

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

N.T.S. 31C/11

REPORT ON GROUND MAGNETOMETER & VLF ELECTROMAGNETIC (EM) SURVEYS McCOWAN PROPERTY PORQUPINE MINING DIVISION McCOWAN TOWNSHIP, ONTARIO

Written by: Robert J. Dillman 8901 Reily Drive Mount Brydges, Ontario

For: JayCubed Explorations

January 22, 2019

INDEX

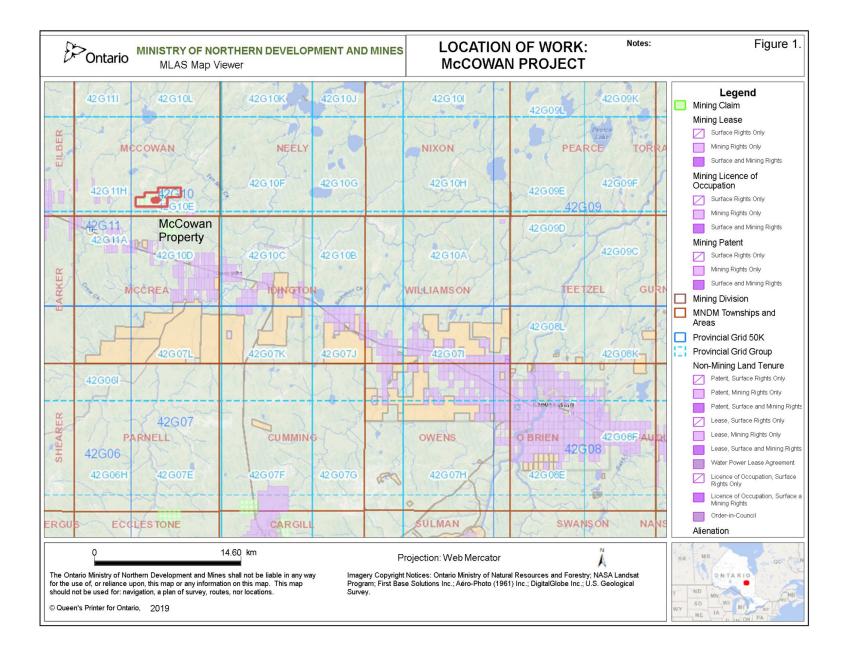
Summary	2
Location, Property Ownership, Access	2
Claim Logistics	4
Land Status and Topography	7
Regional and Local Geology	7
History of Exploration	9
Survey Dates and Personnel	12
Survey Logistics	12
Survey Results	13
Discussion of Results	13
Conclusions and Recommendations	14
References	15
Certificate of Author	16
Figure 1. Property Location Map	3
Figure 2. Claim Map	5
Figure 3. Regional Geology Map	8
Figure 4. Google Earth Maps: Miller Showing	10
Table 1. Claim Logistics	6
APPENDIX	
G.P.S. WAYPOINT DATA FOR GRID	17
VLF SPECIFICATIONS	18
MAGNETOMETER SPECIFICATIONS	20
VLF SURVEY: READINGS scale 1 : 2,500	22
VLF SURVEY: PROFILED DATA scale 1 : 2,500	23
MAGNETOMETER SURVEY: READINGS scale 1 : 2,500	24
MAGNETOMETER SURVEY: CONTOURED DATA scale 1 : 2,500	25
MAGNETICS + EM COMPILATION MAP: SCALE 1 :2,500	26

1

page

Summary

This report summarizes the results of a combined ground magnetometer and VLF electromagnetic (EM) survey over the Miller gold occurrence on JayCubed Exploration's McCowan Property located in McCowan Township. The surveys were completed by property owners: Robert Dillman and James M. Chard in 2 days on September 10, 2017 and September 11, 2017. The surveys were assisted by property owner Dr. Jim Renaud, who provided navigation and recorded surficial geology as surveys progressed.


The magnetometer survey detected two prominent magnetic features: 1.) a northeast-southwest trending feature corresponding with the Miller showing and, 2) a north-south orientated magnetic feature believed to represent a diabase dike. The VLF survey detected conductive features striking either east-west or northwest-southeast and several single station anomalies. Some of the VLF conductors correspond with the magnetic feature coincident with the Miller showing. The VLF conductors potentially represent zones of sulphide mineralization, shearing and conductive overburden.

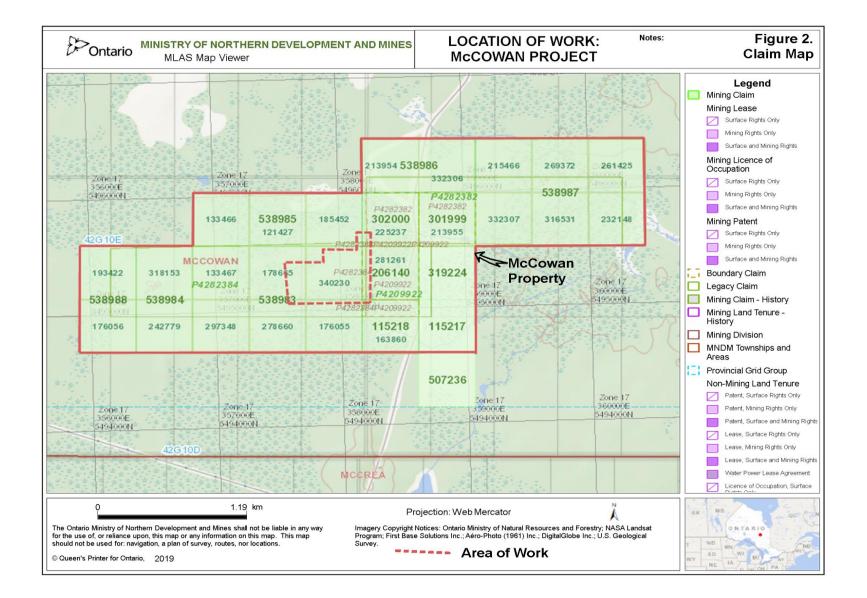
Location and Access

The McCowan Property is located in McCowan Township in the District of Cochrane, Ontario. The property is located approximately 46 kilometres west of Kapuskasing, Ontario, Canada (Figure 1).

The property has good year-round road access via the McCowan Road which crosses the property. The McCowan Road connects with the Trans-Canada Highway 11, 44 kms west of Kapuskasing.

A logging road connecting with the McCowan Road provides access to the Miller showing. The intersection of the logging road is 5.3 kms north of the Trans-Canada Highway.

Claim Logistics


Figure 2 depicts the McCowan Property at the time of this report. The property was recorded in May, 2016 when two-8 unit claims (P4282382, P4282384) were physically staked. A single- 2 unit claim (P4209922) was added to the property by staking in September, 2017. At the time of the field work for this report, the McCowan Property covered an approximate area of 275 hectares.

In April, 2018 the McCowan Property was converted to single cell mining claims to conform to the new provincial grid under the new Mining Lands Administration System (MLAS). A total of 27 single cell mining claims were created as a result of the conversion. In addition, the property increased in size almost two-fold as the old claim boundaries moved outwards to conform to the new cell boundaries of the provincial grid. At the time of this report, the McCowan Property covers an approximate area of 522 hectares.

In January, 2019, in an attempt too simplify the claim block, 6 multi-cell claims were created by merging a number of the single cell mining claims together. At the time of this report, the McCowan Property consists of 6 multi-cell claims and 6 single cell claims. A claim list is presented in Table 1.

All claims comprising the McCowan Property are equally owned by:

Robert J. Dillman (author) of Mount Brydges, Ontario James M. Chard of Covdova, Ontario Dr. Jim Renaud of London, Ontario

Table 1. Claim Logistics

McCowan Property, McCowan Twp., Ontario

January 15, 2019

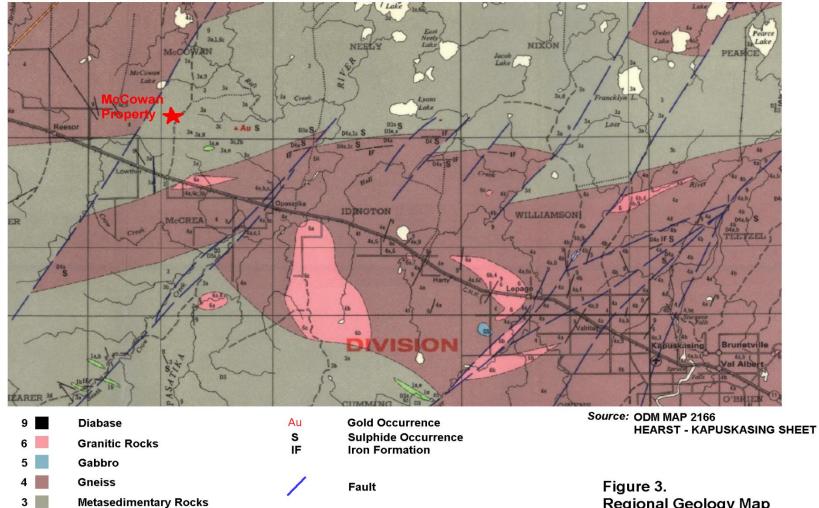
Claim Number	Cell Number	Number of Cells	Size Hectares	Assessment Due Date	Amount Due
538983	42G10E344, 42G10E345, 42G10E346 42G10E364, 42G10E365, 42G10E366	6 Cells	124.2 ha	May 6, 2019	\$2400
538984	42G10E343, 42G10E363	2 Cells	41.4 ha	May 6, 2019	\$800
538985	42G10E324, 42G10E325, 42G10E326	3 Cells	62.1 ha	May 6, 2019	\$1200
538986	42G10E307, 42G10E308	2 Cells	41.4 ha	May 6, 2019	\$800
538987	42G10E309, 42G10E310, 42G10E311 42G10E329, 42G10E330, 42G10E331	6 Cells	124.2 ha	May 6, 2019	\$2400
538988	42G10E342, 42G10E362	2 Cells	41.4 ha	Sept 18, 2019	\$800
302000	42G10E327	1 Cells	20.7 ha	Sept 18, 2019	\$400
301999	42G10E328	1 Cells	20.7 ha	Sept 18, 2019	\$400
206140	42G10E347	1 Cells	20.7 ha	Sept 18, 2019	\$400
319224	42G10E348	1 Cells	20.7 ha	Sept 18, 2019	\$400
115218	42G10E367	1 Cells	20.7 ha	Sept 18, 2019	\$400
115217	42G10E328	1 Cells	20.7 ha	Sept 18, 2019	\$400

Land Status and Topography

The McCowan Property is situated entirely on Crown Land. The property is uninhabited. There are no buildings or hydroelectricity.

The property is at a mean elevation of 240 metres above sea level. The property is mostly flat with some gentle relief ranging approximately to 5 to 15 metres in height. Much of the flat area is poorly drained and tends to be wet and swampy.

Most of the property is covered by thick forest growth dominated by spruce and poplar and lesser amounts of balsam and cedar. With the exception of a logging road cutting west across the property there is little evidence of recent logging activities.


The McCowan Property is blanketed by clay overburden. Although the clay layer is relatively shallow, due to the flat topography there is very poor outcrop exposure on the property. Small outcrops can be found in areas of higher topography and in the ditches along McCowan Road.

Regional and Local Geology

The McCowan Property is situated in supracrustal rocks of the Superior Province. The property is under underlain by Archean rock units belonging to the Quetico Subprovince. The units consist of greywacke, argillite, arkose, iron formation and minor metavolcanic flows (Figure 3). The age of rock units in the Quetico Subprovince range 2500 to 3400 Ma.

The Quetico Subprovince has been intruded by Archean granite stocks and porphyry dikes. The sequence was intruded by northwest trending mafic dikes of the Matachewan and Hearst swarms circa 2454 Ma and the Sudbury swarm circa 1235-1238 Ma. Northeast and north trending mafic dikes of the Marathon dike swarm occurred between 2101 to 2126 Ma and northeast trending dikes of the Kapuskasing and Biscotasing swarms occurred from 2167 to 2171 Ma.

The region was also subjected to northeast trending faults associated with the Kapuskasing Structural Zone.

1 Mafic Metavolcanic Rocks

Regional Geology Map Kapuskasing - Reesor Area Ontario

On the McCowan Property, outcrops found along the McCowan Road and in the vicinity of the Miller gold occurrence consist of greywacke and minor thin mafic metavolcanic flows. The rock units are weakly schistose striking 68[°] to 76[°] and dip steeply towards the south-southeast at 85[°] to near vertical. Most of the outcrops contain varying concentrations of thin, hairline quartz stringers which trend parallel to the schistosity of the host rock. Quartz feldspar porphyry and larger quartz veins mineralized with arsenopyrite, pyrite, rare galena and sphalerite are present in the trenches at the Miller gold occurrence.

History of Exploration

During the survey, a number of old pits and trenches were found and attest to periods of significant exploration on the property. Most of the old workings have long since collapsed and are filled with water however some of the more recent trenching is still visible on Google Earth (Figure 4).

It is believed gold was first discovered in the area in the early 30's when Oscar Peterson found gold in quartz veins and pyrite mineralization associated with quartz porphyry in Lot 6 and 7, Concession I. In the mid 30's this property became the Filion Property. Roughly around the same time, local prospectors R. Miller, McManus and Lukis discovered gold in Lot 13, concession 2 and surrounding area.. As result, the southwest ¼ of Lot 13, Concession 2 was patented to cover the discovery. At some point in time, the patent has allowed lapsed.

In 1938, P.C. Carter visited the Miller Property. He describes examining a pit in Lot 13, concession 2 exposing a 4 foot quartz vein which carries considerable galena, arsenopyrite and pyrite. A sample of the vein assayed \$6.65 in gold (0.19 oz/ton) and 1.07 ounces of silver per ton. He also describes a channel sample taken from a stringer in porphyry located in the Northeast ¼ of Lot 11, Concession 2 which assayed 2.65 ounces of gold per ton across 1 foot. (42G10SE0006)

Later that year, the Millar Property and adjoining McManus Property were examined by D.K. Burke on behalf of Sylvanite Gold Mines Limited. He describes examining a 4 to 5 foot wide shear zone in greywacke striking N70⁰E and dipping 80⁰N. The vein had been trenched for a distance of 75 feet. The shear zone is described as being silicified and mineralized with pyrite, arsenopyrite and minor galena. A sample of the better looking material is reported to assay 2.00 dwts (0.114 oz/ton gold). 1 dram weight (dwt) = 0.05697 oz/t gold. (42G10SE0006)

Miller Gold Occurrence: Location of Trenches by Smith (1987), Google earth Image 2004



Figure 4. Miller Gold Occurrence: Location of Trenches by Smith (1987), Google earth Image 2016

In 1945, Valrita Mines Limited completed a ground magnetometer survey which covered part of the eastern section of the current McCowan Property. The survey outlined "several pronounced anomalies". One of the magnetic features striking northeast was traced over 4,800 feet and corresponds to an outcrop of pyrrhotite bearing schist. (42G10SE0004)

In 1948, the Miller Property was examined by Nelson Hogg, Resident Geologist for the Ontario Department of Mines. He describes examining several pits dubbed: East, Central and West. He noted the Central and west pits were on a Patent (southwest 1/4 of Lot 13, Concession 2) and not part of the Miller Property. He makes reference to a report by S.J. Terhune who previously visited the property on behalf of Aunor Gold Mines. Mr. Terhune describes examining a 6 foot wide quartz vein and silicified greywacke exposed in the walls of the West pit. Two samples collected at the time are reported to have assayed 0.22 ounces of gold per ton across 2.4 feet and trace gold across 2.5 feet. (42G10SE0006)

Also in 1948, J.M. Andercheck drilled 5 inclined holes totalling 1,248 feet in the southeast ¼ of Lot 13, Concession 2. Although no assays are given, he describes Hole 1 cutting a "15 foot wide ore body" at a depth of 108 feet. Hole 3 is described as cutting ore from a depth of 83 to 95 feet and intersecting a second ore body carrying galena from a depth of 150 to 162 feet. A sixth drill hole measuring 500 feet in length was drilled in Lot 15, Concession 2. (42G10SE0002)

In 1985, D. Korpela of Northland Exploration Ltd. completed ground magnetometer and VLF-EM surveys over the Miller gold occurrence and surrounding area on behalf of Romex Resources and Omab Enterprises Ltd. The VLF survey outlined numerous northeast trending electromagnetic anomalies. Conductors "F" and "G" outlined by the VLF survey, coincide with the Miller showing. The magnetometer survey outlined a series of northeast trending magnetic features striking through the area of Miller gold occurrence.

In 1987, Robert G. Smith carried out an overburden stripping program on 4 areas. Four trenches were excavated on the Miller gold occurrence exposing mineralized quartz veins, porphyry and greywacke (Figure's 5 to 7). These trenches are visible on Goggle Earth. Overburden stripping also was performed on the Keevil occurrence exposing massive sulphides in the north ½ of Lot 9, Concession 2. Another trench was excavated on the trail into the Keevil occurrence which is reported to expose quartz and arsenopyrite. A fourth trench was excavated on the "2.65 Outcrop" situated in the northeast ¼ of Lot 11, Concession 1. The trench is reported to expose porphyry and quartz.

In 1988, Robert Smith drilled 9 holes totalling 3,177 feet. Five holes drilled in the vicinity of the Miller showing are reported to have intersected numerous zones of arsenopyrite. Four holes were drilled in the vicinity of the Keevil occurrence. Three of the Keevil holes are reported to have intersected diabase. The fourth hole is reported to have intersected arsenopyrite mineralization in greywacke adjacent to a diabase dike. No assays were given for any of the drill holes. Eventually the claims were allowed to lapse.

At the time of this survey, the current property owners also completed a geological survey and ground magnetometer and VLF Electromagnetic surveys.

Survey Dates and Personnel

The ground magnetometer and VLF-EM surveys over the over the Miller showing was completed in 2 days between September 9, 2017 and September 13, 2017.

The surveys were performed by property owners: James M. Chard of Cordova Mines, Ontario, Robert Dillman of Mount Brydges, Ontario and Dr. Jim Renaud of London, Ontario.

The VLF-EM instrument was operated by James Chard. The magnetometer instrument was operated by Robert Dillman. Jim Renaud assisted with navigation and recording geology.

Survey Logistics

The surveys were completed on a GPS controlled grid. The coordinates of the survey lines are appended to this report. The survey lines were orientated north-south and spaced 50 metres apart. The lines range 300 to 400 metres in length. VLF readings were taken at 25 metre intervals along the lines. Stations were marked with flagging tape. Magnetometer readings were taken at 12.5 metre intervals. A total of 4.2 kilometres was surveyed.

Magnetic readings are plotted and contoured on maps appended to this report. The maps are at a scale of 1 : 2,500. A base station was established for diurnal corrections on the Baseline at Line 0 (358206mE, 5495295mN). Readings were corrected to 56,189 nT.

The magnetometer survey was completed using a Gem Systems proton magnetometer/ gradiometer model GMS-19T. The specifications of the instrument are appended to this report. A VLF-EM-16 unit made by GEONICS Limited was used the electromagnetic survey. The instrument specifications for the EM-16 unit are appended to this report. The VLF station at Jim Creek Naval Base at Seattle, Washington was used for the survey. The station transmits at 24.8 KHz. VLF-EM readings are plotted and profiled on maps appended to this report. The maps are at a scale of 1 : 2,500.

A Compass and GPS unit was used to navigate and calculate distances between readings. A Garmin GPS model RINO750 was used for the survey. The GPS was set to NAD83, Zone 17.

Survey Results

The magnetic susceptibility of the rocks within the survey area ranges from 56,030 nT to 56,976 nT. Two magnetic features were outlined by the survey. A northeast trending magnetic feature was outlined striking for 500 metres from the southwest to the midsection of the east side of the survey area and continuing beyond. This feature is coincident with the historic workings on the Millar showing in the vicinity of lines 1+50 to 3+00W. The second magnetic feature strikes north-south across the survey area between lines 4+00W and 4+50W. This magnetic feature is believed to be a diabase dike and crosses the magnetic feature coincident with the Miller showing.

The VLF-EM survey outlined 8 conductive features. These anomalies can be traced across multiple lines for distances ranging 50 to +200 metres. The strike of the anomalies varies from east-west to northwest-southeast. Three conductive features, each roughly 50 metres in length are coincident with the magnetic features associated with Miller showing. Longer conductors extending between lines 1+00W to 3+00W and 4+00W to 6+00W are potentially related and offset by faulting. Conductive features detected in the vicinity to the dike-like magnetic feature are potentially caused by the contact of the dike and wallrock.

Discussion of Results

The northeast trending magnetic anomalies detected by this survey appears to mark the structure hosting the Miller showing. During the survey, the trenches and outcrops observed in the vicinity of the Miller gold occurrence expose greywacke with quartz stingers and shearing striking N72⁰E to N82⁰E which is similar to the trend of the magnetic anomaly detected over the gold occurrence. There is good potential that other gold structures exist along this trend.

Conclusions and Recommendations

The ground magnetometer and VLF-EM surveys have outlined northeast trending magnetic and conductive features over the area of the Miller showing. Further work is recommended to understand the relationship of the geophysical features to the gold-bearing mineralization exposed in the trenches. This would best be accomplished by overburden stripping on the gold occurrence. It is also suggested additional gold mineralization could be found by expanding the magnetometer and VLF surveys. It is recommended that the entire property be covered by ground magnetometer and VLF surveys.

Respectfully Submitted,

MAS/men

Robert J. Dillman P.Geo., B.Sc. January 22, 2019

References

- Bennett, G., Brown, D.D., George, P.T. and Leahy, E. J. 1966. Hearst-Kapuskasing Sheet. Geological Compilation Series Map: 2166. Ontario Department of Mines.
- Burke, D.A., 1939. Property Assessment Report. R. Miller Property, McCowan Township.
 Sylvanite Gold Exploration Department. Unpublished assessment file: 42G10SE0006
- Carter, P.C., 1938.Preliminary Report On Miller Claims, McCowan TownshipDistrict Of Algoma, Ontario. Unpublished assessment file: 42G10SE0006
- Hogg, N., 1948.Property Assessment Report, Miller Claims, McCowan Township,
Sudbury Mining Division. Resident Geologist Report, Ontario Department
of Mines. Unpublished assessment file: 42G10SE0006
- Keevil, N.B. and Low, J.H., 1945. Report on a Geomagnetic Survey on part of the Property Of Valrita Mines Limited, McCowan Township. McCowan Township, Cochrane District, Ontario. Unpublished assessment work file: 42G10SE0004
- Korpela, D., 1985. Magnetometer Survey and VLF-EM Survey, Porcupine Mining Division McCowan Township on behalf of Romex Resources Inc. and Omab Enterprises Ltd., Timmins, Ontario. Survey by: Northland Explorations Ltd. Unpublished assessment work file: 42G10SE0002
- Miller, R., 1948. Report on Diamond Drilling, Miller Claims, McCowan Township, Unpublished assessment work file: 42G10SE0006
- Smith, R. G., 1987.Report on Overburden Stripping, Miller Gold Property, McCowanTownship. Unpublished assessment work file: 42G10SE0003
- **Smith, R. G., 1988.** Report on Diamond Drilling, Miller and Keevil Showings. McCowan Township. Unpublished assessment work file: 42G10SE0001

Robert J. Dillman P.Geo, B.Sc. ARJADEE PROSPECTING 8901 Reily Drive, Mount Brydges, Ontario, Canada, N0L1W0 Phone/ fax (519) 264-9278

CERIFICATE of AUTHOR

I, Robert J. Dillman, Professional Geologist, do certify that:

1. I am the **President** and the holder of a **Certificate of Authorization** for:

ARJADEE PROSPECTING 8901 Reily Drive Mount Brydges, Ontario, Canada N0L1W0

- 2. I graduated in 1991 with a **Bachelor of Science Degree** in **Geology** at the **University of Western Ontario.**
- 3. I am an active member of:

Association of Professional Geoscientists of Ontario, APGO Prospectors and Developers Association of Canada, PDAC

- 4. I have been a **licensed Prospector in Ontario** since 1985.
- 5. I have worked continuously as a **Professional Geologist** for 28 years.
- 6. Unless stated otherwise, **I am responsible** for the preparation of all sections of the Assessment Report titled:

REPORT ON GROUND MAGNETOMETER AND VLF-ELECTROMAGNETIC (EM) SURVEYS. McCOWAN PROPERTY, PORQUPINE MINING DIVISION, McCOWAN TOWNSHIP, ONTARIO

dated, January 22, 2019

7. I am not aware of any material fact or material change with respect to the subject matter of the Assessment Report that is not contained in the Assessment Report and its omission to disclose makes the Assessment Report misleading.

Dated this 22th day of January, 2019

Robert James Dillman Ariadee Prospecting P.Geo

ROBERT J. DULLMAN PRACTIBING MEMBER 0530

Appendex 1.

UTM Coordinates for Survey Lines: McCowan Property, McCowan Twp.

NAD 87 Zone 17

Line	2+00S	1+00S	Baseline	1+00N	2+00N
	Coordinate	Coordinate	Coordinate	Coordinate	Coordinate
0+00	358201mE	358215mE	358206mE	358222mE	358209mE
	5495096mN	5495199mN	5495295mN	5495383mN	5495481mN
0+50W	358158mE	3581154mE	358163mE	358158mE	
	5495089mN	5495197mN	5495297mN	5495385mN	
1+00W	358072mE	358082mE	358106mE	358111mE	
	5495095mN	5495195mN	5495297mN	5495385mN	
1+50W	358049mE	358050mE	358055mE	358048mE	
	5495094mN	5495197mN	5495301mN	5495401mN	
2+00W	357998mE	357988mE	358003mE	357996mE	
	5495109mN	5495202mN	5495298mN	5495400mN	
2+50W	357954mE	357945mE	357954mE	357953mE	357959mE
	5495109mN	5495198mN	5495304mN	5495404mN	5495500mN
3+00W	357898mE	357907mE	357902mE	357900mE	357901mE
	5495108mN	5495197mN	5495295mN	5495399mN	5495513mN
3+50W	357851mE	357856mE	357849mE	357851mE	
	5495108mN	5495199mN	5495292mN	5495390mN	
4+00W	357801mE	357800mE	357793mE	357791mE	
	5495109mN	5495202mN	5495301mN	5495403mN	
4+50W	357757mE	357755mE	357757mE	357760mE	
	5495099mN	5495200mN	5495301mN	5495411mN	
5+00W	357699mE	357700mE	357703mE	357691mE	
	5495113mN	5495210mN	5495301mN	5495425mN	
5+50W	357650mE	357650mE	357650mE	357649mE	
	5495112mN	5495207mN	5495306mN	5495401mN	
6+00W	357598mE	357582mE	357585mE	357587mE	
	5495109mN	5495211mN	5495318mN	5495415mN	

Page 1

EM16 SPECIFICATIONS

MEASURED QUANTITY Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity). SENSITIVITY Inphase: ±150% Quad-phase: ± 40% RESOLUTION ±1% OUTPUT Nulling by audio tone. Inphase indication from mechanical inclinometer and quad-phase from a graduated dial. OPERATING FREQUENCY

IG FREQUENCY 15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.

OPERATOR CONTROLS ON/OFF switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.

POWER SUPPLY 6 disposable 'AA' cells.

42 x 14 x 9cm

WEIGHT

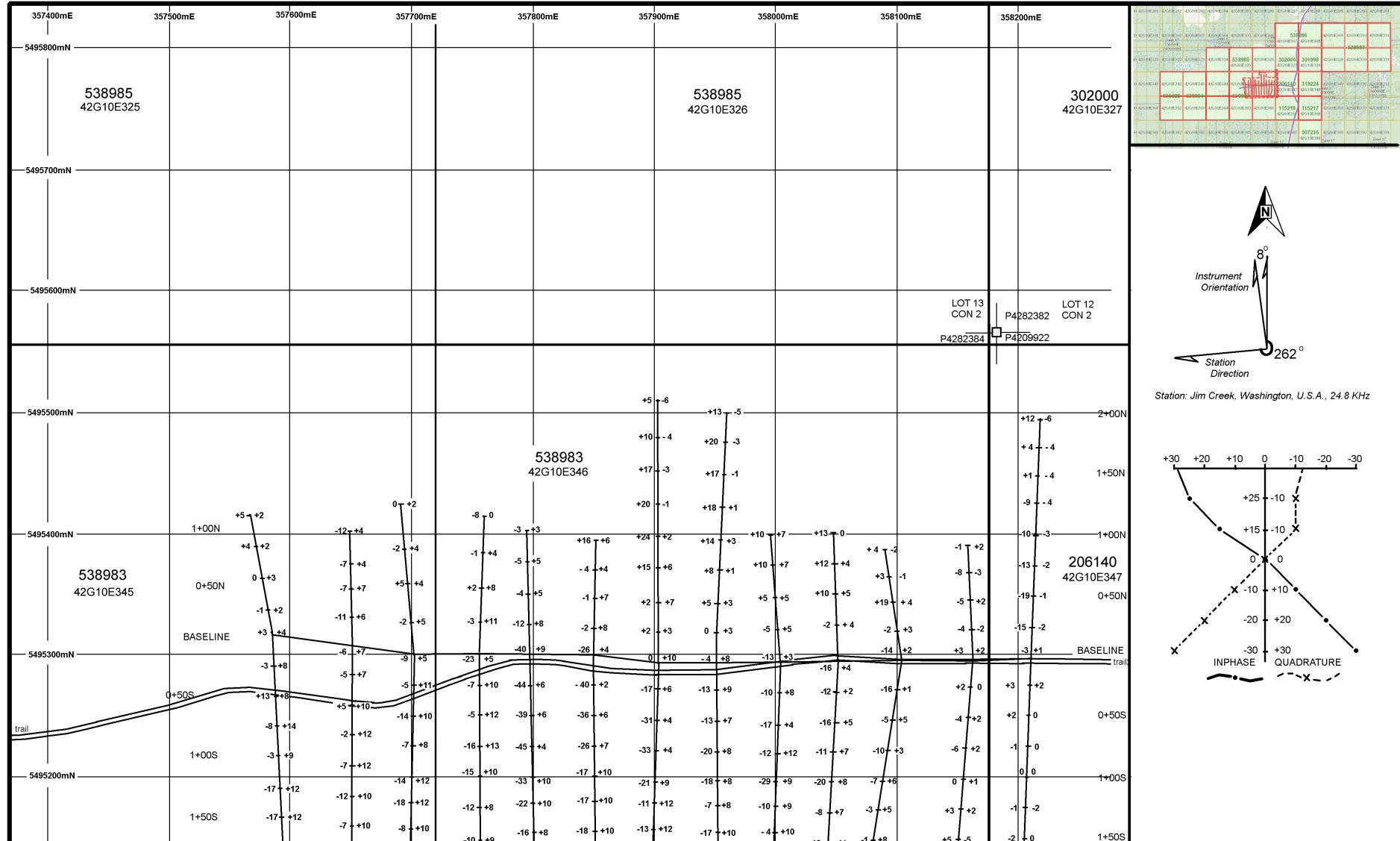
DIMENSIONS

Instrument: 1.6 kg Shipping: 5.5 kg

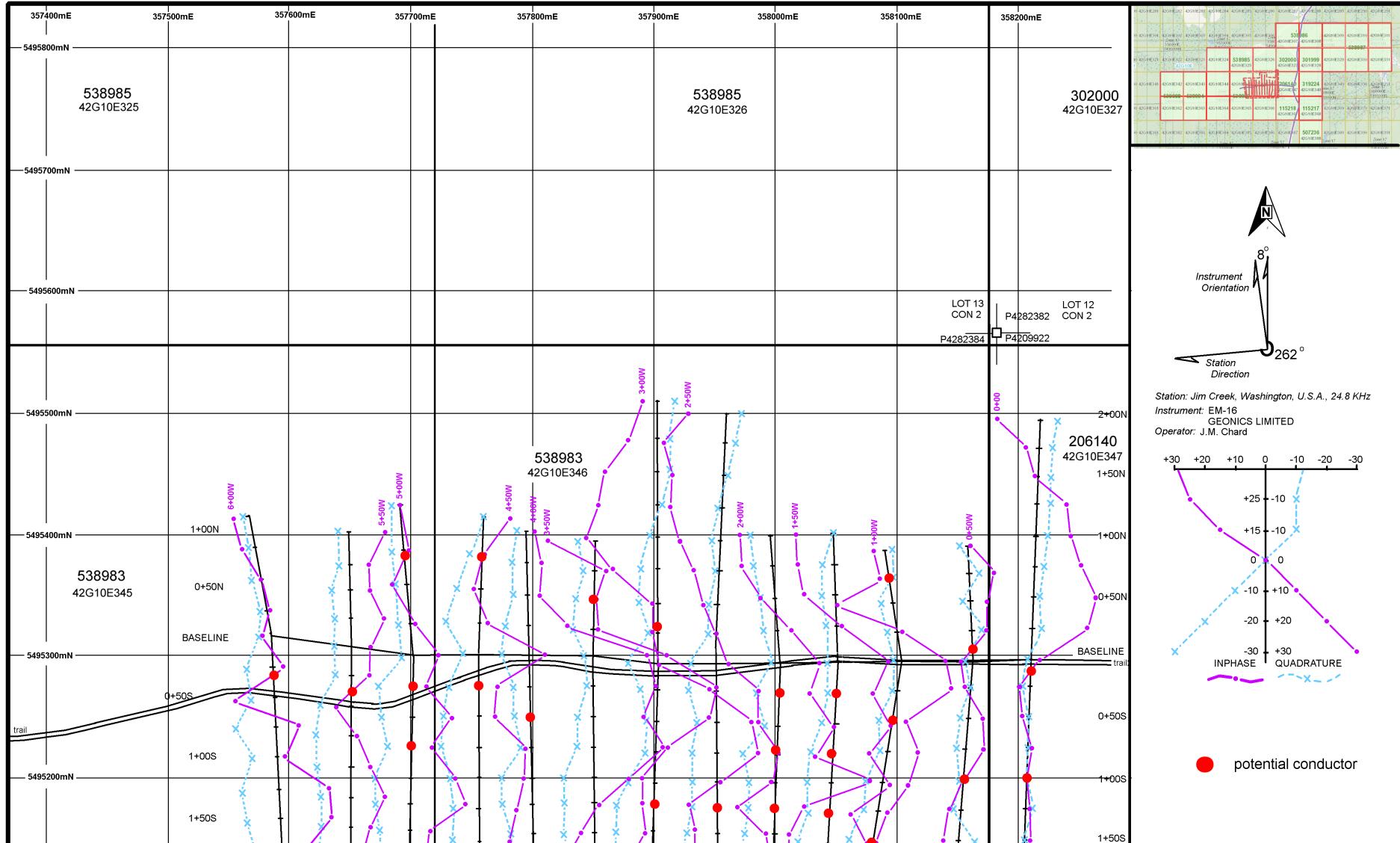
•

VLF-EM Instrument serial number 16869

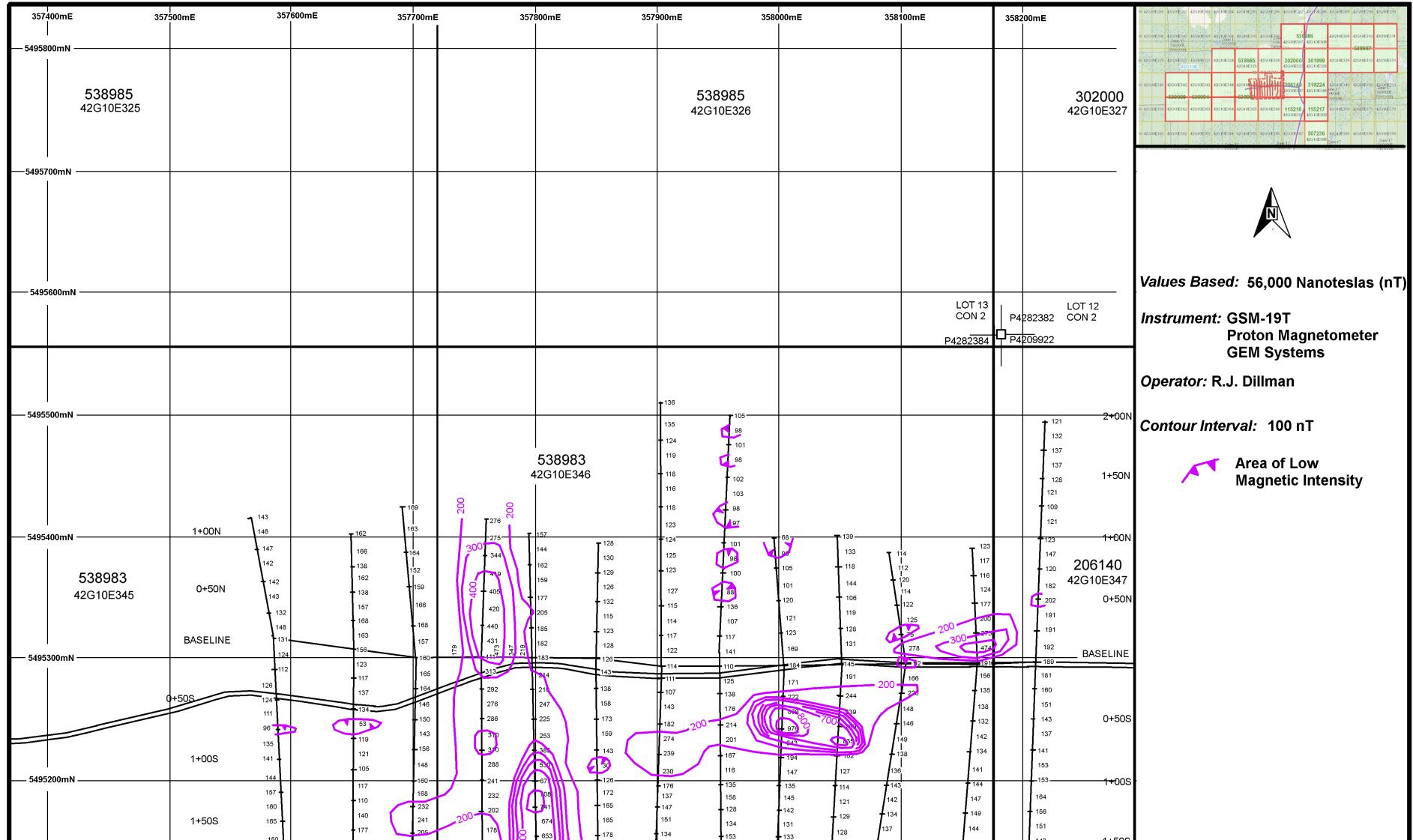
APPENDIX F: GSM-19T MAG / GRAD SPECIFICATIONS


Sensitivity	0.15 nT @ 1Hz / 0.05 nT @ 4Hz
Resolution:	0.01nT (gamma), magnetic field and gradient.
Accuracy:	+/- 0.2 nT @ 1 Hz
Range:	20,000 to 120,000nT.
Gradient Tolerance:	Over 7,000nT/m
Operating Interval:	3 seconds minimum, faster optional. Readings initiated from keyboard,
	external trigger, or carriage return via RS-232C.
Input / Output:	6 pin weatherproof connector, RS-232C, and (optional) analog output.
Power Requirements:	12V, 200mA peak (during polarization), 30mA standby. 300mA peak in
	gradiometer mode.
Power Source:	Internal 12V, 2.6Ah sealed lead-acid battery standard, others optional.
	An External 12V power source can also be used.
Battery Charger:	Input: 110 VAC, 60Hz. Optional 110 / 220 VAC, 50 / 60Hz.
	Output: dual level charging.
Operating Ranges:	Temperature: - 40°C to +50°C.
	Battery Voltage: 10.0V minimum to 15V maximum.
	Humidity: up to 90% relative, non condensing.
Storage Temperature:	-50°C to +50°C.
Display:	LCD: 240 X 64 pixels, OR 8 X 30 characters. Built in heater for operation
	below -20°C.
Dimensions:	Console: 223 x 69 x 240mm.
	Sensor Staff: 4 x 450mm sections.
	Sensor: 170 x 71mm dia.
	Weight: console 2.1kg, sensor and staff assembly 2.2 kg.
VLF	
Frequency Range:	15 - 30.0 kHz
Parameters Measured:	Vertical in-phase and out-of-phase components as percentage of total field.
Resolution	2 relative components of horizontal field. Absolute amplitude of total field. 0.1%.
Number of Stations:	Up to 3 at a time.
Storage:	Automatic with: time, coordinates, magnetic field / gradient, slope, EM field,
	frequency, in- and out-of-phase vertical, and both horizontal components for
Tamain Claus Danasa	each selected station.
Terrain Slope Range: Sensor Dimensions:	0° - 90° (entered manually). 140 x 150 x 90 mm. (5.5 x 6 x 3 inches).
Sensor Weight:	1.0 kg (2.2 lb.).

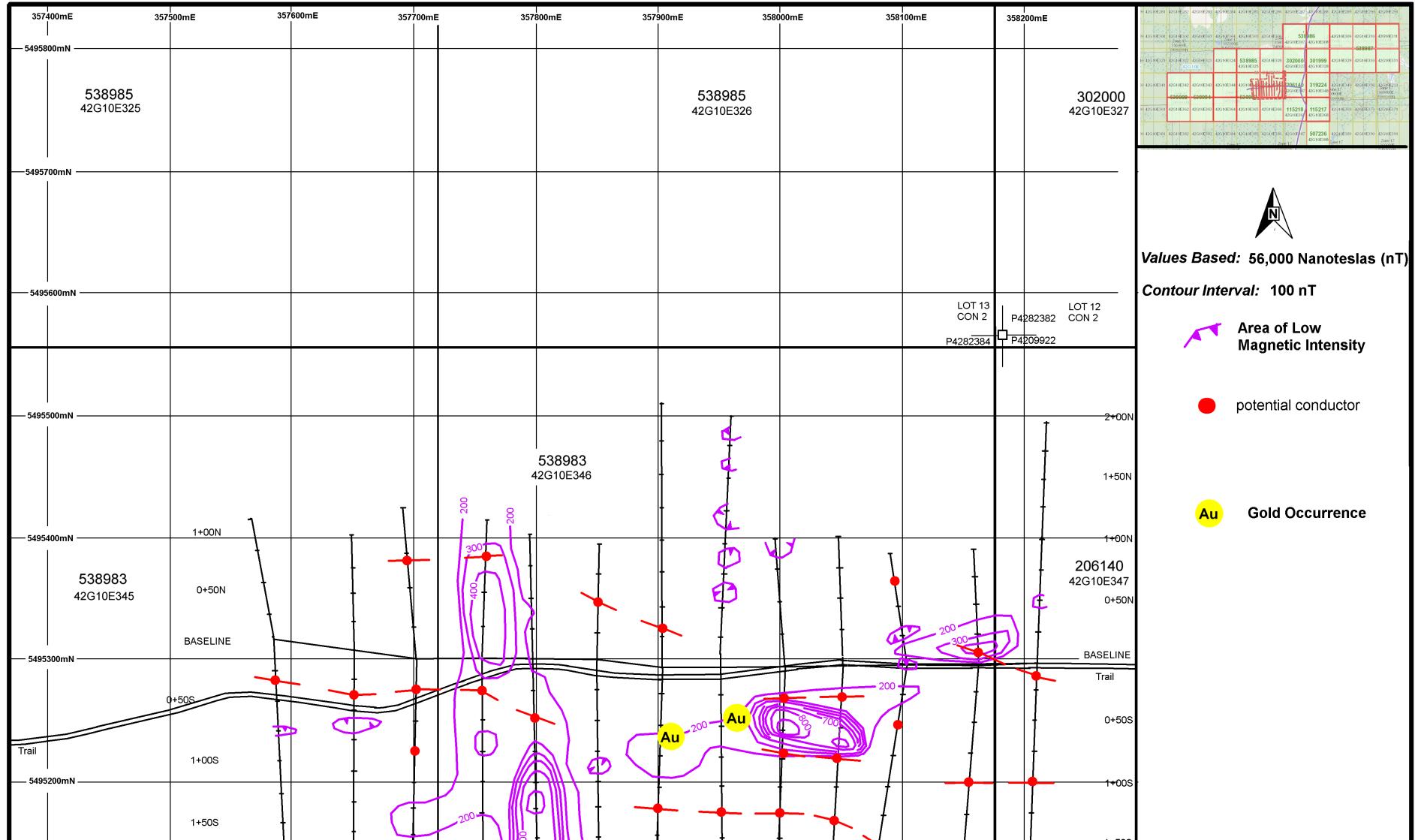
GEM Systems, Inc. Advanced Magnetometers For more technical information, visit www.gemsys.ca



GSM 19T Magnetometer



5495100mN	2+00S _6	-7 - +10 -6 -9 5+00W	-10 + +9 -1 -9 + +10	0 ++8 -8 ++10 4+00VV	-13 +12 _16 +12 _3+00w	-22 +13 -3	4+11	-13 ++11 -1 ++8 -17 +9 -13 ++9 -23 ++11 -9 +6 1+50W 1+00W	+5 -5 +3 +2 -6 +1 0+50W	-2 + 0 -1 + 0 +3 -3 0+00W	1+50S	VLF-ELECTROMAGN INSTRUMEN MC'COWAN J3 EXPLO	T READINGS PROPERTY RATIONS
5495000mN 538983 42G10E365						538983 42G10E366				•	5218 10E367	MC'COWAN TV SURVEY DATE: September 2017	SCALE: 1:2,500
									 00	• 200 metres	102307	MAP DATE: December 2018	MAP No.: VLF-1



	2+00S		×			X X MOG	×	1+505		
5495100mN	~	6+00W 6	× L	4+00W	3+00///	2+20W	20M	2+00S		NETIC (EM) SURVEY
	6+0	0W 5+50W 5+00W	4+50W4	+00W 3+50W 3+00w	2+50W 2+6	00W 1+50W 1+00W	0+50W ²	0+00W	MC'COWAN	PROPERTY
									J3 EXPLO	RATIONS
 5495000mN									MC'COWAN T	VP., ONTARIO
538983 42G10E365					538983 42G10E366			115218	SURVEY DATE: September 2017	SCALE : 1:2,500
					420102300			42G10E367	MAP DATE: December 2018	MAP No.: VLF-1
I NAD83, ZONE 17	1		1		(0 100		[·] 200 metres	DRAWN BY: RJD	REVISED:

35740	00mE 35	 7500mE 357 	600mE 357	00mE 35780	00mE 3579	 900mE 	358000mE 35	 8100mE 	358200mE	N 42510E281 42510E282 42510E283 42510E284 42510E285 42510E285 42510E287 42510E287 42510E284 42510E284 42510E284
	^{0mN} 538985 42G10E325					538985 42G10E326			302000 42G10E327	N 42G 10E301 42G10E302 42G10E301 42G10E301
	0mN									
549560	00mN							LOT 13 CON 2 P4282384	LOT 12 P4282382 CON 2 P4209922	Values Based: 56,000 Nanoteslas Instrument: GSM-19T Proton Magnetometer GEM Systems
549550	00mN				538983 2G10E346	 136 135 124 101 98 118 102 103 98 			121 2+00N 132 137 137 128 1+50N 121 109	<i>Operator:</i> R.J. Dillman
549540 	00mN 538983 42G10E345	143 1+00N 146 147 147 142 142 142 143 132 148 BASELINE 131	- 162 166 - 1 - 138 162 - 138 157 - 168	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57 44 62 59 77 05 85 82 128 130 129 126 132 115 123 128	123 97 124 101 125 98 123 100 127 88 115 136 114 107 117 117 122 141	68 139 96 133 105 118 101 144 120 106 121 119 123 128 169 131	114 112 120 114 122 122 125 125 125 125 200 - 75 275 278 474	121 123 1+00N 147 120 206140 182 42G10E347 202 0+50N 191 191 191	
		124 112 126 0+50S 124 111 96 135 1+00S 141 144	123 117 137 134 53 119 121 105	160 411 165 313 164 292 146 276 150 286 143 310 156 310	126 126 143 143 140 138 1247 158 225 173 253 159 385 143 530 30	111 125 107 138 143 176 182 214 274 201 239 167 230 116	184 145 171 191 222 244 869 339 976 759 343 835 194 162 147 127	92 191 166 156 220 135 148 138 146 132 149 142 138 134 36 141	143 0+50S 137 141 153	
54952(549510	00mN	144 157 160 1+50S 165 150 143 134 2+00S 143	140 • 177 • 165 • 164	232 202 241 205 178 178 168 170 189 175 169	677 126 708 172 741 165 674 165 653 178 690 176 668 181 625 193 502 167	176 135 137 158 147 128 151 134 134 153 156 134 131 124 148 121 145 109	135 114 1 145 121 14: 142 129 13: 131 128 137 133 128 137 146 119 123 123 145 145 131 154 157 142 154 180	2 147	153 1+00S 164 156 151 143 1+50S 157 159 167 174	MAGNETOMETER SURVEY
		6+00)W 5+50W 5+0	L ₁₆₆ IOW 4+50W 4+	00W 3+50W 3+	+00w 2+50W	2+00W 1+50W 1+00W	0+50W	2+00S 0+00W	TOTAL FIELD MC'COWAN PROPERTY J3 EXPLORATIONS
549500	^{00mN} 538983 42G10E365					538983 42G10E366			115218	MC'COWAN TWP., ONTARIO SURVEY DATE: September 2017 SCALE: 1:2,500
NAD83,	, ZONE 17					+20102300		100	42G10E367 ` 200 metres	MAP DATE:December 2018MAP No.: MAG-1DRAWN BY:RJDREVISED:

		2+00S	150 143 ► 134 143 ►	176 • 165 164 • 161	178 • 170 175 182	• 168 189 • 169	653 - 178 690 - 176 • 668 - 181 675 - 193	156 131 148 145	 ■ 153 134 ■ 124 121 	- 133 146 123 131	119 123 145 145 154 157 154 180	- 151 120 - 151	■ 143 157 ■ 159 167	1+50S		
54951 	00mN		143 🜩			184	∎ <u>5</u> 02 ■ 167		⊥ ₁₀₉	▲ 142	203 168	135	174	2+00S	MAGNETOME CONTOURED DA	
			6+00W	5+50W	5+00VV	었 4+50W 4	₩ +00W 3+50W	/ 3+00w	2+50W	2+00W	1+50W 1+00W	0+50W	0+00//		MC'COWAN	PROPERTY
															J3 EXPLO	RATIONS
 — 54950 I	00mN														MC'COWAN TV	VP., ONTARIO
	538983 42G10E365								538983 42G10E366						SURVEY DATE: September 2017	SCALE: 1:2,500
	420102000								420102300			 	42	2G10E367	MAP DATE: December 2018	MAP No.: MAG-2
I NAD83	, ZONE 17	I	I		1		I	I		0	1	00	· 200 metres		DRAWN BY: RJD	REVISED:

5495100mN	5							1+50S		
	6+00W	5+50W 5+00W	1 4+50W	4+00W 3+50W	3+00w 2+50W	_ 2+00W 1+50W 1+00W	/ 0+50W	2+00S 0+00W	MC'COWAN	
									J3 EXPLO	RATIONS
 5495000mN									MC'COWAN T	VP., ONTARIO
538983 42G10E365					538983 42G10E366			115218	SURVEY DATE: September 2017	SCALE: 1:2,500
					42010E300			42G10E367	MAP DATE: December 2018	MAP No.:
I I NAD83, ZONE 17	I	I	۱ 	1	I	0	100	200 metres	DRAWN BY: RJD	REVISED:

Expenses: Magnetometer and VLF Surveys McCowan Project, McCowan Twp., Ontario

lav	Cubed Fx	plorations:	Robert	Dillman.	lames	Chard.	Dr. lim	Renaud
Ju			NUDCIL	Diminan,	Junics	churu,		nchaua

Category	Date dd/mm/yyyy	Days	Рауее	Description	Amount Notes	
Magnetometer Survey	08/09/2017- 13/09/2017	4	R. Dillman	geophysics	\$2,000	Property owner includes 2 days travel
VLF Survey	08/09/2017- 13/09/2017	4	J. Chard	geophysics	\$2,000	Property owner includes 2 days travel
Magnetometer VLF Report	06/01/2019 22/01/2019	5	R. Dillman	report	\$2,500	Property owner
				Subtotal	\$6,500	
Transportation Transportation			R. Dillman J. Chard	2,035 km x \$0.50 1,744 km x \$0.50 Subtotal	\$1,018.00 \$872.00 \$1,890.00	Truck Truck, camper
Food Food	06/09/2017 06/09/2017		Foodtown Loblaws	groceries groceries Subtotal TOTAL	\$50.83 \$78.30 \$129.13 \$8,519.13	Komoka London

Daily Log McCowan Property

Date	R. Dillman	Dr. J. Renaud	J. Chard
September 6, 2017	Groceries		
September 8, 2017	Travel	Travel	Travel
September 9, 2017	Claim	Geological	Claim
	Staked	Survey	Staked
September 10, 2017	Magnetometer	Geological	VLF
	Survey	Survey	Survey
September 11, 2017	Magnetometer	Geological	VLF
	Survey	Survey	Survey
September 12, 2017	MMI Survey	Geological	MMI Survey
		Survey	
September 13, 2017	Travel	Travel	Travel