

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

CANADIAN EXPLORATION SERVICES LTD

TIGER GOLD EXPLORATION CORPORATION

Q2568 – Harker Heritage Property Grass Roots Prospecting Program Part1

C Jason Ploeger, P.Geo. Andrew Salerno, B.Sc.

December 11, 2018

Tiger Gold Exploration Corporation

Abstract

CXS was contracted to compile the data and write the prospecting report on the Harker Heritage Property for Tiger Gold. The survey was designed to prospect for potential mineralized zones on the property.

TIGER GOLD EXPLORATION CORPORATION

Q2568 – Harker Heritage Property Grass Roots Prospecting Program Part1

C Jason Ploeger, P.Geo. Andrew Salerno, B.Sc.

December 11, 2018

TABLE OF CONTENTS

1.0 Su	ırvey Details	4
1.1	Project Name	4
1.2	Client	
1.3	Location	4
1.4	Access	5
1.5	Ownership	5
1.6	General Geology	5
2.0 Su	ırvey Work Undertaken	
2.1	Disclaimer	6
2.2	Survey Log	6
2.3	Personnel	
2.4	Traverse Specifications	7
3.0 Ov	/erview of survey results	
3.1	Summary of Samples Collected	8
3.2	Day 1 – September 27	
3.3	Day 2 – September 28	13
3.4	Day 3 – September 29	

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS APPENDIX B: INSTRUMENT SPECIFICATIONS

APPENDIX C: ASSAYS

LIST OF TABLES AND FIGURES

Figure 1: Location of the Harker Heritage Property (Map data ©2019 Google)	4
Figure 2: Prospecting Location on the Harker Heritage Property with Claims	9
Figure 3: Location of Samples on Claim 531664	10
Figure 4: Picture of Sample SDE1	11
Figure 5: Picture of Sample SDE1 in the Field	11
Figure 6: Picture of Sample SDE2	12
Figure 7: Picture of Sample SDE2 in the Field	13
Figure 8: Picture of Sample SDE3	14
Figure 9: Picture of Sample SDE3 in the Field	14
Figure 10: Picture of Sample SDE4	15

Figure 11: Picture of Sample SDE4 in the Field	16
Figure 12: Picture of Sample SDE5	17
Figure 13: Picture of Sample SDE5 in the Field	17
Figure 14: Picture of Sample SDE6	18
Figure 15: Picture of Sample SDE6 in the Field	19
Figure 16: Picture of Sample SDE7	20
Figure 17: Picture of Sample SDE7 in the Field	20
Figure 18: Picture of Sample SDE8	21
Figure 19: Picture of Sample SDE8 in the Field	22
Figure 20: Picture of Sample SDE9	23
Figure 21: Picture of Sample SDE9 in the Field	23
Figure 22: Picture of Sample SDE10	24
Figure 23: Picture of Sample SDE10 in the Field	25
Table 1: Cell Claims and Claim Holder	5
Table 2: Survey Log	
Table 3: Summary of Samples Collected	

1.0 SURVEY DETAILS

1.1 PROJECT NAME

This project is known as the **Harker Heritage Property**.

1.2 CLIENT

Tiger Gold Exploration Corporation 103 Government Road. Kirkland Lake, Ontario P2N 1A9

1.3 LOCATION

The Harker Heritage Project is located approximately 26 km northeast of Kirkland Lake, Ontario.

Figure 1: Location of the Harker Heritage Property (Map data ©2019 Google)

1.4 Access

Access to this area is typically via highway 672, however this was closed from highway 66. A detour was taken West along highway 66, North along highway 11 through Sesekinika, North along highway 572 and East along highway 101. Highway 101 was driven East for 36km until reaching highway 672. Highway 672 was taken south until Harder Road was accessed. Samples were taken on foot from this location.

1.5 OWNERSHIP

Claim Number	Holder
531664	Tiger Gold Exploration Corporation

Table 1: Cell Claims and Claim Holder

1.6 GENERAL GEOLOGY

The Harker Heritage property is in the Abitibi Greenstone Belt of the Canadian Shield. This belt is composed of a sequence of meta-volcanic and metasedimentary Archean age rocks that cover an area stretching about 220 miles from Timmins, Ontario, on the west to Val D'Or, Quebec, on the east.

The Harker Heritage property is situated within a sequence of iron rich and magnesium rich tholeitic basalt flows known as the Kinojevis group. Stratigraphically, this group is about 30,000 feet thick and it occupies the core of a large east plunging synclinorum.

The rocks from the Kinojevis group are overlain by younger, Blake River group calcalkalic volcanics. Both have been folded into a large, east plunging synclinorium, the northern and southern limbs of which, have been cut by the major Porcupine Destor and Kirkland Lake-Larder Lake fault zones, respectively. The Harker Heritage Property is situated about 5 miles south of the Destor Porcupine Fault zone near the Kinojevis-Blake River group.

2.0 SURVEY WORK UNDERTAKEN

2.1 DISCLAIMER

Canadian Exploration Services Ltd was not responsible for any field operations of this survey. Canadian Exploration Services Ltd cannot warrant or validate the quality or accuracy of the data. Any opinions formed or discussed in this report is based upon the raw data and samples presented to Canadian Exploration Services Ltd.

2.2 SURVEY LOG

Date	Description		
September 27, 2018	 Highway 672 closed – took detour via posted route Hwy 101 Prospectors John and Doug met in Kearns Travelled to Clifford Township Harker Road off highway 672 was good, road seasonally dry Located old claim post Checked roads and rock prospecting area Jackpine, Balsam, Birch, Spruce swamps and muskeg vegetation observed Observed new bridge across river on North East side of SD hill 3 samples from SD East outcrop 455 kilometers return trip, 3 hours each way 		
September 28, 2018	 Took detour to Clifford Township 455 kilometers and 3 hours each way Same showing observed as yesterday Fractures in rock showings, quartz stringers, some pinkish rock (Co?), sulphides observed Cloudy, windy, rain showers during prospecting Checked out IRIS road entrance and gate, was locked, but key worked Road appeared to be in good condition Took 3 samples, GPS co-ordinates and pictures Alders, shrub bush, Jackpine and Poplar were the vegetation that was observed 		
September 29, 2018	 Highway 672 was still closed Detour taken to get to Clifford Township Prospectors John and Doug met in Kearns Heavy rains, strong wind gusts, some sunny intervals and a hailstorm observed for weather Final samples taken from SD-East (#7, #8, #9, #10) Started to get muddy on the ground, outcrops became slippery Water accumulated on the road forming puddles Checked river crossing and "bridge" on the North East side of SD hill Better to wait for 672 to reopen as more time is needed during the day 		

Table 2: Survey Log

2.3 Personnel

Tiger Gold Exploration Corporation contracted Gwen Resources to perform the prospecting. The individuals who performed the prospecting traverses for Gwen Resources were John Perron of Kelowna, BC along with Doug Culhane and Wendy Weller both of Virginiatown, Ontario.

2.4 Traverse Specifications

The targeting of the survey was generated by observations made during the traverses over the property. Some historic work was also targeted for reexamination.

Using a rock hammer, rock was broken up and sampled. The sample was placed in a plastic sampling bag and taped closed. The sample number was recorded on the sampling bag as well. The sample was then put into a packsack for transportation.

While sampling, a picture was taken of the sample and the GPS co-ordinates of the sample location was recorded.

At the end of the day the samples were placed in plastic storage containers and stored in the crew's accommodations.

3.0 OVERVIEW OF SURVEY RESULTS

ALL SAMPLES WERE TAKEN FOR REFERENCE PURPOSES ONLY! ALL SAMPLES WERE PRESENTED TO TIGER GOLD EXPLORATION CORPORATION.

3.1 SUMMARY OF SAMPLES COLLECTED

2018 CLIFORD TOWNSHIP SAMPLING								
SAMPLE No.	Sample Code	Date	Time	Location	GPS			Claim
1	SDE1	SEPT 27 2018	10:15:AM	small outcrop	17 U	E 0588739.1	N 5352985.38	Cliff4225043
2	SDE2	SEPT 28 2018	10:27:AM	small outcrop	17 U	E 0588744.0	N 5352976.78	Cliff4225043
3	SDE3	SEPT 29 2018	10:38:AM	small outcrop	17 U	E 0588744.7	N 5352976.55	Cliff4225043
4	SDE4	SEPT 29 2018	10:55:AM	main outcrop	17 U	E 0588745.9	N 5352976.47	Cliff4225043
5	SDE5	SEPT 29 2018	11:13:AM	main outcrop	17 U	E 0588746.6	N 5352976.80	Cliff4225043
6	SDE6	SEPT 29 2018	11:27:AM	main outcrop	17 U	E 0588746.8	N 5352977.08	Cliff4225043
7	SDE7	SEPT 29 2018	11:43:AM	Flat outcrop	17 U	E 0588752.4	N 5352971.25	Cliff4225043
8	SDE8	SEPT 29 2018	11:56:AM	Flat outcrop	17 U	E 0588745.9	N 5352970.10	Cliff4225043
9	SDE9	SEPT 29 2018	12:05:PM	Flat outcrop	17 U	E 0588745.8	N 5352969.70	Cliff4225043
10	SDE10	SEPT 29 2018	12:17:PM	Flat outcrop	17 U	E 0588744.9	N 5352977.19	Cliff4225043

Table 3: Summary of Samples Collected

Tiger Gold Prospecting - September 27,28,29

Figure 2: Prospecting Location on the Harker Heritage Property with Claims

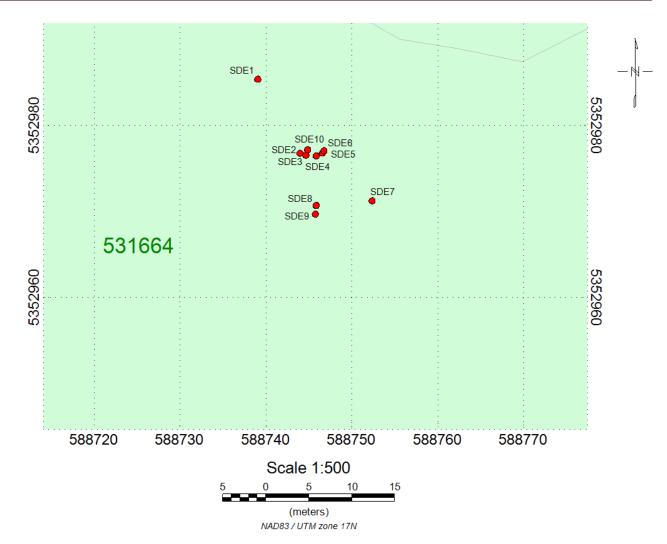


Figure 3: Location of Samples on Claim 531664

3.2 DAY 1 - SEPTEMBER 27

Sample #1 (SDE1)

Rock Description:

- -Fine grain metamorphic rock (mafic volcanic protolith)
- -Schist (porphyroblasts seen in rock)

Location:

UTM Zone 17T

0588739E, 5352985N

Figure 4: Picture of Sample SDE1

Figure 5: Picture of Sample SDE1 in the Field

Sample #2 (SDE2)

Rock Description:

- -Fine grain metamorphic rock (mafic volcanic protolith)
- -Greenschist (aligned minerals)

Location: UTM Zone 17T 0588744E, 5352977N

Figure 6: Picture of Sample SDE2

Figure 7: Picture of Sample SDE2 in the Field

3.3 DAY 2 - SEPTEMBER 28

Sample #3 (SDE3)

Rock Description:

- -Fine grain metamorphic rock (mafic volcanic protolith)
- -Greenschist (aligned minerals / foliation)

Location:

UTM Zone 17T 0588745E, 5352977N

Figure 8: Picture of Sample SDE3

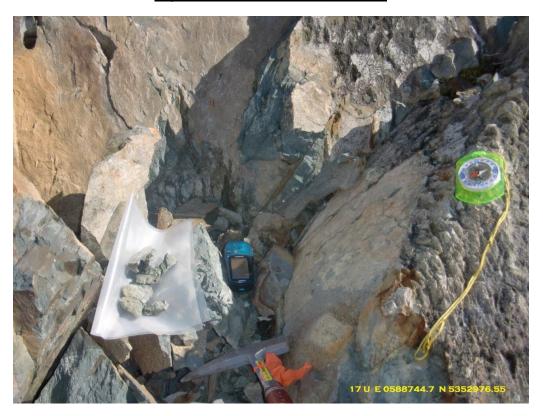


Figure 9: Picture of Sample SDE3 in the Field

Sample #4 (SDE4)

Rock Description:

-Mafic volcanic rock with quartz veins crosscutting the rock

Location: UTM Zone 17T 0588746E, 5352976N

Figure 10: Picture of Sample SDE4

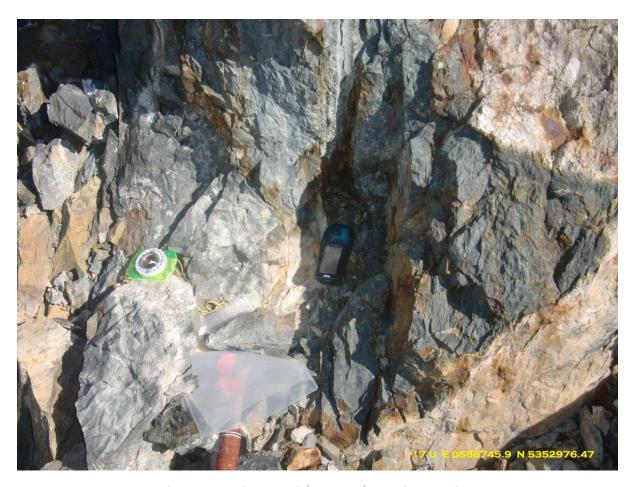


Figure 11: Picture of Sample SDE4 in the Field

Sample #5 (SDE5)

Rock Description:

- -Fine grain metamorphic sedimentary rock (hornfel)
- -Porphyroblasts

Location:

UTM Zone 17T

0588747E, 5352977N

Figure 12: Picture of Sample SDE5

Figure 13: Picture of Sample SDE5 in the Field

Sample #6 (SDE6)

Rock Description:

- -Fine grain metamorphic sedimentary rock (hornfel)
- -Quartz veins intruding the rock
- -Some chert with disseminated sulphides

Location: UTM Zone 17T 0588747E, 5352977N

Figure 14: Picture of Sample SDE6

Figure 15: Picture of Sample SDE6 in the Field

3.4 DAY 3 - SEPTEMBER 29

Sample #7 (SDE7)

Rock Description:

- -Fine grain greenstone metamorphic rock (mafic volcanic protolith)
- -Small cracks and veins
- -Also contains large veins of quartz

Location: UTM Zone 17T 0588752E, 5352971N

Figure 16: Picture of Sample SDE7

Figure 17: Picture of Sample SDE7 in the Field

Sample #8 (SDE8)

Rock Description:

- -Fine grain metamorphic rock (mafic volcanic protolith)
- -Small cracks and veins
- -Also contains large veins of quartz

Location: UTM Zone 17T 0588746E, 5352970N



Figure 18: Picture of Sample SDE8

Figure 19: Picture of Sample SDE8 in the Field

Sample #9 (SDE9)

Rock Description:

- -Fine grain metamorphic rock (hornfel)
- -Small cracks and veins

Location: UTM Zone 17T 0588746E, 5352969N

Figure 20: Picture of Sample SDE9

Figure 21: Picture of Sample SDE9 in the Field

Sample #10 (SDE10)

Rock Description:

- -Fine grain metamorphic rock
- -Small cracks and veins

Location: UTM Zone 17T 0588745E, 5352977N

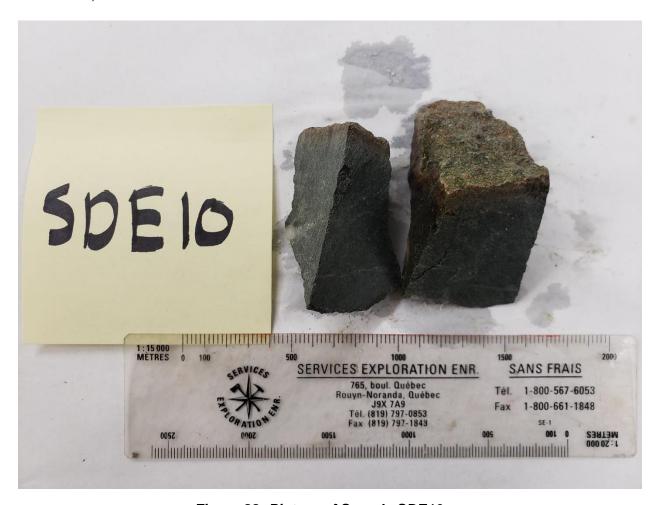


Figure 22: Picture of Sample SDE10

Figure 23: Picture of Sample SDE10 in the Field

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, C. Jason Ploeger, hereby declare that:
- 1. I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist and Geophysical Manager of Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do not have nor expect an interest in the properties and securities of **Tiger Gold Exploration Corporation.**
- 7. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. Geophysical Manager Canadian Exploration Services Ltd.

> Larder Lake, ON November 23, 2018

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, Andrew Salerno, hereby declare that:
- I am a soon-to-be Geoscientist-in-Training with residence in Virginiatown, Ontario and am presently employed as a Junior Geologist with Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I graduated with a Bachelor of Science Honors specialization in geology from the University of Waterloo, in Waterloo Ontario, in 2018.
- I am currently undergoing the application process to register as a Geoscientist in-Training to later become a practicing member of the Association of Professional Geoscientists.
- 4. I do not have nor expect an interest in the properties and securities of **Tiger Gold Exploration Corporation.**
- 5. I am responsible for assisting with the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Andrew Salerno, B.Sc. Junior Geologist (non-Professional)

> Larder Lake, ON November 23, 2018

APPENDIX B

GARMIN GPS MAP 76

General		
Physical dimensions	2.7" x 6.2" x 1.2" (6.9 x 15.7 x 3.0 cm)	
Display size	1.6" x 2.2" (4.1 x 5.6 cm)	
Display resolution	180 x 240 pixels	
Display type	4 level gray LCD	
Weight	7.7 oz (218 g) with batteries	
Battery	2 AA batteries (not included)	
Battery life	16 hours	
Water rating	IPX7	
Memory/History	8 MB	
Interface	Serial	

Maps & Memory		
Ability to add maps		
Basemap		
Waypoints/favorites/locations	1000	
Routes	50	
Track log	10,000 points, 10 saved tracks	

Outdoor Recreation Features		
Area calculation		
Hunt/fish calendar		
Sun and moon information		

GARMIN eTrex Legend

General

Physical dimensions	2.0" x 4.4" x 1.2" (5.1 x 11.2 x 3.0 cm)
Display size	1.1" x 2.1" (2.8 x 5.4 cm)
Display resolution	160 x 288 pixels
Display type	4 level gray LCD
Weight	5.3 oz (150 g) with batteries
Battery	2 AA batteries (not included)
Battery life	18 hours
Water rating	IPX7
Memory/History	8 MB
Interface	Serial

Maps & Memory

Prospecting Harker Heritage Property Clifford Township, Ontario

Ability to add maps	
Basemap	
Waypoints/favorites/locations	1000
Routes	20
Track log	10,000 points, 10 saved tracks

Outdoor Recreation Features		
Area calculation		
Hunt/fish calendar		
Sun and moon information		

• Specifications obtained from www.garmin.com

APPENDIX C

ASSAYS

DOCUMENT: QCDOC_SD18305051_164117-51306349.PDF

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 1 Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 This copy reported on 21- DEC- 2018 Account: TGQXYROL

QC CERTIFICATE	SD18305051
----------------	------------

Project: Tiger Gold P.O. No.: Cash/Visa This report is for 30

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on 30-NOV-2018.

The following have access to data associated with this certificate:

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI- 21	Received Sample Weight						
LOG- 22	Sample login - Rcd w/o BarCode						
CRU- QC	Crushing QC Test						
PUL- QC	Pulverizing QC Test						
CRU- 31	Fine crushing - 70% < 2mm						
SPL- 21	Split sample - riffle splitter						
PUL- 31	Pulverize split to 85% < 75 um						

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA- AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Prospecting Harker Heritage Property Clifford Township, Ontario

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC - 2018 Account: TGQXYROL

Project: Tiger Gold

(, , /									QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	330505	51
,	Method Analyte Units LOD	ME- ICP41 Ag ppm 0.2	ME- ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1
							STAN	DARDS								
CDN- CM- 34		3.5	2.49	102	<10	100	<0.5	<2	1.40	1.0	41	183	5870	4.34	10	<1
Target Range - Lower Bo		3.1	2.14	93	<10	70	<0.5	<2	1.20	<0.5	36	164	5390	3.91	<10	<1
Upper Bo EMOG- 17	ouna	4.3 66.1	2.64 1.57	118 568	30 10	140 40	1.4 <0.5	8	1.49 0.95	2.0 19.3	46 745	202 46	6210 8420	4.80 4.51	30 <10	2 <1
Target Range - Lower Bo	ound	60.1	1.45	503	<10	30	<0.5	<2	0.95	17.9	679	42	7780	4.18	<10	<1
Upper Bo		73.9	1.79	619	20	80	1.5	10	1.09	22.9	833	54	8960	5.14	30	3
JK-17 JK-17 JK-17 Target Range - Lower Bo																
Upper Bo MRGeo08	ouna	4.3	2.53	32	10	430	0.7	2	1.03	2.1	19	89	607	3.49	10	<1
Target Range - Lower Bo	ound	3.8	2.44	27	<10	370	<0.5	<2	1.00	1.1	16	81	586	3.22	<10	<1
Upper Bo		5.1	3.00	39	20	530	1.9	5	1.24	3.4	22	102	676	3.96	30	2
OREAS 602		>100	0.61	661	<10	40	<0.5	59	0.53	25.2	10	31	5180	2.01	<10	1
Target Range - Lower Bo Upper Bo		106.0	0.57	577	<10	<10	<0.5	50	0.46	22.2	7	26	4810	1.94	<10	<1
OREAS- 218 OREAS- 218 Target Range - Lower Bo Upper Bo PMP- 18 Target Range - Lower Bo Upper Bo	ound ound	100.0	0.71	709	20	50	1.3	66	0.59	28.2	12	34	5530	2.40	30	3
							BLA	NKS								
BLANK BLANK BLANK Target Range - Lower Bo																
Upper Bo BLANK	ouna	<0.2	<0.01	<2	<10	<10	<0.5	3	<0.01	<0.5	<1	<1	<1	<0.01	<10	<1
BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	1	<0.01	<10	<1
Target Range - Lower Bo	ound	<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	<1	<0.01	<10	<1
Target Kange - Lower Bo	ound	0.4	0.02	4	20	20	1.0	4	0.02	1.0	2	2	2	0.02	20	2

***** See Appendix Page for comments regarding this certificate *****

Prospecting Harker Heritage Property Clifford Township, Ontario

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold
OC CERTIFICATE OF ANALYSIS

								QC	CERTIF	ICATE	OF AN	<u>ALYSIS</u>	SDT	830505	ı I
Method Analyte Units LOD	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
						STAN	DARDS								
CDN- CM- 34	1.19	10	2.51	301	277	0.11	232	1170	22	3.01	6	9	104	<20	0.18
Target Range - Lower Bound	1.06	<10	2.27	269	245	0.08	204	1050	18	2.70	<2	8	92	<20	0.15
Upper Bound FMOG- 17	1.32 0.64	30 20	2.80 0.75	340 635	301 1065	0.13 0.17	252 7700	1310 760	28 7240	3.32	9 693	13	115 52	40 <20	0.21
Target Range - Lower Bound Upper Bound	0.60 0.76	<10 40	0.73	598 742	1015 1245	0.15 0.20	6930 8470	680 850	6500 7950	2.90 3.56	572 778	3 7	47 59	<20 50	0.18
JK-17 JK-17 JK-17 Target Range - Lower Bound															
Upper Bound MRGeo08	1.21	30	1.12	400	14	0.31	687	980	1050	0.30	3	7	76	20	0.37
Target Range - Lower Bound	1.12	20	1.03	378	12	0.30	621	900	957	0.27	<2	5	71	<20	0.33
Upper Bound	1.40	60	1.29	473	17	0.39	761	1130	1175	0.35	8	10	89	60	0.43
OREAS 602 Target Range - Lower Bound	0.09	10 <10	0.10	213 193	4 2	0.02 <0.01	61 54	230 210	839 768	2.00 1.81	66 51	1 <1	50 44	<20 <20	0.01 <0.01
Upper Bound	0.12	30	0.00	247	7	0.05	68	280	944	2.23	73	3	56	40	0.03
OREAS- 218 OREAS- 218 Target Range - Lower Bound Upper Bound PMP- 18 Target Range - Lower Bound Upper Bound Upper Bound															
						BL	ANKS								
BLANK BLANK BLANK Target Range - Lower Bound															
	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2	<1	<1	<20	<0.01
Upper Bound				<5	<1	<0.01	1	<10	<2	<0.01	<2	<1	<1	<20	<0.01
Upper Bound BLANK BLANK	<0.01	<10 <10	<0.01	<5	<1		<1	<10	<2		<2			<20	<0.01

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

OC CFR	TIFICATE	OF ANALYS	IS SD18	3305051

Target Range - Lower Bound Upper Bound 20	Method Analyte Units LOD	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Au- AA23 Au ppm 0.005
Target Range - Lower Bound Upper Bound Store S							STANDARDS
Loger Bound							
EMOG-17 Target Range - Lower Bound Upper B							
Target Range - Lower Bound C10							
	Upper Bound						
Target Range - Lower Bound Upper Bound	JK- 17						
Upper Bound							
MRCeo08							
Upper Bound	MRGeo08						
OREAS 0.02	Target Range - Lower Bound						
Target Range - Lower Bound Company Compa							
OEAS-218							
OPEAS 2 18							
Target Range - Lower Bound Upper Bound							
PMP- 18 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound BLANK C-10 C-10 C-10 C-10 C-10 C-10 C-10 C-10							
PMP-18 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound BLANK BLANK BLANK BLANK Upper Bound Upper Bound BLANK SLANK SL							
Upper Bound 0.323							
BLANK							
BLANK 40.005 BLANK 40.005 Target Range - Lower Bound 40.005 Upper Bound 40.005 BLANK 410 41 410 2 BLANK 410 41 410 42 Target Range - Lower Bound 410 41 410 42 Target Range - Lower Bound 410 41 410 42	Upper Bound						0.323
BLANK							BLANKS
BLANK	DI ANIV						<0.005
Target Range - Lower Bound	BLANK						
Upper Bound							
BLANK < 10 <10 <1 <10 <2 BLANK							
Target Range - Lower Bound <10 <10 <1 <10 <2	BLANK						
Target Range - Lower Bound							
Opper bound 20 20 2 20 4	Target Range - Lower Bound						
	Upper Bound	20	20	2	20	4	
		l					

Tiger Gold Exploration Corporation

Als Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0.A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

-		-	0.14
Pro	ect:	Tiger	Gold

(ALS))							110)	ect. Higer	Colu						
(, (,									QC CERTIFICATE OF ANALYSIS SD183050							51
Sample Description	Method Analyte Units LOD	ME- ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME- ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
CLR- 4 DUP		<0.2 <0.2	2.92 3.06	<2 <2	10 10	10 10	<0.5 <0.5	<2 4	1.94	<0.5 <0.5	20 20	48 51	33 34	4.12 4.31	10 10	<1 <1
Target Range - Lower Upper		<0.2 0.4	2.83 3.15	<2 4	<10 20	<10 20	<0.5 1.0	4	1.88 2.09	<0.5 1.0	18 22	46 53	31 36	3.99 4.44	<10 20	<1 2
ORIGINAL DUP		1.9 1.8	0.99	65 68	<10 <10	40 40	<0.5 <0.5	2	0.52 0.51	35.1 34.3	7 7	7 8	194 187	2.13 2.10	<10 <10	1 <1
Target Range - Lower Upper	Bound Bound	1.6	0.92 1.03	61 72	<10 20	30 50	<0.5 1.0	<2 4	0.48 0.55	32.5 36.9	6	6	183 198	2.00	<10 20	<1 2
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

Tiger Gold Exploration Corporation

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver 8C V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold	
OC CERTIFICATE OF ANALYSIS	SD18305051

		QC CERTIFICATE OF ANALYSIS SD1830505) <u> </u>				
Sample Description	Method Analyte Units LOD	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower B Upper B																
ORIGINAL DUP Target Range - Lower B Upper B																
ORIGINAL DUP Target Range - Lower B Upper B																
CLR- 4 DUP Target Range - Lower B Upper B		0.01 0.01 <0.01 0.02	<10 10 <10 20	1.84 1.93 1.78 1.99	554 578 533 599	<1 <1 <1 2	0.04 0.04 0.03 0.05	60 64 58 66	520 540 490 570	<2 <2 <4	0.01 0.01 <0.01 0.02	<2 <2 <2 4	6 6 5 7	45 47 43 49	<20 <20 <20 40	0.39 0.41 0.37 0.43
ORIGINAL DUP Target Range - Lower B Upper B		0.30 0.29 0.27 0.32	10 10 <10 20	0.71 0.69 0.66 0.75	695 680 648 727	<1 1 <1 2	<0.01 <0.01 <0.01 0.02	7 7 6 8	360 350 330 380	140 137 130 147	1.63 1.60 1.52 1.71	<2 2 <2 4	<1 <1 <1 2	40 39 37 42	<20 <20 <20 40	0.01 0.01 <0.01 0.02
ORIGINAL DUP Target Range - Lower B Upper B																
ORIGINAL DUP Target Range - Lower B Upper B																
ORIGINAL DUP Target Range - Lower B Upper B	ound ound															

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

	Tiger	

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,							QC CERTIFICATE OF ANALYSIS SD18305051
Sample Description	Method Analyte Units LOD	ME- ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Au- AA23 Au ppm 0.005	
							DUPLICA	NTES
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.017 0.019 0.012 0.024	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						<0.005 <0.005 <0.005 0.010	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						<0.005 0.005 <0.005 0.010	
CLR- 4 DUP Target Range - Lower Upper	Bound Bound	<10 <10 <10 20	<10 <10 <10 20	114 118 109 123	<10 <10 <10 20	50 51 48 55		
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<10 <10 <10 20	<10 <10 <10 20	6 6 5 7	30 30 20 40	8370 8110 7830 8650		
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.320 0.404 0.339 0.385	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.221 0.234 0.211 0.244	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.834 0.883 0.811 0.906	

Tiger Gold Exploration Corporation

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.walsolobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17-DEC-2018 Account: TGOYYRO!

		www.alsg	lobal.com/	geochemis	try										ccount: T	
ALS	\							Proj	ect: Tiger	Gold						
,,,,,,,,									QC	CERTIF	FICATE OF ANALYSIS			SD18305051		
sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME- ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1
							DUPL	ICATES								
RIGINAL UP arget Range - Lower Upper	r Bound r Bound															

Tiger Gold Exploration Corporation

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.yals.hbal.com/vanchemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGOXYRO

		www.alsg	lobal.com/	geochemis	try	04 0210							FI		ate: 17- [ccount: T	
ALS	\							Proj	ect: Tiger	Gold						-
	,								QC	CERTI	ICATE	OF AN	ALYSIS	SD1	830505	51
mple Description	Method Analyte Units LOD	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
							DUPL	ICATES								
IGINAL IP rget Range - Lower Upper	r Bound r Bound															

Tiger Gold Exploration Corporation

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

QC CERTIFICATE OF ANALYSIS SD18305051

								•
Sample Description	Method Analyte Units LOD	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au- AA23 Au ppm 0.005	
							DUPL	ICATES
ORIGINAL DUP							0.599	
Target Range - Lower	Bound						0.603 0.566	
Upper	Bound						0.636	
L								

Tiger Gold Exploration Corporation

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

AL3)		QC CERTIFICATE OF ANALYSIS	SD18305051
	CERTIFICATE C	COMMENTS	
		BORATORY ADDRESSES	
Applies to Method:	Processed at ALS Sudbury located at 1351- B Kelly Lake Roa CRU- 31 CRU- QC PUL- QC SPL- 21	ad, Unit #1, Sudbury, ON, Canada. LOG- 22 WEI- 21	PUL- 31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy Au- AA23 ME- ICP41	, North Vancouver, BC, Canada.	

DOCUMENT: COA_SD18305051_164117-51306348.PDF

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 This copy reported on 21- DEC- 2018 Account: TGQXYROL

CERTIFICATE SD18305051

Project: Tiger Gold P.O. No.: Cash/Visa

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on 30-NOV-2018.

The following have access to data associated with this certificate:

SAMPLE PREPARATION				
ALS CODE	DESCRIPTION			
WEI- 21	Received Sample Weight			
LOG- 22	Sample login - Rcd w/o BarCode			
CRU- QC	Crushing QC Test			
PUL- QC	Pulverizing QC Test			
CRU- 31	Fine crushing - 70% < 2mm			
SPL- 21	Split sample - riffle splitter			
PUL- 31	Pulverize split to 85% < 75 um			

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA- AA finish	AAS
ME- ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Tiger Gold **Exploration Corporation**

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

ALS	,								С	ERTIFIC	CATE O	F ANAL	YSIS	SD183	05051	
Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME- ICP41 AI % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
DE- 1		1.55	<0.2	2.82	4	<10	30	<0.5	<2	1.12	<0.5	21	4	32	5.43	10
SDE- 2		0.34	<0.2	2.66	6	<10	30	< 0.5	<2	0.50	<0.5	19	3	20	4.88	10
DE- 3		0.34	<0.2	3.40	2	10	10	< 0.5	<2	1.48	<0.5	28	71	58	4.68	10
SDE- 4		0.75	<0.2	1.32	4	<10	10	< 0.5	<2	3.98	<0.5	11	19	12	1.90	10
DE- 5		0.61	<0.2	2.68	2	<10	10	0.5	<2	0.99	<0.5	20	5	77	4.88	10
DE- 6		1.18	<0.2	2.33	2	10	<10	<0.5	<2	2.37	<0.5	19	13	75	3.73	10
DE- 7		0.97	<0.2	1.85	2	<10	10	<0.5	3	1.08	<0.5	16	71	13	2.51	10
SDE- 8		1.16	<0.2	2.32	<2	<10	10	< 0.5	<2	1.33	<0.5	19	103	68	3.18	10
SDE- 9		0.80	<0.2	3.29	3	10	10	<0.5	<2	2.15	<0.5	27	150	25	4.25	10
SDE- 10		0.57	<0.2	2.99	2	<10	10	<0.5	2	1.07	<0.5	25	103	67	4.49	10
DM-S1		0.63	<0.2	3.78	2	<10	170	<0.5	<2	1.13	<0.5	28	82	5	5.36	10
SDM- S2		0.57	<0.2	0.85	<2	<10	60	<0.5	2	0.20	<0.5	2	3	3	1.53	<10
DM-S3		0.48	<0.2	4.58	<2	10	20	0.8	<2	3.52	<0.5	22	115	22	4.57	10
DM- 4		1.27	<0.2	0.81	<2	<10	50	<0.5	2	0.38	<0.5	3	3	23	1.51	<10
SDM- 5		0.77	<0.2	0.89	<2	<10	40	<0.5	2	0.59	<0.5	3	4	3	1.71	<10
SDM- 6		2.77	<0.2	3.59	<2	10	30	<0.5	3	3.41	<0.5	24	69	108	3.83	10
SDM- 7		0.95	<0.2	0.87	<2	<10	40	<0.5	<2	0.67	<0.5	2	3	12	1.87	<10
SDM- 8		1.07	<0.2	0.93	<2	<10	50	<0.5	<2	0.55	<0.5	3	4	4	1.92	<10
SDM- 9		0.98	<0.2	0.74	<2	<10	50	<0.5	2	0.80	<0.5	2	3	3	1.78	<10
SDM- 10		1.52	<0.2	0.81	<2	<10	50	<0.5	<2	0.92	<0.5	2	3	25	1.75	<10
SDM-11		1.56	<0.2	0.86	<2	<10	60	< 0.5	<2	0.80	<0.5	3	5	6	1.50	<10
CLR- 1		1.43	<0.2	4.52	<2	10	<10	<0.5	<2	3.38	<0.5	22	78	47	4.31	10
CLR- 2		2.09	<0.2	4.05	<2	10	10	<0.5	<2	2.66	<0.5	25	82	50	4.62	10
CLR- 3		1.38	<0.2	2.35	<2	10	20	<0.5	<2	1.48	<0.5	20	66	52	3.33	10
CLR- 4		0.94	<0.2	2.92	<2	10	10	<0.5	<2	1.94	<0.5	20	48	33	4.12	10
CLR- 5		1.23	<0.2	3.63	<2	10	10	<0.5	<2	2.05	<0.5	23	75	46	4.46	10
CLR- 6		1.66	<0.2	1.35	<2	<10	10	<0.5	<2	0.78	<0.5	10	44	40	2.16	<10
CLR- 7		0.62	<0.2	1.74	<2	10	10	<0.5	<2	0.90	<0.5	15	52	35	2.86	10
Iris- 1 Iris- 2		2.00	<0.2	0.24	<2	<10	860	<0.5	<2	0.23	<0.5	1	3	11	0.95	<10
		1.44	<0.2	0.22	<2	<10	1170	< 0.5	<2	0.20	<0.5	1	4	34	0.90	<10

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

(- 1 – –)	A-1								C	ERTIFIC	CATE O	F ANAI	_YSIS	SD183	05051	
Sample Description	Method Analyte Units LOD	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
SDE- 1 SDE- 2 SDE- 3 SDE- 4 SDE- 5		<1 <1 <1 <1 <1	0.11 0.07 0.02 0.01 0.01	10 10 <10 <10 10	1.81 1.87 3.32 0.79 1.96	665 647 922 272 694	<1 <1 <1 <1 <1	0.05 0.05 0.06 0.05 0.08	19 13 56 18 12	560 620 330 350 550	<2 2 6 <2 <2	0.20 0.06 0.01 0.01 0.06	<2 <2 <2 <2 <2 2	7 9 8 4 9	11 9 28 74 25	<20 <20 <20 <20 <20
SDE- 6 SDE- 7 SDE- 8 SDE- 9 SDE- 10		<1 <1 <1 <1 <1	0.02 0.01 0.01 0.01 0.01	10 <10 <10 10	1.90 1.68 2.21 3.38 2.96	439 315 413 539 604	1 <1 <1 <1 <1	0.06 0.06 0.05 0.05 0.05	18 50 93 165 129	450 420 430 490 470	3 V2 V2 V2 V2	0.39 0.01 0.01 0.02 0.02	<2 <2 <2 <2 <2 <2	6 3 3 4 4	25 28 25 20 18	<20 <20 <20 <20 <20
SDM- S1 SDM- S2 SDM- S3 SDM- 4 SDM- 5		<1 <1 <1 <1	0.09 0.21 0.02 0.18 0.19	10 20 <10 20 20	3.34 0.17 2.55 0.20 0.18	920 258 1025 309 253	<1 <1 <1 <1 1	0.06 0.03 0.02 0.04 0.06	60 4 46 3 3	440 210 390 260 250	2 11 <2 2 <2	0.01 0.01 0.03 0.02 0.02	4 <2 <2 <2 <2 <2	8 1 12 1	33 5 16 10	<20 <20 <20 <20 <20
SDM- 6 SDM- 7 SDM- 8 SDM- 9 SDM- 10		<1 <1 <1 <1 <1	0.11 0.20 0.19 0.18 0.18	<10 20 20 20 20 20	0.80 0.15 0.19 0.12 0.13	698 292 333 260 282	<1 <1 <1 <1 <1	0.03 0.05 0.04 0.06 0.04	128 2 5 3 3	310 210 260 270 280	3 <2 <2 <2 <2	0.05 0.01 0.01 <0.01 0.01	<2 2 <2 <2 <2 <2	12 2 1 1	16 12 11 13 19	<20 <20 <20 <20 <20
SDM-11 CLR-1 CLR-2 CLR-3 CLR-4		<1 <1 <1 <1	0.24 0.02 0.05 0.05 0.01	20 <10 <10 <10 <10	0.20 2.29 2.60 1.68 1.84	255 634 662 433 554	1 <1 <1 <1	0.02 0.01 0.02 0.05 0.04	3 92 103 77 60	210 590 580 500 520	<2 <2 <2 <2 <2	0.02 <0.01 <0.01 0.03 0.01	<2 <2 <2 <2 <2	1 7 6 6	14 16 49 11 45	<20 <20 <20 <20 <20
CLR- 5 CLR- 6 CLR- 7 Iris- 1 Iris- 2		<1 <1 <1 <1	0.03 0.05 0.07 0.02 0.02	<10 <10 <10 10	2.39 0.92 1.40 0.09 0.07	630 297 415 157 116	<1 1 <1 <1 <1	0.02 0.04 0.03 0.12 0.13	91 41 56 2 1	600 330 380 160 90	2 <2 <2 2 3	0.01 <0.01 0.02 0.20 0.10	<2 <2 <2 <2 <2 <2	4 2 4 1 <1	20 28 22 62 67	<20 <20 <20 <20 <20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

(ALS	,							110,	ct. Tiger		ATE OF ANALYSIS	CD1630E0E1
									C	EKTIFIC	ATE OF ANALTSIS	3010303031
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti %	ME-ICP41 TI ppm	ME- ICP41 U ppm	ME-ICP41 V ppm	ME- ICP41 W ppm	ME-ICP41 Zn ppm	Au- AA23 Au ppm	CRU- QC Pass2mm %	PUL- QC Pass75um %		
sample Description	LOD	0.01	10	10	1	10	2	0.005	0.01	0.01		
SDE- 1 SDE- 2 SDE- 3		0.34 0.29 0.31	<10 <10 <10	<10 <10 <10	118 117 156	<10 <10 <10	62 72 87	<0.005 <0.005 <0.005	76.1	96.2 95.5		
SDE- 4 SDE- 5		0.25 0.49	<10 <10	<10 <10	63 152	<10 <10	25 82	<0.005 <0.005				
SDE- 6 SDE- 7 SDE- 8 SDE- 9 SDE- 10		0.25 0.24 0.24 0.29 0.29	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	119 64 73 113 112	<10 <10 <10 <10 <10	34 29 44 57 52	<0.005 <0.005 <0.005 <0.005 <0.005				
SDM- S1 SDM- S2 SDM- S3 SDM- 4 SDM- 5		0.02 <0.01 0.32 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	92 2 133 2 3	<10 <10 <10 <10 <10	121 45 56 32 29	<0.005 <0.005 <0.005 <0.005 <0.005				
SDM- 6 SDM- 7 SDM- 8 SDM- 9 SDM- 10		0.27 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	170 1 3 2	<10 <10 <10 <10 <10	82 34 37 28 37	<0.005 <0.005 <0.005 <0.005 <0.005				
SDM- 11 CLR- 1 CLR- 2 CLR- 3 CLR- 4		<0.01 0.32 0.36 0.31 0.39	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	1 99 87 94 114	<10 <10 <10 <10 <10	29 58 74 48 50	<0.005 <0.005 <0.005 <0.005 <0.005	74.8			
CLR- 5 CLR- 6 CLR- 7 Iris- 1 Iris- 2		0.34 0.20 0.24 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	90 41 54 17 14	<10 <10 <10 <10 <10	63 25 45 8 7	<0.005 <0.005 <0.005 0.119 0.202				

Tiger Gold Exploration Corporation

AIS Canada Itd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To:TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold

		, J	
(ALS)		CERTIFICATE OF ANALYSIS	SD18305051
	CERTIFICATE C	OMMENTS	
		ORATORY ADDRESSES	
	Processed at ALS Sudbury located at 1351-B Kelly Lake Roa		
Applies to Method:	CRU- 31 CRU- QC PUL- QC SPL- 21	LOG- 22 WEI- 21	PUL- 31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, Au- AA23 ME- ICP41	, North Vancouver, BC, Canada.	

877.504.2345 | info@cxsltd.com | www.cxsltd.com

CANADIAN EXPLORATION SERVICES LTD

TIGER GOLD EXPLORATION CORPORATION

Q2568 – Harker Heritage Property Grass Roots Prospecting Program Part2

C Jason Ploeger, P.Geo. Andrew Salerno, B.Sc.

December 11, 2018

Tiger Gold Exploration Corporation

Abstract

CXS was contracted to compile the data and write the prospecting report on the Harker Heritage Property for Tiger Gold. The survey was designed to prospect for potential mineralized zones on the property.

TIGER GOLD EXPLORATION CORPORATION

Q2568 – Harker Heritage Property Grass Roots Prospecting Program Part2

C Jason Ploeger, P.Geo. Andrew Salerno, B.Sc.

December 11, 2018

TABLE	E OF CONTENTS	
1.0 Su	ırvey Details	5
1.1	Project Name	5
1.2	Client	5
1.3	Location	5
1.4	Access	6
1.5	Ownership	6
1.6	General Geology	6
2.0 Su	ırvey Work Undertaken	7
2.1	Disclaimer	7
2.2	Survey Log	7
2.3	Personnel	9
2.4	Traverse Specifications	9
3.0 Ov	verview of survey results	10
3.1	Summary of Samples Collected	10
3.2	Day 1 – October 21	16
3.3	Day 2 – October 25	20
3.4	Day 3 – October 26	29
3.5	Day 4 – October 27	36
LIST C	OF APPENDICES	
APPEN	NDIX A: STATEMENT OF QUALIFICATIONS NDIX B: INSTRUMENT SPECIFICATIONS NDIX C: ASSAYS	

LIST OF TABLES AND FIGURES

Figure 1: Location of the Harker Heritage Property (Map data ©2019 Google)	5
Figure 2: Prospecting on the Harker Heritage Properties with Townships	11
Figure 3: Claim Map with the 3 Prospecting Locations	12
Figure 4: North Prospecting Location (1 on Figure 3)	13
Figure 5: Southwest Prospecting Location (2 on Figure 3)	14
Figure 6: South Prospecting Location (3 on Figure 3)	15
Figure 7: Picture of Sample IRISPP#1	16

Figure 8: Picture of Sample IRISPP#1 in the Field	
Figure 9: Picture of Sample IRISPP#2	. 18
Figure 10: Picture of Sample IRISPP#2 in the Field	. 19
Figure 11: Picture of Sample SDMS1	
Figure 12: Picture of Sample SDMS1 in the Field	. 21
Figure 13: Picture of Sample SDMS2	. 22
Figure 14: Picture of Sample SDMS2 in the Field	. 22
Figure 15: Picture of Sample SDMS3	
Figure 16: Picture of Sample SDMS3 in the Field	. 24
Figure 17: Picture of Sample SDM4	. 25
Figure 18: Picture of Sample SDM4 in the Field	. 25
Figure 19: Picture of Sample SDM5	
Figure 20: Picture of Sample SDM5 in the Field	
Figure 21: Picture of Sample SDM6	
Figure 22: Picture of Sample SDM6 in the Field	
Figure 23: Picture of Sample SDM7	. 29
Figure 24: Picture of Sample SDM7 in the Field	
Figure 25: Picture of Sample SDM8	. 31
Figure 26: Picture of Sample SDM8 in the Field	
Figure 27: Picture of Sample SDM9	
Figure 28: Picture of Sample SDM9 in the Field	
Figure 29: Picture of Sample SDM10	. 34
Figure 30: Picture of Sample SDM10 in the Field	
Figure 31: Picture of Sample SDM11	. 35
Figure 32: Picture of Sample SDM11 in the Field	
Figure 33: Picture of Sample CLR1	
Figure 34: Picture of Sample CLR1 in the Field	
Figure 35: Picture of Sample CLR2	
Figure 36: Picture of Sample CLR2 in the Field	
Figure 37: Picture of Sample CLR3	
Figure 38: Picture of Sample CLR3 in the Field	
Figure 39: Picture of Sample CLR4	
Figure 40: Picture of Sample CLR4 in the Field	
Figure 41: Picture of Sample CLR5	. 43
Figure 42: Picture of Sample CLR5 in the Field	
Figure 43: Picture of Sample CLR6	
Figure 44: Picture of Sample CLR6 in the Field	
Figure 45: Picture of Sample CLR7	. 46
Figure 46: Picture of Sample CLR7 in the Field	. 46
Table 1: Cell Claims and Claim Holder	6
Table 1. Con Giannia and Gianni Holder	U

Table 2: Survey Log	8
Table 3: Summary of Samples Collected	

1.0 SURVEY DETAILS

1.1 PROJECT NAME

This project is known as the **Harker Heritage Property**.

1.2 CLIENT

Tiger Gold Exploration Corporation 103 Government Road. Kirkland Lake, Ontario P2N 1A9

1.3 LOCATION

The Harker Heritage Project is located approximately 26 km northeast of Kirkland Lake, Ontario.

Figure 1: Location of the Harker Heritage Property (Map data ©2019 Google)

1.4 Access

Access to the Harker Heritage property was via highway 66 to highway 672. Highway 672 had recently reopened and was accessible from highway 66. The samples were collected in two locations on the property, the first were off Campbell Road, which is 7km south of highway 101 along highway 672. The rest were accessed via Harder Road, which is 26km north of highway 66 along highway 672. Samples were taken on foot from this location.

1.5 OWNERSHIP

Claim Number	Holder
531667	Tiger Gold Exploration Corporation
531671	Tiger Gold Exploration Corporation
531641	Tiger Gold Exploration Corporation

Table 1: Cell Claims and Claim Holder

1.6 GENERAL GEOLOGY

The Harker Heritage property is in the Abitibi Greenstone Belt of the Canadian Shield. This belt is composed of a sequence of meta-volcanic and metasedimentary Archean age rocks that cover an area stretching about 220 miles from Timmins, Ontario, on the west to Val D'Or, Quebec, on the east.

The Harker Heritage property is situated within a sequence of iron rich and magnesium rich tholeiltic basalt flows known as the Kinojevis group. Stratigraphically, this group is about 30,000 feet thick and it occupies the core of a large east plunging synclinorum.

The rocks from the Kinojevis group are overlain by younger, Blake River group calcalkalic volcanics. Both have been folded into a large, east plunging synclinorium, the northern and southern limbs of which, have been cut by the major Porcupine Destor and Kirkland Lake-Larder Lake fault zones, respectively. The Harker Heritage Property is situated about 5 miles south of the Destor Porcupine Fault zone near the Kinojevis-Blake River group.

2.0 SURVEY WORK UNDERTAKEN

2.1 DISCLAIMER

Canadian Exploration Services Ltd was not responsible for any field operations of this survey. Canadian Exploration Services Ltd cannot warrant or validate the quality or accuracy of the data. Any opinions formed or discussed in this report is based upon the raw data and samples presented to Canadian Exploration Services Ltd.

2.2 SURVEY LOG

Date	Description
October 21, 2018	 Highway 672 reopened: 2 prospectors travelled in separate vehicles to site Travelled North on highway 672 to turnoff on Iris road to East (now called Campbell Road) Unlocked gate Road was snowy and wet with mud holes and water crossings Leaves had turned and fallen (Tamarak's are yellow) Reached large porphyry plug and Iris adit Line cutters have trailer Active moose hunt occurring during prospecting Traversed basically red barren plug over the top Checked out other visible outcrops and some visual sulphide exposure Went back to porphyry near adit Took sample to the westside (Iris PP#1 (.001)) and east and up (Iris PP#2 (.002)) Cold winds starting to occur Travelled to the Iris property, Harker Township The Iris large Porphyry syenite plug (see picture and sample (30 years ago 1988) locations thereon) Hosts large irregular areas of disseminated pyrite with numerous quartz veins cutting through it and small scattered quartz threads throughout There appears to be a set of shears cutting the plug in a generally North East trend A dark grey border of rock (potentially tungsten) boarders along the quartz veins Galena appears in the rock and feldspar is prevalent There is likelihood of platinum group elements in this setting such as Platinum and Palladium
	North West of the plug exhibits surface sulphides
October 25,	Cloudy, cold and windy weather
2018	Temperature from -3°C to -8°C
	 Travelled to Clifford Township via Highway 672 Snow flurries to rain (observed weather)
	Snow flurries to rain (observed weather)

Date	Description						
	 Snow covered highway 672 Sideroad full of water, mud, ruts, waterholes (some up to bumper of vehicle) Leaves had changed colour and fallen Travelled to main Clifford Township outcrop Walked through alders, shrub-bush to small outcrop Observed two basic structures (different sections) One is flow breccia and heavily fractured across middle – dark green to black in colour Other section appears to be Ryodacite and weathered surface is light gray to pink (Cobalt?) Fresh rock is pale to light green Walked to main outcrop (alders, shrub, pine bush, some birch observed) 						
October 26, 2018	 Took samples 1 to 3 on small outcrop and samples 4 to 6 on main outcrop Cloudy and windy (-4°C to 0°C) Travelled to Clifford via Highway 672 to Clifford main outcrop to continue sampling from yesterday. Water up to vehicles bumper on some parts of road Water running across road in swampy section Took samples 7 to 11 (long reasonably flat outcrop rising to North East) Fault roughly North East/South West across middle of outcrop Contact running about parallel and just South of fault North West section of showing is flow breccia, some small quartz veining (white to grey in colour) Southern portion is Ryodacite, some green carbonate staining, numerous quartz veins 						
October 27, 2018	 Prospecting on road in to the Clifford main outcrop Temperature -3°C to 3°C Outcrop on south side of road is running just about parallel, just South of road Pine and some birch bush – alders – shrubs – "Tea" bushes Outcrop primarily flow breccia with invasive sections of Ryodacite Two contacts cross the outcrops South West to North East Quite large quartz veins and section on South side and about mid part of outcrop (white colour) Small white quartz veining in breccia at West extremity Breccia brown to rust weathered while fresh colour is dark green to black Fresh rocks of Ryodacite are pink to grey coloured (Cobalt?) Checked road to Maple area, road was impassible due to mud and water Weather that day was rain and snow Collected samples CLR #1-7 						

Table 2: Survey Log

2.3 Personnel

Tiger Gold Exploration Corporation contracted Gwen Resources to perform the prospecting. The individuals who performed the prospecting traverses for Gwen Resources were John Perron of Kelowna, BC along with Doug Culhane and Wendy Weller both of Virginiatown, Ontario.

2.4 TRAVERSE SPECIFICATIONS

The targeting of the survey was generated by observations made during the traverses over the property. Some historic work was also targeted for reexamination.

Using a rock hammer, rock was broken up and sampled. The sample was placed in a plastic sampling bag and taped closed. The sample number was recorded on the sampling bag as well. The sample was then put into a packsack for transportation.

While sampling, a picture was taken of the sample and the GPS co-ordinates of the sample location was recorded.

At the end of the day the samples were placed in plastic storage containers and stored in the crew's accommodations.

Clifford & Harker Townships, Ontario

3.0 OVERVIEW OF SURVEY RESULTS

ALL SAMPLES WERE TAKEN FOR REFERENCE PURPOSES ONLY! ALL SAMPLES WERE PRESENTED TO TIGER GOLD EXPLORATION CORPORATION.

3.1 **SUMMARY OF SAMPLES COLLECTED**

2018 CLIFORD TOWNSHIP SAMPLING										
SAMPLE No.	Sample Code	Date	Time	Location	GPS			Claim		
11	IRISPP#1	OCT 21 2018		IRIS	17 U	E 0590494	N 5367653	PAT-2840		
12	IRISPP#2	OCT 21 2018		IRIS	17 U	E 0590474	N 5367664	PAT-2840		
13	SDMS1	OCT 25 2018	12:33:PM	off main SDMS	17 U	E 0588511.9	N 5353505.10	Cliff4225043		
14	SDMS2	OCT 25 2018	12:48:PM	off main SDMS	17 U	E 0588511.8	N 5353512.70	Cliff4225043		
15	SDMS3	OCT 25 2018	1:05:PM	off main SDMS	17 U	E 0588511.6	N 5353510.19	Cliff4225043		
16	SDM4	OCT 25 2018	10:25:AM	Main SDM	17 U	E 0588577.88	N 5353559.51	Cliff4225043		
17	SDM5	OCT 25 2018	10:33:AM	Main SDM	17 U	E 0588576.11	N 5353575.87	Cliff4225043		
18	SDM6	OCT 25 2018	10:42:AM	Main SDM	17 U	E 0588567.11	N 5353580.0	Cliff4225043		
19	SDM7	OCT 26 2018	10:58:AM	Main SDM	17 U	E 0588571.22	N 5353576.85	Cliff4225043		
20	SDM8	OCT 26 2018	11:23:AM	Main SDM	17 U	E 0588571.71	N 5353570.91	Cliff4225043		
21	SDM9	OCT 26 2018	11:46:AM	Main SDM	17 U	E 0588565.61	N 5353575.58	Cliff4225043		
22	SDM10	OCT 26 2018	11:58:AM	Main SDM	17 U	E 0588566.14	N 5353575.58	Cliff4225043		
23	SDM11	OCT 26 2018	12:16:PM	Main SDM	17 U	E 0588566.14	N 5353570.82	Cliff4225043		
24	CLR1	OCT 27 2018	10:55:AM	CL.RD	17 U	E 0587431.33	N 5353924.33	Cliff4225043		
25	CLR2	OCT 27 2018	11:21:AM	CL.RD	17 U	E 0587440.68	N 5353921.11	Cliff4225043		
26	CLR3	OCT 27 2018	11:34:AM	CL.RD	17 U	E 0587442.92	N 5353922.65	Cliff4225043		
27	CLR4	OCT 27 2018	11:56:AM	CL.RD	17 U	E 0587447.01	N 5353912.78	Cliff4225043		
28	CLR5	OCT 27 2018	12:13:PM	CL.RD	17 U	E 0587450.14	N 5353912.82	Cliff4225043		
29	CLR6	OCT 27 2018	12:25:PM	CL.RD	17 U	E 0587452.14	N 5353919.82	Cliff4225043		
30	CLR7	OCT 27 2018	12:37:PM	CL.RD	17 U	E 0587460.14	N 5353919.82	Cliff4225043		

Table 3: Summary of Samples Collected

Figure 2: Prospecting on the Harker Heritage Properties with Townships

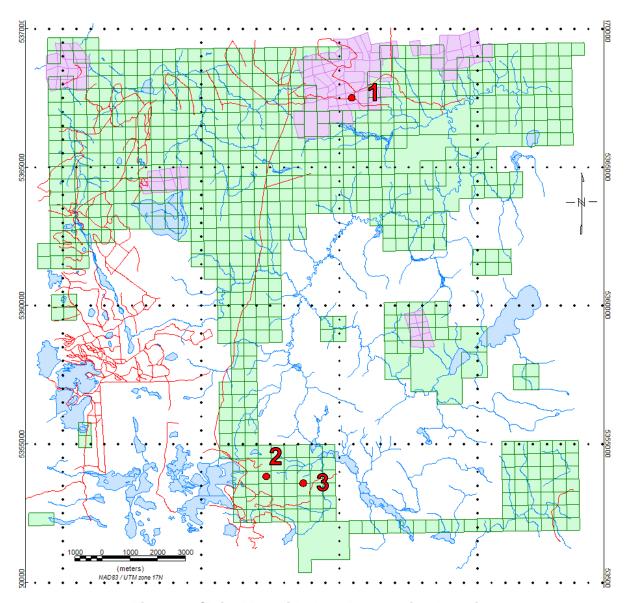


Figure 3: Claim Map with the 3 Prospecting Locations

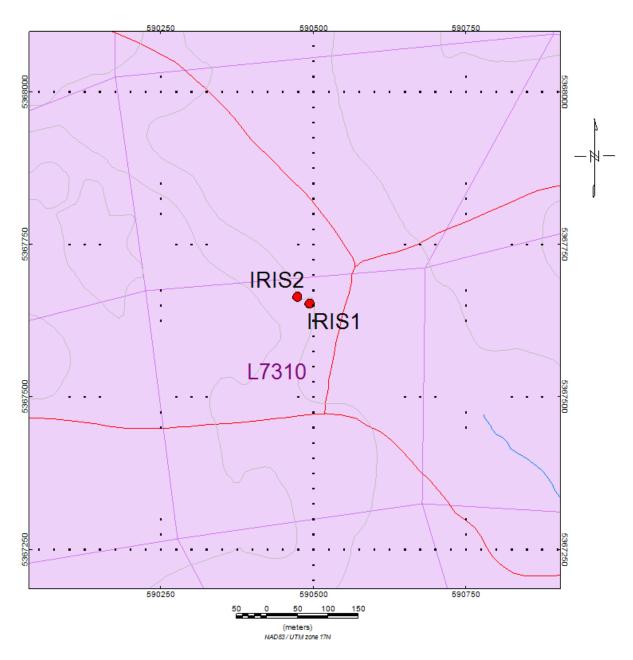


Figure 4: North Prospecting Location (1 on Figure 3)

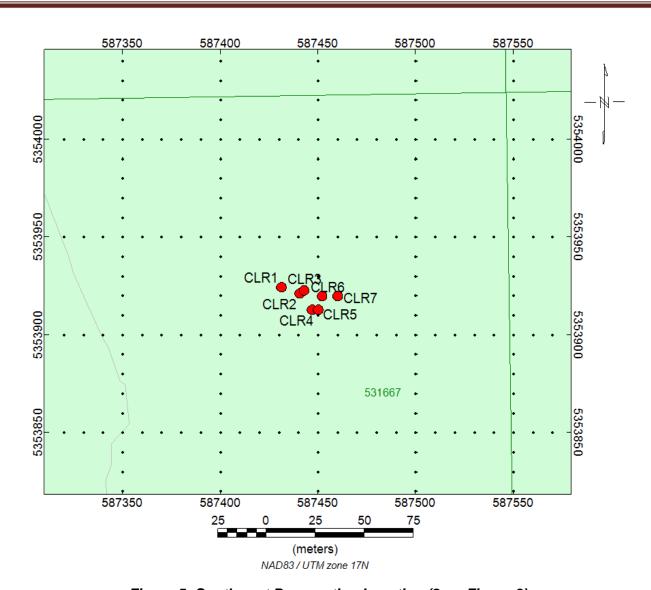


Figure 5: Southwest Prospecting Location (2 on Figure 3)

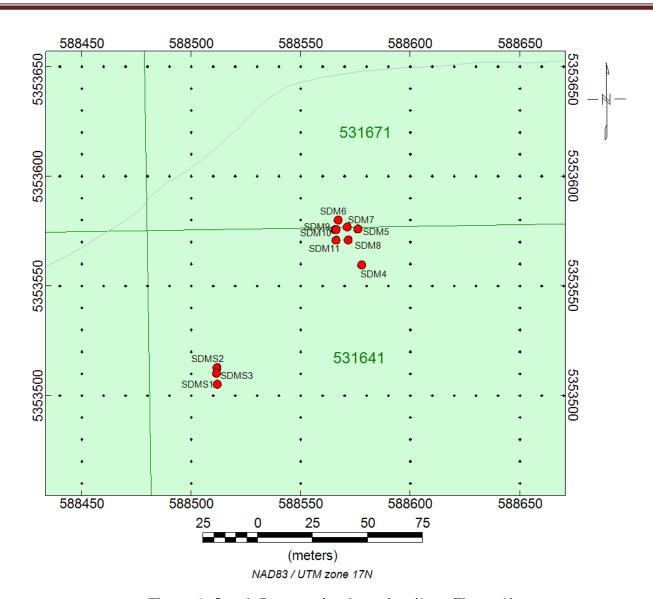


Figure 6: South Prospecting Location (3 on Figure 3)

3.2 DAY 1 - OCTOBER 21

Sample #11 (IRISPP#1)

Rock Description:

- -Brecciated felsic igneous fragments (k-spar) or growth rings
- -Spaces between fragments filled with quartz, mafic minerals and sulphides

Location: UTM Zone 17T 0590494E, 5367653N

Figure 7: Picture of Sample IRISPP#1

CANADIAN EXPLORATION SERVICES LTD

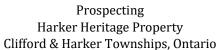


Figure 8: Picture of Sample IRISPP#1 in the Field

Sample #12 (IRISPP#2)

Rock Description:

- -Brecciated felsic igneous fragments (k-spar) or growth rings
- -Spaces between fragments filled with quartz, mafic minerals and sulphides

Location: UTM Zone 17T 0590474E, 5367664N

Figure 9: Picture of Sample IRISPP#2

Figure 10: Picture of Sample IRISPP#2 in the Field

3.3 DAY 2 - OCTOBER 25

Sample #13 (SDMS1)

Rock Description:

-Fine grain rock (metamorphic, hornfel)

Location: UTM Zone 17T 0588512E, 5353505N

Figure 11: Picture of Sample SDMS1

Figure 12: Picture of Sample SDMS1 in the Field

Sample #14 (SDMS2)

Rock Description:

- -Fine grain rock (metamorphic, hornfel)
- -Small porphyroblasts

Location: UTM Zone 17T 0588512E, 5353513N

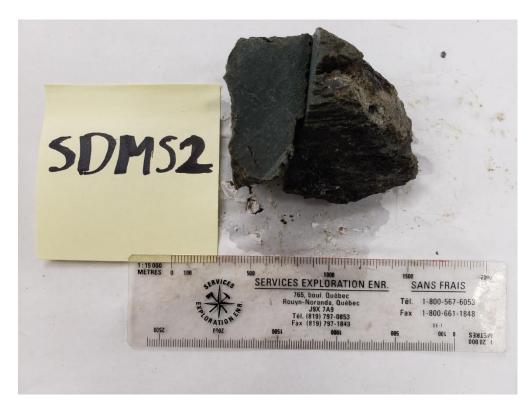


Figure 13: Picture of Sample SDMS2

Figure 14: Picture of Sample SDMS2 in the Field

Sample #15 (SDMS3)

Rock Description:

- -Fine grain rock (metamorphic, hornfel)
- -Blueish tint

Location: UTM Zone 17T 0588512E, 5353510N

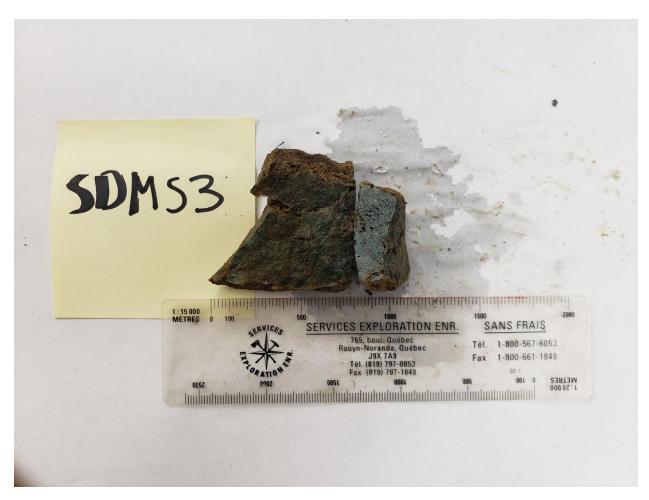


Figure 15: Picture of Sample SDMS3

Figure 16: Picture of Sample SDMS3 in the Field

Sample #16 (SDM4)

Rock Description:

- -fine grain rock (metamorphic)
- -small veins of quartz
- -red porphyroblasts (quartz)
- -sedimentary protolith

Location: UTM Zone 17T 0588578E, 5353560N

Figure 17: Picture of Sample SDM4

Figure 18: Picture of Sample SDM4 in the Field

Sample #17 (SDM5)

Rock Description:

- -fine grain rock (metamorphic)
- -small veins of quartz
- -red porphyroblasts (quartz)
- -sedimentary protolith

Location: UTM Zone 17T 0588576E, 5353576N

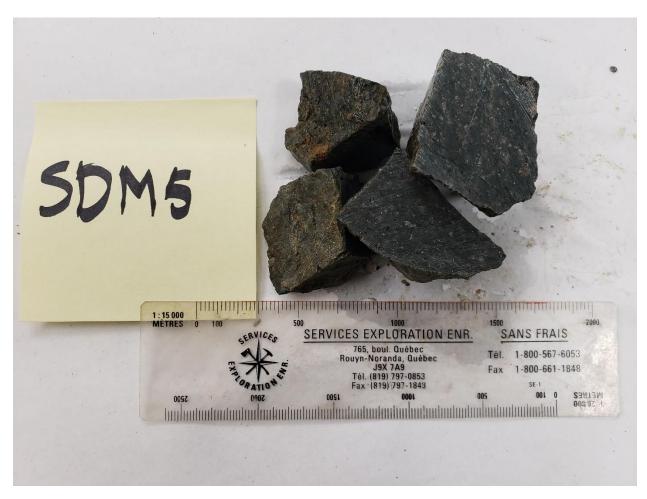


Figure 19: Picture of Sample SDM5

Figure 20: Picture of Sample SDM5 in the Field

Sample #18 (SDM6)

Rock Description:

- -Mafic volcanic rock with quartz calcite intrusions
- -Porphyroblasts

Location: UTM Zone 17T 0588567E, 5353580N

Figure 21: Picture of Sample SDM6

Figure 22: Picture of Sample SDM6 in the Field

3.4 DAY 3 - OCTOBER 26

Sample #19 (SDM7)

Rock Description:

- -fine grain rock (metamorphic)
- -small veins of quartz
- -red porphyroblasts (quartz)
- -sedimentary protolith

Location: UTM Zone 17T 0588571E, 5353577N

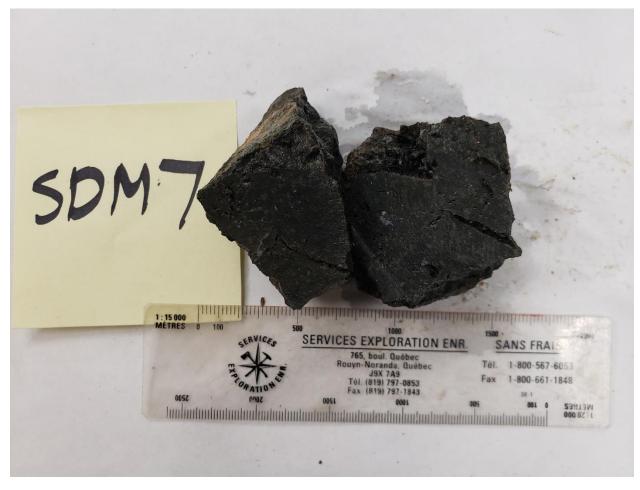


Figure 23: Picture of Sample SDM7

Figure 24: Picture of Sample SDM7 in the Field

Sample #20 (SDM8)

Rock Description:

- -Metamorphic rock (Mafic volcanic protolith)
- -Red porphyroblasts (quartz or potassium feldspar)

Location: UTM Zone 17T 0588572E, 5353571N

Figure 25: Picture of Sample SDM8

Figure 26: Picture of Sample SDM8 in the Field

Sample #21 (SDM9)

Rock Description:

- -Metamorphic rock (Mafic volcanic protolith)
- -Red porphyroblasts (quartz or potassium feldspar)

Location: UTM Zone 17T 0588565E, 5353576N

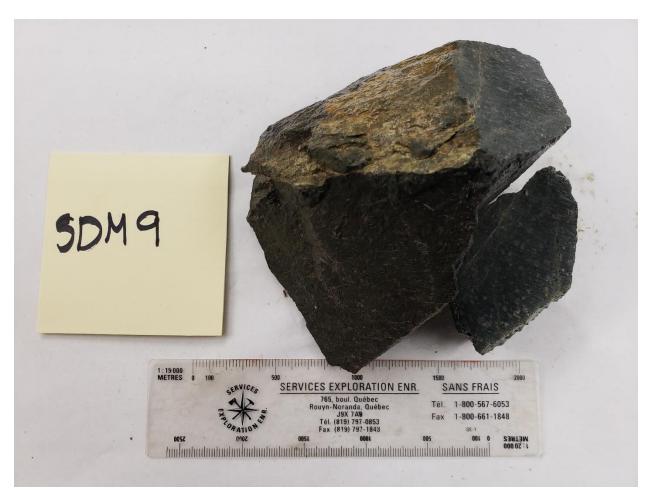


Figure 27: Picture of Sample SDM9

Figure 28: Picture of Sample SDM9 in the Field

Sample #22 (SDM10)

Rock Description:

- -Metamorphic rock (Mafic volcanic protolith)
- -Red porphyroblasts (quartz or potassium feldspar

Location: UTM Zone 17T 0588566E, 5353576N



Figure 29: Picture of Sample SDM10

Figure 30: Picture of Sample SDM10 in the Field

Sample #23 (SDM11)

Rock Description:

- -Fine grain mafic volcanic rock
- -Some calcite quartz veining

Location: UTM Zone 17T 0588566E, 5353571N

Figure 31: Picture of Sample SDM11

Figure 32: Picture of Sample SDM11 in the Field

3.5 DAY 4 - OCTOBER 27

Sample #24 (CLR1)

Rock Description:

-Fine grain intermediate volcanic rock

Location: UTM Zone 17T 0587431E, 5353924N

Figure 33: Picture of Sample CLR1

Figure 34: Picture of Sample CLR1 in the Field

Sample #25 (CLR2)

Rock Description:

- -Fine grain metamorphic rock (porphyroblasts observed)
- -Either intermediate volcanic protolith or fine grain siltstone protolith
- -Quartz veining as well

Location: UTM Zone 17T 0587441E, 5353921N

Figure 35: Picture of Sample CLR2

Figure 36: Picture of Sample CLR2 in the Field

Sample #26 (CLR3)

Rock Description:

- -Fine grain metamorphic sedimentary rock (hornfel)
- -Porphyroblasts

Location: UTM Zone 17T

0587443E, 5353923N

Figure 37: Picture of Sample CLR3

Figure 38: Picture of Sample CLR3 in the Field

Sample #27 (CLR4)

Rock Description:

-Fine grain metamorphic volcanic or sedimentary rock (hornfel)

Location: UTM Zone 17T 0587447E, 5353913N

Figure 39: Picture of Sample CLR4

Figure 40: Picture of Sample CLR4 in the Field

Sample #28 (CLR5)

Rock Description:

- -Fine grain metamorphic sedimentary rock (hornfel)
- -Porphyroblasts

Location: UTM Zone 17T 0587450E, 5353913N

Figure 41: Picture of Sample CLR5

Figure 42: Picture of Sample CLR5 in the Field

Sample #29 (CLR6)

Rock Description:

-Quartz vein in fine grain mafic volcanic rock

Location: UTM Zone 17T 0587452E, 5353920N



Figure 43: Picture of Sample CLR6

Figure 44: Picture of Sample CLR6 in the Field

Sample #30 (CLR7)

Rock Description:

- -Quartz vein in fine grain metamorphic sedimentary rock
- -Schist as the porphyroblasts are aligned

Location: UTM Zone 17T 0587460E, 5353920N

Figure 45: Picture of Sample CLR7

Figure 46: Picture of Sample CLR7 in the Field

Harker Heritage Property Clifford & Harker Townships, Ontario

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, C. Jason Ploeger, hereby declare that:
- 1. I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist and Geophysical Manager of Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- 5. I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do not have nor expect an interest in the properties and securities of **Tiger Gold Exploration Corporation.**
- 7. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. Geophysical Manager Canadian Exploration Services Ltd.

> Larder Lake, ON November 23, 2018

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, Andrew Salerno, hereby declare that:
- 1. I am a soon-to-be Geoscientist-in-Training with residence in Virginiatown, Ontario and am presently employed as a Junior Geologist with Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I graduated with a Bachelor of Science Honors specialization in geology from the University of Waterloo, in Waterloo Ontario, in 2018.
- I am currently undergoing the application process to register as a Geoscientist in-Training to later become a practicing member of the Association of Professional Geoscientists.
- 4. I do not have nor expect an interest in the properties and securities of **Tiger Gold Exploration Corporation.**
- 5. I am responsible for assisting with the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Andrew Salerno, B.Sc. Junior Geologist (non-Professional)

> Larder Lake, ON November 23, 2018

APPENDIX B

GARMIN GPS MAP 76

General	
Physical dimensions	2.7" x 6.2" x 1.2" (6.9 x 15.7 x 3.0 cm)
Display size	1.6" x 2.2" (4.1 x 5.6 cm)
Display resolution	180 x 240 pixels
Display type	4 level gray LCD
Weight	7.7 oz (218 g) with batteries
Battery	2 AA batteries (not included)
Battery life	16 hours
Water rating	IPX7
Memory/History	8 MB
Interface	Serial

Prospecting Harker Heritage Property Clifford & Harker Townships, Ontario

Maps & Memory	
Ability to add maps	
Basemap	
Waypoints/favorites/locations	1000
Routes	50
Track log	10,000 points, 10 saved tracks

Outdoor Recreation	n Features
Area calculation	
Hunt/fish calendar	
Sun and moon information	

Harker Heritage Property Clifford & Harker Townships, Ontario

GARMIN eTrex Legend

General	
Physical dimensions	2.0" x 4.4" x 1.2" (5.1 x 11.2 x 3.0 cm)
Display size	1.1" x 2.1" (2.8 x 5.4 cm)
Display resolution	160 x 288 pixels
Display type	4 level gray LCD
Weight	5.3 oz (150 g) with batteries
Battery	2 AA batteries (not included)
Battery life	18 hours
Water rating	IPX7
Memory/History	8 MB
Interface	Serial

Prospecting Harker Heritage Property Clifford & Harker Townships, Ontario

Maps & Memory	
Ability to add maps	
Basemap	
Waypoints/favorites/locations	1000
Routes	20
Track log	10,000 points, 10 saved tracks

Outdoor Recreation Features
Area calculation
Hunt/fish calendar
Sun and moon information

• Specifications obtained from www.garmin.com

APPENDIX C

ASSAYS

DOCUMENT: QCDOC_SD18305051_164117-51306349.PDF

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 1 Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 This copy reported on 21 - DEC- 2018 Account: TGQXYROL

QC CERTIFICATE SD18305051

Project: Tiger Gold P.O. No : Cash/Visa

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on 30-NOV-2018.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
CRU- 31	Fine crushing - 70% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA- AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

Prospecting Harker Heritage Property Clifford & Harker Townships, Ontario

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

Page: 2 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

Project: Tiger Gold	
QC CERTIFI	(

													ALYSIS			
	Method	ME-ICP41 Ag	ME- ICP41 Al	ME- ICP41 As	ME-ICP41 B	ME-ICP41 Ba	ME-ICP41 Be	ME- ICP41 Bi	ME-ICP41 Ca	ME- ICP41 Cd	ME- ICP41 Co	ME- ICP41 Cr	ME- ICP41 Cu	ME- ICP41 Fe	ME- ICP41 Ga	ME- ICP41 Hg
	Analyte Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ге %	ppm	ppm
Sample Description	LOD	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10	1
							STAN	DARDS								
CDN- CM- 34		3.5	2.49	102	<10	100	<0.5	<2	1.40	1.0	41	183	5870	4.34	10	<1
Target Range - Lower		3.1	2.14	93	<10	70	<0.5	<2	1.20	<0.5	36	164	5390	3.91	<10	<1
	Bound	4.3	2.64	118	30	140	1.4	8	1.49	2.0	46	202	6210	4.80	30	2
EMOG- 17		66.1 60.1	1.57	568 503	10 <10	40 30	<0.5 <0.5	2 <2	0.95	19.3 17.9	745 679	46	8420 7780	4.51 4.18	<10 <10	<1 <1
Farget Range - Lower	Bound	73.9	1.79	619	20	80	1.5	10	1.09	22.9	833	42 54	8960	5.14	30	3
К- 17	Bound	75.0	1.70	018	20	00	1.0	10	1.00	22.0	033	J.	0000	3.14	30	- 3
K- 17																
K- 17																
Target Range - Lower																
Upper	Bound															
MRGeo08		4.3	2.53	32	10	430	0.7	2	1.03	2.1	19	89	607	3.49	10	<1
Farget Range - Lower		3.8	2.44 3.00	27 39	<10 20	370 530	<0.5	<2 5	1.00	1.1	16	81 102	586 676	3.22 3.96	<10 30	<1
OREAS 602	Bound	5.1 >100	0.61	661	<10	40	<0.5	59	0.53	25.2	22 10	31	5180	2.01	<10	2
JREAS 602 Farget Range - Lower	Round	106.0	0.61	577	<10	<10	<0.5	50	0.63	22.2	7	26	4810	1.94	<10	<1
	Bound	100.0	0.71	709	20	50	1.3	66	0.40	28.2	12	34	5530	2.40	30	3
DREAS- 218						-										
DREAS- 218																
Target Range - Lower	Bound															
	Bound															
PMP- 18																
Target Range - Lower																
Upper	Bound															
							BLA	ANKS								
BLANK																
BLANK																
BLANK																
Target Range - Lower																
	Bound															
BLANK		<0.2	<0.01	<2	<10	<10	<0.5	3	<0.01	<0.5	<1	<1	<1	<0.01	<10	<1
BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	1	<0.01	<10	<1
Farget Range - Lower	Bound Bound	<0.2 0.4	<0.01	<2	<10 20	<10 20	<0.5 1.0	<2	<0.01 0.02	<0.5 1.0	<1 2	<1 2	<1 2	<0.01	<10 20	<1 2
Upper	bound	0.4	0.02	4	20	20	1.0	4	0.02	1.0	2	2	2	0.02	20	2

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

	Tiger	

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	30505	1
Sample Description	Method Analyte Units LOD	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
	STANDARDS															
CDN- CM- 34		1.19	10	2.51	301	277	0.11	232	1170	22	3.01	6	9	104	<20	0.18
Target Range - Lowe	er Bound er Bound	1.06	<10 30	2.27	269 340	245 301	0.08	204 252	1050 1310	18 28	2.70 3.32	<2 9	8 13	92 115	<20 40	0.15 0.21
EMOG- 17	r bound	0.64	20	0.75	635	1065	0.13	7700	760	7240	3.08	693	5	52	<20	0.21
Target Range - Lowe	er Bound	0.60	<10	0.73	598	1015	0.15	6930	680	6500	2.90	572	3	47	<20	0.18
	r Bound	0.76	40	0.91	742	1245	0.20	8470	850	7950	3.56	778	7	59	50	0.25
JK- 17 JK- 17 JK- 17 Target Range - Lowe	er Bound er Bound															
MRGeo08	ar Bouriu	1.21	30	1.12	400	14	0.31	687	980	1050	0.30	3	7	76	20	0.37
Target Range - Lowe	er Bound	1.12	20	1.03	378	12	0.30	621	900	957	0.27	<2	5	71	<20	0.33
	er Bound	1.40	60	1.29	473	17	0.39	761	1130	1175	0.35	8	10	89	60	0.43
OREAS 602		0.09	10	0.10	213	4	0.02	61	230	839	2.00	66	1	50	<20	0.01
Target Range - Lowe	er Bound er Bound	0.07	<10 30	0.08	193 247	2 7	<0.01 0.05	54 68	210 280	768 944	1.81	51 73	<1 3	44 56	<20 40	<0.01 0.03
PMP- 18 Target Range - Lowe	er Bound															
							BL	ANKS								
BLANK BLANK BLANK Target Range - Lowe	er Bound er Bound															
BLANK	a sound	< 0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2	<1	<1	<20	< 0.01
BLANK		<0.01	<10	<0.01	<5	<1	<0.01	1	<10	<2	<0.01	<2	<1	<1	<20	<0.01
Target Range - Lowe		<0.01	<10	<0.01	<5 10	<1	<0.01	<1	<10	<2	<0.01	<2	<1	<1	<20	<0.01
	er Bound er Bound	<0.01 0.02	<10 20	<0.01 0.02	<5 10	<1 2	<0.01 0.02	<1 2	<10 20	<2 4	<0.01 0.02	<2 4	<1 2	<1 2	<20 40	<0.01 0.02

Prospecting Harker Heritage Property Clifford & Harker Townships, Ontario

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

Pro	ject:	Tiger	Gol	
-----	-------	-------	-----	--

(ALS)							Project. Tig	ger Gold		
(, , ,	,							C	C CERTIFICATE	OF ANALYSIS	SD18305051
	Method	ME-ICP41	MF-ICP41	MF- ICP41	MF- ICP41	MF-ICP41	Au- AA23				
	Analyte	TI	U	V	w	Zn	Au				
	Units	ppm	ppm	ppm	ppm	ppm	ppm				
Sample Description	LOD	10	10	1	10	2	0.005				
							STANDA	RDS			
CDN- CM- 34		<10	<10	107	10	179					
Target Range - Lower	Round	<10	<10	95	<10	159					
	Bound	20	20	118	30	199					
EMOG- 17		10	<10	65	20	7340					
Target Range - Lower	Bound	<10	<10	58	<10	6780					
Upper	Bound	20	20	74	20	8290					
JK- 17							2.01				
JK- 17							2.03				
JK- 17							2.05				
Target Range - Lower							1.875				
MRGeo08	Bound	<10	<10	98	<10	749	2.12				
MRGeodo Target Range - Lower	Danual	<10	<10	90	<10	708					
	Bound	20	30	112	20	870					
OREAS 602	bound	<10	<10	10	10	4010					
Target Range - Lower	Round	<10	<10	8	<10	3680					
Upper	Bound	20	20	14	20	4500					
OREAS- 218							0.538				
OREAS- 218							0.533				
Target Range - Lower	Bound						0.494				
	Bound						0.568				
PMP- 18							0.316				
Target Range - Lower							0.277				
Upper	Bound						0.323				
							BLANK	S			
BLANK		1					<0.005				
BLANK		1					<0.005				
BLANK							<0.005				
Target Range - Lower Upper	Bound Bound						<0.005 0.010				
BLANK		<10	<10	<1	<10	<2					
BLANK		<10	<10	<1	<10	<2					
Target Range - Lower	Bound Bound	<10 20	<10 20	<1 2	<10 20	<2 4					
Upper	bound	20	20	2	20	4					
		1									
		1									
		1									

Prospecting Harker Heritage Property Clifford & Harker Townships, Ontario

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

ALS	\							Proi	ect: Tiger	Gold						
(ALS	,	QC CERTIFICATE OF ANALYSIS SD18305										830505	1			
Method Analyte Sample Description Units LOD		ME-ICP41 Ag ppm 0.2	ME- ICP41 AI % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01	ME- ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															
CLR- 4 DUP Target Range - Lower Upper	r Bound r Bound	<0.2 <0.2 <0.2 <0.2 0.4	2.92 3.06 2.83 3.15	<2 <2 <2 4	10 10 <10 20	10 10 <10 20	<0.5 <0.5 <0.5 1.0	<2 4 <2 4	1.94 2.03 1.88 2.09	<0.5 <0.5 <0.5 1.0	20 20 18 22	48 51 48 53	33 34 31 36	4.12 4.31 3.99 4.44	10 10 <10 20	<1 <1 <1 2
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound	1.9 1.8 1.6 2.1	0.99 0.96 0.92 1.03	65 68 61 72	<10 <10 <10 20	40 40 30 50	<0.5 <0.5 <0.5 1.0	2 3 <2 4	0.52 0.51 0.48 0.55	35.1 34.3 32.5 36.9	7 7 6 8	7 8 6 9	194 187 183 198	2.13 2.10 2.00 2.23	<10 <10 <10 20	1 <1 <1 2
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															
ORIGINAL DUP Target Range - Lower Upper	r Bound r Bound															

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

ALS	\							Proj	ect: Tiger	Gold						
	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD1	830505	51
Sample Description	Method Analyte Units LOD	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
CLR- 4 DUP Target Range - Lower Upper	Bound Bound	0.01 0.01 <0.01 0.02	<10 10 <10 20	1.84 1.93 1.78 1.99	554 578 533 599	<1 <1 <1 2	0.04 0.04 0.03 0.05	60 64 58 66	520 540 490 570	<2 <2 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	0.01 0.01 <0.01 0.02	<2 <2 <2 4	6 6 5 7	45 47 43 49	<20 <20 <20 40	0.39 0.41 0.37 0.43
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.30 0.29 0.27 0.32	10 10 <10 20	0.71 0.69 0.68 0.75	695 680 648 727	<1 1 <1 2	<0.01 <0.01 <0.01 0.02	7 7 6 8	360 350 330 380	140 137 130 147	1.63 1.60 1.52 1.71	<2 2 <2 4	<1 <1 <1 2	40 39 37 42	<20 <20 <20 <40	0.01 0.01 <0.01 0.02
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

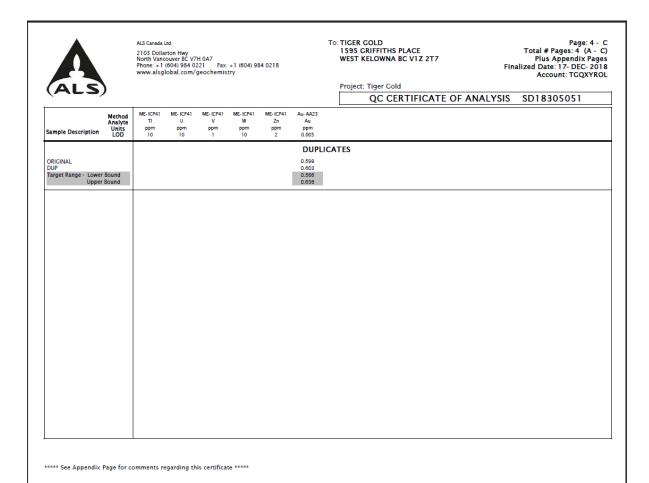
To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

(ALS)		Project: Tiger Gold
(/\)		QC CERTIFICATE OF ANALYSIS SD18305051
Method Analyte Sample Description Units LOD	ME-ICP41 ME-	Au- AA23 Au ppm 0.005
		DUPLICATES
ORIGINAL DUP Target Range - Lower Bound Upper Bound		0.017 0.019 0.012 0.024
ORIGINAL DUP Target Range - Lower Bound Upper Bound		<0.005 <0.005 <0.005 0.010
ORIGINAL DUP Target Range - Lower Bound Upper Bound		<0.005 0.005 <0.005 0.010
CLR- 4 DUP Target Range - Lower Bound Upper Bound	<10 <10 114 <10 50 <10 <10 118 <10 51 <10 <10 109 <10 48 20 20 123 20 55	
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<10 <10 6 30 8370 <10 <10 6 30 8110 <10 <10 5 20 7830 20 20 7 40 8650	
ORIGINAL DUP Target Range - Lower Bound Upper Bound	_	0.320 0.404 0.339 0.385
ORIGINAL DUP Target Range - Lower Bound Upper Bound		0.221 0.234 0.211 0.244
ORIGINAL DUP Target Range - Lower Bound Upper Bound		0.834 0.893 0.811 0.906

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages alized Date: 17- DEC- 2018

		Phone: +1 www.alsg	(604) 984 0 lobal.com/	221 Fax geochemis	+1 (604) 98 try	84 0218							Fi		Date: 17- I .ccount: T	
ALS	\							Proj	ect: Tiger							
,,,,,,,									QC	CERTII	FICATE	OF AN	ALYSIS	SD1	83050	51
ample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1
							DUPL	ICATES								
RIGINAL UP arget Range - Lower	r Bound															
Upper	Bound															
		1														


ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver 8C V7H 0A7
Phone: +1 604 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 Account: TGQXYROL

ALS)							Proj	ect: Tiger		ICATE	OF AN	ALYSIS	SD18	30505	1
Sample Description	Method Analyte Units LOD	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01
							DUPL	ICATES								
DRIGINAL DUP Target Range - Lower Upper	r Bound r Bound															

Tiger Gold Exploration Corporation

Tiger Gold Exploration Corporation

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- DEC- 2018 Account: TGQXYROL

ALS)			Project: Tiger Gold	
/			QC CERTIFICATE OF AN	ALYSIS SD18305051
		CERTIFICATE CO	DMMENTS	
			RATORY ADDRESSES	
Applies to Method:	Processed at ALS Sudbury loca CRU- 31 PUL- QC	ated at 1351-B Kelly Lake Road CRU- QC SPL- 21	, Unit #1, Sudbury, ON, Canada. LOG- 22 WEI- 21	PUL- 31
Applies to Method:	Processed at ALS Vancouver lo Au- AA23	ocated at 2103 Dollarton Hwy, I ME- ICP41	North Vancouver, BC, Canada.	

DOCUMENT: COA_SD18305051_164117-51306348.PDF

ALS Canada Itd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: -1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17- DEC- 2018 This copy reported on 21- DEC- 2018 Account: TGQXYROL

CERTIFICATE SD18305051

Project: Tiger Gold P.O. No.: Cash/Visa

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on 30-NOV-2018.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI- 21	Received Sample Weight							
LOG- 22	Sample login - Rcd w/o BarCode							
CRU- QC	Crushing QC Test							
PUL- QC	Pulverizing QC Test							
CRU- 31	Fine crushing - 70% < 2mm							
SPL- 21	Split sample - riffle splitter							
PUL- 31	Pulverize split to 85% < 75 um							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA23	Au 30g FA- AA finish	AAS
ME- ICP41	35 Element Aqua Regia ICP- AES	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

	er Go	

									C	CKIIFIC	AIEU	F ANAL	-1313	SD183	03031	
Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	ME- ICP41 Ag ppm 0.2	ME- ICP41 AI % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME- ICP41 Ga ppm 10
SDE- 1		1,55	<0.2	2.82	4	<10	30	<0.5	<2	1.12	<0.5	21	4	32	5.43	10
SDE- 2		0.34	< 0.2	2.66	6	<10	30	< 0.5	<2	0.50	<0.5	19	3	20	4.88	10
SDE- 3		0.34	< 0.2	3.40	2	10	10	< 0.5	<2	1.48	<0.5	28	71	58	4.68	10
SDE- 4		0.75	< 0.2	1.32	4	<10	10	< 0.5	<2	3.98	<0.5	11	19	12	1.90	10
SDE- 5		0.61	<0.2	2.68	2	<10	10	0.5	<2	0.99	<0.5	20	5	77	4.88	10
SDE- 6		1.18	<0.2	2.33	2	10	<10	<0.5	<2	2.37	<0.5	19	13	75	3.73	10
SDE- 7		0.97	<0.2	1.85	2	<10	10	< 0.5	3	1.08	<0.5	16	71	13	2.51	10
SDE- 8		1.16	< 0.2	2.32	<2	<10	10	< 0.5	<2	1.33	<0.5	19	103	68	3.18	10
SDE- 9		0.80	<0.2	3.29	3	10	10	<0.5	<2	2.15	<0.5	27	150	25	4.25	10
SDE- 10		0.57	<0.2	2.99	2	<10	10	< 0.5	2	1.07	<0.5	25	103	67	4.49	10
SDM-S1		0.63	<0.2	3.78	2	<10	170	<0.5	<2	1.13	<0.5	28	82	5	5.36	10
SDM-S2		0.57	< 0.2	0.85	<2	<10	60	< 0.5	2	0.20	<0.5	2	3	3	1.53	<10
SDM-S3		0.48	< 0.2	4.58	<2	10	20	0.8	<2	3.52	<0.5	22	115	22	4.57	10
SDM- 4		1.27	< 0.2	0.81	<2	<10	50	< 0.5	2	0.38	<0.5	3	3	23	1.51	<10
SDM- 5		0.77	<0.2	0.89	<2	<10	40	<0.5	2	0.59	<0.5	3	4	3	1.71	<10
SDM- 6		2.77	<0.2	3.59	<2	10	30	<0.5	3	3.41	<0.5	24	69	108	3.83	10
SDM- 7		0.95	<0.2	0.87	<2	<10	40	< 0.5	<2	0.67	<0.5	2	3	12	1.87	<10
SDM-8		1.07	<0.2	0.93	<2	<10	50	< 0.5	<2	0.55	<0.5	3	4	4	1.92	<10
SDM- 9		0.98	< 0.2	0.74	<2	<10	50	< 0.5	2	0.80	<0.5	2	3	3	1.78	<10
SDM-10		1.52	<0.2	0.81	<2	<10	50	<0.5	<2	0.92	<0.5	2	3	25	1.75	<10
SDM-11		1.56	<0.2	0.86	<2	<10	60	<0.5	<2	0.80	<0.5	3	5	6	1.50	<10
CLR- 1		1.43	< 0.2	4.52	<2	10	<10	< 0.5	<2	3.38	<0.5	22	78	47	4.31	10
CLR- 2		2.09	<0.2	4.05	<2	10	10	<0.5	<2	2.66	<0.5	25	82	50	4.62	10
CLR- 3		1.38	<0.2	2.35	<2	10	20	<0.5	<2	1.48	<0.5	20	66	52	3.33	10
CLR- 4		0.94	<0.2	2.92	<2	10	10	< 0.5	<2	1.94	<0.5	20	48	33	4.12	10
CLR- 5		1.23	<0.2	3.63	<2	10	10	<0.5	<2	2.05	<0.5	23	75	46	4.46	10
CLR- 6		1.66	<0.2	1.35	<2	<10	10	<0.5	<2	0.78	<0.5	10	44	40	2.16	<10
CLR- 7		0.62	<0.2	1.74	<2	10	10	<0.5	<2	0.90	<0.5	15	52	35	2.86	10
Iris- 1 Iris- 2		2.00	<0.2	0.24	<2	<10	860	<0.5	<2	0.23	<0.5	1	3	11	0.95	<10
		1.44	<0.2	0.22	<2	<10	1170	< 0.5	<2	0.20	<0.5	1	4	34	0.90	<10

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver 8C V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - 8 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC- 2018 Account: TGQXYROL

Dro	io ot:	Time	r Go	ı
FIU	ject.	Hige	: 60	ľ

(, , ,									CERTIFICATE OF ANALYSIS SD18305051							
Sample Description	Method Analyte Units LOD	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME- ICP41 Th ppm 20
SDE- 1 SDE- 2 SDE- 3 SDE- 4 SDE- 5		<1 <1 <1 <1	0.11 0.07 0.02 0.01 0.01	10 10 <10 <10 10	1.81 1.87 3.32 0.79 1.96	665 647 922 272 694	<1 <1 <1 <1	0.05 0.05 0.06 0.05 0.08	19 13 56 18 12	560 620 330 350 550	<2 2 6 <2 <2	0.20 0.06 0.01 0.01 0.06	<2 <2 <2 <2 <2	7 9 8 4 9	11 9 28 74 25	<20 <20 <20 <20 <20 <20
SDE- 6 SDE- 7 SDE- 8 SDE- 9 SDE- 10		<1 <1 <1 <1 <1	0.02 0.01 0.01 0.01 0.01	10 <10 <10 10	1.90 1.68 2.21 3.38 2.96	439 315 413 539 604	1 <1 <1 <1 <1	0.06 0.06 0.05 0.05 0.05	18 50 93 165 129	450 420 430 490 470	3 02 02 02 02 02 02 02 02 02 02 02 02 02	0.39 0.01 0.01 0.02 0.02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 3 3 4 4	25 28 25 20 18	<20 <20 <20 <20 <20 <20
SDM- S1 SDM- S2 SDM- S3 SDM- 4 SDM- 5		<1 <1 <1 <1	0.09 0.21 0.02 0.18 0.19	10 20 <10 20 20	3.34 0.17 2.55 0.20 0.18	920 258 1025 309 253	<1 <1 <1 <1 1	0.06 0.03 0.02 0.04 0.06	60 4 46 3 3	440 210 390 260 250	2 11 <2 2 <2	0.01 0.01 0.03 0.02 0.02	4 <2 <2 <2 <2	8 1 12 1	33 5 16 10	<20 <20 <20 <20 <20
SDM- 6 SDM- 7 SDM- 8 SDM- 9 SDM- 10		<1 <1 <1 <1 <1	0.11 0.20 0.19 0.18 0.18	<10 20 20 20 20 20	0.80 0.15 0.19 0.12 0.13	698 292 333 260 282	<1 <1 <1 <1	0.03 0.05 0.04 0.06 0.04	128 2 5 3	310 210 260 270 260	3 <2 <2 <2 <2	0.05 0.01 0.01 <0.01 0.01	<2 2 <2 <2 <2 <2	12 2 1 1	16 12 11 13 19	<20 <20 <20 <20 <20 <20
SDM- 11 CLR- 1 CLR- 2 CLR- 3 CLR- 4		<1 <1 <1 <1	0.24 0.02 0.05 0.05 0.01	20 <10 <10 <10 <10	0.20 2.29 2.60 1.68 1.84	255 634 662 433 554	1 <1 <1 <1	0.02 0.01 0.02 0.05 0.04	3 92 103 77 60	210 590 580 500 520	<2 <2 <2 <2 <2	0.02 <0.01 <0.01 0.03 0.01	<2 <2 <2 <2 <2 <2	1 7 6 6	14 16 49 11 45	<20 <20 <20 <20 <20 <20
CLR-5 CLR-6 CLR-7 Iris-1 Iris-2		41 41 41 41	0.03 0.05 0.07 0.02 0.02	<10 <10 <10 10	2.39 0.92 1.40 0.09 0.07	630 297 415 157	41 1 41 41	0.02 0.04 0.03 0.12 0.13	91 41 58 2	600 330 380 160 90	2 <2 <2 2 2	0.01 <0.01 0.02 0.20 0.10	<2 <2 <2 <2 <2 <2	4 2 4 1	20 28 22 62 67	<20 <20 <20 <20 <20 <20

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver 8C V7H 0A7
Phone: -1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 17 - DEC - 2018 Account: TGQXYROL

Pro	iect:	Tige	er Go	lo

Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP41 V	ME- ICP41 W	ME-ICP41	Au- AA23	CRU- QC	PUL- QC		
			10	ppm 1	ppm 10	Zn ppm 2	Au ppm 0.005	Pass2mm % 0.01	Pass75um % 0.01		
	0.29 0.31 0.25 0.49	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	118 117 156 63 152	<10 <10 <10 <10 <10	62 72 87 25 82	<0.005 <0.005 <0.005 <0.005 <0.005	76.1	96.2 95.5		
	0.25 0.24 0.24 0.29 0.29	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	119 64 73 113 112	<10 <10 <10 <10 <10	34 29 44 57 52	<0.005 <0.005 <0.005 <0.005 <0.005				
	0.02 <0.01 0.32 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	92 2 133 2 3	<10 <10 <10 <10 <10	121 45 56 32 29	<0.005 <0.005 <0.005 <0.005 <0.005				
	0.27 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	170 1 3 2 2	<10 <10 <10 <10 <10	82 34 37 28 37	<0.005 <0.005 <0.005 <0.005 <0.005				
	<0.01 0.32 0.36 0.31	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	1 99 87 94	<10 <10 <10 <10 <10	29 58 74 48	<0.005 <0.005 <0.005 <0.005 <0.005	74.8			
	0.34 0.20 0.24 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	90 41 54 17	<10 <10 <10 <10 <10	63 25 45 8 7	<0.005 <0.005 <0.005 0.119				
		0.29 0.29 0.02 -(0.01) 0.32 -(0.01) -(0.29 <10 0.29 <10 0.02 <10 <0.01 <10 0.32 <10 <0.01 <10 <0.01 <10 0.32 <10 <0.01 <10 <0.01 <10 <0.01 <10 0.32 <10 <0.01 <10 0.37 <10 <0.01 <10 0.37 <10 0.31 <10 0.30 <10 0.32 <10 0.34 <10 0.38 <10 0.39 <10 0.39 <10 0.24 <10 0.24 <10 0.24 <10 0.01 <10 0.24 <10 0.01 <10 0.20 <10 0.20 <10 0.21 <10 0.21 <10 0.22 <10 0.33 <10 0.34 <10 0.39 <10 0.39 <10 0.39 <10 0.39 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.31 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.31 <10 0.30 <10 0.30 <10 0.31 <10 0.30 <10 0.31 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10 0.30 <10	0.29 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.29 <10 <10 113 0.29 <10 <10 113 0.29 <10 <10 10 112 0.02 <10 <10 02 <0.01	0.29 <10 <10 113 <10 0.29 <10 <10 112 <10 0.02 <10 <10 112 <10 0.02 <10 <10 02 <10 0.01 <10	0.29 <10 <10 113 <10 57 0.29 <10 <10 112 <10 52 0.02 <10 <10 112 <10 52 0.02 <10 <10 92 <10 121 0.01 122 <10 52 0.02 <10 <10 92 <10 121 0.03 10 0.01 120 0.01 120 <10 2 10 56 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.01 120 0.02 0.03 0	0.29	0.29	0.29	0.29

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com/geochemistry

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- DEC- 2018 Account: TGQXYROL

		rioject. rigor colu	
(ALS)		CERTIFICATE OF ANALYSIS	SD18305051
	CERTIFIC/	ATE COMMENTS	
	Processed at ALS Sudbury located at 1351-B Kelly L	LABORATORY ADDRESSES	
Applies to Method:	CRU- 31 CRU- QC PUL- QC SPL- 21	LOG- 22 WEI- 21	PUL- 31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollard Au- AA23 ME- ICP41	ton Hwy, North Vancouver, BC, Canada.	

877.504.2345 | info@cxsltd.com | www.cxsltd.com

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

Page: 1
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
This copy reported on

21-DEC-2018 Account: TGQXYROL

CERTIFICATE SD18305051

Project: Tiger Gold P.O. No.: Cash/Visa

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on

30-NOV-2018.

The following have access to data associated with this certificate:

ALS Canada Ltd.

BILL BONNEY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% < 75 um

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - A
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(763	,							CERTIFICATE OF ANALYSIS SD183050								51		
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10		
SDE-1 SDE-2 SDE-3		1.55 0.34 0.34 0.75	<0.2 <0.2 <0.2 <0.2	2.82 2.66 3.40 1.32	4 6 2 4	<10 <10 10	30 30 10	<0.5 <0.5 <0.5 <0.5	<2 <2 <2	1.12 0.50 1.48	<0.5 <0.5 <0.5 <0.5	21 19 28 11	4 3 71	32 20 58 12	5.43 4.88 4.68 1.90	10 10 10		
SDE-4 SDE-5		0.75	<0.2	2.68	2	<10 <10	10 10	<0.5 0.5	<2 <2	3.98 0.99	<0.5 <0.5	20	19 5	77	4.88	10 10		
SDE-6 SDE-7 SDE-8 SDE-9 SDE-10		1.18 0.97 1.16 0.80 0.57	<0.2 <0.2 <0.2 <0.2 <0.2	2.33 1.85 2.32 3.29 2.99	2 2 <2 3 2	10 <10 <10 10 <10	<10 10 10 10 10	<0.5 <0.5 <0.5 <0.5 <0.5	<2 3 <2 <2 <2 2	2.37 1.08 1.33 2.15 1.07	<0.5 <0.5 <0.5 <0.5 <0.5	19 16 19 27 25	13 71 103 150 103	75 13 68 25 67	3.73 2.51 3.18 4.25 4.49	10 10 10 10 10		
SDM-S1 SDM-S2 SDM-S3 SDM-4 SDM-5		0.63 0.57 0.48 1.27 0.77	<0.2 <0.2 <0.2 <0.2 <0.2	3.78 0.85 4.58 0.81 0.89	2 <2 <2 <2 <2 <2	<10 <10 10 <10 <10	170 60 20 50 40	<0.5 <0.5 0.8 <0.5 <0.5	<2 2 <2 2 2	1.13 0.20 3.52 0.38 0.59	<0.5 <0.5 <0.5 <0.5 <0.5	28 2 22 3 3	82 3 115 3 4	5 3 22 23 3	5.36 1.53 4.57 1.51 1.71	10 <10 10 <10 <10		
SDM-6 SDM-7 SDM-8 SDM-9 SDM-10		2.77 0.95 1.07 0.98 1.52	<0.2 <0.2 <0.2 <0.2 <0.2	3.59 0.87 0.93 0.74 0.81	<2 <2 <2 <2 <2 <2	10 <10 <10 <10 <10	30 40 50 50 50	<0.5 <0.5 <0.5 <0.5 <0.5	3 <2 <2 <2 2 <2	3.41 0.67 0.55 0.80 0.92	<0.5 <0.5 <0.5 <0.5 <0.5	24 2 3 2 2	69 3 4 3 3	108 12 4 3 25	3.83 1.87 1.92 1.78 1.75	10 <10 <10 <10 <10		
SDM-11 CLR-1 CLR-2 CLR-3 CLR-4		1.56 1.43 2.09 1.38 0.94	<0.2 <0.2 <0.2 <0.2 <0.2	0.86 4.52 4.05 2.35 2.92	<2 <2 <2 <2 <2 <2	<10 10 10 10 10	60 <10 10 20 10	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.80 3.38 2.66 1.48 1.94	<0.5 <0.5 <0.5 <0.5 <0.5	3 22 25 20 20	5 78 82 66 48	6 47 50 52 33	1.50 4.31 4.62 3.33 4.12	<10 10 10 10 10		
CLR-5 CLR-6 CLR-7 Iris-1 Iris-2		1.23 1.66 0.62 2.00 1.44	<0.2 <0.2 <0.2 <0.2 <0.2	3.63 1.35 1.74 0.24 0.22	<2 <2 <2 <2 <2 <2	10 <10 10 <10 <10	10 10 10 860 1170	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	2.05 0.78 0.90 0.23 0.20	<0.5 <0.5 <0.5 <0.5 <0.5	23 10 15 1	75 44 52 3 4	46 40 35 11 34	4.46 2.16 2.86 0.95 0.90	10 <10 10 <10 <10		

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - B
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS								CERTIFICATE OF ANALYSIS SD183050								51		
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20		
SDE-1		<1	0.11	10	1.81	665	<1	0.05	19	560	<2	0.20	<2	7	11	<20		
SDE-2		<1	0.07	10	1.87	647	<1	0.05	13	620	2	0.06	<2	9	9	<20		
SDE-3		<1	0.02	<10	3.32	922	<1	0.06	56	330	6	0.01	<2	8	28	<20		
SDE-4		<1	0.01	<10	0.79	272	<1	0.05	18	350	<2	0.01	<2	4	74	<20		
SDE-5		<1	0.01	10	1.96	694	<1	0.08	12	550	<2	0.06	2	9	25	<20		
SDE-6		<1	0.02	10	1.90	439	1	0.06	18	450	3	0.39	<2	6	25	<20		
SDE-7		<1	0.01	<10	1.68	315	<1	0.06	50	420	<2	0.01	<2	3	28	<20		
SDE-8		<1	0.01	<10	2.21	413	<1	0.05	93	430	<2	0.01	<2	3	25	<20		
SDE-9		<1	0.01	10	3.38	539	<1	0.05	165	490	<2	0.02	<2	4	20	<20		
SDE-10		<1	0.01	10	2.96	604	<1	0.05	129	470	<2	0.02	<2	4	18	<20		
SDM-S1		<1	0.09	10	3.34	920	<1	0.06	60	440	2	0.01	4	8	33	<20		
SDM-S2		<1	0.21	20	0.17	258	<1	0.03	4	210	11	0.01	<2	1	5	<20		
SDM-S3		<1	0.02	<10	2.55	1025	<1	0.02	46	390	<2	0.03	<2	12	16	<20		
SDM-4		<1	0.18	20	0.20	309	<1	0.04	3	260	2	0.02	<2	1	10	<20		
SDM-5		<1	0.19	20	0.18	253	1	0.06	3	250	<2	0.02	<2	1	10	<20		
SDM-6		<1	0.11	<10	0.80	698	<1	0.03	128	310	3	0.05	<2	12	16	<20		
SDM-7		<1	0.20	20	0.15	292	<1	0.05	2	210	<2	0.01	2	2	12	<20		
SDM-8		<1	0.19	20	0.19	333	<1	0.04	5	260	<2	0.01	<2	1	11	<20		
SDM-9		<1	0.18	20	0.12	260	<1	0.06	3	270	<2	<0.01	<2	1	13	<20		
SDM-10		<1	0.18	20	0.13	282	<1	0.04	3	260	<2	0.01	<2	1	19	<20		
SDM-11		<1	0.24	20	0.20	255	1	0.02	3	210	<2	0.02	<2	1	14	<20		
CLR-1		<1	0.02	<10	2.29	634	<1	0.01	92	590	<2	<0.01	<2	7	16	<20		
CLR-2		<1	0.05	<10	2.60	662	<1	0.02	103	580	<2	< 0.01	<2	6	49	<20		
CLR-3		<1	0.05	<10	1.68	433	<1	0.05	77	500	<2	0.03	<2	6	11	<20		
CLR-4		<1	0.01	<10	1.84	554	<1	0.04	60	520	<2	0.01	<2	6	45	<20		
CLR-5		<1	0.03	<10	2.39	630	<1	0.02	91	600	2	0.01	<2	4	20	<20		
CLR-6		<1	0.05	<10	0.92	297	1	0.04	41	330	<2	<0.01	<2	2	28	<20		
CLR-7		<1	0.07	<10	1.40	415	<1	0.03	56	380	<2	0.02	<2	4	22	<20		
Iris-1		<1	0.02	10	0.09	157	<1	0.12	2	160	2	0.20	<2	1	62	<20		
Iris-2		<1	0.02	10	0.07	116	<1	0.13	1	90	3	0.10	<2	<1	67	<20		

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

CERTIFICATE OF ANALYSIS

Page: 2 - C
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

SD18305051

Method Analyte 11	Name Variety Name Variety Name Variety Name Variety Name Variety Name Name Variety Name Name Variety Name Name Variety Name Name												
Sample Description LoD 0.01 10 10 1 10 2 0.005 0.01 0.01	Sample Description LOD 0.01 10 10 10 10 10 2 0.005 0.01 0.01		Analyte	Ti	TI	U	V	W	Zn	Au	Pass2mm	Pass75um	
SDE-2	SDE-2	Sample Description		0.01						0.005	0.01	0.01	
SDE-3	SDE-3 0.51	SDE-1		0.34	<10	<10	118	<10	62	<0.005	76.1	96.2	
SDE-3	SDE-3 0.31	SDE-2		0.29	<10	<10	117	<10	72	< 0.005		95.5	
SDE-5	SDE-5			0.31	<10	<10	156	<10		< 0.005			
SDE-6	SDE-6	SDE-4		0.25	<10	<10	63	<10	25	< 0.005			
SDE-7	SDE-7	SDE-5		0.49	<10	<10	152	<10	82	< 0.005			
SDE-8	SDE-8	SDE-6		0.25			119						
SDE-9 SDE-10 0.29 0.29 <10 <10 113 <10 52 57 <0.005 <0.005 SDM-S1 SDM-S2 SDM-S3 SDM-S3 SDM-4 SDM-4 SDM-6 SDM-6 SDM-7 SDM-6 SDM-7 SDM-8 SDM-8 SDM-9 SDM-9 SDM-9 SDM-10 0.32 <10 <10 121 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <td< td=""><td> SDE-9 0.29</td><td></td><td></td><td></td><td><10</td><td><10</td><td>64</td><td><10</td><td></td><td>< 0.005</td><td></td><td></td><td></td></td<>	SDE-9 0.29				<10	<10	64	<10		< 0.005			
SDE-10 0.29 <10 <10 112 <10 52 <0.005 SDM-S1 0.02 <10	SDE-10 0.29 <10 <10 112 <10 52 <0.005 SDM-S1 0.02 <10	SDE-8											
SDM-S1	SDM-S1				<10	<10	113	<10		< 0.005			
SDM-S2 <0.01	SDM-S2	SDE-10		0.29	<10	<10	112	<10	52	< 0.005			
SDM-S3 0.32 <10	SDM-S3 0.32 <10												
SDM-4 <0.01	SDM-4 <0.01												
SDM-5 <0.01 <10 <10 3 <10 29 <0.005 SDM-6 0.27 <10	SDM-5 <0.01 <10 <10 3 <10 29 <0.005 SDM-6 0.27 <10												
SDM-6 0.27 <10	SDM-6 0.27 <10												
SDM-7 <0.01	SDM-7 <0.01	SDM-5		<0.01	<10	<10	3	<10	29				
SDM-8 <0.01	SDM-8 <0.01												
SDM-9 <0.01	SDM-9 <0.01												
SDM-10 <0.01 <10 <10 2 <10 37 <0.005 SDM-11 <0.01	SDM-10 <0.01 <10 <10 2 <10 37 <0.005 SDM-11 <0.01												
SDM-11	SDM-11												
CLR-1	CLR-1 0.32 <10			<0.01	<10	<10	2						
CLR-2	CLR-2										74.8		
CLR-3	CLR-3												
CLR-4 0.39 <10	CLR-4 0.39 <10												
CLR-5 0.34 <10 <10 90 <10 63 <0.005 CLR-6 0.20 <10 <10 41 <10 25 <0.005 CLR-7 0.24 <10 <10 54 <10 45 <0.005	CLR-5 0.34 <10												
CLR-6 0.20 <10 <10 41 <10 25 <0.005 CLR-7 0.24 <10 <10 54 <10 45 <0.005	CLR-6 0.20 <10 <10 41 <10 25 <0.005 CLR-7 0.24 <10 <10 54 <10 45 <0.005 Iris-1 0.01 <10 <10 17 <10 8 0.119												
CLR-7 0.24 <10 <10 54 <10 45 <0.005	CLR-7 0.24 <10 <10 54 <10 45 <0.005 Iris-1 0.01 <10 <10 17 <10 8 0.119												
CLR-7 0.24 <10 <10 54 <10 45 <0.005	Iris-1 0.01 <10 <10 17 <10 8 0.119												
1 004 40 40 47 40 0 0 040													
	Iris-2 0.01 <10 <10 14 <10 / 0.202												
Iris-2 0.01 <10 <10 14 <10 / 0.202		Iris-2		0.01	<10	<10	14	<10	/	0.202			

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17-DEC-2018 Account: TGQXYROL

Project: Tiger Gold

CERTIFICATE OF ANALYSIS SD18305051

	CERTIFICATE COMMENTS											
	LABORATORY ADDRESSES											
Applies to Method:	Processed at ALS Sudbury loc CRU-31 PUL-QC	cated at 1351-B Kelly Lake Road, CRU-QC SPL-21	Unit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-31								
Applies to Method:	Processed at ALS Vancouver Au-AA23	located at 2103 Dollarton Hwy, No ME-ICP41	orth Vancouver, BC, Canada.									

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7

Page: 1
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
This copy reported on

21-DEC-2018 Account: TGQXYROL

QC CERTIFICATE SD18305051

Project: Tiger Gold P.O. No.: Cash/Visa

This report is for 30 Rock samples submitted to our lab in Sudbury, ON, Canada on

30-NOV-2018.

The following have access to data associated with this certificate:

ALS Canada Ltd.

BILL BONNEY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% < 75 um

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	30505	51
Sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
							STAN	DARDS								
EMOG-17 Target Range - Lower Upper JK-17 JK-17 JK-17 Target Range - Lower Upper MRGe008 Target Range - Lower Upper OREAS 602 Target Range - Lower Upper OREAS-218 OREAS-218 Target Range - Lower	Bound	3.5 3.1 4.3 66.1 60.1 73.9 4.3 3.8 5.1 >100 106.0 100.0	2.49 2.14 2.64 1.57 1.45 1.79 2.53 2.44 3.00 0.61 0.57 0.71	102 93 118 568 503 619 32 27 39 661 577 709	<10 <10 30 10 <10 20 10 <10 20 <10 <10 20 <10 20	100 70 140 40 30 80 430 370 530 40 <10 50	<0.5 <0.5 1.4 <0.5 <0.5 1.5 0.7 <0.5 1.9 <0.5 1.3	<2 <2 8 2 <2 10 2 <2 5 59 50 66	1.40 1.20 1.49 0.95 0.87 1.09 1.03 1.00 1.24 0.53 0.46 0.59	1.0 <0.5 2.0 19.3 17.9 22.9 2.1 1.1 3.4 25.2 22.2 28.2	41 36 46 745 679 833 19 16 22 10 7 12	183 164 202 46 42 54 89 81 102 31 26 34	5870 5390 6210 8420 7780 8960 607 586 676 5180 4810 5530	4.34 3.91 4.80 4.51 4.18 5.14 3.49 3.22 3.96 2.01 1.94 2.40	10 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 30 <10 <10 30 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<1
PMP-18 Target Range - Lower	Bound Bound Bound						DI.	ANKS								
BLANK BLANK BLANK							DL	AINKS								
BLANK BLANK Target Range - Lower	Bound	<0.2 <0.2 <0.2 <0.2	<0.01 <0.01 <0.01 0.02	<2 <2 <2 <2 4	<10 <10 <10 20	<10 <10 <10 = 20	<0.5 <0.5 <0.5 1.0	3 <2 <2 <2 4	<0.01 <0.01 <0.01 0.02	<0.5 <0.5 <0.5 1.0	<1 <1 <1 2	<1 <1 <1 2	<1 1 <1 2	<0.01 <0.01 <0.01 0.02	<10 <10 <10 20	<1 <1 <1 2

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - B
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS	,								QC	CERTI	ICATE	OF AN	ALYSIS	SD18	30505	51
	Method	ME-ICP41														
	Analyte	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti
Sample Description	Units LOD	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOD	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1	20	0.01
							STAN	IDARDS								
CDN-CM-34		1.19	10	2.51	301	277	0.11	232	1170	22	3.01	6	9	104	<20	0.18
arget Range - Lower	Bound	1.06	<10	2.27	269	245	0.08	204	1050	18	2.70	<2	8	92	<20	0.15
	Bound	1.32	30	2.80	340	301	0.13	252	1310	28	3.32	9	13	115	40	0.21
MOG-17		0.64	20	0.75	635	1065	0.17	7700	760	7240	3.08	693	5	52	<20	0.21
arget Range - Lower		0.60	<10	0.73	598	1015	0.15	6930	680	6500	2.90	572	3	47	<20	0.18
	Bound	0.76	40	0.91	742	1245	0.20	8470	850	7950	3.56	778	7	59	50	0.25
K-17																
K-17																
K-17	Dound															
Farget Range - Lower	Bound															
1RGeo08	bouriu	1.21	30	1.12	400	14	0.31	687	980	1050	0.30	3	7	76	20	0.37
arget Range - Lower	Round	1.12	20	1.03	378	12	0.30	621	900	957	0.27	<2	5	71	<20	0.33
	Bound	1.40	60	1.29	473	17	0.39	761	1130	1175	0.35	8	10	89	60	0.43
REAS 602	bouria	0.09	10	0.10	213	4	0.02	61	230	839	2.00	66	1	50	<20	0.01
arget Range - Lower	Bound	0.07	<10	0.08	193	2	<0.01	54	210	768	1.81	51	<1	44	<20	<0.01
	Bound	0.12	30	0.13	247	7	0.05	68	280	944	2.23	73	3	56	40	0.03
DREAS-218																
OREAS-218																
arget Range - Lower	Bound															
Upper	Bound															
PMP-18																
Target Range - Lower																
Upper	Bound															
							BL	ANKS								
BLANK																
BLANK																
BLANK																
Farget Range - Lower	Bound															
	Bound															
SLANK		<0.01	<10	<0.01	<5	<1	< 0.01	<1	<10	<2	< 0.01	<2	<1	<1	<20	< 0.01
SLANK		<0.01	<10	<0.01	<5	<1	<0.01	1	<10	<2	< 0.01	<2	<1	<1	<20	< 0.01
Гarget Range - Lower	Bound	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2	<1	<1	<20	<0.01
	Bound	0.02	20	0.02	10	2	0.02	2	20	4	0.02	4	2	2	40	0.02

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +

North Vancouver BČ V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 2 - C
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

								· - , · · · · · · · · · · · · · · · · ·		
(ALS								QC CERTIFICATE OF ANAL	YSIS SD183050	51
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	Au-AA23			
	Analyte	TI	U	V	W	Zn	Au			
	Units	ppm	ppm	ppm	ppm	ppm	ppm			
Sample Description	LOD	10	10	1	10	2	0.005			
							STANDA	os		
CDN-CM-34		<10	<10	107	10	179				
Target Range - Lower	Bound	<10	<10	95	<10	159				
Upper	Bound	20	20	118	30	199				
EMOG-17		10	<10	65	20	7340				
Target Range - Lower	Bound	<10	<10	58	<10	6780				
Upper	Bound	20	20	74	20	8290				
JK-17							2.01			
JK-17							2.03			
JK-17							2.05			
Target Range - Lower							1.875			
Upper	Bound						2.12			
MRGeo08		<10	<10	98	<10	749				
Target Range - Lower		<10	<10	90	<10	708				
	Bound	20	30	112	20	870				
OREAS 602		<10	<10	10	10	4010				
Target Range - Lower	Bound	<10 20	<10 20	8 14	<10 20	3680 4500				
OREAS-218	Bound	20	20	14	20	4500	0.538			
OREAS-218							0.533			
Target Range - Lower	Pound						0.494			
	Bound						0.568			
PMP-18	bourid						0.316			
Target Range - Lower	Round						0.277			
	Bound						0.323			
							BLAN			
BLANK							<0.005			
BLANK							<0.005			
BLANK							<0.005			
Target Range - Lower							<0.005			
	Bound	-10	-10	-4	-10	-O	0.010			
BLANK BLANK		<10 <10	<10 <10	<1	<10 <10	<2				
Target Range - Lower	Pound	<10	<10	<1 <1	<10	<2 <2				
	Bound	20	20	2	20	4				
oppei	bouriu	20	20		20	-				
		ĺ								
		1								

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	30505	51
Sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
CLR-4 DUP Target Range - Lower Upper		<0.2 <0.2 <0.2 <0.2 0.4	2.92 3.06 2.83 3.15	<2 <2 <2 4	10 10 <10 20	10 10 <10 20	<0.5 <0.5 <0.5 1.0	<2 4 <2 4	1.94 2.03 1.88 2.09	<0.5 <0.5 <0.5	20 20 18 22	48 51 46 53	33 34 31 36	4.12 4.31 3.99 4.44	10 10 <10 20	<1 <1 <1 2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	1.9 1.8 1.6 2.1	0.99 0.96 0.92 1.03	65 68 61 72	<10 <10 <10 20	40 40 30 50	<0.5 <0.5 <0.5 1.0	2 3 <2 4	0.52 0.51 0.48 0.55	35.1 34.3 32.5 36.9	7 7 6 8	7 8 6 9	194 187 183 198	2.13 2.10 2.00 2.23	<10 <10 <10 20	1 <1 <1 2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - B
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	30505	51
Sample Description	Method Analyte Units LOD	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
CLR-4 DUP Target Range - Lower Upper		0.01 0.01 <0.01 0.02	<10 10 <10 20	1.84 1.93 1.78 1.99	554 578 533 599	<1 <1 <1 2	0.04 0.04 0.03 0.05	60 64 58 66	520 540 490 570	<2 <2 <2 4	0.01 0.01 <0.01 0.02	<2 <2 <2 4	6 6 5 7	45 47 43 49	<20 <20 <20 40	0.39 0.41 0.37 0.43
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.30 0.29 0.27 0.32	10 10 <10 20	0.71 0.69 0.66 0.75	695 680 648 727	<1 1 <1 2	<0.01 <0.01 <0.01 0.02	7 7 6 8	360 350 330 380	140 137 130 147	1.63 1.60 1.52 1.71	<2 2 <2 4	<1 <1 <1 2	40 39 37 42	<20 <20 <20 40	0.01 0.01 <0.01 0.02
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper																

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 3 - C
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

QC CERTIFICATE OF ANALYSIS SD18305051

									 THIOAIL	J. 7 (1.17 (Z.1)	 	303031	
Sample Description	Method Analyte Units LOD	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005						
							DUPLIC	ATES					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.017 0.019 0.012 0.024						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						<0.005 <0.005 <0.005 0.010						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						<0.005 0.005 <0.005 0.010						
CLR-4 DUP Target Range - Lower Upper	Bound Bound	<10 <10 <10 20	<10 <10 <10 20	114 118 109 123	<10 <10 <10 20	50 51 46 55							
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<10 <10 <10 20	<10 <10 <10 20	6 6 5 7	30 30 20 40	8370 8110 7830 8650							
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.320 0.404 0.339 0.385						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.221 0.234 0.211 0.244						
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.834 0.883 0.811 0.906						

^{*****} See Appendix Page for comments regarding this certificate *****

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018

Account: TGQXYROL

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	SD18	30505	51
Sample Description	Method Analyte Units LOD	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - B
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS	,								SD1	830505	51					
Sample Description	Method Analyte Units LOD	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01
ORIGINAL							DUPL	ICATES								
OUP Target Range - Lower Upper	Bound Bound															

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: 4 - C
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 17-DEC-2018
Account: TGQXYROL

(ALS									QC CERTIFICA	TE OF ANALY	SIS SD	18305051
Sample Description	Method Analyte Units LOD	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005					
							DUPLI	CATES				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						0.599 0.603 0.566 0.636					

To: TIGER GOLD 1595 GRIFFITHS PLACE WEST KELOWNA BC V1Z 2T7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17-DEC-2018 Account: TGQXYROL

Project: Tiger Gold

QC CERTIFICATE OF ANALYSIS SD18305051

		CERTIFICATE CO	MMENTS									
	LABORATORY ADDRESSES Processed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada.											
Applies to Method:	Processed at ALS Sudbury CRU-31 PUL-QC	clocated at 1351-B Kelly Lake Road, CRU-QC SPL-21	Unit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-31								
Applies to Method:	Processed at ALS Vancouv Au-AA23	ver located at 2103 Dollarton Hwy, N ME-ICP41	orth Vancouver, BC, Canada.									