

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

GEOPHYSICAL AND DIAMOND DRILL HOLE REPORT ON THE ELEPHANT HEAD PROPERTY, CONNAUGHT TOWNSHIP, ONTARIO CANADA

Larder Lake Division, Northeast Ontario NTS 41P11

Exploration Plan # PL-17-10735

Exploration Permit # PR-17-11115

Claims: 112675, 130420, 183830, 185723, 193651, 317084, 319798

Universal Transverse Mercator Zone 17N (NAD83)

IAMGOLD CORPORATION

Sudbury Exploration Office

Unit 10-2140 Regent Street Sudbury, ON, P3E 5S8

Prepared by:

Laura Katz, Ph.D., P.Geo.

Contributions by:

Brad McKinley, M.Sc., P.Geo.

April 09, 2019

Table of Contents

Title Page	1
Table of Contents	2
1.0 SUMMARY	4
2.0 INTRODUCTION	4
3.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION	4
4.0 GEOLOGY	11
4.1 Regional Geology	11
4.2 Local Geology	12
4.3 Mineralization	13
5.0 PREVIOUS WORK	14
6.0 POLE-DIPOLE SURVEY	16
7.0 DIAMOND DRILLING	18
7.2 Analytical Methods and QAQC	20
7.3 Rock Types	21
7.2.1 Granodiorite	21
7.2.2 Quartz feldspar porphyry	21
7.2.3 Granite dike	21
7.2.4 Diabase dike	21
7.3 Alteration and Mineralization	21
7.4 Results	21
7.4.1 EH18-01	21
7.4.2 EH18-02	22
7.4.3 EH18-03	22
7.5 Diamond Drill Program Conclusions	22
8.0 ABORIGINAL CONSULTATION COSTS	22
9.0 STATEMENT OF COSTS	22
10.0 CONCLUSIONS	25
11.0 RECOMMENDATIONS	25
STATEMENT OF QUALIFICATIONS	26
REFERENCES	28

Tables

Table 1: List of mining claims in the Connaught and Brunswick Townships	6
Table 2: Summary of previous work	15
Table 3: Drill hole information	19
Table 4: Aboriginal consultation record	23
Table 5: Summary of expenditures	24

Figures

Figure 1: Plan map of the Elephant Head property in the Connaught Township	10
Figure 2: Plan map of the mining claims owned by Canadian Gold Miner Corp. in the Connaught and	
Brunswick Townships	11
Figure 3: Regional geological map of the southern Abitibi greenstone belt with the property location	
outlined in red	12
Figure 4: Local geological map of the Elephant Head property	13
Figure 5: Compilation of historic trenches and gold results in the area	16
Figure 6: Plan map showing the location of the pole-dipole survey station points	18
Figure 7: Plan map of the drill collar locations, drill traces and drill trails	20

Appendix

Appendix A: Geophysical survey equipment specifications
Appendix B: Pseudo section plots of pole-dipole results
Appendix C: Daily exploration activity log and daily rates
Appendix D: Drill hole logs
Appendix E: Drill hole vertical cross section
Appendix F: Drill hole assay certificates and QA/QC
Appendix G: Contractor and assay invoices
Appendix H: Distribution of assessment work by claim cell
Appendix I: List of abbreviations
Appendix J: Exploration permit

1.0 SUMMARY

A pole-dipole survey and a diamond drill program was designed and executed during the fall and winter months of 2018 on the Elephant Head property in the Connaught Township. The former was completed between September 17 and September 25, 2018, whereas the latter was completed between October 12 and December 5, 2018. A total of 46 days were spent in the fall and winter of 2018 on the exploration program and work was completed over a total of 7 claims. The pole-dipole survey was to define the chargeability anomaly at depth that was identified from a 2017 gradient IP survey. The diamond drill program was designed to test the chargeability anomaly at depth and test the continuity and thickness of high-grade quartz-sulphide veins on surface. The diamond drill program consisted of three holes for a total of 465 m on claim numbers 112675 and 319798. The pole-dipole survey successfully identified the chargeability anomaly at depth. The diamond drill program intersected the quartz-sulphide vein from a stripped outcrop at depth, as well as the chargeability anomaly. Future work suggested includes prospecting and/or geological mapping work approximately 40 m north of the stripped outcrop where the chargeability anomaly appears to be located at surface and on a superficial chargeability anomaly along the UTV trail.

The work was completed by IAMGOLD and by contractors through IAMGOLD. The work was performed for IAMGOLD and Canadian Gold Miner Corp. The coordinate system used to locate the area of work is the Universal Transverse Mercator (UTM) and the datum used is NAD 83 in Zone 17.

2.0 INTRODUCTION

This report has been prepared by IAMGOLD Corporation to provide documentation on a pole-dipole survey and diamond drilling program conducted on the Elephant Head Property in the Connaught Township completed between September 17, 2018 and December 5, 2018. Timelines and personnel involved for each specific type of work is presented in the body of the text and in the Appendices. Brad McKinley, Senior Geologist with IAMGOLD, and Laura Katz, Geologist with IAMGOLD, planned and supervised the execution of the exploration program carried out on the Elephant Head property between September and December 2018. The exploration plan number is PL-17-10735 and the exploration permit number is PR-17-11115.

The reason for exploration work performed was a follow-up to surface exploration work (i.e., soil survey, gradient IP survey, prospecting, geological mapping and stripping) conducted in summer and fall of 2017 and in the summer of 2018. Results from these programs uncovered a previously unknown high-grade quartz-sulphide vein (10 to \leq 50 cm) on surface, located directly over a gradient IP chargeability anomaly. Follow-up exploration activities to this included a pole-dipole survey and a small, three hole diamond drill program.

3.0 PROPERTY LOCATION, ACCESS, AND DESCRIPTION

The property consists of 194 contiguous claims in the Connaught and Brunswick Townships. (Table 1; Figs. 1 and 2). The property is located in the Larder Lake Mining Division, District of Timiskaming, NTS 41P11. Although some of the property is located in the Brunswick Township, all of the exploration activity was conducted in the Connaught Township. In addition, all work activity occurred in NTS 41P11E

(Fig. 2). The main access into the property is by a series of logging roads approximately 15.5 kilometres west of Shining Tree, which can be accessed from Route 560 (Fig. 1). The property can also be accessed from Highway 144 to the west.

The topography typically contains gently rolling terrain with occasional steep hills along both sides of the Elephant Head Creek. In the central and southwestern part of the property there does not appear to be thick or extensive areas of glacial till, but rather a thin layer of till and humus covering most of the property. In the northern part of the property there are very sandy areas that likely represent more extensive areas of glacial till. The bedrock exposure is variable, but is typically poorly exposed. Vegetation consists mainly of mixed forest of poplar, spruce, pine and birch trees. Long linear swamps may host dense growths of alders, spruce and cedar (Born, 1981).

The Elephant Head Project, along with the Jumping Moose Project, are Option and Joint Venture Agreements originally between Trelawney Mining and Exploration Inc. ("Trelawney"), a wholly-owned subsidiary of IAMGOLD Corporation ("IAMGOLD"), and Canadian Gold Miner ("CGM"). Following the amalgamation of Trelawney in IAMGOLD on June 1 2017, IAMGOLD was substituted to the Option Agreements. These projects are owned at 100% by CGM.

Table 1: List of mining	g claims in the	Connaught and	Brunswick Townships

Claim No.	Mining Claim Type	Claim Status	Cell No.	Township	Holder
344334	Single Cell Mining Claim	Active	41P11E211	Connaught	100% Canadian Gold Miner Corp.
332997	Single Cell Mining Claim	Active	41P11E135	Connaught	100% Canadian Gold Miner Corp.
338656	Single Cell Mining Claim	Active	41P11E198	Connaught	100% Canadian Gold Miner Corp.
338664	Single Cell Mining Claim	Active	41P11E199	Connaught	100% Canadian Gold Miner Corp.
107061	Single Cell Mining Claim	Active	41P11E270	Connaught	100% Canadian Gold Miner Corp.
107062	Single Cell Mining Claim	Active	41P11E266	Brunswick	100% Canadian Gold Miner Corp.
111043	Single Cell Mining Claim	Active	41P11E257	Connaught	100% Canadian Gold Miner Corp.
111044	Single Cell Mining Claim	Active	41P11E294	Connaught	100% Canadian Gold Miner Corp.
107207	Single Cell Mining Claim	Active	41P11E067	Brunswick	100% Canadian Gold Miner Corp.
107208	Single Cell Mining Claim	Active	41P11E089	Connaught	100% Canadian Gold Miner Corp.
109411	Single Cell Mining Claim	Active	41P11E119	Connaught	100% Canadian Gold Miner Corp.
109412	Boundary Cell Mining Claim	Active	41P11F141	Connaught	100% Canadian Gold Miner Corp.
111630	Single Cell Mining Claim	Active	41P11E155	Connaught	100% Canadian Gold Miner Corp.
112788	Single Cell Mining Claim	Active	41P11E187	Connaught	100% Canadian Gold Miner Corp.
112675	Single Cell Mining Claim	Active	41P11E237	Connaught	100% Canadian Gold Miner Corp.
112919	Single Cell Mining Claim	Active	41P11E072	Connaught	100% Canadian Gold Miner Corp.
111885	Single Cell Mining Claim	Active	41P11E076	Connaught	100% Canadian Gold Miner Corp.
111886	Single Cell Mining Claim	Active	41P11E075	Connaught	100% Canadian Gold Miner Corp.
111887	Single Cell Mining Claim	Active	41P11E074	Connaught	100% Canadian Gold Miner Corp.
126102	Single Cell Mining Claim	Active	41P11E193	Connaught	100% Canadian Gold Miner Corp.
126103	Single Cell Mining Claim	Active	41P11E212	Connaught	100% Canadian Gold Miner Corp.
126104	Single Cell Mining Claim	Active	41P11E231	Connaught	100% Canadian Gold Miner Corp.
128187	Single Cell Mining Claim	Active	41P11E118	Connaught	100% Canadian Gold Miner Corp.
128188	Single Cell Mining Claim	Active	41P11E138	Connaught	100% Canadian Gold Miner Corp.
129345	Single Cell Mining Claim	Active	41P11E249	Connaught	100% Canadian Gold Miner Corp.
126801	Single Cell Mining Claim	Active	41P11E071	Connaught	100% Canadian Gold Miner Corp.
130420	Boundary Cell Mining Claim	Active	41P11E258	Connaught	100% Canadian Gold Miner Corp.
130421	Single Cell Mining Claim	Active	41P11E296	Connaught	100% Canadian Gold Miner Corp.
128535 131161	Boundary Cell Mining Claim	Active Active	41P11E107 41P11E177	Brunswick	100% Canadian Gold Miner Corp.
133892	Single Cell Mining Claim	Active	41P11E177 41P11E292	Connaught Connaught	100% Canadian Gold Miner Corp. 100% Canadian Gold Miner Corp.
133893	Single Cell Mining Claim	Active	41P11E292 41P11E291	Connaught	100% Canadian Gold Miner Corp.
133895	Single Cell Mining Claim Single Cell Mining Claim	Active	41P11E291 41P11E287	Connaught	100% Canadian Gold Miner Corp.
134499	Single Cell Mining Claim	Active	41P11E209	Connaught	100% Canadian Gold Miner Corp.
135158	Single Cell Mining Claim	Active	41P11E092	Connaught	100% Canadian Gold Miner Corp.
137177	Single Cell Mining Claim	Active	41P11E078	Connaught	100% Canadian Gold Miner Corp.
140210	Single Cell Mining Claim	Active	41P11E120	Connaught	100% Canadian Gold Miner Corp.
140210	Single Cell Mining Claim	Active	41P11E140	Connaught	100% Canadian Gold Miner Corp.
140090	Single Cell Mining Claim	Active	41P11E133	Connaught	100% Canadian Gold Miner Corp.
138849	Single Cell Mining Claim	Active	41P11E048	Connaught	100% Canadian Gold Miner Corp.
138855	Single Cell Mining Claim	Active	41P11E096	Connaught	100% Canadian Gold Miner Corp.
146723	Single Cell Mining Claim	Active	41P11E229	Connaught	100% Canadian Gold Miner Corp.
146724	Single Cell Mining Claim	Active	41P11E227	Connaught	100% Canadian Gold Miner Corp.
146725	Single Cell Mining Claim	Active	41P11E247	Connaught	100% Canadian Gold Miner Corp.
147743	Boundary Cell Mining Claim	Active	41P11F201	Connaught	100% Canadian Gold Miner Corp.
147744	Boundary Cell Mining Claim	Active	41P11E220	Connaught	100% Canadian Gold Miner Corp.
	,		0		

Table 1 Continued: List of mining claims in the Connaught and Brunswick Townships
rable i continued. List of mining claims in the connaught and brunswick rownships

			-		(lewiiships
Claim No	Mining Claim Type	Claim Status	Cell No.	Township	Holder
146480	Boundary Cell Mining Claim	Active	41P11E298	Connaught	100% Canadian Gold Miner Corp.
149146	Single Cell Mining Claim	Active	41P11E214	Connaught	100% Canadian Gold Miner Corp.
148490	Single Cell Mining Claim	Active	41P11E077	Connaught	100% Canadian Gold Miner Corp.
151083	Single Cell Mining Claim	Active	41P11E169	Connaught	100% Canadian Gold Miner Corp.
151084	Boundary Cell Mining Claim	Active	41P11E206	Brunswick	100% Canadian Gold Miner Corp.
154706	Single Cell Mining Claim	Active	41P11E053	Connaught	100% Canadian Gold Miner Corp.
156729	Boundary Cell Mining Claim	Active	41P11E058	Connaught	100% Canadian Gold Miner Corp.
161837	Single Cell Mining Claim	Active	41P11E215	Connaught	100% Canadian Gold Miner Corp.
161840	Single Cell Mining Claim	Active	41P11E200	Connaught	100% Canadian Gold Miner Corp.
160583	Single Cell Mining Claim	Active	41P11E293	Connaught	100% Canadian Gold Miner Corp.
163296	Single Cell Mining Claim	Active	41P11E230	Connaught	100% Canadian Gold Miner Corp.
162542		Active	41P11E230 41P11E134	Connaught	
	Single Cell Mining Claim			0	100% Canadian Gold Miner Corp.
168642	Single Cell Mining Claim	Active	41P11E251	Connaught	100% Canadian Gold Miner Corp.
171396	Boundary Cell Mining Claim	Active	41P11F041	Connaught	100% Canadian Gold Miner Corp.
169243	Boundary Cell Mining Claim	Active	41P11E186	Brunswick	100% Canadian Gold Miner Corp.
172537	Single Cell Mining Claim	Active	41P11E108	Connaught	100% Canadian Gold Miner Corp.
172538	Single Cell Mining Claim	Active	41P11E148	Connaught	100% Canadian Gold Miner Corp.
173414	Single Cell Mining Claim	Active	41P11E047	Brunswick	100% Canadian Gold Miner Corp.
173416	Single Cell Mining Claim	Active	41P11E095	Connaught	100% Canadian Gold Miner Corp.
175984	Single Cell Mining Claim	Active	41P11E228	Connaught	100% Canadian Gold Miner Corp.
175985	Single Cell Mining Claim	Active	41P11E250	Connaught	100% Canadian Gold Miner Corp.
175986	Single Cell Mining Claim	Active	41P11E288	Connaught	100% Canadian Gold Miner Corp.
176263	Single Cell Mining Claim	Active	41P11E253	Connaught	100% Canadian Gold Miner Corp.
177018	Single Cell Mining Claim	Active	41P11E178	Connaught	100% Canadian Gold Miner Corp.
177019	Single Cell Mining Claim	Active	41P11E175	Connaught	100% Canadian Gold Miner Corp.
177020	Boundary Cell Mining Claim	Active	41P11E219	Connaught	100% Canadian Gold Miner Corp.
182819	Single Cell Mining Claim	Active	41P11E190	Connaught	100% Canadian Gold Miner Corp.
182820	Single Cell Mining Claim	Active	41P11E232	Connaught	100% Canadian Gold Miner Corp.
185077	Single Cell Mining Claim	Active	41P11E054	Connaught	100% Canadian Gold Miner Corp.
183830	Single Cell Mining Claim	Active	41P11E216	Connaught	100% Canadian Gold Miner Corp.
183836	Single Cell Mining Claim	Active	41P11F161	Connaught	100% Canadian Gold Miner Corp.
185723	Boundary Cell Mining Claim	Active	41P11E238	Connaught	100% Canadian Gold Miner Corp.
187819	Single Cell Mining Claim	Active	41P11E238	Connaught	100% Canadian Gold Miner Corp.
193651	Single Cell Mining Claim	Active	41P11E256	Connaught	100% Canadian Gold Miner Corp.
			41P11E230 41P11E110	0	
192030	Single Cell Mining Claim	Active		Connaught	100% Canadian Gold Miner Corp.
192081	Single Cell Mining Claim	Active	41P11E113	Connaught	100% Canadian Gold Miner Corp.
192082	Single Cell Mining Claim	Active	41P11E112	Connaught	100% Canadian Gold Miner Corp.
192228	Single Cell Mining Claim	Active	41P11E100	Connaught	100% Canadian Gold Miner Corp.
192229	Single Cell Mining Claim	Active	41P11E139	Connaught	100% Canadian Gold Miner Corp.
194596	Single Cell Mining Claim	Active	41P11E273	Connaught	100% Canadian Gold Miner Corp.
195870	Single Cell Mining Claim	Active	41P11E179	Connaught	100% Canadian Gold Miner Corp.
199343	Single Cell Mining Claim	Active	41P11E052	Connaught	100% Canadian Gold Miner Corp.
199210	Boundary Cell Mining Claim	Active	41P11E166	Connaught	100% Canadian Gold Miner Corp.
199211	Single Cell Mining Claim	Active	41P11E208	Connaught	100% Canadian Gold Miner Corp.
202257	Single Cell Mining Claim	Active	41P11E233	Connaught	100% Canadian Gold Miner Corp.
202975	Single Cell Mining Claim	Active	41P11E050	Connaught	100% Canadian Gold Miner Corp.
				-	

Table 1 Continued: List of mining claims in the Connaught and Brunsw	ick Townships

	ontinued. List of mining eld		inidugint an		(10001311)53
Claim No.	Mining Claim Type	Claim Status	Cell No.	Township	Holder
202980	Single Cell Mining Claim	Active	41P11E097	Connaught	100% Canadian Gold Miner Corp.
204335	Single Cell Mining Claim	Active	41P11E157	Connaught	100% Canadian Gold Miner Corp.
205213	Single Cell Mining Claim	Active	41P11E046	Brunswick	100% Canadian Gold Miner Corp.
206594	Single Cell Mining Claim	Active	41P11E271	Connaught	100% Canadian Gold Miner Corp.
206695	Single Cell Mining Claim	Active	41P11E188	Connaught	100% Canadian Gold Miner Corp.
			41P11E207	0	
206696	Single Cell Mining Claim	Active		Connaught	100% Canadian Gold Miner Corp.
209622	Single Cell Mining Claim	Active	41P11E088	Connaught	100% Canadian Gold Miner Corp.
209623	Single Cell Mining Claim	Active	41P11E087	Brunswick	100% Canadian Gold Miner Corp.
210978	Single Cell Mining Claim	Active	41P11E160	Connaught	100% Canadian Gold Miner Corp.
221296	Single Cell Mining Claim	Active	41P11E128	Connaught	100% Canadian Gold Miner Corp.
221415	Boundary Cell Mining Claim	Active	41P11F061	Connaught	100% Canadian Gold Miner Corp.
221416	Single Cell Mining Claim	Active	41P11E080	Connaught	100% Canadian Gold Miner Corp.
221864	Single Cell Mining Claim	Active	41P11E132	Connaught	100% Canadian Gold Miner Corp.
222559	Single Cell Mining Claim	Active	41P11E267	Connaught	100% Canadian Gold Miner Corp.
226797	Single Cell Mining Claim	Active	41P11E213	Connaught	100% Canadian Gold Miner Corp.
227519	Single Cell Mining Claim	Active	41P11E070	Connaught	100% Canadian Gold Miner Corp.
230559	Boundary Cell Mining Claim	Active	41P11E226	Brunswick	100% Canadian Gold Miner Corp.
230560	Single Cell Mining Claim	Active	41P11E269	Connaught	100% Canadian Gold Miner Corp.
230561	Single Cell Mining Claim	Active	41P11E268	Connaught	100% Canadian Gold Miner Corp.
230562	Single Cell Mining Claim	Active	41P11E290	Connaught	100% Canadian Gold Miner Corp.
230563	Single Cell Mining Claim	Active	41P11E289	Connaught	100% Canadian Gold Miner Corp.
230503	Single Cell Mining Claim	Active	41P11E289 41P11E137	Connaught	100% Canadian Gold Miner Corp.
				0	•
229261	Single Cell Mining Claim	Active	41P11E109	Connaught	100% Canadian Gold Miner Corp.
229262	Boundary Cell Mining Claim	Active	41P11E127	Brunswick	100% Canadian Gold Miner Corp.
229327	Single Cell Mining Claim	Active	41P11E154	Connaught	100% Canadian Gold Miner Corp.
239507	Single Cell Mining Claim	Active	41P11E069	Connaught	100% Canadian Gold Miner Corp.
239508	Single Cell Mining Claim	Active	41P11E090	Connaught	100% Canadian Gold Miner Corp.
239513	Single Cell Mining Claim	Active	41P11E116	Connaught	100% Canadian Gold Miner Corp.
242706	Single Cell Mining Claim	Active	41P11E286	Brunswick	100% Canadian Gold Miner Corp.
238224	Single Cell Mining Claim	Active	41P11E173	Connaught	100% Canadian Gold Miner Corp.
238225	Single Cell Mining Claim	Active	41P11E192	Connaught	100% Canadian Gold Miner Corp.
241433	Single Cell Mining Claim	Active	41P11E150	Connaught	100% Canadian Gold Miner Corp.
243812	Single Cell Mining Claim	Active	41P11E055	Connaught	100% Canadian Gold Miner Corp.
244455	Single Cell Mining Claim	Active	41P11E194	Connaught	100% Canadian Gold Miner Corp.
241768	Single Cell Mining Claim	Active	41P11E255	Connaught	100% Canadian Gold Miner Corp.
241769	Single Cell Mining Claim	Active	41P11E275	Connaught	100% Canadian Gold Miner Corp.
241770	Single Cell Mining Claim	Active	41P11E297	Connaught	100% Canadian Gold Miner Corp.
243046	Boundary Cell Mining Claim	Active	41P11E218	Connaught	100% Canadian Gold Miner Corp.
243051	Single Cell Mining Claim	Active	41P11F181	Connaught	100% Canadian Gold Miner Corp.
246989	Single Cell Mining Claim	Active	41P11E091	Connaught	100% Canadian Gold Miner Corp.
246991	Single Cell Mining Claim	Active	41P11E115	Connaught	100% Canadian Gold Miner Corp.
246988	Single Cell Mining Claim	Active	41P11E068	Connaught	100% Canadian Gold Miner Corp.
240988 248744	Single Cell Mining Claim		41P11E008	Connaught	100% Canadian Gold Miner Corp.
		Active		Connaught	-
248888	Single Cell Mining Claim	Active	41P11E099	-	100% Canadian Gold Miner Corp.
251077	Single Cell Mining Claim	Active	41P11E197	Connaught	100% Canadian Gold Miner Corp.
253122	Single Cell Mining Claim	Active	41P11E136	Connaught	100% Canadian Gold Miner Corp.

Table 1 Continued: List of mining claims in the Connaught and Brunswick	Townshins
Table I continued. List of mining claims in the connaught and brunswick	. Townships

Claim No.	• //	Claim Status	Cell No.	Township	Holder
252441	Single Cell Mining Claim	Active	41P11E066	Brunswick	100% Canadian Gold Miner Corp.
252471	Single Cell Mining Claim	Active	41P11E234	Connaught	100% Canadian Gold Miner Corp.
256513	Single Cell Mining Claim	Active	41P11E079	Connaught	100% Canadian Gold Miner Corp.
262567	Single Cell Mining Claim	Active	41P11E176	Connaught	100% Canadian Gold Miner Corp.
268578	Single Cell Mining Claim	Active	41P11E295	Connaught	100% Canadian Gold Miner Corp.
266580	Single Cell Mining Claim	Active	41P11E093	Connaught	100% Canadian Gold Miner Corp.
272687	Single Cell Mining Claim	Active	41P11E168	Connaught	100% Canadian Gold Miner Corp.
272688	Boundary Cell Mining Claim	Active	41P11E167	Brunswick	100% Canadian Gold Miner Corp.
272598	Single Cell Mining Claim	Active	41P11E252	Connaught	100% Canadian Gold Miner Corp.
271245	Single Cell Mining Claim	Active	41P11E174	Connaught	100% Canadian Gold Miner Corp.
270581	Boundary Cell Mining Claim	Active	41P11E057	Connaught	100% Canadian Gold Miner Corp.
288011	Boundary Cell Mining Claim	Active	41P11F101	Connaught	100% Canadian Gold Miner Corp.
288012	Single Cell Mining Claim	Active	41P11E159	Connaught	100% Canadian Gold Miner Corp.
286647	Single Cell Mining Claim	Active	41P11E051	Connaught	100% Canadian Gold Miner Corp.
286651	Single Cell Mining Claim	Active	41P11E094	Connaught	100% Canadian Gold Miner Corp.
286652	Single Cell Mining Claim	Active	41P11E117	Connaught	100% Canadian Gold Miner Corp.
293444	Single Cell Mining Claim	Active	41P11E171	Connaught	100% Canadian Gold Miner Corp.
296526	Single Cell Mining Claim	Active	41P11E114	Connaught	100% Canadian Gold Miner Corp.
297251	Single Cell Mining Claim	Active	41P11E248	Connaught	100% Canadian Gold Miner Corp.
295972	Single Cell Mining Claim	Active	41P11E149	Connaught	100% Canadian Gold Miner Corp.
299739	Single Cell Mining Claim	Active	41P11E156	Connaught	100% Canadian Gold Miner Corp.
299740	Single Cell Mining Claim	Active	41P11E196	Connaught	100% Canadian Gold Miner Corp.
299741	Single Cell Mining Claim	Active	41P11E195	Connaught	100% Canadian Gold Miner Corp.
296018	Single Cell Mining Claim	Active	41P11E098	Connaught	100% Canadian Gold Miner Corp.
296019	Boundary Cell Mining Claim	Active	41P11F121	Connaught	100% Canadian Gold Miner Corp.
301107	Boundary Cell Mining Claim	Active	41P11E086	Brunswick	100% Canadian Gold Miner Corp.
306114	Single Cell Mining Claim	Active	41P11E210	Connaught	100% Canadian Gold Miner Corp.
305171	Boundary Cell Mining Claim	Active	41P11E060	Connaught	100% Canadian Gold Miner Corp.
305172	Boundary Cell Mining Claim	Active	41P11E059	Connaught	100% Canadian Gold Miner Corp.
309091	Single Cell Mining Claim	Active	41P11E254	Connaught	100% Canadian Gold Miner Corp.
309092	Boundary Cell Mining Claim	Active	41P11E278	Connaught	100% Canadian Gold Miner Corp.
309093	Single Cell Mining Claim	Active	41P11E277	Connaught	100% Canadian Gold Miner Corp.
308087	Single Cell Mining Claim	Active	41P11E111	Connaught	100% Canadian Gold Miner Corp.
308088	Single Cell Mining Claim	Active	41P11E130	Connaught	100% Canadian Gold Miner Corp.
308089	Single Cell Mining Claim	Active	41P11E129	Connaught	100% Canadian Gold Miner Corp.
308686	Single Cell Mining Claim	Active	41P11E152	Connaught	100% Canadian Gold Miner Corp.
313551	Single Cell Mining Claim	Active	41P11E049	Connaught	100% Canadian Gold Miner Corp.
312848	Single Cell Mining Claim	Active	41P11E172	Connaught	100% Canadian Gold Miner Corp.
312849	Single Cell Mining Claim	Active	41P11E170	Connaught	100% Canadian Gold Miner Corp.
312850	Single Cell Mining Claim	Active	41P11E191	Connaught	100% Canadian Gold Miner Corp.
315466	Single Cell Mining Claim	Active	41P11E246	Brunswick	100% Canadian Gold Miner Corp.
317084	Single Cell Mining Claim	Active	41P11E217	Connaught	100% Canadian Gold Miner Corp.
314957	Single Cell Mining Claim	Active	41P11E158	Connaught	100% Canadian Gold Miner Corp.
318465	Single Cell Mining Claim	Active	41P11E235	Connaught	100% Canadian Gold Miner Corp.
319798	Single Cell Mining Claim	Active	41P11E236	Connaught	100% Canadian Gold Miner Corp.
317836	Boundary Cell Mining Claim	Active	41P11E056	Connaught	100% Canadian Gold Miner Corp.

Table 1 Continued: List of mining claims in the Connaught and Brunswick Townships

Claim No.	Mining Claim Type	Claim Status	Cell No.	Township	Holder
322060	Single Cell Mining Claim	Active	41P11E189	Connaught	100% Canadian Gold Miner Corp.
321974	Single Cell Mining Claim	Active	41P11E272	Connaught	100% Canadian Gold Miner Corp.
323740	Single Cell Mining Claim	Active	41P11E131	Connaught	100% Canadian Gold Miner Corp.
323741	Boundary Cell Mining Claim	Active	41P11E147	Brunswick	100% Canadian Gold Miner Corp.
329787	Single Cell Mining Claim	Active	41P11E180	Connaught	100% Canadian Gold Miner Corp.
328506	Single Cell Mining Claim	Active	41P11E276	Connaught	100% Canadian Gold Miner Corp.
336327	Boundary Cell Mining Claim	Active	41P11F081	Connaught	100% Canadian Gold Miner Corp.
337223	Single Cell Mining Claim	Active	41P11E274	Connaught	100% Canadian Gold Miner Corp.
336296	Single Cell Mining Claim	Active	41P11E153	Connaught	100% Canadian Gold Miner Corp.
331158	Boundary Cell Mining Claim	Active	41P11E106	Brunswick	100% Canadian Gold Miner Corp.

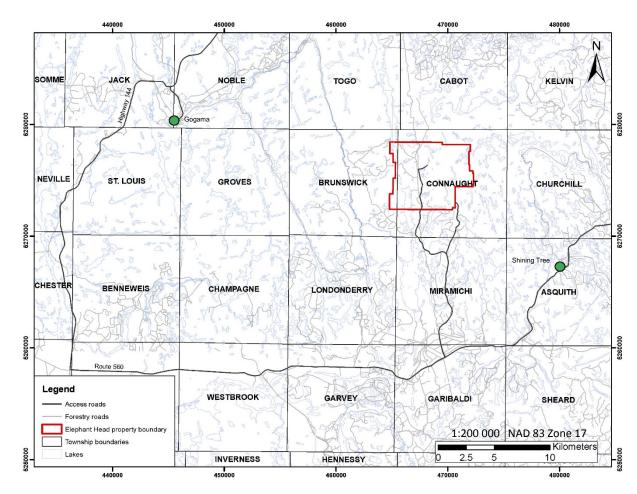


Figure 1: Plan map of the Elephant Head property in the Connaught Township

				466000				4680	00			47	0000				472000	
6	5	2				83])				100223	127001	144687	210176	249335	262091	24933
	N	205213	17044	1000.40		-		/				162305	202118	162304	144688	330010	232803	
~	\mathcal{V}	205213	173414.	138849	313551	202975	286647	199343	154706	185077	243812	317836	270581	156729	305172	305171 1	71396	14794
1	1	252441	107207	246988	239507	227519	126801	112919	187819	111887	111886	111885	148490	137177	256513	221 221416	415 28357 25688	5 0 19011 20545
-	250171	30110 107188	⁰⁷ 209623	209622	107208	239508	246989	135158	266580	286651	173416	138855	202980	296018	248888	192228 3363	344343 27	29346
	250172		58 128535 5780-	172537	229261	192030	308087	192082	192081	296526	246991	239513	286652	128187	109411	140210 2880	312854 11	2179
	107.189_	316100 33886	229262 57	221296	308089	308088	323740	221864	140090	162542	332997	253122	228021	128188	192229	140211	226803 166797 96019	
1	272488	187971 1480	323741 50	172538	295972	241433	248744	308686	336296	229327	111630	299739	204335	314957	288012	210978	330008 109412	1619
	RUNSV 105083	283766 1992-	65279 272688 10	272687	151083	312849	293444	312848 41P1	238224 1E CONNA	271245 UGHT	177019	262567	131161	177018	195870	329787	183836 41P	11F
	105084	169 291836	9243 112788	206695	322060	182819	312850	238225	126102	244455	299741	299740	251077	338656	338664	161840	243051	K
;	331049	151 291837	084 206696	199211	134499	306114	344334	126103	226797	149146	161837	183830	317084	243046	177020	147744	147743	14624
				\sim	SI			1		0				1133	63 275296	171353	228083	
3	291838	105085 23055	146724 9	175984	146723	163296	126104	182820	202257	252471	318465	319798	112675		137136	311920	109475	21104
		315466	146725	297251	129345	175985	168642	272598	176263	309091	241768	193651	111043		5114 Leg 32	Lakes	Ids	
	~	107062	222559	230561	230560	107061	206594	321974	194596	337223	241769	328506	309093		4729 11	-	ad property	boundary
D.	3	242706	130726	175986	230563	230562	133893	133892	160583	111044	268578	130421	241770	146480 31041	38 265511	Township bo	303216	15473 mete
	V					Ø	1			J			V	241301	0 0.2	50.5	1	

Figure 2: Plan map of the mining claims owned by Canadian Gold Miner Corp. in the Connaught and Brunswick Townships

4.0 GEOLOGY

4.1 Regional Geology

The Elephant Head property is situated in the southern part of the Abitibi greenstone belt (AGB) of the Superior Province (Fig. 3). Supracrustal units in the Abitibi greenstone belt are dominated by east-west trending volcanic and sedimentary assemblages. The various volcanic and intrusive rocks of the AGB are diverse, ranging from ultramafic to felsic in composition, as well as containing both chemical and clastic sedimentary rocks of the Porcupine and Timiskaming assemblages. A variety of mafic to felsic intrusive rocks that represent synvolcanic intrusions occur as part of the greenstone belt. Larger batholithic complexes external to the greenstone belt rocks (e.g. Round Lake) represent centres of structural domes. Syntectonic intrusions also occur in the AGB, some of which are coeval with the Timiskaming assemblage and are spatially associated with the Cadillac-Larder Lake and Porcupine-Destor deformation zones. The AGB contains several east-trending deformation zones that commonly occur at assemblage boundaries and are spatially associated with long linear belts representing the sedimentary assemblages (i.e., Porcupine and Timiskaming). These deformation zones have a complex structural history and represent major breaks in the greenstone belt. The AGB is intruded by numerous diabase

dikes trending from north to northwest in the property and likely represent the Matachewan and possibly Abitibi dike swarms.

The Archean rocks are uncomformably overlain by Paleoproterozoic rocks of the Huronian Supergroup, which were deposited in a north-trending graben referred to as the Cobalt Embayment. The upper sedimentary cycles of the Huronian Supergroup include the Cobalt and Flack Lake Groups. Within the Cobalt Group there are two formations, the Gowganda and Lorrain. Within the Flack Lake Group there are also two formations, the Gordon Lake and Bar River. The Gowganda Formation is the lower sequence of the Cobalt Group and consists mainly of framework- and matrix-supported conglomerate and lesser greywacke, siltstone and mudstone (Carter, 1980; Long, 2009). The basal sequence of the Gowganda Formation (Coleman member) is interpreted to have been deposited beneath a continental ice sheet, while the upper sequence (Firstbrook member) is interpreted to have been deposited in a deltaic environment (Long, 2009).

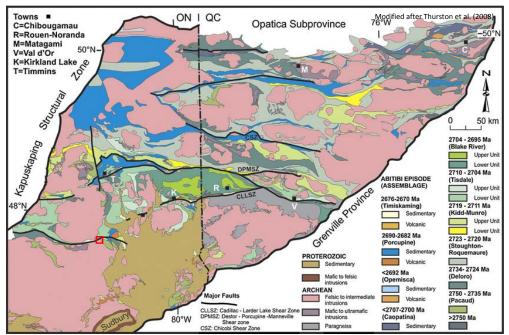


Figure 3: Regional geological map of the southern Abitibi greenstone belt with the property location outlined in red

4.2 Local Geology

The property covers a small transect of the southeastern part of the Swayze greenstone belt, a small portion of the western Shining Tree greenstone belt and the northeastern most part of the Ramsey-Algoma batholith (Fig. 4). The northern part of the property occurs in mafic to intermediate volcanic rocks and Timiskaming sedimentary rocks of the Swayze greenstone belt. The eastern part of the property is underlain by the mafic and intermediate volcanic rocks of Pacaud assemblage of the Shining Tree greenstone belt. These rocks are intruded by Proterozoic age mafic intrusive rocks and overlain by Proterozoic age sedimentary rocks. The Archean volcanic and sedimentary rocks are intruded by felsic to intermediate intrusive rocks that form the northeast part of the Ramsey-Algoma batholith (Carter,

1980). The southern part of the property is dominated by these intrusions, which in the area consist of granodiorite, quartz monzonite and trondhjemite.

The Ridout deformation zone (RDZ) occurs along the contact of intermediate to mafic volcanic rocks with the Timiskaming-type sediments in the north part of the property. The deformation zone is defined by strong sericite and Fe-carbonate alteration and the dominant fabric corresponds to the regional D_2 foliation seen elsewhere across the southern Swayze. Previous workers on the Elephant Head property reported that the granodiorite is cut by a series of east-northeast trending lineaments interpreted to be splays of the RDZ. One of these zones is interpreted to be located underneath the Elephant Head Creek and represents the most prominent faulting in the area (Carter, 1980; Born, 1981; Fig. 4).

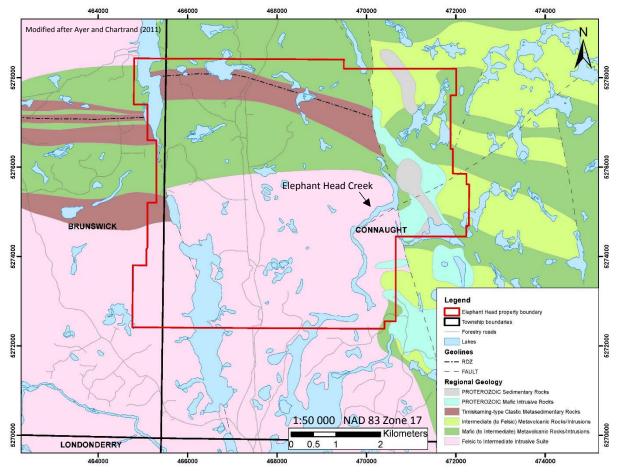


Figure 4: Local geological map of the Elephant Head property

4.3 Mineralization

Historical exploration in the area targeted high-grade veins along a structural zone, which suggests previous workers were targeting an orogenic-type system. Historically, roughly east-west oriented faults or shear zones were documented in the area along the Elephant Head Creek fault (Born, 1981; Kuuskman and Hart, 2013). Known mineralization on the property is associated with ≤ 1 m quartz±chlorite-sulphide veins in the granodiorite of the Ramsey-Algoma batholith. The veins may

contain sericite-silica-chlorite alteration haloes that may be weakly to moderately deformed. These veins may contains anomalous to multi-gram per ton gold.

5.0 PREVIOUS WORK

Exploration activity has been conducted on the Elephant Head Property in the Connaught Township for over 60 years. Table 2 represents a summary of previous work conducted in the area and is taken from Carter (1980), assessment reports and an internal report (Kuuskman and Hart, 2013). Figure 5 shows some of the historic workings near the Elephant Head Creek hosted in the granodiorite of the Ramsey-Algoma batholith. The gold assay results presented in Figure 5 are taken from Patino Mine Ltd. and were converted to g/t from original oz/ton results.

Since obtaining an option in the property, IAMGOLD conducted a surface exploration campaign in summer and fall of 2017 and 2018, including a soil survey, a gradient IP survey, prospecting, mapping, mechanical stripping and manual stripping. The focus of the prospecting was to locate the historic workings and resample the trenches/pits. The purpose of geological mapping and mechanical and manual stripping was to obtain a better geological understanding of the mineralized vein system. Although the soil survey did not contain any significant anomalies, the gradient IP produced a few eastwest trending chargeability anomalies. This campaign proved to be largely successful as the historic trenches/pits that were located occur on chargeability anomalies. Sampling of these trenches/pits indicated that they can contain anomalous gold and additional historic trenches were found due to prospecting efforts.

Of particular interest was an historic trench that was discovered on August 30, 2017 while prospecting, which is located over 600 m south of much of historic activity. One grab sample collected in 2017 returned 85.7 g/t Au from an east striking (110/62 to 089/58), 10 to \leq 50 cm wide quartz-pyrite vein with up to 5% pyrite. To follow up this high-grade sample, the historic trench was stripped (Stripping 5; Fig. 6) in 2018 and a subsequent grab sample of the vein material returned 102 g/t Au. Another trench approximately 12 m to the southwest was discovered and was also stripped (Stripping 6). Stripping 6 contains one \leq 40 cm wide, irregular quartz-pyrite vein oriented at 055/88 with up to 8% pyrite. A total of 14 channel samples were collected from the two stripped outcrops and all samples returned anomalous gold values that range from 0.105 g/t Au to 60.8 g/t Au. Both trenches are hosted by granodiorite and alteration occurs as moderate to strong silica-sericite±chlorite alteration marginal to the veins. Weak to moderate deformation marginal to the main quartz-pyrite veins were noted. The deformation zone in Stripping 5 is <30 cm wide and in Stripping 6 is approximately 1 m wide with a foliation oriented at 090/72.

Year	Activity
Pre – 1950	Evidence of pits and trenching suggest a number of gold showings
1950	Douvay Gold Mines Ltd.: Completed 5 packsack holes (201 m) in an area northeast of the
	showings (41P11NW0428)
1963	 Siscoe Metals Ltd.: Diamond drill program consisting of 8 holes totaling 2013 ft. (41P11NW0447) DDH S-1: sheared granite, feldspar porphyry, minor disseminated pyrite and minor quartz and calcite veins; one sample from a sheared granite returned 0.03 oz/ton Au over 0.3 ft. DDH S-7: shear zones (<4 ft. wide) with some disseminated pyrite and quartz-carbonate veins; a sheared quartz feldspar porphyry sample returned 0.10 oz/ton Au over 0.3 ft. DDH S-8: intersected quartz feldspar porphyry, a shear zone (<10 ft. wide) with disseminated pyrite, and a granite unit. Various minor quartz and carbonate veinlets were also intersected. The best assay was trace Au and Ag
1981	 Patino Mines Ltd.: Geological mapping, surface sampling and diamond drill program consisting of 4 holes totaling 1692 ft. (41P11NW0417) Main lithology: granodiorite with minor alteration Minor lithology: fine-grained felsic syenitic dikes (3-30 ft. wide) that crosscuts granodiorite identified, one that passes through Trench 1 and one that passes through Pit 1 and 2. The sheared granodiorite is chlorite, sericite and carbonate altered with 43% fine-grained, disseminated pyrite. Both shear zones contain east-striking quartz- carbonate-pyrite veins with variable Au and Ag <i>Trench</i> 1 is located north of the Elephant Head Creek and along an east-trending shear. The host rock is a sheared granodiorite with carbonate and chlorite alteration. Three quartz-carbonate veins with no visible sulphides are located adjacent to the sheared granodiorite. Assays of this material indicate an average of 0.05 oz/ton Au and 0.05 oz/ton Ag Approximately 300 m east of Trench 1 there is a series of outcrops along the north shore of Elephant Head Creek. These outcrops have narrow quartz veins with up to 1-3% pyrite. Assays average 0.05 oz/ton Au and 0.05 oz/ton Ag with 0.13 oz/ton Ag <i>Pit</i> 1 exposed 10 ft. wide shear zone in the granodiorite that dips 45° to the south. Four subparallel quartz-carbonate veins range from 2-4" with no visible sulphides. One 4" quartz-carbonate vein contains 20-25% pyrite and returned 1.56 oz/ton Au and 6.46 oz/ton Ag. A sample of granodiorite with 1-3% pyrite had 0.06 oz/ton Au and 0.05 oz/ton Ag. <i>Pit</i> 2 is a 20 ft. pit located east of Pit 1 and contains the same shear zone. Granodiorite is not as sheared as in pit 1. One 4" quartz-carbonate vein located as of Pit 1 and contains the same shear zone. Granodiorite is not as sheared as in pit 1. One 4" quartz-carbonate vein with race pyrite Hole ST2-2: undercut Pit 1 and best assay returned 0.06 oz/ton Ag over 0.3 ft. and 0.04 oz/ton Au, 0.006 oz/ton Ag over 1.3 ft. in hematite altered g

2012-2014	Transition Metals Corp: Prospecting and Reconnaissance of historic workings
	 Located and sampled several historic trenches and pits and received best assay of 57.3 g/t
	Au in Pit 1 with 30% pyrite hosted in a deformed and altered granodiorite
	• In 2014, portions of the property were covered by an SGH soil orientation survey consisting
	of 62 samples that were completed in the vicinity of the known mineralization north and
	south of the Elephant Head Creek around the historic pits and trenches. Results indicate a
	poor Au-Cu correlation, but Au correlates will with Ag and S

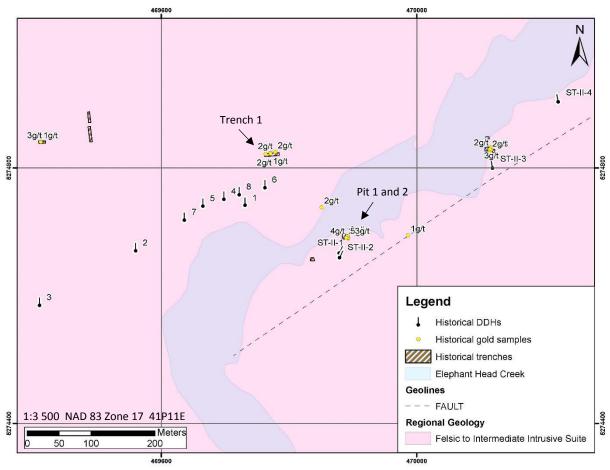


Figure 5: Compilation of historic trenches and gold results in the area

6.0 POLE-DIPOLE SURVEY

A pole-dipole survey was undertaken in the fall of 2018. The purpose of the survey was to define an east-west chargeability anomaly that was identified in a 2017 gradient IP survey (Fig. 6). Note that the 2017 gradient IP chargeability results in Figure 6 are shown in RGB values. This chargeability anomaly warranted further geophysical work due to a historic trench found in the western part of the anomaly while prospecting that returned a 85.7 g/t Au grab sample in 2017 (see section 5.0). The pole-dipole survey plan was to complete three lines across the gradient IP anomaly (i.e., east, central and west) to determine if the anomaly had any depth extent to it that warranted diamond drilling.

Prior to the survey, three days were spent cutting the three geophysical lines. The line cutting was performed by Gabriel Roy, Ron Bilton, Hunter Busch and Terence Murray from Dan Patrie Exploration Ltd., Massey, Ontario from September 17 to 19, 2018. The crew accessed the site through logging roads and a UTV trail. The total distance of line cut was 1.95 km. Three lines were cut and consist of line 1+00E (545 m) oriented at 182°, line 2+00E (590m) at 152° and line 3+00E (820m) at 149° (Fig. 6). No baseline was cut for this survey.

The work was performed for IAMGOLD by Dan Patrie Exploration Ltd., an experienced geophysical contractor. The survey was performed from September 24 to 25, 2018 for a total of 2 days. The work and measurements were performed on overburden or bedrock. No cultural features, such as power lines or railway tracks, occur in the area that would have interfered with the measurements. The geophysical survey equipment specifications are presented in Appendix A.

The results of the pole-dipole study are presented in Appendix B in the form of pseudo sections. The results indicate that the east-west chargeability anomaly identified in the 2017 gradient IP survey was identified in this study at depth. The results indicate that the chargeability anomaly is quite weak (i.e., <10 mV/V), but occurs on the three lines. Interestingly, the 10 to \leq 50 cm quartz-pyrite vein on Stripping 5 outcrop occurs around station 3+55 N and does not line up with the chargeability anomaly at 3+95 N on line 1+00 E. The chargeability anomaly occurs approximately 40 m north of the outcrop. The results on line 2+00 E have isolated a weak chargeability anomaly around 1+90 N (Appendix B). The weak chargeability anomaly at 5+90 N on line 3+00 E coincides with the east-west chargeability anomaly from the gradient IP survey, lining up with the two anomalies on lines 1+00 and 2+00 N. The stronger chargeability anomaly at the south of line 3+00 E at around 100 N appears superficial and happens to be located where the UTV trail crosses the line (Fig. 6). This warrants follow up field work to determine what is causing the anomaly (i.e., presence of sulphide minerals or anthropogenic). On line 1+00 E there is a fairly sharp change in resistivity around station 2+75 N, which may be a contact, fault or sharp alteration front. This area is of interest and should be investigated.

The results of the survey indicate that several weak chargeability anomalies were located, which correspond to the east-west gradient IP anomaly. These results also indicate that follow up geological mapping and prospecting is warranted in the area 40 m north of stripping 5 and along the UTV trail where a stronger superficial chargeability anomaly was identified. The weak chargeability results suggest there is not a significant amount of sulphide mineralization at depth.

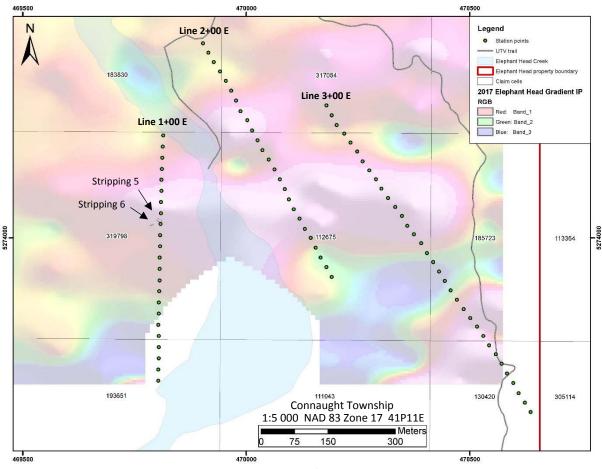


Figure 6: Plan map showing the location of the pole-dipole survey station points

7.0 DIAMOND DRILLING

7.1 Summary

The diamond drill program was planned test to both the east-west chargeability anomaly from the poledipole survey and the gold-bearing veins on surface in Strippings 5 and 6 described above (see section 5.0).

The drill program consisted of three diamond drill holes totaling 465 m of NQ size core that were drilled within the Connaught Township and NTS 41P11E. Prior to the arrival of the diamond drill equipment, two drill trails were cut to the collar locations (Fig. 7). A summary table of the diamond drill holes is presented in Table 3.

The drilling campaign was completed by NPLH Drilling, Timmins, Ontario for IAMGOLD. NPLH mobilized a diamond drill to the property on October 23, 2018. Drilling on the property commenced on October 24, 2018 and was completed on Nov 2, 2018. At each set up the drill was aligned prior to drilling by an IAMGOLD geologist using a compass and/or a Reflex North Finder azimuth pointing system. Each drill hole collar was positioned using a handheld Garmin GPSmap 62st handheld GPS. The drill hole collar locations were not surveyed subsequent to drilling. Core was oriented during the drill program using a Reflex Act III RD orientation kit by NPLH and the core was subsequently aligned by a geotechnician. Core

recovery was inconsistent through the program and generally low (average of 28%). The downhole orientation of the drill hole was monitored using a Reflex EZ-Trac (single or multishot) instrument. Collar tests were taken, on average, 12 m from the toe of the drill casing and then around every 50 m after the collar test until the end of the hole. A multishot test was taken every 3 m from the bottom of the drill hole to the top before removing the drill rods. The core was brought once a day from the drill rig to the Côté Exploration Core Shack, located at 3 Mesomikenda Lake Road, Gogama, Ontario.

The drill program planning was completed by Laura Katz, a Geologist with IAMGOLD and Brad McKinley, a Senior Geologist with IAMGOLD. The execution of the drill program was carried out by Erik Bobechko and Adam Waram, both of whom are Junior Geologists, G.I.T. with IAMGOLD. Logging of the drill core occurred from November 11 to 25, 2018 for a total of 11 days. Nathan McCullough, a Junior Geologist, G.I.T. with IAMGOLD, and Adam Waram logged the drill core. Core alignment and RQD was performed by Shane O'Neill, a technician with IAMGOLD. Cutting and sampling of the drill core occurred from November 14 to December 3, 2018 over the span of 8 days. Cutting and sampling of the core was completed by Doreen Luke, Channing Graham, Claude Constant and Yvon Constant. A daily log and daily rates of IAMGOLD employees involved in the diamond drilling campaign can be found in Appendix C. All the work was performed at the Côté Exploration Core Shack and all IAMGOLD employees, except local workers from Gogama, held room and board at the Côté Gold Exploration camp over the duration of the program (Appendix C).

Drill logs describing the location of the hole collar, size of core, thickness of casing, rock type, alteration, mineralization, sample lengths, etc. can be found in Appendix D. Note that the assay results in the drill logs are rounded up to the nearest hundredth. Both EH18-01 and EH18-02 were drilled on claim number 112675, whereas EH18-03 was drilled on claim number 319798 (Fig. 7). Vertical cross sections of each hole with the rock type and assay results is provided in Appendix E.

After the drill program environmental inspections were conducted at each drill location to verify that the set ups were left in an environmentally good condition. All three drill pad locations were properly remediated.

Drillhole Name	Claim No.	Provincial Cell No.	Easting*	Northing*	Azimuth	Dip	Length (m)	Start Drill Date	End Drill Date	Start Log Date	End Log Date	No. Core Samples Collected	Samples
EH18-01	112675	41P11E237	470343	5274010	358	-53	147	24-Oct-18	26-Oct-18	13-Nov-18	17-Nov-18	56	56
EH18-02	112675	41P11E237	470106	5274015	002	-50	147	26-Oct-18	30-Oct-18	23-Nov-18	25-Nov-18	53	53
EH18-03	319798	41P11E236	469808	5273975	357	-59	171	01-Nov-18	02-Nov-18	11-Nov-18	13-Nov-18	67	67
*NAD 83 Zon	e 17												

Table 3: Drill hole information

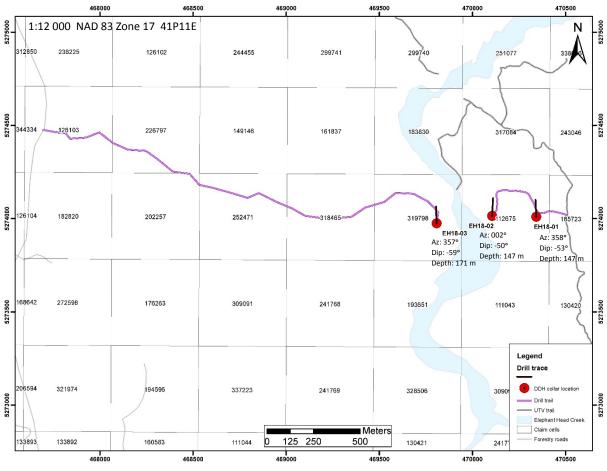


Figure 7: Plan map of the drill collar locations, drill traces and drill trails

7.2 Analytical Methods and QAQC

This section provides information on the samples, laboratory, geochemical technique and QA/QC information for Elephant Head drill program. Gold assay results and certificates can be found in Appendix F. A total of 176 core samples, 8 blanks and 8 certified reference materials were sent to Activation Laboratories (Actlabs) Ltd., Timmins, Ontario for gold assay. All samples were sent for gold analyses by fire assay method (Code 1A2 Au). No trace element geochemistry or whole-rock geochemistry was completed. Actlabs is accredited to international quality standards through the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 17025 (ISO/IEC 17025 includes ISO 9001 and ISO 9002 specifications).

Standards and blanks were inserted at a fixed rotation. Standards and blanks were rotated and were inserted every twelve sample. The blanks used in this program were certified blank material. The standards that were used are certified reference materials and include OREAS 501c, OREAS 502c, OREAS 224 and OREAS 504b. All standards and blanks passed. Only one OREAS 502c standard fell within the 3 standard deviation tolerance. The QA/QC results for the drill program can be found in Appendix F.

7.3 Rock Types

7.2.1 Granodiorite

The granodiorite is the dominant rock type in the drill holes. The granodiorite is light-grey to light-green, medium- to coarse-grained, massive and inequigranular. The granodiorite may also contain rare fine-medium-grained dioritic enclaves that range from 2 cm to 20 cm in size.

7.2.2 Quartz feldspar porphyry

The porphyry units sharply intrude the granodiorite. This unit contains a fine-grained to aphanitic, darkgrey to grey groundmass with rare quartz phenocrysts (\leq 15%) and more abundant coarse-grained feldspar phenocrysts that typically range from 15-30%, but rarely may contain 55%. This unit ranges from <1 m to 9.65 m in apparent width.

7.2.3 Granite dike

This dike unit sharply intrudes the granodiorite and is typically <1 m in apparent width. The granite dike is white-grey or pink, aphanitic to fine-grained and massive. Note this unit was logged as an intermediate dike.

7.2.4 Diabase dike

Diabase dikes are aphanitic to medium-grained, black, strongly magnetic, massive, and may contain coarse-grained glomeroporphyritic plagioclase. The diabase dike sharply intrudes the granodiorite and the granite dikes.

7.3 Alteration and Mineralization

The granodiorite, quartz feldspar porphyry and granite dike contains semi-pervasive to pervasive, fracture- and vein-controlled sericite-silica±chlorite alteration. Outside the alteration halo the granodiorite, quartz feldspar porphyry and granite dike are typically altered by weak to moderate disseminated epidote and/or hematite.

7.4 Results

7.4.1 EH18-01

This drill hole was targeting the east-west pole-dipole chargeability anomaly at approximately 65 m depth. The hole was dominated by granodiorite with minor quartz feldspar porphyry dikes. The granodiorite contains weak to moderate epidote, chlorite, silica and sericite alteration. Minor pyrite mineralization (<1%) was noted between 49 to 100 m. This increase in sulphide may explain the chargeability anomaly. More specifically, one sample at 49.65 to 47.91 m returned 0.158 g/t Au and one sample at 49.81 to 51.54 m returned 0.257 g/t Au. Two other samples returned anomalous gold, including one 0.182 g/t Au sample at 133.82 to 135 m and a 0.642 g/t Au sample at 135 to 135.8 m. The latter sample contained one 8.5 cm quartz-pyrite-pyrrhotite vein with 15% pyrite and 20% pyrrhotite and is oriented 063/56. In addition, molybdenite was found at approximately 97 m depth along a small fracture.

7.4.2 EH18-02

This drill hole was targeting the east-west chargeability anomaly at approximately 70 m depth. The hole was dominated by granodiorite with minor granite, quartz feldspar porphyry and diabase dikes. Minor pyrite mineralization (<1%) was noted from approximately 89 to 150 m. The granodiorite contains weak to moderate epidote, hematite, silica and sericite alteration. No significant veining was intersected in this hole. There is no clear indication that the target was intersected.

7.4.3 EH18-03

The target of this drill hole was to intersect the gold-bearing quartz-sulphide vein found Stripping 5 on surface at a depth of 55 m, as well as the east-west chargeability anomaly at approximately 100 m depth. The hole was dominated by granodiorite with minor granite and quartz feldspar porphyry dikes. The granodiorite contained weak to moderate epidote, hematite, chlorite, silica and sericite alteration. A series of 6 to 8 small (1 to 13 cm) quartz-pyrite veins with up to 2% pyrite were intersected between 73.5 to 75.2 m. Two samples in this interval returned anomalous gold values, including one 0.105 g/t Au sample from 73.2 to 74.3 m and one 0.21 g/t Au sample from 74.3 to 75 m. These veins could represent the down-dip extension of the high-grade quartz-sulphide veins (up to 102 g/t Au) found in Stripping 5. It is unclear if the chargeability anomaly was intersected.

7.5 Diamond Drill Program Conclusions

Based on the diamond drilling campaign the gold mineralization appears to be restricted to quartzsulphide veins. This observation is consistent with previous surface geological work (i.e., prospecting, mapping and stripping) that was completed on the property between 2017 and 2018. The gold-bearing veins contain silica-sericite alteration haloes marginal to the veins. However, the haloes themselves do not contain gold mineralization, nor is the presence of sericite-silica alteration necessarily indicative that veining will be present based on this drill program. The widest vein intersected was 13 cm and the widest interval of veining was <3 m in apparent width.

8.0 ABORIGINAL CONSULTATION COSTS

Between August 25, 2016 and March 6, 2019 there was communication between CGM and Mattagami, Matachewan and Wabun First Nations. The consultation and discussions included items such as notifying the First Nations of permit applications, updates on drafting amendments to the Matachewan/Mattagami memorandum of understanding and coordinating meetings. Several people performed the consultation, including Stephanie LaBelle, James Naveau, Kayla Scram, Matachewan First Nations members and Tim Harvey. A summary of the consultation record is presented in Table 4.

9.0 STATEMENT OF COSTS

The total value of work done on the Elephant Head property is summarized in Table 5. Contractor and assay invoices are provided in Appendix G. A detailed breakdown of the type of work activities by claim cell is provided in Appendix H.

Table 4: Aboriginal consultation record

Company	Date	Organization	Individuals	Type of Commun- ication	Description
CGM	25-Aug-16	MNDM	Mining Recorder		Claims transferred from Transition Metals Corp. to Canadian Gold Miner Corp.
CGM	06-Oct-16	Wabun	Stephanie LaBelle	Email	Notification of Lincoln Nipissing permits applications
CGM	02-Nov-16	Mattagami	Stephanie LaBelle, James Naveau	Personal	Participated in Mattagami First Nation's (MFN) 1st Mining Expo. Discussed adding Elephant Head property to existing MOU between CGM and Mattagami/Matachewan dated June 30, 2016
CGM	06-Feb-17	Wabun	Stephanie LaBelle, Kayla Scram	Email	More discussion about adding the Elephant Head property to MOU schedule
CGM	15-Mar-17	Wabun	Stephanie Labelle	Email	Email update on progress on drafting an ammendment to the Matachewan-Mattagan MOU, and engtry into a new MOU that could include Wahgoshig as a party with respect to the Lincoln Nipissing property. Discussed Elephant Head and Lincoln Nipissing MOU agreement issues
CGM	17-Mar-17	Wabun	Stephanie Labelle, Kayla Scram, Matachewan FN members	In person	Attended Matachewan mining open house event on behalf of Transition Metals and Canadian Gold Miner
CGM	24-Mar-17	Wabun	Stephanie LaBelle, James Naveau, Kayla Scram	Email	Draft ammendments prepared and reviewed
CGM	06-Apr-17	Wabun	Stephanie LaBelle, Kayla Scram	Email	Proposal from Wabun to inlude both the Elephant Head and Lincoln Nipissing projects in a single ammendment to the June 30, 2016 CGM MOU with Matachewan and Mattagami that defines consideration specific to each project area with each community
CGM	17-Apr-17	Wabun	Stephanie Labelle	Email	2nd ammendment to include Elephant Head and Lincoln Nipissing projects signed by G.Collins of CGM
CGM	25-Apr-17	Wabun	Stephanie Labelle	Email	New amendment adding Elephant Head and Lincoln Nipissing claims to MOU executed Support to proceed with permited activities subject to MOU obtained
CGM	03-Mar-18	Wabun	Stephanie Labelle	In person	To coordinate meetings with representatitves from Mattagami and Matachewan FN's at Wabun Booth
CGM	01-Mar-19	Wabun	Stephanie Labelle	Email	Arrange to meet at 2019 PDAC with reps from Mattagami and Mattachewan FN's
CGM	06-Mar-19	Mattagami	Stephanie Labelle, Tim Harvey	Person	Lunch meeting update at PDAC

Table 5: Summary of expenditures

Cost Category	Date	Invoice No.	Payee	Description		Ar	nount
Pole-dipole survey		DPE 2018 087	Dan Patrie Exploration Ltd.	Line cutting and pole-dipole survey		\$	6,765.88
					Subtotal	\$	6,765.88
	26-Nov-18	6076	NPLH Drilling	Diamond drill and trail making costs		\$	70,069.99
	03-Dec-18	6080	NPLH Drilling	Diamond drill costs		\$	30,591.98
	31-Oct-18	60534	Reflex	Act III and EZ-trac system rentals		\$	1,007.57
	30-Nov-18	61015	Reflex	Act III and EZ-trac system rentals		\$	3,507.12
			Laura Katz	Drill hole and gradient IP survey planning		\$	400.00
Diamond drilling			Brian Wright	Supervising trail making activities and spotting dril	l holes	\$	3,600.00
			Erik Bobechko	Drill campaign coordinator		\$	400.00
			Adam Waram	Core logger and drill campaign coordinator		\$	3,400.00
			Nathan McCullough	Core logger		\$	2,400.00
			Shane O'Neill	Geotechnician of core		\$	600.00
			lamgold employees	Core cutting and sampling		\$	2,400.00
					Subtotal	\$	118,376.66
	14-Dec-18	A18-18112	Actlabs	Diamond drill core samples		\$	1,365.61
Assays	02-Jan-19	A18-18808	Actlabs	Diamond drill core samples		\$	1,087.91
	02-Jan-19	A18-18809	Actlabs	Diamond drill core samples		\$	1,164.75
					Subtotal	\$	3,618.27
Report writing			Laura Katz	Geologist report writing		\$	4,800.00
					Subtotal	\$	4,800.00
Transportation	30-Oct-18	7000-3037-7872	Enterprise	Truck rental - travel from and to camp to Elephant H	ead	\$	1,698.62
costs - truck rental	30-Nov-18	7000-3098-966	Enterprise	Truck rental - travel from and to camp to Elephant H	ead	\$	1,697.55
					Subtotal	\$	3,396.17
Lodging costs			lamgold	lamgold camp lodging and food (\$135/person/day)		\$	2,497.50
					Subtotal	\$	2,497.50
Aboriginal consultation costs			CGM			\$	5,653.00
					Subtotal	\$	5,653.00
						\$	145,107.48

10.0 CONCLUSIONS

The results of the drill program indicate mineralization is restricted to quartz-sulphide veins. Although some anomalous vein-bearing material was intersected in two of the three holes, these quartz-sulphide veins are typically small (<10 cm) wide and currently are not known to form significantly wide subparallel sets or stock work zones. The 10 to \leq 50 cm wide quartz-pyrite vein at surface on Stripping 5, which returned up to 102 g/t Au, is considered to have been intersected at depth between 73.2 to 75 m. However, the gold results (i.e., 0.105 g/t Au and 0.21 g/t Au) indicate that mineralization in these veins is quite variable. Although an east-west trending chargeability anomaly was identified in the pole-dipole survey, the chargeability anomaly itself was quite low and drilling did not intersect significant disseminated or vein sulphide mineralization.

11.0 RECOMMENDATIONS

Future work suggested includes prospecting and/or geological mapping work slightly north of Stripping 5 on Line 1+00 E where the chargeability anomaly appears to be located on surface and along the UTV trail on Line 3+00 E where a superficial chargeability anomaly was identified.

STATEMENT OF QUALIFICATIONS

I, Laura Katz, do hereby certify that:

- 1) I have been a Geologist at IAMGOLD Corporation since June 2nd, 2016.
- 2) I graduated with an Honours B.Sc. Earth Sciences from Carleton University in 2011.
- 3) I completed a Ph.D. in Mineral Deposits and Precambrian Geology at Laurentian University in 2016.
- 4) I am a practising member in good standing with the Association of Professional Geoscientists of Ontario (Member Number 2823). I am also a member of the Society of Economic Geologists.
- 5) I have worked as a Geologist for over 2 and a half years since graduating from University.
- 6) The report is true and accurate to the best of my knowledge. The report includes information that was gathered from various sources, such as assessment files, publications and contractor-provided information.
- 7) I am responsible for the planning and writing of the 2018 Geophysical and Diamond Drill Hole Report at Elephant Head.
- 8) I have no personal interest in the property covered by this report.

STATEMENT OF QUALIFICATIONS

I, Bradley McKinley, P.Geo., a professional geologist with a business address of Unit 10 – 2140 Regent Street, Sudbury, ON., certify that:

- 1) I have been a Registered Member of the Association of Professional Geoscientists of Ontario since 2009.
- 2) I graduated with a B.Sc. from the University of Waterloo (Honours Geology) in Earth Sciences in 2003.
- 3) I graduated with a M.Sc. from the University of British Columbia (Economic Geology) in 2006.
- 4) I have been practicing in my profession as a geologist since 2004.
- 5) I have been an employee of IAMGOLD Corporation since February 21st, 2017.
- 6) The information presented in this document is true and accurate to the best of my knowledge. This information was gathered from such various sources as assessment files, publications, in-house work and contractor-provided reports.
- 7) I planned and oversaw the field work covered in this report.
- 8) I have no personal interest in the property covered by this report.

Dated in Sudbury, Ontario, this 11th day of April 2019.

REFERENCES

Ayer, J.A., and Chartrand, J.E., 2011, Geological compilation of the Abitibi greenstone belt: Ontario Geological Survey, Miscellaneous Release – Data 282.

Born, 1981, Geological Report on Shining II Property, ON: Assessment Report, Patino Mines (Quebec) Ltd, p. 1-18.

Carter, M.W., 1980, Geology of Connaught and Churchill Townships, Disctrict of Sudbury: Ontario Geological Survey Report 190, p. 81.

Kuuskman, M., and Hart, T., 2013, Report on the Elephant Head Property, Connaught Township, Ontario: Unpublished company report, Transition Metals Corp.

Long, D.G.F., 2009, The Huronian Supergroup; *in* A Field Guide to the Geology of Sudbury, Ontario: Ontario Geological Survey, Open File Report 6243, p. 14-30.

Thurston, P.C., Ayer, J.A. Goutier, J., and Hamilton, M.A., 2008, Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization: Economic Geology, v. 2013, pp. 1097-1134.

Appendix A

Geophysical Survey Equipment Specifications

ELECTRICAL METHODS

IPR-12

Induced Polarization

WWW.SCINTREXLTD.COM

NTREX

A DIVISION OF LRS

Setting the Standards

IPR-12 SPECIFICATIONS

The IPR-12 IP receiver has been successfully used for many years as a mineral exploration tool, specifically for gold exploration.

Induced polarization can also be used as a method for mapping hydrocarbon plumes and geotechnical applications.

Inputs: Input Impedance: SP Bucking:

Input Voltage (Vp) Range: Chargeability (M) Range: Tau Range: Reading Resolution of Vp, SP and M: Absolute Accuracy of Vp, Sp and M: Common Mode Rejection: Vp Integration Time: IP Transient Program:

Transmitter Timing: External Circuit Test:

Filtering: Internal Test Generator: Analog Meter: Memory Capacity:

Power Supply:

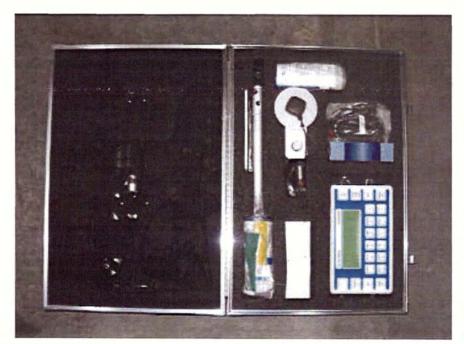
Operating Temperature: Dimensions and Weights: 1 to 8 dipoles are measured simultaneously. 16 MΩ ±10 volt range. Automatic linear correction operating on a cycle by cycle basis. 50 µV to 14 V 0 to 300 mV/V 60 microseconds to 2000 seconds. Vp - 10 µV; SP - 1 mV; M - 0.01 mV/V Better than 1% At input more than 100dB. 10% to 80% of the current on time. Pulse selectable at 1,2,4,8,16 or 32 seconds. Programmable windows also available. 50% duty cycle. On/off times of 1,2,4,8,16 or 32 seconds. All dipoles measured individually in sequence. Range 0 to 2 MQ with 0.1 kΩ resolution. Circuit resistances displayed and recorded. RF filter, 10 Hz 6 pole low pass filter, statistical noise spike removal. 1200 mV of SP; 807 mV of Vp and 30.28 mV/V of M. For monitoring input signals; switchable to any dipole via keyboard. Stores approximately 400 dipoles of information when 8 dipoles are measured simultaneously. Rechargeable Ni-Cad D cells. More than 20 hours service at +25°C. (77°F), more than 8 hours at -30°C (-22°F) -30°C to +50°C (-22°F to 122°F) 355 x 270 x 165 mm (14" x 10.6" x 6.5") Console: 120 x 95 x 55 mm (4.7" x 3.7" x 2") Charger: Console: 5.8 kg (12.8 lbs.) Batteries: 1.3 kg (2.8 lbs.) Charger: 1.1 kg (2.4 lbs.)

OPTIONS

Transmitters Software Packages Training Program

ISO 9001:2000 registered company. All specifications are subject to change without notice.

Specification Sheet Part Number 745711 Revision 0


CANADA Scintrex

222 Snidercroft Road Concord, Ontario L4K 2K1 Telephone: +1 905 669 2280 Fax: +1 905 669 6403 e-mail: <u>scintrex@scintrex.td.com</u> Website: www.scintrex.com

USA

Micro-g LaCoste 1401 Horizon Avenue Lafayette, CO 80026 Telephone: +1 303 828 3499 Fax: +1 303 828 3288 e-mail: info@microglacoste.com Website: www.microglacoste.com

Envi Pro system package

ENVI PRO SPECIFICATIONS

TOTAL FIELD	23,000 to 100,000 nT (gamma)					
OPERATING RANGE						
TOTAL FIELD	±1 nT (gamma)					
ABSOLUTE						
SENSITIVITY	0.1 nT (gamma) at 2 second sampling rate					
TUNING/ SAMPLING	Fully solid state. Manual or automatic, keyboard selectable Cycling (Reading) Rates 0.5, 1, 2, or 3 seconds					
GRADIOMETER OPTION	Includes a second sensor, 0.5m (20 inch) staff extender and processor module					
GRADIENT TOLERANCE	> 7000 nT (gamma)/m					
'WALKMAG' MODE	Continuous reading, cycling as fast as 0.5 seconds					
SUPPLIED GPS	+/- 1m (Autonomous), < 1m WAAS					
ACCURACY	Connects to most external GPS receivers with NMEA & PPS output					
STANDARD	Total Field Measurements: 84,000 readings					
MEMORY	Gradiometer Measurements: 67,000 readings Base Station Measurements: 500,000 readings					
REAL-TIME CLOCK	1 second resolution, \pm 1 second stability over 24 hours or GPS time					
DIGITAL DATA OUTPUT	RS-232C, USB Adapter					
POWER SUPPLY	Rechargeable, 2.9 Ah, lead-acid dry cell battery 12 Volts External 12 Volt input for base station operations					
OPERATING TEMPERATURE	-40°C to +60°C (-40°F to 140°F)					
DIMENSIONS & WEIGHT	Console: 250mm x 152mm x 55mm (10" x 6" x 2.25" 2.45 kg (5.4 lbs) with rechargeable battery					
	Magnetic 70mm d x 175mm (2.75"d x 7") Sensor: 1 kg (2.2 lbs)					
	Gradiometer 70mm d x 675mm (2.75"d x 26.5") Sensor: (with staff extender) 1.15 kg (2.5 lbs)					
	Sensor Staff: 25mm d x 2m (1"d x 76") 0.8 kg (1.75 lbs)					
OPTIONS	Base Station Accessories Kit					
	- Cold Weather Accessories					
	Additional Software Packages					
	 Training Programs 					

ENVI PRO MAG

The ENVI PRO system when configured as a TOTAL FIELD magnetometer is referred to as the ENVI PRO MAG. In this set up the ENVI PRO system can be operated in a traditional "STOP and MEASURE" mode, thus providing the full sensitivity obtainable with a proton magnetometer, ideally suited for mineral exploration. Alternatively, the ENVI PRO MAG can be operated in the "WALKMAG" mode, where readings may be made continuously at a user selectable rate of up to 2 readings per second. Although this marginally reduces the accuracy, it does allow the user to collect increased volumes of data and cover more area in a shorter period of time. This makes the ENVI PRO MAG a very cost effective tool for environmental surveys. The ENVI PRO MAG provides the following information:

- Total Magnetic Field
- Time/Date of Reading
- Coordinates of Reading either in grid format or GPS format
- Statistical Error of the Reading
- Signal Strength and Decay Rate of the Reading

As a magnetic BASE STATION instrument the ENVI PRO MAG can be set up to record variations of the Earth's magnetic field. Using this information from a stationary ENVI PRO MAG, the total field readings obtained with other field magnetometers can be corrected for these fluctuations, thus improving the accuracy of magnetic data.

All ENVI PRO MAG systems can be operated as either field or base station instruments. The optional base station accessories kit is recommended for base station applications.

ENVI PRO GRAD

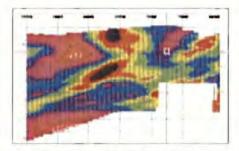
The ENVI PRO system configured as an ENVI PRO GRAD enables true simultaneous gradiometer measurements to be obtained. The ENVI PRO GRAD provides an accurate means of measuring both the total field and the gradient of the total field. The system reads the measurements of both sensors simultaneously to calculate the true gradient measurement. In the gradient mode, the ENVI PRO GRAD sharply defines the magnetic responses determined by total field data. It individually delineates closely spaced anomalies rather than collectively identifying them under one broad magnetic response. The ENVI PRO GRAD is well suited for geotechnical and archaeological surveys where small near surface magnetic targets are the object of the survey. In addition, the ENVI PRO GRAD provides the gradient of the total magnetic field.

The Scintrex ENVI PRO system offers the flexibility to find the increasingly more elusive anomalous targets. A complete ENVI PRO is low cost, lightweight, portable proton precession magnetometer/gradiometer, which enables to survey large areas quickly and accurately.

- Portable Field and Base Station Magnetometer
- True Simultaneous Gradiometer
- GPS Integrated positioning
- Complete with mapping software

Increase Productivity

Sampling rates of 0.5 second, 1 second and 3 seconds can be selected.


Rapidly Recall Data

For quality of data and for rapid analysis of the magnetic characteristics of the survey line, several modes of review are available. These include the measurements at the last four stations, the ability to scroll through any or all previous readings in memory and a graphic display of the previous data as profiles, line by line.

Simplify Fieldwork

The ENVI PRO system makes surveys easier to conduct:

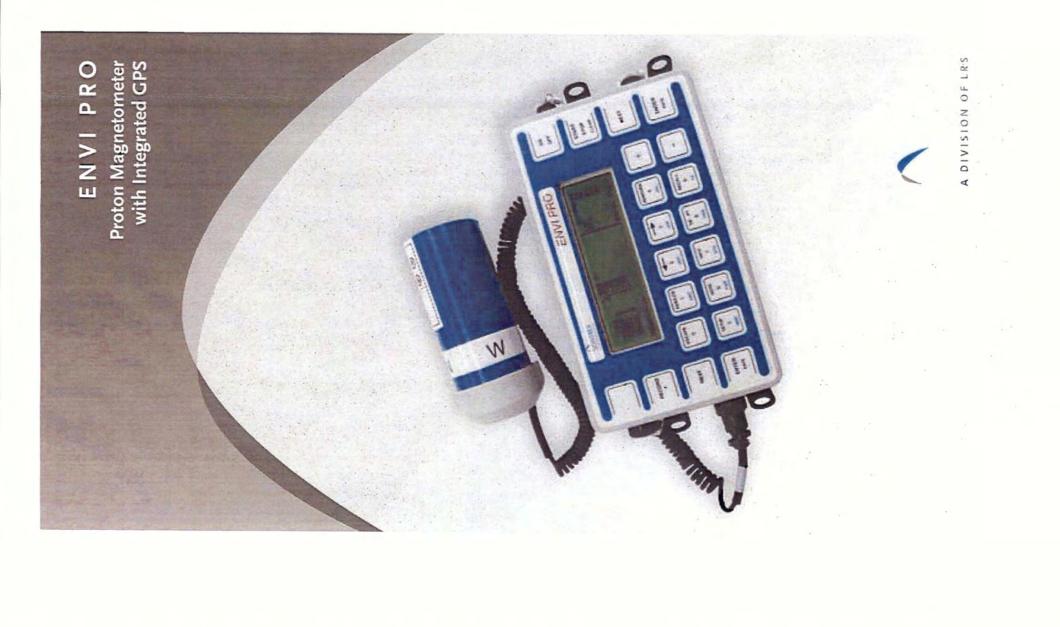
- Provides simple operator menus
- · Presents the data both numerically and graphically
- Calculates statistical error for each measurement
- Provides the ability to remove the coarse magnetic field value or data from the field data to simplify plotting of the field results
- Automatically calculates diurnal corrections
- Allows for hands free operation with the backpack

Data Quality Control and Mapping Software The software provided offers import and export capabilities, time and date channels,

extended spreadsheet, plotting and mapping functionalities. It also includes more advanced

data processing tools, such as merging and appending files, data filtering, and interpolation.

t the core of the ENVI PRO system is a lightweight console with a large display. Included with each system is a GPS antenna, a total field sensor and/or gradiometer sensor, sensor staff, backpack, a rechargeable battery, battery charger, dump cables, utility and mapping software, and a transit case.


APPLICATIONS

Since the ENVI PRO system capabilities are versatile, it can be used in a variety of applications including:

- Mineral Exploration
- Geological Mapping
- Environmental Site Characterization
- Groundwater Exploration
- Groundwater Studies
- Geotechnical Studies
- Civil Engineering
- Archaeology

WWW.SCINTREXLTD.COM

WALCER GEOPHYSICS LTD.

3//13 11 15 4//14/ 17 17 10/14

Walcer Model TX KW10

TRANSMITTERS MOTOR GENERATORS

GEOREFLS SPEEDWINDERS **ELECTRODES**

WIRE

RENTALS

MAINTENANCE

CONTACT US

Contact Webmaster at webmaster@walcergeophysics.com

Voltage Input 125V line to neutral 400 Hz / 3 phase Powered by MG12, MG6 and MG12A

Output 100 - 3200V in 10 steps 0.05 - 20 Amps Tested to 10.5 kVA

Switching 1 sec., 2 sec., 4 sec., 8 sec.

Metering LED for line voltage and output current

Size 63cm. x 54cm. x 25cm.

Weight 44 kg.

WALCER GEOPHYSICS LTD.

Gasoline Tank External - to minimize shipping problems with airlines

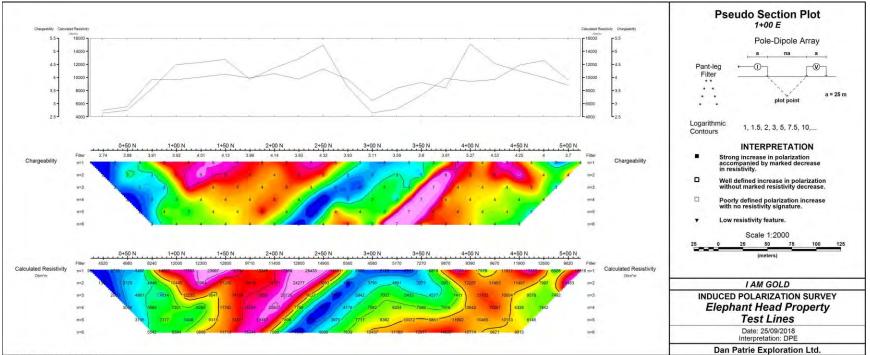
Contact Webmaster at webmaster@walcergeophysics.com

CONTACT US

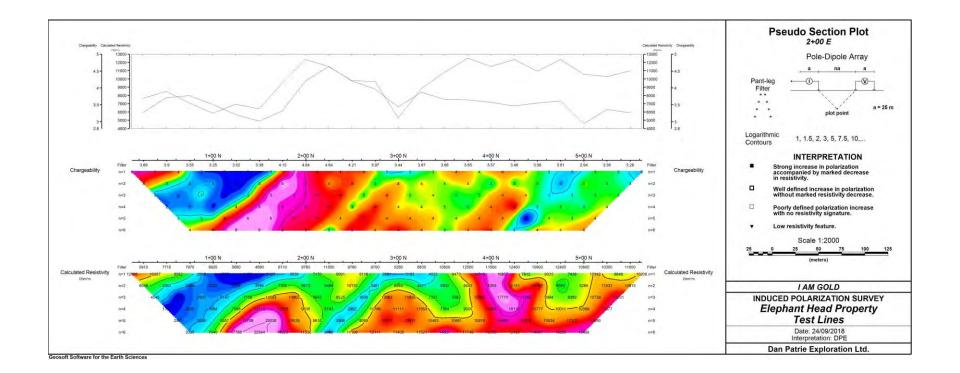
MG-12A

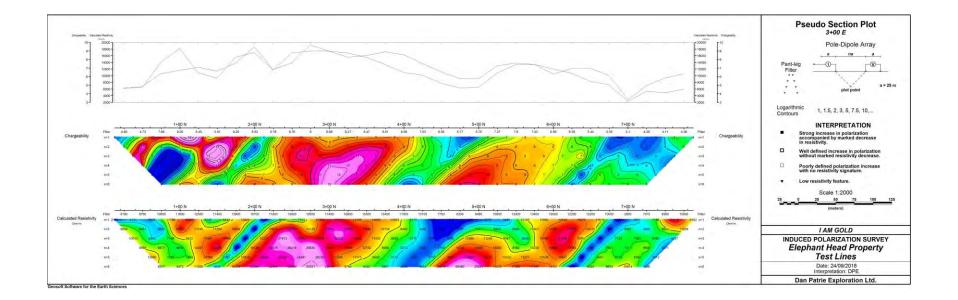
Output Self Excite / Regulated 120 / 220V AC 20 KVA Max 400 Hz / 3 phase

Generator Bendix Aircraft Type Very durable Forced Air Cooled


> Engine 24 HP Honda Electric Start

Size 79cm. x 61cm. x 48cm. Weight


89 kg.


Appendix B

Pseudo Section Plots of the Pole-dipole Results

Geosoft Software for the Earth Sciences

Appendix C

Daily Exploration Activity Log and Daily Rates

Date	Hours/Day	Personnel	Daily Log
12-Oct-18	10	Laura Katz	Drillhole planning, making maps and cross sections
16-Oct-18	10	Brian Wright	Flagging drill trail
17-Oct-18	10	Brian Wright	Flagging drill trail
21-Oct-18	10	Brian Wright	Showing NPLH drill collar locations
22-Oct-18	10	Brian Wright	Supervising float move
23-Oct-18	10	Brian Wright	Supervising feller buncher making drill trail
	5	Adam Waram	Elephant Head drilling support and coordination and spotted drill holes
			EH18-01 and EH18-02
24-Oct-18	10	Brian Wright	Supervising feller buncher making drill trail
			Elephant Head drilling support and coordination
25-Oct-18		Brian Wright	Supervising feller buncher making drill trail
		Adam Waram	Elephant Head drilling support and coordination
26-Oct-18			Elephant Head drilling support and coordination
	10	Shane O'Neill	Geoteching Elephant Head drill core
27-Oct-18	5	Adam Waram	Elephant Head drilling support and coordination
31-Oct-18	10	•	Spotting drill hole EH18-03
			Spotting drill hole EH18-03
03-Nov-18	10	Brian Wright	Tracking drill trails with GPS and drill visit
10-Nov-18			Geoteching Elephant Head drill core
			Core logging EH18-003
12-Nov-18			Core logging EH18-003
13-Nov-18			Core logging EH18-003
		-	Core logging EH18-001
14-Nov-18		-	Core logging EH18-001
		-	Core cutting EH18-003
15-Nov-18		-	Core logging EH18-001
		-	Core sampling EH18-003
16-Nov-18		-	Core logging EH18-001
.=		-	Core sampling EH18-003
1/-Nov-18		0	Core logging EH18-001
20 N 40		-	Core cutting EH18-001
		0	Environmental inspection on EH18-01, EH18-02 and EH18-03
			Deliver core samples (EH18-003) to lab
		-	Core cutting EH18-001
23-NOV-18			Core logging EH18-002
24 Nay 40			Core sampling EH18-001
			Core logging EH18-002
			Core logging EH18-002
			Core cutting EH18-002
			Core sampling EH18-002
05-Dec-18	5	Doreen Luke	Deliver core samples (EH18-001 and EH18-002) to lab
	Date 12-Oct-18 16-Oct-18 17-Oct-18 21-Oct-18 22-Oct-18 23-Oct-18 24-Oct-18 25-Oct-18 26-Oct-18 31-Oct-18 03-Nov-18 10-Nov-18 11-Nov-18	Date Hours/Day 12-Oct-18 10 16-Oct-18 10 17-Oct-18 10 21-Oct-18 10 22-Oct-18 10 22-Oct-18 10 23-Oct-18 10 23-Oct-18 10 24-Oct-18 10 5 10 25-Oct-18 10 5 10 27-Oct-18 5 31-Oct-18 10 10 10 107-Oct-18 10 100 10 107-Oct-18 10 10 10 10 10 10-Nov-18 10 10-Nov-18 10 11-Nov-18 10 12-Nov-18 10 13-Nov-18 10 14-Nov-18 10 10 10 15-Nov-18 10 16-Nov-18 10 17-Nov-18 10 10 10 </td <td>12-Oct-18 10 Laura Katz 16-Oct-18 10 Brian Wright 17-Oct-18 10 Brian Wright 21-Oct-18 10 Brian Wright 22-Oct-18 10 Brian Wright 23-Oct-18 10 Brian Wright 23-Oct-18 10 Brian Wright 5 Adam Waram 24-Oct-18 10 Brian Wright 5 Adam Waram 25-Oct-18 10 Brian Wright 5 Adam Waram 26-Oct-18 5 Adam Waram 26-Oct-18 5 Adam Waram 10 Shane O'Neill 10 27-Oct-18 10 Brian Wright 10 Brian Wright 10 11-Nov-18 10 Shane O'Neill 11-Nov-18 10 Ad</td>	12-Oct-18 10 Laura Katz 16-Oct-18 10 Brian Wright 17-Oct-18 10 Brian Wright 21-Oct-18 10 Brian Wright 22-Oct-18 10 Brian Wright 23-Oct-18 10 Brian Wright 23-Oct-18 10 Brian Wright 5 Adam Waram 24-Oct-18 10 Brian Wright 5 Adam Waram 25-Oct-18 10 Brian Wright 5 Adam Waram 26-Oct-18 5 Adam Waram 26-Oct-18 5 Adam Waram 10 Shane O'Neill 10 27-Oct-18 10 Brian Wright 10 Brian Wright 10 11-Nov-18 10 Shane O'Neill 11-Nov-18 10 Ad

Table C1: Daily activity log of IAMGOLD personnel during the diamond drill program

Personnel	Title	Daily Rate	Start Date	End Date	No. of Days Worked Total	No. of Days Lodged at Côté Exploration Camp
Laura Katz	Geologist	\$400.00	12-Oct-18	12-Oct-18	1	1
Erik Bobechko	Junior Geologist, G.I.T.	\$400.00	31-Oct-18	31-Oct-18	1	1
Nathan McCullough	Junior Geologist, G.I.T.	\$400.00	13-Nov-18	20-Nov-18	6	6
Adam Waram	Junior Geologist, G.I.T.	\$400.00	23-Oct-18	25-Nov-18	8.5	8.5
Brian Wright	Prospector	\$400.00	16-Oct-18	03-Nov-18	9	0
Shane O'Neill	Geotechnician	\$300.00	26-Oct-18	10-Nov-18	2	2
Channing Graham	Geotechnician	\$300.00	14-Nov-18	22-Nov-18	4	0
Doreen Luke	Geotechnician	\$300.00	21-Nov-18	05-Dec-18	2	0
Yvon Constant	Geotechnician	\$300.00	02-Dec-18	02-Dec-18	1	0
Claude Constant	Geotechnician	\$300.00	03-Dec-18	03-Dec-18	1	0

Table C2: Daily rate and log of IAMGOLD personnel during the diamond drill program

Appendix D

Drill Hole Logs

lole Number:	EH18-001				Project:	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.6	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-52.9	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Adam Warram	
Started:	24-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	26-Oct-18	Left in hole:	no		Logged by:	Nathan McCullough	Zone:	17		Surveyed by:		
Logged:	13-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeabil	ity anomaly around 65	m depth				Coordinate - 0	Gemcom	Coordina	te - UTM	Coordinate - Local	
Comment:	Log start date: Nov 13, 2018						East:	470343	East:	470343	East:	
	Log completion date: Nov 17	7, 2018					North:	5274010	North:	5274010	North:	
							Elev.:	376	Elev.:	376	Elev.:	

Distance	Azimuth	n Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
0.00	357.60	-52.90	C	0 0	0		С	\checkmark	
0.00	27.10	-54.60				29616	R		
3.00	27.00	-54.50				29610	R		
6.00	344.40	-54.10				27271	R		
9.00	86.70	-54.00				22600	R		
12.00	357.40	-53.80				96208	R		
15.00	357.40	-53.20				57922	R		
18.00	356.10	-53.10				57124	R		
21.00	357.60	-52.90				56843	R	\checkmark	
24.00	357.60	-52.90				56660	R	\checkmark	
27.00	357.30	-52.80				56550	R	\checkmark	
30.00	357.20	-52.70				56474	R	\checkmark	
33.00	357.10	-52.70				56436	R	\checkmark	
36.00	357.20	-52.60				56407	R	\checkmark	
39.00	357.10	-52.60				56390	R	\checkmark	

Hole Number:	EH18-001				Project	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.6	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-52.9	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Adam Warram	
Started:	24-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	26-Oct-18	Left in hole:	no		Logged by:	Nathan McCullough	Zone:	17		Surveyed by:		
Logged:	13-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeabil	ity anomaly around 65	m depth				Coordinate -	Gemcom	Coordina	ite - UTM	Coordinate - Local	
Comment:	Log start date: Nov 13, 2018						East:	470343	East:	470343	East:	0
	Log completion date: Nov 17	7, 2018					North:	5274010	North:	5274010	North:	0
							Elev.:	376	Elev.:	376	Elev.:	0

Distance	Azimuth Di	p Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
42.00	357.00 -52.5	0			56365	R	\checkmark	
45.00	357.10 -52.5	0			56365	R	\checkmark	
48.00	357.10 -52.4	0			56354	R	\checkmark	
51.00	357.10 -52.4	0			56345	R	\checkmark	
54.00	357.10 -52.4	0			56335	R	\checkmark	
57.00	357.20 -52.4	0			56336	R	\checkmark	
60.00	357.20 -52.3	0			56287	R	\checkmark	
63.00	357.10 -52.3	0			56288	R	\checkmark	
66.00	357.40 -52.5	0			56293	R	\checkmark	
69.00	357.20 -52.3	0			56291	R	\checkmark	
72.00	357.20 -52.3	0			56298	R	\checkmark	
75.00	357.20 -52.2	:0			56307	R	\checkmark	
78.00	357.20 -52.2	:0			56295	R	\checkmark	
81.00	357.20 -52.1	0			56304	R	\checkmark	
84.00	357.20 -52.2	:0			56277	R	\checkmark	
87.00	357.00 -52.1	0			56575	R	\checkmark	

Hole Number:	EH18-001				Project	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.6	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-52.9	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Adam Warram	
Started:	24-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	26-Oct-18	Left in hole:	no		Logged by:	Nathan McCullough	Zone:	17		Surveyed by:		
Logged:	13-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeabil	ity anomaly around 65	m depth				Coordinate -	Gemcom	Coordina	ate - UTM	Coordinate - Local	
Comment:	Log start date: Nov 13, 2018						East:	470343	East:	470343	East:	0
	Log completion date: Nov 17	7, 2018					North:	5274010	North:	5274010	North:	0
							Elev.:	376	Elev.:	376	Elev.:	0

Distance	Azimuth	Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
90.00	357.30	-52.10				56290	R	\checkmark	
93.00	357.30	-52.10				56322	R	\checkmark	
96.00	357.30	-52.00				56316	R	\checkmark	
99.00	357.60	-52.00				56097	R	\checkmark	
102.00	357.40	-52.00				56315	R	\checkmark	
105.00	357.40	-51.90				56323	R	\checkmark	
108.00	357.70	-52.00				56330	R	\checkmark	
111.00	357.30	-51.80				56325	R	\checkmark	
114.00	357.30	-51.80				56325	R	\checkmark	
117.00	357.30	-51.80				56320	R	\checkmark	
120.00	358.00	-52.60				56311	R		
123.00	357.30	-51.80				56307	R	\checkmark	
126.00	357.40	-51.80				56295	R	\checkmark	
129.00	357.40	-51.80				56303	R	\checkmark	
132.00	356.90	-51.80				56485	R		
135.00	357.50	-51.80				56229	R	\checkmark	

Hole Number:	EH18-001				Project	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.6	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-52.9	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Adam Warram	
Started:	24-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	26-Oct-18	Left in hole:	no		Logged by:	Nathan McCullough	Zone:	17		Surveyed by:		
Logged:	13-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeabil	ity anomaly around 65	m depth				Coordinate	- Gemcom	Coordina	ate - UTM	Coordinate - Loc	al
Comment:	Log start date: Nov 13, 2018						East:	470343	East:	470343	East:	0
	Log completion date: Nov 17	, 2018					North:	5274010	North:	5274010	North:	0
							Elev.:	376	Elev.:	376	Elev.:	0
	Deviation	<u>Tests</u>							<u>Density</u>	<u>Tests</u>		

Distance	Azimuth	Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
138.00	3.50	-51.80				59933	R		
141.00	357.30	-51.80				56330	R	\checkmark	
144.00	357.40	-51.70				56301	R	\checkmark	
147.00	357.30	-51.80				55943	R	\checkmark	
147.00									

IAMGOLD®

ole Numb	per: EH18	3-001		Project: ELEPHANT	HEAD				Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
0.00	9.85	OB Overburden	Overburden										
9.85	24.49	spv, weak to strong ep s	mgr, massive, inequigranula	PGY r, non-magnetic. Weak sil pv, weak to moderate ser o weak lx sel. No mineralization. 1% qz-cb+/-chl o, irregular.	850911 850913 850914	19.33 20.33 21.83	20.33 21.83 22.83	1.00 1.50 1.00	0.01 0.02 0.01	-	0.01 0.02 0.01	- -	- -
		Alteration Maj:	Type/Style/Intensity	Comment									
		9.85 - 19.85	BIO SEL 1	Biotitization, Selective, Very weak									
		9.85 - 19.85	CL SEL 2	Chloritization, Selective, Weak									
		9.85 - 19.85	SI SPV 1	Silicification, Semi-Pervasive, Very weak									
		9.85 - 19.85	EP SEL 1	Epidotization, Selective, Very weak									
		19.85 - 23.00	LX SEL 2	Leucoxene, Selective, Weak									
		19.85 - 23.00	SI PV 1	Silicification, Pervasive, Very weak									
		19.85 - 23.00	SR SPV 3	Sericitization, Semi-Pervasive, Moderate									
		19.85 - 23.00	EP SPV 4	Epidotization, Semi-Pervasive, Strong									
		23.00 - 24.49	BIO SEL 1	Biotitization, Selective, Very weak									
		23.00 - 24.49	SR SEL 2	Sericitization, Selective, Weak									
		23.00 - 24.49	SI PV 1	Silicification, Pervasive, Very weak									
		23.00 - 24.49	EP SPV 2	Epidotization, Semi-Pervasive, Weak									

e Numbe	er: EH18	8-001		Project: ELEPHANT HEAD					Project Num	ber:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length		Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Αι
		Texture Maj:	Туре	Comment										
		9.85 - 24.49	IEQ	Inequigranular										
		9.85 - 24.49	MG	Medium Grained(1-5mm)										
		9.85 - 24.49	MAS	Massive										
4.49	24.73	12	BC Quartz Feldspar Porpl	hvrv DGY										
	21.10	QFP, dark grey, porph	nyritic, aphanitic groundmass,	dominantly plag phenocrysts up to 4mm. Weak sil inlets. Lower contact with GDR sharp, irregular.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		24.49 - 24.73	EP SEL 2	Epidotization, Selective, Weak										
		24.49 - 24.73	SI PV 2	Silicification, Pervasive, Weak										
		Texture Maj:	Туре	Comment										
		24.49 - 24.73	PO	Porphyritic										
.73	32.04	GE	DR Granodiorite	PGY	850915	26.25	27.25	1.00		0.01	-	0.01	-	
		Granodiorite, pink-gre	y to green-grey, mgr, massive	e to weakly foliated, inequigranular, non-magnetic.	850916	27.25	28.25	1.00		0.01	-	0.01	-	
		chl sel, moderate lx se	el, very weak cb spv. Trace p	eak to strong ser sel/pv, very weak bt sel, very weak by diss. 1% qz-cb-chl+/-ser veins/stringers/fractures up	850917	28.25	29.23	0.98		0.02	-	0.02	-	
		to 2cm. Lower contac	t with QFP slightly diffuse, irr	egular. 29.23-30m strong alt, structure obliterated.	850941	29.23	30.00	0.77		0.01	-	0.01	-	
				-	850942	30.00	31.00	1.00		0.01	-	0.01	-	
		Alteration Maj:	Type/Style/Intensity	Comment	030942									
		Alteration Maj: 24.73 - 27.50	<i>Type/Style/Intensity</i> BIO SEL 1	<i>Comment</i> Biotitization, Selective, Very weak	050942									
					030942									
		24.73 - 27.50	BIO SEL 1	Biotitization, Selective, Very weak	030542									

le Numb	ber: EH1	8-001		Project: ELEPHANT HEAD					Project Number:	261			
-rom (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA A
()	()	27.50 - 29.23	CL SEL 1	Chloritization, Selective, Very weak			-				,	,	
		27.50 - 29.23	SI PV 1	Silicification, Pervasive, Very weak									
		27.50 - 29.23	EP SPV 3	Epidotization, Semi-Pervasive, Moderate									
		29.23 - 31.27	CL SEL 3	Chloritization, Selective, Moderate									
		29.23 - 31.27	LX SEL 4	Leucoxene, Selective, Strong									
		29.23 - 31.27	SR SEL 2	Sericitization, Selective, Weak									
		29.23 - 31.27	CB SPV 1	Carbonatization, Seni-Pervasive, Very weak									
		31.27 - 32.04	CB SEL 1	Carbonatization, Selective, Very weak									
		31.27 - 32.04	CL SEL 2	Chloritization, Selective, Weak									
		31.27 - 32.04	EP SEL 2	Epidotization, Selective, Weak									
		<i>Mineralization Maj. :</i> 24.73 - 32.04	Type/Style/%Mineral Py DIS 0.1	<i>Comment</i> Pyrite, Disseminated, 0.1%									
		Texture Maj:	Туре	Comment									
		24.73 - 32.04	MG	Medium Grained(1-5mm)									
		24.73 - 32.04	IEQ	Inequigranular									
		24.73 - 32.04	MAS	Massive									
32.04	32.49		C Quartz Feldspar Porph										
		QFP, grey, porphyritic, a Weak chl pv, very weak with GDR is diffuse.	apnanitic groundmass, quart c ep sel, very weak cb sel. N	z and plag phenocrysts up to 5mm, non-magnetic. o mineralization. 1% cb-qz veinlets. Lower contact									
		Alteration Maj:	Type/Style/Intensity	Comment									
		32.04 - 32.49	CB SEL 1	Carbonatization, Selective, Very weak									

IAMGOLD®

lole Num	ber: EH1	8-001		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA3 Au (ppm)
32.49	77.77	GI	DR <i>Granodiorite</i>	GG	850918	33.67	34.67	1.00	0.01	_	0.01	-	_
				e to weakly foliated, non-magnetic. Very weak to	850919	34.67	35.10	0.43	0.01	-	0.01	-	-
		sel/spv/mtf, very weal	k bt sel, very weak sil spv/pv. (moderate ep sel, very weak to moderate ser 0.5% py dis/frc/mtf/sh. 1% qz-cb-chl veinlets/frc/sh.	850920	35.10	35.81	0.71	0.01	-	0.01	-	-
			FP dike sharp, irregular.		850921	40.87	42.37	1.50	0.01	-	0.01	-	
		Alteration Maj:	Type/Style/Intensity	Comment	850922	42.37	43.87	1.50	0.01	-	0.01	-	
		32.49 - 36.00	SR SEL 2	Sericitization, Selective, Weak	850923	43.87	45.00	1.13	0.01	-	0.01	-	
		32.49 - 36.00	EP SEL 2	Epidotization, Selective, Weak	850925	45.95	46.95	1.00	0.01	-	0.01	-	
		32.49 - 36.00	CL SEL 3	Chloritization, Selective, Moderate	850926	46.95	47.91	0.96	0.16	-	0.16	-	
		32.49 - 36.00	LX SEL 3	Leucoxene, Selective, Moderate	850927	47.91	48.61	0.70	0.05	-	0.05		
		36.00 - 40.73	CL SEL 1	Chloritization, Selective, Very weak	850928	48.61	49.81	1.20	0.02	-	0.02		
		36.00 - 40.73	LX SEL 1	Leucoxene, Selective, Very weak	850929	49.81	51.45	1.64	0.26	-	0.26		
		36.00 - 40.73	SR SEL 2	Sericitization, Selective, Weak	850930	51.45	52.18	0.73	0.09	-	0.09		
		36.00 - 40.73	EP SEL 1	Epidotization, Selective, Very weak	850931	52.18	53.23	1.05	0.01	-	0.01	-	
		40.73 - 52.25	EP SEL 2	Epidotization, Selective, Weak	850932 850933	55.17 56.10	56.10 57.00	0.93 0.90	0.01 0.01	-	0.01 0.01	-	
		40.73 - 52.25	LX SEL 4	Leucoxene, Selective, Strong	850933	50.10 57.00	58.47	0.90 1.47	0.01	-	0.01	-	
		40.73 - 52.25	SR SEL 3	Sericitization, Selective, Moderate	850935	58.47	59.50	1.47	0.01	-	0.01	-	
		40.73 - 52.25	CL SPV 3	Chloritization, Semi-Pervasive, Moderate	850937	63.00	64.07	1.00	0.02	-	0.02	-	
		52.25 - 63.45	EP SEL 1	Epidotization, Selective, Very weak	850943	64.84	65.61	0.77	0.08	-	0.08	-	
					850938	69.66	70.62	0.96	0.01	-	0.01	-	
		52.25 - 63.45	SR SPV 2	Sericitization, Semi-Pervasive, Weak	850939	70.62	71.12	0.50	0.01	-	0.01	-	
		52.25 - 63.45	CL SEL 1	Chloritization, Selective, Very weak	850940	71.12	72.10	0.98	0.03	-	0.03	-	
		52.25 - 63.45	BIO SEL 2	Biotitization, Selective, Weak	850944	72.10	73.60	1.50	0.04	-	0.04	-	

Hole Numl	ber: EH	18-001		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA Au (ppr
		63.45 - 71.43	CL SEL 2	Chloritization, Selective, Weak	850945	73.60	74.62	1.02	0.03	3 -	0.03	-	-
		63.45 - 71.43	LX SEL 3	Leucoxene, Selective, Moderate									
		63.45 - 71.43	SR SEL 3	Sericitization, Selective, Moderate									
		63.45 - 71.43	EP SEL 3	Epidotization, Selective, Moderate									
		71.43 - 74.73	CL SEL 2	Chloritization, Selective, Weak									
		71.43 - 74.73	LX SEL 1	Leucoxene, Selective, Very weak									
				•									
		71.43 - 74.73	EP SEL 3	Epidotization, Selective, Moderate									
		71.43 - 74.73	SR SEL 2	Sericitization, Selective, Weak									
		74.73 - 77.77	CL SEL 2	Chloritization, Selective, Weak									
		74.73 - 77.77	BIO SEL 1	Biotitization, Selective, Very weak									
		74.73 - 77.77	SR SEL 1	Sericitization, Selective, Very weak									
		74.73 - 77.77	EP SEL 1	Epidotization, Selective, Very weak									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		36.00 - 40.73	Py DIS 0.1	Pyrite, Disseminated, 0.1%									
		40.73 - 52.25	Py SMAS 1	Pyrite, Semi-Massive, 1%									
		40.73 - 52.25	Py DIS 1	Pyrite, Disseminated, 1%									
		40.73 - 52.25	Py FAC 1	Pyrite, Fracture-controlled, 1%									
		52.25 - 63.45	Py FAC 0.25	Pyrite, Fracture-controlled, 0.25%									
		52.25 - 63.45	Py DIS 0.25	Pyrite, Disseminated, 0.25%									
		63.45 - 71.43	Py FAC 1	Pyrite, Fracture-controlled, 1%									
		63.45 - 71.43	Py DIS 1	Pyrite, Disseminated, 1%									
		71.43 - 74.73	Py FAC 1	Pyrite, Fracture-controlled, 1%									
		71.43 - 74.73	Py SHR 1	Pyrite, Shear hosted, 1%									
		71.43 - 74.73	Py DIS 1	Pyrite, Disseminated, 1%									
		74.73 - 77.77	Py FAC 0.25	Pyrite, Fracture-controlled, 0.25%									
		74.73 - 77.77	Py DIS 0.25	Pyrite, Disseminated, 0.25%									
		Structure Maj.:	Inte/Type/Core Angle	Comment									
				Ediated 22° CA									

ole Numb	ber: EH1	8-001		Project:	ELEPHANT HEAD					Project Numbe	er: 261			
From (m)	To (m)		Lithology	Weathering Oxidatio	n Colour	Sample #	From	То	Length		A u A om) (pr	u Au	Au	Αι
		Texture Maj:	Туре	Comment										
		32.49 - 50.10	IEQ	Inequigranular										
		32.49 - 50.10	MAS	Massive										
		50.10 - 51.50	IEQ	Inequigranular										
		50.10 - 51.50	MAS	Massive										
		50.10 - 51.50	NET	Net Textured										
		51.50 - 77.77	IEQ	Inequigranular										
		51.50 - 77.77	MAS	Massive										
77.77	78.13	QFP, grey, porphyritic, a	Quartz Feldspar Porph phanitic groundmass, domi weak ep sel. 1% py diss/fro	vry nantly plag phenocrysts up to 4mm, non- . 0.1% py fractures. Lower contact with	GY nagnetic. GDR	850946	77.76	78.17	0.41).03	- 0.1)3 -	-
		Alteration Maj:	Type/Style/Intensity	Comment										
		77.77 - 78.13	EP SEL 1	Epidotization, Selective, Very weak										
		77.77 - 78.13	CL SPV 1	Chloritization, Semi-Pervasive, Very w	eak									
		<i>Mineralization Maj. :</i> 77.77 - 78.13	Type∕Style∕%Mineral Py FAC 0.5	<i>Comment</i> Pyrite, Fracture-controlled, 0.5%										
		77.77 - 78.13	Py DIS 0.5	Pyrite, Disseminated, 0.5%										
		Texture Maj:	Туре	Comment										
		77.77 - 78.13	PO	Porphyritic										

EIAMGOLD®

le Num	ber: EH1	8-001		Project: ELEPHANT HEAD					Project Number:	261			
-rom (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	A
8.13	147.00	GI	DR Granodiorite	CR	850947	79.56	80.35	0.79	0.10	-	0.10	-	
				ve, non-magnetic (apart from pyrrhotite). Very weak to	850949	81.30	82.30	1.00	0.02	-	0.02	-	
				, very weak to weak sil pv, strong ser sel/spv, very n/frc locally higher. 0.5% chl+/-py frc, 2% qz-cb-+/-ep	850950	84.00	84.50	0.50	0.02	-	0.02	-	
		and cb stringers and v	veins. Common sericit-epidote	alt halos. End of hole shows only weak chl alteration.	850951	95.90	96.90	1.00	0.01	-	0.01	-	
		Alteration Maj:	Type/Style/Intensity	Comment	850952	96.90	98.05	1.15	0.03	-	0.03	-	
		78.13 - 96.96	EP SEL 2	Epidotization, Selective, Weak	850953	98.05	99.05	1.00	0.01	-	0.01	-	
		78.13 - 96.96	SI SPV 1	Silicification, Semi-Pervasive, Very weak	850954	106.25	107.30	1.05	0.01	-	0.01	-	
		78.13 - 96.96	CL SEL 1	Chloritization, Selective, Very weak	850955	111.40	111.75	0.35	0.04	-	0.04	-	
		78.13 - 96.96	SR SPV 2	Sericitization, Semi-Pervasive, Weak	850956	112.40	112.90	0.50	0.01	-	0.01	-	
		96.96 - 98.03	CL SEL 1	Chloritization, Selective, Very weak	850957	121.75	122.25	0.50	0.01	-	0.01	-	
		96.96 - 98.03	EP SEL 3	Epidotization, Selective, Moderate	850958	129.00	129.90	0.90	0.01	-	0.01	-	
		96.96 - 98.03	SI PV 1	Silicification, Pervasive, Very weak	850959	129.90	130.90	1.00	0.01	-	0.01	-	
		96.96 - 98.03	SR SPV 3	Sericitization, Semi-Pervasive, Moderate	850961	130.90	131.92	1.02	0.01 0.02	-	0.01 0.02	-	
		98.03 - 106.29	SR SPV 1	Sericitization, Semi-Pervasive, Very weak	850962 850963	131.92 132.37	132.37 132.82	0.45 0.45	0.02		0.02	-	
		98.03 - 106.29	EP SEL 2	Epidotization, Selective, Weak	850964	132.82	133.82	1.00	0.02		0.04	_	
		98.03 - 106.29	SI PV 1	Silicification, Pervasive, Very weak	850965	133.82	135.00	1.18	0.18		0.18	-	
		98.03 - 106.29	CL SEL 1	Chloritization, Selective, Very weak	850966	135.00	135.80	0.80	0.64	-	0.64	-	
		106.29 - 107.13	EP SPV 3	Epidotization, Semi-Pervasive, Moderate	850967	135.80	136.80	1.00	0.01	-	0.01	-	
					850968	138.00	139.00	1.00	0.02	-	0.02	-	
		106.29 - 107.13	SR PV 4	Sericitization, Pervasive, Strong	850969	139.00	140.00	1.00	0.02	-	0.02	-	
		106.29 - 107.13	CL SPV 3	Chloritization, Semi-Pervasive, Moderate	850970	140.00	141.00	1.00	0.04	-	0.04	-	
		106.29 - 107.13	SI PV 2	Silicification, Pervasive, Weak	850971	141.00	142.00	1.00	0.02	-	0.02	-	
		107.13 - 129.20	CL SEL 1	Chloritization, Selective, Very weak									
		107.13 - 129.20	EP SEL 1	Epidotization, Selective, Very weak									
		107.13 - 129.20	BIO SEL 1	Biotitization, Selective, Very weak									
		107.13 - 129.20	SR SPV 1	Sericitization, Semi-Pervasive, Very weak									

ole Numb	per: EH1	8-001		Project:	ELEPHANT HEAD					Project Num	ber:	261			
From (m)	To (m)		Lithology	Weathering Oxidation	Colour	Sample #	From	То	Length		Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA: Au
		129.20 - 136.00	CL SEL 2	Chloritization, Selective, Weak											
		129.20 - 136.00	EP SPV 3	Epidotization, Semi-Pervasive, Moderate	e										
		129.20 - 136.00	LX SEL 1	Leucoxene, Selective, Very weak											
		129.20 - 136.00	SR SPV 4	Sericitization, Semi-Pervasive, Strong											
		136.00 - 142.63	CL SEL 1	Chloritization, Selective, Very weak											
		136.00 - 142.63	EP SEL 2	Epidotization, Selective, Weak											
				•											
		136.00 - 142.63	SR SPV 3	Sericitization, Semi-Pervasive, Moderate	9										
		136.00 - 142.63	BIO SEL 1	Biotitization, Selective, Very weak											
		142.63 - 147.00	CL SEL 1	Chloritization, Selective, Very weak											
		142.63 - 147.00	BIO SEL 1	Biotitization, Selective, Very weak											
		142.63 - 147.00	SR SEL 1	Sericitization, Selective, Very weak											
		142.63 - 147.00	EP SEL 1	Epidotization, Selective, Very weak											
		Mineralization Maj. :	Type/Style/%Mineral	Comment											
		78.13 - 96.96	Py VN 0.1	Pyrite, Vein-controlled, 0.1%											
		78.13 - 96.96	Py DIS 0.1	Pyrite, Disseminated, 0.1%											
		78.13 - 96.96	Po VN 0.1	Pyrrhotite, Vein-controlled, 0.1%											
		96.96 - 98.03	Mo VN 0.1	Molybdenite, Vein-controlled, 0.1%											
		96.96 - 98.03	Py DIS 0.5	Pyrite, Disseminated, 0.5%											
		96.96 - 98.03	Py VN 0.5	Pyrite, Vein-controlled, 0.5%											
		98.03 - 106.29	Py FAC 0.5	Pyrite, Fracture-controlled, 0.5%											
		98.03 - 106.29	Py DIS 0.5	Pyrite, Disseminated, 0.5%											
		106.29 - 107.13	Py FAC 1	Pyrite, Fracture-controlled, 1%											
		106.29 - 107.13	Py DIS 1	Pyrite, Disseminated, 1%											
		129.20 - 136.00	Py FAC 0.5	Pyrite, Fracture-controlled, 0.5%											
		129.20 - 136.00	Po SMAS 0.5	Pyrrhotite, Semi-Massive, 0.5%											
		129.20 - 136.00	Py DIS 0.5	Pyrite, Disseminated, 0.5%											
		129.20 - 136.00	Py SMAS 0.5	Pyrite, Semi-Massive, 0.5%											

Hole Numb	per: EH1	8-001		Project: ELEPHANT HEAD					Project Number:	261		
From	То								Au	AV Au	FA Au	FA3 Au
(m)	(m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	(ppm)			
		136.00 - 142.60	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%								
		136.00 - 142.60	Py DIS 0.1	Pyrite, Disseminated, 0.1%								
		142.60 - 147.00	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%								
		142.60 - 147.00	Py DIS 0.1	Pyrite, Disseminated, 0.1%								
		Texture Maj:	Туре	Comment								
		78.13 - 147.00	IEQ	Inequigranular								
		78.13 - 147.00	MAS	Massive								

FULL ANALYTICAL REPORT

- Assay -

Hole Nur	nber: EH	18-001				Projec	:t: El	LEPHAN	IT HEAD)								Proj	ect Num	nber: 2	61			
Assay I	Report (j	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	To (m)	Length Sample # (m)	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Wi (kg)																
19.33	20.33	1.00 850911	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	_	-	-	-	-	-	_	_	_	-	_	-	-	-	_	_
20.33	21.83	1.50 850913	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21.83	22.83	1.00 850914	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	_	-	-	-	-	-	-	-	-	_	-	_	-	-	-
26.25	27.25	1.00 850915	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27.25	28.25	1.00 850916	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.25	29.23	0.98 850917	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
29.23	30.00	0.77 850941	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30.00	31.00	1.00 850942	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
33.67	34.67	1.00 850918	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
34.67	35.10	0.43 850919	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35.10	35.81	0.71 850920	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40.87	42.37	1.50 850921	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42.37	43.87	1.50 850922	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43.87	45.00	1.13 850923	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45.95	46.95	1.00 850925	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46.95	47.91	0.96 850926	Actlabs	A18-18809-Au	05-Dec-18	0.16	-	0.16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47.91	48.61	0.70 850927	Actlabs	A18-18809-Au	05-Dec-18	0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48.61	49.81	1.20 850928	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
49.81	51.45	1.64 850929	Actlabs	A18-18809-Au	05-Dec-18	0.26	-	0.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51.45	52.18	0.73 850930	Actlabs	A18-18809-Au	05-Dec-18	0.09	-	0.09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52.18	53.23	1.05 850931	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
55.17	56.10	0.93 850932	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
56.10	57.00	0.90 850933	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
57.00	58.47	1.47 850934	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
58.47	59.50	1.03 850935	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63.00	64.07	1.07 850937	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
64.84	65.61	0.77 850943	Actlabs	A18-18809-Au	05-Dec-18	0.08	-	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
69.66	70.62	0.96 850938	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
70.62	71.12	0.50 850939	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
71.12	72.10	0.98 850940	Actlabs	A18-18809-Au	05-Dec-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

FULL ANALYTICAL REPORT

- Assay -

Hole Nur	nber: EH	18-001				Projec	t: El	LEPHAN	T HEAD)								Proj	ect Nun	nber: 2	61			
Assay F	Report (µ	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	To (m)	Length Sample # (m)	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Wt (kg)																
72.10	73.60	1.50 850944	Actlabs	A18-18809-Au	05-Dec-18	0.04	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
73.60	74.62	1.02 850945	Actlabs	A18-18809-Au	05-Dec-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77.76	78.17	0.41 850946	Actlabs	A18-18809-Au	05-Dec-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
79.56	80.35	0.79 850947	Actlabs	A18-18809-Au	05-Dec-18	0.10	-	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
81.30	82.30	1.00 850949	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
84.00	84.50	0.50 850950	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
95.90	96.90	1.00 850951	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
96.90	98.05	1.15 850952	Actlabs	A18-18809-Au	05-Dec-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
98.05	99.05	1.00 850953	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
106.25	107.30	1.05 850954	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
111.40	111.75	0.35 850955	Actlabs	A18-18809-Au	05-Dec-18	0.04	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
112.40	112.90	0.50 850956	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
121.75	122.25	0.50 850957	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
129.00	129.90	0.90 850958	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
129.90	130.90	1.00 850959	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
130.90	131.92	1.02 850961	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
131.92	132.37	0.45 850962	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132.37	132.82	0.45 850963	Actlabs	A18-18809-Au	05-Dec-18	0.04	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132.82	133.82	1.00 850964	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
133.82	135.00	1.18 850965	Actlabs	A18-18809-Au	05-Dec-18	0.18	-	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
135.00	135.80	0.80 850966	Actlabs	A18-18809-Au	05-Dec-18	0.64	-	0.64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
135.80	136.80	1.00 850967	Actlabs	A18-18809-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
138.00	139.00	1.00 850968	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
139.00	140.00	1.00 850969	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
140.00	141.00	1.00 850970	Actlabs	A18-18809-Au	05-Dec-18	0.04	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
141.00	142.00	1.00 850971	Actlabs	A18-18809-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

lole Number:	EH18-002				Project:	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	2.3	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-50	Pulled:	no		Diam Chang:	no	NTS:	41P11E		Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	26-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	30-Oct-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	23-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeability	y anomaly around 70 r	m depth				Coordinate -	Gemcom	Coordin	ate - UTM	Coordinate - Local	I
Comment:	Log start date: Nov 23, 2018						East:	470106	East:	470106	East:	
	Log completion date: Nov 25, 2	2018					North:	5274015	North:	5274015	North:	
							Elev.:	369	Elev.:	369	Elev.:	
	Deviation T	- ests							Density	Tests		

Distance	Azimuth	n Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
0.00	360.00	-50.00	0	0	0		С		
0.00	2.30	-50.00	0	0	0		С	\checkmark	
15.00	0.20	-50.10				33913	R		
18.00	175.60	-49.60				-61981	R		
21.00	0.40	-48.80				55570	R		
24.00	2.30	-50.00				54450	R	\checkmark	
27.00	2.80	-50.20				53949	R		
30.00	359.40	-48.70				53149	R		
33.00	3.40	-49.40				53058	R		
36.00	2.60	-49.90				53337	R	\checkmark	
39.00	3.80	-50.10				53300	R		
42.00	3.40	-49.40				52749	R		
45.00	3.80	-50.50				53208	R		
48.00	2.50	-50.10				52728	R		
51.00	2.30	-50.10				52982	R		

Hole Number:	EH18-002				Project	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	2.3	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-50	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	26-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	30-Oct-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	23-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeability	y anomaly around 70	m depth				Coordinate - (Gemcom	Coordina	ate - UTM	Coordinate - Local	
Comment:	Log start date: Nov 23, 2018						East:	470106	East:	470106	East:	0
	Log completion date: Nov 25,	2018					North:	5274015	North:	5274015	North:	0
							Elev.:	369	Elev.:	369	Elev.:	0

Distance	Azimuth	n Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
54.00	6.00	-51.30				53289	R		
57.00	6.80	-53.80				53969	R		
60.00	3.00	-50.10				53022	R		
63.00	3.40	-49.80				52911	R		
66.00	4.20	-50.10				53368	R		
69.00	2.90	-50.10				53113	R	\checkmark	
72.00	11.00	-50.10				53088	R		
75.00	12.10	-50.10				53115	R		
78.00	12.10	-50.10				53111	R		
81.00	11.50	-50.10				52700	R		
84.00	12.90	-50.10				52913	R		
87.00	17.90	-50.10				53322	R		
90.00	12.10	-50.20				53173	R		
93.00	18.10	-50.20				53187	R		
96.00	2.10	-50.20				52836	R		
99.00	2.50	-50.20				53189	R	\checkmark	

Hole Number:	EH18-002				Project	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	2.3	Length:		9	Dimension:	NQ	Claim No.:	112675		Company:	IAMGOLD	
Dip:	-50	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	147	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	26-Oct-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	30-Oct-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	23-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing east-west chargeabil	ity anomaly around 70	m depth				Coordinate -	Gemcom	Coordina	ite - UTM	Coordinate - Local	
Comment:	Log start date: Nov 23, 2018						East:	470106	East:	470106	East:	0
	Log completion date: Nov 25	5, 2018					North:	5274015	North:	5274015	North:	0
							Elev.:	369	Elev.:	369	Elev.:	0

Distance	Azimutl	h Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
102.00	2.90	-50.10				53294	R	\checkmark	
105.00	2.70	-50.10				53197	R	\checkmark	
108.00	2.60	-50.10				53190	R	\checkmark	
111.00	2.00	-50.20				53287	R		
114.00	2.70	-50.20				53269	R	\checkmark	
117.00	2.80	-50.20				53304	R	\checkmark	
120.00	3.20	-44.50				51215	R		
123.00	3.70	-50.20				53371	R	\checkmark	
126.00	3.20	-50.10				53306	R	\checkmark	
129.00	3.00	-50.00				53302	R	\checkmark	
132.00	2.60	-49.50				53153	R		
135.00	3.40	-50.00				53315	R	\checkmark	
138.00	3.10	-49.80				53225	R	\checkmark	
141.00	4.50	-51.60				53740	R		
144.00	4.00	-50.00				53288	R	\checkmark	

IAMGOLD®

То (т)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA: Au
6.70	OB Overburden.	Overburden										
34.90				850973	14.65	15.20	0.55			0.01	-	
Weak-mod sel hem (possibly ju sel chl+/- very weak sel bt, weal	nalite). Pinkish cream to lig sibly just alkali feldspar)We	ht green grey. Mg-cg. Massive. Non-magnetic. ak-Mod sel ep, very weak to weak sel/spv ser, weak	very weak to weak sel/spy ser, weak	0.01	-	0.01	-					
	ot, weak-mpd spv si. <1% o	tz-cb-chl+/-ser veinlets/stringers. Trace dis/frac/vn	850975	16.50	18.00	1.50	0.02	-	0.02	-		
			gments that are partially dissolved. Lower contact	850976	22.00	23.50	1.50	0.01	-	0.01	-	
			Comment	850977	23.50	25.00	1.50	0.01	-	0.01	-	
	•			850978	25.00	26.50	1.50	0.01	-	0.01	-	
			, ,	850979	26.50	28.00	1.50	0.01	-	0.01	-	
				850980	28.00	29.50	1.50			0.01	-	
					29.50	31.00	1.50			0.01	-	
	6.70 - 22.00	HM SEL 2	Hematization, Selective, Weak								-	
	22.00 - 34.90	BIO SEL 2	Biotitization, Selective, Weak								-	
	22.00 - 34.90	CL SEL 2	Chloritization, Selective, Weak	850985	34.00	34.90	0.90	0.01	-	0.01	-	
	22.00 - 34.90	SR SEL 2	Sericitization, Selective, Weak									
	22.00 - 34.90	SI PV 3	Silicification, Pervasive, Moderate									
	Mineralization Maj. :	Type/Style/%Mineral	Comment									
	6.70 - 22.00	Py VN 0.01	Pyrite, Vein-controlled, 0.01%									
	6.70 - 22.00	Py FAC 0.01	Pyrite, Fracture-controlled, 0.01%									
	22.00 - 34.90		Pyrite, Vein-controlled, 0.1%									
	22.00 - 34.90	•	-									
		6.70 OB Overburden. Overburden. 34.90 GDR Granodiorite (possibly tor Weak-mod sel hem (possibly tor Weak-mod sel hem (possibly tor Weak-mod sel hem (possibly tor Veak-mod sel hem (possibly tor Veak-mod sel hem (possible) Alteration Maj: 6.70 - 22.00 6.70 - 22.00 6.70 - 22.00 6.70 - 22.00 6.70 - 22.00 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 Mineralization Maj. : 6.70 - 22.00 6.70 - 22.00 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 22.00 - 34.90 6.70 - 22.00 6.70 - 22.00 6.70 - 22.00 6.70 - 22.00	6.70 OB Overburden 34.90 GDR Granodiorite Granodiorite (possibly tonalite). Pinkish cream to lig Weak-mod sel hem (possibly just alkali feldspar)We sel chl+/- very weak sel bt, weak-mpd spv si. <1% of py. <1% dark grey qtz-feldspar porphyritic dioritic fra with diabase sharp, slightly irregular. Alteration Maj: Type/Style/Intensity 6.70 - 22.00 BIO SEL 2 6.70 - 22.00 EP SEL 1 6.70 - 22.00 EP SEL 2 6.70 - 22.00 EP SEL 2 6.70 - 22.00 BIO SEL 2 6.70 - 22.00 BIO SEL 2 2.00 - 34.90 BIO SEL 2 2.00 - 34.90 SR SEL 2 2.00 - 34.90 SI PV 3 Mineralization Maj.: Type/Style/%Mineral 6.70 - 22.00 Py VN 0.01 6.70 - 22.00 Py VN 0.01 6.70 - 22.00 Py VN 0.01 6.70 - 22.00 Py VN 0.01	6.70 OB Overburden 34.90 GDR Granodiorite CR Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. Weak-mod sel hem (possibly just alkali feldspar)Weak-Mod sel ep, very weak to weak sel/spv ser, weak sel bt, weak-smd spv si. <1% qt2-ch-ohlt-/ser verimets/stringers. Trace dis/fract/vn py. <1% dark grey qtz-feldspar porphyritic dioritic fragments that are partially dissolved. Lower contact with diabase sharp. slightly irregular.	6.70 OB Overburden 34.90 GDR Granodiorite CR 850973 Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnetic. 850974 Weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnetic. 850975 weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnetic. 850977 Weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. Very weak to weak sel/spy ser, weak sel dt., weak-mpd spy sit. <1% (dz-cb-chi+/-ser veinlets/stringers. Trace dis/frac/vn ps/s1% dark grey dz-feldsapa prophytitic dionitic fragments that are partially dissolved. Lower contact with diabase sharp. slightly irregular.	6.70 OB Overburden 34.90 GDR Granodiorite CR 850973 14.65 Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850974 15.20 Weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850975 16.50 Weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. verweak to weak selefyers ver, weak sel weak method sel ep, very weak to weak selefyers ver, weak sel to weak method sel ep, very weak to weak selefyers ver, weak sel to weak method sel ep, very verweak to weak selefyers ver, weak sel to weak method sel ep, very verweak to weak selefyers ver, weak sel to weak method sel ep, very verweak to weak selefyers ver, weak sel to weak method sel ep, very verweak to weak selefyers ver, weak sel to weak method sel ep. very verweak to weak selefyers ver, weak sel to weak method sel ep. very verweak to weak selefyers ver, weak sel to weak method sel ep. very verweak to weak selefyers ver, weak sel to selefyers ver, weak sel to weak selefyers ver, weak sel to ver, weak sel to weak selefyers ver, weak sel to ve	6.70 OB Overburden 34.90 GDR Granodiorite CR 850973 14.65 15.20 Granodiotte (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850974 15.20 16.50 Weak-mod sel hem (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850975 16.50 18.00 Yeak-mod sel hem (possibly us tail fieldspar)/wright continite fragments that are partially dissolved. Lower contact 850976 22.00 23.50 Alteration Maj: Type/Style/Intensity Comment 850977 25.50 26.50 6.70 - 22.00 BIO SEL 2 Biotitization, Selective, Weak 850979 26.50 28.00 6.70 - 22.00 CL SEL 2 Choritization, Selective, Weak 850980 28.00 29.50 6.70 - 22.00 HM SEL 2 Hematization, Selective, Very weak 850981 29.50 31.00 6.70 - 22.00 HM SEL 2 Biotitization, Selective, Weak 850982 31.00 32.50 6.70 - 22.00 HM SEL 2 Hematization, Selective, Weak 850983 32.50 34.00	6.70 OB Overburden 34.90 COR Granodiorite CR 850973 14.65 15.20 0.55 Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnetic. 850974 15.20 16.50 1.30 sel chi+/. very weak set bit, weak-mod sel hem (possibly just alkeil feldspar)Weak-Mod sel eq., very weak to weak sel/spv ser, sel/spv ser, sel/spv ser, sel/spv ser, sel/spv ser, sel/spv	6.70 OB Overburden 34.90 GDR Granodiorite CR 850973 14.65 15.20 0.55 0.01 Granodiorite (possibly tonalite). Phikish cream to light green grey. Mg-og. Massive. Non-magnetic. 850973 14.65 15.20 0.55 0.01 Granodiorite (possibly tonalite). Phikish cream to light green grey. Mg-og. Massive. Non-magnetic. 850974 15.20 16.50 1.30 0.01 velak-mod sel hem (possibly test alkali lidespar)Weak-Mod sel ep. very weak to weak selfspu ser, weak 850975 16.50 18.00 1.50 0.02 with dabase sharp, slightly trogular. Creatification fragments that are partially dissolved. Lower contact 850977 23.50 25.00 1.50 0.01 6.70 - 22.00 EIO SEL 2 Chloritization, Selective, Weak 850987 25.60 2.80 1.50 0.01 6.70 - 22.00 EIO SEL 2 Chloritization, Selective, Weak 850983 32.50 1.50 0.01 6.70 - 22.00 EI SEL 2 Chloritization, Selective, Weak 850983 32.50 1.50 0.01 6.70 - 22.00 </td <td>6.70 OB Overburden 34.90 GR Granodiorite CR 850973 14.65 15.20 0.55 0.01 - Granodiorite (possibly localite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnatic. 850974 15.20 16.50 1.30 0.01 - Weak-nod sel hem (possibly localite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnatic. 850974 15.20 16.50 1.30 0.01 - weak-nod sel hem (possibly localite). Pinkish cream to light green grey. Weak to weak selspo ser, weak 850975 16.50 18.00 1.50 0.02 - with diabase sharp, slightly irregular. Tace diafinacion magnetic. 850977 16.50 18.00 1.50 0.01 - 6.70 - 22.00 BIO SEL 2 Chointization, Selective, Weak 850979 25.00 25.00 1.50 0.01 - 6.70 - 22.00 CL SEL 2 Chointization, Selective, Weak 850980 28.00 25.00 1.50 0.01 - 6.70 - 22.00 HM SEL 2 Hematization, Selective, Weak 850983 32.00 35.00 0.01 - 2.200 - 34.90</td> <td>6.70 OB Overburden 34.90 CDR Granodiorite CR 650973 14.65 15.20 0.55 0.01 - 0.01 Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850974 15.20 16.50 1.30 0.01 - 0.01 Wask-model all hem (possibly tonalitic). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850971 16.50 1.30 0.01 - 0.01 yp. < 1% data grey of zchobing approprive foundine targenetiality disease weak evelops weak as bit wask.mellops weak weak of the provide the model and possible portprived foundine targenetiality disease weak evelops weak as bit wask.mellops weak as bit weak mellops in the magnetial are partially diseaved. Lower contact with datases etarge, signify inegular.</td> 850977 23.50 25.00 1.50 0.01 - 0.01 6.70 - 22.00 BIO SEL 2 Biotitization, Selective, Weak 850987 25.00 1.50 0.01 - 0.01 6.70 - 22.00 EP SEL 1 Hematization, Selective, Weak 850981 23.00 31.00 1.50 0.01 - 0.01 6.70 - 22.00 EP SEL 2 Hointization, Selective, Weak 850982 31.	6.70 OB Overburden 34.90 GR Granodiorite CR 850973 14.65 15.20 0.55 0.01 - Granodiorite (possibly localite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnatic. 850974 15.20 16.50 1.30 0.01 - Weak-nod sel hem (possibly localite). Pinkish cream to light green grey. Mg-og. Massive. Non-magnatic. 850974 15.20 16.50 1.30 0.01 - weak-nod sel hem (possibly localite). Pinkish cream to light green grey. Weak to weak selspo ser, weak 850975 16.50 18.00 1.50 0.02 - with diabase sharp, slightly irregular. Tace diafinacion magnetic. 850977 16.50 18.00 1.50 0.01 - 6.70 - 22.00 BIO SEL 2 Chointization, Selective, Weak 850979 25.00 25.00 1.50 0.01 - 6.70 - 22.00 CL SEL 2 Chointization, Selective, Weak 850980 28.00 25.00 1.50 0.01 - 6.70 - 22.00 HM SEL 2 Hematization, Selective, Weak 850983 32.00 35.00 0.01 - 2.200 - 34.90	6.70 OB Overburden 34.90 CDR Granodiorite CR 650973 14.65 15.20 0.55 0.01 - 0.01 Granodiorite (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850974 15.20 16.50 1.30 0.01 - 0.01 Wask-model all hem (possibly tonalitic). Pinkish cream to light green grey. Mg-cg. Massive. Non-magnetic. 850971 16.50 1.30 0.01 - 0.01 yp. < 1% data grey of zchobing approprive foundine targenetiality disease weak evelops weak as bit wask.mellops weak weak of the provide the model and possible portprived foundine targenetiality disease weak evelops weak as bit wask.mellops weak as bit weak mellops in the magnetial are partially diseaved. Lower contact with datases etarge, signify inegular.	6.70 OB Orechurden. 34.90 GDR Granodiorite CR 850973 14.65 15.20 0.55 0.01 - 0.01 - Granodiorite (Dossibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-nagnetic. 850973 14.65 15.20 1.50 1.00 0.01 - 0.01 - Wask-model hem (possibly tonalite). Pinkish cream to light green grey. Mg-cg. Massive. Non-nagnetic. 850974 15.20 1.50 1.30 0.01 - 0.01 - wask-model hem (possibly portprivite doint fragments hard are patality) dissolved. Lower contact 850976 1.50 1.50 0.01 - 0.01 - with diabase shap, usgift were quelled fragments Comment 850977 2.50 2.50 1.50 0.01 - 0.01 - 6.70 - 22.00 BIO SEL 2 Biotitization, Selective, Weak 850977 2.50 2.50 1.50 0.01 - 0.01 - 6.70 - 22.00 BIO SEL 2 Choritzation, Selective, Weak 850987 2.50 1.50 0.01

Hole Numb	per: EH1	18-002			Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology		Weathering Oxidation Colour	Sample #	From	То	Length	Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
		Texture Maj:	Туре	Comr	nent									
		6.70 - 34.90	MAS	Massi	ve									
		6.70 - 34.90	CG	Coars	e Grained (>5mm)									
		6.70 - 34.90	HT	Hetero	ogeneous									
		Vein Maj. :	Style/%vein/CoreA/%	%min/min	Comment									
		6.70 - 22.00		CHLV	Chlorite Veining, 10%									
		6.70 - 22.00	STG 0.1 90	QCSCV	Quartz Carb Sericite Vein, 90%									
		22.00 - 34.90	VN 1 10 Cł	HLV	Chlorite Veining, 10%									
		22.00 - 34.90	VN 1 90 Q		Quartz Carb Sericite Vein, 90%									

34.90 38.35

DIA Diabase

GRBLK

Diabase. Vfg-fg. Dark grey to Blackish grey. Strongly magnetic. Massive. Weak pv cb, very weak sel hem. <1% qtz-cb veinlets. 48cm section/fragment of granodiorite within dyke from 36.2 -36.68m. Upper contact with granodiorite sharp, slightly irregular. Lower contact with granodiorite sharp, slightly irregular and marked by a 4cm qtz-cb-ser-chl vein.

Alteration Maj:	Type/Style/Intensity	Comment
34.90 - 38.35	HM SEL 1	Hematization, Selective, Very weak
34.90 - 38.35	CB PV 2	Carbonatization, Pervasive, Weak

Texture Maj:	Туре	Comment
34.90 - 38.35	MAS	Massive
34.90 - 38.35	FG	Fine Grained (<1mm)
34.90 - 38.35	HO	Homogeneous
Vein Maj. :	Style/%vein/CoreA/%mi	n/min Comment
34.90 - 38.35	VN 0.3 100 QC	CV Quartz-Calcite Vein, 100%

le Numl	ber: EH1	8-002		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Αι
8.35	42.50	GDR	Granodiorite	CR	850986	38.35	39.50	1.15	0.01	_	0.01	_	_
		Granodiorite (possibly to	nalite). Pinkish cream to li	ght green grey. Mg-cg. Massive. Non-magnetic. Very	850987	39.50	41.00	1.10	0.01		0.01	-	
	s tr U c	sel chl+/- very weak sel t trace moly frac. <1% dar Upper contact with diaba	bt, weak spv si. <1% qtź-c k grey qtz-feldspar porphyr	od sel ep, very weak to weak sel/spv ser, weak-mod p-chl+/-ser veinlets/stringers. Trace dis/frac/vn py, itic dioritic fragments that are partially dissolved. gular and marked by a 4cm qtz-cb-ser-chl vein. Lower ore at contact)	850988	41.00	42.50	1.50	0.13		0.13	-	
		Alteration Maj:	Type/Style/Intensity	Comment									
		38.35 - 42.50	HM SEL 2	Hematization, Selective, Weak									
		38.35 - 42.50	EP SEL 3	Epidotization, Selective, Moderate									
		38.35 - 42.50	SR SEL 2	Sericitization, Selective, Weak									
		38.35 - 42.50	SI SPV 2	Silicification, Semi-Pervasive, Weak									
		<i>Mineralization Maj. :</i> 38.35 - 42.50 38.35 - 42.50	Type/Style/%Mineral Py FAC 0.02 Py DIS 0.02	<i>Comment</i> Pyrite, Fracture-controlled, 0.02% Pyrite, Disseminated, 0.02%									
		Texture Maj: 38.35 - 42.50 38.35 - 42.50 38.35 - 42.50	Type MAS CG HT	<i>Comment</i> Massive Coarse Grained (>5mm) Heterogeneous									
		Vein Maj. : 38.35 - 42.50	Style/%vein/CoreA/%n	0									
2.50	43.35	phenocrysts up to 0.3cm si, weak sel chl +/-bt. Ch	rke. Light pink to pinkish gi i (4-6%). Massive. Non-ma hl + carb along fracs. Trac	PI ey. Vfg to fg matrix, qtz & ep altered plag gnetic. Mod pv hem (possibly alkali feldpar), weak pv e frac py. Upper contact with granodiorite likely sharp diorite sharp, slightly irregular.	850989	42.50	43.35	0.85	0.02	<u>-</u>	0.02	-	
		Alteration Maj:	Type/Style/Intensity	Comment									

ole Numb	er: EH1	8-002		Project: E	LEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation	Colour	Sample #	From	То	Length	Au (ppr:	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA AL (ppr
()	()	42.50 - 43.35	BIO SEL 1	Biotitization, Selective, Very weak			-	-				,		
		42.50 - 43.35	CL SEL 2	Chloritization, Selective, Weak										
		42.50 - 43.35	SI PV 2	Silicification, Pervasive, Weak										
		42.50 - 43.35	HM PV 3	Hematization, Pervasive, Moderate										
		<i>Mineralization Maj. :</i> 42.50 - 43.35	Type/Style/%Mineral Py FAC 0.02	<i>Comment</i> Pyrite, Fracture-controlled, 0.02%										
		Texture Maj:	Туре	Comment										
		42.50 - 43.35	MAS	Massive										
		42.50 - 43.35	HO	Homogeneous										
40.0-	- / - 0													
43.35	51.50			the groop grove Margar Maggive New more	CR	850990	43.35	44.50	1.15	0.0		0.01	-	-
		weak-weak sel hem (po	ssibly just alkali feldspar) we	ht green grey. Mg-cg. Massive. Non-magn eak-mod sel ep, very weak to weak sel/spv se	er, weak-	850991	44.50	45.30	0.80	0.0		0.01	-	-
		mod sel chl+/- very wea	k sel bt, weak spv si, weak-	nod sel ab lower half of unit (possibly other a 1% qtz-cb-chl+/-ser veinlets/stringers. Trace	alteration	850992	45.30	45.80	0.50	0.0	1 -	0.01	-	-
		dis/frac/vn py. <1% dark	k grey qtz-feldspar porphyriti	c dioritic fragments that are partially dissolve	d. 1%	850993	45.80	47.00	1.20	0.0		0.01	-	-
			 n. Upper contact with int dyl arp (broken core at contact) 	ke sharp, slightly irregular. Lower contact wit	th feldpar	850994	47.00	48.50	1.50	0.0		0.01	-	-
				O		850995	48.50	50.00	1.50	0.0		0.01	-	-
		Alteration Maj:	Type/Style/Intensity	Comment		850997	50.00	51.50	1.50	0.0	1 -	0.01	-	-
		43.35 - 48.00	SR SPV 1	Sericitization, Semi-Pervasive, Very weak										
		43.35 - 48.00	SI SPV 2	Silicification, Semi-Pervasive, Weak										
		43.35 - 48.00	HM SEL 2	Hematization, Selective, Weak										
		43.35 - 48.00	EP SEL 3	Epidotization, Selective, Moderate										
		48.00 - 51.50	EP SEL 2	Epidotization, Selective, Weak										
		48.00 - 51.50	SI SPV 2	Silicification, Semi-Pervasive, Weak										

ole Numb	ber: EH1	8-002		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA Au (ppn
		48.00 - 51.50	SR SPV 2	Sericitization, Semi-Pervasive, Weak									
		48.00 - 51.50	CL SEL 3	Chloritization, Selective, Moderate									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		43.35 - 48.00	Mo FAC 0.01	Molybdenite, Fracture-controlled, 0.01%									
		43.35 - 48.00	Py DIS 0.02	Pyrite, Disseminated, 0.02%									
		43.35 - 48.00	Py FAC 0.01	Pyrite, Fracture-controlled, 0.01%									
		48.00 - 51.50	Py DIS 0.05	Pyrite, Disseminated, 0.05%									
		48.00 - 51.50	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%									
		Texture Maj:	Туре	Comment									
		43.35 - 51.50	HT	Heterogeneous									
		43.35 - 51.50	CG	Coarse Grained (>5mm)									
		43.35 - 51.50	MAS	Massive									
		Vein Maj. : 43.35 - 51.50	Style/%vein/CoreA/%n 0.1 100 QCS										
51.50	54.70	12C	Feldspar Porphyry	GRB									
01.00	04.10	Feldspar porphyry dyke Massive to very weakly	. Dark brownish grey. Vfg-f foliated. Non-magnetic. No r contact with granodiorite lik	g matrix, plag phenocrysts up to 0.3cm (15%). mineralizaiton. Very weak sel hem, weak pv chl. Chl sely sharp (broken core at contact). Lower contact									
		Alteration Maj:	Type/Style/Intensity	Comment									
		51.50 - 54.70	CL PV 2	Chloritization, Pervasive, Weak									
		51.50 - 54.70	HM SEL 1	Hematization, Selective, Very weak									
		Texture Maj:	Туре	Comment									
		51.50 - 54.70	MAS	Massive									
		51.50 - 54.70	HT	Heterogeneous									

ole Numl	ber: EH1	8-002		Project: ELEPHANT HEAD					Project Number	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Αι (ppr		Au	FA2 Au (ppm)	FA A
		51.50 - 54.70	PO	Porphyritic									
54.70	60.50	CDR	Granodiorite	CR	050000	50.00	00.50	4.50	0.)1 -	0.04		
4.70	00.00	Granodiorite (possibly to weak-weak sel hem (pos ab (possibly other altera veinlets/stringers. Trace	onalite). Pinkish cream to lig ssibly just alkali feldspar), w tion but manifested in the fo	ght green grey. Mg-cg. Massive. Non-magnetic. Very eak- mod sel chl+/- very weak to weak sel bt, mod sel rrm of rims around grains). <1% qtz-cb +/- chl vuggy h feldspar porphyry dyke sharp but irregular. Lower	850998	59.00	60.50	1.50	U.	- 17	0.01	-	
		Alteration Maj:	Type/Style/Intensity	Comment									
		54.70 - 60.50	HM SEL 2	Hematization, Selective, Weak									
		54.70 - 60.50	BIO SEL 1	Biotitization, Selective, Very weak									
		54.70 - 60.50	CL SEL 3	Chloritization, Selective, Moderate									
		54.70 - 60.50	AB SEL 3	Albitization, Selective, Moderate									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		54.70 - 60.50	Py FAC 0.01	Pyrite, Fracture-controlled, 0.01%									
		Texture Maj:	Туре	Comment									
		54.70 - 60.50	MAS	Massive									
		54.70 - 60.50	HT	Heterogeneous									
		54.70 - 60.50	CG	Coarse Grained (>5mm)									
		Vein Maj. :	Style/%vein/CoreA/%n										
		54.70 - 60.50	VN 0.2 100 G	CV Quartz-Calcite Vein, 100% + chl									

60.50 89.25

DIA Diabase

GRBLK

Diabase. Fg-mg (aphanitic to fg at contacts -chill margins). Dark grey to Blackish grey. Strongly magnetic. Massive. <1% qtz-cb veinlets. Upper contact with granodiorite likely sharp (broken core at contact). Lower contact with Granodiorite sharp.

IAMGOLD[®] CORPORATION

LITHOLOGY REPORT - Detailed -

ole Numb	per: EH1	8-002		Project: ELEPHANT HEAD					Project Nur	nber:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length		Au (ppm)	AV Au (ppm)	Au	FA2 Au (ppm)	FA Au (ppn
		Texture Maj:	Туре	Comment										
		60.50 - 89.25	MAS	Massive										
		60.50 - 89.25	FG	Fine Grained (<1mm)										
		60.50 - 89.25	HT	Heterogeneous										
		Vein Maj. :	Style/%vein/CoreA/%											
		60.50 - 89.25	STG 0.2 100	QCV Quartz-Calcite Vein, 100%										
		ver weak to weak spv veinlets/stringers. Tr fragments that are pa	v si, weak-mod sel chl+/- ver ace dis/frac py, trace frac po artially dissolved (up to 45cm	Very weak-weak sel ep, very weak to weak sel/spv ser, weak sel bt, weak-mod spv si. <1% qtz-cb-chl+/-ser <1% dark grey qtz-feldspar porphyritic dioritic). Syenitic dykes up to 8cm from 111 to 113m (3%). with int dyke sharp but irregular.	808207 808208 808209	92.50 94.00 95.50	94.00 95.50 97.00	1.50 1.50 1.50		0.01 0.01 0.01	- - -	0.01 0.01 0.01	- - -	
		Alteration Maj:	Type/Style/Intensity	Comment	808210	97.00	98.50	1.50		0.07	-	0.07	-	
		89.25 - 98.10	BIO SEL 1	Biotitization, Selective, Very weak	808211	115.50	117.00	1.50		0.01	-	0.01	-	
		89.25 - 98.10	CL SEL 3	Chloritization, Selective, Moderate										
		89.25 - 98.10	EP SEL 2	Epidotization, Selective, Weak										
		89.25 - 98.10	HM SEL 1	Hematization, Selective, Very weak										
		98.10 - 111.00	BIO SEL 1	Biotitization, Selective, Very weak										
		98.10 - 111.00	CL SEL 2	Chloritization, Selective, Weak										
		98.10 - 111.00	EP SEL 1	Epidotization, Selective, Very weak										
		98.10 - 111.00	HM SEL 3	Hematization, Selective, Moderate										

CL SEL 2

111.00 - 117.00

ole Number	: EH18	8-002		Project:	ELEPHANT HEAD					Project Numb	er: 2	261			
From (m)	To (m)		Lithology	Weathering Oxidation	Colour	Sample #	From	То	Length		Au pm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
()	()	111.00 - 117.00	SI PV 2	Silicification, Pervasive, Weak		•			Ū						
		111.00 - 117.00	EP SEL 3	Epidotization, Selective, Moderate											
		Mineralization Maj. :	Type/Style/%Mineral	Comment											
		89.25 - 91.00	Po FAC 0.01	Pyrrhotite, Fracture-controlled, 0.01%											
		89.25 - 91.00	Py FAC 0.01	Pyrite, Fracture-controlled, 0.01%											
		91.00 - 98.10	Py DIS 0.02	Pyrite, Disseminated, 0.02%											
		91.00 - 98.10	Py FAC 0.02	Pyrite, Fracture-controlled, 0.02%											
		98.10 - 111.00	Py FAC 0.01	Pyrite, Fracture-controlled, 0.01%											
		111.00 - 117.00	Py DIS 0.02	Pyrite, Disseminated, 0.02%											
		111.00 - 117.00	Py FAC 0.02	Pyrite, Fracture-controlled, 0.02%											
		Texture Maj:	Туре	Comment											
		89.25 - 117.00	CG	Coarse Grained (>5mm)											
		89.25 - 117.00	MAS	Massive											
		89.25 - 117.00	HT	Heterogeneous											
		Vein Maj. :	Style/%vein/CoreA/%m	nin/min Comment											
		89.25 - 117.00	SHRV 0.1 100	QCV Quartz-Calcite Vein, 100% + ch	I										
17.00 11	17.65	INTD) Intermediate Dyke		CR	808213	117.00	117.65	0.65		0.01	-	0.01	-	-
		Non-magnetic. No miner	ralization. Mod - strong pv s contact with granodiorite sha	ream to yellowish beige. Aphanitic to vfg. si, mod-strong spv ser, very weak sel chl. arp but irregular. Lower contact with grand	3% Qtz-cb										
		Alteration Maj:	Type/Style/Intensity	Comment											
		117.00 - 117.65	CL SEL 1	Chloritization, Selective, Very weak											
		117.00 - 117.65	SR SPV 3	Sericitization, Semi-Pervasive, Moderat	е										

lole Numb	per: EH1	8-002		Project:	ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation	Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
. ,	. ,	Texture Maj:	Туре	Comment					-					
		117.00 - 117.65	MAS	Massive										
		117.00 - 117.65	FG	Fine Grained (<1mm)										
		117.00 - 117.65	HT	Heterogeneous										
		Vein Maj. :	Style/%vein/CoreA/%m	in/min Comment										
		117.00 - 117.65	VN 3 100 QC											
117.65	120.15	GDR	Granodiorite		GY	808214	117.65	119.00	1.35	0.0	7 -	0.02	_	_
		Non-magnetic. Weak- r veinlets/stringers. Trace	nod sel ser, weak-mod pv si e dis/frac py. Upper contact	sh grey. Fg-cg. Massive to very weakly sh (+ possibly ab), weak-mod sel chl. 1% qtz with int dyke sharp, slightly irregular (broke and marked by 2cm qtz-cb vein.	z-cb-chl	808215	119.00	120.15	1.15	0.0		0.02	-	-
		Alteration Maj:	Type/Style/Intensity	Comment										
		117.65 - 120.15	SI PV 3	Silicification, Pervasive, Moderate + pos	sibly albite									
		117.65 - 120.15	SR SEL 3	Sericitization, Selective, Moderate										
		117.65 - 120.15	CL SEL 3	Chloritization, Selective, Moderate										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		117.65 - 120.15	Py FAC 0.03	Pyrite, Fracture-controlled, 0.03%										
		117.65 - 120.15	Py DIS 0.07	Pyrite, Disseminated, 0.07%										
		Texture Maj:	Туре	Comment										
		117.65 - 120.15	MAS	Massive										
		117.65 - 120.15	CG	Coarse Grained (>5mm)										
		117.65 - 120.15	HT	Heterogeneous										
		Vein Maj. :	Style/%vein/CoreA/%m	in/min Comment										
		117.65 - 120.15	VN 1 100 QC	V Quartz-Calcite Vein, 100% + chl										

Hole Num	ber: EH1	8-002		Project: ELEPHANT HEAD					Project Num	ber:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length		Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA3 Au (ppm)
120.15	121.30	with original texture lost foliated (irregular wavy fo	unit, likely the result of stron due to veining/alt. Dark gre ol). Weak-mod sel cb, mod pontact with granodiorite shar	DGY ng alteration and veining. Possibly just granodiorite y to brownish grey. Aphanitic to vfg. Massive to mod pv chl, weak sel sr. Trace dis/frac/vn py. 5-8% qtz- p but irregular and marked by 2cm qtz-cb vein.	808216	120.15	121.30	1.15		0.01	-	0.01	-	-
		Alteration Maj:	Type/Style/Intensity	Comment										
		120.15 - 121.30	SR SEL 2	Sericitization, Selective, Weak										
		120.15 - 121.30	CB SEL 3	Carbonatization, Selective, Moderate										
		120.15 - 121.30	CL PV 3	Chloritization, Pervasive, Moderate										
		<i>Mineralization Maj. :</i> 120.15 - 121.30 120.15 - 121.30	Type∕Style∕%Mineral Py DIS 0.1 Py VN 0.1	<i>Comment</i> Pyrite, Disseminated, 0.1% Pyrite, Vein-controlled, 0.1%										
		Structure Maj.:	Inte/Type/Core Angle	Comment										
		120.15 - 121.30	WM FOL	Foliated										
		Texture Maj: 120.15 - 121.30 120.15 - 121.30 Vein Maj. : 120.15 - 121.30	Type FG HT Style/%vein/CoreA/%m VN 8 100 QC											

Hole Num	nber: EH1	8-002		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA3 Au (ppm)
121.30	147.00	GDF	R Granodiorite	LGY	808217	121.30	122.50	1.20	0.01	-	0.01	-	-
				to greenish grey. Mg-cg. Massive. Weak patchy	808218	122.50	123.60	1.10	0.01	-	0.01	-	-
				od sel/spv ser, weak-mod sel chl+/- very weak sel bt. c/vn py. <1% dark grey dioritic fragments that are	808219	123.60	124.60	1.00	0.01	-	0.01	-	-
		partially dissolved (up to irregular. EOH		diabase sharp. Lower contact with int dyke sharp but	808220	124.60	126.00	1.40	0.01	-	0.01	-	-
		5	Turne (Chule (Internetity)	0	808221	126.00	127.50	1.50	0.01	-	0.01	-	-
		Alteration Maj:		Comment	808222	127.50	129.00	1.50	0.01	-	0.01	-	-
		121.30 - 136.50	BIO SEL 1	Biotitization, Selective, Very weak	808223	129.00	130.50	1.50	0.02	2 -	0.02	-	-
		121.30 - 136.50	CL SEL 2	Chloritization, Selective, Weak	808225	130.50	132.00	1.50	0.01	-	0.01	-	-
		121.30 - 136.50	SR SEL 2	Sericitization, Selective, Weak	808226	132.00	133.50	1.50	0.01	-	0.01	-	-
		121.30 - 136.50	SI PV 2	Silicification, Pervasive, Weak	808227	133.50	135.00	1.50	0.01	-	0.01	-	-
		136.50 - 147.00	EP SEL 3	Epidotization, Selective, Moderate	808228	135.00	136.50	1.50	0.01	-	0.01	-	-
		136.50 - 147.00	CL SEL 3	Chloritization, Selective, Moderate	808229	136.50	138.00	1.50	0.07	-	0.07	-	-
		136.50 - 147.00	SR SEL 3	Sericitization, Selective, Moderate	808230	138.00	139.50	1.50	0.03	; -	0.03	-	-
		136.50 - 147.00	SI PV 3	Silicification, Pervasive, Moderate	808231	139.50	141.00	1.50	0.02	- 2	0.02	-	-
		Mineralization Maj. :		Comment	808232	141.00	142.50	1.50	0.01	-	0.01	-	-
		121.30 - 136.50	Type/Style/%Mineral Py FAC 0.03	Pyrite, Fracture-controlled, 0.03%	808233	142.50	144.00	1.50	0.01	-	0.01	-	-
		121.30 - 136.50	Py DIS 0.01	Pyrite, Disseminated, 0.01%	808234	144.00	145.50	1.50	0.01	-	0.01	-	-
		136.50 - 147.00	Py VN 0.01	Pyrite, Vein-controlled, 0.01%	808235	145.50	147.00	1.50	0.01	-	0.01	-	-
				• • • • • •									

Hole Nur	nber: EH	18-002				Projec	t: El	EPHAN	T HEAD)								Proj	ect Num	nber: 2	61			
Assay I	Report (p	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From	To	Length Sample #	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Wt (kg,
(m)	(m)	(m)					(pp://)	,	(pp)	(pp)	(pp)	(pp)	(pp)	(pp:)	(pp)	(pp)	(pp)	(pp)	(pp)	(pp)	(pp)	(pp)	(pp)	
14.65	15.20	0.55 850973	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15.20	16.50	1.30 850974	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16.50	18.00	1.50 850975	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22.00	23.50	1.50 850976	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23.50	25.00	1.50 850977	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25.00	26.50	1.50 850978	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26.50	28.00	1.50 850979	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.00	29.50	1.50 850980	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
29.50	31.00	1.50 850981	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
31.00	32.50	1.50 850982	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32.50	34.00	1.50 850983	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
34.00	34.90	0.90 850985	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38.35	39.50	1.15 850986	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
39.50	41.00	1.50 850987	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41.00	42.50	1.50 850988	Actlabs	A18-18808-Au	05-Dec-18	0.13	-	0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42.50	43.35	0.85 850989	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43.35	44.50	1.15 850990	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44.50	45.30	0.80 850991	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45.30	45.80	0.50 850992	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45.80	47.00	1.20 850993	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47.00	48.50	1.50 850994	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48.50	50.00	1.50 850995	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
50.00	51.50	1.50 850997	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
59.00	60.50	1.50 850998	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
90.00	91.00	1.00 850999	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
91.00	92.50	1.50 851000	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
92.50	94.00	1.50 808207	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
94.00	95.50	1.50 808208	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
95.50	97.00	1.50 808209	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
97.00	98.50	1.50 808210	Actlabs	A18-18808-Au	05-Dec-18	0.07	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Hole Nur	nber: EH	18-002				Projec	t: El	LEPHAN	IT HEAD)								Proj	ject Nun	nber: 2	61			
Assay F	Report (µ	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	To (m)	Length Sample # (m)	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Wi (kg																
115.50	117.00	1.50 808211	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
117.00	117.65	0.65 808213	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
117.65	119.00	1.35 808214	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
119.00	120.15	1.15 808215	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
120.15	121.30	1.15 808216	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
121.30	122.50	1.20 808217	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
122.50	123.60	1.10 808218	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
123.60	124.60	1.00 808219	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
124.60	126.00	1.40 808220	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
126.00	127.50	1.50 808221	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
127.50	129.00	1.50 808222	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
129.00	130.50	1.50 808223	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
130.50	132.00	1.50 808225	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132.00	133.50	1.50 808226	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
133.50	135.00	1.50 808227	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
135.00	136.50	1.50 808228	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
136.50	138.00	1.50 808229	Actlabs	A18-18808-Au	05-Dec-18	0.07	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
138.00	139.50	1.50 808230	Actlabs	A18-18808-Au	05-Dec-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
139.50	141.00	1.50 808231	Actlabs	A18-18808-Au	05-Dec-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
141.00	142.50	1.50 808232	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
142.50	144.00	1.50 808233	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
144.00	145.50	1.50 808234	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
145.50	147.00	1.50 808235	Actlabs	A18-18808-Au	05-Dec-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Hole Number:	EH18-003				Project:	ELEPHANT HEAD					Project Number:	261	
Drilling		Casing			Core		Lo	ocation			Other		
Azimuth:	357.4	Length:		9	Dimension:	NQ	Cla	aim No.:	319798		Company:	IAMGOLD	
Dip:	-59.2	Pulled:	no		Diam Chang:	no	NT	TS:	41P11E		Contractor:	NPLH	
Length:	171	Capped:	yes		Storage:	Marathon Laydown Area	Но	ole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	01-Nov-18	Cemented:	no		Hole Type	DDH	Se	ection:	t		Surveyed:		
Completed:	02-Nov-18	Left in hole:	no		Logged by:	Adam Warram	Zo	one:	17		Surveyed by:		
Logged:	11-Nov-18	Making water:	: no		Relog by:		NA	AD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no										
Target:	Testing quartz-sulphide vein	at 55 m depth; testing	chargeab	ility anomaly at 100	m depth		Соо	rdinate - 0	Gemcom	Coordinat	e - UTM	Coordinate - Local	
Comment:	Log start date: Nov 11, 2018						East:	:	469808	East:	469808	East:	0
	Log completion date: Nov 13	, 2018					North	h:	5273975	North:	5273975	North:	0
							Elev.	:	365	Elev.:	365	Elev.:	0
	Deviation	Tests								Density Te	ests		

Distance	Azimuth	n Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
0.00	357.40	-59.20	0	0	0		С	\checkmark	
0.00	343.90	-59.00				33963	R		
3.00	343.00	-59.10				33424	R		
6.00	336.70	-59.10				27665	R		
9.00	351.40	-59.10				32910	R		
12.00	297.00	-59.30				103565	R		
15.00	357.50	-59.20				57485	R		
18.00	357.30	-59.20				56884	R		
21.00	357.40	-59.20				56610	R	\checkmark	
24.00	357.10	-59.20				56474	R	\checkmark	
27.00	357.20	-59.10				56346	R	\checkmark	
30.00	357.30	-59.10				56283	R	\checkmark	
33.00	357.20	-59.10				56228	R	\checkmark	
36.00	357.20	-59.00				56203	R	\checkmark	
39.00	357.20	-59.00				56181	R	\checkmark	

Hole Number:	EH18-003				Project:	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.4	Length:		9	Dimension:	NQ	Claim No.:	319798		Company:	IAMGOLD	
Dip:	-59.2	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	171	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	01-Nov-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	02-Nov-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	11-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing quartz-sulphide vein a	at 55 m depth; testing	chargeal	bility anomaly at 10	0 m depth		Coordinate -	Gemcom	Coordina	te - UTM	Coordinate - Local	
Comment:	Log start date: Nov 11, 2018						East:	469808	East:	469808	East:	0
	Log completion date: Nov 13	, 2018					North:	5273975	North:	5273975	North:	0
							Elev.:	365	Elev.:	365	Elev.:	0

Distance	Azimuth Di	p Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
42.00	357.30 -59.0	0			56153	R	\checkmark	
45.00	357.30 -59.0	0			56135	R	\checkmark	
48.00	357.40 -58.9	0			56136	R	\checkmark	
51.00	357.50 -58.9	0			56146	R	\checkmark	
54.00	357.50 -58.9	0			56113	R	\checkmark	
57.00	357.50 -58.9	0			56109	R	\checkmark	
60.00	357.60 -58.9	0			56101	R	\checkmark	
63.00	357.60 -58.9	0			56089	R	\checkmark	
66.00	357.60 -58.9	0			56087	R	\checkmark	
69.00	357.60 -58.8	0			56091	R	\checkmark	
72.00	357.70 -58.8	0			56078	R	\checkmark	
75.00	357.80 -58.8	0			56075	R	\checkmark	
78.00	358.30 -58.6	0			56092	R	\checkmark	
81.00	358.00 -58.6	0			56091	R	\checkmark	
84.00	358.00 -58.6	60			56078	R	\checkmark	
87.00	358.10 -58.6	60			56089	R	\checkmark	

Density Tests

Hole Number:	EH18-003				Project:	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.4	Length:		9	Dimension:	NQ	Claim No.:	319798		Company:	IAMGOLD	
Dip:	-59.2	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	171	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	01-Nov-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	02-Nov-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	11-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing quartz-sulphide vein a	at 55 m depth; testing	chargeat	pility anomaly at 100	0 m depth		Coordinate -	Gemcom	Coordina	te - UTM	Coordinate - Local	
Comment:	Log start date: Nov 11, 2018						East:	469808	East:	469808	East:	0
	Log completion date: Nov 13,	2018					North:	5273975	North:	5273975	North:	0
							Elev.:	365	Elev.:	365	Elev.:	0

Distance	Azimuth	Dip	Easting	Northing	Elevation	Mag. Fie.	Туре	Good	Comments
90.00	358.10	-58.60				56070	R	\checkmark	
93.00	358.20	-58.60				56073	R	\checkmark	
96.00	358.30	-58.60				56054	R	\checkmark	
99.00	358.30	-58.60				56057	R	\checkmark	
102.00	358.30	-58.70				56066	R	\checkmark	
105.00	358.40	-58.70				56056	R	\checkmark	
108.00	358.40	-58.60				56065	R	\checkmark	
111.00	358.40	-58.60				56051	R	\checkmark	
114.00	358.50	-58.60				56051	R	\checkmark	
117.00	358.50	-58.60				56053	R	\checkmark	
120.00	358.50	-58.50				56072	R	\checkmark	
123.00	358.40	-58.50				56048	R	\checkmark	
126.00	358.50	-58.50				56059	R	\checkmark	
129.00	358.60	-58.50				56053	R	\checkmark	
132.00	358.70	-58.40				56057	R	\checkmark	
135.00	358.60	-58.30				56054	R	\checkmark	

Density Tests

Hole Number:	EH18-003				Project:	ELEPHANT HEAD				Project Number:	261	
Drilling		Casing			Core		Location			Other		
Azimuth:	357.4	Length:		9	Dimension:	NQ	Claim No.:	319798		Company:	IAMGOLD	
Dip:	-59.2	Pulled:	no		Diam Chang:	no	NTS:			Contractor:	NPLH	
Length:	171	Capped:	yes		Storage:	Marathon Laydown Area	Hole:	SURFACE		Spotted by:	Erik Bobechko	
Started:	01-Nov-18	Cemented:	no		Hole Type	DDH	Section:	t		Surveyed:		
Completed:	02-Nov-18	Left in hole:	no		Logged by:	Adam Warram	Zone:	17		Surveyed by:		
Logged:	11-Nov-18	Making water:	no		Relog by:		NAD:	NAD83		Multi shot su	yes	
Township:	CONNAUGH	Plugged:	no									
Target:	Testing quartz-sulphide vein	at 55 m depth; testing	chargeal	pility anomaly at 10	00 m depth		Coordinate -	Gemcom	Coordina	te - UTM	Coordinate - Local	
Comment:	Log start date: Nov 11, 2018						East:	469808	East:	469808	East:	0
	Log completion date: Nov 13	3, 2018					North:	5273975	North:	5273975	North:	0
							Elev.:	365	Elev.:	365	Elev.:	0

Distance	Azimuth	Dip Eas	sting Nortl	hing Elevation	Mag. Fie.	Туре	Good	Comments
138.00	358.60 -58	8.30			56050	R	\checkmark	
141.00	358.60 -58	8.30			56054	R	\checkmark	
144.00	358.70 -58	8.30			56047	R	\checkmark	
147.00	358.70 -58	8.30			56043	R	\checkmark	
150.00	358.70 -58	8.30			56032	R	\checkmark	
153.00	358.80 -58	8.20			56034	R	\checkmark	
156.00	358.80 -58	8.20			56002	R	\checkmark	
159.00	358.80 -58	8.10			55989	R	\checkmark	
162.00	358.90 -58	8.10			55963	R	\checkmark	
165.00	358.90 -58	8.10			55956	R	\checkmark	
168.00	359.00 -58	8.00			55943	R	\checkmark	
171.00	359.00 -58	8.00			55878	R	\checkmark	

Density Tests

EIAMGOLD®

ole Numl	ber: EH1	8-003		Project: EL	EPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation C	colour	Sample #	From	То	Length	Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
0.00	9.05	OB Overburden.	Overburden											
9.05	26.35	GDR	Granodiorite		LGY	850839	9.05	10.00	0.95	0.0	- 1	0.01	-	-
				reen grey. Mg-cg. Massive. Non-magnetic.		850840	17.00	18.00	1.00	0.0	-	0.01	-	-
				l bt, weak spv si, very weak sel cb. <1% qtz- contact with Quartz feldspar porphyry dyke sha		850841	18.00	19.00	1.00	0.0	- 1	0.01	-	-
		Alteration Maj:	Type/Style/Intensity	Comment		850842	23.80	24.35	0.55	0.02	2 -	0.02	-	-
		9.05 - 26.35	LX SEL 2	Leucoxene, Selective, Weak		850843	24.35	25.00	0.65	0.0	- 1	0.01	-	-
		9.05 - 26.35	SR SEL 3	Sericitization, Selective, Moderate		850844	25.00	26.35	1.35	0.0	-	0.01	-	-
		9.05 - 26.35	CL SEL 3	Chloritization, Selective, Moderate										
		9.05 - 26.35	EP SEL 3	Epidotization, Selective, Moderate										
		<i>Mineralization Maj. :</i> 9.05 - 26.35 9.05 - 26.35 9.05 - 26.35	Type/Style/%Mineral Py FAC 0.1 Py VN 0.1 Py DIS 0.1	<i>Comment</i> Pyrite, Fracture-controlled, 0.1% Pyrite, Vein-controlled, 0.1% Pyrite, Disseminated, 0.1%										
		Texture Maj:	Туре	Comment										
		9.05 - 26.35	MAS	Massive										
		9.05 - 26.35	HT	Heterogeneous										
		9.05 - 26.35	CG	Coarse Grained (>5mm)										
		Vein Maj. : 9.05 - 26.35	Style/%vein/CoreA/%n STG 0.5 100	<i>in/min Comment</i> QCSCV Quartz Carb Sericite Vein, 100% +										

lole Num	ber: EH1	8-003		Project: ELEPHANT HEAD					Project Numbe	er: 2	61			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length		u	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Α
26.35	36.00	128	C Quartz Feldspar Porph	vrv GY	050045	24 50	22.20	0.70).10	-	0.10	_	
20.00	30.00			porysts- 55%). Grey. Vfg-fg matrix, felspar	850845	31.50 32.20	32.20	0.70 0.60).05	-	0.10	-	
		phenocrysts up to 1cm.	Non-magnetic. Weak ser s	el, weak-mod lx sel, weak pv chl, very weak sel ep,	850846 850847	32.20 32.80	32.80 33.50	0.80).03	-	0.03	-	
				tringers/filled fracs. Trace dis/frac py. Upper contact sharp (int dyke may just be chill margin of QFP).	850849	32.80 33.50	35.00	1.50).03	-	0.03	-	
		Alteration Maj:	Type/Style/Intensity	Comment	000040	00.00	00.00	1.50	·			0.01		
		26.35 - 29.30	CL PV 2	Chloritization, Pervasive, Weak										
		26.35 - 29.30	LX SEL 2	Leucoxene, Selective, Weak										
		26.35 - 29.30	CB SEL 1	Carbonatization, Selective, Very weak										
		26.35 - 29.30	SR SEL 2	Sericitization, Selective, Weak										
		29.30 - 34.70	CL PV 2	Chloritization, Pervasive, Weak										
		29.30 - 34.70	LX SEL 1	Leucoxene, Selective, Very weak										
		29.30 - 34.70	CB PV 3	Carbonatization, Pervasive, Moderate										
		29.30 - 34.70	SR SEL 3	Sericitization, Selective, Moderate										
		34.70 - 36.00	CB SEL 1	Carbonatization, Selective, Very weak										
		34.70 - 36.00	LX SEL 2	Leucoxene, Selective, Weak										
		34.70 - 36.00	CB SEL 2	Carbonatization, Selective, Weak										
		34.70 - 36.00	SR SEL 2	Sericitization, Selective, Weak										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		26.35 - 36.00	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%										
		26.35 - 36.00	Py DIS 0.1	Pyrite, Disseminated, 0.1%										
		Texture Maj:	Туре	Comment										
		26.35 - 36.00	MAS	Massive										
		26.35 - 36.00	HT	Heterogeneous										
		26.35 - 36.00	PO	Porphyritic										

e Number:	: EH18	3-003		Project: ELEPHANT	HEAD				Project Numbe	er: 2	261			
r om 'm)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length		A u pm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA: Au (ppn
		Vein Maj. :	Style/%vein/CoreA/%m	in/min Comment										
		26.35 - 36.00	•	QCSCV Quartz Carb Sericite Vein, 100%										
6.00 3	36.65	INTE) Intermediate Dyke	GY										
		foliated. Trace dis py. I	Mod pv si, weak pv chl. Car	dyke). Aphanitic to vfg. Grey. Massive to weakly b filled fractures (<1%). Upper contact with Quartz ranodiorite sharp and sheared MTC.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		36.00 - 36.65	CL PV 2	Chloritization, Pervasive, Weak										
		36.00 - 36.65	SI PV 3	Silicification, Pervasive, Moderate										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		36.00 - 36.65	Py DIS 0.1	Pyrite, Disseminated, 0.1%										
		Structure Maj.:	Inte/Type/Core Angle	Comment										
		36.00 - 36.65	W FOL	Foliated										
		Texture Maj:	Туре	Comment										
		36.00 - 36.65	AP	Aphanitic										
		36.00 - 36.65	НО	Homogeneous										
6.65 10	05.50	GDR	Granodiorite	CR	850850	47.00	48.00	1.00		0.01	-	0.01	-	
			onalite). Pinkish cream to lig v ser, mod sel lx, mod sel ch	ht green grey. Mg-cg. Massive. Non-magnetic.	850851	48.00	49.00	1.00		0.01	-	0.01	-	
		+/- weak sel bt, weak sp	ov si, very weak sel cb. <1%	qtz-cb-chl-ser veinlets/stringers. Trace dis/frac/vn	850852	51.00	52.00	1.00	(0.01	-	0.01	-	
		py. <1% grey dioritic frag Lower contact with Quar	gments that are partially dis: rtz feldspar porphyry dyke sł	solved. Upper contact with Intermediate dyke sharp. harp, slightly irregular.	850853	52.00	53.00	1.00	(0.01	-	0.01	-	
		Alteration Maj:	Type/Style/Intensity	Comment	850854	60.00	61.00	1.00	(0.01	-	0.01	-	
		36.65 - 57.35	BIO SEL 1	Biotitization, Selective, Very weak	850855	63.00	64.40	1.40		0.01	-	0.01	-	
		36.65 - 57.35	CL SEL 3		850856	72.00	73.20	1.20		0.01	-	0.01	-	
				Chloritization, Selective, Moderate	850857	73.20	74.30	1.10		0.11	-	0.11	-	
		36.65 - 57.35	EP SEL 3	Epidotization, Selective, Moderate	850858	74.30	75.00	0.70	(0.21	-	0.21	-	

le Numbe	per: EH18-003		Project: ELEPHANT HEAD					Project Number:	261			
=rom (m)	To (m)	Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
	36.65 - 57.35	SR SEL 3	Sericitization, Selective, Moderate	850859	75.00	76.00	1.00	0.03	-	0.03	-	-
	57.35 - 71.70	EP SEL 2	Epidotization, Selective, Weak	850861	76.00	77.00	1.00	0.01	-	0.01	-	
	57.35 - 71.70	BIO SEL 1	Biotitization, Selective, Very weak	850862	77.00	78.00	1.00	0.01		0.01	-	
	57.35 - 71.70	SR SEL 1	Sericitization, Selective, Very weak	850863	78.00	79.00	1.00	0.04		0.04	-	
	57.35 - 71.70	CL SEL 1	Chloritization, Selective, Very weak	850864	79.00	80.50	1.50	0.03		0.03	-	
	71.70 - 76.50	BIO SEL 1	Biotitization, Selective, Very weak	850865	80.50	81.80	1.30	0.01		0.01	-	
	71.70 - 76.50	SR SEL 3	Sericitization, Selective, Moderate	850866	81.80	82.60	0.80	0.07 0.01		0.07 0.01	-	
	71.70 - 76.50	SI SPV 2	Silicification, Semi-Pervasive, Weak	850867 850868	90.00 91.50	91.50 92.50	1.50 1.00	0.01		0.01	-	
	71.70 - 76.50	CL SEL 3	Chloritization, Selective, Moderate	850869	92.50	94.00	1.50	0.01		0.01	-	
	76.50 - 90.00	BIO SEL 1	Biotitization, Selective, Very weak	850870	94.00	95.45	1.45	0.01		0.01	-	
	76.50 - 90.00	CL SEL 1	Chloritization, Selective, Very weak	850871	95.45	96.50	1.05	0.01	-	0.01	-	
	76.50 - 90.00	HM SEL 1	Hematization, Selective, Very weak	850873	96.50	97.50	1.00	0.01	-	0.01	-	
	76.50 - 90.00	EP SEL 2	Epidotization, Selective, Weak	850874	99.00	100.45	1.45	0.01	-	0.01	-	
	90.00 - 95.70	CL SEL 3	Chloritization, Selective, Moderate									
	90.00 - 95.70	SR SEL 3	Sericitization, Selective, Moderate									
	90.00 - 95.70	BIO SEL 1	Biotitization, Selective, Very weak									
	90.00 - 95.70	SI PV 2	Silicification, Pervasive, Weak									
	95.70 - 105.50	EP SEL 3	Epidotization, Selective, Moderate									
	95.70 - 105.50	BIO SEL 1	Biotitization, Selective, Very weak									
	95.70 - 105.50	CL SEL 1	Chloritization, Selective, Very weak									
	95.70 - 105.50	HM SEL 2	Hematization, Selective, Weak									
	<i>Mineralization Maj. :</i> 36.65 - 105.50 36.65 - 105.50	: Type/Style/%Mineral Py DIS 0.1 Py FAC 0.1	<i>Comment</i> Pyrite, Disseminated, 0.1% Pyrite, Fracture-controlled, 0.1%									

le Numb	er: EH18	8-003		Project: ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Аи (ррт)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA: Au
		Texture Maj:	Туре	Comment									
		36.65 - 105.50	MAS	Massive									
		36.65 - 105.50	CG	Coarse Grained (>5mm)									
		36.65 - 105.50	HT	Heterogeneous									
		Vein Maj. :	Style/%vein/CoreA/%r	nin/min Comment									
		36.65 - 105.50	STG 0.2 100	QCSCV Quartz Carb Sericite Vein, 100% + chl									
			racs. Trace dis/frac py. Uppo inodiorite sharp, slightly irreg Type/Style/Intensity	er contact with granodiorite sharp, slightly irregular. ular. Comment									
		105.50 - 111.05	CB SEL 1	Carbonatization, Selective, Very weak									
		105.50 - 111.05	SR SEL 2	Sericitization, Selective, Weak									
		105.50 - 111.05	CL PV 2	Chloritization, Pervasive, Weak									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		105.50 - 111.05	Py DIS 0.1	Pyrite, Disseminated, 0.1%									
		Texture Maj:	Туре	Comment									
		105.50 - 111.05	HT	Heterogeneous									
		100.00 111.00	111	Tieterogeneous									

 111.05
 114.80
 GDR Granodiorite
 CR
 850875
 113.00
 114.00
 1.00
 0.01
 0.01

 Granodiorite (possibly tonalite). Cream to light green grey. Mg-cg. Massive. Non-magnetic. Mod-sel-
ep, weak-mod sel/spv ser, weak sel chl
 Kerned sel/spv
 113.00
 114.00
 1.00
 0.01

Porphyritic

105.50 - 111.05

PO

e Numb	er: EH1	8-003		Project:	ELEPHANT HEAD					Project Number:	261			
rom (m)	To (m)		Lithology	Weathering Oxidation	n Colour	Sample #	From	То	Length	А и (ррп		FA Au (ppm)	FA2 Au (ppm)	Aı
	()	sharp, slightly irregular.	ov si. <1% qtz-cb veinlets.	Trace dis/frac/vn py. Upper contact with G s that are partially dissolved. Lower contact	PP dyke						<u>, , , , , , , , , , , , , , , , , , , </u>			
		Alteration Maj:	Type/Style/Intensity	Comment										
		111.05 - 114.80	SI SPV 2	Silicification, Semi-Pervasive, Weak										
		111.05 - 114.80	BIO SEL 1	Biotitization, Selective, Very weak										
		111.05 - 114.80	CL SEL 2	Chloritization, Selective, Weak										
		111.05 - 114.80	EP SEL 3	Epidotization, Selective, Moderate										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		, 111.05 - 114.80	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%										
		111.05 - 114.80	Py DIS 0.1	Pyrite, Disseminated, 0.1%										
		Texture Maj:	Туре	Comment										
		111.05 - 114.80	MAS	Massive										
		111.05 - 114.80	HT	Heterogeneous										
		111.05 - 114.80	CG	Coarse Grained (>5mm)										
		Vein Maj. :	Style/%vein/CoreA/%m											
		111.05 - 114.80	VN 1 100 QC	V Quartz-Calcite Vein, 100%										
4.80	116.70	12B	C Quartz Feldspar Porph	vrv	DGY	850876	116.00	116.70	0.70	0.0)1 -	0.01	_	
		Quartz feldspar porphyr phenocrysts up to 1cm. qtz-cb-chl stringers/filled	y (feldspar phenocrysts 20% Non-magnetic. Weak ser s I fracs. 5cm pink Qtz-cb veir	b, quartz phenocrysts 15%). Grey. Vfg m. sel, weak-mod pv cb sel, weak pv chl. 1% n/miarole vein. Trace dis/frac py. Upper o with granodiorite sharp and mod-sheared	irregular contact with	000070	110.00	110.70	0.70	0.		0.01		
		Alteration Maj:	Type/Style/Intensity	Comment										
		114.80 - 116.70	CL PV 2	Chloritization, Pervasive, Weak										

lole Number:	: EH1	8-003		Project:	ELEPHANT HEAD					Project Number:	261			
From (m)	To (m)		Lithology	Weathering Oxidation	n Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	FA: Au (ppm
		114.80 - 116.70 <i>Mineralization Maj. :</i> 114.80 - 116.70	CB PV 3 Type/Style/%Mineral Py DIS 0.1	Carbonatization, Pervasive, Moderate <i>Comment</i> Pyrite, Disseminated, 0.1%										
		Structure Maj.: 116.50 - 116.70	Inte/Type/Core Angle M SHRD	<i>Comment</i> Sheared										
		Texture Maj: 114.80 - 116.70 114.80 - 116.70 114.80 - 116.70	<i>Type</i> HT MAS PO	<i>Comment</i> Heterogeneous Massive Porphyritic										
		Vein Maj. : 114.80 - 116.70	Style/%vein/CoreA/%m VN 3 100 QC\											
16.70 17	71.00	GDR	Granodiorite		LGY	850877	116.70	118.20	1.50	0.0	I -	0.01	-	-
			onalite). Pinkish cream to lig	ht green grey. Mg-cg. Massive. Non-ma	ignetic.	850878	118.20	119.00	0.80	0.0	I -	0.01	-	

Mod-sel-ep, mod sel/spv ser, mod sel lx, mod sel chl +/- weak sel bt, weak spv si, very weak sel cb. <1% qtz-cb-chl-ser veinlets/stringers. Trace dis/frac/vn py. <1% grey dioritic fragments that are partially dissolved Upper contact with QFP dyke sharp, mod sheared MTC on both sides of dyke. EOH

sheared MIC on both side	es of dyke. EOH										
Alteration Maj:	Type/Style/Intensity	Comment	850881	133.00	134.50	1.50	0.01	-	0.01	-	-
		Comment	850882	134.50	135.50	1.00	0.01	-	0.01	-	-
116.70 - 132.00	CL SEL 2	Chloritization, Selective, Weak	850883	135.50	136.60	1.10	0.02	-	0.02	-	-
116.70 - 132.00	BIO SEL 1	Biotitization, Selective, Very weak	850885	136.60	138.00	1.40	0.01	-	0.01	-	-
116.70 - 132.00	SR SEL 2	Sericitization, Selective, Weak	850886	138.00	139.50	1.50	0.01	-	0.01	-	-
116.70 - 132.00	SI PV 2	Silicification, Pervasive, Weak	850887	139.50	141.00	1.50	0.01	-	0.01	-	-
132.00 - 149.70	SR SEL 3	Sericitization, Selective, Moderate	850888	141.00	141.50	0.50	0.02	-	0.02	-	-
132.00 - 149.70	CL SEL 3	Chloritization, Selective, Moderate	850889	141.50	142.50	1.00	0.01	-	0.01	-	-
132.00 - 149.70	SI PV 2	Silicification, Pervasive, Weak	850890	142.50	143.70	1.20	0.01	-	0.01	-	-
132.00 - 149.70	LX SEL 3	Leucoxene, Selective, Moderate	850891	143.70	144.70	1.00	0.01	-	0.01	-	-

850879

850880

119.00

131.85

120.50

133.00

1.50

1.15

0.01 -

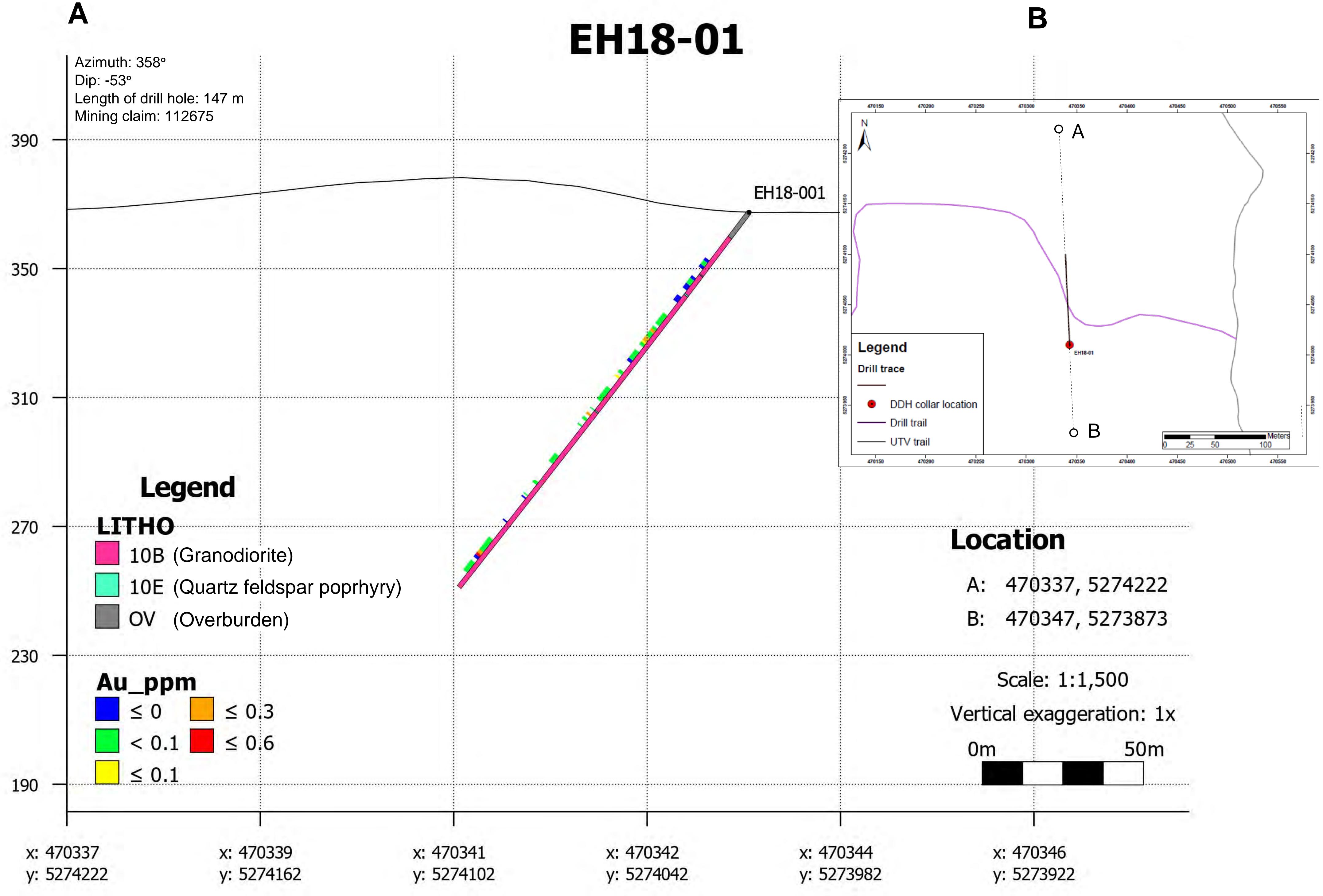
0.01 -

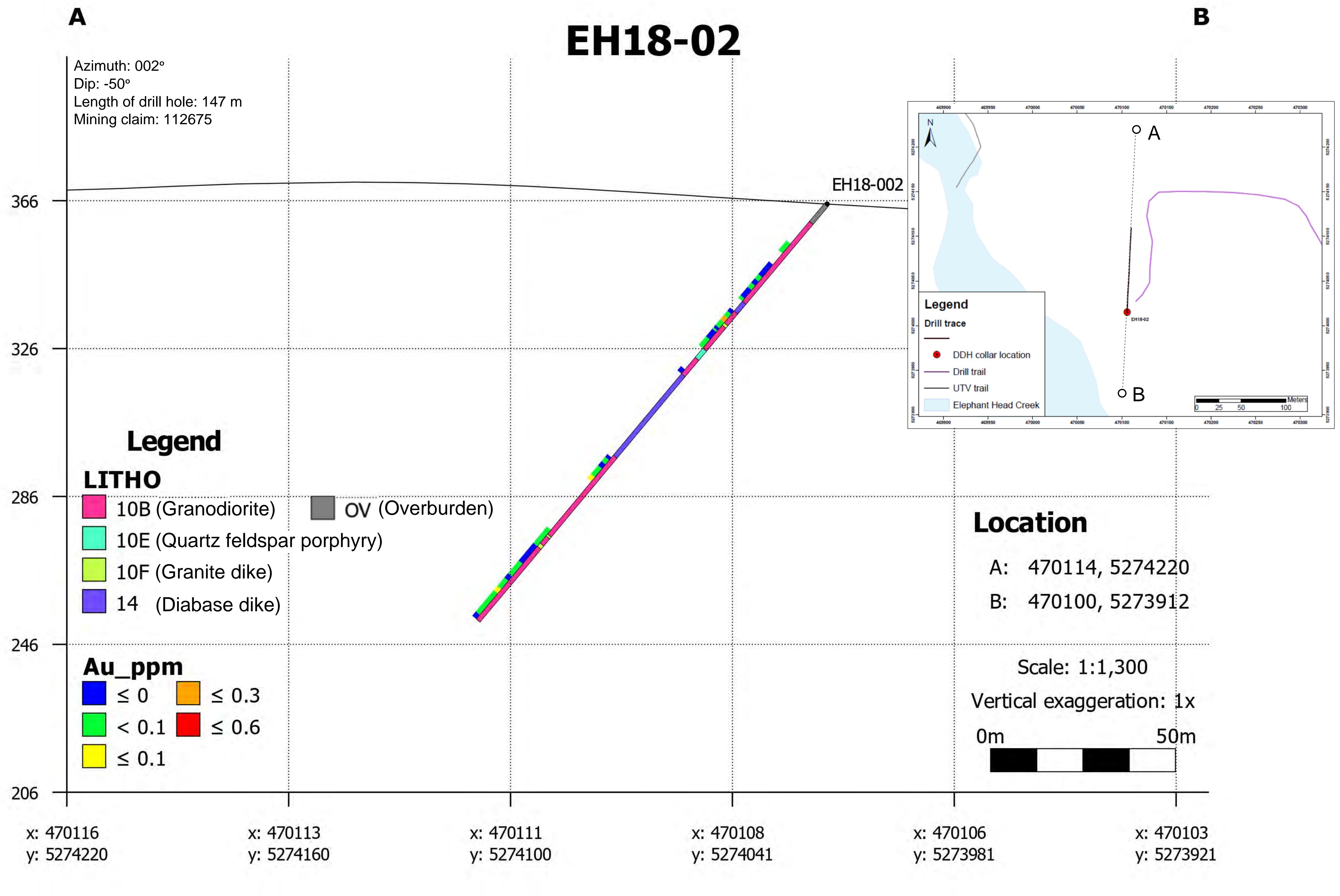
0.01 - -

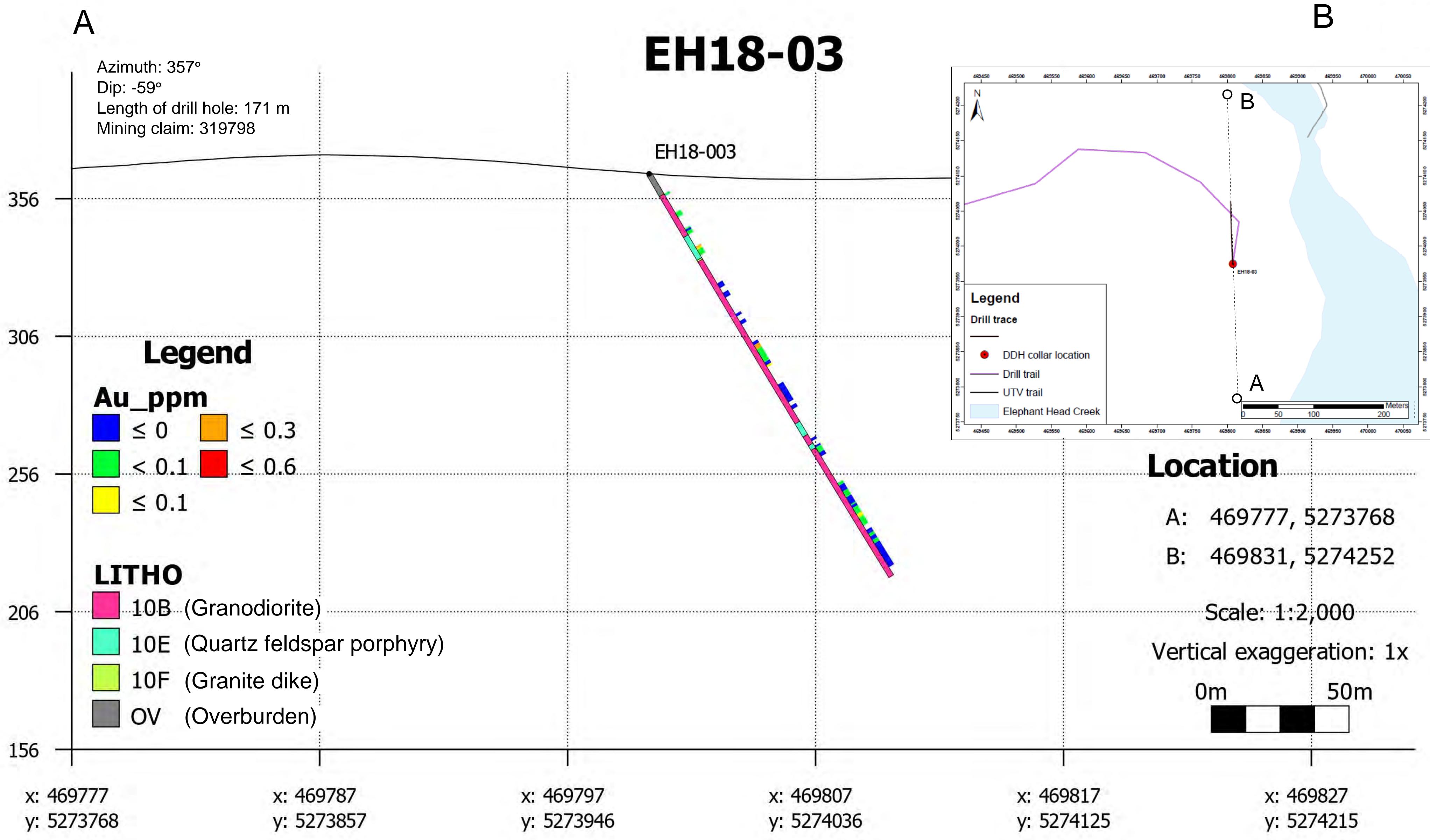
0.01 - -

lole Numb	er: EH1	8-003		Project: ELEPHANT HEAD	•				Project Number:	261			
From	To (m)		Lithology	Weathering Oxidation Colour	Sample #	From	То	Length	Au (ppm)	AV Au (ppm)	FA Au (ppm)	FA2 Au (ppm)	Au
(m)	(111)							•			,	(ppiii)	
		149.70 - 167.00	EP SEL 2	Epidotization, Selective, Weak	850892	144.70	145.20	0.50	0.0		0.01	-	-
		149.70 - 167.00	SI PV 2	Silicification, Pervasive, Weak	850893	145.20	146.70	1.50	0.06		0.06	-	-
		149.70 - 167.00	SR SEL 2	Sericitization, Selective, Weak	850894	146.70	148.00	1.30	0.01		0.01	-	-
		149.70 - 167.00	CL SEL 2	Chloritization, Selective, Weak	850895	148.00	149.00	1.00	0.01	- 1	0.01	-	-
		167.00 - 171.00	SI SPV 1	Silicification, Semi-Pervasive, Very weak	850897	149.00	150.00	1.00	0.01	-	0.01	-	-
					850898	151.90	152.85	0.95	0.0	-	0.01	-	-
		167.00 - 171.00	CL SEL 1	Chloritization, Selective, Very weak	850899	152.85	153.55	0.70	0.01	- 1	0.01	-	-
		167.00 - 171.00	EP SEL 2	Epidotization, Selective, Weak	850900	153.55	154.75	1.20	0.05	5 -	0.05	-	-
		167.00 - 171.00	BIO SEL 1	Biotitization, Selective, Very weak	850901	154.75	156.20	1.45	0.0	- 1	0.01	-	-
		Mineralization Maj. :	Type/Style/%Mineral	Comment	850902	156.20	157.65	1.45	0.0	- 1	0.01	-	-
		116.70 - 171.00	Py VN 0.1	Pyrite, Vein-controlled, 0.1%	850903	157.65	158.50	0.85	0.01	- 1	0.01	-	-
		116.70 - 171.00	Py FAC 0.1	Pyrite, Fracture-controlled, 0.1%	850904	158.50	160.00	1.50	0.01	- 1	0.01	-	-
		116.70 - 171.00	Py DIS 0.1	Pyrite, Disseminated, 0.1%	850905	160.00	161.50	1.50	0.0		0.01	-	-
					850906	161.50	163.00	1.50	0.0*		0.01		-
		Texture Maj:	Туре	Comment	850907	163.00	164.50	1.50	0.0		0.01		-
		116.70 - 171.00	MAS	Massive	850907	164.50	165.60	1.50	0.0		0.01		
		116.70 - 171.00	CG	Coarse Grained (>5mm)								-	-
		116.70 - 171.00	HT	Heterogeneous	850909	165.60	167.00	1.40	0.0		0.01		-
		Vein Maj. :	Style/%vein/CoreA/%m	in/min Comment	850910	167.00	167.80	0.80	0.01	-	0.01	-	-

Hole Nur	nber: EH	18-003				Projec	t: El	LEPHAN	IT HEAD)								Proj	ect Num	nber: 2	61			
Assay I	Report (j	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	То (т)	Length Sample # (m)	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Wt (kg)											
9.05	10.00	0.95 850839	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17.00	18.00	1.00 850840	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18.00	19.00	1.00 850841	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23.80	24.35	0.55 850842	Actlabs	A18-18112-Au	21-Nov-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24.35	25.00	0.65 850843	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25.00	26.35	1.35 850844	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
31.50	32.20	0.70 850845	Actlabs	A18-18112-Au	21-Nov-18	0.10	-	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32.20	32.80	0.60 850846	Actlabs	A18-18112-Au	21-Nov-18	0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32.80	33.50	0.70 850847	Actlabs	A18-18112-Au	21-Nov-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
33.50	35.00	1.50 850849	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47.00	48.00	1.00 850850	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48.00	49.00	1.00 850851	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51.00	52.00	1.00 850852	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52.00	53.00	1.00 850853	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
60.00	61.00	1.00 850854	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63.00	64.40	1.40 850855	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
72.00	73.20	1.20 850856	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
73.20	74.30	1.10 850857	Actlabs	A18-18112-Au	21-Nov-18	0.11	-	0.11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
74.30	75.00	0.70 850858	Actlabs	A18-18112-Au	21-Nov-18	0.21	-	0.21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
75.00	76.00	1.00 850859	Actlabs	A18-18112-Au	21-Nov-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
76.00	77.00	1.00 850861	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77.00	78.00	1.00 850862	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
78.00	79.00	1.00 850863	Actlabs	A18-18112-Au	21-Nov-18	0.04	-	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
79.00	80.50	1.50 850864	Actlabs	A18-18112-Au	21-Nov-18	0.03	-	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
80.50	81.80	1.30 850865	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
81.80	82.60	0.80 850866	Actlabs	A18-18112-Au	21-Nov-18	0.07	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
90.00	91.50	1.50 850867	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
91.50	92.50	1.00 850868	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
92.50	94.00	1.50 850869	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
94.00	95.45	1.45 850870	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-


Hole Nun	nber: EH	18-003					Projec	t: El	EPHAN	T HEAD)								Proj	ect Num	nber: 2	61			
Assay F	Report (p	oart 1 of	1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	То (т)	Length (m)	Sample #	Lab	Certificate #	Date of Certificate	Au (ppm)	Аи (ppm)	Au (ppm)	Аи (ppm)	Au (ppm)	Wt (kg)													
95.45	96.50	1.05	850871	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
96.50	97.50	1.00	850873	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
99.00	100.45	1.45	850874	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
113.00	114.00	1.00	850875	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
116.00	116.70	0.70	850876	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
116.70	118.20	1.50	850877	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
118.20	119.00	0.80	850878	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
119.00	120.50	1.50	850879	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
131.85	133.00	1.15	850880	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
133.00	134.50	1.50	850881	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
134.50	135.50	1.00	850882	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
135.50	136.60	1.10	850883	Actlabs	A18-18112-Au	21-Nov-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
136.60	138.00	1.40	850885	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
138.00	139.50	1.50	850886	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
139.50	141.00	1.50	850887	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
141.00	141.50	0.50	850888	Actlabs	A18-18112-Au	21-Nov-18	0.02	-	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
141.50	142.50	1.00	850889	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
142.50	143.70	1.20	850890	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
143.70	144.70	1.00	850891	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
144.70	145.20	0.50	850892	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
145.20	146.70	1.50	850893	Actlabs	A18-18112-Au	21-Nov-18	0.06	-	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
146.70	148.00	1.30	850894	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
148.00	149.00	1.00	850895	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
149.00	150.00	1.00	850897	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
151.90	152.85	0.95	850898	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
152.85	153.55	0.70	850899	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
153.55	154.75		850900	Actlabs	A18-18112-Au	21-Nov-18	0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
154.75	156.20		850901	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
156.20	157.65	1.45	850902	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
157.65	158.50		850903	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-




Hole Num	nber: EH	18-003				Projec	t: El	EPHAN	T HEAD	1								Proj	ject Num	nber: 2	61			
Assay R	Report (p	part 1 of 1)					AV	FA	FA2	FA3	FA4	FA5	SFA	SFA2	SFA3	GA	GA2	GA3	GA4	GA5	AR	AR2	AR3	
From (m)	To (m)	Length Sample # (m)	Lab	Certificate #	Date of Certificate	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Au (ppm)	Wt (kg)
158.50	160.00	1.50 850904	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
160.00	161.50	1.50 850905	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
161.50	163.00	1.50 850906	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
163.00	164.50	1.50 850907	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
164.50	165.60	1.10 850908	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
165.60	167.00	1.40 850909	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
167.00	167.80	0.80 850910	Actlabs	A18-18112-Au	21-Nov-18	0.01	-	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Appendix E

Drill Hole Vertical Cross Sections

Appendix F

Drill Core Assay Certificates

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 21-Nov-18

 Invoice No.:
 A18-18112

 Invoice Date:
 07-Dec-18

 Your Reference:
 261

IAMGOLD Corporation 2140 Regent Street Unit 10 Sudbury Ontario P3E 5S8 Canada

ATTN: Laura Katz

CERTIFICATE OF ANALYSIS

72 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Timmins (ppm) Au - Fire Assay AA

REPORT **A18-18112**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
850839	0.006
850840	0.008
850841	0.006
850842	0.016
850843	< 0.005
850844	0.006
850845	0.102
850846	0.053
850847	0.030
850848	< 0.005
850849	0.014
850850	< 0.005
850851	< 0.005
850852	< 0.005
850853	< 0.005
850854	< 0.005
850855	< 0.005
850856	< 0.005
850857	0.105
850858	0.210
850859	0.034
850860	2.150
850861	0.007
850862	0.010
850863	0.043
850864	0.033
850865	< 0.005
850866	0.073
850867	< 0.005
850868	< 0.005
850869	< 0.005
850870	< 0.005
850871	< 0.005
850872	< 0.005
850873	< 0.005
850874	< 0.005
850875	< 0.005
850876	< 0.005
850877	0.008
850878	0.010
850879	< 0.005
850880	0.013

Analyte Symbol	Au
	-
Unit Symbol Lower Limit	ppm
	0.005
Method Code	FA-AA
850881	< 0.005
850882	< 0.005
850883	0.016
850884	1.537
850885	0.012
850886	< 0.005
850887	< 0.005
850888	0.024
850889	0.005
850890	0.006
850891	0.009
850892	0.014
850893	0.063
850894	0.010
850895	0.010
850896	< 0.005
850897	0.009
850898	< 0.005
850899	< 0.005
850900	0.045
850901	< 0.005
850902	0.007
850903	< 0.005
850904	< 0.005
850905	< 0.005
850906	0.005
850907	< 0.005
850908	< 0.005
850909	0.005
850910	0.005

Analyta Cymhol	A
Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
OREAS 224 Meas	2.144
OREAS 224 Cert	2.15
OREAS 224 Meas	2.148
OREAS 224 Cert	2.15
OREAS 224 Meas	2.120
OREAS 224 Cert	2.15
Oreas 221 (Fire Assay) Meas	1.044
Oreas 221 (Fire Assay) Cert	1.06
Oreas 221 (Fire Assay) Meas	1.040
Oreas 221 (Fire Assay) Cert	1.06
Oreas 221 (Fire Assay) Meas	1.032
Oreas 221 (Fire Assay) Cert	1.06
850848 Orig	< 0.005
850848 Dup	< 0.005
850858 Orig	0.207
850858 Dup	0.213
850868 Orig	< 0.005
850868 Dup	< 0.005
850888 Split Orig PREP DUP	0.024
850888 Split PREP DUP	0.023
Method Blank	< 0.005
Method Blank	< 0.005

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 05-Dec-18

 Invoice No.:
 A18-18808

 Invoice Date:
 18-Dec-18

 Your Reference:
 261

IAMGOLD Corporation 2140 Regent Street Unit 10 Sudbury Ontario P3E 5S8 Canada

ATTN: Brian Tomczuk

CERTIFICATE OF ANALYSIS

58 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Timmins (ppm) Au - Fire Assay AA

REPORT A18-18808

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
850973	0.007
850974	0.007
850975	0.016
850976	< 0.005
850977	0.005
850978	< 0.005
850979	0.006
850980	0.005
850981	0.006
850982	< 0.005
850983	0.005
850984	1.609
850985	0.006
850986	< 0.005
850987	0.014
850988	0.133
850989	0.015
850990	0.010
850991	0.005
850992	0.007
850993	0.005
850994	0.005
850995	0.012
850996	< 0.005
850997	0.006
850998	0.005
850999	0.005
851000	0.011
808207	0.005
808208	0.007
808209	0.012
808210	0.066
808211	0.006
808212	0.221
808213	0.007
808214	0.015
808215	0.016
808216	0.012
808217	0.005
808218	< 0.005
808219	< 0.005
808220	0.005

Results

Activation Laboratories Ltd.

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
808221	0.005
808222	0.008
808223	0.020
808224	0.005
808225	0.010
808226	< 0.005
808227	0.007
808228	0.008
808229	0.074
808230	0.028
808231	0.022
808232	0.011
808233	0.009
808234	0.007
808235	< 0.005
808236	0.456

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
OREAS 224 (Fire	2.182
Assay) Meas	
OREAS 224 (Fire	2.15
Assay) Cert	
OREAS 224 Meas	2.213
OREAS 224 Cert	2.15
Oreas 221 (Fire	1.042
Assay) Meas	
Oreas 221 (Fire	1.06
Assay) Cert	
Oreas 221 (Fire	1.028
Assay) Meas	1.00
Oreas 221 (Fire Assay) Cert	1.06
850982 Orig	< 0.005
850982 Dup	0.005
850992 Orig	0.007
850992 Dup	0.007
808208 Orig	0.000
808208 Dup	0.007
I	
808223 Orig	0.020
808223 Dup	0.020
808228 Split Orig PREP DUP	0.008
808228 Split PREP DUP	0.010
808232 Orig	0.010
808232 Dup	0.012
Method Blank	< 0.005
Method Blank	< 0.005
Method Blank	0.005

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 05-Dec-18

 Invoice No.:
 A18-18809

 Invoice Date:
 18-Dec-18

 Your Reference:
 EH

IAMGOLD Corporation 2140 Regent Street Unit 10 Sudbury Ontario P3E 5S8 Canada

ATTN: Brian Tomczuk

CERTIFICATE OF ANALYSIS

62 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-Timmins (ppm) Au - Fire Assay AA

REPORT A18-18809

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1752 Riverside Drive, Timmins, Ontario, Canada, P4R 1N1 TELEPHONE +705 264-0123 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Timmins@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
850911	< 0.005
850912	0.222
850913	0.018
850914	0.005
850915	< 0.005
850916	0.008
850917	0.024
850918	0.005
850919	< 0.005
850920	< 0.005
850921	0.007
850922	0.006
850923	0.006
850924	< 0.005
850925	0.013
850926	0.158
850927	0.047
850928	0.018
850929	0.257
850930	0.093
850931	0.012
850932	0.010
850933	0.007
850934	0.007
850935	< 0.005
850936	0.472
850937	0.015
850938	0.011
850939	0.010
850940	0.025
850941	< 0.005
850942	< 0.005
850943	0.083
850944	0.043
850945	0.026
850946	0.025
850947	0.102
850948	< 0.005
850949	0.015
850950	0.019
850951	0.010
850952	0.026

Results

Activation Laboratories Ltd.

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
850953	0.010
850954	0.011
850955	0.041
850956	< 0.005
850957	< 0.005
850958	0.006
850959	0.013
850960	2.172
850961	0.009
850962	0.015
850963	0.040
850964	0.021
850965	0.182
850966	0.642
850967	< 0.005
850968	0.021
850969	0.016
850970	0.035
850971	0.021
850972	< 0.005

Analyte Symbol	Au
Unit Symbol	ppm
Lower Limit	0.005
Method Code	FA-AA
OREAS 224 Meas	2.169
OREAS 224 Cert	2.15
OREAS 224 Meas	2.134
OREAS 224 Cert	2.15
Oreas 221 (Fire Assay) Meas	1.038
Oreas 221 (Fire Assay) Cert	1.06
Oreas 221 (Fire Assay) Meas	1.062
Oreas 221 (Fire Assay) Cert	1.06
850920 Orig	< 0.005
850920 Dup	< 0.005
850930 Orig	0.088
850930 Dup	0.097
850940 Orig	0.025
850940 Dup	0.025
850955 Orig	0.041
850961 Split Orig PREP DUP	0.009
850961 Split PREP DUP	0.009
850964 Orig	0.022
850964 Dup	0.020
Method Blank	< 0.005

Drill Core QA/QC

QA/QC Results Charts- 2018 Elephant Head Drill Program

QA/QC Results - Blanks								
Lab: ActLabs Blank Code: BLKDIA Warning: 0.1 Au (ppm)								
Total Samples Passed Failed								
		8	8	0				
Date	Certificate	Sample	Pass	Fail				
21-11-2018	A18-18112	850848	<0.005					
21-11-2018	A18-18112	850872	<0.005					
21-11-2018	A18-18112	850896	<0.005					
05-12-2018	A18-18808	850996	<0.005					
05-12-2018	A18-18808	808224	0.005					
05-12-2018	A18-18809	850924	<0.005					
05-12-2018	A18-18809	850948	<0.005					
05-12-2018	A18-18809	850972	<0.005					
	QA	/QC Results - S	tandards					
	Lab: ActLabs S	tandard: OREA	S 504b Mean: 1.61 Au (ppm)					
			Limits					
		2s	3s					
Upper		1.68	1.72					
Lower		1.53	1.5					
		Total Samples	Passed	Failed				
		2	2	0				
Date	Certificate	Sample	Pass	Fail				
21-11-2018	A18-18112	850884	1.537					
05-12-2018	A18-18808	850984	1.609					
	QA	/QC Results - S						
	Lab: ActLabs St	andard: OREAS	5 501c Mean: 0.221 Au (ppm)					
	Limits							
		2s	3s					
Upper		0.234	0.241					
Lower		0.208	0.202					
Lower		Total Samples		Failed				
		2	2	0				
Date	Certificate	Sample	Pass	Fail				
05-12-2018	A18-18809	850912	0.222					
05-12-2018	A18-18808	808212	0.221					
00 12 2010	, 10 10000	000212	0.221					

QA/QC Results Charts- 2018 Elephant Head Drill Program Cont.

QA/QC Results - Standards							
Lab: ActLabs Standard: OREAS 224 Mean: 2.154 Au (ppm)							
	Limits						
		2s	3s				
Upper		2.259	2.311				
Lower		2.048	1.996				
		Total Samples	Passed	Failed			
		2	2	0			
Date	Certificate	Sample	Pass	Fail			
21-11-2018	A18-18112	850860	2.15				
05-12-2018	A18-18809	850960	2.172				
	QA/QC Results - Standards						
		andard: OREAS	502c Mean: 0.488 Au (ppm)				
	Limits						
		2s	3s				
Upper		0.517	0.532				
Lower		0.458	0.444				
		Total Samples	Passed	Failed			
		2	2	0			
Date	Certificate	Sample	Pass	Fail			
05-12-2018	A18-18808	808236	0.456				
05-12-2018	A18-18809	850936	0.472				

Appendix G

Contractor and Assay Invoices

[Withheld for client confidentiality]

Appendix H

Distribution of Assessment Work by Claim Cell

Claim No.	Type of Work	Percentage Worked	No. Stations/line	Amo	ount
183830	Pole-dipole survey	5.06	4	\$	342.58
319798	Pole-dipole survey	24.05	19	\$	1,627.24
193651	Pole-dipole survey	5.06	4	\$	342.58
317084	Pole-dipole survey	7.59	6	\$	513.86
112675	Pole-dipole survey	36.71	29	\$	2,483.68
185723	Pole-dipole survey	11.39	9	\$	770.80
130420	Pole-dipole survey	10.13	8	\$	685.15
		100.00	79	\$	6,765.88

Table H1: Distribution of the pole-dipole survey by claim

Pole-dipole Survey Costs	Am	ount
Dan Patrie cost	\$	6,765.88
Total Cost	\$	6,765.88

Claim No.	Type of Work	Percentage Worked	No. holes/Claim	Am	ount
319798	Diamond drilling	33.33	1	\$	41,797.03
112675	Diamond drilling	66.67	2	\$	83,594.07
		100.00	3	\$	125,391.10
			_	_	
		Diamond Drilling Cos	ts	Ar	nount
		Geologist		\$	400.00
		Junior geologist		\$	6,200.00
		Prospector		\$	3,600.00
		Geotechnician		\$	3,000.00
		Enterprise truck renta	al de la constante de la consta	\$	3,396.17
		NPLH drilling		\$	100,661.97
		Reflex orientation tools rental		\$	4,514.69
		Actlabs		\$	3,618.27

\$ 125,391.10

Table H2: Distribution of the diamond drill program by claim

Total Cost

Claim No.					Cost	for Type of W	ork				Tota	Cost Per Claim
	Pol	le-dipole	Diamor	nd Drilling	Lodgi	ng Costs	Aboriginal Consultatio		Repo	ort Writing		
112675	\$	2,483.68	\$	83,594.07	\$	356.79	\$	807.57	\$	685.71	\$	87,928
130420	\$	685.15			\$	356.79	\$	807.57	\$	685.71	\$	2,535
183830	\$	342.58			\$	356.79	\$	807.57	\$	685.71	\$	2,193
185723	\$	770.80			\$	356.79	\$	807.57	\$	685.71	\$	2,621
193651	\$	342.58			\$	356.79	\$	807.57	\$	685.71	\$	2,193
317084	\$	513.86			\$	356.79	\$	807.57	\$	685.71	\$	2,364
319798	\$	1,627.24	\$	41,797.03	\$	356.79	\$	807.57	\$	685.71	\$	45,274
											\$	145,107

Table H3: Total expenditure per claim cell

Appendix I

Legend of Abbreviations

Table I1: List of abbreviations

Symbol	Description	Symbol	Description
Scientific A	Abbreviations	Drill Hole I	og Abbreviations
km	Kilometre	CR	Cream
m	Metres	Elev.	Elevation
cm	Centimetre	FA	Fire assay
mm	Millometre	GG	Grey-green
ft.	Feet	GRB	Grey-brown
	Inches	GRBLK	Grey-black
kg	Kilograms	GY	Grey
lbs.	Pound	LGY	Light-grey
oz	Ounce	Mag. Fie.	Magnetic field
ppm	Parts per million	Maj.	Major
°F	Degrees Faranheit	PI	Pink
°C	Degrees celsius	STG	Stringer
%	Percent	W	Weak
μV	Microvolt	WM	Weak-moderate
mV	Millivolt		
V	Volts	Other Abb	reviations
Vp	Input voltage	<	Less than
dB	Decibel	≤	Less than or equal to
SP	SP Bucking	Corp.	Corporation
Μ	Chargeability	DDH	Diamond drill hole
kΩ	Kilo-ohm	g/t	Grams per ton
MΩ	Mega-ohm	Ltd.	Limited
Hz	Hertz	Ma	Millions years
AC	Alternating current	NAD	North American Datum
KVA	Kilovolt-ampere	No.	Number
nT	Nano tesla	NTS	National Topographic System
Ni-Cad	Nickel-Cadmium	QA/QC	Quality assurance/quality control
		UTM	Universal Tranverse Mercator
Cross Cost	ion Abbrovistions		

Cross Section Abbreviations

LITHO	Lithology
OV	Overburden
10B	Granodiorite
10E	Quartz feldspar porphyry
10F	Granite dike
14	Diabase

Appendix J

Exploration Permit

Ontario Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

Exploration Permit/Permis d'exploration Number/Numero : PR-17-11115

This permit is issued under the authority of section 78.3 of the *Mining Act* and the Exploration Plans and Exploration Permits Regulation (O. Reg. 308/12). It is subject to the provisions of the Act and regulation as well as the terms and conditions included in this permit.

Ce permis est emis conformement aux dispositions de section 78.3 de la *Loi sur les mines* et des reglements et est sujet aux restrictions et dispositions de ce lois et reglements ainsi qu'aux conditions ci-enoncees

Note: The issuance of this permit does not relieve the applicant from the responsibility of acquiring any other agency, board, government, etc. approval as may be required nor does it relieve the permittee from the requirements of any other legislation or guarantee access to the land.

Remarque: La deliverance d'un permis n'exonere pas le demandeur de l'obligation d'obtenir l'autorisation de tout autre organisme, commission, gouvernement, etc. qui pourrait etre exigée, non plus qu'elle exempte le detenteur des dispositions des lois et elle ne garantit pas l'accès à la terre.

Project Details/ Détails sur le projet

Project Name/ Titre du projet Elephant Head Qualified Supervisor/Superviseur qualifié Bradley McKinley

This Permit is issued to: Ce Permis est delivré a:

Name of Permittee/Nom du detenteur: Canadian Gold Miner Corp.

Mailing Address/Addresse postale:

To conduct an early exploration activities from/ Pour effectuer des activitées d'exploration du (yyy/mm/dd): 2017/07/12 to: 2020/07/12

On claim/lease/licence of occupation number(s)/Sur le numéro(s) du claim/bail/permis d'occupation:

as per your exploration permit application date/conformement a la demande de permis d'exploration en date du: May 25, 2017 **OR**

as per your *amended* exploration permit application date/conformement a la demande de permis d'exploration *modifier* en date du: for the purpose of:

Mechanized Drilling (assembled weight >150kg)/ Forage mécanisé (poids assemblé >150 kg)

Mechanized Stripping (>100m² in 200m radius)/ Décapage mécanisé (> 100 m² dans un rayon de 200 m)

Pitting and Trenching (>3m³ in 200m radius)/ Creusement de fosses et de tranchées (>3 m³ dans un rayon de 200 m)

Line Cutting (>1.5m width)/ Découpage des quadrillages (<1,5 m de largeur)

Other (Early exploration activities for which Director has required a permit)/Autre (Activités d'exploration préliminaires pour laquelle le Directeur a demandé un permis):

Subject to the following conditions:/Et sous les conditions suivanted:

- 1. The Permittee shall keep this permit or a true copy thereof on the permit area./Le detenteur conserver ace permis ou une copie conforme sur les lierux des travaux.
- 2. The person in charge of the operation conducted under this permit shall produce and show this permit or the true copy kept on the exploration permit area to any inspector whenever requested by the officer./Le responsible des travaux couverts par ce permis doit produire le permis ou sa copie conforme si un inspecteur lui demande.
- 3. The requirements outlined in Schedule 1 of Ontario Regulation 308/2012 and applicable Provincial Standards for Early Exploration/ Les exigences générales identifier à l'annexe 1 du Règlement de l'Ontario 308/2012 et les normes provinciale relatives a l'exploration preliminaire.
- 4. Other terms and conditions as listed on this permit./Autres termes et conditions enoncees sur ce permis.

Place of Issue/Emis a: South Porcupine, ON

Issued by/Emis par: Director of Exploration Northeast Region						
Date of Issue/Date émis (yyyy/mm/dd, aaaa/mm/jj):	Signature of Director/Signature du directeur:					
2017/07/12	Desmond O'Connor					

Additional Terms and Conditions:	Autre termes et conditions:
The proponent shall notify the Aboriginal Communities and the Ministry of Northern Development and Mines of the proponent's intention to commence or complete the permitted early exploration activities, as the case may be, no less than two weeks prior to start-up of the early exploration activities, and no less than one week prior to completion of the early exploration activities	
The proponent shall provide the Aboriginal Communities and the Ministry of Northern Development and Mines their annual work plans no less than two weeks prior to start- up for the first year, and then on the anniversary of the Exploration Permit issuance date for subsequent years.	