

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

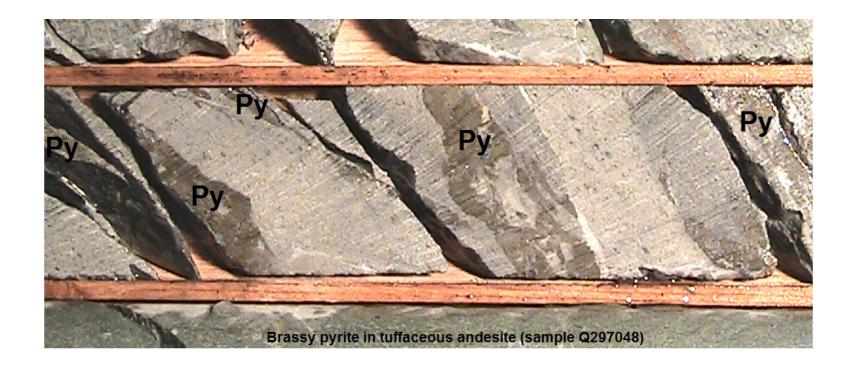
3. TAKING SAMPLES FOR PURPOSES OF GEOSCIENCE WORK

3.(i)

CELL 32D05H024

Dokis Twp, Cochrane District Larder Lake Mining Division

Claim# 192332 NTS 32D/05 48°24' 38"N, 79°36' 11.5" W


> 0603355E 5362930N NAD 83 datum

> > E. Marion May 05 2019

3. TAKING SAMPLES FOR PURPOSES OF GEOSCIENCE WORK

A technical report in respect of taking samples for purposes of geoscience work shall:

- 3.(i) contain a title page, with the name of the technical report, the property name, the date of completion of the report, and clearly identifying the author(s);
- 3.(ii) give the names of the persons who performed the work;
- 3.(iii) state the purpose for which the work was performed;
- 3.(iv) identify the mining lands on which the sampling work was performed, using the Township name, the cell number(s) on the Provincial Grid, as well as the claim numbers, lease numbers, Licences of Occupation numbers or Patent numbers, and identify the ownership of the land;
- 3.(v) identify the means of access to the land from the nearest population centre;
- 3.(vi) provide the number of any applicable exploration permit issued or exploration plan filed pursuant to O. Reg 308/12;
- 3.(vii) provide a daily log describing in detail the nature and content of the work and the observations made during the performance of the work, the nature of rocks and mineralization sampled and exposed, as well as the type of equipment used;
- 3.(viii) summarize the number of samples collected, and the number of samples analysed;
- 3.(ix) provide a description and GPS location of all samples collected;
- 3.(x) include all assays and analyses with their corresponding signed certificates of analysis;
- 3.(xi) where a drill core is resampled, provide the drill hole number, log, plan and section, and the intervals at which the samples were taken;
- 3.(xii) where material collected from non-core drilling is resampled, provide the drill hole number and the intervals at which the samples were initially taken;
- 3.(xiii) the size and weight of the samples, the analytical procedures used and the accompanying results;
- 3.(xiv) where metallurgical testing, beneficiation, or bulk sampling are reported, provide the size and weight of the sample, the analytical procedures used and the accompanying results;
- 3.(xv) where industrial mineral testing or dimensional stone removal for testing are reported, provide the rock types tested, the size and weight of the sample, the analytical procedures used, the accompanying results and a discussion on the uses of the material tested, and the potential or known markets for the product:
- 3.(xvi) provide a legend of all symbols or abbreviations used in the technical report;
- 3.(xvii) include a map or a section,
 - a. clearly identifying the location of each sample by number and measured core length;
 - b. showing lakes, streams and other notable topographic features, and railways, roads, trails, power lines, pipelines and buildings;
 - c. showing Provincial Grid cell boundary lines, claim boundary lines, township boundary lines, base lines, established grid lines, if any, and grid stations;
 - d. showing the cell number(s) on the Provincial Grid, the mining claim, leases, patent or parcel numbers of all mining lands on which the samples were taken;
 - e. where samples are reported for core or non-core drilling, providing the drill hole collar location in relation to mining land boundaries;
 - f. showing a graphic or bar scale and the north direction;
 - g. showing a descriptive list of all symbols used; and
- 3.(xviii) include photographs to locate each sample collected in the field, including a GPS receiver screen photograph with legible coordinates, and captioned with the sample identifier.

3.(ii)

Work on this program was performed and or assisted by; Louis Despres of Chaput Hughes Ontario, and Eric Marion of Kirkland Lake Ontario.

3.(iii)

Drill Hole DO-6B was completed some time ago. No sampling had been completed at the time. The talcose section with fine stringers and pinpoints of pyrite (as well as other areas of the drill hole)) had previously indicated for follow up sampling. The work was performed for ongoing research and analysis.

3.(iv)

The mining lands are in utm grid cell 32D05H024 and comprise boundary cell #192332 in Dokis Township, District of Cochrane, Larder Lake Mining Division, which lands were formerly was a piece of ground located mining claim L1221837. The lands are registered 100 percent in the name of the author. The area is found on NTS map sheet 32 D-5 with the geographic center of the grid cell 0603355E 5362930N datum NAD 83, Zone17u. (48°24'38"N, 79°36'11.5"W)

3.(v)

To get the claim, one would drive east from the historic gold producing town of Kirkland Lake on Highway # 66 for 13 kilometers then turn north on Highway #672(locally known as Esker Park Road). Driving north for about 46 kilometers will bring you to a reasonably well surfaced highway 101. Following this east for 10½ kilometers takes you to a logging Road #46, which continues southeasterly. Staying on this branch for 11½ kilometers brings you to the start of Logging Road # 52 which continues to trend in a south-east direction. Following this for about 14 kilometers south south-east will put you into claim 192332 at a point about 250 meters to the north of drill hole DO-06B. Former logging roads have given fair access to the area. Since completing harvesting and replant activities many of the smaller branch roads have begun to deteriorate and grow in, some significantly.

3.(vi)

No exploration plan or permit is required for this work.

3.(vii)

July10, 2018

The author and assistant L Despres unpack drill core piles and sort trays to retrieve the intended core section, then repile core trays.

July12, 2018

The author rents the services of a core saw and brings core over to have section sawn. The core is arranged in a common orientation in the trays and marked with a vertical guide line. The individual samples are then cut with one half placed in a plastic sample bag and tagged, and the matching half is replaced in the core tray with a corresponding sample tag for the section sampled. All samples placed in the bags were from the same side of the oriented core as previuously marked. The bagged samples were submitted for geochemical analysis.

September 18, 2018

The author drops samples off and pre-pays parcel express at the Kirkland Lake Ontario Northland bus station for delivery to A.L.S. Lab in Timmins Ontario. 1/4 day

May 1 2019, May 2 2019, May 5 2019

The author works on writing and compiling assessment report.

3.(viii)

Five drill core samples about 2 feet in length were sawn in half with a diamond blade core saw. One half of the sawn core was collected and bagged, with the other half retained in the respective core box.. All five bagged samples were submitted for geochemical analysis.

3.(ix)

All five samples were sawn from a contiguous 10 foot section of 13/8 core retrieved in drill hole DO-06B, collared in Dokis Township, Larder Lake Mining Division, with collar utm coordinates of about 0603320E & 5362960N, datum NAD 83, Zone 17u. (48°24'41"N, 79°36'13"W). The section collored in down to 131' 6" showed carbonate alteration with 3% to 4% brassy pyrite. For this section and elsewhere throughout the report, the following elemental symbols are used: Au = Gold, Ag = Silver, As = Arsenic, Cu = Copper, Mo = Molybdenum, Ni = Nickle, Pb = Lead, Zn = Zinc.

sample # **footage**

descriptions

Q297046: 122' 4" to 124' -split drill core, utm 0603320E & 5362960N (NAD 83, zone 17u), medium to light creamy grey, fine grained, sheared, heavily carbonated, non magnetic, less than common nail hardness, tuffaceous breccia or agglomeratic andesite? flow or flow top. Numerous wispy to 1/4 inch calcium carbonate stringers predominantly at about 45° to core angle. Brassy pyrite up to about 2% to 4% as fine grains and small aggregates throughout with several randomly oriented discontinuous stringers up to 1/8". Random less than 1% silvery and yellowish pyrite as randon pinpoints or fine cubes throughout. Weak 30° to 70° foliation noted as mild lineament of relict shards or chloritic flecks in the tuffaceous patches.

Au - 5ppb Ag - <.2ppm As - 3ppm Co - 50ppm Cu - 88ppm Mo - 3ppm Ni - 134ppm Pb - 3ppm Zn - 66ppm

Q297047: 124' to 126' - split drill core, utm 0603320E & 5362960N (NAD 83, zone 17u), medium to light creamy grey, fine grained, sheared, heavily carbonated, non magnetic, less than common nail hardness, tuffaceous breccia or agglomeratic andesite? flow or flow top. Numerous wispy to 1/4 inch calcium carbonate stringers predominantly at about 45° to core angle. Brassy pyrite up to about 2% to 4% as fine grains and small aggregates throughout with several randomly oriented discontinuous stringers up to \(\frac{1}{8} \). Random less than 1% silvery and yellowish pyrite as randon pinpoints or fine cubes throughout. Weak 30° to 70° foliation noted as mild lineament of relict shards or chloritic flecks in the tuffaceous patches.

Au - nil Ag - <.2ppm As - 2ppm Co - 38ppm Cu - 67ppm Mo - 1ppm Ni - 121ppm Pb - 2ppm Zn - 62ppm

Q297048: 126' to 128' - split drill core, utm 0603320E & 5362960N (NAD 83, zone 17u), medium to light creamy grey, fine grained, sheared, heavily carbonated, nonmagnetic, less than common nail hardness, tuffaceous breccia or agglomeratic andesite? flow or flow top. Numerous wispy to 1/4 inch calcium carbonate stringers predominantly at about 45° to core angle. Brassy pyrite up to about 2% to 4% as fine grains and small aggregates throughout with several randomly oriented discontinuous stringers up to 1/8". Random less than 1% silvery and yellowish pyrite as randon pinpoints or fine cubes throughout. Weak 30° to 70° foliation noted as mild lineament of relict shards or chloritic flecks in the tuffaceous patches. This sample had several %" brassy pyrite stringers across the section and the assay values were the largest, showing a little zinc, lead and arsenic.

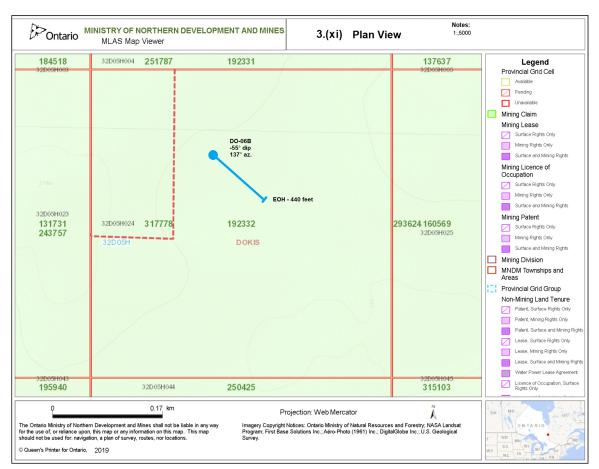
Au - nil Ag - 0.2ppm As - 14ppm Co - 51ppm Cu - 74ppm Mo - <1ppm Ni - 125ppm Pb - 11ppm Zn - 111ppm

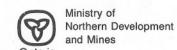
Q297049: 128' to 130' - split drill core, utm 0603320E & 5362960N (NAD 83, zone 17u), medium to light creamy grey, fine grained, sheared, heavily carbonated, non magnetic, less than common nail hardness, tuffaceous breccia or agglomeratic andesite? flow or flow top. Numerous wispy to ¼ inch calcium carbonate stringers predominantly at about 45° to core angle. Brassy pyrite up to about 2% to 4% as fine grains and small aggregates throughout with several randomly oriented discontinuous stringers up to ½". Random less than 1% silvery and yellowish pyrite

mild lineament of relict shards or chloritic flecks in the tuffaceous patches.

Au - nil Ag - <.2ppm As - 2ppm Co - 29ppm Cu - 72ppm Mo - <1ppm Ni - 29ppn Pb - <2ppm Zn - 108ppm

as randon pinpoints or fine cubes throughout. Weak 30° to 70° foliation noted as


Q297050: 130' to 131' 6" - split drill core, utm 0603320E & 5362960N (NAD 83, zone 17u), medium to light creamy grey, fine grained, sheared, heavily carbonated, non magnetic, less than common nail hardness, tuffaceous breccia or agglomeratic andesite? flow or flow top. Numerous wispy to ¼ inch calcium carbonate stringers predominantly at about 45° to core angle. Brassy pyrite up to about 2% to 4% as fine grains and small aggregates throughout with several randomly oriented discontinuous stringers up to ½". Random less than 1% silvery and yellowish pyrite as randon pinpoints or fine cubes throughout. Weak 30° to 70° foliation noted as mild lineament of relict shards or chloritic flecks in the tuffaceous patches.


Au - nil Ag - <.2ppm As - <.2ppm Co - 30ppm Cu - 78ppm Mo - <1ppm Ni - 3ppm Pb - <2ppm Zn - 86ppm

3.(x)

Please refer to the attached file "COA_TM18232567_141104-49524001- Samples" for complete results.

3.(xi) Plan View

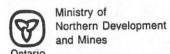
Diamond Drilling Log Journal de forage au diamant

Complete this form and related sketch in duplicate.

Remplir en deux exemplaires la présente formule et le croquis annexé

Fill in on every page Remplir ces cases à chaque page Hole No. Forage n° Page No. Page n°

Bearing of hole from true Total Footage Dip of Hole at North/Position du forage Avancement total du Inclinaison du forage au **Drilling Company** Collar Elevation Elévation du collier Address/Location where core stored Map Reference No. N° de référence sur la carte Claim No. Adresse/endroit où la carotte est stockée Compagnie de forage Nº de concession minière ERIC MARION par rapport au nord vrai forage 126 DUNCAN AUE, K.L. NTS 32 D5 OAKT Collar/collie Date Hole Started Date Completed Logged by Inscrit par Location (Twp. Lot, Con. or Lat. and Long.) Date Logged Date de commencement du forage Date d'achèvement Date d'inscription au Emplacement (canton, lot, concession, ou latitude et longitude) ERIC MARION DOKIS TWP. DISTRICT OF COCHRAME iournal Ft./Pi JUNE 6,2008 22+90E 2+50N Exploration Co., Owner or Optionee **Date Submitted** Submitted by (Signature) Ft./Pi Compagnie d'exploration, propriétaire ou titulaire d'option Date de dépôt Déposé par (signature) ERIC MARION Property Name Ft./Pi Nom de la propriété


ootage/Av	ancement	Rock Type	Description (Colour, grain size, texture, minerals, alteration, etc.)	Planar Feature	Core Specimen	Your Sample No. N° d'échantillon	Sample Footage lèvement de l'éch	/Niveau de pré-	Sample Length	Assays †/Ar	nalyses minéral	alurgique
rom/De	To/À	Rock Type Type de roche	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.)	caractéristiques planes	en pieds des carottes prélevées	N° d'échantillon du prospecteur	From/De	To/À	Longueur de l'échantillon			
0	105	CHSING	CASING - 0-38' GRENISH CLAY WITH ABOUT 20% FINE								7	,
05	1-1-5"		GREEN SANDS. 38 - 105 " UNSORTED TILL IN A									
			HARD CLAY . MANY 1"- 2" MAFIC CLASTS. APPROX									
			20 CLASTS LARGER THAN . 6" IN THIS SECTION. ISSUE									
			AUFRAGE MBOUT 25% CLAST OF UNRIOUS SIZE				-					
05	130'6"	ANDESITE?	ALTERED GREY to GREY GREEN ANDESITIC?					4				60000
			BRECCIA + PILLOWS, MUCH SHEARING AND				1	*				
			FOLIATION AT ABOUT 450 TO CA. CARBONATE				not be					
1/2			ALTERED (100% HCL BUBBLES STRONGLY) NUMBEROU	5								
			CROSS CUTTING QZ POLOMITE STRINGGES									
			AND THIN UIEINS AT 450 TO 550 TO									
			CORE ANGLE, WAYY TALCOSE SLIPS AND									
			JOINTS THROUGH OUT, FINE GRAWED NON MAGNETI	<				1				-
			1065 - 1075 GOYGE - SHEAR AT 450 TO CA, KINKS NOTED									
			IN FOLIATION FABRIC									10.50
/			110% - 1/2 GOUGEYS HEAR WITH KINKS IN FOLIATION									
1			1183-119 6046EY SHEAR AT 45° TO CA- QZUEINS									
1/1			1246-125% TALCOSE SHEARING AT 500 tO CA									
			WHOLE SECTION HARDNESS LESS THAN NAIL, MINOR PY	RITE								

^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

^{*}Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

[†] Additional credit available. See Assessment Work Regulation.

[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

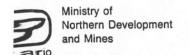
Diamond Journal de forage au diamant

Complete this form and related sketch in duplicate.

Remplir en deux exemplaires la

présente formule et le croquis annexé

Fill in on every page Remplir ces cases à chaque page Hole No. Forage n° Page No. Page n°


Rock Type Type de roche ANDESITIE FLOWS	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.) CONTACT ? KLONG QZ UEIN AT 600 TO CA, MASSIUE GREEN TO VELLOWISH GREEN ANDBSITTE FLOW, 1-18	caracteristiques planes	Footage † / Longueur en pieds des carottes prélevées	Your Sample No. N° d'échantillon du prospecteur	From/De	pe/Niveau de pré- hantillon (en pieds) To/À	Longueur de l'échantillon			
ANDESITIE FLOWS		2427								
	GREEN TO YELLOWISH GREEN ANDBSITTE FLOW, 1-18									
		mm								
	FINE GRAINED , MANY CROSS CUTTING WISPY QZ-CALL	UTE					7 = 1			
	5+RINGERS MOSTLY AT 700 +0750 +0 CA.									
	SOME THIN WISPY YELLOW (EPIDOTE?) STRINGERS AND									
	ODD HEMATITE CONTED QZ STRINGER, GENERALLY									
	HARDNESS LESS THAN KNIFE, RARE PYRITE, NOW									
	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM									
	GREEN-GREY. TIGHT 1/211 CONTACTS NOTED AT									
	150' AT 450 YOCA, 158' AT 450 70 CAR									
	158' 10 163' - AGGIOM FRATIC TO BRECLIA ANDESITE						-			
· -	WITH CHLORITIC MATRIX, MUCH BZ-CALLITE.									
	SOMEWHAT VESSILULAR FROM 170' 70 192'									
	WITH ABOUT 3-5% UESSILLES. WITH. QZ-LALGTE									
	FILLINGS, MANY THIN 1-2 mm WISPY QZ CAZCITE UE	NS. 1	T MBOO	UT 600	701A					
PILLOW ANDESITE	- SLIGHTLY HARDER FINER GRAIN PILLOWED ANDESIT	·								
	12" to 30" AUERNGE SIZE MEDITION TO LIGHT						41 3			
V. S.		1								
			7							
	PYRITE 1-202 2-3 nn QZ FILLED									
	UESSILLES IN PILLOWS FROM 194 - 2011 CESS	XIUT	TING G	ZCAZ	LITE	· ·				
205'-212'										
		TACT					200			
	205'-212'	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY. TIGHT 1/2" CONTACTS NOTED AT 150' AT 450 TOCA, 158' AT 450 TOCA, 158' TO 163' - AGGLOMERATIC TO BRECCIA ANDESITE WITH CHLORITIC MATRIX, MUCH BZ-CAZCITE, SOMEWHAT VESSICULAR FROM 170' TO 190' WITH MAGNT 3-5% VESSICUES, WITH, QZ-CAZCITE VE FILLINGS, MANY THIN 1-2 MM WISPY QZ CAZCITE VE PILLOW ANDESITE - SLICHTLY HARDER, FINER GRAIN PILLOWED ANDESIS 12" TO 30" AVERNGE SIZE, MEDIUM TO LIGHT GREEN GREY, 2" TO 6" INTERSTITIAL SPACES FILL WITH A GREY WHITE CARBONATE, CHLORITIC SHARES AND BLEB AND CHUNKS OF BRASSY PYRITE. 1-29 2-3 mm QZ FILLED VESSICLES IN PILLOWS FROM 194-201' (ESS 405'-212' GRANULAR APPEARING 1-2 mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPER CONTACT AT ABOUT 70° TO CA, 1" CHICLED GRADING	MNGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT 1/3" CONTACTS NITED AT 150' AT 450 TO CA, 158' AT 450 TO CAZ 158' TO 163' - AGGIOMERATIC TO BRECCIA ANDESTIE WITH CHLORITIC MATRIX, MUCH BZ-CAZLUTE, SOMEWHAT VESSICULAR FROM 170' TO 190' WITH MAGUT 3-5% VESSICIES, WITH DZ-CAZUTE FILLINGS, MANY THIN 1-2 MM WISPY DZ CAZUTE VENS. I PHLOW ANDESTE - SLIGHTLY HARDER, FINER GRAIN PILLOWED ANDESTIE 12" TO 30" AVERAGE SIZE, MEDI": TO LIGHT GREEN GREY, 2" TO 6" INTERSTITIAL SPRES FILLED WITH A GREY WHITE CARBONATE, CHLORITIC SHAREDS AND BLEB AND CHUNKS OF BRASSY PYRITE. 1: 2% 2-3 mm QZ FILLED VESSICIES IN PILLOWS FROM 194 - 201' CESS XIVI 305'-212' GRANULAR APPEARING 1-2 mm GRAIN FLOW? MEDIUM GREY-GRAEN, UPPAR CONTACT AT NBOUT 70° TO CA, 1" CHICLED GRADING	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT 1/2" CONTACTS NITED AT 150' AT 750 TOCA, 158' AT 450 TOCAS, 158' TO 163' - AGGIOMERATIC TO BRECCIA ANDESTIE WITH CHLORITIC MATERIX, MUCH BT - CALLITE, SOMEWHAT DESSIGNACHER FROM 170' TO 190' WITH ABOUT 3-5% DESSIGNES, WITH, OZ-CAZOTE FILLINGS, MANY THIN 1-2 MM WISPY OZ CAZOTE DENS. AT ABOUT PHLOW ANDESTE - SLICHTLY HIRDER, FINER GRAIN PILLOWED ANDESTE 12" TO 30" ADERNAGE SIZE, MEDITA TO LIGHT GREEN GREY, 2" TO 6" INTERSTITIAL SPRES FILLED WITH A GREY WHITE CARBONATE, CHLORITIC SHAREDS AND BLERS AND CHUNKS OF BRASSY PYRITE 1-2% 2-3 mm OZ FILLED UESSICIES IN PILLOWS FROM 194-201' CESS XUTTING G 305'-212' GRANULAR APPEARING 1-2 mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPER CONTACT AT ABOUT 70° YO C.A., 1" CHILLED GRADIN 6 TO 1-2 mm BY 205' 8", LOWER IRREGULAR CONTACT	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT 15" CONTROTS NITED AT 150' AT 450 TOCA, 158' AT 450 TOCA, 158' TO 163' AGGIOMERATIC TO BRECCIA ANDESTIE WITH CHLORITIC MATRIX MUCH RI-CALLITE, SOMEWHAT VESSICULAR FROM 170' TO 190' WITH ABOUT 3-52 VESSICUES, WITH, QZ-CALGITE VEWS, AT ABOUT 600 PHLOW ANDESTE - SLICHTLY HARDER, FINER GRAIN PILLOWED ANDESTE 12" TO 30" ANDRONE SIZE, MEDIUM TO LIGHT GREEN GREY, 2" TO 6" INTERSTITIAL SPRES FILLED WITH A GREY WHITE CARBONATE, CHLORITIC SHAPPS AND BLESS AND CHUNKS OF BRASSY PYRITE, 1-22 2-3 mm QZ FILLED VESSICLES IN PILLOWS FROM 194-201' CESS XIUTING GZ CAZ 205'-212' GRANULAR APPEARING 1-2mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPAR CONTACT AT NBOUT 70° TO CA, 1" CHIKLED GRADING	MRGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT BY CONTACTS NITED AT 150' AT 450 TOCA, 158' AT 450 TOCA, 158' TO 163' - REGIONERATIC TO BRECCIA ANDESTIE WITH CHLORITIC MATRIX, MUCH BY -CALLUTE, SOMEWHAT VESSICULAR FROM 170' TO 190' WITH ABOUT 3-50 DESSILES WITH, QZ-CALQTE FILLINGS, MANY THIN 1-2 MM WISPY QZ CALCTE VEWS, AT ABOUT 60° TOCA PHILOW WIDESTE - SLICHTLY HARDER, FINER GRAIN PILLOWED ANDESTE 12" TO 30" AVERAGE SIZE, MEDIUM TO LIGHT (REEN GREY, 2" TO 6" INTERSTITIAL SPREES FILLED WITH A GREY WHITE CARBONATE, CHLORITIC SHARES AND BLEBS AND CHUNKS OF BRASSY DYRITE, 1-20 2-3 mm QZ FILLED VESSICLES (N PILLOWS FROM 194-201' CESS XCUTTING GZ CALCUTE 205'-212' GRANULAR PAPPRARIAL 1-2 mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPAR CONTACT AT NBOUT 70° TO C.A. 1" CHICLED GRADING	MNGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT B'' CONTACTS NITED AT 150' AT 450 TOCA, 158' AT 450 TOCAG 158' TO 163' - AGGIOMERATIC TO BRECKLA MUDESTIE LUITH CHURITIC MATRIX, MUCH BT-CALLITE. SOMEWHAT VESSICULAR FROM 170' TO 198' WITH ABOUT 3-50 VESSICIES, WITH, OZ-CALGTE FILLINGS, MANY THIN 1-2 MM WISPY QZ CALCITE VEWS, AT ABOUT 60' TOCA PILLOW PANDESTE - SLICHTLY HARDER, FINER GRAIN PILLOWED ANDESTE 12" TO 30" AVERNGE SIZE, MEDIUM TO LIGHT CARREN GREY, 2" TO 6" INTERSTITIAL SPRES FILLED WITH A GREY WHITE CARBONATE, CHLORITIC SHARES AND BLEER AND CHUNKS OF BRASSY DYRITE, 1-20 2-3 mm QZ FILLED VESSICLES (N PILLOWS FROM 194-201' CESS XIUTING GZ CASCITE 205'-212' GRANULAR APPRARING 1-2 mm CRAIN FLOW? MEDIUM GREY-GREEN, UPPAR CONTACT AT ABOUT 400 TO CA, 1" CHIKLED GRADING	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT 1/11 CONTACTS NITED AT 150' AT 45° TOCA, 158' AT 45° TOCA, 158' TO 163' - REGIONERATIC TO BRECULA ANDESTIE WITH CHERTIC MATRIX. MUCH RI-CALLITE. SOMEWHAT VESSICULAR FROM 170' TO 192' WITH ABOUT 3-5° UESSICIES. WITH DI-CALITE FILLINGS, MANY THIN 1-2 MM WISEY OI CACCITE VEWS. AT MOOUT 60° TOCA PHILOW ANDESTE - SLICHTLY HARDER, FINER GRAIN PILLOWED ANDESTE 12" TO 30" AVERAGE SIZE, MEDIUM TO LIGHT (REFEN GREY, 3" TO 6" INTERSTITIAL SPRES FILLED WITH A GREY WHITE CARBOUATE, CHERTIC SHARDS AND BLEER AND CHUNKS OF ERRSSY DYRITE, 1-2°2 2-3 mm QI FILLED WESSICIES (N PILLOWS FROM 194-201' CESS X'WITING BI CACCITE 205'-212' GRANULAR APPERENNIL 1-2 mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPER CONTACT AT NBOUT 70° TO C.M., 1" CHICKER GRADING TO 1-2 mm BY 205' 8", LOWER IRREGULAR CONTACT	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY, TIGHT 15" CONTACTS NITED AT 150' AT 45° TOCA, 158' AT 45° TOCA; 158' TO 163' - AGGIOMERATIC TO BRECCIA ANDESITE WITH CHLORITIC MATRIX, MUCH AZ - CAZLITE, SOMEWHAT VESSICULAR FROM 170' TO 192' WITH ABOUT 3-5° UESSICIES, WITH DZ-CAZITE ELLINGS, MANY THIN 1-2 MM WISRY QZ CAZCITE VEWS AT ABOUT 50° TOLA PHILOW ANDESTE - SLICHTLY HARDAR FINER GRAIN PILLOWED ANDESINE 12" TO 30" AVERAGE SIZE, MEDIUM TO LIGHT (BREEN GREY, 2" TO 6" INTERSTITIAL SPRES FILED WITH A GREY WHITE CARBOURTE, CHURITIC SHARDS AND BLEBS AND CHUNKS OF BRASSY PYRITE, 1-2°2 2-3 mm QZ FILLED UESSICIES IN PILLOWS FROM 194 - 201' CESS XIVITING GZ CAZCITE RESULTAR APPEARANT 1-2 mm GRAIN FLOW? MEDIUM GREY-GREEN, UPPER CONTACT AT ABOUT 90° TO CM, 1" CHICLED GRADING TO 1-2 mm BY 205' 8", LOWER IRREGULAR (ONTACT)	MAGNETIC, FROM 150' DOWN ROCK MORE MEDIUM GREEN-GREY. TIGHT 15" (ONTROTS NITED AT 150' AT 750 YOLA, 158' AT 450 YOLA, 158' TO 163' AGGIOMENTIK YO BRECCIA ANDESTE LUITH (ALONTIC MATRIX, MUCH BT - CALLITE. SOMEWHAT VESSILLERA FROM 170' TO 198' WITH ABOUT 3-50 VESSILLES, WITH, OZ-INLYTE FILLINGS, MANY THIN 1-2 MM WISPY OZ CAZCITE VEWS. AT ABOUT 600 YOLA PILLOW ANDESTE - SUICHTLY HARDER FORE GRAIN PILLOWED AND SITE (REFEN GREY, 3" TO 6" INTERSTITIAL SPREES FILLED WITH A GREY WHITE CARBONATE, CHORITIC SHAPES AND BLESS AND CHUNNS OF BRASSY PYRITE. 1-22 2-3 nm QZ FILLED VESSILLES IN PILLOWS FROM 194 - 201' CESS XUTING GZ CAZCITE NESSILLES IN PILLOWS FROM 194 - 201' CESS XUTING GZ CAZCITE NEDUM GREY-GREEN, UPPAR CONTACT AT NBOUT 40° 10 CA, 1" CHILLED GRADIN 6 TO 1-2 mm BY 205' 8", LOWER IRREGULAR (ONTACT)

^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

^{*}Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

[†] Additional credit available. See Assessment Work Regulation.

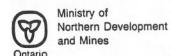
[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Diamond Drilling Log Journal de forage au diamant

Complete this form and related sketch in duplicate.

Remplir en deux exemplaires la présente formule et le croquis annexé

Fill in on every page Remplir ces cases à chaque page Hole No. Forage n° Page No. Page n° Po-68 3


>otage/Ava	ancement	Rock Type	Description (Colour, grain size, texture, minerals, alteration, etc.)	Planar Feature	Core Specimen	Your Sample No.	Sample Footag	ge/Niveau de pré-	Sample Length	Assays †/	Analyses min	éralurgiques
rom/De	To/À	Rock Type Type de roche	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.)	caractéristiques planes	en pieds des carottes prélevées	N° d'échantillon du prospecteur	From/De	To/A	Longueur de l'échantillon		Analyses min	- giquoo
			AT ABOUT 450 to CA. 3"-4" CHIEL MARLIN	1.			-					
			21 TILE PYRITE THROUGHOUT.			7		Y :				
192			NYMPROUS OF STRINGERS AT ABOUT 500 TO 600.	135e								
			TO C.A. MOTILED ALTERATION IN PILLOWS									
			NOTABLY AT 218 - 220' , 227' 40 229', 246-24	9'								
			271-274' MANY CROSSGITING OZ CALCITE 1/4									
			UEINS FROM 248-260 AT 650- 700 TOCA.									
			HEALILY PYRITIC SINTERSTICIES 270' - 300'									
303	335	VESSILYLAR	LARGER VESSICHLAR PILLOWS FINE TO APHANI.	116								
X PAG	04	92	MEDIUM GREY GREEN, 20- 300 WHITISH G	29					*			
X Pa)		FILLED UESSILLES. FROM 'B" TO 'S" WITH					18/	-			
			1/2 BEING MOST ABUNDANT.									
302'	30216	DIKELET	COMPLETELY CHILLE LIGHT GREY GREE DYKE				- 96					
			UPPER CONTACT AT 800 TO CA LOWER CONTACT									
			AT 700 70 CA.									
335"	375	MASSIUE FLOW	SHIRP CONTACT AT 300 TOCA, APHANITIC									
			to FINE GRAIN to 348' THEN BECOMING					391				
			2 mm GRANULAR APPEARING, 5-1000 1/9"									
			CHLORITE FILLED UESSICKES IN PATCHUES,		144							
7			332-335' PATCHY OZ AND SEUBRAL "Y" DZ UEINS									
			AT 30° to CA.									
			339' - 13" OZ CAZCITE UEW AT 300 TO CA.									
1	1		346'-346'6"- FME GRAIN DIRECET YOR CONTACT	-				3				
			AT 500 TOCA BOTTOM CONTACT AT 55° TO CA									
			BLEACHED APPEARING CHILLED CONTACT FOR									
			1'3" UPPER T DOWER CONTACTS.									

^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

^{*}Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

[†] Additional credit available. See Assessment Work Regulation.

[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation, Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Diamond Drilling Log Journal de forage au diamant

Complete this form and related sketch in duplicate.

Remplir en deux exemplaires la présente formule et le croquis annexé

Fill in on every page Remplir ces cases à chaque page Hole No. Forage n° Page No. Page n°

Footage/Ava	ancement	Rock Type	Description (Colour grain size texture minerals alteration etc.)	Planar Feature	Core Specimen Footage † / Longueur	Your Sample No.		e/Niveau de pré-	Sample Length	Assays †/	Analyses mine	éralurgique
From/De	To/À	Type de roche	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.)	caractéristiques planes	en pieds des carottes prélevées	N° d'échantillon du prospecteur	From/De	To/A	Longueur de l'échantillon		T	
4			360'8" FOLIATED FOR 3" WITH WISPY YIELLOW SERICITE									
^			301'1" 2" QZ. CAZITE VEIN AT 50° TOCA.									
			301'3" - 301' B" SOMEWHAT FOLIATED WITH WISPY									
			YELLOW SURVEITE STRINGUES.									1
335		ALTERED FLOW?	GETTING SOFTER DOWN HOLE TO LESS THAN									
			NAIL AN FRAGE.							- 4		
		355'	THIN 16" CHLORITE CONTED SHEAR AT 50 TOCA									
			FILLED WITH A SOFT MILK WHITE SOFT CARBONATE,									
		35816"	1/4 OZ CALCITE UEWAT 600 YO CA GRANULAR									
		359771	2" QZ- PACITE UEIN WITH SMORY OF FRAGMEN	7								
			SEVERAL WALL POCK FRAGMENT.						•			
		3591	G" MILKY WHITE OZ UEIN AT 400 TO CA.									
		359'6	1-360' 8" BRECCIATED OZ UEW MIXED WITH									
			OFF WHITE FELDSPATHIC MATERIAL WAPPER CONTACT					1.0				
			AT 35° TO CA, LOWER CONTACT AT 35° TO CA,									
			SECTION FROM '358' TO 362 DARRER IN COLOR									
			AND MORE CHLORITIC,								7.	
36/13"	3621	DIKELET	FINE GRAIN GREY DIXELET TIGHT CHILL WITH									
			BLEACHED APPENDED ANCE, UPPER CONTACT AT 1400 to									
1			CA, LOWER CONTACT AT 1330 TO CA, WISAY									
			CHLORITE FILLIED FRACTURE PERPENDICULAR TO									
			BOTTOM CONTACT PENTSTRATING YO ABOUT Q"									
1		364 - 368	MANY BASHY LOOKING QZ CARCITE UEINLETS AT									
			MBOUT 600 TOCA									
			FLOW STARTING TO GET FINER GRANGD				7.0					
			PAT ABOUT 373' TO VERY FINE AT 373'									

^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

^{*}xemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

[†] Additional credit available. See Assessment Work Regulation.

[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

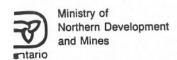
Diamond Drilling Log Journal de forage au diamant

Complete this form and related sketch in duplicate.

Remplir en deux exemplaires la présente formule et le croquis annexé

Fill in on every page Remplir ces cases à chaque page Hole No.
Forage n°

Page No.
Page n°


Footage/Av	ancement	Rock Type	Description (Colour grain size texture minerals alteration etc.)	Planar Feature	Core Specimen	Your Sample No.	Sample Footag	e/Niveau de pré-	Sample Length	Assays †	/Analyses min	réralurgique
Fro m/De	To/À	Type de roche	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.)	caractéristiques planes	Core Specimen Footage † / Longueur en pieds des carottes prélevées	N° d'échantillon du prospecteur	From/De	hantillon (en pieds)	Longueur de l'échantillon	, , ,	/Analyses min	1
110111110		375'	SHIMP CONTACT WITH UNIT BELOW AT ABOUT									
		5 / 3	300 78 CA.									
225	31-										+	-
375	285	UESICULAR PILLOUS	MEDIUM GREY GREEN, 20-3000 QZ AND CHUORITE									-
			FILLED UESSICLES "16" TO "4". UMRIED TEXTURE									
			FROM APHROITIC TO FINE. TIGHT CHLORITIZED									
			SELUIEAGES					3				
			380'4"- 3" OR BRECCIA UBIN AT 600 TO CA									
			380'9" - 5" QZ USIN AT 400 TO CA, 2700 TO	CORB)							
3.95	395	Flow	LIGHT GREY, GRANWIAR APPEARING ABOUT									
			2mm GRAW, ALMOST CABROIC TEXTURISD FLOW									
			UPPER CONTACT AT 40° TO CA - 3'CHILL MER						-			
			LOVE CONTRET AT 10 10 CA ~ 3 CAILL MIGAGE	1. 1								
			LOWER CONTACT AT 450 to CA 6-7" LAILL MAR	61 N					1			
375		100 miles 100 kg/se	SEVERAL CROSS CHTTNL 4"OT VEINS AT 450 TO			Service .		ell.				
	100	-	600 70 CA.									
395	440	PILLOWED PLOWS	S FINE GRAINED MEDIUM GREY GREEN TO DARR.									
			TORVET, UESSICULIAR PILLOUS - AUFRAGE SIZE OF									
			4. UESSIKLES SHOW AN ORIGINIATION OR									
			STRETCHING AT ABOUT 600 TO CA.									
- 4,41	1 40	WILL NIKELET	COMPLETELY CHILLES DIKELET WITH PROLES				7-12					
101	101	DIRECT!	CONTACTS AT BOO TO CA, FLOW BANDING?									
-	-					1		146				
-			PARALLEL TO CONTACTS.	-		-					_	
			405' -407' BRECLIATED SECTION WITH MANY	-								
1			DARK GREY CHERTY FRAGMENTS. ODD CLYMP									
			OF BRASSY DYRITE, ODD CHPY.									
		405-	TO 425' MUCH DARK GREY-BLACK 2 HERTY									
			TO 425' MUCH DARK GREY-BLACK ZHERTY									
								ont Work D	1		- Control of the Cont	

^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

^{*}xemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

[†] Additional credit available. See Assessment Work Regulation.

[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Diamond Drilling Log

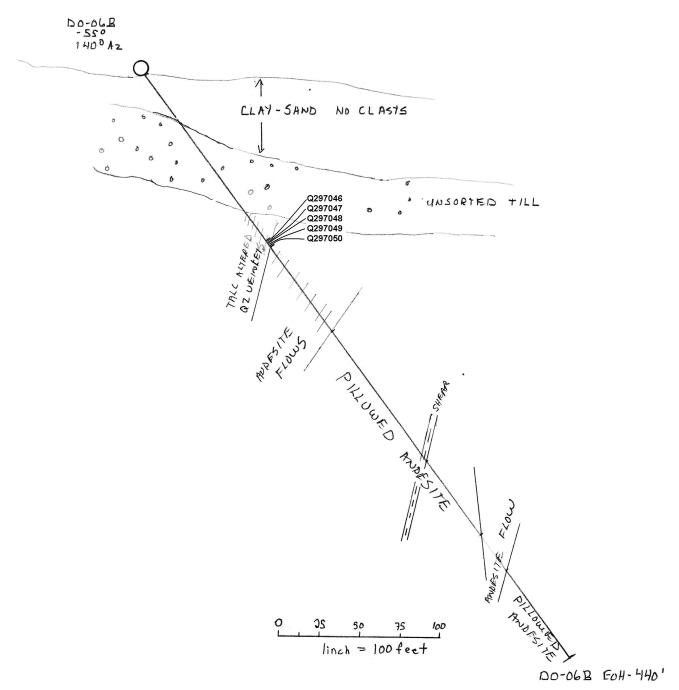
Journal de forage au diamant

Complete this form and related sketch in duplicate.

Fill in on every page Remplir en deux exemplaires la présente formule et le croquis annexé Remplir ces cases à chaque page

Hole No. Forage n° Page No. Page n°

=ootage/Av	ancement	Bock Type	Description (Colour grain size texture minerals alteration etc.)	Planar Feature	Core Specimen	Your Sample No.	Sample Footag	ge/Niveau de pré-	Sample Length	Assays †//	Analyses miné	ralurgiques
From/De	To/À	Rock Type Type de roche	Description (Colour, grain size, texture, minerals, alteration, etc.) Description (Couleur, granulométrie, texture, minéraux, transformation, etc.)	caractéristiques planes	en pieds des carottes prélevées	N° d'échantillon du prospecteur	From/De	ge/Niveau de pré- hantillon (en pieds) To/À	Longueur de l'échantillon		Analyses miné	3 4
			MATTERIAL AND CLUMPY PYRITE IN INTERSTICIO	1								
			BETWEEN PILLOWS.									
		440	BETWEEN PILLOWS. END OF HOLE									
			CASING LEFT IN HOLE.									
								7				
												*
4												
			-		1							
					7							
						•						
-								31				
1												


^{*}For features such as foliation, bedding, schistosity, measured from the long axis of the core.

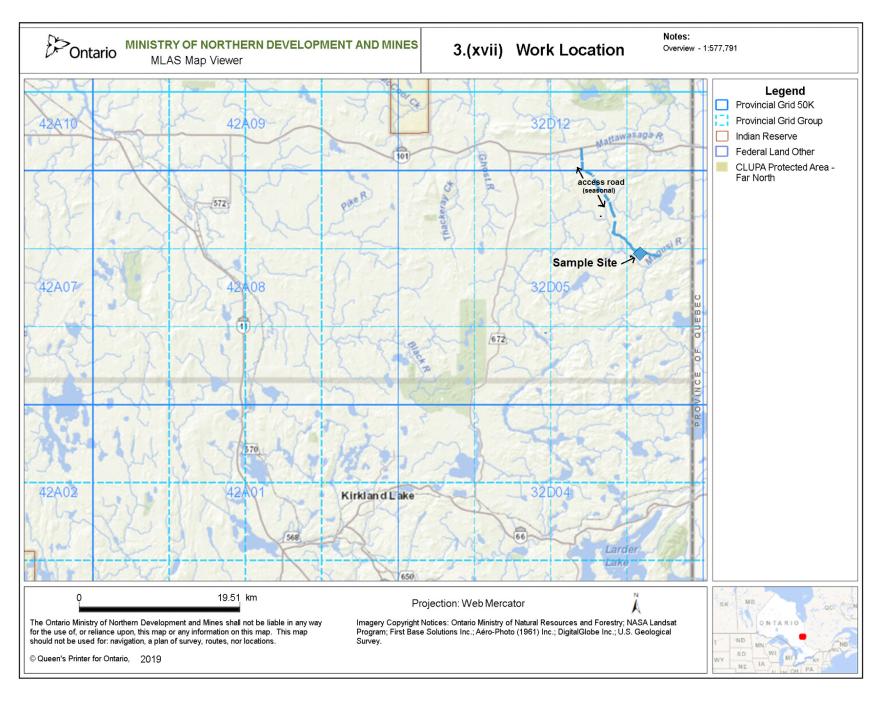
Exemples de caractéristiques : foliation, schistosité, stratification. L'angle est mesuré par rapport à l'axe longitudinal de la carotte.

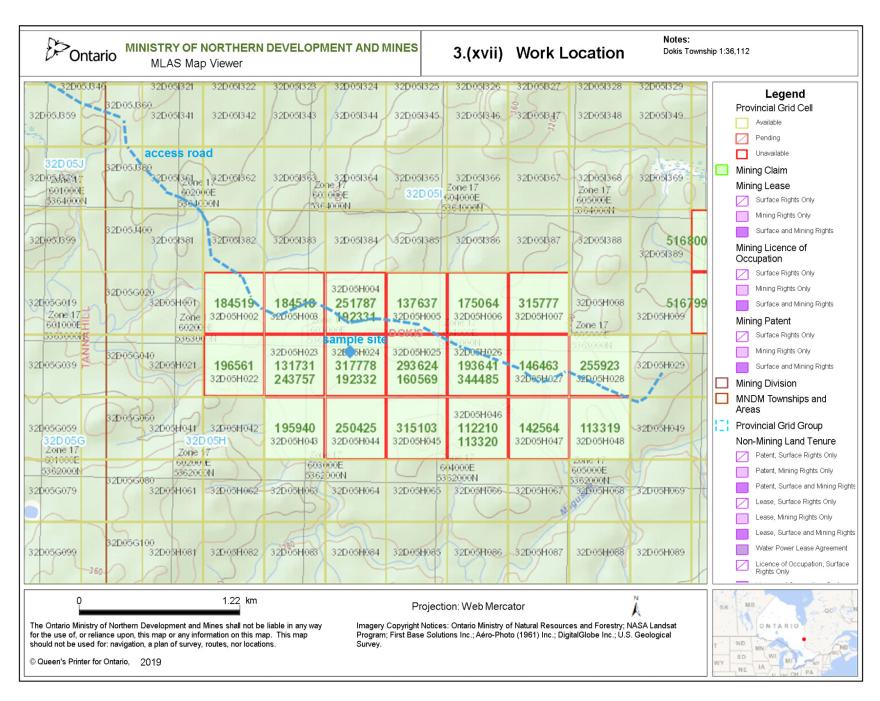
[†] Additional credit available. See Assessment Work Regulation.

[†] Des crédits supplémentaires sont offerts. Consulter les règlements relatifs aux travaux d'évaluation. Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

DRILL HOLE SECTION - FACING NORTH EAST CL# 1221837 DORIS TWP. 22+90 E 2+50N

*(Exerpt From Assessment Report Accompanying Attached Drill Hole Log)


```
3.(xii) N/A
```


EOH = end of hole

3.(xiii)

Each sample represents about 2 feet of the core length. As per the attached certificate, the samples renged from one half kilogram to three quartes of a kilogram with the average weight of each sample being a little more than 0.52 kilograms. The samples were subjected to fire assay for the gold content, and disolution by aqua regia and fire assay for the 35 elemet suite provided. Please refer to the attached file "COA_TM18232567_141104-49524001- Samples" for complete analysis results.

```
3.(xiv) N/A
       N/A
3.(xv)
3.(xvi)
       Au = Gold
                            Ag = Silver,
                                                As = Arsenic
                                                                  Cu = Copper,
       Mo = Molybdenum,
                            Ni = Nickle,
                                                Pb = Lead,
                                                                  Zn = Zinc.
        ' = foot or feet
                            m = meter
                                               qz = quartz
        " = inch / inches
                           mm = millimeter
                                              twp = township
        ° = degrees
                           cm = centimeter
       az = azimuth
                           km = kilometer
```


Gougey shearing and calcite up hole adjacent to sampled section (core is 1%" wide)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. **69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3**

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2018

Account: PRCDVOXH

CERTIFICATE TM18232567

Project: LUCKY STRIKE This report is for 30 Rock samples submitted to our lab in Timmins, ON, Canada on 19-SEP-2018. The following have access to data associated with this certificate: PETER DIMMELL GREG MATHESON PETER MCINTYRE KEN RATTEE MICHAEL REGULAR

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU- 36	Fine Crushing - 85% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 32	Pulverize 1 000g to 85% < 75 um	
LOG- 23	Pulp Login - Rcvd with Barcode	

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Cu- OG46	Ore Grade Cu - Aqua Regia	
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES
ME-ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

TO: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- OCT- 2018 Account: PRCDVOXH

Project: LUCKY STRIKE

CERTIFICATE OF ANALYSIS TM18232567

							<u> </u>			,,,,,	, ,,,,,,,,				
Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 AI % 0.01	ME- ICP41 As ppm 2	ME- ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
	when .	r maammen in nepulee cristicace est el la Mid	» НКК доловирований вода и одоговиваний					en e	e en	gergen zagrannen ger kantan en			ngga magging gi g a ga gang ang magging gi gang ang magging gang gang gang gang gang gang gan		
	0.51 0.69 0.74	0.005 <0.001 <0.001	<0.2 <0.2 0.7	3.32 3.08 3.09	3 2 14	<10 <10 <10	20 20 30	<0.5 <0.5 <0.5	<2 <2 <2	4.10 6.18 3.21	<0.5 <0.5 <0.5	50 38 51	131 133 135	88 67 74	5.40 4.72 7.00
	0.69 0.50	<0.001 <0.001	<0.2 <0.2	4.51 4.29	2 < 2	10 <10	10 10	<0.5 <0.5	<2 3	3.54 4.81	<0.5 <0.5	29 30	35 <1	72 78	8.00 8.24
	to continue a term														
			ř												
	Analyte Units	Analyte Units LOD	Analyte Units LOD	Analyte Units LOD	Analyte Units LOD	Recvd Wt. Au Ag Al As ppm ppm % ppm ppm % ppm % ppm ppm % ppm ppm % ppm ppm ppm % ppm ppm % ppm ppm ppm % ppm pp	Analyte Units LOD	Analyte Units kg ppm ppm ppm % ppm ppm ppm ppm ppm ppm p	Method Analyte Units LOD WEI-21 Recvd Wt. kg Au J Au ppm Dpm Dpm Dpm Dpm D0.2 ME ICP41 As B B Ba Ba Be Dpm	Method Analyte Units LOD WEI-21 Recvd Wt. LOD Au ICP21 Au Pppm Pppm Au Pppm Pppm Pppm Pppm Pppm Pppm Pppm Ppp	Method Analyte Units LOD	Method Analyte Units LOD WE 21 Au Au Au Au Au Au Au Au	Analyte Units Record Wt. Au Ag Ag Al As B Ba Ba Ba Ba Ba Ca Cd Co Co Depth Hold Co	Web-21	Method Analyze Head Wit

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- OCT- 2018 Account: PRCDVOXH

	,								CI	ERTIFIC	ATE O	F ANAL	YSIS.	TM182	232567	
Sample Description	Method Analyte Units LOD	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
Q297014 Q297015 Q297016 Q297017 Q297018									C					•		
Q297019 Q297020 Q297046 Q297047 Q297048		10 10 10	<1 <1 <1	0.12 0.12 0.15	10 <10 < 1 0	2.38 2.13 2.05	595 658 647	3 1 <1	0.04 0.05 0.05	134 121 125	550 550 490	3 2 11	0.70 0.27 2.83	<2 <2 <2	10 11 9	15 20 12
Q297049 Q297050 Q297361 Q297362 Q297363	pk	20 20	<1 <1	0.03 0.01	<10 <10	2.86 2.56	1090 1340	< 1 <1	0.04 0.04	29 3	590 570	<2 <2	0.18 0.08	<2 <2	25 26	13 20
Q297364 Q297365 Q297366 Q297367 Q297368	Ł.	enc:						·								
Q294986 Q294987 Q294988 Q294989 Q294990	:	-														
Q294991 Q294992 Q294993 Q294994 Q294995	,	Medi.														.
															,	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. **69 YONGE STREET SUITE 1010 TORONTO ON MSE 1K3**

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- OCT- 2018

Account: PRCDVOXH

MLS									CE	RTIFIC	ATE OF	ANALYSIS	TM18232567
Sample Description	Method Analyte Units LOD	ME-ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Cu- OG46 Cu % 0.001	CRU-QC Pass2mm % 0.01	PUL- QC Pass75um % 0.01		
Q297014 Q297015 Q297016 Q297017 Q297018													
Q297019 Q297020 Q297046 Q297047 Q297048		<20 <20 <20 <20	0.26 0.29 0.37	<10 <10 <10	<10 <10 <10	111 113 113	<10 <10 <10	66 62 111					
Q297049 Q297050 Q297361 Q297362 Q297363		<20 <20	0.71 0.75	<10 <10	<10 <10	230 242	<10 <10	108 86					
Q297364 Q297365 Q297366 Q297367 Q297368													
Q294986 Q294987 Q294988 Q294989 Q294990													
Q294991 Q294992 Q294993 Q294994 Q294995							· · · · · · · · · · · · · · · · · · ·						
est.										·			

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6- OCT- 2018

Account: PRCDVOXH

CERTIFICATE	∩ E	ANAI VCIC	TM18232567
CENTIFICATE	VΓ	ANAL 1313	111111023230/

		CERTIFICATE CO	MMENTS	
			RATORY ADDRESSES	
Applies to Method:	Processed at ALS Vanco Au- ICP21	ouver located at 2103 Dollarton Hwy, N Cu- O G 46	lorth Vancouver, BC, Canada. ME-ICP41	ME- O G 46
Ammlian to Nanth and		ins located at Unit 10 - 2090 Riverside		100.33
Applies to Method:	CRU- 36 PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21	LOG- 23 WEI- 21

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3

Total # Pages: BagA: - C)
Plus Appendix Pages
Finalized Date: 6-OCT-2018

Account: PRCDVOXH

QC CERTIFICATE TM18232567

Project: LUCKY STRIKE

This report is for 30 Rock samples submitted to our lab in Timmins, ON, Canada on 19-SEP-2018.

The following have access to data associated with this certificate:

ALS Canada Ltd.

PETER DIMMELL GREG MATHESON PETER MCINTYRE KEN RATTEE MICHAEL REGULAR

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-36	Fine Crushing - 85% < 2mm
SPL-21	Split sample - riffle splitter
PUL-32	Pulverize 1000g to 85% < 75 um
LOG-23	Pulp Login - Rcvd with Barcode

	ANALYTICAL PROCEDURES	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

Upper Bound

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: 2 - A
Total # Pages: 3 (A - C)
Plus Appendix Pages
Finalized Date: 6-OCT-2018
Account: PRCDVOXH

Amisola Control Cont	(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TM1	82325	57
AMISO486 Target Range - Lower Bound EMOG-17 Target Range - Lower Bound Upper B	Sample Description	Analyte Units	Au ppm	Ag ppm	AI %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	ME-ICP41 Ga ppm 10
CDN-CM-34 3.7 2.37 101 <10 70 <0.5 5 1.35 1.3 41 176 5780 4.36 1.37 1.38 1.3 41 1.48 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.6 2.02 6.210 4.80 1.49 2.0 4.80 4.80 1.49 2.0 4.80 4.80 4.80 4.72 4.80 4.80 4.80 4.72 4.80 4.80 4.80 4.72 4.80 4.80 4.80 4.80 4.72 4.80 4.80 4.80 4.80 4.72 4.80 4.80 4.80 4.72 4.80								STAN	IDARDS								
Section Sect		Bound	0.226														
EMGG-17 Target Range - Lower Bound Upper B		Bound		3.1	2.14	93	<10	70	<0.5	<2	1.20	<0.5	36	164	5390	3.91	10 <10 30
EMOG-17 Target Range - Lower Bound Upper Bound OREAS 932 Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound	Target Range - Lower	Bound		4.0	2.04	110	30	140	1.4	U	1.43	2.0	40	202	0210	4.00	. 30
GMO-12 Target Range - Lower Bound Upper Bound OREAS 503c Target Range - Lower Bound Upper Bound OREAS 932 Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 133b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound OREAS 134b Target Range - Lower Bound Upper Bound	EMOG-17 Target Range - Lower	Bound		59.3	1.45	503	<10	30	<0.5	<2	0.87	17.9	679	42	7780	4.18	<10 <10 30
JK-17 Target Range - Lower Bound Upper Bound NCSDC70006 Target Range - Lower Bound Upper Bound OREAS 503c Target Range - Lower Bound Upper Bound OREAS 932 Target Range - Lower Bound Upper Bound OREAS 932 Target Range - Lower Bound Upper Bound OREAS-133b Target Range - Lower Bound Upper Bound OREAS-134b Target Range - Lower Bound Upper Bound Upper Bound OREAS-134b Target Range - Lower Bound Upper Bound Upper Bound 4.86	GMO-12	Bound		72.9	1.79	019	20	60	1.5	10	1.09	22.9	633	54	0900	5.14	30
Target Range - Lower Bound Upper Bound OREAS 503c OREAS 932 Target Range - Lower Bound Upper Bound OREAS-133b Target Range - Lower Bound Upper Bound OREAS-134b	JK-17 Target Range - Lower		1.875														
Target Range - Lower Bound Upper Bound OREAS 932 Target Range - Lower Bound Upper Bound OREAS-133b Target Range - Lower Bound Upper Bound OREAS-134b		Bound															
Target Range - Lower Bound Upper Bound OREAS-133b Target Range - Lower Bound Upper Bound OREAS-134b Target Range - Lower Bound Upper Bound Upper Bound Upper Bound PK2 4.86	Target Range - Lower Upper Bound	Bound	0.655														
Target Range - Lower Bound Upper Bound OREAS-134b Target Range - Lower Bound Upper Bound PK2 4.86	Target Range - Lower Upper Bound	Bound															
Target Range - Lower Bound Upper Bound PK2 4.86	Target Range - Lower Upper Bound	Bound															
	Target Range - Lower	Bound															
Upper Bound 5.07	PK2 Target Range - Lower Upper Bound	Bound	4.50														
Upper Bound	Upper Bound																

^{*****} See Appendix Page for comments regarding this certificate *****

Upper Bound

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: 2 - B
Total # Pages: 3 (A - C)
Plus Appendix Pages
Finalized Date: 6-OCT-2018
Account: PRCDVOXH

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TM1	82325	57
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
							STAN	IDARDS								
AMIS0486 Target Range - Lower	Bound															
CDN-CM-34 Target Range - Lower	Bound	<1 <1 2	1.18 1.06 1.32	10 <10 30	2.49 2.27 2.80	297 269 340	262 245 301	0.11 0.08 0.13	228 204 252	1160 1050 1310	21 18 28	2.96 2.70 3.32	3 <2 9	9 8 13	102 92 115	<20 <20 40
EMOG-17 Target Range - Lower Upper Bound	Bound	2	1.02	30	2.00	340	301	0.13	232	1310	20	3.32	9	13	113	40
EMOG-17 Target Range - Lower Upper Bound		1 <1 3	0.67 0.60 0.76	20 <10 40	0.77 0.73 0.91	648 598 742	1080 1015 1245	0.17 0.15 0.20	7910 6930 8470	790 680 850	7510 6500 7950	3.18 2.90 3.56	662 572 778	5 3 7	54 47 59	<20 <20 50
GMO-12 Target Range - Lower Upper Bound JK-17	Bound	3	0.76	40	0.91	142	1245	0.20	6470	650	7930	3.30	110	7	59	30
Target Range - Lower Upper Bound NCSDC70006	Bound															
Target Range - Lower Upper Bound OREAS 503c	Bound															
Target Range - Lower Upper Bound OREAS 932	Bound															
Target Range - Lower Upper Bound OREAS-133b	Bound															
Target Range - Lower Upper Bound OREAS-134b	Bound															
Target Range - Lower Upper Bound PK2	Bound															
Target Range - Lower Upper Bound	Bound															
Upper Bound																

^{*****} See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3

Total # Pagesgs: (A-Cc)
Plus Appendix Pages
Finalized Date: 6-OCT-2018

Account: PRCDVOXH

(ALS)										
(> ()									QC CERTIFICATE OF ANALYSIS	TM18232567
Ar	lethod nalyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001		
							STAN	IDARDS		
AMIS0486 Target Range - Lower Bou	und									
CDN-CM-34		0.17	<10	<10	102	10	181			
Target Range - Lower Bou	und	0.15 0.21	<10 20	<10 20	95 118	<10 30	159 199			
EMOG-17 Target Range - Lower Bou Upper Bound	und							0.836 0.807 0.867		
EMOG-17		0.21	<10	<10	64	<10	7610			
Target Range - Lower Bou Upper Bound	und	0.18 0.25	<10 20	<10 20	58 74	<10 20	6780 8290			
GMO-12		0.20					5200	0.015		
Target Range - Lower Bou Upper Bound	und									
JK-17										
Target Range - Lower Bou Upper Bound	und									
NCSDC70006								0.009		
Target Range - Lower Bou Upper Bound	und									
OREAS 503c Target Range - Lower Bou Upper Bound	und									
OREAS 932								6.25		
Target Range - Lower Bou Upper Bound	und							5.90 6.32		
OREAS-133b								0.035		
Target Range - Lower Bou Upper Bound	una							0.031		
OREAS-134b								0.139		
Target Range - Lower Bou Upper Bound	und							0.131 0.142		
PK2	up d									
Target Range - Lower Bou Upper Bound	ariu -									
Upper Bound										
Upper Bound										

^{*****} See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: 3 - A
Total # Pages: 3 (A - C)
Plus Appendix Pages
Finalized Date: 6-OCT-2018

Account: PRCDVOXH

Project: LUCKY STRIKE

(ALS)	,								QC	CERTIF	ICATE	OF ANA	ALYSIS	TM1	82325 <i>6</i>	57
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
							BL	ANKS								
BLANK Target Range - Lower BLANK Target Range - Lower		<0.001 <0.001 0.002														
BLANK Target Range - Lower Upper Bound	· Bound		<0.2 <0.2	<0.01 <0.01	<2 <2	<10 <10	<10 <10	<0.5 <0.5	<2 <2	<0.01 <0.01	<0.5 <0.5	<1 <1	<1 <1	<1 <1	<0.01 <0.01	<10 <10
Upper Bound			0.4	0.02	4	20	20	1.0	4	0.02	1.0	2	2	2	0.02	20
Upper Bound ORIGINAL DUP पंभाकुरा परामावृ - Lower	· Bound	0.017 0.014 0.014 0.017					DUPL	ICATES								
Q297015 DUP Target Range - Lower Upper Bound	Bound	0.282 0.275 0.264 0.293														
Q297047 DUP Target Range - Lower Upper Bound	Bound		<0.2 <0.2 <0.2 0.4	3.08 3.14 2.94 3.28	2 4 <2 4	<10 <10 <10 20	20 20 <10 30	<0.5 <0.5 <0.5 1.0	<2 <2 <2 <2 4	6.18 6.13 5.84 6.47	<0.5 <0.5 <0.5 1.0	38 38 35 41	133 133 125 141	67 67 64 70	4.72 4.81 4.52 5.01	10 10 <10 20
Q294987 DUP Target Range - Lower Upper Bound	Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Upper Bound	Bound															

Upper Bound

^{*****} See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3 Page: 3 - B
Total # Pages: 3 (A - C)
Plus Appendix Pages
Finalized Date: 6-OCT-2018
Account: PRCDVOXH

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TM1	82325 <i>6</i>	57
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
							BL	ANKS								
BLANK Target Range - Lower	Bound															
BLANK Target Range - Lower	Bound															
BLANK Target Range - Lower Upper Bound	Bound	<1 <1 2	<0.01 <0.01 0.02	<10 <10 20	<0.01 <0.01 0.02	<5 <5 10	<1 <1 2	<0.01 <0.01 0.02	<1 <1 2	<10 <10 20	<2 <2 4	<0.01 <0.01 0.02	<2 <2 4	<1 <1 2	<1 <1 2	<20 <20 40
Upper Bound ORIGINAL DUP प्रमाध्या प्रथमापुर्व - Lower	⁻ Bound						DUPL	ICATES								
Q297015 DUP Target Range - Lower Upper Bound	⁻ Bound															
Q297047 DUP Target Range - Lower Upper Bound	⁻ Bound	<1 <1 <1 2	0.12 0.12 0.10 0.14	<10 <10 <10 20	2.13 2.15 2.02 2.26	658 650 616 692	1 1 <1 2	0.05 0.05 0.04 0.06	121 124 115 130	550 550 510 590	2 <2 <2 4	0.27 0.28 0.25 0.30	<2 <2 <2 4	11 11 9 13	20 21 18 23	<20 <20 <20 40
Q294987 DUP Target Range - Lower Upper Bound	- Bound															
ORIGINAL DUP Target Range - Lower Upper Bound	⁻ Bound															
Upper Bound																

^{*****} See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP. 69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3

Total # Pagesge: &A-Cc)
Plus Appendix Pages
Finalized Date: 6-OCT-2018
Account: PRCDVOXH

(ALS)	,								QC CERTIFICATE OF ANALYSIS	TM18232567
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0.001		
							BL	ANKS		
BLANK Target Range - Lower	Bound									
BLANK Target Range - Lower	Bound							<0.001 <0.001 0.002		
BLANK Target Range - Lower Upper Bound	Bound	<0.01 <0.01 0.02	<10 <10 20	<10 <10 20	<1 <1 2	<10 <10 20	<2 <2 4			
Upper Bound ORIGINAL DUP प्रभावन म्हमावुर्ट - Lower	Bound						DUPL	ICATES		
Q297015 DUP Target Range - Lower Upper Bound	Bound									
Q297047 DUP Target Range - Lower Upper Bound	Bound	0.29 0.30 0.27 0.32	<10 <10 <10 20	<10 <10 <10 20	113 113 106 120	<10 <10 <10 20	62 62 57 67			
O294987 DUP Target Range - Lower Upper Bound	Bound									
ORIGINAL DUP Target Range - Lower Upper Bound	Bound							0.416 0.411 0.402 0.425		
Upper Bound										

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: NEW FOUND GOLD CORP.
69 YONGE STREET
SUITE 1010
TORONTO ON M5E 1K3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6-OCT-2018 Account: PRCDVOXH

Project: LUCKY STRIKE

QC CERTIFICATE OF ANALYSIS TM18232567

		CERTIFICATE COMME	NTS							
	LABORATORY ADDRESSES									
Applies to Method:	Processed at ALS Vancouver located a Au-ICP21	at 2103 Dollarton Hwy, North Va Cu-OG46	ancouver, BC, Canada. ME-ICP41	ME-OG46						
Applies to Method:	Processed at ALS Timmins located at CRU-36 PUL-32	Unit 10 - 2090 Riverside Drive, CRU-QC PUL-QC	Timmins, ON, Canada. LOG-21 SPL-21	LOG-23 WEI-21						

Technical Standards for Reporting Assessment Work – version 2 – July 5, 2018

COSTS AND EXPENSES

1. RECEIPTS AND INVOICES

Cost Summary Table

July 10, 2018 to May 06, 2019

E Marion 2 days @ \$300.00/day = \$ 600.00 1 lunches @ \$13.00 = \$ 14.50 L Despres 1 day @ \$250.00/day = \$ 250.00 1 lunches @ \$13.00 = \$ 14.50 vehicle - 28km @ .51c = \$ 14.28 5 samples @ \$40.85 = \$ 204.25 core saw use = \$ 75.00 supplies = \$ 8.83 compilation & report = \$ 900.00 total = \$2,081.36

Days Worked + Associated Costs

Eric Marion

2018 July 10, 12 & Sept 18, 2019

2 days @ \$300.00/day = \$ 600.00

1 meal @ 14.50 = \$ 14.50

5 samples @ \$40.85 = \$ 204.25

supplies, bags, zip ties = \$ 8.83

use of core saw = \$75.00

report May 1, 2, 5 = \$ 900.00

total \$1,802.58

date: 2019 05 05

Louis Despres

2018 July 10, 2018 Sept 18

1 day @ \$250.00/day = \$ 250.00

1 meal @ 14.50 = \$ 14.50

vehicle - 28km @ .51c = \$ 14.28

total \$ 278.78

date: 2019 05 05

\$1,802.588 + \$278.78 = **\$2,081.36** total