< 2	> 10.0	21	23	5.17	< 10	3	0.11	< 10	1.52
A852090	1.6	< 0.5	1940	517	95	12	20	67	1.66	8	< 10	17	< 0.5	< 2	3.59	20	17	4.08	< 10	< 1	0.39	15	1.50
A852091	0.9	2.1	961	1390	< 1	147	22	801	0.85	33	< 10	< 10	< 0.5	< 2	5.54	52	58	7.15	< 10	1	0.02	< 10	0.70
A852092	< 0.2	< 0.5	7	284	< 1	< 1	< 2	6	0.18	< 2	10	73	< 0.5	< 2	0.96	1	2	0.68	< 10	< 1	0.07	< 10	0.03
A852093	< 0.2	< 0.5	3	632	< 1	9	< 2	49	1.60	< 2	< 10	203	< 0.5	< 2	3.34	13	5	2.69	< 10	< 1	0.19	16	0.76
A852094	< 0.2	< 0.5	< 1	85	< 1	< 1	< 2	8	0.41	< 2	< 10	43	< 0.5	< 2	0.08	< 1	2	0.56	< 10	< 1	0.15	< 10	0.07

Results

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr	Au
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm	g/tonne							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02
Method Code	AR-ICP	FA- GRA														
A852079	0.018	0.002	0.01	< 2	1	17	< 0.01	< 20	1	< 2	< 10	29	< 10	< 1	< 1	< 0.02
A852080	0.112	0.042	0.05	< 2	7	65	0.23	< 20	2	< 2	< 10	77	< 10	6	10	< 0.02
A852081	0.022	0.001	< 0.01	< 2	< 1	8	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	< 0.02
A852082	0.051	0.059	0.27	< 2	2	17	< 0.01	< 20	2	< 2	< 10	18	< 10	4	1	< 0.02
A852083	0.025	0.034	0.02	< 2	< 1	90	0.02	< 20	< 1	< 2	< 10	8	< 10	5	3	< 0.02
A852084	0.036	0.048	< 0.01	< 2	< 1	41	0.04	< 20	1	< 2	< 10	12	< 10	3	4	0.02
A852085	0.176	0.035	0.16	2	14	49	0.33	< 20	4	< 2	< 10	130	< 10	8	3	0.02
A852086	0.013	0.011	3.63	2	4	9	< 0.01	< 20	1	< 2	< 10	14	< 10	< 1	3	0.02
A852087	0.030	0.021	5.29	3	2	5	< 0.01	< 20	4	< 2	< 10	16	< 10	< 1	12	0.22
A852088	0.016	0.013	1.67	< 2	< 1	1	0.02	< 20	< 1	< 2	< 10	5	< 10	1	3	< 0.02
A852089	0.023	0.027	0.01	< 2	7	173	0.09	< 20	< 1	< 2	< 10	78	< 10	13	2	0.08
A852090	0.056	0.172	2.35	< 2	8	336	0.07	< 20	< 1	< 2	< 10	130	< 10	9	5	1.96
A852091	0.016	0.014	2.69	3	4	68	0.04	< 20	3	< 2	< 10	33	< 10	7	7	0.26
A852092	0.027	0.041	0.01	< 2	< 1	9	< 0.01	< 20	< 1	< 2	< 10	3	< 10	1	1	< 0.02
A852093	0.059	0.082	< 0.01	< 2	3	25	0.06	< 20	< 1	< 2	< 10	33	< 10	6	2	< 0.02
A852094	0.068	0.002	< 0.01	< 2	< 1	8	< 0.01	< 20	< 1	< 2	< 10	3	< 10	2	18	0.04

QC

Activation Laboratories Ltd.

Report: A20-09588

Und Pint Pint Pint Pi	Analyte Symbol	Aq	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Ha	К	La	Ma
issmet issmet<	Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	mqq	%	ppm	%
Mathery Art-CP Art-CP Art-CP A	Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
CATE Meas 0.4 -0.5 71 104 1 24 97 128 729 227 100 790 0.90 4.0 14.0 101 20.0 4 1.21 <1.00 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.00 1.01 2.01 2.00 1.01 0.00 1.01 0.00 1.01 0.00 1.01 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
CATH 6 Cert 1 30 1 00 6 0.0 1 00 2 0.0 2 0.0 0 0.00	GXR-6 Meas	0.4	< 0.5	71	1040	1	24	97	125	7.29	227	< 10	790	0.9	4	0.14	13	81	6.10	20	4	1.21	< 10	0.42
CARF e Meas 0.4 e - 0.5 73 1050 1 124 108 128 4 0.14 138 8.8 6.17 20 2 1.23 -100 0.051 0.021 100 0.051 100 0.052 100 0.051 10.03 0.024 100 0.052 1.01 0.052 1.01 0.052 1.01 0.052 1.01 0.052 1.01 0.022 0.01 0.022 0.01 0.022 0.01 0.022	GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
OXPA Cort 130 100 660 1010 2.00 101 110 17.7 330 9.80 130 1.40 0.290 0.88 13.8 0.80 0.88 0.88 0.88 0.88 0.88 0.88 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 11.8 0.84 13.8 0.84 13.8 0.84 13.8 0.84 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 13.8 0.83 0.33 13.8 0.83	GXR-6 Meas	0.4	< 0.5	73	1050	1	24	98	128	7.43	231	< 10	803	0.9	4	0.14	13	83	6.17	20	2	1.23	< 10	0.43
OREAS 922 (ACUA REGUN) 1.0 < 0.5 2280 786 <1 35 6.8 77 3.0 7 81 0.8 14 0.44 19 50 5.0 10 .0.8 1.4 0.44 19 50 5.0 10 .0.84 1.41 1.45 OREAS 922 (ACUA REGUN) 0.681 0.28 2176 730 0.89 34.3 60 256 2.72 6.12 70 0.85 10.3 0.324 14 40.7 5.05 7.62 .0.37 0.32 1.4 OREAS 922 (ACUA REGUN) 0.81 0.28 2176 730 0.69 34.3 60 256 2.72 6.12 70 0.35 0.33 0.324 14.4 40.7 5.05 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.61 7.73 7.83 7.71 7.83 7.71 7.83 7.71 7.8 7.61 7.72	GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
OHEAS 822 (A) UAB 0.88 2.78 2.78 0.81 0.82 10.8 <td>OREAS 922 (AQUA REGIA) Meas</td> <td>1.0</td> <td>< 0.5</td> <td>2320</td> <td>796</td> <td>< 1</td> <td>35</td> <td>68</td> <td>274</td> <td>3.10</td> <td>7</td> <td></td> <td>81</td> <td>0.8</td> <td>14</td> <td>0.44</td> <td>19</td> <td>50</td> <td>5.50</td> <td>10</td> <td></td> <td>0.54</td> <td>41</td> <td>1.45</td>	OREAS 922 (AQUA REGIA) Meas	1.0	< 0.5	2320	796	< 1	35	68	274	3.10	7		81	0.8	14	0.44	19	50	5.50	10		0.54	41	1.45
OREAS 922 (A) UR 1.0 c. 0.5 24.0 785 c. 1 85 80 269 3.03 5 78 0.8 10 0.43 19 50 5.37 10 0.52 0.40 1.11 MCMAREANA 0.851 0.28 277 730 0.69 343 60 256 2.72 6.12 70 0.65 10.3 0.324 19.4 40.7 5.05 7.62 1.0 0.38 0.37 1.51 OREAS 922 (ACUA REGIA) 1.6 0.40 4246 899 c.1 21 835 2.00 7.6 6.61 21.8 0.326 22.1 43 6.12 10 .43 0.322 30.0 1.51 CACLA REGIAN 1.16 -1000 1.2 1.2 1.01 448 7.2 1.2 2.0 2.1 43 6.12 1.01 0.322 3.02 3.01 1.01 Create State St	OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OREAS 22 (A) OREAS 22 (176) 730 0.69 34.3 60 256 2.72 6.12 70 0.65 10.3 0.324 19.4 40.7 5.05 7.62 0.376 32.5 1.33 Cont Cont 1.8 < 0.5	OREAS 922 (AQUA REGIA) Meas	1.0	< 0.5	2240	785	< 1	35	60	269	3.03	5		78	0.8	10	0.43	19	50	5.37	10		0.52	40	1.41
OREAS 92:3 ACUA RECIAL Meas 1.8 c 0.5 4490 889 c 1 31 86 349 3.02 6 61 0.7 28 0.43 21 43 6.12 10 0.43 37 1.51 Meas 0.61 1.62 0.40 4248 850 0.84 32.7 81 33 2.80 7.07 54 0.61 21.8 0.326 22.2 39.4 5.91 8.01 0.322 90.0 1.43 Oreas 96 (Apc) 11.6 > 10000 2 0 447 2 6.61 0.61 21.8 0.326 22.2 39.4 5.91 8.01 0.32 90.0 1.43 Oreas 96 (Apc) 11.5 3 9100.0 2 100 448 2 2 444 2 2 449.2 2 49.2 2 49.2 2 49.2 2 49.2 2 49.2 2 49.2 2 49.2 2 49.2	OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OFEA S23 (ACUA REGA) 1.62 0.40 4248 850 0.84 32.7 81 335 2.80 7.07 54 0.61 21.8 0.326 22.2 39.4 5.91 8.01 0.322 30.0 1.43 Cent Oneas 96 (Apua Regin) Meas 11.6 > 1000 448 64 45 <td>OREAS 923 (AQUA REGIA) Meas</td> <td>1.8</td> <td>< 0.5</td> <td>4490</td> <td>889</td> <td>< 1</td> <td>31</td> <td>86</td> <td>349</td> <td>3.02</td> <td>6</td> <td></td> <td>61</td> <td>0.7</td> <td>28</td> <td>0.43</td> <td>21</td> <td>43</td> <td>6.12</td> <td>10</td> <td></td> <td>0.43</td> <td>37</td> <td>1.51</td>	OREAS 923 (AQUA REGIA) Meas	1.8	< 0.5	4490	889	< 1	31	86	349	3.02	6		61	0.7	28	0.43	21	43	6.12	10		0.43	37	1.51
Oreas BG (Aqua Regin) Meas (Aqua Regin) Mea	OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
Oreas BG (Aqua Regia) Cert Regia) Cert Regia) Meta 11.50 39100. 00 1100 448 1100 448 1100 449.2 100 449.2 100 100 100 448 100 100 100 100 100 100 100 100 100 100 100 100 100 448 100 100 100 100 448 100 100 100 100 448 100 100 449.2 100 100 100 448 100 100 449.2 100 100 100 448 100 100 100 100 448 100 100 449.2 100 10	Oreas 96 (Aqua Regia) Meas	11.6		> 10000				91	437						64		45							
Oreas 66 (Aqua Regia) Meas 11.5 > 1000 Image: Market M	Oreas 96 (Aqua Regia) Cert	11.50		39100. 00				100	448						27.9		49.2							
Oreas 66 (Aqua Regia) Cert 11.50 39100. 00 1100 448 1 100 448 1 100 27.9 49.2 100 100 100 448 100 27.9 49.2 100 <	Oreas 96 (Aqua Regia) Meas	11.5		> 10000				92	444						86		47							
OREAS 254 Fire Assay Meas Image: Control of the second secon	Oreas 96 (Aqua Regia) Cert	11.50		39100. 00				100	448						27.9		49.2							
OREAS 254 Fire Assay Cert Image: Core and the second	OREAS 254 Fire Assay Meas																							
OREAS 229 (Fire Assay) Meas Image: Control of the second sec	OREAS 254 Fire Assay Cert																							
OHEAS 229 (Fire Image: Control of the start	OREAS 229 (Fire Assay) Meas																							
Oreas 621 (Aqua Regin) Meas 68.3 286 3480 537 14 23 > 5000 10000 1.85 81 0.6 4 1.73 30 32 3.30 10 5 0.40 21 0.45 Oreas 621 (Aqua Regin) Meas 68.0 278 3660 520 11.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 Oreas 621 (Aqua Regin) Meas 68.8 291 3540 558 14 24 >5000 10000 1.83 82 0.6 14 1.75 32 34 3.25 10 4 0.39 20 0.45 Oreas 621 (Aqua Regin) Meas 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 Ab52083 Orig <	OREAS 229 (Fire Assay) Cert			0.100	507			5000	10000	1.05						1 70								0.15
Oreas 621 (Aqua Regia) Cert 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 Oreas 621 (Aqua Regia) Meas 68.8 291 3540 558 14 24 >5000 10000 1.83 82 0.6 14 1.75 32 34 3.25 10 4 0.39 20 0.458 Oreas 621 (Aqua Regia) Meas 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 Oreas 621 (Aqua Regia) Cert 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 A852083 Orig <td>Oreas 621 (Aqua Regia) Meas</td> <td>68.3</td> <td>286</td> <td>3480</td> <td>537</td> <td>14</td> <td>23</td> <td>> 5000</td> <td>> 10000</td> <td>1.85</td> <td>81</td> <td></td> <td></td> <td>0.6</td> <td>4</td> <td>1.73</td> <td>30</td> <td>32</td> <td>3.30</td> <td>10</td> <td>5</td> <td>0.40</td> <td>21</td> <td>0.45</td>	Oreas 621 (Aqua Regia) Meas	68.3	286	3480	537	14	23	> 5000	> 10000	1.85	81			0.6	4	1.73	30	32	3.30	10	5	0.40	21	0.45
Oreas 621 (Aqua Neas) 68.8 291 3540 558 14 24 > 5000 10000 1.83 82 0.6 14 1.75 32 34 3.25 10 4 0.39 20 0.45 Regia) Meas 0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 Regia) Cert 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.29 3.93 0.333 19.4 0.436 A852083 Dup <0.2 <0.5 5 793 <1 4 <2 30 1.05 <2 <10 23 <0.5 3 6.28 8 2 2.09 <10 <1 0.13 <10 0.52 A852083 Dup <1 <1 <1 <1<	Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
Oreas 621 (Aqua Regia) Cert 68.0 278 3660 520 13.3 25.8 13600 51700 1.60 75.0 0.530 3.85 1.65 27.9 31.3 3.43 9.99 3.93 0.333 19.4 0.436 Regia) Cert A852083 Orig < 0.2 < 0.5 5 792 < 1 4 <2 30 1.06 <2 <10 24 <0.5 <2 6.25 8 2 2.09 <10 <1 0.13 <10 0.52 A852083 Dup < 0.2 < 0.5 5 793 <1 4 <2 30 1.05 <2 <10 23 <0.5 3 6.28 8 2 2.09 <10 <1 0.13 <10 0.52 A852083 Dup <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>Oreas 621 (Aqua Regia) Meas</td> <td>68.8</td> <td>291</td> <td>3540</td> <td>558</td> <td>14</td> <td>24</td> <td>> 5000</td> <td>> 10000</td> <td>1.83</td> <td>82</td> <td></td> <td></td> <td>0.6</td> <td>14</td> <td>1.75</td> <td>32</td> <td>34</td> <td>3.25</td> <td>10</td> <td>4</td> <td>0.39</td> <td>20</td> <td>0.45</td>	Oreas 621 (Aqua Regia) Meas	68.8	291	3540	558	14	24	> 5000	> 10000	1.83	82			0.6	14	1.75	32	34	3.25	10	4	0.39	20	0.45
A852083 Orig < 0.2	Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
A852083 Dup < 0.2	A852083 Orig	< 0.2	< 0.5	5	792	< 1	4	< 2	30	1.06	< 2	< 10	24	< 0.5	< 2	6.25	8	2	2.09	< 10	< 1	0.13	< 10	0.52
A852088 Orig Image: Constraint of the	A852083 Dup	< 0.2	< 0.5	5	793	< 1	4	< 2	30	1.05	< 2	< 10	23	< 0.5	3	6.28	8	2	2.08	< 10	< 1	0.13	< 10	0.52
ABS2/088 Dup C <thc< th=""> C C <thc< th=""> <thc< td=""><td>A852088 Orig</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td></td><td>8</td><td></td><td></td><td>8</td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thc<></thc<>	A852088 Orig									8		8			8			8						
Immemory Brank Immediate Immediat Immediate Immediate </td <td>A852088 Dup</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	A852088 Dup								-															
Method Blank < 0.2 < 0.5 < 1 < 5 < 1 < 2 < 2 < 0.01 < 10 < 0.01 < 10 < 10 < 10 < 0.01 < 10 < 10 < 10 < 0.01 < 10 < 10 < 10 < 0.01 < 10 < 10 < 10 < 10 < 0.01 < 10 < 10 < 10 < 0.01 < 10 < 0.01 < 10 < 0.01 < 10 < 0.01 < 0.01 < 10 < 0.01 < 0.01 < 10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Method Blank	-	-					-	-					-		-	-		-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Method Blank	.0.0	.05				1			10.01		. 10	. 10	.05		10.01		1	10.01	. 10		10.01	. 10	10.01
	Method Blank	< 0.2	< 0.5	< 1	< 0	< 1	< 1	<2	<2	< 0.01	<2	< 10	< 10	< 0.5	<2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
	Method Blank	< 0.2	< 0.5	<1	< 5	<1	<1	<2	<2	< 0.01	<2	< 10	< 10	< 0.5	<2	< 0.01	<1	<1	< 0.01	< 10	<1	< 0.01	< 10	< 0.01

QC

Activation Laboratories Ltd.

Analyte Symbol	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr	Au
Unit Symbol	%	%	%	ppm	ppm	ppm	%	ppm	g/tonne							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	FA- GRA
GXR-6 Meas	0.128	0.033	0.01	5	18	31		< 20	< 1	4	< 10	178	< 10	4	7	
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110	
GXR-6 Meas	0.131	0.034	0.01	5	18	31		< 20	< 1	< 2	< 10	179	< 10	4	7	
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0	2	5.30	0.0180	2.20	1.54	186	1.90	14.0	110	10
OREAS 922 (AQUA REGIA) Meas	0.034	0.064	0.38	< 2	4	17		< 20		< 2	< 10	40	< 10	18	18	
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3	
OREAS 922 (AQUA REGIA) Meas	0.032	0.063	0.37	< 2	4	17		< 20		< 2	< 10	39	< 10	18	17	
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3	
OREAS 923 (AQUA REGIA) Meas		0.061	0.67	< 2	4	15		< 20		< 2	< 10	38	< 10	17	26	
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5	
Oreas 96 (Aqua Regia) Meas			4.03	7												
Oreas 96 (Aqua Regia) Cert			4.38	4.53												
Oreas 96 (Aqua Regia) Meas			4.05	6												
Oreas 96 (Aqua Regia) Cert			4.38	4.53												
OREAS 254 Fire Assay Meas																2.54
OREAS 254 Fire Assay Cert														2		2.55
OREAS 229 (Fire Assay) Meas																12.0
OREAS 229 (Fire Assay) Cert																12.1
Oreas 621 (Aqua Regia) Meas	0.177	0.034	4.68	119	3	19		< 20		< 2	< 10	14	< 10	7	65	
Oreas 621 (Aqua Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0	
Oreas 621 (Aqua Regia) Meas	0.175	0.033	4.63	115	3	18		< 20		< 2	< 10	14	< 10	7	54	
Oreas 621 (Aqua Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0	
A852083 Orig	0.026	0.034	0.02	< 2	< 1	91	0.02	< 20	1	< 2	< 10	8	< 10	5	4	
A852083 Dup	0.025	0.033	0.02	< 2	< 1	90	0.02	< 20	< 1	< 2	< 10	8	< 10	5	3	1
A852088 Orig																< 0.02
A852088 Dup																< 0.02
Method Blank																< 0.02
Method Blank																< 0.02
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	
Method Blank	0.010	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1	

APPENDIX 4

Month July	Day 1 2 3 4 5 6 7 8	Roach	Riddle	Hamilton	Phillips	Wright	O'Neill	Project	Work Description	Claim Cell Activity x = 1 day/claim x(0.5) = 1/2 day/claim x(0.33) = 1/3 day/claim x(0.25) = 1/4 day/claim
	9									
	10									
	11									
	12									
	14			x(0.5)		x(0.5)	х	Aguonie	Stripping trenches and sampling	121271
	15			х		x	х	Aguonie	Stripping trenches & structural mapping	121271
	16			Х				Aguonie	Stripping trenches and structural mapping	121271
	16					х	х	Aguonie	Stripping trenches	121272
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121271
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121272
	18					x(0.5)		Aguonie	Stripping trenches	121272
	18			x(0.5)			x(0.5)	Aguonie	Stripping trenches	121271
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, and sampling.	121271
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, and sampling.	121272
	20			х		x	x	Aguonie	Following up on historic occurences, mapping, and sampling.	104120
	21			х		х	x	Aguonie	Following up on historic occurences, mapping, and sampling.	104120
	22			x(0.5)		x(0.5)	x(0.5)	Rand 2	Following up on historic occurences, mapping, and sampling.	261007

	23			х	х	х	Rand 2	Following up on historic occurences, mapping, and sampling.	261007
	24			х	х	х	Rand 2	Following up on historic occurences, mapping, and sampling.	158306
	25				x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and sampling.	297812/279177
	26				x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and sampling.	118986/297892
	27		x(0.5)		x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and sampling.	297812/279177
	28								
	29								
	30								
0	31								
August							Aguania	Coological manning and campling	101071
	2		×	×			Aguonie	Geological mapping and sampling.	1212/1
			x(0.5)	x(0,5)			Aguonie	Geological mapping and sampling.	121271
	5		х(0.57	х(0.5)			Aguorne	Rain day	121272,101120
	6		x(0.5)	x(0.5)			Aguonie	Geological mapping and sampling.	121272/104120
	7		x(0.5)	x(0.5)			Aguonie	Geological mapping and sampling.	121272/104120
	8		x	X			Aguonie	Geological mapping and sampling.	121272
	9	x(0.5)	x(0.5)	x(0.5)	x(0.5)		Aguonie	Site Tour/Geological mapping.	121272
	10		х	Х				Geological Mapping Interpretation	
	11		х	х				Geological mapping and sampling.	121272
	12								
	13		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	177824/338825
	14		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	338825/177824
	15		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	338825/177824
	16		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	261007/158306
	17								
	18		<i>/-</i> ->						
	19		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	261007
	20								

	21					х	х	Rand2	Prospecting	261007
	21	x(0.5)	x(0.5)					Rand2	Geological mapping and sampling.	261007/158306
	22		х			х	х	Rand2	Prospecting	158306
	23					х	х	Rand2	Geological mapping and prospecting.	158306
	24									
	25					x(0.5)	x(0.5)	Rand2	Prospecting	118986/297812
	26									
	27									
	28					x(0.5)	x(0.5)	Rand 2	Prospecting	297812
	28					x(0.5)	x(0.5)	Oban	prospecting	123563
	29									
	30					x(0.5)	x(0.5)	Oban	Prospecting	281407/265750
	31					x(0.5)	x(0.5)	Selkirk	Prospecting	269799/225097
Sentember	1					x	x	Doublewood	Scouting access to highland	202520
bepteniber	2			x(0.5)	x(0.5)			Rand2	Geological manning and sampling	118986/297812
	3							Hand	Rain Day	110000,207012
	4			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/297812
	5			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/279177
	6			X	X			Rand2	Geological mapping and sampling	279177
	7			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	8			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	9			X	X			Selkirk Lake	Geological mapping and sampling	191852
	10			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	191852/221768
	11			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	162470/295830
	12			Х				Selkirk Lake	Geological Mapping Interpretation	
	13									
	14		x(0.5)	x(0.5)	x(0.5)			Oban	Geological mapping and sampling	108851/123563
	15									
	16			x(0.5)			x(0.5)	Oban	Prospecting	123563/265750
	17		x	х				Oban	Geological mapping and sampling	123563
	17				x	х		Oban	Prospecting	123563
	18		x(0.5)	x(0.5)			x(0.5)	Oban	Geological mapping and sampling	265750/123563
	18				х	х		Oban	Prospecting	123563

	19	х	х					Geological mapping and sampling	179503
	19			x(0.5)	x(0.5)		Oban	Prospecting	179503/265749
	20	x(0.5)	x(0.5)				Oban	Geological mapping and sampling	123563/265749
	20			х	х		Doublewood	Scouting access	
	21				х	х	Taliskar	Prospecting	145811
	22	x(0.5)	x(0.5)				Doublewood	Geological mapping and sampling	258551/202520
	22			х	х		Taliskar	Prospecting	145811
	23	х	х				Doublewood	Geological mapping and sampling	202520
	23			Х	х		Taliskar	Prospecting	145811
	24			Х	Х		Taliskar	Prospecting	159908
	25	х	Х				B+C	Geological mapping and sampling	199184
	26								
	27								
	28								
	29								
	30								
October	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	13								
	14								
	15								
	16								
	17								
	18								

	19 20 21 22					
	23 24 25					
	26 27 28 29					
November	30 31 1					
	2 3					179251/166330/121272/121271/119373/1041
	4 5	x x	x x	Agounie	Agounie Technical Reporting Agounie Technical Reporting	20/119372 179251/166330/121272/121271/119373/1041 20/119272
	6	х	Х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	/					
	9	x	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	10	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	11	x	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372

12		x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
13		x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
14						
15						
16	x (0.5)	x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
17		x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
18	x (0.5)	x	х	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
19		x	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372

	20		х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	21						
	22						
	23		x	х	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	24		x	х	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	25		x	х	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	26						
	27						
	28						
	29						
	30						
December	1	х					
	2		х	x	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	3		x	x	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	4		x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
	5						
	6						
	7		x		Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891
						/252076/215211/179890	

8		x	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
9	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
10		х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
11					
12					
 13					
14					
 15					
16		x	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
17		x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
18		x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
19					
20					
21					
22					
23					
24					
25					
26					

APPENDIX 5