

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report

on the

Paragon-Hitchcock Property

Larder Lake Mining Division

Ontario, Canada

NTS Map Sheet 41P/09

Single Cell Mining Claims: 100778, 121181, 185203, 227031, 228910, 228911, 260378, 286337, 287653, 294454, 312038, 323661, 323662

Boundary Cell Mining Claims: 104036, 162224, 219083, 257606, 286336

Patents (G. Number) 80100203, 80100204

557625 m E 5280550 m N

UTM NAD 83, Zone 17

Prepared for

Explorex Resources Inc.

By

Jordan Lewis

January 14, 2019

Contents

Summary
Introduction
Property Description and Location
Accessibility, Climate, Local Resources, Infrastructure and Physiography
History10
Regional Geology11
Property Geology
Mineralization
Regional
Tudhope-Welsh
MC Fadden
Property13
Paragon-Hitchcock15
Ramp15
Eplett
Frontenac15
Exploration15
Prospecting15
MMI Soil Sampling17
Sample Preparation, Analysis and Security18
Interpretation and Recommendations
References

Figure 1 – Location Map	8
Figure 2 - Tenure Map	9
Figure 3 - Regional Geology	13
Figure 4 - Local Geology	14
Figure 5 - Sample Locations	19
Figure 6 - Ag Geochemistry	20
Figure 7 - Cu Geochemistry	21
Figure 8 - Co Geochemistry	22
Figure 9 - Paragon-Hitchcock Workings	23
Figure 10 - Ramp Workings	24

Table 1 - Mineral Claim Tenure	5
Table 2 - Crown Land Disposition	6
Table 3 - Rock Samples Selected Results	16
Table 4 - MMI Response Ratios Statistics	17

APPENDICES

- Appendix 1 Statement of Qualifications
- Appendix 2 Cost Statement
- Appendix 3 Assay Certificates
- Appendix 4 Sample Data

Summary

Explorex Resources Inc ("Explorex") is a public company with its head office in Vancouver, British Columbia. On October 30, 2017, Explorex entered into an option agreement with Canadian Gold Miner Corp. to acquire a one hundred percent (100%) undivided interest in 18 single cell mining claims and 2 Crown land dispositions collectively named the Paragon – Hitchcock Property. This report documents the 2017 exploration field programs completed on the Paragon – Hitchcock Property

The Paragon-Hitchcock Property is located approximately 10 km east of the community of Elk Lake along Highway 65, which clips the southern portions of the claim group. The property lies within Tudhope Township of the Temiskaming District, and consists of 18 single cell mining claims and 2 Crown land dispositions totaling 456.21 hectares.

The primary cobalt showing on the property is the Paragon-Hitchcock mine. Located on a local topographic high, the abandoned mine site comprises historic workings which include blast trenches, a shaft with a collapsed headframe, and an extensive apron of angular diabase waste-rock boulders. Historic mineralization on the property was contained in a 5.1 cm to 15.2 cm wide calcite, smaltite, niccolite, and aplite vein hosting native silver within a medium to coarse grained Nipissing diabase sill. A 103 m shaft was sunk on the property in 1921 pursuing a 15.2 cm wide aplite-carbonate vein mineralized with silver and cobalt. At 100.6 m, the vein was intersected approximately 16.8 m NE of the shaft location and was drifted to the NW successfully for 16.8 m, where it intersected a cross-cutting silver-bearing vein. Historical reports state the vein showed a consistent gradual increase in width with depth, attaining 30.5 cm to 45.7 cm at a depth of 100.6 m.

Coast Mountain Geological Ltd. (CMG), a Vancouver-based mineral exploration consulting company, performed the exploration work on the property on behalf of Explorex. The intention of this program was to evaluate the economic potential of the property. This assessment comprised a Mobile Metal Ions (MMI) soil survey and a prospecting/sampling program between November 1 and November 14, 2017. This was accomplished with a 2 to 3 man crew.

Historic workings at the Paragon-Hitchcock mine site were surveyed in with reference to a fixed and averaged GPS point, providing better spatial constraints to the extent and location of the workings. The muck pile at the showing is distinctly lacking in visibly mineralized material, however, four selective grab samples were taken. One sample contained quartz-carbonate vein material brecciating a minor pink to brown felsic volcanic unit that is hosted in the dominant dark green to black, mafic gabbro/diabase sill. The sample is mineralized with chalcopyrite, pyrite, suspected cobaltite, and is stained by pink erythrite. The other three samples were selected grabs, from the muck pile, of weathered gabbro stained by minor pink erythrite featuring small specks of chalcopyrite (< 0.5%). Cobalt values ranged from <0.001% to 2.38% Co, while silver values peaked at 730 g/t Ag. Gold values were often anomalous in rocks with elevated silver and Co values, returning values up to 0.260 g/t

The Frontenac showing was located and sampled, producing a high of 3.23 g/t Au with 7.47% Cu from a selected grab sample of mineralized vein material. Prospecting was carried out over the remainder of the property, resulting in a new minor gold vein occurrence assaying 0.608 g/t Au.

Prospecting in the immediate area of the historic workings did not find any new showings. Apart from the main Paragon-Hitchcock workings, the property is categorized by subdued topography with metre-scale cover of glacial sands beneath a shallow A-horizon soil development. Considering these factors,

MMI sampling was determined to be the appropriate geochemical sampling method for this property. A total of 82 till samples were collected at 10 m intervals along 4 survey lines spaced 100 m apart, located between the Paragon-Hitchcock and Ramp showings. Response ratios were calculated for Ag, Co and Cu, with higher response ratios for each element displaying a linear trend between the two showings potentially defining the extension of the silver-cobalt bearing vein system and the contact between the Nipissing diabase and older metavolcanic rocks.

Based on the results received to date, a Phase 1 exploration program consisting of additional MMI soil sampling to better define the Ag-Co-Cu geochemical trend beyond the Paragon-Hitchcock and Ramp showings, as well as magnetic and induced polarization geophysical surveys is recommended. A Phase 2 drilling program is contingent on the results of the Phase 1 program.

Introduction

This document has been prepared to satisfy assessment work reporting requirements in the province of Ontario. From November 1 - 14, 2017, a three-man field crew from Coast Mountain Geological Ltd. (CMG) spent eight days on the Paragon-Hitchcock property performing work for Explorex Resources Inc. The Property is considered to be located in a favorable geological setting for cobalt and silver mineralization. The field crew located the historic showings, carried out property-wide prospecting, and collected geochemical samples for analysis.

Property Description and Location

Explorex Resources Inc entered into an Option Agreement on October 30, 2017 with Canadian Gold Miner Corp. to obtain a 100% interest in and to the property. Canadian Gold Miner Corp. is, subject to the underlying agreements, the beneficial owner of an undivided 100% right, title and interest in and to certain mineral claims and patents located in the Larder Lake Mining District which are generally known and described as the "Cobalt-Paragon Property". Explorex Resources Inc can acquire 100% interest to the property by completing staged cash payments totaling \$125,000, the issuance of 1,700,000 Common Shares and incurred project expenditures of \$1,275,000 over a three-year term. Explorex Resources Inc contracted Coast Mountain Geological Ltd to complete certain field work on the Paragon - Hitchcock Property which is the subject of this report.

Through the Modernization of the Ontario Mining Act, the Property now consists of 13 single cell mining claims and 5 boundary cell mining claims totaling 391.14ha (Table 1, Fig 2) and two Crown Land Dispositions totaling 65.07ha (Table 2, Fig 2). The claims are currently in good standing to at least June 2, 2019.

			Area		Anniversary			
Tenure No	Tenure Type	Status	(ha)	Issue Date	Date	Holder		
	Single Cell					Canadian	Gold	Miner
100778	Mining Claim	Active	21.72	2018-04-10	2019-06-02	Corp.		
	Boundary Cell					Canadian	Gold	Miner
104036	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Single Cell					Canadian	Gold	Miner
121181	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Boundary Cell					Canadian	Gold	Miner
162224	Mining Claim	Active	21.72	2018-04-10	2019-06-02	Corp.		
	Single Cell					Canadian	Gold	Miner
185203	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Boundary Cell					Canadian	Gold	Miner
219083	Mining Claim	Active	21.73	2018-04-10	2019-09-29	Corp.		
	Single Cell					Canadian	Gold	Miner
227031	Mining Claim	Active	21.73	2018-04-10	2019-09-29	Corp.		
	Single Cell					Canadian	Gold	Miner
228910	Mining Claim	Active	21.72	2018-04-10	2019-06-02	Corp.		

Table 1 - Mineral Claim Tenure

	Single Cell					Canadian	Gold	Miner
228911	Mining Claim	Active	21.73	2018-04-10	2019-06-02	Corp.		
	Boundary Cell					Canadian	Gold	Miner
257606	Mining Claim	Active	21.73	2018-04-10	2019-06-02	Corp.		
	Single Cell					Canadian	Gold	Miner
260378	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Boundary Cell					Canadian	Gold	Miner
286336	Mining Claim	Active	21.73	2018-04-10	2019-09-29	Corp.		
	Single Cell					Canadian	Gold	Miner
286337	Mining Claim	Active	21.73	2018-04-10	2019-09-29	Corp.		
	Single Cell					Canadian	Gold	Miner
287653	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Single Cell					Canadian	Gold	Miner
294454	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Single Cell					Canadian	Gold	Miner
312038	Mining Claim	Active	21.73	2018-04-10	2019-06-02	Corp.		
	Single Cell					Canadian	Gold	Miner
323661	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
	Single Cell					Canadian	Gold	Miner
323662	Mining Claim	Active	21.73	2018-04-10	2019-08-24	Corp.		
Total 391.14ha								

Table 2 - Crown Land Disposition

G				
Number	На	Twp./Area	Mining Div	Status
80100203	33.19	Tudhope	Larder Lake	Active
80100204	31.88	Tudhope	Larder Lake	Active
Total	65 07ha			

Total 65.07ha

To the best of the author's knowledge, the Property is not subject to any land claims, litigation, or mining reserves.

In the Province of Ontario, annual assessment work dollar requirements are dependent upon the nature of the mining claim, detailed as follows (O. Reg 65/18):

Single Cell Mining Claim - \$400 annually

Boundary Cell Mining Claim - \$200 annually

In addition, if a Single Cell Mining Claim includes land which may not form part of the claim, annual work requirement is capped at \$200. This situation may occur due to any of the following reasons:

1. The land is part of an Indian reserve.

2. The land is part of a provincial park or a conservation reserve.

3. The land is subject to a mining lease, other than a lease for surface rights only.

4. The land is subject to a freehold patent, other than a freehold patent for surface rights only.

5. The land is subject to a license of occupation issued under the Act or a predecessor of the Act.

6. The land is designated as a protected area in a community based land use plan under the *Far North Act,* 2010.

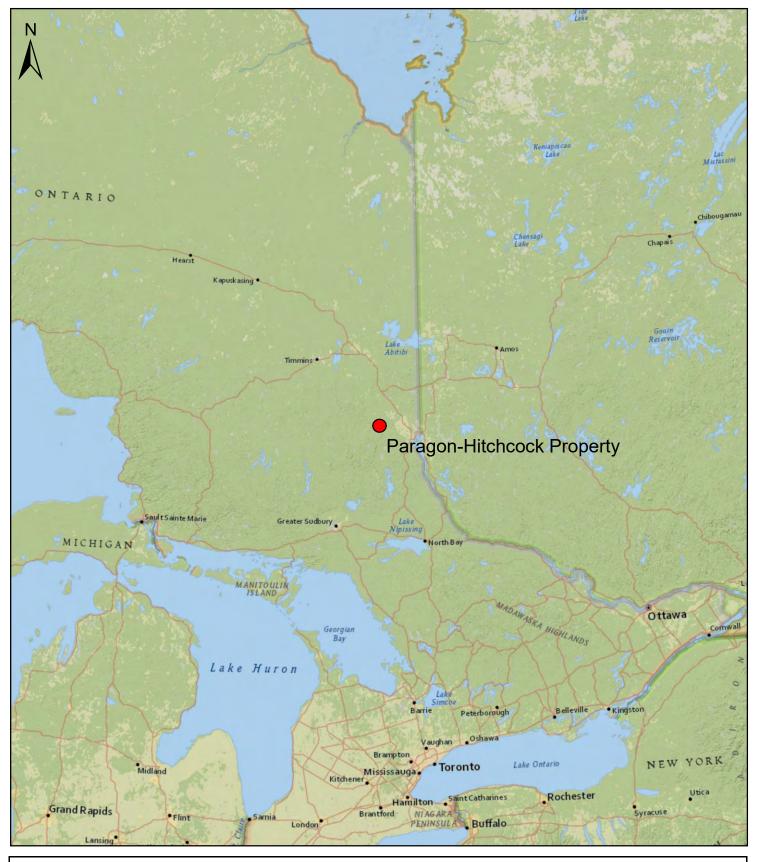
7. The land is withdrawn under the Act from prospecting, registration of mining claims, sale or lease for one of the following reasons:

i. the land is included in a proposed Aboriginal land claim settlement.

ii. the land is intended to be added to an Indian reserve.

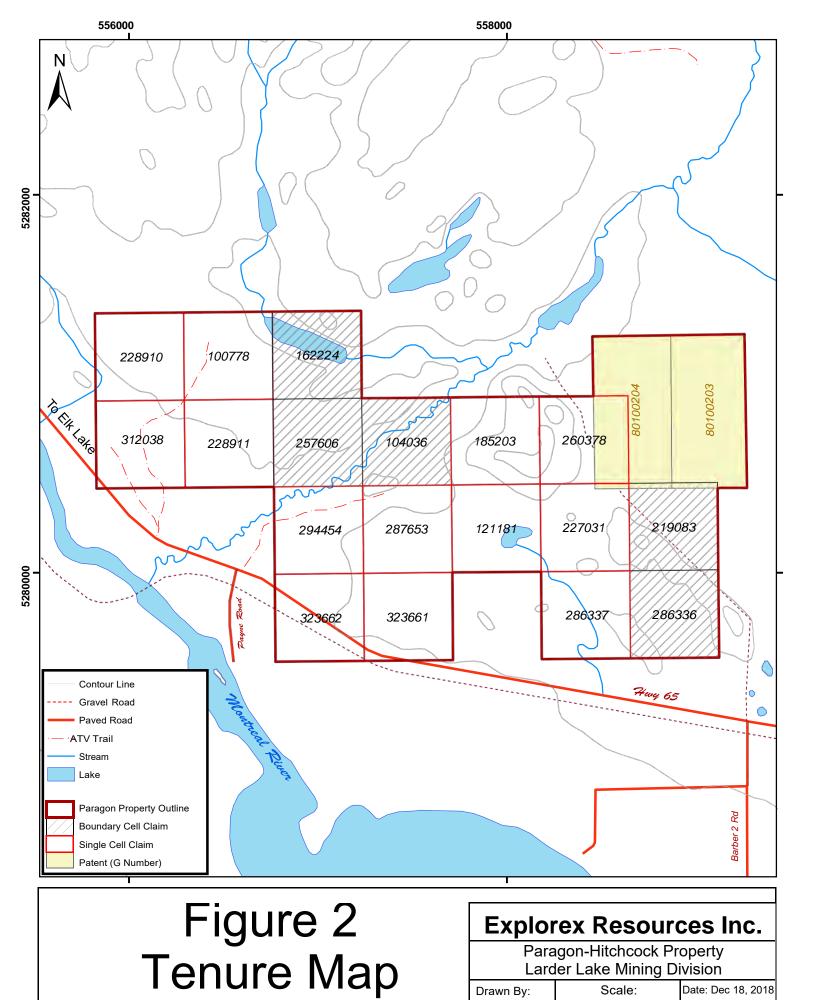
iii. the land is part of a provincial park, conservation reserve or forest reserve created under Ontario's Living Legacy Land Use Strategy.

iv. the land meets the criteria for a site of Aboriginal cultural significance under clause 35 (2) (a) of the Act.


v. the land has been designated as an area of provisional protection under section 13 of the *Far North Act, 2010*.

Using the above criteria, the Property requires \$6,200 of assessment work to advance the anniversary date of each claim by one year.

Historically, a small amount of mining has occurred in two locations on the Property, evidenced by two shafts (Paragon, Frontenac) and numerous blast trenches. Observations during the field program identified no significant waste dumps, and no tailings sites or mine buildings exist on the Property.


Accessibility, Climate, Local Resources, Infrastructure and Physiography

The Property is located 10 km southeast of the community of Elk Lake which is located in the incorporated township of James in the Temiskaming District in the Province of Ontario. The center of the property is approximately 557625mE / 5280550mN UTM Zone 17, NAD 83, on NTS map sheet 41P/09. Elk Lake is the primary community within the township located at the junction of Ontario Highway 65 and Highway 560. Provincial Highway 65 clips the southern portion of the claim group. The eastern portion of the Property is accessible via a north-trending logging road, Barber Township Road 2, from Highway 65. The rest of the Property is easily accessed by parking along Highway 65 and walking due north onto the property; a flagged trail was established from Highway 65 to the historical Paragon-

Figure 1 Location Map

Explorex Resources Inc.							
	Paragon-Hitchcock Property Larder Lake Mining Division						
Drawn By: Scale: Date: Dec 18, 2018 JWL 1:5,000,000 UTM NAD83 Zone 17							

Data Source: Esri

JWL

Drawn By:

0.8 Km

0.4

Scale: 1:5,000,000 Date: Dec 18, 2018 UTM NAD83 Zone 17

Hitchcock Shaft and mine site. A network of small ATV trails provides additional routes into the center of the Property.

Climate is typical of Northern Ontario, having cold dry winters and hot humid summers; snowpack often exceeds 1 m, with temperatures reaching -30 degrees Celsius or below during the winter. Hunting and fishing are both popular recreation activities in the area.

The community of Elk Lake has a community center, general store, restaurant, nursing station, fire department and gas station, providing the basic necessities. The communities of Temiskaming Shores and Cobalt are located within a 1-hour drive to the southeast along Highway 65 and are capable of supporting larger exploration programs. The nearest international airport is located in Sudbury, approximately 3 hour drive via Highway 1 from the center of the Property. Lodging is readily available near the Property, with an abundance of well-equipped fishing and hunting lodges in the area. Due to the rich mining history of the region, experienced personnel for field operations can be found in most nearby towns.

Topography on the Property is very subdued and flat, with small outcrop ridges comprising the majority of the topographical features. Poplars are the dominant tree type, with abundant birch and alder; small cedars are present in swampier areas. Glacial outwash blankets the Property, resulting in a weak soil profile.

History

The Property has a long history of mining and mineral exploration, dating from the early 1900's to very recently. Historical work is summarized as follows (Kuuskman, M. 2013), with additions by the author:

1903: Prospecting began in the area after the discovery of silver at Cobalt

1904-1917: Cobalt Frontenac mine: sunk a 30 metre exploratory shaft and developed two underground levels in material reported to have an average grade of \$40 per ton Au (equivalent to 2.2 Oz / ton)

Ca 1927: Paragon-Hitchcock mines sunk a 338 foot shaft with levels at 100, 200 and 300 feet. Small calcite-cobalt-silver veins provided rich silver ore, with widths reportedly increasing with depth.

1940: Taylor W, Des Ormeaux P and Miskimins S: trenching and diamond-drilling

1945: Payne: exposed a trench, on his patent land, approximately 250 feet (60°) from the Frontenac shaft. It exposed a narrow shear striking 110°, dipping 85°. Samples returned values up to 0.32 oz/ton.

1954: Mayer Mining Corporation: three diamond-drill holes (footage unknown)

1958-1959: Welsh B: 6 diamond drill holes totaling 158.5m.

1960: Eplett G: 1 diamond drill hole totally 1074 feet. Hole intersected 5.1 cms of quartz vein with pyrite and sphalerite.

1962-1963: Fatima Mining Company Limited: ten diamond drill holes (1,036.32 m).

1967: Trihope Mining and Exploration Limited: geological, magnetic and electromagnetic surveys and one diamond drill hole

1972-1973: Consolidated Boeing Holdings and Resources Limited: soil geochemistry and electromagnetic surveys and two diamond drill holes totaling 133.5 m.

1978-1990: Tudhope Township: closed to prospecting and mining activity after becoming included into the Bear Island Lake Caution in 1978. Peripheral areas of the land caution were lifted and became open for staking on April 3rd, 1990.

1991: Hutteri H and Korba E: set up a grid with 100 meter line spacing followed by prospecting and geological mapping. Within the mafic volcanics were shears up to 1.5 meters with occasional narrow quartz veins and frequent disseminated sulphide mineralization.

2011-2012: Transition Metals Corp: Acquired claims on and around the current Property. Work was focussed on the Frontenac showing, with extensive trenching and sampling. Regional grab sampling in the vicinity of the showing produced up to 4.16 g/t Au, while the best sample from trenching assayed 11.2 g/t Au, both collected from rusty chloritic shears.

Regional Geology

Regional geology is well described and summarized by Kuuskman (2013). Here follows her findings:

"The following description of the Abitibi greenstone belt was summarized by Hart (2011), and was extracted from Ayer et al. (2002, 2005) and Thurston et al. (2008) and on the references found in those papers.

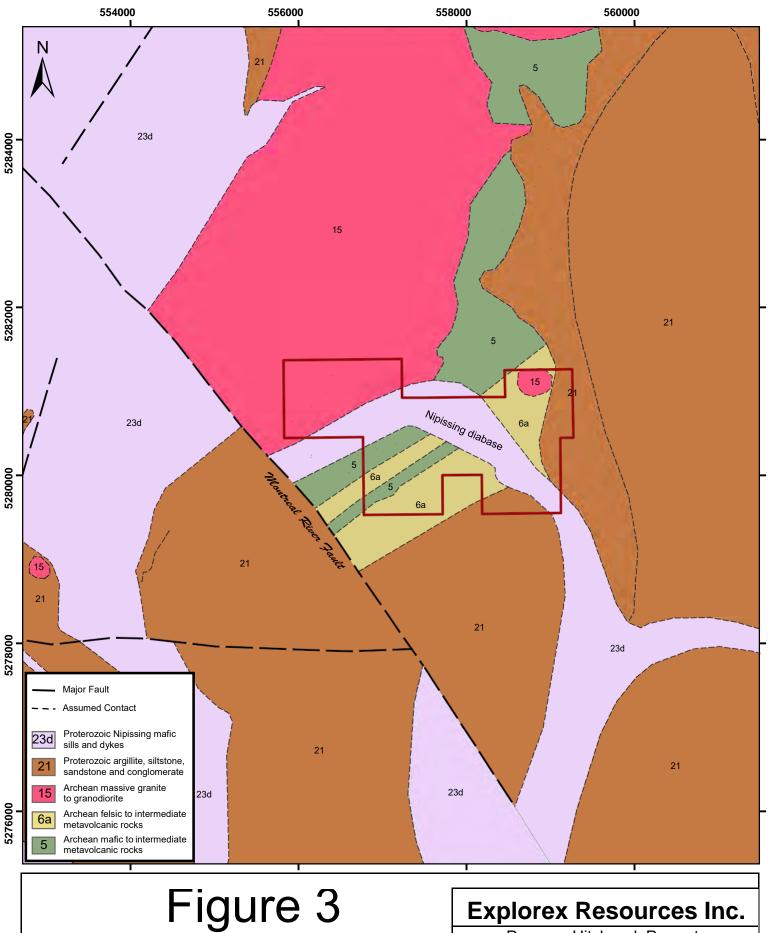
The Abitibi greenstone belt is composed of east-trending synclines of mainly volcanic rocks and intervening domes cored by synvolcanic and/or syntectonic plutonic rocks (gabbro-diorite, tonalite, and granite) alternating with east-trending bands of turbiditic wackes. Most of the volcanic and sedimentary rock dip vertically and are generally separated by east-trending faults with variable dips. Some of these faults, such as the Porcupine-Destor fault, display evidence for overprinting deformation events including early thrusting, later strike-slip and extension events. There are two ages of unconformable successor basins, early, widely distributed "Porcupine-style" basins of fine-grained clastic rocks, followed by later "Timiskaming-style" basins of coarser clastic and minor volcanic rocks which are largely proximal to major strike-slip faults (e.g. Porcupine-Destor, Larder-Cadillac). Numerous late-tectonic plutons from syenite and gabbro to granite with lesser dikes of lamprophyre and carbonatite cut the belt.

A number of mafic dyke swarms cut the rocks of the Abitibi greenstone belt (Osmani 1991). The 2454 Ma Matachewan dykes are north-trending, vertical to sub-vertical and composed of quartz diabase and commonly contain plagioclase phenocrysts up to 20 cm in length.

The Archean rocks are unconformably overlain by Paleoproterozoic rocks of the Huronian Supergroup, which were deposited in a north-trending graben referred to as the Cobalt Embayment in the area overlying the Abitibi greenstone belt. Four formations, the Gowganda, Lorrain, Gordon Lake, and Bar River, were deposited in the Embayment and form the upper most sedimentary cycle of the Huronian Supergroup collectively referred to as the Cobalt Group (Bennett et al. 1991). The Gowganda Formation has been subdivided in to the lower Coleman Member consisting of clast and matrix supported conglomerate, and the upper Firstbrook Member consisting of pebbly wacke, wacke, siltstone, mudstone, and arenite. The Coleman Member conglomerates have been interpreted to have been glacial or alternatively debris flows or turbidity currents. The finer sediments of the Firstbrook Member are interpreted to have been deposited in a deltaic environment."

Property Geology

As focus was on geochemical exploration and basic prospecting, detailed geological observations were not made by the field crew during the short work program. Based off of the Ontario Geological Survey Map R250, the Property covers a northeast trending package of Archean aged mafic to intermediate metavolcanic rocks transected by the gently folding Proterozoic-aged Nipissing diabase sill, an important unit related to high-grade cobalt-silver mineralization in the region. The Paragon-Hitchcock and Ramp showings are associated with the margins of this unit, while the Eplett workings are located within the altered volcanic stratigraphy.


Assumed Archean felsic intrusive rocks form a circular dome structure in the area of the Frontenac showing, and dykes of gabbro to amphibolite composition are seen to trend roughly east-west both within the felsic metavolcanic rocks and within the core of the Nipissing diabase. Meter-scale north-trending quartz veins have been exposed within old workings at the Eplett showing. Calcite-aplite veins trending roughly east-west comprise gangue material at the Paragon-Hitchcock and Ramp showings. One km to the southwest of the Property, a regional-scale northwest-southeast trending fault dictates the course of the Montreal River.

Mineralization

Regional

Tudhope-Welsh – Located just to the east of the Property, the showing is an adit of undetermined age that was apparently exploratory in nature. Silver is recorded as the commodity of interest (Abandoned Mine Inventory System Record 10041).

MC Fadden – To the west of the Property, on the other wide of the Montreal River, a shaft and test pit were sunk to explore for unrecorded commodities sometime around the turn of the century. The shaft was recorded as in good condition as early as 1908, and there are no available documents showing any later activity (Abandoned Mine Inventory System Record 00328).

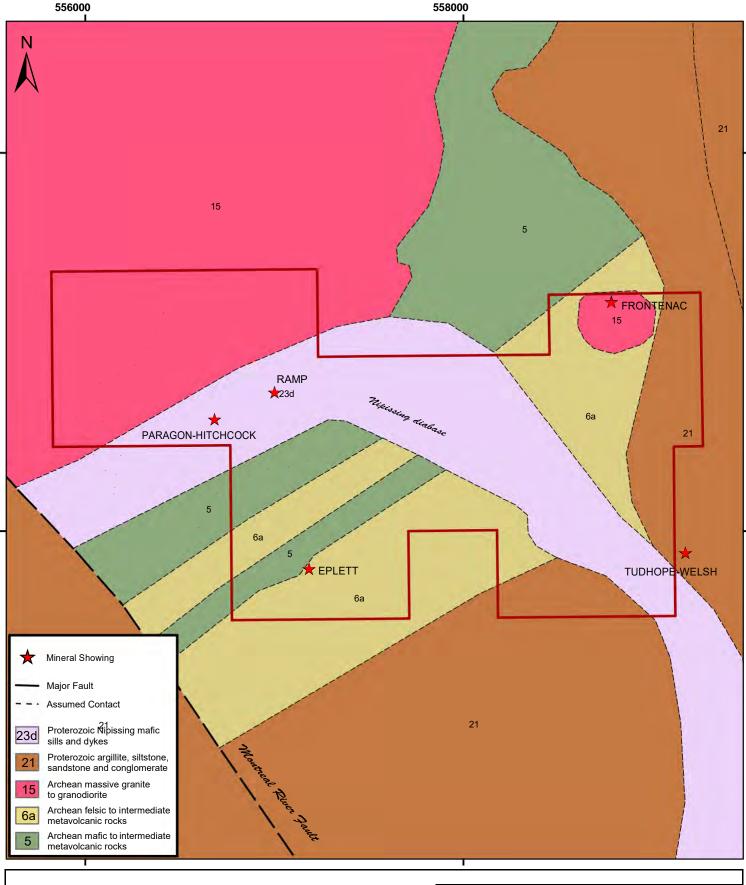


Figure 3 Regional Geology

2 Km

Paragon-Hitchcock Property Larder Lake Mining Division

Drawn By: JWL Scale: 1:50,000 Date: Dec 18, 2018 UTM NAD83 Zone 17

Figure 4 Local Geology

Explorex Resources Inc.							
Paragon-Hitchcock Property Larder Lake Mining Division							
Drawn By: JWL	Scale: 1:20,000	Date: Dec 18, 2018					

5280000

Property

Paragon-Hitchcock – A shaft, numerous trenches, and a series of test pits were sunk into bedrock of the Nipissing diabase sometime prior to 1927. By 1927, the shaft had been sunk to 103 m, with working levels at 30.5 m, 61.0 m and 91.4 m. The target was calcite-aplite veins up to 45.7 cm wide at depth carrying native silver, argentite, erythrite (cobalt bloom) and smaltite; chalcopyrite was present in aplite-rich rocks. At the time, a large bunkhouse, blacksmith, powerhouse, kitchen and office were constructed next to the shaft; no evidence exists of the buildings today except for a small concrete foundation. Recent grab sampling has confirmed economic grades of cobalt and silver (Abandoned Mine Inventory System Record 03560)

Ramp – Given the extent of historic trenching done in the area, available literature on the Louis Ramp Showing is relatively sparse. Two periods of work are recorded in the area. Originally staked as the St. Lawrence claims, in 1917 two pits and numerous trenches were dug on a 5.1 cm wide silver-cobalt bearing vein. The property was later purchased by Mr. Louis Ramp in 1956 who drilled 2 diamond holes in 1962 totaling 62.5 m, for which no drill logs exist. (Geology of the Hill Lake Area, Johns, 1986, Abandoned Mine Inventory System Record 00327)

Eplett – Named for G. S. Eplett, who drilled 5 holes up to 320 m deep on and around historic trenches exposing quartz veins up to 1 m wide. Assays of 1.03 g/t over 0.76 m of quartz vein were returned on the only hole where a drill log exists (Eplett, G.S. 1960)

Frontenac – Mineralized shears containing quartz, iron carbonate, pyrite and chalcopyrite consistently return economic gold grades over small widths. A historic shaft was sunk to a possible depth of 250 feet by the Cobalt Frontenac Gold Mining Co. around 1912-1913. Assays from the shaft historically returned grades of 0.02 – 0.32 oz/ton Au. Modern sampling by Transition Metals in 2012 returned a best assay of 11.2 g/t Au from a chloritic rusty quartz shear in a trench near the historic shaft. (Abandoned Mine Inventory System Record 03579).

2017 Exploration Program

Two to three CMG personnel spent portions of 14 days (Nov. 1 - 14, 2017) confirming the locations of known showings, prospecting, and Mobile Metal Ion (MMI) soil sampling. A total of 16 rock samples and 82 MMI soil samples were collected over the course of the program, which consisted of 16.3 line-km of prospecting and 0.8 line-km of detailed geochemical grid work Personnel, man days, costs, and assessment credit allocation are detailed in Appendix II.

Prospecting

The first few days of the program focused on confirming the location and nature of known mineral showings on the Property. Here follows a brief summary of findings at each showing:

Paragon-Hitchcock - The showing is on a local topographic high and comprises historic workings which include five NW-striking 1 m to 3 m deep by 5 m to 30 m long water-filled, blast trenches, a roughly 5 m wide water-filled shaft with a collapsed headframe, and an extensive apron of angular diabase waste rock boulders which contribute to the extent of the topographic high. The muck pile on the property is

distinctly lacking in visibly mineralized material, however, four selective grab samples were taken. One sample comprises quartz-carbonate vein material brecciating a minor pink to brown felsic volcanic unit that is hosted in the dominant dark green to black, mafic gabbro/diabase. The sample is mineralized with chalcopyrite, pyrite, suspected cobaltite, and is stained by pink erythrite. The other three samples were selected grabs from the muck pile of weathered gabbro stained by pink erythrite featuring small specks of chalcopyrite (< 0.5%). Grades up to 2.34% Co, 730 g/t Ag, 0.861% Cu and 0.260 g/t Au were returned from these samples.

Ramp - Historic workings on the showing were located and referenced via GPS and compass. The workings included 6 east-west trending trenches and 5 blast pits, of which some may be test shafts. Observations of the exposed trench walls did not reveal any in-situ mineralization. Three grab samples with mm-cm scale quartz-carb veins and minor chalcopyrite and erythrite staining were taken. The host lithology in the area is entirely gabbro/diabase similar to that at the Paragon Hitchcock showing. Assays returned values up to 0.176% Cu, 850 ppm Co, and 0.193 g/t Au; silver values were negligible.

Eplett - The area was prospected, and a total of 4 trenches and 2 blast pits were located at the showing. These workings have exposed a0.3 m to 0.9 m wide north trending un-mineralized quartz vein. One smaller quartz vein orientated at 020 was located with no visible pyrite. This blue-grey quartz vein material was sampled, in addition to a sample of silicified metavolcanic with 2-3% euhedral disseminated pyrite and another 15cm wide interval of silicified metavolcanic with trace pyrite. In total, 3 rock grab samples were taken at the Eplett showing. Values for base and precious metals were negligible.

Sample ID	Date	Туре	Zone17mE	Zone17mN	Area	Co %	Cu %	Ni %	Au ppb	Ag pp	m
22001	2017-11-03	Grab	556675	5280569	Paragon-Hitchcock	0.868	0.468	0.166	171	2	29
22002	2017-11-03	Grab	557026	5280753	Ramp	0.008	0.176	0.002	193		6
22003	2017-11-03	Grab	556998	5280736	Ramp	0.004	0.115	0.001	<5	<2	
22004	2017-11-04	Grab	557142	5279778	Eplett	0.008	0.006	0.003	24	<2	
22006	2017-11-07	Grab	558281	5280718	Prospecting	0.004	0.013	0.003	<5	<2	
22007	2017-11-03	Grab	556685	5280566	Paragon-Hitchcock	0.034	0.861	0.006	9	4	48
22008	2017-11-03	Grab	556997	5280739	Ramp	0.085	0.092	0.01	9		7
22009	2017-11-04	Grab	558836	5281183	Frontenac	0.012	7.47	0.01	3230	5	57
22011	2017-11-07	Grab	557208	5279980	Prospecting	0.002	0.109	0.012	475	<2	
22012	2017-11-07	Grab	557225	5280085	Prospecting	<0.001	0.022	<0.001	46	<2	
22013	2017-11-07	Grab	557276	5280138	Prospecting	<0.001	0.005	0.002	24	<2	
22014	2017-11-07	Grab	557233	5280107	Prospecting	<0.001	0.004	0.001	608	<2	
1752216	2017-11-03	Grab	536643	5280577	Paragon-Hitchcock	2.34	0.171	0.734	260	73	30
1752217	2017-11-03	Grab	556643	5280577	Paragon-Hitchcock	0.216	0.049	0.06	15		7
1752218	2017-11-04	Grab	557165	5279782	Eplett	0.005	0.01	0.01	18	<2	
1752219	2017-11-04	Grab	557165	5279782	Eplett	0.007	0.003	0.003	21		3

Frontenac - A visit to the Frontenac showing confirmed that its geology and historic workings (including a significant collapsed shaft) are consistent with previous work done on the Property. One grab sample of quartz veining in a chloritic shear with approximately 15% chalcopyrite was collected for assay, which returned 57 g/t Ag, 7.47% Cu and 3.23 g/t Au.

In addition to work at the above showings, Property-scale prospecting was undertaken focusing on the area north of the Eplett showing and the area west of the Frontenac showing. Traverses were run in a rough grid pattern, and outcrops encountered were inspected for evidence of mineralization. This work resulted in the discovery of a 15-20 cm wide blue-grey quartz vein in volcanic rocks with pyrite in a grab sample that returned 0.608 g/t Au, and a second grab sample of a quartz-pyrite-chalcopyrite vein that assayed 0.475 g/t Au, both well north of the Eplett workings.

Finally, historic workings at the Paragon-Hitchcock and Ramp showings were field surveyed using compass and chain from one averaged waypoint measured by a handheld Garmin GPS device at each location.

MMI Soil Sampling

Over the last three days of the program, 82 MMI soil samples were collected from four compass, pace and GPS flagged survey lines oriented north-south, along which sample stations were established at 10 m intervals. The four survey lines were spaced at 100 m intervals covering ground between the Paragon-Hitchcock and Ramp showings. The total grid coverage of MMI soil sampling was 0.8 line kilometers.

Due to the extensive glacial overburden on the Property, MMI soil sampling was identified as the best geochemical exploration method. In theory, mobile metal ions from mineralized bedrock migrate upwards through overburden due in part to a weak convection cell process. The ions are loosely bound to soil particles near surface, and specialized extraction techniques are employed to accurately analyze these ions. MMI soil surveys have been proven to reflect buried mineralization in deep glacial overburden.

Due to the trace amount of metal ions present at surface and the very low detection limit of the analytical process, conventional treatment of data involves converting raw elemental assay data into a response ratio (RR) for each element. This effectively isolates background noise and presents anomalies with more certainty. The response ratio was calculated by identifying the 25th percentile for each of the targeted elements, and then finding the mean of that 25th percentile. This number was next used to normalize each element's data set by dividing the assay value by the mean of the 25th percentile. Results are shown in Table 4 below.

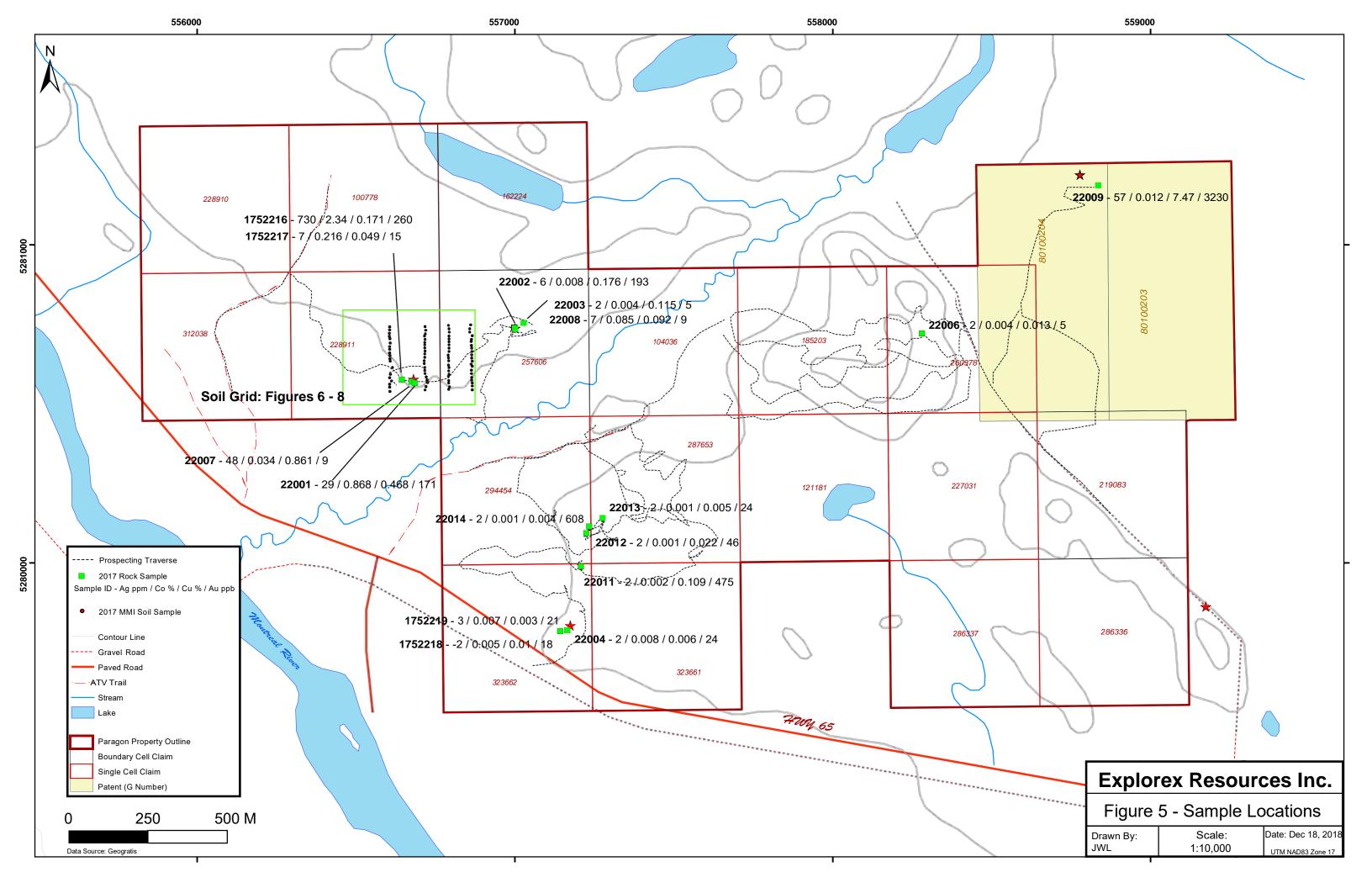
Element	25th Percentile ppb	Mean of 25th Percentile ppb
Ag	8.925	6.53
Со	36	27.91
Cu	442.5	333.81

Table 4 -	ммі	Respon	se Ratios	Statistics
	1411411	Nespon	se natios	Juansuits

The low population (82 different points) over a small grid area has produced somewhat subdued RR values. Nevertheless, after calculating the response ratio for Ag, Cu and Co, coincident anomalies have been identified (Figures 6 – 8). Strings of sample sites on each line have anomalous response ratios and comparing results to the Property geology, they may be reflecting buried mineralization along the north and south contacts between the Nipissing diabase and the older metavolcanic or intrusive rocks.

Sample Preparation, Analysis and Security

Samples collected were placed in rice bags and personally transported by the crew for shipping to SGS Canada Inc., an ISO 9001 certified commercial laboratory located in Burnaby, British Columbia.


Rock samples were taken from outcrop/subcrop, placed into clear poly bags, labeled and kept in the possession of the author until personally delivered to the shipping company in Sudbury. Sample sites were recorded on a handheld GPS unit, and notes were taken describing the lithology, alteration and mineralization at each site.

The rock samples were each crushed and screened to 90% passing 2 mm, and then pulverized. Next, material was subjected to the GEICP-14B technique, an ICP-AES method employing aqua regia for digestion. The same rock pulp was also subjected to standard fire assays with an AAS finish for Au. Internal lab blanks and duplicates produced expected results. Overlimits for Ag and Cu were re-assayed using an ICP90 sodium peroxide fusion ore grade analysis.

Soil samples for MMI analysis were collected from pits dug at least 30 cm deep. The base of the organic layer at surface was identified, and marks were made at 15 cm and 25 cm below the organic layer on the wall of the soil pit. Soil was collected only between these two marks with a plastic trowel and placed into pre-labeled and tagged zipper-style plastic baggies. Soil bags were then stored in large clear poly bags. All sample sites were recorded by a handheld GPS. Samples typically ranged from 250 to 350 grams of material. Prior to taking a new sample, all sampling equipment was cleaned and flushed with soil from the new sample site. The samples were collected in areas free of any ground disturbance, logging or forestry work

The MMI analytical technique is a proprietary method, of which SGS Canada has exclusive rights in Canada. Methodology is captured from their website as follows:

"MMI technology is an innovative analytical process that uses a unique approach to the analysis of metals in soils and related materials. Target elements are extracted using weak solutions of organic and inorganic compounds rather than conventional aggressive acid or cyanide-based digests. MMI solutions contain strong ligands, which detach and hold metal ions that were loosely bound to soil particles by weak atomic forces in aqueous solution. This extraction does not dissolve the bound forms of the metal ions. Thus, the metal ions in the MMI solutions are the chemically active or 'mobile' component of the sample. Because these mobile, loosely bound complexes are in very low concentrations, measurement is by conventional ICP-MS and the latest evolution of this technology, ICP-MS Dynamic Reaction Cell[™] (DRC II[™]). This allows us to report very low detection limits.

	55660	00 I	556700 I	556800
	N			
		× SBS001 -0.83	× SBS021 - 1.47	O JLS042 - 2.51
		× SBS002 -1.73	× SBS022 - 1.13	O JLS041 - 2.34
		× SBS003 - 1.67	<mark>O</mark> SBS023 - 2.87	× JLS040 -1.82
		× SBS004 - 0.93	O SBS024 - 2.64	× JLS039 -1.56
00.		O SBS005 - 2.28	<mark>)</mark> SBS025 - 2.94	× JLS038 - 1.04
5280700 I		SBS006 - 2.64	SBS026 - 2.45	× JLS037 - 1.23
			O SBS027 - 2.54	× JLS036 -1.49
		× SBS007 -1.92 × SBS008 - 1.89	◯ JLS056 - 2.84	× JLS035 -1.59
		SBS009 - 2.51	× JLS055 -1.35	× JLS034 -1.7
			× JLS054 - 1.16	× JLS033 - 1.46
		• SBS010 - 2.22	× JLS053 -0.83	J LS032 - 2.19
		 SBS020 - 2.76 SBS018 - 3.54 	× JLS052 - 1	J LS031 - 3.54
		363010-3.34	J LS051 - 2.34	
		O SBS017 - 2.19	× JLS050 -1.87	 JLS030 - 3.28 JLS029 - 2.1
0			× JLS049 -1.93	O JLS028 - 2.74
5280600 I		SBS016 - 2.77	× JLS048 - 1.95	J LS027 - 3.98
		× SBS015 - 0.63	Paragon-Hitchcock × JLS047 - 0.86	● JLS026 - 2.02
	Ag Response Ratio	SBS014 - 3.37	■ 1752216 - 730 ★ × JLS046 - 1.04	4 × JLS025 -0.89
	 2.00 - 2.50 2.51 - 3.00 	× SBS013 -1.36	22007 - 48 ■	B.51
	> 3.00	× SBS012 -1.92	JLS044 - 3.07	J LS023 - 2.57
	 2017 Rock Sample Sample ID - Ag ppm 	∧ ODOUTZ - 1.3Z	J LS043 - 2.05	× JLS022 - 1.73
	Contour Line	B SBS011 - 3.74		
	Boundary Cell Claim			
	0 25 50 M			
	Data Source: Geogratis			

× JLS021 - 0.61

× JLS019 - 1.72

O JLS018 - 2.42

× JLS017 -0.97

× JLS016 - 1.69

O JLS015 - 2.41

× JLS014 - 1.72

× JLS013 - 1.87

× JLS012 - 1.38

× JLS011 - 1.52

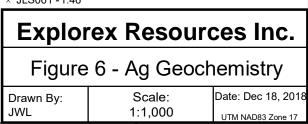
× JLS010 - 1.23

× JLS009 - 0.74

× JLS008 - 0.92

× JLS007 - 1.87

× JLS006 - 1.73


× JLS005 - 1.66

× JLS004 - 1.58

× JLS003 - 1.07

× JLS002 -0.92

× JLS001 - 1.46

	55660	00 I	556700	556800
	N			
		× SBS001 -0.83	× SBS021 - 1.47	O JLS042 - 2.51
		× SBS002 -1.73	× SBS022 - 1.13	O JLS041 - 2.34
		× SBS003 - 1.67	O SBS023 - 2.87	× JLS040 - 1.82
		× SBS004 - 0.93	O SBS024 - 2.64	× JLS039 - 1.56
00.		SB S005 - 2.28	<mark>O</mark> SBS025 - 2.94	× JLS038 - 1.04
5280700 I		O SBS006 - 2.64	SBS026 - 2.45	× JLS037 - 1.23
			O SBS027 - 2.54	× JLS036 -1.49
		× SBS007 -1.92 × SBS008 - 1.89	O JLS056 - 2.84	× JLS035 -1.59
		O SBS009 - 2.51	× JLS055 -1.35	× JLS034 -1.7
			× JLS054 - 1.16	× JLS033 - 1.46
		• SBS010 - 2.22	× JLS053 -0.83	O JLS032 - 2.19
		 SBS020 - 2.76 SBS018 - 3.54 	× JLS052 - 1	J LS031 - 3.54
			O JLS051 - 2.34	JLS030 - 3.28
		SBS017 - 2.19	× JLS050 -1.87	J LS029 - 2.1
00			× JLS049 - 1.93	O JLS028 - 2.74
5280600 I		O SBS016 - 2.77	× JLS048 - 1.95	J LS027 - 3.98
		× SBS015 - 0.63	Paragon-Hitchcock × JLS047 - 0.86	O JLS026 - 2.02
	Co Response Ratio × < 2.00	SBS014 - 3.37	■ 1752216 - 730 1752217 - 7 ■ ★ × JLS046 - 1.04	× JLS025 -0.89
	 2.00 - 2.50 2.51 - 3.00 	× SBS013 -1.36	22007 - 48 JLS045 - 3.51 22001 - 48	O JLS024 - 2.39
	> 3.00		JLS044 - 3.07	O JLS023 - 2.57
	 2017 Rock Sample Sample ID - Ag ppm 	× SBS012 -1.92	J LS043 - 2.05	× JLS022 - 1.73
	Contour Line	B SBS011 - 3.74	•	
	Boundary Cell Claim			
	0 25 50 M			
	Data Source: Geogratis			

× JLS021 - 0.61

× JLS019 - 1.72

O JLS018 - 2.42

× JLS017 -0.97

× JLS016 - 1.69

O JLS015 - 2.41

× JLS014 - 1.72

× JLS013 - 1.87

× JLS012 - 1.38

× JLS011 - 1.52

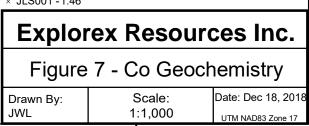
× JLS010 - 1.23

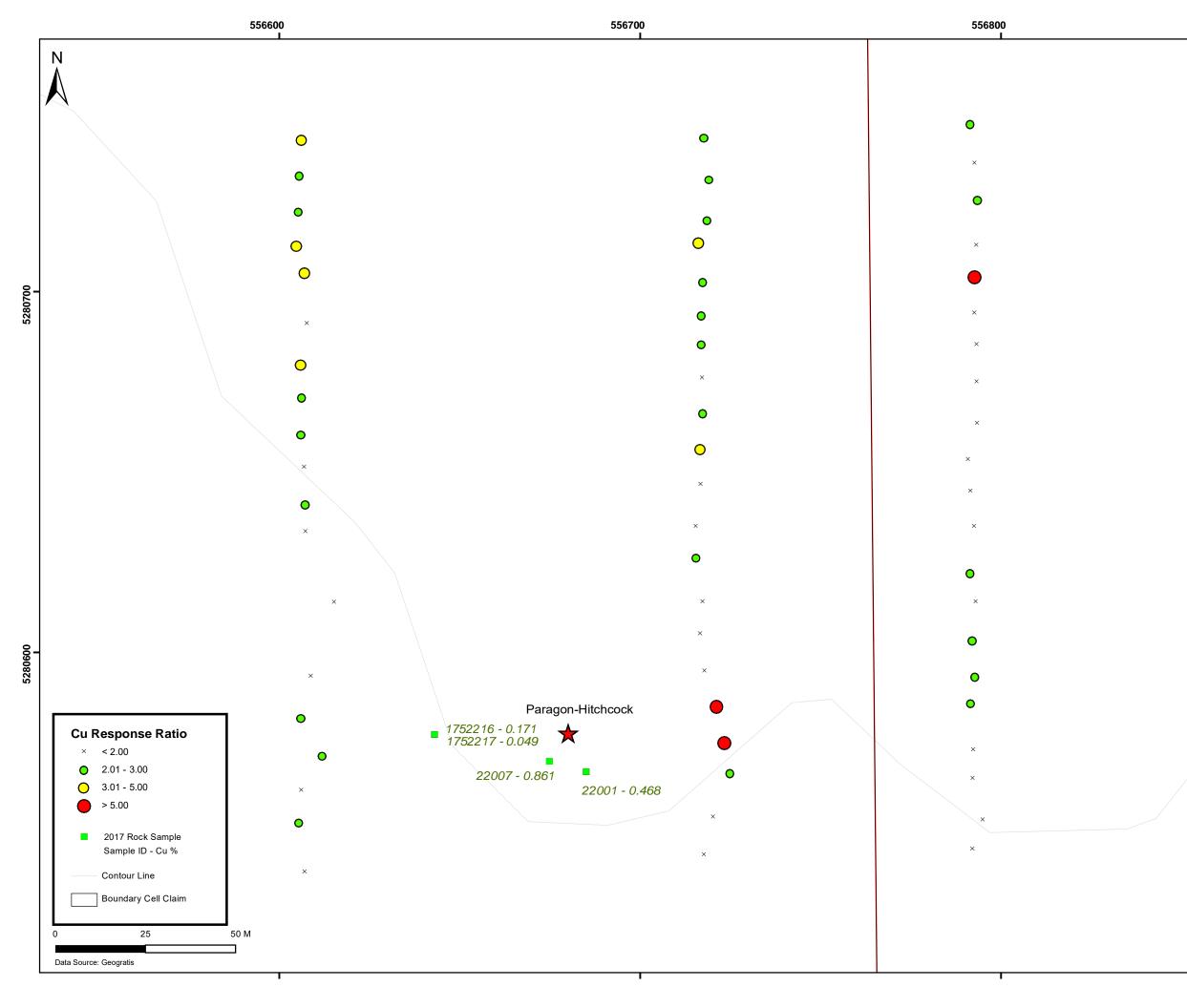
× JLS009 - 0.74

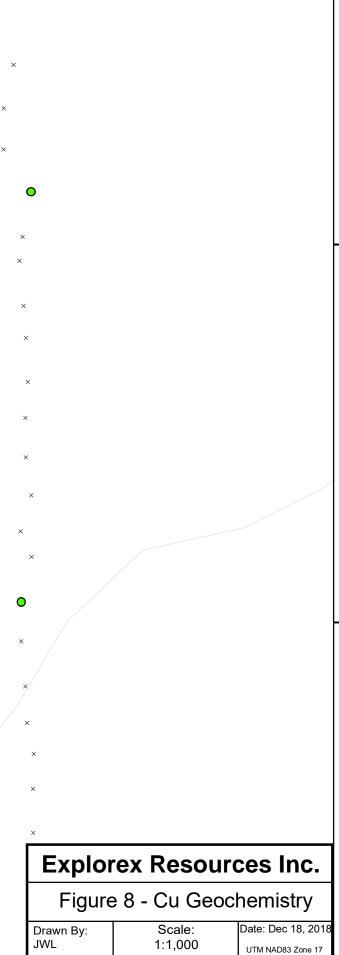
× JLS008 - 0.92

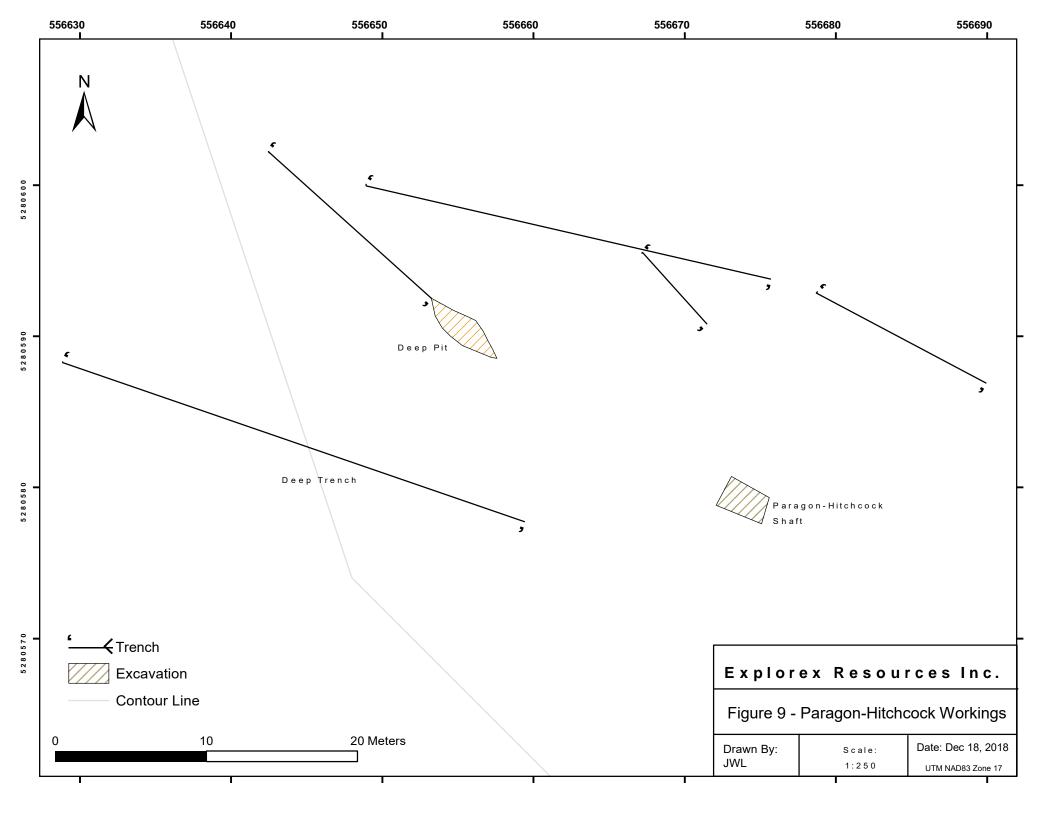
× JLS007 - 1.87

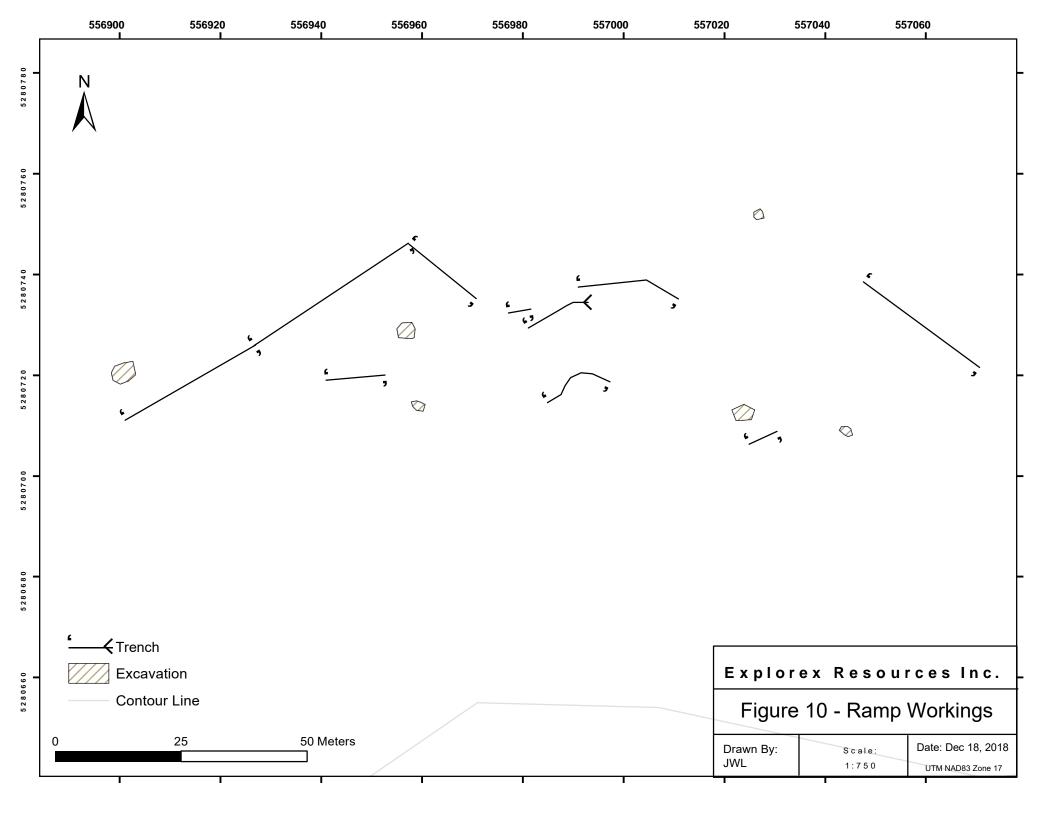
× JLS006 - 1.73


× JLS005 - 1.66


× JLS004 - 1.58


× JLS003 - 1.07


× JLS002 -0.92


× JLS001 - 1.46

MMI technology uses proprietary extractants. MMI-M is a new, single multi-element leach that now provides an option to measure the concentration of a broad selection of mobile elements. With MMI-M, you can create your own individual multi-element packages, using any or all commodity elements, diamond host rock elements, lithological elements or pathfinder elements. SGS also offers enhanced detection limits with the MMI-ME package."

No information is available on the sample collection, preparation or security for historical samples discussed in this report.

Interpretation and Recommendations

Rock samples from both the Frontenac and Paragon-Hitchcock produced results in line with historical assays, and two small new auriferous gold veins were discovered north of the Eplett showing. MMI soil samples have potentially outlined buried mineralization associated with the contact between the Nipissing diabase and older metavolcanic/intrusive rocks.

Unfortunately, rocks collected at both the Ramp and Eplett showings failed to identify anomalous base metals, and only one sample was weakly anomalous for gold. Due to the thin nature of mineralization at the Ramp showing, it is believed that no ore material was left in place or in the dump pile. Vegetation cover is heavy, further hindering prospecting efforts. The Ramp showing should only be considered an exploration target for future programs if it is in conjunction with work at the Paragon-Hitchcock.

The Eplett showing is also a mystery. Quartz vein material from the major trenches was sampled by Transition Metals in 2012, which returned assays of ~ 30 ppb Au. Samples taken by CMG personnel in 2017 were from contact-altered rocks and from smaller blue quartz veins, but were also low, averaging about 20 ppb Au. As at the Ramp, heavy vegetation cover hindered prospecting outside of historic workings. Further work at the Eplett is not warranted at this time.

The discovery of small veins/shears north of Eplett is significant, as it highlights the potential of an area that has been overlooked in favor of the known showings. It is recommended that at least one or two days be allocated to thorough prospecting of the area.

Due to the heavy overburden in the area of the Paragon-Hitchcock showing, prospecting and traditional soil sampling methods are not a viable exploration option. MMI soil sampling has potentially identified buried mineralization associated with the contacts of the Nipissing diabase. It is recommended to implement a Phase 1 program of north-south oriented MMI soil sampling, and to test overburden depth, either through geophysical means or drilling. Ground magnetics should also be an effective method in identifying the contacts of the Nipissing diabase, as the unit is significantly more magnetic than the surrounding metavolcanic units. At the showing itself, drilling underneath the known depth of the shaft is the only logical exploration option for discovering further mineralization. Drilling should be considered for Phase 2, if Phase 1 exploration does not identify anything else of interest.

The Phase 1 exploration program is recommended as follows:

- 1000 MMI soil samples at 25 m stations on lines spaced 100 m apart. Soil lines will be plotted to cross both the north and south contacts of the projected Nipissing diabase within 500 m on either side of the Paragon-Hitchcock showing.
- Concurrent ground-based magnetic surveys employing GSM-19 magnetometers on the same grid as MMI soil sampling.
- IP Resistivity could also define the diabase/gabbro body for targeting drill holes
- Detailed mapping and prospecting of any rock encountered during the above surveys
- Detailed mapping and prospecting in the area north of the Eplett showing, where 2017 rock samples returned anomalous gold grades in quartz veins and shear zones.

Phase 2 diamond drilling is contingent on the results of the Phase 1 program.

References

Ministry of Energy, Northern Development and Mines – Abandoned Mines Information System (AMIS)

Campbell, Alex P. 1927. Report of Paragon-Hitchcock Mines Ltd (Prospectus).

Eplett G.S. 1960. Diamond drill logs for work performed by G. Eplett.

Ramp L. 1962. Diamond drill logs for work performed by Louis Ramp.

Gordon, J.B. et al 1979. Gold Deposits of Ontario, Part 2, P 226.

Jones G.W. 1980. Geology of the Hill Lake Area, District of Timiskaming, Report 250.

Kuuskman, M. 2013. Report of Physical Work on Golden Elk Property in Tudhope, ON.

Appendix 1

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Jordan William Lewis, of White Rock, BC do hereby certify that:

- 1. I graduated with Honours from the Mining and Mineral Exploration Technology 2 year Diploma Program at the British Columbia Institute of Technology.
- 2. I have practiced my profession for 10.75 years. This experience comprises technical and management work in precious and base metal exploration in the Yukon Territory, British Columbia, Ontario, Newfoundland/Labrador and Ireland
- 3. I am currently employed by Coast Mountain Geological Ltd. with the title of Supervisor, and have been since 2008.
- 4. I am the author and am responsible for the preparation of the report titled "Assessment Report on the Paragon-Hitchcock Property" dated January 14, 2019.
- 5. I personally collected or supervised the collection of all samples and data.

Dated this 14th day of January, 2019

Jordan Lewis

Appendix 2

Cost Statement

Expenditures

Total expenditure claimed within this report totals \$ 27,045. Invoices from Coast Mountain Geological ltd. are the combined costs of work for two properties being operated by Explorex. Coast Mountain Geological ltd. has reported that the costs on the primary invoice (PC112517) be divided to 61% to the reported Paragon-Hitchcock property, and 39% to the Chrysler property. Table 1 below is a summarized breakdown of expenditures, and tables 2-11 offer a detailed breakdown of calculated expenses based on the supplied invoices and receipts; table 12 shows the breakdown of expenditures per claim worked.

Table 1: Summary of Expenditures

Work Type	Work Subtype	Subtotal	Total	Summary Table
Prospecting	·		\$ 9,245	
	Grass Roots Prospecting	9,245		Table 2
Physical Work			\$-	
	Bedrock Pitting and Trenching (>1m3 and <3m3 in	-		
	200 m Radius) Bedrock Pitting and Trenching (>3m3 in 200 m Radius)			
	Mechanized Stripping (<100m2 in 200 m Radius)	-		
	Mechanized Stripping (<100m2 in 200 m radius) Mechanized Stripping (>100m2 in 200 m radius)	-		
	Manual Stripping	-		
	Manual work	-		
Sampling Program		-	\$ -	
	Dulla Concella a		Ş -	
	Bulk Sampling	-		
	Drill Core Sampling	-		
	Non-core Drill Sampling	-		
	Overburden Heavy Mineral Processing	-		
	Metallurgical Testing	-		
	Beneficiation	-		
	Industrial Mineral Testing	-		
	Dimensional Stone Removal	-		
	Other Sampling	-		
Remote Sensing Imagery			\$ -	
	Imagery	-		
	LiDAR	-		
Geological Survey Work			\$-	
	Geological Survey			
Geochemical Survey Work			\$ 3,475	
	Geochemical Survey	3,475		Table 3
Ground Geophysical Survey Work			\$-	
	Borehole Geophysics	-		
	Magnetics	-		
	Electromagnetics	-		
	Gravity	-		
	Induced Polarization	-		
	Magnetotellurics	-		
	Radiometrics	-		
	Resistivity	-		
	Seismic	-		
	Self-Potential	-		
	Other Ground Geophysics	-		
Airborne Geophysical Survey Work			\$ -	
	Airborne Magnetics	-	ŕ	
	Airborne Electromagnetics	_		
	Airborne Cravity	_		
	Airborne Radiometrics	_		
	Other Airborne Geophysics	-		
Modelling or Reprocessing of Data		-	\$-	
modeling of Reprocessing of Dala	Data Modelling		ş.	
	0	-		
	Data Reprocessing	-		

Exploratory Drilling			\$-	
	Core Drilling	-		
	Non-core Drilling	-		
Drill Core or Drill Sample Submissions			\$ -	
	Drill Core Submission	-		
	Drill Sample Submission	-		
Petrographic Work			\$ -	
	Microscopy	-		
	Scanning Electron Microscopy	-		
	Electron Microprobe Study	-		
	Other Petrographic Work	-		
Environmental Baseline Study			\$ -	
	Environmental Baseline Study	-		
Rehabilitation Required or Permitted Under the Act			\$ -	
	Rehabilitation	-		
Associated Work types			\$ 12,825	
	Line Cutting	-		
	Assays	5,554		Table 4
	Personal Transportation	39		Table 5
	Contractor Mobilization/Demobilization	-		
	Supplies	470		Table 6
	Rental	1,061		Table 7
	Report/Map	2,995		Table 8
	Shipping of Samples	-		1
	Food	1,405		Table 9
	Lodgings	1,303		Table 10
	Shipping of Supplies	-		1
	Access Trail building	-		1
	Industrial Mineral Marketing	-		
Aboriginal Consultation Costs			\$ 1,500	Table 11
Totals		Total Expenditures	\$ 27,045	

Table 2: Summary of Prospecting Expenditures

Description		Date	Invoice / Receipt Number	Cost	Hst	Total		
	То	From						
R. Kemp Salary		2017-11-30	PC112517	\$ 2,800.00	\$ 364.00	\$	3,164.00	
J. Lewis Salary		2017-11-30	PC112517	\$ 2,362.50	\$ 307.13	\$	2,669.63	
S Bartlett Salary		2017-11-30	PC112517	\$ 3,018.75	\$ 392.44	\$	3,411.19	
					Total	\$	9,244.81	

Table 3: Summary of Geochemical Survey Expenditures

Description	Date	Invoice / Receipt Number	Cost	Hst	Total
	To From				
J. Lewis Salary	2017-11-30	PC112517	\$ 1,350.00	\$ 175.50	\$ 1,525.50
S Bartlett Salary	2017-11-30	PC112517	\$ 1,725.00	\$ 224.25	\$ 1,949.25
				Total	\$ 3,474.75

Table 4: Summary of Assay Expenditures

Description		Date	Invoice / Receipt Number		Cost		Hst		Total	
	То	From								
SGS (Grab Samples)		2018-01-11	11122581	\$	510.16	\$	25.51	\$	535.67	
SGS (MMI Samples)		2018-01-11	11122581	\$	3,251.30	\$	162.57	\$	3,413.87	
J. Harrop Salary		2017-12-31	PC122517	\$	955.26	\$	142.74	\$	1,098.00	
P. McLaughling Salary		2017-12-31	PC122517	\$	371.49	\$	55.51	\$	427.00	
J. Lewis Salary		2017-12-31	PC122517	\$	68.99	\$	10.31	\$	79.30	
							Total	\$	5,047.54	

Table 5: Summary of Personal Transportation Expenditures

Description	Date	Invoice / Receipt Numb	er	Cost	Hst		Total	
	To From	1						
Aaron Taxi (Sudbury)	2017-	11-14 7	\$	33.70	\$	5.04	\$	38.74
						Total	\$	38.74

Table 6: Summary of Supply Expenditures

Description	Date To From	Invoice / Receipt Number	Cost	Hst	Total
Exploration Services	2017-11-02	47166	\$ 83.93	\$ 12.54	\$ 96.47
Northroute Fuels Inc	2017-11-07	10085798	\$ 21.23	\$ 3.17	\$ 24.40
Mr. Gas	2017-11-07	1624843	\$ 15.92	\$ 2.38	\$ 18.30
J and S Variety Store	2017-11-09	8305	\$ 28.23	\$ 4.22	\$ 32.45
J and S Variety Store	2017-11-10	8679	\$ 11.91	\$ 1.78	\$ 13.69
J and S Variety Store	2017-11-12	9033	\$ 17.98	\$ 2.69	\$ 20.67
Northroute Fuels Inc	2017-11-13	10086121	\$ 53.07	\$ 7.93	\$ 61.00
Shell Canada	2017-11-14	2032890320	\$ 58.66	\$ 8.76	\$ 67.42
Tool Town	2017-11-02	377733	\$ 38.34	\$ 5.73	\$ 44.07
Gowganda Lake Lodge	2017-11-03	6	\$ 26.54	\$ 3.97	\$ 30.50
Northroute Fuels Inc	2017-11-06	8	\$ 26.54	\$ 3.97	\$ 30.50
Northroute Fuels Inc	2017-11-08	9	\$ 26.54	\$ 3.97	\$ 30.50
				Total	\$ 469.97

Table 7: Summary of Vehicle Rental Expenditures

Description		Date	Invoice / Receipt Number		Cost		Hst		Total	
	То	From	-							
Enterprise Rent a Car (Truck Rental)		2017-11-20	15458853	\$	572.53	\$	85.55	\$	658.08	
Canada Damage Recovery		2017-11-27	3002123771	\$	161.33	\$	24.11	\$	185.44	
SUV Rental Avis		2017-11-08	8	\$	189.00	\$	28.24	\$	217.24	
							Total	\$	843.52	

Table 8: Summary of Reporting Expenditures

Description		Date	Invoice / Receipt Number	Cost	Hst		Total
	То	From					
R. Kemp Salary		2019-01-31	PC012519	\$ 1,400.00	\$	182.00	\$ 1,582.00
J. Lewis Salary		2019-01-31	PC012519	\$ 1,250.00	\$	162.50	\$ 1,412.50

Total \$ 2,994.50

Table 9: Summary of Food Expenditures

Description		Date	Invoice / Receipt Number		Cost		Hst	Total
	То	From	-					
J and S Variety Store		2017-11-04	43406	\$	2.78	\$	0.42	\$ 3.20
Milestones		2017-11-14	3573	\$	30.82	\$	4.61	\$ 35.43
Starbucks		2017-11-14	8	\$	11.23	\$	1.68	\$ 12.91
5 Guys Burger and Fries		2017-11-02	2	\$	17.12	\$	2.56	\$ 19.68
Food Basics		2017-11-02	4	\$	30.83	\$	4.61	\$ 35.44
J and S Variety Store		2017-11-03	5	\$	3.45	\$	0.51	\$ 3.96
J and S Variety Store		2017-11-06	7	\$	3.12	\$	0.47	\$ 3.59
Mill Street Brew Pub		2017-11-02	3	\$	35.98	\$	5.38	\$ 41.36
Air Canada Bistro		2017-11-08	4	\$	5.10	\$	0.76	\$ 5.86
5 Guys Burger and Fries		2017-11-02	5	\$	11.86	\$	1.77	\$ 13.63
J and S Variety Store		2017-11-06	6	\$	5.84	\$	0.87	\$ 6.71
Mill Street Brew Pub		2017-11-08	10	\$	13.58	\$	2.03	\$ 15.61
Riverview Market		2017-11-14	2	\$	4.78	\$	0.71	\$ 5.49
Relay		2017-11-14	3	\$	2.11	\$	0.32	\$ 2.43
Elk Lake Wilderness Resort Meal Plan		2017-11-14	R000003188	\$	1,061.40	\$	137.98	\$ 1,199.38
	Total \$							\$ 1,404.68

Table 10: Summary of Lodging Expenditures

Description	Date	Invoice / Receipt Number	Cost	Hst	Total	
	To From					
Elk Lake Wilderness Resort	2017-11-14	R000003188	\$ 1,152.90	\$ 149.88	\$	1,302.78
				Total	\$	1,302.78

Table 11: Summary of Aboriginal Consultation Expenditures

Description	Date		Invoice / Receipt Number	Cost	Hst	Total	
	То	From					
MOU						1,500.00	
					Total	\$ 1,500.00	

	Pro	ospecting	Geochemi	cal Survey	Food, Supplies, Transportation,	A	Aborininal Consult f	Denerting A	Tatal
Claim/Disposition #	Salary \$	Grab Sample \$	Salary \$	MMI \$	and Lodging	Assay Management	Aboriginal Consultation	Reporting \$	Totals
228910	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.54
100778	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.54
312038	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
228911	\$ 577.80	\$ 133.92	\$ 1,737.38	\$ 1,665.30	\$ 267.31	\$ 100.27	\$ 750.00	\$ 187.16	\$ 5,419.1
257606	\$ 577.80	\$ 100.44	\$ 1,737.38	\$ 1,748.56	\$ 267.31	\$ 100.27	\$ 750.00	\$ 187.16	\$ 5,468.9
294454	\$ 577.80	\$ 66.96	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,199.5
323662	\$ 577.80	\$ 133.92	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,266.4
104036	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
287653	\$ 577.80	\$ 33.48	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,166.0
323661	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
185203	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
121181	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
260378	\$ 577.80	\$ 33.48	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,166.0
227031	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
219083	\$ 577.80	-	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,132.5
G80100204	\$ 577.80	\$ 33.48	-	-	\$ 267.31	\$ 100.27	-	\$ 187.16	\$ 1,166.0
	-	•	-			-	-	-	\$ 27,044.9

Table 12: Summary of Expenditures per Claim/Disposition

Appendix 3

Assay Certificates

Certificate of Analysis Work Order : VC174194 [Report File No.: 0000026667]

Date: December 17, 2017

To: Gary Schellenberg COAST MOUNTAIN GEOLOGICAL LTD 488-625 HOWE ST PO BOX 62 VANCOUVER BC V6C 2T6

P.O. No.: Explorex Ontario Project No.: -Samples: 19 Received: Nov 16, 2017 Pages: Page 1 to 6

(Inclusive of Cover Sheet)

Methods Summary

o. Of Samples	Method Code	Description
)	G LOG02	Pre-preparation processing, sorting, logging, boxing
	G WGH79	Weighing of samples and reporting of weights
)	G PRP90	Weigh, dry, (<3.0 kg), crush to 90% passing 2 mm, split 250 g, pulverize to
)	GE ICP90A	Sodium Peroxide fusion/ICP-AES package
	GE FAA313	@Au, FAS, AAS, 30g-5ml(Final Mode)
)	GE ICP14B	Aqua Regia digestion/ICP-AES package
	GO ICP90Q	Sodium Peroxide fusion/ICP-AES, single element
	GO FAG313	Ag FAS, Gravimetric, 30g

Storage: Pulp & Reject REJECT STORAGE PULP STORAGE

PAID STORE AFTER 30 DAYS PAID STORE AFTER 90 DAYS

Certified By

LS.

John Chiang QC Chemist

= Insufficient Sample

= No result

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer

L.N.R. n.a.	= Listed not received = Not applicable
*INF	= Composition of this sample makes detection impossib

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

	Element	WtKg	A	As	Ba	Be	Ca	Cc	Co
	Method	G_WGH79	GE_ICP90A						
	Det.Lim.	0.01	0.01	0.003	0.001	0.0005	0.1	0.001	0.001
	Units	kg	%	%	%	%	%	%	%
022001		1.320	1.16	1.45	<0.001	0.0005	>25.0	<0.001	0.868
022002		1.575	4.03	<0.003	0.003	<0.0005	6.1	<0.001	800.0
022003		2.150	4.78	<0.003	0.003	<0.0005	3.1	<0.001	0.004
022004		1.490	7.41	0.011	0.013	<0.0005	2.2	<0.001	800.0
022005		2.015	7.30	<0.003	0.007	<0.0005	0.9	<0.001	0.002
022006		1.135	6.18	<0.003	0.006	<0.0005	10.5	<0.001	0.004
022007		2.245	3.79	0.049	0.002	<0.0005	9.2	<0.001	0.034
022008		3.965	5.17	0.107	0.002	<0.0005	5.3	<0.001	0.085
022009		1.775	1.61	0.009	0.032	<0.0005	4.4	<0.001	0.012
022010		2.560	2.26	0.028	0.004	<0.0005	3.5	<0.001	0.017
022011		2.520	8.72	<0.003	0.017	<0.0005	2.5	<0.001	0.002
022012		1.615	7.88	<0.003	0.013	<0.0005	1.2	<0.001	<0.001
022013		1.500	0.78	<0.003	0.002	<0.0005	0.4	<0.001	<0.001
022014		1.870	1.11	<0.003	0.002	<0.0005	1.2	<0.001	<0.001
022015		2.285	3.68	<0.003	0.019	<0.0005	<0.1	<0.001	<0.001
1752216		1.765	5.73	4.39	0.007	<0.0005	3.4	<0.001	2.34
1752217		1.855	4.86	0.318	0.007	0.0005	11.8	<0.001	0.216
1752218		2.000	8.57	<0.003	0.008	<0.0005	8.5	<0.001	0.005
1752219		2.575	5.93	0.011	0.018	<0.0005	1.8	<0.001	0.007
*Rep 1752216			5.60	4.45	0.007	<0.0005	3.5	<0.001	2.35
*Std OREAS70B			3.69	0.013	0.021	<0.0005	3.1	<0.001	0.008
*Std SU_1B			4.27	<0.003	0.036	<0.0005	2.2	<0.001	0.065
*Blk BLANK			<0.01	<0.003	<0.001	<0.0005	<0.1	<0.001	<0.001

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 2 of 6

E	Element	Cr	Cu	Fe	к	La	Li	Μç	Mn
I	Method	GE_ICP90A							
E	Det.Lim.	0.001	0.001	0.01	0.1	0.001	0.001	0.01	0.001
	Units	%	%	%	%	%	%	%	%
022001		<0.001	0.468	2.59	<0.1	0.003	0.002	1.27	0.385
022002		0.002	0.176	5.03	0.2	<0.001	0.006	2.25	0.079
022003		0.002	0.115	9.63	0.1	<0.001	0.007	3.48	0.112
022004		0.004	0.006	1.42	0.9	<0.001	0.002	0.68	0.032
022005		0.006	0.012	3.78	0.2	0.002	0.002	1.06	0.070
022006		0.001	0.013	10.7	<0.1	0.003	<0.001	2.75	0.161
022007		0.002	0.861	2.92	<0.1	0.002	0.002	0.97	0.073
022008		<0.001	0.092	8.18	<0.1	<0.001	800.0	3.69	0.130
022009		0.004	>5.00	10.4	0.3	<0.001	0.001	1.08	0.084
022010		0.006	0.442	2.75	0.3	0.001	0.001	0.60	0.059
022011		0.004	0.109	2.84	0.6	0.004	0.002	1.34	0.039
022012		0.002	0.022	1.62	0.4	0.001	<0.001	0.58	0.024
022013		0.009	0.005	1.35	<0.1	<0.001	<0.001	0.40	0.021
022014		0.012	0.004	1.33	0.1	<0.001	<0.001	0.37	0.022
022015		0.007	<0.001	0.71	2.3	0.001	<0.001	0.03	0.005
1752216		<0.001	0.171	8.78	0.4	0.002	0.004	2.65	0.136
1752217		<0.001	0.049	7.26	0.4	0.002	0.003	2.07	0.229
1752218		0.019	0.010	6.90	0.5	<0.001	0.003	3.41	0.114
1752219		0.006	0.003	1.69	0.6	<0.001	0.002	0.90	0.028
*Rep 1752216		<0.001	0.170	8.74	0.4	0.003	0.004	2.47	0.135
*Std OREAS70B		0.124	0.005	5.58	0.6	0.001	0.004	13.9	0.120
*Std SU_1B		0.033	1.21	>25.0	0.7	0.001	<0.001	1.80	0.075
*BIk BLANK		<0.001	<0.001	<0.01	<0.1	<0.001	<0.001	<0.01	<0.001

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 3 of 6

	Element	Mo	Ni	F	Pb	Sb	Sc	Si	Sn
	Method	GE_ICP90A							
	Det.Lim.	0.001	0.001	0.01	0.002	0.005	0.0005	0.1	0.005
	Units	%	%	%	%	%	%	%	%
022001		0.006	0.166	0.02	0.019	0.009	0.0015	4.7	<0.005
022002		<0.001	0.002	0.04	<0.002	<0.005	0.0018	27.2	<0.005
022003		<0.001	0.001	0.02	0.002	<0.005	0.0034	26.7	<0.005
022004		<0.001	0.003	0.04	<0.002	<0.005	<0.0005	>30.0	<0.005
022005		<0.001	0.002	0.09	0.005	<0.005	0.0013	29.5	<0.005
022006		<0.001	0.003	0.03	0.040	<0.005	0.0037	20.9	<0.005
022007		<0.001	0.006	<0.01	0.011	<0.005	0.0010	27.4	<0.005
022008		0.003	0.010	0.03	0.012	<0.005	0.0035	24.0	<0.005
022009		<0.001	0.010	<0.01	<0.002	<0.005	<0.0005	24.8	<0.005
022010		0.003	0.004	0.05	0.018	<0.005	<0.0005	>30.0	<0.005
022011		<0.001	0.012	0.05	0.002	<0.005	<0.0005	29.0	<0.005
022012		<0.001	<0.001	0.05	0.003	<0.005	<0.0005	>30.0	<0.005
022013		800.0	0.002	<0.01	<0.002	<0.005	<0.0005	>30.0	<0.005
022014		<0.001	0.001	<0.01	0.077	<0.005	<0.0005	>30.0	<0.005
022015		<0.001	<0.001	0.01	<0.002	<0.005	<0.0005	>30.0	<0.005
1752216		0.003	0.734	0.07	0.019	0.033	0.0034	21.6	<0.005
1752217		0.001	0.060	0.04	<0.002	<0.005	0.0037	19.3	<0.005
1752218		<0.001	0.010	0.04	<0.002	<0.005	0.0023	21.5	<0.005
1752219		<0.001	0.003	0.05	0.006	<0.005	<0.0005	>30.0	<0.005
*Rep 1752216		0.004	0.724	0.07	0.019	0.030	0.0035	21.3	<0.005
*Std OREAS70B		<0.001	0.222	0.03	<0.002	<0.005	0.0009	21.7	<0.005
*Std SU_1B		<0.001	1.94	0.05	0.006	<0.005	<0.0005	15.5	<0.005
*Blk BLANK		<0.001	<0.001	<0.01	<0.002	<0.005	<0.0005	<0.1	<0.005

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 4 of 6

El	ement	Sr	Ti	٧	W	У	Zn	@Ai	@Ag
Μ	lethod	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_ICP90A	GE_FAA31	GE_ICP14E
De	et.Lim.	0.001	0.01	0.001	0.005	0.0005	0.001	Ę	2
	Units	%	%	%	%	%	%	ppt	ppm
022001		0.006	0.11	0.010	<0.005	0.0059	0.003	171	29
022002		0.004	0.34	0.028	< 0.005	0.0022	0.026	193	6
022003		0.003	0.76	0.055	< 0.005	0.0025	0.016	<5	<2
022004		0.014	0.13	0.003	<0.005	0.0006	0.002	24	<2
022005		800.0	0.46	0.011	<0.005	0.0026	0.021	12	<2
022006		0.085	0.43	0.029	<0.005	0.0017	0.013	<5	<2
022007		0.004	0.07	300.0	<0.005	0.0035	0.006	g	48
022008		0.003	0.86	0.064	<0.005	0.0019	0.015	g	7
022009		0.005	0.05	0.003	<0.005	<0.0005	0.002	3230	57
022010		0.002	0.14	0.004	<0.005	0.0018	0.004	23	26
022011		0.020	0.22	0.004	<0.005	0.0010	0.006	475	<2
022012		0.052	0.18	0.003	<0.005	<0.0005	0.004	46	<2
022013		0.003	0.03	0.002	<0.005	<0.0005	0.001	24	<2 <2
022014		0.008	0.03	0.003	<0.005	<0.0005	0.038	608	<2
022015		0.002	0.06	<0.001	<0.005	<0.0005	<0.001	44	<2
1752216		0.007	0.90	0.028	<0.005	0.0038	0.018	260	>100
1752217		0.008	0.76	0.021	<0.005	0.0041	800.0	15	7
1752218		0.025	0.34	0.018	<0.005	0.0010	0.007	18	<2
1752219		0.015	0.11	0.003	<0.005	<0.0005	0.004	21	3
*Rep 022004				<2					
*Std OREAS601					51				
*Blk BLANK				<2					
*Rep 1752216		0.007	0.89	0.028	<0.005	0.0039	0.018		
*Std OREAS70B		0.008	0.18	0.007	<0.005	8000.0	0.011		
*Std SU_1B		0.031	0.23	0.009	< 0.005	<0.0005	0.028		
*Blk BLANK		<0.001	<0.01	<0.001	<0.005	<0.0005	<0.001		
*Rep 022009				366	0				
*Std OREAS222					1220				
*BIk BLANK				7					

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 5 of 6

	Element	@Cu	Ag
	Method	GO_ICP90Q	GO_FAG313
	Det.Lim.	0.01	10
	Units	%	ppm
022001		N.A.	N.A.
022002		N.A.	N.A.
022003		N.A.	N.A.
022004		N.A.	N.A.
022005		N.A.	N.A.
022006		N.A.	N.A.
022007		N.A.	N.A.
022008		N.A.	N.A.
022009		7.47	N.A.
022010		N.A.	N.A.
022011		N.A.	N.A.
022012		N.A.	N.A.
022013		N.A.	N.A.
022014		N.A.	N.A.
022015		N.A.	N.A.
1752216		N.A.	730
1752217		N.A.	N.A.
1752218		N.A.	N.A.
1752219		N.A.	N.A.
*Std OREAS934		9.38	
*Blk BLANK		<0.01	
*Rep 022009		7.57	
*Rep 1752216			729
*Std AMIS0267			901
*BIk BLANK			<10

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 6 of 6

Certificate of Analysis Work Order : VC174195 [Report File No.: 0000026882]

Date: December 28, 2017

To: Gary Schellenberg COAST MOUNTAIN GEOLOGICAL LTD 488-625 HOWE ST PO BOX 62 VANCOUVER BC V6C 2T6 P.O. No.: Explorex Ontario Project No.: -Samples: 82 Received: Nov 16, 2017 Pages: Page 1 to 22 (Inclusive of Cover Sheet)

Methods Summary

No. Of SamplesMethod Code82G LOG0282GE MMI M

Storage: Pulp & Reject REJECT STORAGE PULP STORAGE <u>Description</u> Pre-preparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS

PAID STORE AFTER 30 DAYS PAID STORE AFTER 90 DAYS

Certified By John Chiang QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

 Report Footer
 L.N.R. = Listed not received n.a. = Not applicable
 I.S. = Insufficient Sample -- = No result

 *INF
 = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

	Element	Ag	A	As	Au	8a	8 i	Ca	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	0.5	1	10	0.1	10	0.5	2	1
	Units	ррь	ppm	ppb	ppb	ppb	ppb	ppm	ppb
S8S001		5.4	40	<10	0.2	830	<0.5	469	12
S8S002		11.3	45	<10	0.2	830	<0.5	487	8
S8S003		10.9	46	<10	0.2	1250	<0.5	576	5
S8S004		6.1	82	<10	<0.1	820	<0.5	492	12
S8S005		14.9	31	<10	0.4	1120	<0.5	396	5 7
S8S006		17.2	19	<10	0.5	990	<0.5	374	7
S8S007		12.5	23	<10	0.3	1040	<0.5	383	7
S8S008		12.3	38	<10	0.2	1050	<0.5	404	10
S8S009		16.4	36	<10	0.2	760	<0.5	429	6
S8S010		14.5	30	<10	0.4	900	<0.5	415	8
S8S011		24.4	35	<10	<0.1	510	<0.5	533	22
S8S012		12.5	57	<10	0.5	1040	<0.5	492	10
S8S013		8.9	43	<10	0.3	1210	<0.5	459	7
S8S014		22.0	67	<10	<0.1	1050	<0.5	639	24
S8S015		4.1	49	<10	0.1	840	<0.5	543	22
S8S016		18.1	75	<10	0.2	1090	<0.5	520	37
S8S017		14.3	75	<10	0.1	970	<0.5	542	29
S8S018		23.1	40	<10	0.2	1080	<0.5	566	12
S8S020		18.0	38	<10	0.2	740	<0.5	496	10
S8S021		9.6	30	<10	0.2	700	<0.5	423	12
S8S022		7.4	48	<10	0.2	670	<0.5	530	17
S8S023		18.7	61	<10	0.2	690	<0.5	530	33
S8S024		17.2	32	<10	0.1	950	<0.5	439	6
S8S025		19.2	17	<10	0.6	990	<0.5	366	4
S8S026		16.0	26	<10	0.3	1030	<0.5	430	8
S8S027		16.6	39	<10	0.2	920	<0.5	448	15
JLS001		9.5	55	<10	<0.1	1010	<0.5	515	15
JLS002		6.0	89	<10	0.1	800	<0.5	487	22
JLS003		7.0	86	<10	0.2	1000	<0.5	502	18
JLS004		10.3	81	<10	0.2	950	<0.5	509	12
JLS005		10.8	70	<10	<0.1	1080	<0.5	411	13
JLS006		11.3	86	<10	0.3	1390	<0.5	417	12
JLS007		12.2	89	<10	0.2	1100	<0.5	375	18
JLS008		6.0	103	<10	0.2	1440	<0.5	308	14
JLS009		4.8	114	20	0.2	1580	0.6	218	5
JLS010		8.0	65	<10	0.3	840	<0.5	241	10
JLS011		9.9	98	<10	0.1	910	<0.5	321	19
JLS012		9.0	71	<10	0.2	1060	<0.5	421	21
JLS013		12.2	51	<10	0.3	690	<0.5	404	14
JLS014		11.2	41	<10	<0.1	860	<0.5	522	27

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Societe Generale de Surveillance)

	Element	Ag	A	As	Au	8a	8i	Ca	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	0.5	1	10	0.1	10	0.5	2	1
	Units	ррь	ppm	ppb	ppb	ppb	ppb	ppm	ppb
JLS015		15.7	39	<10	0.4	1270	<0.5	576	19
JLS016		11.0	50	<10	0.4	1200	<0.5	448	15
JLS017		6.3	65	<10	<0.1	710	<0.5	379	26
JLS018		15.8	50	<10	0.2	940	<0.5	440	24
JLS019		11.2	48	<10	0.2	1030	<0.5	471	18
JLS020		22.7	51	<10	0.2	1020	<0.5	532	25
JLS021		4.0	74	<10	0.1	680	<0.5	488	29
JLS022		11.3	47	<10	<0.1	1160	<0.5	570	12
JLS023		16.8	61	<10	0.1	950	<0.5	573	9
JLS024		15.6	39	<10	0.2	1420	<0.5	510	9 6
JLS025		5.8	73	<10	<0.1	610	<0.5	497	31
JLS026		13.2	75	<10	0.1	940	<0.5	486	11
JLS027		26.0	66	<10	0.3	1180	<0.5	474	6
JLS028		17.9	53	<10	0.4	1120	<0.5	468	10
JLS029		13.7	78	<10	0.3	960	<0.5	472	13
JLS030		21.4	81	<10	0.1	960	<0.5	493	9
JLS031		23.1	68	<10	0.2	1190	<0.5	490	10
JLS032		14.3	122	<10	0.1	910	<0.5	287	15
JLS033		9.5	170	50	0.2	1830	1.7	189	11
JLS034		11.1	153	40	0.4	1730	1.9	174	12
JLS035		10.4	195	20	0.2	1500	1.1	147	12 7
JLS036		9.7	169	40	0.2	1810	1.8	172	13
JLS037		8.0	153	20	0.2	860	1.0	190	15 2
JLS038		6.8	46	<10	0.6	1710	<0.5	447	2
JLS039		10.2	60	<10	0.3	1190	<0.5	454	14
JLS040		11.9	67	<10	0.6	1480	<0.5	544	5
JLS041		15.3	82	<10	0.1	1310	<0.5	491	13
JLS042		16.4	39	<10	0.5	1290	<0.5	446	6
JLS043		13.4	53	<10	0.3	1290	<0.5	506	14
JLS044		20.0	83	<10	0.2	1680	<0.5	808	12
JLS045		22.9	94	<10	0.2	2070	<0.5	583	6
JLS046		6.8	30	<10	0.4	1940	<0.5	437	6 2 12 9 7
JLS047		5.6	277	70	0.2	2260	2.9	66	12
JLS048		12.7	322	30	0.2	1190	1.8	23	9
JLS049		12.6	323	40	0.1	1970	2.9	42	7
JLS050		12.2	152	<10	0.1	1460	<0.5	220	12
JLS051		15.3	116	<10	0.3	1460	<0.5	363	10
JLS052		6.5	327	40	0.3	2620	1.6	106	10
JLS053		5.4	285	50	0.3	2650	2.5	93	8
JLS054		7.6	42	<10	1.0	1440	<0.5	404	7

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 3 of 22

EI	lement	Ag	A	As	Au	8a	8 i	Ca	Cd
Μ	lethod	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
De	et.Lim.	0.5	1	10	0.1	10	0.5	2	1
	Units	ppb	ppm	ppt	ppb	ppb	ppb	ppm	ppb
JLS055		8.8	28	<10	0.7	1570	<0.5	397	4
JLS056		18.5	41	<10	0.7	1010	<0.5	478	9
*Rep S8S002		9.4	48	<10	0.2	800	<0.5	464	7
*Rep S8S025		21.1	21	<10	0.4	1020	<0.5	375	6
*Rep JLS012		9.5	73	<10	0.2	1140	<0.5	441	21
*Rep JLS030		18.4	86	<10	0.2	950	<0.5	521	11
*Rep JLS040		11.6	76	<10	0.3	1560	<0.5	562	6
*Rep JLS045		21.0	92	<10	0.4	2100	<0.5	556	6
*Std AMIS0169		8.1	54	10	0.3	770	<0.5	33	2
*Std MMISRM19		28.0	24	<10	6.2	1090	<0.5	675	38
*8lk 8LANK		<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*8lk 8LANK		<0.5	<1	<10	<0.1	<10	<0.5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 4 of 22

	Element	Ce	Co	Cr	Cs	Cu	Dy	E	Eu
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppt	ppb
S8S001		93	231	<100	0.5	1270	4.5	2.7	1.9
S8S002		53	117	<100	0.4	850	5.0	2.8	1.7
S8S003		11	103	<100	0.3	700	4.1	2.7	1.0
S8S004		129	87	<100	8.0	1190	14.5	10.3	3.5
S8S005		197	212	<100	0.4	1110	10.9	5.9	4.1
S8S006		14	159	<100	0.5	650	3.8	1.9	1.0
S8S007		89	177	<100	0.3	1080	7.1	3.8	2.5
S8S008		133	148	<100	0.6	820	8.4	4.3	2.8
S8S009		110	148	<100	0.5	690	6.3	3.4	2.4
S8S010		35	119	<100	0.5	540	5.9	3.3	1.8
S8S011		22	36	<100	0.3	300	4.5	2.3	1.5
S8S012		83	186	<100	0.2	780	6.4	3.5	2.1
S8S013		33	27	<100	0.3	410	6.4	4.3	1.8
S8S014		63	46	<100	0.4	760	9.1	5.6	2.5
S8S015		60	131	<100	0.4	790	5.4	3.1	1.7
S8S016		76	47	<100	0.3	300	8.0	5.0	2.2
S8S017		66	47	<100	0.6	230	9.1	5.3	2.5
S8S018		21	32	<100	0.3	640	8.7	4.6	2.5
S8S020		9	96	<100	0.6	700	5.4	3.2	1.3
S8S021		24	148	<100	0.5	950	4.1	2.8	1.2
S8S022		50	87	<100	0.7	1000	6.1	3.4	2.0
S8S023		37	43	<100	0.6	870	9.4	6.1	2.4
S8S024		15	91	<100	0.3	1050	7.7	4.2	1.9
S8S025		8	94	<100	0.5	710	4.8	2.8	1.3
S8S026		27	101	<100	0.4	780	5.6	3.9	1.7
S8S027		64	85	<100	8.0	960	7.7	4.1	2.5
JLS001		64	39	<100	0.4	330	9.2	4.6	3.2
JLS002		150	64	100	0.6	380	16.3	9.8	4.2
JLS003		118	50	100	0.5	400	17.8	12.1	4.7
JLS004		169	45	100	0.5	490	20.8	12.9	5.5
JLS005		100	35	<100	0.5	400	11.3	5.6	3.9
JLS006		154	35	100	8.0	550	22.3	12.2	6.1
JLS007		207	57	100	8.0	670	27.3	14.7	8.2
JLS008		356	31	100	1.4	590	28.3	15.3	9.3
JLS009		592	54	200	3.1	330	42.5	21.8	14.1
JLS010		199	42	<100	1.9	360	10.3	4.7	4.4
JLS011		77	18	<100	1.4	240	7.8	3.7	2.9
JLS012		114	49	<100	0.7	450	11.6	6.3	3.7
JLS013		46	16	<100	1.0	340	5.6	2.6	2.3
JLS014		46	53	<100	0.5	320	6.6	3.1	2.3

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 5 of 22

	Element	Ce	Co	Cr	Cs	Cu	Dy	E	Eu
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppt	ppb
JLS015		3	70	<100	0.3	490	6.5	4.4	1.2
JLS016		48	59	<100	0.8	650	13.6	6.7	4.1
JLS017		152	54	<100	1.0	610	8.2	4.2	3.2
JLS018		181	72	<100	0.8	890	13.3	6.6	4.9
JLS019		132	60	<100	0.4	440	11.4	5.8	3.4
JLS020		72	108	<100	0.4	640	9.2	5.4	2.6
JLS021		77	57	<100	0.7	510	9.4	6.5	2.5
JLS022		55	21	<100	0.6	370	8.8	4.5	2.8
JLS023		104	37	<100	0.6	610	13.4	7.5	3.9
JLS024		66	20	<100	0.3	620	11.8	6.2	3.8
JLS025		90	22	<100	0.5	170	12.0	7.0	3.2
JLS026		162	27	<100	0.5	730	22.5	13.4	6.7
JLS027		64	34	<100	0.6	760	11.3	7.0	3.2
JLS028		50	47	<100	0.5	890	9.3	5.4	3.0
JLS029		172	34	<100	0.6	590	14.9	7.7	4.6
JLS030		120	27	<100	0.8	700	14.0	7.4	4.8
JLS031		110	21	<100	0.8	620	13.7	6.5	4.5
JLS032		457	33	100	1.7	340	35.8	19.1	10.0
JLS033		391	243	300	4.3	550	22.4	11.8	7.5
JLS034		622	172	300	3.7	560	34.4	16.3	12.2
JLS035		661	122	400	3.4	310	40.9	20.4	13.4
JLS036		483	180	300	3.9	420	34.3	17.0	10.1
JLS037		489	119	200	3.8	490	31.1	14.7	9.9
JLS038		261	39	200	0.5	1780	40.9	26.8	11.8
JLS039		90	37	<100	0.7	530	12.0	6.6	4.0
JLS040		101	59	200	0.6	710	12.1	7.5	3.5
JLS041		143	51	100	0.7	470	15.5	9.6	4.6
JLS042		52	36	<100	0.4	670	16.6	9.9	4.6
JLS043		43	31	<100	0.6	340	6.7	3.3	2.4
JLS044		110	24	<100	0.7	540	14.2	8.4	4.2
JLS045		205	49	200	0.7	890	26.4	17.0	6.9
JLS046		69	48	<100	0.4	2960	22.2	13.2	5.3
JLS047		554	244	400	4.1	1690	29.7	14.7	9.3
JLS048		236	65	300	6.4	520	21.5	12.3	7.0
JLS049		393	78	400	6.3	500	32.2	16.4	11.6
JLS050		597	32	100	4.2	280	73.6	41.C	18.1
JLS051		265	68	200	1.7	670	35.3	22.7	9.2
JLS052		595	134	600	3.9	450	34.5	17.6	12.1
JLS053		576	197	600	6.3	610	29.2	14.7	10.0
JLS054		288	92	100	0.5	1190	33.7	18.0	10.8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 6 of 22

Element	Ce	Co	Cr	Cs	Cu	Dy	E	Eu
Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
Det.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
Units	ppb	ppb	ppt	ppb	ppb	ppb	ppt	ppb
JLS055	139	68	<100	0.4	820	19.8	9.9	5.8
JLS056	43	22	<100	0.9	480	7.1	3.8	2.5
*Rep S8S002	70	138	<100	0.4	910	5.3	3.1	2.0
*Rep S8S025	13	59	<100	0.5	720	6.5	3.5	1.5
*Rep JLS012	119	43	<100	0.7	480	12.3	7.0	3.9
*Rep JLS030	125	31	<100	1.1	640	15.0	8.1	4.7
*Rep JLS040	112	64	100	0.5	740	14.3	8.9	3.9
*Rep JLS045	181	54	200	0.8	910	25.6	15.8	6.6
*Std AMIS0169	655	80	<100	7.7	3610	25.0	10.5	9.6
*Std MMISRM19	14	411	<100	4.8	2340	14.1	8.3	2.6
*8lk 8LANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*8lk 8LANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 7 of 22

	Element	Fe	Ga	Gd	Hg	In	К	La	Li
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
	Units	ppm	ppb	ppb	ppb	ppb	ppm	ppt	ppb
S8S001		25	1.1	6.9	<1	<0.1	16.6	34	<1
S8S002		16	0.6	7.0	<1	<0.1	8.2	24	<1
S8S003		11	<0.5	4.1	<1	<0.1	7.3	4	<1
S8S004		24	8.0	16.0	<1	<0.1	7.7	79	<1
S8S005		30	0.7	16.9	<1	<0.1	10.1	66	<1
S8S006		9	<0.5	4.6	<1	<0.1	9.2	4	<1
S8S007		20	<0.5	9.7	<1	<0.1	16.9	27	<1
S8S008		25	8.0	12.3	<1	<0.1	8.8	42	<1
S8S009		22	<0.5	9.9	<1	<0.1	7.4	34	<1
S8S010		16	<0.5	8.3	<1	<0.1	8.2	10	<1
S8S011		11	<0.5	6.7	<1	<0.1	10.9	15	<1
S8S012		21	0.6	8.4	<1	<0.1	13.3	25	<1
S8S013		12	<0.5	9.0	<1	<0.1	10.5	12	<1
S8S014		12	8.0	11.0	<1	<0.1	14.2	32	<1
S8S015		18	0.7	7.1	<1	<0.1	16.0	28	<1
S8S016		11	0.6	10.6	<1	<0.1	37.8	26	<1
S8S017		14	<0.5	10.3	<1	<0.1	20.6	28	<1
S8S018		9	<0.5	11.2	<1	<0.1	15.3	17	<1
S8S020		12	0.5	6.3	<1	<0.1	10.2	3	<1
S8S021		21	<0.5	5.0	<1	<0.1	9.6	6	2
S8S022		19	<0.5	8.8	<1	<0.1	9.9	25	1
S8S023		12	<0.5	12.6	<1	<0.1	27.3	19	<1
S8S024		10	<0.5	9.1	<1	<0.1	18.4	7	<1
S8S025		7	<0.5	6.6	<1	<0.1	12.2	3	1
S8S026		14	<0.5	7.7	<1	<0.1	10.5	11	1
S8S027		14	0.5	11.0	<1	<0.1	14.1	23	<1
JLS001		10	0.6	13.5	<1	<0.1	17.4	35	<1
JLS002		24	1.2	17.8	<1	<0.1	12.4	61	1
JLS003		12	8.0	22.3	<1	<0.1	14.5	59	1
JLS004		16	1.1	26.9	<1	<0.1	12.9	71	<1
JLS005		10	8.0	16.8	<1	<0.1	16.5	40	<1
JLS006		11	0.9	28.6	<1	<0.1	13.1	60	<1
JLS007		16	1.0	35.2	<1	<0.1	14.4	103	<1
JLS008		26	3.3	39.1	<1	<0.1	44.3	120	2
JLS009		53	8.0	57.5	<1	<0.1	11.8	204	2
JLS010		28	3.3	16.4	<1	<0.1	24.1	59	1
JLS011		13	1.6	12.0	<1	<0.1	15.7	34	<1
JLS012		14	0.7	16.0	<1	<0.1	23.7	42	<1
JLS013		9	1.0	8.9	<1	<0.1	18.7	25	<1
JLS014		8	8.0	10.7	<1	<0.1	28.7	26	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 8 of 22

	Element	Fe	Ga	Gd	Hg	In	K	La	Li
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
	Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
	Units	ppm	ppb	ppb	ppb	ppb	ppm	ppt	ppb
JLS015		7	0.5	7.1	<1	<0.1	20.5	2	<1
JLS016		13	0.6	17.8	<1	<0.1	9.9	45	<1
JLS017		48	2.6	12.2	<1	<0.1	19.7	65	3
JLS018		25	1.0	20.7	<1	<0.1	20.2	69	<1
JLS019		19	8.0	15.9	<1	<0.1	10.3	43	<1
JLS020		12	0.5	12.8	<1	<0.1	10.8	36	<1
JLS021		17	0.5	10.8	<1	<0.1	15.5	47	<1
JLS022		15	0.9	12.6	<1	<0.1	12.9	28	<1
JLS023		20	8.0	17.1	<1	<0.1	10.0	51	<1
JLS024		14	<0.5	16.3	<1	<0.1	6.4	34	<1
JLS025		15	0.5	15.4	<1	<0.1	7.5	46	<1
JLS026		22	8.0	29.1	<1	<0.1	9.3	96	1
JLS027		13	0.6	13.9	<1	<0.1	8.1	32	<1
JLS028		17	0.6	13.0	<1	<0.1	9.0	27	<1
JLS029		22	0.6	20.3	<1	<0.1	10.4	64	<1
JLS030		13	0.6	19.6	<1	<0.1	9.4	54	<1
JLS031		15	0.5	19.2	<1	<0.1	8.6	49	<1
JLS032		39	3.7	41.6	<1	<0.1	5.0	107	5
JLS033		201	24.5	29.0	<1	0.3	10.2	157	21
JLS034		176	23.0	44.7	<1	0.2	7.8	223	17
JLS035		170	21.1	53.5	<1	0.2	4.9	264	15
JLS036		213	23.5	42.3	<1	0.3	7.5	193	22
JLS037		159	17.6	39.7	<1	0.2	6.0	210	18
JLS038		12	<0.5	55.1	1	<0.1	5.2	133	<1
JLS039		13	0.7	18.2	<1	<0.1	13.6	36	<1
JLS040		14	0.7	14.9	<1	<0.1	7.8	30	<1
JLS041		17	0.9	19.5	<1	<0.1	10.1	46	<1
JLS042		13	<0.5	20.6	<1	<0.1	5.1	29	<1
JLS043		12	0.6	9.4	<1	<0.1	10.8	19	<1
JLS044		19	1.1	17.7	<1	<0.1	6.5	50	<1
JLS045		17	0.7	33.1	<1	<0.1	7.9	83	<1
JLS046		8	<0.5	25.8	<1	<0.1	3.6	23	2
JLS047		279	29.2	33.9	1	0.5	13.6	231	2 18
JLS048		222	46.9	24.2	1	0.4	11.4	117	23
JLS049		228	69.5	40.0	<1	0.5	13.4	188	26 3
JLS050		40	5.4	77.0	<1	<0.1	19.4	161	3
JLS051		14	1.5	39.7	<1	<0.1	10.4	92	<1
JLS052		286	40.9	43.8	1	0.4	5.7	251	19
JLS053		346	43.6	37.5	<1	0.4	11.5	207	39
JLS054		21	0.7	47.4	<1	<0.1	3.5	150	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

E	Element	Fe	Ga	Gd	Hg	In	к	La	Li
1	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N	GE_MMI_M
Γ	Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
	Units	ppm	ppb	ppt	ppb	ppb	ppm	ppt	ppb
JLS055		14	<0.5	28.0	<1	<0.1	5.2	71	1
JLS056		11	0.6	10.3	<1	<0.1	7.0	19	<1
*Rep S8S002		20	0.7	8.1	<1	<0.1	8.6	32	<1
*Rep S8S025		7	<0.5	8.4	<1	<0.1	13.6	5	<1
*Rep JLS012		13	0.5	17.3	<1	<0.1	24.8	43	<1
*Rep JLS030		13	<0.5	21.0	<1	<0.1	10.0	55	<1
*Rep JLS040		14	0.7	17.8	<1	<0.1	8.3	36	<1
*Rep JLS045		15	1.0	30.4	<1	<0.1	12.4	76	<1
*Std AMIS0169		33	8.4	39.6	<1	<0.1	41.2	351	<1
*Std MMISRM19		5	<0.5	13.9	2	<0.1	99.8	2	1
*8lk 8LANK		<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*8lk 8LANK		<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 10 of 22

	Element	Mg	Mn	Mc	Nb	Nd	Ni	p	pb
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppm	100 ppb	∠ ppt	0.5 ppb	ppb	5 ppb	0.1 ppm	o ppb
S8S001		122	23500	7	1.6	49	391	0.3	65
S8S002		113	12300	5	0.9	38	345	0.2	70
S8S003		145	7000	3	0.5	11	208	<0.1	49
S8S004		111	7800	3	0.7	85	425	0.1	171
S8S005		93.7	15500	4	0.9	107	268	0.3	46
S8S006		104	11900	4	<0.5	12	196	0.2	35
S8S007		113	18500	4	1.1	53	279	0.3	35
S8S008		95.0	12600	5	0.8	68	272	0.3	78
S8S009		90.8	13100	4	0.9	58	290	0.2	59
S8S010		99.8	9000	2	0.7	29	214	0.2	45
S8S011		144	800	<2	<0.5	27	751	0.2	56
S8S012		101	12400	8	0.8	46	416	0.3	77
S8S013		115	1400	<2	<0.5	28	202	0.2	33
S8S014		136	1400	<2	<0.5	46	1040	0.2	113
S8S015		123	6000	4	0.7	40	470	0.2	154
S8S016		112	6000	<2	<0.5	41	566	0.2	1010
S8S017		118	5600	3	<0.5	43	566	0.2	268
S8S018		131	2500	2	<0.5	37	287	0.2	36
S8S020		114	6200	3	<0.5	13	233	0.2	38
S8S021		103	10400	5	1.0	21	340	0.3	81
S8S022		112	6200	3	0.7	41	416	0.2	173
S8S023		112	1800	<2	<0.5	37	414	0.2	92
S8S024		116	4500	<2	<0.5	23	277	0.2	40
S8S025		106	5900	<2	<0.5	13	178	0.1	24
S8S026		131	8100	3	<0.5	26	267	0.2	63
S8S027		108	4900	4	<0.5	49	320	0.2	81
JLS001		112	1800	<2	<0.5	56	270	0.2	111
JLS002		94.9	4300	<2	1.2	82	322	0.2	178
JLS003		118	4300	<2	0.6	89	335	0.2	133
JLS004		101	2900	<2	0.8	111	321	0.2	102
JLS005		91.4	3300	<2	<0.5	66	237	0.2	67
JLS006		99.2	2500	3	0.5	107	271	0.2	146
JLS007		90.8	3300	<2	0.5	149	318	0.3	113
JLS008		70.0	3600	2	2.6	178	317	0.7	125
JLS009		55.2	4200	3	7.4	289	177	1.3	185
JLS010		55.6	3500	3	2.3	91	153	0.7	61
JLS011		67.3	900	<2	0.6	56	185	0.3	69
JLS012		84.3	7100	3	0.6	67	296	0.4	95
JLS013		73.0	1400	2	<0.5	42	158	0.2	20
JLS014		109	4900	<2	<0.5	40	251	0.3	65

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 11 of 22

	Element	Mg	Mn	Мс	Nb	Nd	Ni	p	pb
	Method	GE_MMI_M							
	Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
	Units	ppm	ppb	ppt	ppb	ppb	ppb	ppm	ppb
JLS015		125	2600	<2	<0.5	9	284	0.1	34
JLS016		81.4	2700	3	<0.5	74	185	0.2	29
JLS017		74.5	1900	4	1.8	80	277	0.5	78
JLS018		82.9	3300	3	0.5	104	331	0.3	66
JLS019		96.8	4300	2	0.5	69	328	0.2	94
JLS020		110	10100	3	<0.5	53	467	0.3	65
JLS021		118	12200	5	<0.5	56	529	0.2	173
JLS022		124	900	<2	<0.5	47	239	0.2	76
JLS023		138	1100	2	0.7	73	332	0.2	93
JLS024		138	700	<2	<0.5	63	307	0.2	99
JLS025		101	2400	<2	<0.5	64	366	0.2	183
JLS026		97.4	2000	<2	0.6	129	448	0.2	191
JLS027		108	1700	3	<0.5	58	255	0.2	69
JLS028		115	2600	2	0.5	53	312	0.2	83
JLS029		103	2500	2	0.7	94	489	0.3	132
JLS030		94.5	700	<2	<0.5	85	374	0.2	122
JLS031		103	1000	2	<0.5	84	304	0.2	61
JLS032		49.7	4000	3	1.7	167	438	0.7	157
JLS033		32.4	19200	g	13.3	168	399	4.5	292
JLS034		29.1	16600	8	13.1	268	346	4.8	311
JLS035		20.2	6100	5	12.4	290	281	4.5	221
JLS036		29.4	13600	8	12.4	218	416	3.9	325
JLS037		34.9	4900	4	9.1	223	337	2.3	238
JLS038		147	1400	<2	0.6	216	177	0.2	29
JLS039		102	1400	3	0.6	67	240	0.3	41
JLS040		136	2600	3	0.8	59	213	0.2	51
JLS041		114	1400	2	0.7	83	298	0.3	101
JLS042		135	1600	<2	<0.5	69	236	0.2	41
JLS043		119	1100	<2	<0.5	38	201	0.2	42
JLS044		141	700	<2	0.8	79	236	0.2	71
JLS045		149	1900	3	1.1	130	256	0.2	119
JLS046		105	1600	3	<0.5	60	91	0.1	41
JLS047		12.0	8000	12	20.6	197	376	9.3	1530
JLS048		5.2	2800	8	18.0	120	253	7.5	499
JLS049		7.4	3400	g	25.1	211	299	8.0	679
JLS050		52.9	3600	2	3.0	284	340	0.9	251
JLS051		76.7	4100	3	0.8	153	405	0.4	157
JLS052		15.1	4900	g	22.8	263	331	8.6	328
JLS053		17.0	10200	g	25.5	223	443	9.0	363
JLS054		94.3	4900	2	0.7	232	304	0.3	28
		01.0	1000	-	v.,		001	0.0	20

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 12 of 22

Element	Mg	Mn	Mc	Nb	Nd	Ni	р	pb
Method	GE_MMI_M							
Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
Units	ppm	ppb	ppt	ppb	ppb	ppb	ppm	ppb
JLS055	99.9	3300	2	<0.5	121	155	0.2	21
JLS056	106	700	<2	<0.5	38	205	0.1	25
*Rep S8S002	105	14800	6	0.9	48	350	0.2	70
*Rep S8S025	111	4300	<2	<0.5	18	203	0.1	27
*Rep JLS012	85.9	5700	3	<0.5	71	297	0.3	103
*Rep JLS030	99.0	800	<2	<0.5	84	383	0.2	146
*Rep JLS040	135	2800	3	0.8	68	249	0.2	66
*Rep JLS045	148	2200	3	1.1	117	247	0.4	112
*Std AMIS0169	26.9	3400	3	2.8	327	357	2.5	93
*Std MMISRM19	196	7700	11	<0.5	14	2100	0.4	1150
*8lk 8LANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*8lk 8LANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 13 of 22

	Element	pd	pr	pt	Rb	Sb	Sc	Sm	Sn
	Method	GE_MMI_M							
	Det.Lim.	1	0.5	0.1	1	0.5	5	1	1
	Units	ppb	ppb	ppt	ppb	ppb	ppb	ppt	ppb
S8S001		<1	12.0	<0.1	120	<0.5	7	8	<1
S8S002		<1	8.8	<0.1	62	<0.5	7	8	<1
S8S003		<1	2.0	<0.1	130	<0.5	7	3	<1
S8S004		<1	21.6	<0.1	151	<0.5	17	15	<1
S8S005		<1	24.6	<0.1	134	<0.5	12	20	<1
S8S006		<1	2.1	<0.1	82	<0.5	5	3	<1
S8S007		<1	11.5	<0.1	88	<0.5	8	11	<1
S8S008		<1	15.4	<0.1	144	<0.5	8	13	<1
S8S009		<1	12.7	<0.1	109	<0.5	6	11	<1
S8S010		<1	5.7	<0.1	118	<0.5	8	8	<1
S8S011		<1	6.2	<0.1	88	<0.5	<5	6	<1
S8S012		<1	10.7	<0.1	86	<0.5	8	g	<1
S8S013		<1	5.9	<0.1	124	<0.5	9	7	<1
S8S014		<1	11.5	<0.1	123	<0.5	9	11	<1
S8S015		<1	9.4	<0.1	148	<0.5	5	8	<1
S8S016		<1	9.6	<0.1	105	<0.5	6	10	<1
S8S017		<1	10.3	<0.1	166	<0.5	9	10	<1
S8S018		<1	7.7	<0.1	98	<0.5	7	10	<1
S8S020		<1	2.2	<0.1	122	<0.5	7	5	<1
S8S021		<1	3.9	<0.1	91	<0.5	6	5	<1
S8S022		<1	9.8	<0.1	230	<0.5	6	g	<1
S8S023		<1	7.6	<0.1	162	<0.5	8	10	<1
S8S024		<1	4.4	<0.1	94	<0.5	9	7	<1
S8S025		<1	2.2	<0.1	148	<0.5	6	4	<1
S8S026		<1	5.8	<0.1	134	<0.5	9	7	<1
S8S027		<1	10.4	<0.1	140	<0.5	7	11	<1
JLS001		<1	12.7	<0.1	84	<0.5	6	13	<1
JLS002		<1	20.3	<0.1	117	<0.5	15	18	<1
JLS003		<1	20.1	<0.1	143	<0.5	15	21	<1
JLS004		<1	25.1	<0.1	127	<0.5	16	25	<1
JLS005		<1	14.8	<0.1	156	<0.5	8	16	<1
JLS006		<1	22.9	<0.1	150	<0.5	16	26	<1
JLS007		<1	35.1	<0.1	116	<0.5	19	33	<1
JLS008		<1	40.8	<0.1	142	<0.5	28	40	<1
JLS009		<1	70.1	<0.1	243	0.6	58	62	<1
JLS010		<1	20.2	<0.1	182	<0.5	12	19	<1
JLS011		<1	11.5	<0.1	164	<0.5	9	12	<1
JLS012		<1	15.7	<0.1	112	<0.5	9	16	<1
JLS013		<1	9.2	<0.1	143	<0.5	6	9	<1
JLS014		<1	8.9	<0.1	104	<0.5	6	10	<1
		-1	0.0	·v. I		••••	J	14	

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 14 of 22

JLS015 JLS016	Method Det.Lim. Units	GE_MMI_M 1	GE_MMI_M	GE MMI M					
		1			GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Units		0.5	0.1	1	0.5	5	1	1
		ррь	ppb	ppb	ppb	ppb	ppb	ppt	ppb
JLS016		<1	1.5	<0.1	153	<0.5	10	4	<1
		<1	16.6	<0.1	152	<0.5	13	17	<1
JLS017		<1	19.9	<0.1	141	<0.5	13	15	<1
JLS018		<1	23.6	<0.1	140	<0.5	10	22	<1
JLS019		<1	15.8	<0.1	120	<0.5	9	15	<1
JLS020		<1	12.4	<0.1	107	<0.5	8	12	<1
JLS021		<1	13.0	<0.1	137	<0.5	11	11	<1
JLS022		<1	10.0	<0.1	136	<0.5	6	11	<1
JLS023		<1	17.5	<0.1	129	<0.5	10	17	<1
JLS024		<1	14.0	<0.1	88	<0.5	10	15	<1
JLS025		<1	14.0	<0.1	156	<0.5	8	14	<1
JLS026		<1	31.6	<0.1	106	<0.5	14	27	<1
JLS027		<1	12.2	<0.1	138	<0.5	12	13	<1
JLS028		<1	11.0	<0.1	135	<0.5	11	12	<1
JLS029		<1	21.9	<0.1	162	<0.5	12	20	<1
JLS030		<1	19.6	<0.1	183	<0.5	11	19	<1
JLS031		<1	18.6	<0.1	135	<0.5	11	20	<1
JLS032		<1	37.2	<0.1	83	<0.5	39	39	<1
JLS033		<1	42.7	<0.1	180	1.3	75	33	
JLS034		<1	66.2	<0.1	146	0.9	83	52	3 3 2 3 3 2
JLS035		<1	75.3	<0.1	110	0.7	80	60	2
JLS036		<1	56.4	<0.1	124	1.3	79	47	3
JLS037		<1	55.9	<0.1	115	0.7	63	44	2
JLS038		<1	46.5	<0.1	60	<0.5	30	48	<1
JLS039		<1	14.3	<0.1	162	<0.5	11	17	<1
JLS040		<1	12.6	<0.1	120	<0.5	16	14	<1
JLS041		<1	18.1	<0.1	164	<0.5	14	19	<1
JLS042		<1	14.2	<0.1	85	<0.5	18	18	<1
JLS043		<1	8.4	<0.1	164	<0.5	6	10	<1
JLS044		<1	17.9	<0.1	126	<0.5	13	17	<1
JLS045		<1	28.3	<0.1	90	<0.5	24	30	<1
JLS046		<1	11.6	<0.1	47	<0.5	23	18	<1
JLS047		<1	51.4	<0.1	144	2.6	110	38	4
JLS048		<1	31.4	<0.1	217	1.2	88	27	
JLS049		<1	53.2	<0.1	303	1.7	105	46	5 7
JLS050		<1	60.7	<0.1	361	<0.5	80	73	<1
JLS051		<1	33.0	<0.1	177	<0.5	35	35	<1
JLS052		<1	67.2	<0.1	94	1.7	97	51	4
JLS053		<1	58.7	<0.1	201	2.0	105	45	6
JLS054		<1	52.0	<0.1	77	<0.5	24	48	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 15 of 22

Ele	ement	pd	pr	pt	Rb	Sb	Sc	Sm	Sn
М	lethod	GE_MMI_M							
De	et.Lim.	1	0.5	0.1	1	0.5	5	1	1
	Units	ppb	ppb	ppt	ppb	ppb	ppb	ppt	ppb
JLS055		<1	26.1	<0.1	74	<0.5	15	29	<1
JLS056		<1	8.3	<0.1	188	<0.5	7	10	<1
*Rep S8S002		<1	11.3	<0.1	58	<0.5	7	ç	<1
*Rep S8S025		<1	3.2	<0.1	135	<0.5	8	6	<1
*Rep JLS012		<1	16.1	<0.1	108	<0.5	9	17	<1
*Rep JLS030		<1	19.5	<0.1	196	<0.5	11	21	<1
*Rep JLS040		<1	15.6	<0.1	125	<0.5	16	16	<1
*Rep JLS045		<1	26.7	<0.1	100	<0.5	23	27	<1
*Std AMIS0169		<1	86.8	<0.1	240	0.9	50	56	<1
*Std MMISRM19		<1	1.8	<0.1	227	1.2	14	7	<1
*8lk 8LANK		<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*8lk 8LANK		<1	<0.5	<0.1	<1	<0.5	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 16 of 22

Element Method		Та	Tt	Te	Th	T	T	U
	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
Det.Lim.	10 nob	1 pph	0.1	10 nob	0.5	10 ppb	0.1	0.5 ppb
Units								
		<1						33.9
								45.4
	970	<1						28.6
	660	<1	2.2	<10	25.1	20	0.4	70.1
	530	<1	2.0	<10	44.5	20	0.2	33.0
	600	<1	0.7	<10	8.2	10	0.3	16.4
	520	<1	1.3	<10	29.9	20	0.4	12.3
	600	<1	1.4	<10	28.1	20	0.4	19.1
	540	<1	1.1	<10	24.0	20	0.3	21.9
	560	<1	1.1	<10	24.5	20	0.4	15.3
	550	<1	0.9	<10	9.1	<10	0.2	28.6
	680	<1	1.2	<10	39.6	20	0.3	30.3
	800	<1	1.2	<10	32.7	20	0.3	23.9
	950	<1	1.5	<10	19.3	20	0.2	32.4
	700	<1	0.9	<10	12.9	10	0.2	61.4
	810	<1	1.5	<10	12.8	10	0.3	20.5
	720	<1	1.4	<10	12.8	<10	0.3	44.2
	790	<1	1.5	<10	19.2	<10	0.2	47.2
	760	<1	0.8	<10	15.7	10	0.3	24.1
	600	<1	0.8	<10	26.1	20	0.4	24.4
	650	<1	1.1	<10	18.0	10	0.3	58.9
	690	<1	1.6	<10	14.9	<10	0.2	57.6
	630	<1	1.2	<10	19.3	10	0.2	43.7
	630	<1	0.8	<10	7.8	<10	0.3	19.2
	640	<1	1.1	<10	21.0	20	0.5	16.6
		<1						25.8
	620	<1	1.7	<10	21.8	10	0.1	10.1
	560	<1	2.5	<10	40.9		0.3	15.0
		<1						11.3
								13.5
		<1						8.3
		<1						10.8
								9.4
								8.4
								12.7
								7.1
								4.6
								4.0
								6.8
								12.7
		Units ppb 1000 500 1000 590 1000 970 1000 970 1000 970 1000 530 1000 530 1000 530 1000 530 1000 530 1000 530 1000 540 1000 540 1000 550 1000 550 1000 680 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 1000 950 <td>Units ppb ppt 500 <1</td> 590 <1	Units ppb ppt 500 <1	Units ppb ppt 1000 <1	Units ppb ppb ppb 500 <1	Units ppt ppt ppt ppt 500 <1	Units ppb ppb ppb ppb ppb 500 <1	Unitsppbppbppbppbppbppbppb 500 $<$ 0.9 <10 28.8 30 0.2 970 $<$ 0.6 <10 24.9 <10 0.4 900 $<$ 2.2 <10 25.1 20 0.4 600 $<$ 2.2 <10 44.5 200 0.4 600 $<$ 2.1 <10 44.5 200 0.4 600 $<$ 1.3 <10 29.5 200 0.4 600 $<$ 1.4 <10 29.5 200 0.4 600 $<$ 1.4 <10 29.5 200 0.4 600 $<$ 1.4 <10 24.5 200 0.4 600 $<$ 1.1 <10 24.5 200 0.6 600 $<$ 1.1 <10 24.5 200 0.6 600 $<$ 1.2 <10 39.5 0.6 0.6 600 $<$ 1.6 <10 1.2 100 0.6 600 $<$ 1.6 <10 12.5 100 0.6 600 $<$ 1.6 <10 1.6 0.6 0.6 600 $<$ 1.6 <10 1.6 0.6 0.6 600 $<$ 0.6 <1.6 0.6 0.6 0.6 600 $<$ 0.6 <1.6 0.6 0.6 0.6 600 $<$ </td

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 17 of 22

Report File No.	Element	Sr	Ta	Tb	Te	Th	Ti	T	u
	Method	GE_MMI_M							
	Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppt	ppb
JLS015		830	<1	1.0	<10	11.9	10	0.3	10.6
JLS016		700	<1	2.4	<10	32.2	20	0.3	20.1
JLS017		470	<1	1.7	<10	24.5	200	0.2	7.3
JLS018		540	<1	2.6	<10	21.6	30	0.3	19.4
JLS019		640	<1	2.2	<10	25.8	20	0.4	13.8
JLS020		680	<1	1.5	<10	18.7	<10	0.5	35.9
JLS021		620	<1	1.7	<10	9.7	10	0.5	36.0
JLS022		780	<1	1.7	<10	19.5	<10	0.2	9.7
JLS023		820	<1	2.3	<10	28.4	30	0.3	16.7
JLS024		700	<1	2.1	<10	28.4	<10	0.4	20.1
JLS025		570	<1	2.1	<10	9.8	10	0.2	35.8
JLS026		610	<1	3.9	<10	23.6	10	0.3	30.7
JLS027		650	<1	1.8	<10	28.3	10	0.4	33.3
JLS028		570	<1	1.5	<10	26.7	10	0.4	30.6
JLS029		560	<1	2.6	<10	32.7	20	0.5	32.1
JLS030		580	<1	2.6	<10	23.2	<10	0.5	46.2
JLS031		640	<1	2.3	<10	31.1	10	0.4	25.5
JLS032		410	<1	6.0	<10	31.0	370	0.5	30.0
JLS033		260	<1	4.2	<10	55.3	2790	0.7	18.9
JLS034		240	<1	6.1	<10	75.1	3050	8.0	20.8
JLS035		240	<1	7.5	<10	80.0	2660	0.7	18.5
JLS036		260	<1	5.7	<10	68.2	2620	8.0	17.4
JLS037		250	<1	5.3	<10	57.9	1930	0.5	16.1
JLS038		1180	<1	6.9	<10	49.8	10	0.4	24.5
JLS039		720	<1	2.2	<10	40.6	20	0.3	13.6
JLS040		1090	<1	2.1	<10	52.4	20	0.4	14.9
JLS041		820	<1	2.7	<10	46.0	20	0.3	16.8
JLS042		890	<1	2.8	<10	37.9	10	0.3	16.5
JLS043		830	<1	1.2	<10	24.6	10	0.2	7.3
JLS044		1190	<1	2.4	<10	32.4	20	0.2	7.8
JLS045		1340	<1	4.6	<10	63.3	30	0.5	16.3
JLS046		2350	<1	3.5	<10	22.1	20	0.3	23.6
JLS047		300	1	5.1	<10	95.7	5970	0.6	14.0
JLS048		80	1	3.6	<10	30.1	6350	0.6	9.5
JLS049		130	2	5.9	<10	48.7	10200	3.0	10.4
JLS050		440	<1	12.2	<10	69.7	830	0.5	16.5
JLS051		720	<1	6.0	<10	65.8	80	0.5	15.6
JLS052		230	2	6.2	<10	76.6	5940	0.7	12.5
JLS053		230	2	5.4	<10	80.9	6180	3.0	14.7
JLS054		820	<1	6.0	<10	62.1	30	0.4	25.8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Societe Generale de Surveillance)

Elemer	t Sr	Ta	Tb	Te	Th	Ti	T	u
Metho	d GE_MMI_M	GE_MMI_M						
Det.Lin	ı. 10	1	0.1	10	0.5	10	0.1	0.5
Unit	s ppb	ppb	ppt	ppb	ppb	ppb	ppt	ppb
JLS055	860	<1	3.7	<10	37.5	20	0.3	20.9
JLS056	750	<1	1.3	<10	22.2	<10	0.3	25.0
*Rep S8S002	560	<1	0.9	<10	20.8	10	0.3	51.1
*Rep S8S025	650	<1	1.1	<10	9.7	<10	0.2	22.0
*Rep JLS012	490	<1	2.4	<10	34.5	20	0.3	10.1
*Rep JLS030	610	<1	2.7	<10	20.8	20	0.4	47.0
*Rep JLS040	1040	<1	2.3	<10	53.3	20	0.4	15.2
*Rep JLS045	1300	<1	4.1	<10	60.C	20	0.5	14.8
*Std AMIS0169	80	<1	5.0	<10	64.3	360	1.3	22.6
*Std MMISRM19	3390	<1	2.1	<10	18.2	<10	1.0	69.3
*8lk 8LANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*8lk 8LANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 19 of 22

	Element	w	У	yb	Zn	Zı
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim.	0.5	1	0.2	10	2
	Units	ppb	ppb	ppb	ppb	ppb
S8S001		<0.5	26	2.3	120	16
S8S002		<0.5	28	2.4	50	12
S8S003		<0.5	17	2.9	30	22
S8S004		<0.5	90	8.9	60	25
S8S005		<0.5	58	5.1	30	40
S8S006		<0.5	19	1.6	80	10
S8S007		<0.5	38	3.5	30	35
S8S008		<0.5	43	3.7	50	17
S8S009		<0.5	33	2.6	20	13
S8S010		<0.5	31	2.8	10	22
S8S011		<0.5	25	1.7	70	6
S8S012		<0.5	31	3.3	70	34
S8S013		<0.5	31	3.5	50	44
S8S014		<0.5	50	4.8	370	12
S8S015		<0.5	30	2.4	80	8
S8S016		<0.5	45	4.0	1090	8
S8S017		<0.5	53	4.4	210	12
S8S018		<0.5	43	3.6	80	12
S8S020		<0.5	26	2.6	40	13
S8S021		<0.5	22	2.2	90	21
S8S022		<0.5	35	3.1	40	10
S8S023		<0.5	58	5.0	90	12
S8S024		<0.5	38	3.8	40	20
S8S025		<0.5	26	2.0	10	11
S8S026		<0.5	31	3.1	40	22
S8S027		<0.5	39	2.9	40	14
JLS001		<0.5	49	3.1	380	11
JLS002		<0.5	76	7.6	130	31
JLS003		<0.5	93	9.8	170	35
JLS004		<0.5	107	10.8	60	41
JLS005		<0.5	55	3.9	80	18
JLS006		<0.5	103	8.7	40	40
JLS007		<0.5	140	11.3	120	41
JLS008		<0.5	137	10.9	290	82
JLS009		0.6	208	15.9	40	142
JLS010		<0.5	47	3.4	70	41
JLS011		<0.5	39	2.9	520	18
JLS012		<0.5	58	4.5	320	26
JLS013		<0.5	26	1.7	160	13
JLS014		<0.5	33	2.1	910	9

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 20 of 22

	Element	w	У	yb	Zn	Zı
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim.	0.5	1	0.2	10	2
	Units	ppb	ppb	ppb	ppb	ppb
JLS015		<0.5	34	3.7	390	13
JLS016		<0.5	62	5.2	50	29
JLS017		<0.5	44	3.3	580	22
JLS018		<0.5	73	5.1	110	16
JLS019		<0.5	61	4.4	200	16
JLS020		<0.5	53	4.2	120	13
JLS021		<0.5	70	5.5	210	12
JLS022		<0.5	46	3.4	60	11
JLS023		<0.5	66	5.6	50	19
JLS024		<0.5	60	4.9	10	19
JLS025		<0.5	74	5.3	40	10
JLS026		<0.5	132	10.3	20	24
JLS027		<0.5	58	5.7	10	25
JLS028		<0.5	50	4.7	20	22
JLS029		<0.5	83	6.5	90	23
JLS030		<0.5	81	5.6	10	18
JLS031		<0.5	73	4.7	30	20
JLS032		<0.5	170	13.7	50	52
JLS033		1.7	105	8.4	100	124
JLS034		1.6	153	12.7	70	155
JLS035		1.6	194	13.7	50	140
JLS036		1.8	158	12.9	60	128
JLS037		1.3	151	10.7	80	96
JLS038		<0.5	199	22.1	<10	62
JLS039		<0.5	60	4.3	20	29
JLS040		<0.5	50	6.5	10	42
JLS041		<0.5	76	7.3	40	35
JLS042		<0.5	78	8.6	60	44
JLS043		<0.5	30	2.2	160	16
JLS044		<0.5	71	7.0	40	24
JLS045		<0.5	123	13.9	40	57
JLS046		<0.5	96	9.6	10	18
JLS047		1.9	134	10.5	410	177
JLS048		1.6	105	8.2	160	100
JLS049		2.5	146	11.9	150	148
JLS050		<0.5	362	29.6	160	81
JLS051		<0.5	164	19.0	70	79
JLS052		2.6	161	13.6	80	182
JLS053		2.6	132	11.7	320	198
JLS054		<0.5	167	14.5	20	59

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 21 of 22

	Element	w	У	yb	Zn	Zı
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim.	0.5	1	0.2	10	2
	Units	ppb	ppb	ppt	ppb	ppb
JLS055		<0.5	98	7.5	20	37
JLS056		<0.5	37	2.6	20	14
*Rep S8S002		<0.5	30	2.6	50	14
*Rep S8S025		<0.5	33	2.9	20	11
*Rep JLS012		<0.5	63	5.1	350	25
*Rep JLS030		<0.5	88	6.2	10	17
*Rep JLS040		<0.5	61	7.1	30	40
*Rep JLS045		<0.5	115	13.0	40	56
*Std AMIS0169		1.1	104	8.2	190	45
*Std MMISRM19		<0.5	66	6.0	2410	15
*8lk 8LANK		<0.5	<1	<0.2	<10	<2
*8lk 8LANK		<0.5	<1	<0.2	<10	<2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 22 of 22

Appendix 4

Sample Data

Rock Sample Notes

Station ID	Sample ID	Date	Sampler	Zone17mE	Zone17mN	Datum	Proj	Notes
								10cm grab from muck pile at Paragon shaft. Qtz-Carb vein, up to 8cm wide, hosted
								in diabase/gabbro. 2-5% fg-cg skutterudite (?) w/ bright pink erythrite leaking from
JL001	22001	2017-11-03	JL	556675	5280569	NAD83	Zone 17N	and surrounding. Picture Taken
								Selective grab from muck pile at shaft. Gabbro with 1-2cm qtz-carb veins. 0.5-1%
JL002	22002	2017-11-03	JL	557026	5280753	NAD83	Zone 17N	Cpy along margins
								Grab of qtz-carb vein in gabbro. 1-3cm veins, 1-2% Cpy at margins/as small blebs
JL003	22003	2017-11-03	JL	556998	5280736	NAD83	Zone 17N	within. Bronze sulphide (cobaltite?) within larger patches of Cpy. Edge of old trench
								Strong sil/ser(?) altered wall of blast pit. Trace-1% Fg-mg an-euhedral Py, cm scale
JL004	22004	2017-11-04	JL	557142	5279778	NAD83	Zone 17N	qtz carb veinlets.
								Massive gabbro w/ mm-scale parallel qtz-carb veinlets roughly E/W spread about
								50cm apart. Cm-scale epidote selvage w/ weak actinolite development. 2-5% diss Py
JL006	22006	2017-11-07	JL	558281	5280718	NAD83	Zone 17N	along vein edges
								Pink/Brown, m.g. To f.g. Intermediate intrusive with 1mm to 1cm qtz-carb veins. Qtz-
								carb veins often have 1mm f.g. Black selvage at contact with wall rock.
								Minerlaization includes: Chalcopyrite - Variably tarnished, subhedral occuring in
								1mm to 5mm clots in vn and host rock, Blue Mineral- 1mm to 2mm, vitreous, dark
								blue/black, Vitreous brown mineral (cobaltite?) - clotty growth, 1 well developed
SB17-001	22007	2017-11-03	SB	556685	5280566	NAD83	Zone 17N	cleavage, vitreous and almost glassy shine
								3mm to 5mm qtz-carb veins with clotty chalcopyrite and pink cobalt bloom along
								fracture surfaces in m.g. To c.g. Green/black diabase, taken from the edge of
SB17-002	22008	2017-11-03	SB	556997	5280739	NAD83	Zone 17N	meandering 1m deep trench orientated at ~090
								Selective grab near Frontenac shaft. 2-3cm qtz-carb vein in sheared mafic intrusive.
SB003	22009	2017-11-04	SB/JL	558836	5281183	NAD83	Zone 17N	15% Cpy along margins of vein and as small blebs within. 1-2% Py mixed in.
								Sample is from a 5cm wide rusty red/yellow qtz vein with pyrite and chalcopyrite
								vein that is visibly sheared and at the cetnre of a 50cm wide zone of texturally
								destructive hard (silica) alteration. F.g. Pyrite and chalcopyrite are disseminated
								throughout the altered rock and minor malachite and pink cobalt staining is present.
SB17-006	22011	2017-11-07	SB	557208	5279980	NAD83	Zone 17N	Material sampled includes vein and alt zone.
SB17-007	22012	2017-11-07	SB	557225	5280085	NAD83	Zone 17N	Sample of qtz-feldspar porphyry dike with minor malachite staining on surface
								sample of qtz vein material wiht red hematite staining and NO visible sulphide or
SB17-008	22013	2017-11-07	SB	557276	5280138	NAD83		visible alt in greenstone.
SB17-009	22014	2017-11-07	SB	557233	5280107	NAD83	Zone 17N	sample of qtz vein material with dull grey qtz and minor chlorite and pyrite

								Selected grabs through muck pile/waste dump note pockets of weathered cobalt
n/a	1752216	2017-11-03	RK	536643	5280577	NAD83	Zone 17N	bloom-small specks of cpy noted to < 0.5%
								Muck pile east of shaft - selected grab of cobalt bloom stained gabbro on rock
n/a	1752217	2017-11-03	RK	556643	5280577	NAD83	Zone 17N	surfaces
n/a	1752218	2017-11-04	RK	557165	5279782	NAD83	Zone 17N	silicified with 2-3% coarse euhedral py, qtz barren
n/a	1752219	2017-11-04	RK	557165	5279782	NAD83	Zone 17N	similar to above, silicified host rock with qtz-vein, no visible sulphide

MMI Soil Sample Notes

Sample Number	Date	Property	Sampler	UTM17m_E	UTM17m_N Sample Typ	e Colour	Depth Slope Angle (°	Slope Direction	Notes
SBS001	2017-11-10	Paragon	SEB	556606	5280742 MMI Soil	Brown	25 0	n/a	
SBS002	2017-11-10	Paragon	SEB	556606	5280732 MMI Soil	Brown	30 0	n/a	
SBS003	2017-11-10	Paragon	SEB	556605	5280722 MMI Soil	Tan	30 0	n/a	
SBS004	2017-11-10	Paragon	SEB	556605	5280712 MMI Soil	Brown	30 0	n/a	
SBS005	2017-11-10	Paragon	SEB	556607	5280705 MMI Soil	Tan	30 0	n/a	
SBS006	2017-11-10	Paragon	SEB	556608	5280691 MMI Soil	Tan	30 0	n/a	
SBS007	2017-11-10	Paragon	SEB	556606	5280680 MMI Soil	Tan	28 0	n/a	
SBS008	2017-11-10	Paragon	SEB	556606	5280670 MMI Soil	Tan	30 0	n/a	
SBS009	2017-11-10	Paragon	SEB	556606	5280660 MMI Soil	Tan	30 0	n/a	
SBS010	2017-11-10	Paragon	SEB	556607	5280651 MMI Soil	Tan	35 0	n/a	
SBS011	2017-11-11	Paragon	SEB	556607	5280539 MMI Soil	Brown	30 0	n/a	
SBS012	2017-11-11	Paragon	SEB	556606	5280553 MMI Soil	Tan	35 0	n/a	
SBS013	2017-11-11	Paragon	SEB	556606	5280562 MMI Soil	Dark Brown	30 0	n/a	
SBS014	2017-11-11	Paragon	SEB	556612	5280571 MMI Soil	Dark Brown	30 0	n/a	
SBS015	2017-11-11	Paragon	SEB	556606	5280582 MMI Soil	Dark Brown	30 0	n/a	
SBS016	2017-11-11	Paragon	SEB	556609	5280593 MMI Soil	Dark Brown	30 0	n/a	
SBS017	2017-11-11	Paragon	SEB	556615	5280614 MMI Soil	Dark Brown	30 0	n/a	
SBS018	2017-11-11	Paragon	SEB	556607	5280633 MMI Soil	Dark Brown	30 0	n/a	
SBS020	2017-11-11	Paragon	SEB	556607	5280641 MMI Soil	Tan	30 0	n/a	
SBS021	2017-11-11	Paragon	SEB	556718	5280742 MMI Soil	Dark Brown	30 0	n/a	
SBS022	2017-11-11	Paragon	SEB	556719	5280731 MMI Soil	Dark Brown	30 0	n/a	
SBS023	2017-11-11	Paragon	SEB	556719	5280719 MMI Soil	Tan/Brown	35 0	n/a	
SBS024	2017-11-11	Paragon	SEB	556716	5280713 MMI Soil	Tan/Brown	30 0	n/a	
SBS025	2017-11-11	Paragon	SEB	556717	5280702 MMI Soil	Tan	30 0	n/a	
SBS026	2017-11-11	Paragon	SEB	556717	5280693 MMI Soil	Tan	30 0	n/a	
SBS027	2017-11-11	Paragon	SEB	556717	5280685 MMI Soil	Tan	30 0	n/a	
JLS001	2017-11-10	Paragon	JWL	556866	5280544 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS002	2017-11-10	Paragon	JWL	556866	5280555 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS003	2017-11-10	Paragon	JWL	556866	5280565 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS004	2017-11-10	Paragon	JWL	556864	5280573 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS005	2017-11-10	Paragon	JWL	556864	5280583 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS006	2017-11-10	Paragon	JWL	556863	5280595 MMI Soil	Dark Brown/Tan		n/a	
JLS007	2017-11-10	Paragon	JWL	556863	5280605 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS008	2017-11-10	Paragon	JWL	556866	5280617 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS009	2017-11-10	Paragon	JWL	556863	5280624 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS010	2017-11-10	Paragon	JWL	556866	5280634 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS011	2017-11-10	Paragon	JWL	556864	5280643 MMI Soil	Dark Brown/Tan	30 0	n/a	
JLS012	2017-11-10	Paragon	JWL	556864	5280654 MMI Soil	Dark Brown/Tan		n/a	
JLS013	2017-11-10	Paragon	JWL	556865	5280664 MMI Soil	Dark Brown/Tan	30 0	n/a	

JLS014	2017-11-10 Paragon JWL	556864 5280675 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS015	2017-11-10 Paragon JWL	556863 5280684 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS016	2017-11-10 Paragon JWL	556863 5280696 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS017	2017-11-10 Paragon JWL	556863 5280702 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS018	2017-11-10 Paragon JWL	556866 5280714 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS019	2017-11-10 Paragon JWL	556858 5280725 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS020	2017-11-10 Paragon JWL	556858 5280736 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS021	2017-11-10 Paragon JWL	556861 5280748 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS022	2017-11-11 Paragon JWL	556792 5280545 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS023	2017-11-11 Paragon JWL	556795 5280553 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS024	2017-11-11 Paragon JWL	556792 5280565 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS025	2017-11-11 Paragon JWL	556792 5280573 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS026	2017-11-11 Paragon JWL	556792 5280586 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS027	2017-11-11 Paragon JWL	556793 5280593 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS028	2017-11-11 Paragon JWL	556792 5280603 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS029	2017-11-11 Paragon JWL	556793 5280614 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS030	2017-11-11 Paragon JWL	556791 5280622 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS031	2017-11-11 Paragon JWL	556793 5280635 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS032	2017-11-11 Paragon JWL	556792 5280644 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS033	2017-11-11 Paragon JWL	556791 5280653 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS034	2017-11-11 Paragon JWL	556793 5280664 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS035	2017-11-11 Paragon JWL	556793 5280675 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS036	2017-11-11 Paragon JWL	556793 5280685 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS037	2017-11-11 Paragon JWL	556793 5280694 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS038	2017-11-11 Paragon JWL	556793 5280704 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS039	2017-11-11 Paragon JWL	556793 5280713 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS040	2017-11-11 Paragon JWL	556793 5280725 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS041	2017-11-11 Paragon JWL	556793 5280736 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS042	2017-11-11 Paragon JWL	556792 5280746 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS043	2017-11-11 Paragon JWL	556718 5280543 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS044	2017-11-11 Paragon JWL	556720 5280554 MMI Soil	Dark Brown/Tan	30	0 n/a	Moved East to avoid Paragon Muckpile
JLS045	2017-11-11 Paragon JWL	556725 5280566 MMI Soil	Dark Brown/Tan	25	0 n/a	Moved East to avoid Paragon Muckpile
JLS046	2017-11-11 Paragon JWL	556723 5280575 MMI Soil	Dark Brown/Tan	30	0 n/a	Moved East to avoid Paragon Muckpile
JLS047	2017-11-11 Paragon JWL	556721 5280585 MMI Soil	Dark Brown/Tan	30	0 n/a	Moved East to avoid Paragon Muckpile
JLSO48	2017-11-11 Paragon JWL	556718 5280595 MMI Soil	Dark Brown/Orange Brown	25	0 n/a	Diabase cobbles in hole
JLS049	2017-11-11 Paragon JWL	556717 5280605 MMI Soil	Dark Brown/Tan	30	0 n/a	Diabase cobbles in hole
JLS050	2017-11-11 Paragon JWL	556717 5280614 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS051	2017-11-11 Paragon JWL	556715 5280626 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS052	2017-11-11 Paragon JWL	556715 5280635 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS053	2017-11-11 Paragon JWL	556717 5280646 MMI Soil	Dark Brown/Tan	30	0 n/a	
JLS054	2017-11-11 Paragon JWL	556717 5280656 MMI Soil	Dark Brown/Tan	30	0 n/a	

JLS055 2017-11-11 Paragon JWL 556717 5280666 MMI Soil Dark Brown/Tan	30 0 n/a
--	----------