

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Geological Mapping and Prospecting Report on the Rand 2 Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.

Prodigy Gold Inc. (First Minerals Exploration Ltd. Option)

Prepared By:

Geordie Hamilton, M.Sc., G.I.T.

Prodigy Gold, Inc.

Isaac Riddle, B.Sc.

Prodigy Gold, Inc.

With Contributions From:

Stephen Roach, P.Geo, B.Sc. Geology

Prodigy Gold, Inc.

February 9, 2021

Table of Contents

SUMMARY	page I
1.0 Survey Overview	page 1
1.1 Introduction	page 1
1.2 Activities Undertaken	page 1
2.0 Property Description and Access	page 1
2.1 Location and Access	page 1
2.2 Description of Mining Claims	page 2
3.0 Physiography and Vegetation	page 4
4.0 Historical Exploration	page 5
5.0 Geological Setting	page 7
5.1 Regional Geology	page 7
5.2 Property Geology	page 8
5.3 Deposit Styles	page 9
6.0 Discussion of Geological Mapping and Prospecting Program	page 11
7.0 Analytical Quality Control and Quality Assurance	page 12
7.1 Sample Preparation	page 12
7.2 Gold Analysis	page 12
7.3 Gold Pulp Metallic Analysis	page 12
7.4 Multi-Scan Analysis	page 13
7.5 Laboratory Quality Control and Quality Assurance (QC/QA)	page 13
7.6 Company Quality Control and Quality Assurance (QC/QA)	page 13
8.0 Discussion of Geological Mapping and Prospecting Results	page 14
8.1 Lithology and Alteration	page 14
8.2 Structure	page 15
8.3 Mineralization	page 19
9.0 Discussion of Ground VLF-EM Data Modelling	page 20
9.1 L1150E to L1700E Results	page 21
9.2 L650E to L750E	page 23
10.0 Conclusions	page 24

11.0 Recommendations	page 24
References	page 25
Qualifications	page 27
Instrument Specifications	page 30

Figures

Figure 1: Rand 2 Property Location Map	page 2
Figure 2: Rand 2 Claim Map with Legacy Claim Boundary	page 3
Figure 3: Regional Geology Map of Wawa Sub-province of the Superior Craton	page 7
Figure 4: Regression Plot for Standards and Blanks	page 14
Figure 5: Geology Map with 2020 Traverses & Sample Locations	page 16
Figure 6: Fraser Filter Quadrature Plan (L1100E to L1700E)	page 22
Figure 7: Fraser Filter In-Phase Plan (L650E to L750E)	page 23

Tables

Table 1: Summary of Work Activities	page 1
Table 2: Rand 2 Property Claim Distribution	page 4
Table 3: Historical Exploration Work on Rand 2 Property	page 6
Table 4: Historical & Current Gold Producers in Michipicoten Greenstone Belt	page 10
Table 5: 2020 Surface Exploration Personnel 1000 Surface Exploration Personnel	page 11
Table 6: Rand 2 Observed Lithologies	page 17
Table 7: Rand 2 VLF-EM Anomaly Modelling Summary	page 21

Appendices

Appendix 1 – Geology-Tracks-Sample Locations-Abbreviations - Map Scales at1:2500 & 1:4000
Appendix 2 – 2020 Rock Sample Descriptions
Appendix 3 – 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
Appendix 4 – Daily Logs
Appendix 5 – VLF-EM Modelling Maps - Map Scales at 1:2000 and 1:800
Appendix 6 – Expenditure Invoices & Receipts

SUMMARY

The Rand 2 Property is located in east-central Abotossaway Township and can be found 33 kilometers northeast of Wawa, 11 kilometers south of Dubreuilville, and 1 kilometer southwest of Goudreau. The site is easily accessible by truck and ATV via Goudreau road from Dubreuilville. The property is comprised of 31 unpatented mining claims with a total area of 350 hectares. Gold was first discovered in the Goudreau-Michipicoten area in 1896 along the shore of Dog Lake (Edgar, 2017). Exploration carried out by Madoc Mining began in the Goudreau area in 1913 focused on iron formations to exploit them for their sulphur content (Black, 1952). In 1914, ore started to be mined and continued until late 1919, when it ceased due to increased natural sulfur mining in the United States (Black, 1952). The Rand No. 2 Zone was discovered in 1915 by J.W. Morrison in the southern part of the property, which led to intense exploration between 1915 and 1959. Extensive work was completed on the property, where a variety of surface exploration work led to underground development.

More recent exploration efforts took place in the 1980's on the Rand 2 Property, including geological mapping, sampling, and numerous ground VLF-EM and magnetic surveys. With the gradual change in interest from sulphur and iron ore to gold and base metal exploration, this led to increased exploration activities in the 1980's. The first group to explore the property for gold was M.E.R.I.T (Mineral Exploration Resources in Toronto) in 1986, followed up by Whitney Porcupine Resources in 1988-89. No significant gold results came from the approximately 200 rock surface samples collected from these two programs, with only anomalous As, Cu, and Zn. In 1997-1998, Patricia Mines Inc. completed geological mapping, sampling, and a soil geochemistry orientation survey around Jackson Lake with surface grabs up to 9.81 g/t Au.

The Rand 2 Property is located on the Superior Craton's southern margin within the Michipicoten Greenstone Belt, part of the Wawa Subprovince. The Michipicoten greenstone belt comprises an assemblage of metavolcanic, metasedimentary, and intrusive rocks that have undergone greenschist to amphibolite facies metamorphism. The principal structure through this area is the Goudreau-Lochalsh Deformation Zone (GLDZ). The east-northeast trending Goudreau-Lochalsh Deformation Zone comprises multiple shear zones spanning up to 25 kilometers long and roughly 4.5 kilometers wide (Heather and Arias, 1992). This regional deformation zone underlies an area where felsic metavolcanic assemblages are to the south and mafic metavolcanic assemblages to the north.

Mafic metavolcanic rocks chiefly underlie the property area with lesser intermediate-felsic fragmentals, metasedimentary rocks, iron formations, mafic intrusives, and granitic intrusions. The rocks underlying the Rand 2 claim block are situated along the southwestern margin of the Goudreau-Lochalsh Deformation Zone. Shearing is generally strongly developed and trends approximately east-west, dipping steeply to sub-vertical. Stratigraphic-up has been interpreted by Sage (1993) to indicate a north-facing sequence of rocks. Other important structural features include the McVeigh Creek Fault to the east and the Rand fault to the west.

A total of 13.9 kilometers of GPS geological mapping and a total of 98 samples were taken over a period between July 22 to October 22, 2020, to help delineate gold-bearing structures. The mapping and prospecting program successfully confirmed the presence of gold within the northwest and north-central portions of the property and correlated these gold occurrences to shear structures and lithological domains. Shear zones exhibit strong schistosity trending roughly east-west, with dips swinging from steeply north to steeply south. Shears also display strong chlorite, iron carbonate, and less commonly sericite and silica alteration within a larger (400m by 200m) north trending Fe-carbonate alteration system. These structures host the known mineralization and often occur at or near lithological contacts between quartz porphyry and mafic metavolcanic units. Gold mineralization occurs with quartz tourmaline veining often with pyrite \pm pyrhotite \pm chalcopyrite and within shear zones containing minor to moderate pyrite mineralization and minor quartz/quartz-carbonate stringers. Gold values returned as high as 17.8 g/t Au (Greasy Bear Showing) associated with quartz-tourmaline veining and up to 2.54 g/t Au (Buck Lake Zone) associated with sheared and pyritic mafic volcaniclastics.

It is recommended that a gradient IP survey be completed to define shear structures across the property better. A mechanical stripping program should focus on the Greasy Bear Showing (17.8 g/t Au), which would provide a better understanding of the geological/structural mechanisms controlling the gold mineralization. Information obtained from a gradient IP survey coupled with a detailed structural interpretation of the Greasy Bear Showing should provide insight into the mineralized zones and potentially lead to the discovery of new zones.

1.0 Survey Overview

1.1 Introduction

Geological mapping and prospecting activities were undertaken over the course of several weeks to verify historical gold showings with the purpose of building a geological framework and to verify historical gold showings. Prospecting focussed on finding new prospective zones for gold mineralization. This report describes and interprets the results from the geological mapping and geochemical data obtained during the 2020 field season.

1.2 Activities Undertaken

Activity	Dates	Details	Performed By
Geological Surveying	July 27, 2020, August 13 – 16, 2020, August 19, 2020, August 21, 2020, September 2 – 6, 2020	~13.9km of traversed line 19 rock samples	Contract Geologists
Prospecting	July 22 – 26, 2020, August 22 – 23, 2020, August 25, 2020, August 28, 2020 October 22, 2020	79 rock samples	Prospectors
Assaying	July – October 2020	98 samples for gold and multi- element analysis	Activation Laboratories Ltd.

Table 1	-	Summary	of	Work	Activ	vities
I dolo l	L 1	Summu y	U1	VI OIK	11011	inco

2.0 Property Description and Access

2.1 Location, Access, and Accommodations

The Rand 2 Property is situated in the central portion Abotossaway Township, Sault Ste Marie Mining District, Ontario, Canada (Figure 1). The property is located approximately 33 kilometers northeast of Wawa, 11 kilometers south of Dubreuilville, and 1 kilometer southwest of Goudreau. The property is accessible by truck from Dubreuilville via the Goudreau Road. This road begins about 500 meters west of Dubreuilville along Highway 519, where it can be followed for approximately 21 kilometers to Goudreau to an abandoned logging trail. Further access along this southwest trail brings you within 50 to 100 meters of the property boundary. Accommodations during the field program were made at the Magpie Relay Motel in Dubreuilville.

Figure 1. Rand 2 Property Location Map

2.2 Description of Mining Claims

The property is comprised of 31 unpatented mining claims with a total working area of 350 hectares (Figure 2). These claims are currently under option from First Minerals Exploration Ltd. (67 *Third Street, Timmins, Ontario, Canada P4N 1C2*) to Prodigy Gold Inc., a subsidiary of Argonaut Gold Inc. (9600 Prototype Court, Reno, Nevada, United States 89521). The transfer of claim ownership to Prodigy Gold Inc. has been consummated, and

currently, Prodigy Gold Inc. has 100% of mining rights to the 31 unpatented claims (Table 2).

	Claim	Drovincial		Claim Dua	Work	Total
Township	Number	Grid Call	Claim Holder	Claim Due	Required	Reserves
	Number	Gha Cell		Date	(\$)	(\$)
Abotossaway	119817	42C07A374	Prodigy Gold Inc.	2021-02-10	200	0
Abotossaway	297811	42C07A390	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	118986	42C07A391	Prodigy Gold Inc	2021-02-10	200	550
Abotossaway	243862	42C07A392	Prodigy Gold Inc	2021-02-10	200	1,200
Abotossaway	261007	42C07A393	Prodigy Gold Inc	2021-02-10	200	741
Abotossaway	338825	42C07A394	Prodigy Gold Inc	2021-02-10	200	2,967
Abotossaway	297810	42C07A395	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	326926	42C02I010	Prodigy Gold Inc	2021-02-10	200	1,200
Abotossaway	297812	42C02I011	Prodigy Gold Inc	2021-02-10	400	2,907
Abotossaway	279177	42C02I012	Prodigy Gold Inc	2021-02-10	200	1,180
Abotossaway	158306	42C02I013	Prodigy Gold Inc	2021-02-10	200	1,380
Abotossaway	177824	42C02I014	Prodigy Gold Inc	2021-02-10	400	908
Abotossaway	231161	42C02I015	Prodigy Gold Inc	2021-02-10	200	1,200
Abotossaway	231162	42C02I030	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	297813	42C02I031	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	183880	42C02I032	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	103345	42C02I033	Prodigy Gold Inc	2021-02-10	400	0
Abotossaway	338826	42C02I034	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	177825	42C02I035	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	341387	42C02I050	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	252075	42C02I051	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	160402	42C02I052	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	160401	42C02I053	Prodigy Gold Inc	2021-02-10	400	0
Abotossaway	252074	42C02I054	Prodigy Gold Inc	2021-02-10	400	0
Abotossaway	215210	42C02I055	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	271153	42C02I070	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	289813	42C02I071	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	179891	42C02I072	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	252076	42C02I073	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	215211	42C02I074	Prodigy Gold Inc	2021-02-10	200	0
Abotossaway	179890	42C02I075	Prodigy Gold Inc	2021-02-10	200	0

Table 2 - Rand 2 Property Claim Distribution

3.0 Physiography and Vegetation

The Rand 2 Property covers 350 hectares and contains two major lakes in Jackson and Buck Lake, with three other smaller lakes. The property exhibits moderate topographic changes with a topographic high of 442 meters above sea level and a topographic low of 381 meters above sea level. Most of the forest cover around the property is old growth, such as large jack pine, poplar, and birch trees, with moderate outcrop exposure. Numerous topographic lows are present

throughout the property, typically seen as swampy areas with small growth vegetation such as alders and black spruce. Little to no outcrop is found within these areas except on the margins where steep but relatively short ridges are usually present. There is one major topographic high located in the east-central part of the property, which occurs as a ridgeline dividing Jackson Lake and Greasy Bear Lake.

4.0 Historical Exploration

The Randy 2 has undergone extensive exploration for iron ore and sulphur (1915-59) and more recently for gold exploration from 1986 to present (Table 3).

The Rand 2 claim block was first explored for iron ore in 1915, which ultimately led to the discovery and potential to mine pyrite for a sulphur source along the southern block. This discovery, known as the Rand No. 2 Zone, consists of two parallel, east-west-trending Algomatype iron formation units. These formations are dominantly sulphide facies with a lower siderite member and are located 2.4 kilometers south of Goudreau, along the west side of the Algoma Central Railway (Soslki, 1986). This led to intense exploration between 1915 and 1959, which consisted of geological mapping, prospecting and sampling, blasting and trenching, and open stopes on surface. This led to underground development, where an adit was driven for mining operations, as well as for underground mapping, sampling, and diamond drilling. A total of 9.1 kilometers of surface diamond drilling was completed during that period.

More recent exploration work in the 1980's on the Rand 2 block focused much more on the regional geology for gold exploration. It consisted of geological mapping, sampling, and numerous ground VLF-EM and magnetic surveys. Although there was considerable exploration work completed on the Rand 2 Zone, multiple exploration programs were concentrated to the north, in the Jackson Lake area. Historical work has been exclusively geared towards sourcing sulfur and iron ore with no past indication of gold exploration from 1915 to the early 1980s. It wasn't until 1986 that gold potential was recognized with an initial program completed by M.E.R.I.T (Mineral Exploration Resources in Toronto) in 1986 and a follow-up program in 1988-89 by Whitney Porcupine Resources. However, no significant gold results were returned from approximately 200 surface samples collected during 1986 and 1988-89, with only anomalous As, Cu, and Zn.

Gold occurrences in the Jackson and Buck Lake area were described and documented by two different companies (Table 3). In 1997-1998, Patricia Mines Inc. completed geological mapping, sampling, and a soil geochemistry orientation survey around Jackson Lake. Of 38 rock samples collected, the highest-grade sample came back at 9.81 g/t Au hosted in chlorite schist near the southwestern shoreline of Jackson Lake. In 1987, Faldo Mines and Energy described a sulphiderich band in an historical trench near Buck Lake, which returned 5.66 g/t Au from a grab sample and 1.08 g/t Au / 1.5 meter from a chip sample (Table 3).

The more recent exploration by First Minerals Exploration Ltd. on Rand 2 included a 28.5 line kilometers VLF-EM and magnetic survey. The survey outlined several east-west VLF-EM zones, which are both overburden and bedrock in nature.

Company	Year	Area	File No	Description of Work
First Minerals Exploration Ltd.	2020	Rand 2	20000018576	VLF-EM/magnetic survey (28.5 line-km). Outlined numerous VLF-EM zones with some magnetic correlation
Patricia Mines Inc.	1997-1998		42C08SE2003	Geological mapping and sampling; collected 38 rock samples with values up to 9.81 g/t Au hosted in chlorite schist near Jackson Lake ; collected 60 C-horizon soil samples where anomalous Au soils (18 to 28 ppb Au) were returned in the area of 9.81 g/t Au
Whitney Porcupine Resources	1989	Rand 2	42C02NE0203	Supplementary litho-geochemical rock sampling from 1988 work; collected 86 samples for Au + ICP; no significant Au values with anomalous As (83 ppm), Cu (1600 ppm), and Zn (4800 ppm)
Whitney Porcupine Resources	1988	Rand 2	42C02NE0206	18.1 km of line-cutting/gridding with geological mapping and sampling; collected 90 rock samples with no significant Au values (<0.10 g/t Au) and anomalous As (925 ppm), Cu (554 ppm), and Zn (3040 ppm); 18.1 km of ground VLF-EM/magnetic surveys. Outlined 3 VLF-EM zones
Faldo Mines and Energy Corp.	1987	Property- wide	42C08NE0208	Humus sampling; collected 711 samples with no significant Au values
Faldo Mines and Energy Corp.	1987	Property- wide	42C07SE0501	Geological mapping and sampling with a gold occurrence near Buck Lake returning 5.66 g/t Au from a grab sample & 1.08 g/t Au / 1.5m chip sample; ground VLF-EM and magnetic surveys. Outlined multiple VLF-EM zones where a 300 meter long moderate to strong VLF-EM zone coincides with Au occurrence
M.E.R.I.T. Mineral Exploration Resources	1986	Rand 2	42C02NE0209	Geological mapping and sampling; collected selected samples for WRA and 19 samples for Au. No significant gold results; outlined extensive sericite and chloritoid alteration envelope in the sulfide facies BIF
R.J. McGowan	1984	Property- wide	42C02NE0211	33 km ground VLF-EM and magnetic surveys; outlined 15 moderate to strong VLF-EM zones with strike length varying 100 to 300 meters
Jalore Mining Company Ltd.	1949-(1955)	Regional	42C02NE0240	Regional township airborne magnetic survey (1949) and correspondence; outlined six (6) moderate to strong magnetic features
Aldernac Copper Corp., Superior Acid and Iron Ltd., etc.	1915-1959	Rand 2	42C02NE8717	Geological mapping and sampling, blasting and trenching, ground magnetic surveys, 30,000 ft (9.1 km) of diamond drilling, metallurgical work, open stope/cut and adit(s) with underground mapping and sampling; mining along drifts with 12 to 15 Mtons @ 26% S
J.W. Morrison	1915	Rand 2		Discovery of Rand 2 Zone.

Table 3 - Historical Exploration Work on the Rand 2 Property.

5.0 Geological Setting

5.1 Regional Geology

The Rand 2 Property occurs within the late Archean Michipicoten Greenstone Belt (2660-2900 Ma). The belt is part of the Wawa Sub-province, situated along the Superior Craton's southern margin in the Precambrian Shield (Figure 3).

Figure 1 (a) Map of the Superior Province. (b) Simplified geological map of the Wawa subprovince showing the location of the MGB and other greenstone belts in the area (modified from Polat and Kerrich (2000), after Williams et al. (1991) and Stott (1997).

The belt is east-west striking with an approximate length of 141 km and a maximum width of 38 km (Sage, et al., 1996).

The Michipicoten Greenstone Belt consists of an assemblage of metavolcanic, metasedimentary, and intrusive rocks which have undergone greenschist to amphibolite facies metamorphism (Williams et al., 1991). Supracrustal rocks are intruded by subvolcanic tonalite to granodiorite and post-supracrustal granitoid stocks that range from syenite, monzonite to granodiorite in composition (Sage, et al., 1996).

Metavolcanic rocks occur in three bimodal cycles that have been dated at 2900, 2750, and 2700 Ma in age (Turek et al., 1984; 1992; Arias and Helmstaedt, 1990; Sage, 1994). These volcanic cycles are included in the Hawk Lake, Wawa, and Catfish assemblages of (Williams et al., 1991 & Sage, 1994). The Hawk Lake and Wawa assemblages are comprised of an ultramafic-mafic metavolcanic base with an overlying intermediate-felsic metavolcanic unit capped by iron formation. Similarly, the Catfish assemblage consists of a tholeiitic mafic-intermediate metavolcanic base and an intermediate-felsic upper portion. Iron formations do not cap the Catfish assemblage but occur at the contact between the mafic and felsic intervals (Sage, 1994).

The Doré assemblage is a sequence of metasedimentary rocks that unconformably overly the Catfish and Wawa assemblages. The Doré assemblage is dominated by wackes and conglomerates. Clasts in the conglomerate are largely felsic-intermediate metavolcanic and granitic in composition (Sage, 1994). All units are crosscut by north-northwest striking, Paleoproterozoic Matachewan diabase dykes that are relatively undeformed.

The principal structure in the area is the Goudreau-Lochalsh Deformation Zone. The Goudreau-Lochalsh Deformation Zone comprises multiple shear zones with an approximate width of 4.5 km that can be followed along a strike length of 25 km (Heather and Arias, 1992). This zone is oriented between 250°- 280°, following along the contact between Cycle 2 metavolcanic rocks to the south and Cycle 3 to the north (Heather and Arias, 1992). Other notable structures include three brittle fault zones: 1) McVeigh Creek Fault, 2) Herman Lake Fault, and 3) Maskinonge Lake Fault. The McVeigh Creek fault trends approximately northsouth, with the Herman Lake and Maskinonge Faults are northwest trending.

5.2 Property Geology

The property geology has been mapped and summarized by Sage (1993). The Rand 2 Property is chiefly underlain by mafic metavolcanic rocks with lesser intermediate-felsic fragmentals, metasedimentary rocks, iron formations, mafic intrusives, and granitic intrusions. Mafic metavolcanics are typically massive to pillowed flows with thin units of breccia and tuff. Intermediate-felsic units consist of tuff, laminated tuff, feldspar crystal tuff, quartz-feldspar crystal tuff, lapilli-tuff/tuff breccia, and massive units (flows?). Greywacke and conglomerate are characteristic of metasedimentary rocks and occur as thin interformational units. Iron formations occur as sulphide and carbonate facies, as well as Algoma-type chert-magnetite facies. Mafic intrusions range from gabbro to quartz diorite in composition. Granitic intrusions range from granodiorite to quartz monzonite in composition, with the most notable being the trondhjemite-hosted Gutcher Lake Pluton. Late northwest-striking diabase dykes also cut stratigraphy.

The Rand 2 Property is situated along the southwestern edge of the Goudreau-Lochalsh Deformation Zone and is structurally complex. Shearing is locally strongly developed and trend approximately east-west, dipping sub-vertically between north and south. Pillow shapes have been interpreted by Sage (1993) to indicate a north-facing sequence of rocks. The property also occurs proximal to the McVeigh Creek Fault, a north-south oriented lineament, which offsets the Michipicoten Iron Range sinistrally by approximately 1.9 kilometers. The Rand Fault cuts off the south band of the Rand No. 2 iron formation to the west in a northwest direction, which is occupied by a diabase dyke.

5.3 Deposit Types

The Michipicoten Greenstone Belt hosts numerous precious and base metal deposits. within several discrete deformation zones. The rocks underlying on the Rand 2 Property are within Goudreau-Lochalsh Deformation Zone (GLDZ). Other productive, regional deformation zones in the area include the Eagle River Deformation Zone, Mishibishu Lake Deformation Zone, and zones within the Missanabie-Renabie District. Two distinct gold mineralization styles are recognized; 1) orogenic lode-gold greenstone hosted mesothermal gold, 2) intrusive-related 'porphyry' disseminated gold. Examples of orogenic gold deposits are Wesdome's Eagle River Mine (Eagle River Deformation Zone) and Harte Gold's Sugar Zone in the Dayohesarrah (Sugar Deformation Zone). Intrusive-related hosts are like the Moose Lake Porphyry Complex at Hemlo and Webb Lake Intrusive at Magino. The Missanabie-Renabie Gold District, which includes the past-producing Renabie Mine, has been proposed by McDivitt et al. (2017) to be a form of hybrid mineralization that involves an Au-bearing, pre-orogenic veining event, followed by regional deformation and a later orogenic stage of Au enrichment.

Nearly 2.4 million ounces of gold has been produced across the Michipicoten greenstone belt to date (Table 4). The currently producing Island Gold Mine has produced 3,456,299 tonnes at an average head grade of 7.62 g/t, yielding 812,188 oz. Au and has a proven and probable reserve of 3,643,000 tonnes at 10.37 g/t for 1,215,000 oz, as of December 31, 2019 (Bourgeault et al., 2020). The Magino Mine was historically active between 1988-1992 and produced 803,135 tonnes of ore yielding 114,319 ounces Au at 4.43 g/t Au. The deposit currently has a proven and probable reserve of 58.9 Mt at 1.13 g/t for 2.14 Moz Au oz (Makarenko et al., 2017).

Mine	Township	In Production	Tons Milled	Oz. Au	Grade (opt)
Alden-Goudreau	Cowie	1937, 1940, 1943, 1945	13,479	3220	0.24
Centennial	Naveau	1939-40	8,612	610	0.07
Cline	Jacobson	1938-40, 47-48	331,842	63,328	0.19
Darwin/Grace	McMurray	1902-03, 1907- 1908, 1910, 1923, 1925, 1930, 1935, 1937, 1940, 1943-44	45,528	15,191	0.33
Deep Lake	McMurray	1936-38, 43	2790	1633	0.59
Edwards	Jacobson	1938, 1997-2002	1537	485	0.32
			389,309	140,258	0.36
Holdsworth Prospect	Corbiere	1933	60	10	0.17
Island Gold*	Finan	2007-2019	3,809,917	812,188	0.245
Kremzar	Finan	1988-90	392,858	37,678	0.1
Magino/Algoma Summit	Finan	1930-40, 1988-92	>768,679	113,228	0.15
Minto (includes Jubilee and Cooper)	McMurray	1929-42	184,600	37,678	0.2
Murphy/Algold/Amherst	Abotossaway	1926-32, 1936- 38, 1940	23,211	2,450	0.11
Norwalk/Manxman	Naveau	1904, 10	820	60	0.07
Parkhill	McMurray	1902, 1929, 1930-38, 1940-44	125,778	54,301	0.43
Ranson	Rabazo	1939	774	156	0.2
Renabie	Leeson	1947-70, 1981-91	5,583,895	1,100,000	0.2
Smith/Van Sickle	McMurray	1935-36	9228	536	0.06
Stanley	McMurray	1936	1963	84	0.04
Surluga	McMurray	1968-69, 88-89	87,460	8898	0.1
Total			11,013,661	2,391,992	0.21

Table 4 - Historical Gold Production and Current Producers in the Michipicoten Greenstone Belt.

*Production statistics Island Gold as of December 2019.

Potential for gold mineralization on the Rand 2 Property favours orogenic style gold hosted in mafic metavolcanics and/or iron formation associated with high strain zones within the Goudreau-Lochalsh Deformation Zone.

6.0 Discussion of Geological Mapping and Prospecting Program

From July 22 to October 22, 2020, Prodigy Gold Inc. conducted a detailed geological mapping and prospecting program on the Rand 2 Property. The 2020 surface exploration program was initiated to evaluate the potential for gold mineralization throughout the property, focusing on both property mapping and prospecting near historic trenches and pits. Geological mapping focused on establishing relationships between structural features and alteration zones to understand gold distribution.

Mapping was conducted by Geordie Hamilton and Isaac Riddle with the aid of geologists Stephen Roach and Eldon Phillips (Table 5). Brian Wright and Shane O'Neill carried out prospecting and sampling (Table 5). Mapping and prospecting/sampling were completed using a GPS (Garmin GPSMAP 64S) and compass. Geological surveying was completed over 100meter intervals along north-south oriented lines as well as localized in-fill mapping and prospecting when deemed necessary. All mapping was performed using Nad 83 in UTM Zone 16N with GPS accuracy of approximately 3 to 6 meters. Approximately 13.9 kilometers of geological mapping was completed, and 98 rock samples were collected by both prospectors and geologists.

Name	Title	Residence
Stephen Roach	Chief Geologist	Ottawa, ON
Geordie Hamilton	Junior Geologist	Sudbury, ON
Isaac Riddle	Junior Geologist	Ottawa, ON
Shane O'Neill	Prospector	Sudbury, ON
Brian Wright	Prospector	Sudbury, ON

Table 5 - 2020 Surface Exploration Personnel

The following is presented in the back appendices for 2020 exploration activities on the Rand 2 Property:

Appendix 1 – Geology-Tracks-Sample Locations-Abbreviations with Map Scales at1:2500 and 1:4000

Appendix 2 – 2020 Rock Sample Descriptions

Appendix 3 – 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates

Appendix 4 – Daily Logs

Appendix 5 – VLF-EM Modelling Maps with Map Scales at 1:2000 and 1:800

Appendix 6 – Expenditure Invoices & Receipts

7.0 Analytical Quality Control and Quality Assurance

An aggregate total of 98 rock samples (including both grab and standards/blanks) were analyzed from this surface exploration program. Samples were analyzed by Activation Laboratories (Actlabs) with fire assay completed in Geraldton (*801 Main Street, P.O. Box 999, Geraldton, Ontario, Canada, POT 1M0*) and ICP-OES analyses completed in Thunder Bay (*1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6*).

All samples were bagged and secured with security twist tags in rice bags. The samples were delivered to the Actlabs laboratory in Thunder bay for sample preparation for gold and ICP-OES analyses. All samples were analyzed for gold by fire assay/A.A. and a 38 element ICP-OES rock package. All methods used, analyses, and detection limits are on hand in the form of assay certificate A20-08665, A20-10221, A20-10621, A20-10899, and A20-13802 (Appendix 3).

Actlabs are accredited by the Standards Council of Canada to ISO 17025 for specific registered tests or certification to ISO 9001:2015 certifications for accredited methods. Sample preparation, analytical and quality control procedures employed are mutually similar in procedure and are as follows:

7.1 Sample Preparation

Once the samples have been received, they are entered into the Actlabs Quality Management System and given an internal sample control number. The samples are then checked for dryness before any sample preparation and dried if needed. The samples are split off 1.0 kg and pulverized split to better than 85% passing 75 microns using a Jones Rifler. Silica cleaning between each sample is also performed to prevent any crosscontamination. Random screen analysis is performed daily to check for attainable mesh size.

7.2 Gold Analysis

All Au analysis is performed at a 50g charge by fire assay using lead collection with a silver inquart. The detection limit is 20 ppb. Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

7.3 Gold Pulp Metallic Analysis

Pulp metallic analysis includes the crushing of the entire pulp sample to a 100-mesh sieve using a Jones Rifler to split the sample into a 1 kg sub-sample. The entire sub-sample is then pulverized to 90% -100 mesh and subsequently sieved through a 100-mesh screen.

The entire +100 portion is assayed along with two duplicate cuts of the -100 portion. Results are reported as a calculated weighted average of gold in the entire sample. Gold metallic analyses were used on samples identified with visible gold and with over 5 g/t Au using a fire assay method.

7.4 Multi Scan Analysis

Multi-scan analysis (38 elements) was performed using an aqua regia "partial" digestion which uses a combination of hydrochloric and nitric acids. It is then analyzed by ICP-OES method.

7.5 Laboratory Quality Control / Quality Assurance (QC/QA)

Certified standard and blank assays are usually run for each rack of samples. A nonreproducible check assay is an indication of nugget problems within the sample and both laboratories recommend that further analysis be performed to generate a better representation of the sample.

All standards run are graphed to monitor the performance of the laboratory. Actlabs warning limit is 2 times the standard deviation and our control limit is 3 times the standard deviation. Any work order with a standard running outside the warning limit will have selected re-assays performed, and any work order with a standard running outside the control limit will have the entire batch of samples re-analyzed.

All QC/QA data run with each work order is kept with the clients' file. If desired, the client may have all the blanks and certified standards reported on a certificate to correspond to the client's samples. All quality control graphs are available upon request.

The laboratory also keeps daily logbooks for the sample throughput. These logs record all information pertaining to; 1) who performed the analysis, 2) when the analysis was done, 3) how the analysis was performed, and 4) what other sample were analyzed at the same time. This is done to help eliminate the possibility of misrepresentation and cross-contamination of the client's samples.

Actlabs instruments are calibrated using ISO traceable calibration standards and our quality control standards are created from separate stock solutions. Their instruments are directly tied to their quality control program eliminating the need for manual data entry, hence, reducing human error.

7.6 Company Quality Control / Quality Assurance (QC/QA)

Prodigy Gold Inc. inserted and alternated one sample standard and blank every 10 samples. An R regression plot was used to assess the accuracy of standards and blanks inserted by the company (Figure 4)

Figure 2 - Regression Plot for Standards and Blanks

n = number of standard and blank samples

Sample data displays an R value of 1.0, which indicates assays have a high degree of accuracy. The author believes that the results of sampling and analysis of core samples collected during this program reliably reflect the nature of mineralization observed.

8.0 Discussion of Geological Mapping and Prospecting Results

The following describes the key observations made during mapping and sampling with respect to structure, mineralization, and alteration. A geological map complete with tracks and anomalous gold samples from the 2020 field season is presented at a scale of 1:2500 in Appendix 1. Sample descriptions with gold and ICP geochemistry and Actlabs assay certificates are presented in Appendix 2 and 3, respectively.

8.1 Lithology and Alteration

The dominant lithology underlying the Rand 2 Property is mafic metavolcanics, with thin silicate facies banded iron formation, intruded by gabbro and quartz porphyry and minor cross-cutting Matachewan diabase (Figure 5). Rock descriptions of observed lithologies and photos are presented in Table 6.

Mafic metavolcanic flows comprise of approximately 50% of the surficial exposure and are chiefly massive flows with localized foliated and pillowed sections. Gabbroic rocks are massive, occur as sill-like bodies within the mafic metavolcanic sequence, and have been observed up to 150 meters wide. Quartz porphyry units are also sill-like bodies that display sharp, conformable contacts that range from 1 to 2 meters up to 10 meters in apparent

thickness. Iron formation units are comprised of alternating bands of chert and magnetite and occur as discontinuous lenses ranging from 1 to 10 meters wide. Lithology units show a weak to moderate pervasive chlorite alteration, with localized and variable, weak to strong calcite and ankerite. Localized silicification and sericitization associated with shearing and felsic assemblages, respectively, have also been observed.

While mapping the eastern shoreline of Jackson Lake, a relatively large iron carbonate alteration system was uncovered. This system can be traced for 400 meters along the eastern shore of Jackson Lake, and partially on the western shore giving an approximate width of 200 meters. Iron carbonate ranges from moderate to strong and is often forming as 2 to 3 mm disseminated spots throughout the host. Moderate to strong shearing is also observed to intensify along the Jackson Lake shoreline as 1 to 2 meter wide zones. These zones were dominantly trending from 270° to 290°, with a less dominant zone seen to be trending approximately 230°. All shear zones were seen to be dipping steeply to the north, ranging from 66° to 85°. Only two samples in this zone came back anomalous at 0.44 g/t Au and 0.87 g/t Au. Both taken from moderate to significantly sheared mafic metavolcanics.

8.2 Structure

A weak to moderate penetrative, metamorphic fabric overprint is found within most units, excluding Matachewan diabase dykes. Shearing trends in a dominant east/west direction, with dips varying slightly north and south.

Intense shearing was observed within the iron carbonate alteration zone and along geological contacts, particularly between the mafic metavolcanics and quartz porphyry (Figure 5). Although the alteration zone is oriented north-south, there is a dominant west to east and northwesterly orientation to the shearing. The dips are sub-vertical dips roll from north and south. Shear zones range in size from 0.5 meter wide to several meters in width.

To the south of Jackson Lake, a 0.80 meter wide quartz tournaline breccia vein was observed in a small historic pit. This vein is oriented 230°/80° and shows quartz tournaline infilling around sub-rounded iron carbonate breccia clasts within the ankerite, iron carbonate alteration zone.

Figure 5 - Geology Map with 2020 Tracks and Sample Locations

Lithology	Description	Photograph
Matachewan Diabase	Dark grey to black with medium to dark brown weathered surface, fine to medium-grained, massive, equigranular, and moderately magnetic.	
Quartz Porphyry	Light green-tan, very-fine grained with 2-4 mm quartz phenocrysts, foliation development, ranges from weak to strong, typically non-magnetic with variably developed (weak to strong) sericite and carbonate alteration, unit locally hosts up to 10% quartz-tourmaline and quartz-carbonate veins and associated with up to 2-3% disseminated pyrite. These units are in sharp, conformable contact with mafic metavolcanics.	
Gabbro	Medium-dark green-grey, fine to medium-grained, equigranular, massive, non-magnetic with weak-moderate patchy carbonate and chlorite alteration. No contacts were observed with this unit.	

Table 5 - Observed Lithologies on Rand 2 Property.

Iron Formation	Strongly weathered on the surface, weathers rusty orange, fresh surfaces are dark grey with white to light grey bands, fine- grained, strongly-magnetic, localized chert and magnetite- rich bands. Unit can be moderately to strongly sheared with associated moderate to strong ankerite-chlorite alteration. Disseminated to semi- massive pyrite and pyrrhotite occur locally up to 5%. Contacts are sharp and typically sheared with mafic volcanics.	
Mudstone	Dark grey, very fine-grained, non-magnetic, localized weak carbonate alteration, unit is locally cut by cm-scale quartz- carbonate veining associated with up to 0.5% chalcopyrite and 5% pyrrhotite. No contacts were observed with this unit.	
Mafic Metavolcanic	Dark grey-green, very fine to fine-grained, massive to strongly foliated, locally pillowed, non- magnetic to strongly magnetic, unit is variably (weak to strong) silicified, chloritized, and carbonate altered. Unit contains up to 2-3% disseminated magnetite locally.	

8.3 Mineralization

Mineralization varies widely across the property. Mafic metavolcanics were seen to host localized medium to coarse-grained euhedral magnetite up to 5%. Sulphide mineralization was generally restricted to shear zones and is dominantly pyrite with lesser pyrrhotite and chalcopyrite. Several zones of interest were discovered while mapping and prospecting; these zones returned slightly to significantly anomalous gold assays. The following is a brief discussion on the more significant gold mineralized target areas and all maps are presented in Appendix 1.

Greasy Bear Showing

The Greasy Bear Showing (GBS) is located approximately 200 meters northeast of Jackson Lake (Figure 5). This area is where most historical work was completed, with numerous pits and trenches scattered over an area of several hundred square meters. Exposure to the underlying rock is limited, with much of it, being only visible in the historical workings. Shearing in the area varies from minor to moderate, with localized strongly sheared zones. Moderate to strong iron carbonate is associated with shearing along with moderate sericite within more felsic quartz-feldspar porphyry bodies. Gold mineralization is hosted almost entirely within quartz tourmaline stringers, with two exceptions of anomalous gold in sheared mafic metavolcanics. Quartz tourmaline stringers range from 2 to 6 cm in width, locally exhibiting parasitic folding with z-shaped symmetry. Quartz tourmaline stringers host sparse sulphide (<1%) mineralization, typically pyrite and lesser pyrrhotite and chalcopyrite. Gold assays from this area returned 0.95 g/t Au, 1.78 g/t Au, 4.29 g/t Au, 4.90 g/t Au, and 17.8 g/t Au.

Buck Lake Zone

This zone is located to the northwest of the property along the northeast shore of Buck Lake (Figure 5). Several small 1x1 meter historical blast pits were found directly on the Buck Lake shoreline. The shear zone is 0.5 to 1 meter wide, trending 093°/74°S. This zone exhibits significant silicification, with minor iron carbonate infilling fractures. Alteration dissipates quickly moving into adjacent wall rock. The shear zone contains up to 5% blotchy pyrite infilling along fractures with occasional blebs of chalcopyrite (<1%). Although it is difficult to determine the protolith of this rock, it is likely to be a more brittle metasedimentary or quartz porphyry unit, which has undergone significant deformation. Directly along strike, 125 meters to the east, is a similar shear zone. This extension of the alteration to the east has undergone strong chlorite and moderate to strong iron carbonate alteration with minor cm-scale gray quartz veining trending sub-parallel to the shear. Samples from this shear zone returned 2.54 g/t Au on the edge of Buck Lake and 0.73 g/t Au 125 meters east along strike. A sample collected 75 meters north-northeast was collected from similarly sheared mafic metavolcanic trending sub-parallel to the main zone and

returned 0.71 g/t Au. However, the immediate surrounding area has little to no outcrop exposure.

9.0 Discussion of Ground VLF-EM Data Modelling

Superior Exploration was commissioned to complete their proprietary VLF-EM modelling on data collected by a previous 2020 ground VLF-EM/magnetic survey conducted by Exsics Exploration Ltd. (Grant – 2020). The scope of work included...

- 1) Data processing and modelling of 15 non-grid lines for one Transmitter station (NAA)
- 2) In-phase and quadrature with magnetic profiles
- 3) Fraser Filter profiles and plan maps
- 4) Resistivity profiles and plan maps
- 5) K-H Filter plan maps and K-H inversion sections

Modelling was completed in two areas of the VLF-EM survey area....

- 1) L1150E to L1700E (12 lines)
- 2) L650E to L750E (3 lines)

The Fraser and K-H Filter plans are illustrated in Appendix 5. The Fraser Filter is a numerical filter that creates cross-over into illustrative peaks on the in-phase component. However, Superior Exploration provided both an in-phase and quadrature (out of phase) Fraser Filter plans. The K-H Filter is an extension of the Fraser Filter and provides an illustrative indication of depths.

9.1 L1150E to L1700E Results

The Fraser Filter and K-H plan maps of the in-phase outlined two prominent overburden anomalies; 1) North Anomaly – coincides with spruce swamp, and 2) South Anomaly – coincides with lake bottom sediment in Jackson Lake. Both anomalies coincide with inphase and out of phase same direction cross-over profiles, which strongly suggest an overburden response and not a bedrock response. Both anomalies on the K-H Filter show a shallow response, again indicating a non-bedrock source. There are no other significant anomalies on both filter maps.

However, the Fraser Filter plan map of the quadrature outlined an array of both bedrock and overburden anomalies. This anomaly results from quadrature Fraser Filter plan map does not correlate with the K-H filter map. However, they do correlate with in-phase and out of phase cross-over profiles, which strongly suggest a bedrock response. There are two bedrock anomalies that are summarized in Table 7 and illustrated in Figure 7.

Anomaly	Anomaly Length (m)	Fraser Filter In-Phase Ranges (after Grant)	Resistivity	Magnetic Attraction	Host Rock	Prospecting Results
А	600	10.6 to 48.8	Moderate & marginal to high resistivity	Direct strong magnetics – series of strong folded anomalies	Mafic metavolcanics with magnetite	Not explained – overburden covered
В	>300	20.8 to 82.7	Low to moderate	Moderate	Mafic metavolcanics with FP & gabbro sills	Local explanation - pyritic (<5%) carbonate shear

Table 7 – Rand 2 Modelling VLF-EM Anomaly Summary

Anomaly A is the most prolific anomaly, which trends west to northwest for approximately 600 meters (Figure 6). This weak to moderate anomaly response is consistent with a sharper and stronger response in the western part of the zone. It coincides with a series of detached and fold-like strong magnetic anomalies. It entirely underlies the mafic metavolcanics and mapping and prospecting has not been able to explain the nature of the anomaly due to glacial overburden cover.

Fraser Filter responses from Anomaly B reflect a strong anomalous zone. This easterly trending zone is >300 meters as part of a 350 meter zone. The magnetics are moderate in this area. Although the mafic metavolcanics are prominent in this area, both feldspar porphyry and gabbro have been noted. In the area of Anomaly B, mapping and prospecting uncovered the Buck Lake Zone, which extends 125 meters in an east-west direction. This shear zone contains up to 5% blotchy pyrite infilling along fractures with occasional blebs of chalcopyrite (<1%). Samples from this shear zone returned up to 2.54 g/t Au on the edge of Buck Lake, and is located 125 meters west of a grab sample which returned 0.73 g/t Au. This coincides with the western part of Anomaly B on the quadrature Fraser Filter plan (Figure 6).

Figure 6 – Fraser Filter Quadrature Plan (L1150E to L1700E)

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser Quadrature Contours Lines 1150E - 1700E

9.2) L650E to L750E

The Fraser Filter and K-H plan map outlined a prominent bedrock anomaly (Anomaly E) over the three modelled lines (100 meters), as part of 250 meter long zone. This zone trends in an east-west direction. This moderate to strong anomaly has Fraser Filter values up to a range from 50 to 55. This interpreted bedrock anomaly shows a coincident resistivity low, indicating a conductive source. The anomalous zone appears to cross-cut and north-south trending magnetic low zone. This trend is not fully understood at this time. The Fraser Filter plan is illustrated in Figure 7.

Anomaly E underlies the mafic metavolcanic stratigraphy, proximal to a gabbro body to the north. Mapping has shown the mafic metavolcanics are sheared and magnetic with no direct significant sulphide mineralization. The Greasy Bear Showing lies to the south of Anomaly E.

Figure 7 – Fraser Filter In-Phase Plan (L650E to L750E)

10.0 Conclusions

The mapping and prospecting program successfully confirmed the presence of gold within the northwest and north-central portions of the property within shear structures and lithological domains. These domains include the following:

- Shear zones exhibit strong east-west shearing, with dips ranging from steeply north to steeply south.
- Exhibition of a large, north trending Fe-carbonate (ankerite) altered shear system within the mafic metavolcanics measuring more than 400 meters by 200 meters wide.
- Mineralization within shears is found at or near lithological contacts between quartz porphyry and mafic metavolcanic units.

Gold mineralization occurs with two dominant associations: 1) quartz tournaline veining typically hosting little sulphides (pyrite \pm pyrrhotite \pm chalcopyrite) 2) altered shear zones +/- quartz/quartz-carbonate stringers and minor to moderate sulphide mineralization of pyrite with chalcopyrite.

11.0 Recommendations

It is recommended that a gradient IP survey be completed to better define shear structures across the property. A recommended mechanical stripping/washing program should focus in the Greasy Bear Showing (GBS) area, which would provide the necessary exposure to put together a comprehensive geological and structural interpretation. This locality has proven the highest gold values on the property to date and exhibits a high degree of structural complexity with little outcrop exposure. Information obtained from a gradient IP survey, coupled with a detailed structural interpretation, of the Greasy Bear Showing should provide insight into the mineralized zones and potentially lead to the discovery of new zones.

References

Arias, Z.G., and Helmstaedt, H. 1990. Grant 343 Structural Evolution of the Michipicoten (Wawa) Greenstone Belt, Superior Province: Evidence for an Archean Fold and Thrust Belt. In Geoscience Research Grant Program Summary of Research 1989-1990. Edited by V.G. Milne. Ontario Geological Survey, Miscellaneous Paper 150, pp. 107-114. Program, Timmins Regional Resident Geologist Report: Timmins and Sault Ste. Marie Districts; Ontario Geological Survey, Open File Report 6113, 84p.

Atkinson, B.T., Hailstone, M., Seim, G. Wm., Wilson, A.C., Draper, D.M., Farrow, D., Hope, P. and Koroschetz, A.M. 2003. Report of Activities 2002, Resident Geologist

Black, N.H. 1952. Report on the Examination of Pyrite Properties in The Goudreau-Michipicoten Area, Ontario, dated June 1, 1962; Ministry of Northern Development, Mines and Forestry, assessment file No. 42C07SE0008.

Bourgeault, N., Vincent, R., Webster, C. 2020. NI 43-101 Technical report for the Island Gold Mine, Dubreuilville, Ontario, Canada. 249p.

Grant, J.C. & amended by Edgar, B. 2020 Geophysical Report for First Minerals Limited on the Jackson Lake Project, Abotossaway and Aguonie Townships, Sault Ste. Marie Mining Division, Northern Ontario. 29p.

Heather, K. B. and Arias, Z. 1992. Geological and structural setting of gold mineralization in the Goudreau-Lochalsh area, Wawa gold camp; Ontario Geological Survey, Open File Report 5832, 159p.

Makarenko, M., Pilotto, D., Lechner, M., Castro, L., Cheng, S. 2017. Feasibility Study Technical Report on The Magino Project, Ontario, Canada. Prepared for Argonaut Gold Inc. by JDS Energy and Mining Inc. 460p.

McDivitt, J. A., Lafrance, B., Kontak, D. J., & Robichaud, L. 2017. The Structural Evolution of the Missanabie-Renabie Gold District: Pre-orogenic Veins in an Orogenic Gold Setting and Their Influence on the Formation of Hybrid Deposits. Economic Geology, 112(8), 1959–1975.

Sage, R. P., Lightfoot, P. C., & Doherty, W. 1996. Geochemical characteristics of granitoid rocks from within the Archean Michipicoten Greenstone Belt, Wawa Subprovince, Superior Province, Canada: implications for source regions and tectonic evolution. Precambrian Research, 76(3-4), 155–190.

Sage, R.P. 1993. Geology of Abotossaway, Corbiere, Leclaire and Musquash Townships and part of Dunphy Township; Ontario Geological Survey, Open File Report 5587, 308p.

Sage, R.P. 1994. Geology of the Michipicoten greenstone belt; Ontario Geological Survey, Open File Report 5888, 592p.

Solski, M. Report on The Rand No. 2 Prospect, M.E.R.I.T., Mineral Exploration Resources in Toronto, Goudreau-Lochalsh Area, Ontario, July 9, 1986; Ministry of Northern Development, Mines and Forestry, assessment file No. 42C02NE0209.

Tilsley, J. E. Summary Report, Exploration Program 1987, Faldo Mines and Energy Corporation, McVeigh Creek and Jackson Lake Properties, February 12, 1988

Turek, A., Sage, R.P., and Van Schmus, W.R. 1992. Advances in the U-Pb zircon geochronology of the Michipicoten Greenstone Belt, Superior Province, Ontario. Canadian Journal of Earth Sciences, 29: 1154-1165.

Turek, A., Smith, P.E., and Van Schmus, W.R. 1984. U-Pb zircon ages and the evolution of the Michipicoten plutonic-volcanic terrane of the Superior Province, Ontario. Canadian Journal of Earth Sciences, 21: 457-464.

Williams, H. R., Scott, G. M., Heather, K. B., Muir, T. L., and Sage, R. P., 1991. Wawa Subprovince; in Geology of Ontario, (eds.) P. C. Thurston, H. R. Williams, R. H., Sutcliffe, and G. M. Scott; Ontario Geological Survey, Special Paper 4, pt.1, pages 485 539.

Qualifications

STATEMENT OF QUALIFICATIONS

I, Isaac Riddle, of 340 Gilmour Street, Ottawa, Ontario K2P 0R3, certify that;

- 1) I obtained a Bachelor's Degree in Geological Sciences from Acadia University in 2016.
- 2) I have worked as a geologist for 4 years since my graduation from university in 2016.
- I am responsible for writing this report entitled, Geological Mapping and Prospecting Report on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>
- 5) I have no beneficial interest, direct or indirect in the Aguonie Project that is the subject of this report.

Dated February 9, 2021

Isaac Riddle

Isaac Riddle

STATEMENT OF QUALIFICATIONS

I, Geordie Hamilton, of 1770 Paris Street, Sudbury, Ontario P3E 3C3, certify that;

- 1) I acquired an Honours Bachelor's Degree specializing in Earth Sciences from Laurentian University in 2018. I also obtained my Master's Degree in Applied Mineral Exploration from Laurentian University in 2020.
- 2) I have worked as a geologist for approximately 2.5 years.
- I am responsible for writing this report entitled, Geological Mapping and Prospecting Report on the Aguonie Property, Aguonie Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>
- 5) I have no beneficial interest, direct or indirect in the Aguonie Project that is the subject of this report.

Dated February 9, 2021

Geordie Hamilton

Geordie Hamilton

STATEMENT OF QUALIFICATIONS

- I, Stephen Roach, of 47 Crantham Crescent, Stittsville, Ontario K2S 1R2, certify that;
- 1) I obtained a Bachelor Degree in Geological Sciences from Concordia University in 1977. In addition, I attended Carleton University from 1981-83 in a Graduate Program.
- 2) I have worked as a geologist for more than 45 years since my graduation from university been in the practice of my profession as an exploration Geologist since 1977.
- 3) I am responsible for the contributions in this report entitled, entitled Geological Mapping and Prospecting Report on the Rand 2 Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) I have no beneficial interest, direct or indirect in the Rand 2 Property that is the subject of this report.

Dated February 9, 2021

Stephen Roach

Stephen Roach

Instrument Specifications

Garmin 64s GPS

• Specifications obtained from www.garmin.com

Physical dimensions	2.4" x 6.3" x 1.4" (6.1 x 16.0 x 3.6 cm)			
Display size	1.43" x 2.15" (3.6 x 5.5 cm); 2.6" diag (6.6 cm)			
Display resolution	160 x 240 pixels			
Display type	transflective, 65K color TFT			
Weight	8.1 oz (230 g) with batteries			
Battery	2 AA batteries (not included); NiMH or Lithium			
Battery life	16 hours			
Water rating	IPX7			
Memory/History	4 GB			
High-sensitivity receiver	Yes			
Interface	high speed mini USB and NMEA 0183 compatible			

APPENDICES:

Appendix 1 – Geology-Tracks-Sample Locations-Abbreviations with Map Scales at1:2500 and 1:4000

- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- **Appendix 4** Daily Logs
- **Appendix 5** VLF-EM Modelling Maps with Map Scales at 1:2000 and 1:800
- **Appendix 6** Expenditure Invoices & Receipts
APPENDIX 1

Appendix 1: Geological Map - 1:2500 Scale

Tracks			
July 15	August 13	 September 02	
July 22	August 14	 September 04	
July 23	August 15	 September 05	
July 24	August 16	 September 06	
July 25	August 19		
July 26	August 21		
July 27	August 22		
	August 25		

Appendix 6: Abbreviations

Ank – Ankerite

Bt-Biotite

Carb - Carbonate

Cb- Carbonate

Chl-Chlorite

Cld-Chloritoid

Cpy-Chalcopyrite

Diss – Disseminated

E.M. - Electromagnetic

Ep-Epidote

IF – Iron Formation

Mod - Moderate

Mod-Moderate

Mt-Magnetite

N-North

N.W. - Northwest

NNW- North northwest

Po-Pyrrhotite

Py - Pyrite

QCS – Quartz-carbonate stringers

QST – Quartz stringers

QTV – Quartz-tourmaline vein

QV - Quartz Vein

S- South

S.E. – South southeast

S.E.-Southeast

S.W.- Southwest

Ser-Sericite

Str - Strong

VLF – Very low frequency

W-West

Wk -Weak

WNW -West northwest

WSW- West southwest

Shaun Parent, P.Geo Batchawana Bay, Ontario (705) 943-9399 (705) 946-6054 www: superior-exploration.ca Mailing: P.O. Box 20062 RPO East End, Sault Ste. Marie, ON P6A 6W3 HST Reg. 844836486RT0001

VLF2Dmf - Filters and Profile Explanations and Meanings

<u>Fraser Filter:</u> Named after Douglas Fraser (1969) and is typically used in geophysics when displaying VLF data. It is effectively the convolution of the data with an expected anomaly first derivative of the data and seeks for the crossover point.

<u>Fraser Pseudo Section</u>: Is built by applying Fraser Filter of various lengths down the line to obtain depth.

Karous-Hjelt Filter: The Karous and Hjelt filter has been long time used as a qualitative interpretation of VLF-EM data. It is derived directly from the concept of magnetic fields associated with the current flow in the subsurface and resulted in a 2-D cross section showing the current density distribution at different depths.

<u>Apparent Resistivity Filter:</u> An assumed resistivity value is applied to a filter which is based on the relationship between the horizontal derivative of the surface electric field and the vertical magnetic field at the surface of a two-dimensional earth model.

<u>Apparent Current Density (JY) Section Model</u>: A 2D inversion that looks for the best distribution of the density of current (JY). The output is the apparent current density with positive values associated with conductors and negative values associated to resistors.

<u>2D Inversion Resistivity Models</u>: In-phase and out-phase data are used to build, by inversion, a 2D model of the subsurface resistivity that better fits the VLF-EM data. The method allows the location of the most significant resistivity contrasts.

APPENDIX 2

Rock Sample Descriptions (includes standard & blanks)

Sample	Date	Easting	Northing	Elevation (m)	Description	Au (g/t)
Number		* N.	AD 83, Zon	e 16 *	-	
A852049	23-Jul- 20	682261	5347119	404	Medium-dark grey-green, foliated, fine-grained, weakly magnetic mafic volcanic wit weak-mod sericite and chlorite. Ankerite and silica alteration are also mod- strong. Quartz-ankerite veins cut unit at 292/60 at an angle to the foliation of 259/56. <0.5% pyrrhotite in quartzankerite veins.	<0.02
A852050					CDN-GS-94J	0.52
A852051	23-Jul- 20	682259	5347117	395	Light-medium grey-green, fine grained, foliated, weakly magnetic mafic volcanic. Silica and ankerite alteration are modstrong, while chlorite and sericite are weak-mod. Quartz-ankerite veins cut unit at 259/56 parallel to foliation. 1-2% vein and disseminated pyrrhotite associated with quartz- ankerite veining/alteration.	< 0.02
A852052	23-Jul- 20	682236	5347104	389	Light grey-rusty, crystalline quartz-ankerite veining oriented 104/70 up to 10 cm wide with 1% pyrrhotite.	< 0.02
A852053	23-Jul- 20	682164	5347124	396	Light grey-white with rust and black stringers, fractured and crystalline quartz-tourmaline vein up to 10 cm wide trending subparallel to foliation of 100/45. 0.5% pyrrhotite within veins	< 0.02

A852054	23-Jul- 20	682168	5347127	401	Dark grey-green with rust, foliated/sheared, fine- grained, weakly magnetic mafic volcanic with moderate chlorite alteration and mod-strong ankerite. 0.5% disseminated pyrrhotite throughout. Small <1 cm quartz stringers occur foliation parallel 110/45.	0.12
A852055	23-Jul- 20	682136	5347114	406	Dark grey-green, massive, nonmagnetic mafic volcanic with weak-mod chlorite and carbonate alteration. <1 cm wide quartz stringers cut unit. 0.5% disseminated pyrrhotite.	0.12
A852056	23-Jul- 20	682136	5347116	406	Light grey with dark bands/stringers, crystalline quartz vein with 0.5-1% pyrrhotite. Vein appears to be hosted within feldspar porphyry intrusion. Vein is oriented 024/72 and is 1-2 cm wide.	0.12
A852057	23-Jul- 20	682150	5347105	409	Light grey with black bands, laminated quartz- carbonatetourmaline vein with <0.5% chalcopyrite along margins and 0.5% pyrrhotite within veins. Veins are oriented 027/60. Host mafic volcanic is foliated 244/64.	4.9
A852058	24-Jul- 20	682224	5347081	403	Quartz-ankerite vein hosted in sheared 1a, light grey- white with rust, crystalline, vein is up to 10 c wide and is oriented 276/70 subparallel to shear of 297/83.	< 0.02

A852059	24-Jul- 20	682092	5346931	415	Quartz-ankerite vein hosted in sheared 1a, light grey- white with rust, crystalline, crack-seal vein is up to 10 cm wide and is oriented 276/70 subparallel to shear of 297/83.	< 0.02
A852060					Blank	< 0.02
A852061	24-Jul- 20	682084	5346917	417	Dark green-grey, fine- grained, foliated, non- magnetic mafic volcanic, quartz-ankerite stringers cut unit.	< 0.02
A852062	24-Jul- 20	682081	5346918	417	Light grey quartz-ankerite vein with dark grey-green mafic volcanic wall rock, vein is 2 cm wide and is oriented 270/35.	< 0.02
A852063	24-Jul- 20	682052	5346929	413	Light grey-brown, crystalline quartz-ankerite vein with mod chlorite, vein is 10-15 cm wide and is oriented 294/70 with <0.5% pyrite. Vein is subparallel to shear direction of 106/80.	< 0.02
A852064	24-Jul- 20	682184	5346815	424	Milky-cloudy white, crystalline quartz vein, vein is 15 cm wide and is oriented 268/72.	< 0.02
A852065	24-Jul- 20	682195	5346815	427	Medium grey-brown, foliated/folded, fine- grained, nonmagnetic mafic volcanic with weak-mod chlorite alteration and mod silica and ankerite alteration/veinlets.	< 0.02
A852066	24-Jul- 20	682194	5346815	430	Milky-cloudy white, crystalline quartz vein, vein is 10 cm wide and is cut off by a fold. Outcrop orientation not permissive to structural measurement.	< 0.02

A852067	24-Jul- 20	682162	5346774	435	Light grey, fine grained, nonmagnetic quartz- feldspar porphyry with weak sericite and chlorite alteration. Unit is weakly sheared 099/74 with 0.5- 1% fracture-fill pyrite	< 0.02
A852068	24-Jul- 20	682164	5346779	435	Light grey with black stringers, laminated quartz- ankerite tourmaline vein, vein is 3-5 cm wide and is oriented parallel to shear direction of 100/90. Tourmaline occurs up to 5%.	< 0.02
A852069	25-Jul- 20	681553	5346723	419	fine grain light grey massive mafic volcanic with small qcv veins	< 0.02
A852071	25-Jul- 20	681812	5346786		fine grain light grey slight sheared mafic volcanic	< 0.02
A852072	25-Jul- 20	681790	5346768		light grey fine grained bleached and rusty mafic volcanic	< 0.02
A852073	25-Jul- 20	681760	5346783		light grey fine grained laminated mafic volcanic with quartz carb veinlets.	0.87
A852074	25-Jul- 20	681278	5346763		Smokey grey qcv in strong shear large rusty zone	0.73
A852075	25-Jul- 20	681278	5346763		Dark grey fine grained mafic volcanic in large shear zone	< 0.02
A852076	27-Jul- 20	681054	5347075	409	Mafic volcanic. Medium green to grey, very fine grained, massive and non- magnetic. Minor to moderate pervasive chlorite. 15% white quartz carbonate stringers (~3cm width). No significant mineralization. Sample taken from muck beside small blast pit.	< 0.02

					Folded quartz carbonate	
					vein Medium grey/rusty	
					brown fine grained fresh	
					faces exhibit conchoidal	
					fracturing vein	
					nonmagnetic Minor calcite	
					along with minor to	
					moderate iron staining	
	27 In1				within quarta Vain ranges	
A852077	2/-Jul-	680944	5346937	398	from form along limbs and	< 0.02
	20				from 3cm along millos and	
					up to 50cm at the nose.	
					Appears to be upright m	
					told with near vertical	
					plunge axis and E-W trend,	
					Possible F2 at	
					255°/25°NW. No	
					significant mineralization	
					observed.	
		7-Jul- 691159		408	Shear mafic volcanic. Light	
					grey/green and white, very	
					find grained, moderate to	
					significant foliation and	
					non-magnetic. Shear os	
					0.5-1m wide and trending	
					093°/74°S and exhibits	
A 852078	27-Jul-		5246770		moderate to significant	2.54
A052070	20	001130	3340777	-00	silica flooding along with	2.34
					minor pervasive calcite and	
					possibly iron carbonate	
					infilling fractures. Up to	
					5% blotchy fine-grained	
					pyrite forming along	
					fractures with occasional	
					(1%) chalcopyrite blebs.	
					Dark green, sheared,	
					finegrained, non-magnetic	
1052005	15-Aug-	(02402	5246705	400	mafic volcanic with strong	0.02
A852095	20	682492	5346795	420	chlorite and carbonate	
	20	20			alteration and <1 cm wide	
					quartz-ankerite stringers.	

					White granular	
A852096	15-Aug- 20	682510	5347014	379	boudinaged, 5 cm wide quartz stringer hosted in sheared mafic volcanic. Vein occurs parallel to shear direction of 120/48 with weak fracturefilling ankerite.	0.18
A852097	15-Aug- 20	682519	5347018	383	Light-medium green mafic volcanic, sheared, fine- grained, non-magnetic with strong chlorite alteration and weak carbonate. Shear is oriented 106/87.	0.02
A852098	16-Aug- 20	682304	5346578	440	Lean silicate facies iron formation. Dark grey to black very fine grained, bedded/banded and significantly magnetic. Minor quartz stringers, with more abundant carbonate (breccia?) stringers (~25%), minor iron carbonate infilling fractures. Up to 5% localized magnetite, with lesser (1%) pyrite.	< 0.02
A852099	16-Aug- 20	682182	5346747	432	Sheared mafic volcanics. Dark green and rusty brown, very fine grained, strongly foliated, and non- magnetic. Significant pervasive chlorite, with minor to moderate calcite stringers with lesser iron carbonate. Stringers are 1cm width, trending 104°/68° (parallel to foliation) and comprise 50% of the sample. No significant mineralization	0.48
A852100					Blank	< 0.02

A852101	16-Aug- 20	682093	5346769	422	Mafic volcanics at contact with quartz porphyry. Dark green/rusty brown, very fine grained, moderate to significant foliation and non_magnetic. Moderate pervasive iron carbonate. Quartz stringers intruding foliation parallel at 268°/90°. Stringers are discontinuous and 1cm in width comprising 15% of the sample. Trace (<0.5%) silvery mineral disseminated throughout, potentially arsenopyrite?	0.04
A852151	21-Aug- 20	682256	5347113		light grey massive fine grained mafic volcanic with flat qv	< 0.02
A852152	21-Aug- 20	682256	5347112		light grey massive fine grained mafic volcanic with flat qv	< 0.02
A852153	21-Aug- 20	682157	5347121		light grey fine grained moderate sheared mafic volcanic 1% dis py with stringer qv	< 0.02
A852154	21-Aug- 20	682157	5347120		light grey fine grained moderate sheared mafic volcanic 1% dis py with flat qv	17.8
A852155	21-Aug- 20	682150	5347105		fine grained light grey to green mafic volcanic with qv 1% bleb and diss py	4.29
A852156	21-Aug- 20	682150	5347105		fine grained light grey to green mafic volcanic with qv 1% bleb and diss py	0.95
A852157	21-Aug- 20	682147	5347110		light grey fine grained sheared mafic volcanic and nose of fold	< 0.02
A852158	21-Aug- 20	682145	5347099		light grey laminated schist fine grained	< 0.02
A852159	21-Aug- 20	682136	5347115		light grey qfp with 2 cm qtv 2 % bleb and diss py	1.78

A852160				Blank	< 0.02
A852161	21-Aug- 20	682004	5347270	white rusty brown fine- grained quartz vein with 1 % diss py	< 0.02
A852162	22-Aug- 20	682006	5346952	dark grey to brown sheared fine grained mafic volcanic	< 0.02
A852163	22-Aug- 20	682007	5346938	light grey pinkish fine grained strongly sheared mafic volcanic with 1 % diss py	0.44
A852164	22-Aug- 20	682006	5346942	dark grey massive fine grained mafic volcanic	< 0.02
A852165	22-Aug- 20	682061	5346950	dark green rusty brown fine grained sheared mafic volcanic with 1 cm qcv up to 5 py	< 0.02
A852166	22-Aug- 20	682005	5346935	light grey brown fine grained mafic volcanic strongly sheared with 1% diss py	< 0.02
A852167	22-Aug- 20	682015	5346904	dark green sheared mafic volcanic with 1% diss py	< 0.02
A852168	22-Aug- 20	682049	5346894	dark green fine grained sheared mafic volcanic with 2 to 3 diss py	< 0.02
A852169	22-Aug- 20	681990	5346819	dark green sheared mafic volcanic with 1% diss py	< 0.02
A852170				CDN-GS-4F	4.05
A852171	22-Aug- 20	682036	5346674	fly rock from old trench fine grained grey black and bull white 15 % tourmaline 1 % dis py	< 0.02
A852172	22-Aug- 20	682051	5346661	folded quartz vein sample from nose no sulphides bull white	0.08
A852173	23-Aug- 20	682054	5346667	fine grained bull white light grey 1 % diss py	< 0.02
A852174	23-Aug- 20	682055	5346667	fine grained grey to bull white sheared mafic volcanic with 2cm qtv and 0.5 % bleb py	< 0.02

A852175	23-Aug- 20	682055	5346666	fine grained quartz breccia zone white to light grey	< 0.02
A852176	23-Aug- 20	682056	5346668	fine grained light grey strong shear 2 cm qv trace sulphides	< 0.02
A852177	23-Aug- 20	682034	5346663	dark green sheared mafic volcanic with 1% diss py	< 0.02
A852178	23-Aug- 20	682034	5346663	dark green sheared mafic volcanic with 1% diss py	< 0.02
A852179	23-Aug- 20	682087	5346772	light grey fine-grained moderate quartz-feldspar porphyry 1% diss py	< 0.02
A852180				Blank	< 0.02
A852181	23-Aug- 20	682135	5346731	dark green sheared mafic volcanic with 2-3 diss py	< 0.02
A852182	25-Aug- 20	681333	5347030	fine grained bull white light grey 1 % diss py	< 0.02
A852183	25-Aug- 20	681333	5347030	dark green sheared mafic volcanic with 2-3 diss py	0.1
A852184	25-Aug- 20	681321	5346978	dark green sheared mafic volcanic with 1% diss py	< 0.02
A852185	25-Aug- 20	681448	5346367	Medium grey fine grained moderate sheared mafic volcanic 1% dis py with stringer qcv and str ankerite alteration	< 0.02
A852186	25-Aug- 20	681542	5346770	Medium grey fine grained moderate sheared mafic volcanic 1% dis py with stringer qcv and str ankerite alteration	< 0.02
A852187	25-Aug- 20	681751	5346781	Medium grey fine grained moderate sheared mafic volcanic 1% dis py with stringer qcv and mod ankerite alteration	0.06
A852188	25-Aug- 20	681751	5346779	Medium grey fine grained moderate sheared mafic volcanic 2% dis py with stringer qcv and mod ankerite alteration	< 0.02

A852189	25-Aug- 20	681751	5346779		light grey fine grained moderate sheared mafic volcanic 1% dis py with stringer qcv and mod ankerite alteration	< 0.02
A852190					Blank	3.24
A852191	25-Aug- 20	681335	5346752		dark grey to brown sheared fine grained mafic volcanic w 5% qcv	< 0.02
A852192	28-Aug- 20	681165	5346784		dark grey to brown sheared fine grained mafic volcanic	< 0.02
A852193	28-Aug- 20	681112	5346821		dark grey to brown sheared fine grained mafic volcanic w 5% qcv	< 0.02
A852194	28-Aug- 20	681075	5346816		dark grey to brown sheared fine grained mafic volcanic	< 0.02
A852195	28-Aug- 20	681086	5346845		dark grey to brown sheared fine grained mafic volcanic	< 0.02
A852196	02-Sep- 20	681102	5346914	395	Light grey green with a weak foliation striking at 261 / 78 with moderate carbonate and weak to moderate epidote alteration present. Weak QCS with about 5% veining with <1% mineralization present t. Host has 1 to 2% disseminated Py	< 0.02
A852197	02-Sep- 20	681068	5346810	400	Light green fine grained sheared Mafic Volcanic with a weak to moderate weathering with some QV present with some Py mineralization present in the veins. Weak chlorite and moderate carbonate and Ankerite alteration present.	< 0.02

A852198	02-Sep- 20	680994	5347190	399	Green to light grey green in color with a fine-grained appearance. Moderate chlorite and carbonate alteration with trace Py mineralization and .5% patchy Cpy within the host mafic volcanic rocks is non-magnetic.	< 0.02
A852199	04-Sep- 20	681205	5346981	392	Medium to dark grey medium grained mafic volcanic with weak chlorite and strong fracture filling carbonate alteration. Minor QCS .1cm wide with 4 to 5% disseminated Py	< 0.02
A852200					Blank	< 0.02
A852201	04-Sep- 20	681202	5346967	394	Moderately sheared 1A (Mafic Volcanic) with 4 to 5 CM wide QV striking 108 / 88 Which is parallel to the shear direction and with 1 to 2% disseminated Py in the vein and minor amounts in the host or wall rock.	< 0.02
A852202	04-Sep- 20	681197	5346851	399	Light grey green 1A moderately sheared with moderate to moderately strong Ankerite alteration present as well as minor chlorite and carbonate alteration.	0.71
A852203	04-Sep- 20	681301	5346557	415	Light grey fine grained and sheared 1A (Mafic Volcanic) with moderate to strong ankerite alteration as well as other carbonate alteration	< 0.02

A852204	06-Sep- 20	681691	5346619	403	Greyish green and fine grained with dark black bands present (Possible Chlorite bands) Moderate to moderately strong shearing @ 268 / 90 strike and dip. Minor disseminated Py and moderate Magnetism present with about 1 to 2 % fine grained disseminated Magnetite	< 0.02
A852205	06-Sep- 20	681609	5346762	409	Light grey brownish white .5 to .6 cm rounded minerals present with ankerite mineral veins also present. Moderate Magnetism also present with 1 to 2% disseminated Py with minor Po and 1 to 2% fine disseminated Mt present.	< 0.02
A852206	22-Oct- 20	681360	5347130	407	Dark Grey to grey black with a fine to very fine grain with moderate to strong shearing striking at 280 and dip of 54 degrees. Weak to moderate chlorite and moderate to strong carbonate and weak ankerite alteration present. Sample taken from south side of a VLF conductor.	<0.02
A852207	22-Oct- 20	681342	5347202	407	Sheared Mafic Volcanic with a light grey greenish color with a fine grained sheared texture with weak to moderate chlorite and moderate carbonate and ankerite alteration. Shear striking 290 and dip of 70 with a weak magnetics and trace py.	<0.02

A852208	22-Oct- 20	681453	5347181	402	Light Grey to grey green in color with weak chlorite and carbonate alteration with a weak shearing of 288 strike and dip of 80 degrees. There is only trace Py and moderate to strong magnetism.	<0.02
A852209	22-Oct- 20	681451	5347183	403	medium to dark grey fine to medium grained Gabbro with a mostly massive appearance with a moderate to strong magnetic signitute	<0.02
A852210					CDN-GS-4F	3.86
A852211	22-Oct- 20	682252	5347219	397	Weakly sheared to mostly massive fine to medium grained Gabbro with a moderately strong magnetic signiture. There is weak chlorite and carbonate alteration present.	<0.02
A852212	22-Oct- 20	682235	5347197	398	Dark grey with a weakly sheared with weak chlorite and carbonate alteration and with a moderate to strong magnetic signiture with 2to 4 % Mt present as fine disseminated graines. Weak shear had a strike of 315 and dip of 70 degrees.	<0.02

APPENDIX 3

Quality Analysis ...

Innovative Technologies

Report No.:A20-08665Report Date:01-Sep-20Date Submitted:31-Jul-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

29 Rock samples were submitted for analysis.

The following analytical package(s) were requested		Testing Date:	
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-08-19 12:54:29	
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-08-20 12:03:41	

REPORT A20-08665

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

Footnote: A852050 INS (Weigh-CE)

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A852049	< 0.02	< 0.2	< 0.5	5	1030	< 1	104	< 2	54	2.48	3	< 10	59	< 0.5	5	5.30	25	78	6.85	< 10	< 1	0.30	< 10
A852050	0.52	1			1		. 1	l. l.	l.	l. l	1	1		l l		1		1	l. l.	1	1	l. l.	1
A852051	< 0.02	< 0.2	< 0.5	2	1010	< 1	234	< 2	124	5.61	5	< 10	40	< 0.5	< 2	3.66	54	155	12.9	20	<1	0.25	< 10
A852052	< 0.02	< 0.2	< 0.5	271	526	2	13	< 2	21	0.30	3	< 10	24	< 0.5	< 2	0.13	10	28	2.33	< 10	<1	0.04	< 10
A852053	< 0.02	< 0.2	< 0.5	14	232	3	8	< 2	8	0.20	< 2	< 10	13	< 0.5	< 2	0.06	5	36	1.42	< 10	<1	0.03	< 10
A852054	0.12	< 0.2	< 0.5	65	1350	2	32	< 2	76	2.62	22	< 10	45	< 0.5	<2	0.37	40	21	10.5	10	3	0.13	< 10
A852055	0.12	< 0.2	< 0.5	57	659	< 1	21	< 2	116	3.59	7	< 10	75	< 0.5	< 2	1.87	29	11	8.45	20	<1	0.17	< 10
A852056	0.12	< 0.2	< 0.5	25	582	1	11	5	30	0.73	3	17	53	< 0.5	< 2	1.46	18	13	2.36	< 10	<1	0.15	11
A852057	4.71	0.3	< 0.5	52	771	< 1	31	< 2	111	3.15	7	< 10	68	< 0.5	< 2	0.84	35	16	8.44	10	<1	0.19	< 10
A852058	< 0.02	< 0.2	< 0.5	9	438	2	8	< 2	7	0.27	< 2	< 10	19	< 0.5	< 2	0.19	4	32	1.41	< 10	<1	0.07	< 10
A852059	< 0.02	< 0.2	< 0.5	83	1170	< 1	40	6	55	1.16	< 2	< 10	64	< 0.5	< 2	6.92	26	12	6.38	< 10	<1	0.31	< 10
A852060	< 0.02	< 0.2	< 0.5	38	477	< 1	39	2	45	2.25	< 2	< 10	72	< 0.5	< 2	1.66	14	54	3.08	< 10	< 1	0.31	16
A852061	< 0.02	< 0.2	< 0.5	239	1270	< 1	44	< 2	109	4.29	4	< 10	16	< 0.5	2	4.43	39	28	10.1	20	< 1	0.08	< 10
A852062	< 0.02	< 0.2	< 0.5	188	1650	< 1	24	< 2	62	2.67	4	< 10	45	< 0.5	< 2	8.63	29	14	6.82	< 10	<1	0.23	< 10
A852063	< 0.02	< 0.2	< 0.5	4	1810	< 1	13	< 2	28	0.77	< 2	< 10	24	< 0.5	< 2	> 10.0	12	9	5.74	< 10	< 1	0.20	< 10
A852064	< 0.02	< 0.2	< 0.5	2	322	3	2	< 2	< 2	0.06	< 2	< 10	13	< 0.5	< 2	1.41	< 1	36	0.52	< 10	<1	0.02	< 10
A852065	< 0.02	< 0.2	< 0.5	10	152	< 1	< 1	< 2	16	1.18	5	< 10	92	< 0.5	< 2	0.40	2	4	0.92	< 10	< 1	0.49	18
A852066	< 0.02	< 0.2	< 0.5	3	216	2	1	< 2	3	0.24	6	< 10	39	< 0.5	< 2	0.03	1	24	0.71	< 10	< 1	0.16	< 10
A852067	< 0.02	< 0.2	< 0.5	2	222	<1	1	3	14	0.81	< 2	< 10	71	< 0.5	< 2	0.86	2	7	0.65	< 10	< 1	0.26	26
A852068	< 0.02	0.3	< 0.5	74	1550	< 1	25	< 2	67	1.20	4	< 10	19	< 0.5	< 2	7.16	25	25	7.59	< 10	< 1	0.10	< 10
A852069	< 0.02	< 0.2	< 0.5	2	192	1	2	3	13	0.62	18	< 10	75	< 0.5	< 2	0.52	2	15	0.77	< 10	< 1	0.27	< 10
A852071	< 0.02	< 0.2	< 0.5	175	1100	< 1	18	< 2	150	3.33	2	< 10	13	< 0.5	< 2	2.99	40	4	10.8	10	4	0.05	< 10
A852072	< 0.02	< 0.2	< 0.5	3	322	< 1	<1	< 2	26	0.50	< 2	< 10	55	< 0.5	< 2	0.86	2	5	0.87	< 10	<1	0.15	22
A852073	0.87	0.2	< 0.5	131	1520	<1	18	< 2	116	2.00	< 2	< 10	25	< 0.5	< 2	6.14	38	2	9.73	< 10	<1	0.09	< 10
A852074	0.73	< 0.2	< 0.5	38	1210	< 1	17	< 2	42	0.26	47	< 10	16	< 0.5	4	8.74	14	9	5.07	< 10	< 1	0.08	< 10
A852075	< 0.02	< 0.2	< 0.5	103	1220	< 1	50	< 2	96	2.20	< 2	< 10	19	< 0.5	<2	5.87	33	36	8.17	< 10	< 1	0.12	< 10
A852076	< 0.02	< 0.2	< 0.5	78	779	< 1	45	< 2	46	2.95	25	< 10	13	< 0.5	5	4.32	28	46	4.22	< 10	< 1	0.11	< 10
A852077	< 0.02	< 0.2	< 0.5	81	486	1	25	< 2	45	1.98	5	< 10	< 10	< 0.5	< 2	0.63	21	46	4.42	< 10	< 1	0.01	< 10
A852078	2.54	0.8	0.7	65	791	1	14	10	94	0.52	316	< 10	32	< 0.5	3	3.95	25	7	7.23	< 10	< 1	0.15	< 10

Results

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
A852049	2.46	0.055	0.038	0.02	3	8	60	< 0.01	< 20	5	< 2	< 10	69	< 10	3	5
A852050																
A852051	4.47	0.064	0.049	0.82	7	15	39	< 0.01	< 20	6	< 2	< 10	172	< 10	2	4
A852052	0.13	0.031	0.009	0.05	< 2	3	4	0.01	< 20	<1	< 2	< 10	22	< 10	< 1	< 1
A852053	0.09	0.025	0.004	0.07	< 2	3	2	0.01	< 20	<1	< 2	< 10	15	< 10	< 1	< 1
A852054	1.32	0.039	0.054	0.86	3	21	6	0.17	< 20	4	< 2	< 10	281	< 10	4	9
A852055	1.92	0.035	0.038	0.20	3	17	30	0.17	< 20	<1	< 2	< 10	310	< 10	3	5
A852056	0.29	0.083	0.036	0.33	< 2	2	21	0.04	< 20	4	< 2	< 10	16	< 10	3	3
A852057	1.70	0.024	0.034	0.49	2	12	13	0.18	< 20	< 1	< 2	< 10	273	17	2	3
A852058	0.07	0.040	0.011	< 0.01	< 2	1	8	< 0.01	< 20	<1	< 2	< 10	7	< 10	2	2
A852059	2.55	0.023	0.031	0.04	3	6	83	0.11	< 20	<1	< 2	< 10	50	11	3	7
A852060	1.12	0.119	0.053	0.06	< 2	5	103	0.22	< 20	<1	< 2	< 10	69	< 10	5	10
A852061	3.34	0.030	0.039	0.08	3	24	49	0.10	< 20	4	< 2	< 10	225	< 10	3	4
A852062	2.23	0.025	0.026	0.37	< 2	12	118	0.10	< 20	1	< 2	< 10	117	11	6	4
A852063	4.75	0.023	0.011	0.02	< 2	5	84	< 0.01	< 20	3	< 2	< 10	36	< 10	4	3
A852064	0.04	0.023	0.003	< 0.01	< 2	< 1	28	< 0.01	< 20	< 1	< 2	< 10	3	< 10	2	< 1
A852065	0.31	0.042	0.022	0.13	< 2	< 1	9	< 0.01	< 20	2	< 2	< 10	< 1	< 10	3	3
A852066	0.01	0.027	0.009	0.04	< 2	< 1	3	< 0.01	< 20	<1	< 2	< 10	10	< 10	< 1	5
A852067	0.11	0.154	0.024	0.21	< 2	< 1	32	< 0.01	< 20	<1	< 2	< 10	1	< 10	4	10
A852068	2.12	0.090	0.022	0.04	< 2	11	68	0.14	< 20	< 1	< 2	< 10	56	< 10	2	4
A852069	0.08	0.038	0.013	0.05	< 2	< 1	8	< 0.01	< 20	< 1	< 2	< 10	2	< 10	3	9
A852071	1.26	0.078	0.046	0.06	2	22	27	0.15	< 20	< 1	< 2	< 10	216	< 10	2	6
A852072	0.03	0.122	0.020	0.01	< 2	< 1	16	0.01	< 20	< 1	< 2	< 10	2	< 10	4	5
A852073	1.54	0.089	0.039	0.08	4	14	42	0.13	< 20	<1	< 2	< 10	120	< 10	2	5
A852074	1.83	0.053	0.010	0.54	<2	4	60	< 0.01	< 20	4	< 2	< 10	13	> 200	4	2
A852075	2.83	0.088	0.027	< 0.01	< 2	14	42	0.04	< 20	< 1	< 2	< 10	88	11	2	3
A852076	2.28	0.018	0.014	0.51	< 2	7	63	< 0.01	< 20	7	< 2	< 10	49	< 10	2	2
A852077	1.66	0.026	0.007	0.06	< 2	13	10	0.18	< 20	4	< 2	< 10	120	< 10	5	3
A852078	1.41	0.059	0.045	2.24	3	4	24	< 0.01	< 20	2	< 2	< 10	33	< 10	2	5

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Са	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	g/tonne	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas		0.3	< 0.5	71	1020	2	26	96	120	6.91	223	< 10	783	0.8	< 2	0.13	14	79	6.00	20	3	1.19	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	74	1070	1	24	101	124	7.24	231	< 10	790	0.8	< 2	0.13	13	80	6.21	20	< 1	1.32	< 10
GXR-6 Cert	j.	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.4]]					
GXR-6 Cert		1.30																					
OREAS 98 (Aqua Regia) Meas		40.8																					
OREAS 98 (Aqua Regia) Cert		42.8															1						
OREAS 922 (AQUA REGIA) Meas		1.1	< 0.5	2290	763	< 1	36	64	255	2.99	7		88	0.8	8	0.41	20	46	5.54	10		0.56	38
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas	1	0.8	< 0.5	2390	793	< 1	35	62	268	3.09	8	1	83	0.8	7	0.42	19	47	5.61	< 10	1	0.59	38
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		1.1																					
OREAS 922 (AQUA REGIA) Cert		0.851																					
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4530	850	< 1	34	86	329	2.99	8		71	0.7	10	0.41	22	41	6.26	10		0.47	34
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.7															-						
OREAS 923 (AQUA REGIA) Cert		1.62																					
Oreas 96 (Aqua Regia) Meas		11.9		> 10000				93	428						< 2		48						
Oreas 96 (Aqua Regia) Cert		11.50		39100. 00				100	448						27.9		49.2						
Oreas 96 (Aqua Regia) Meas		11.5		> 10000		a.	9.	98	439					9	< 2	9	45	9	2		1		8
Oreas 96 (Aqua Regia) Cert		11.50		39100. 00		-	-	100	448						27.9		49.2						
Oreas 96 (Aqua Regia) Meas		11.7		> 10000				98	447						4		45						
Oreas 96 (Aqua Regia) Cert		11.50		39100. 00				100	448						27.9		49.2						
Oreas 96 (Aqua Regia) Meas		11.1																					
Oreas 96 (Aqua Regia) Cert		11.50				Ĵ													Ĵ				
Oreas 621 (Aqua Regia) Meas		68.7	291	3490	536	14	24	> 5000	> 10000	1.76	80			0.6	< 2	1.36	29	30	3.38	10	3	0.39	19

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Со	Cr	Fe	Ga	Hg	K	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		69.6	292	3790	551	13	26	> 5000	> 10000	1.88	78			0.6	< 2	1.70	28	30	3.47	10	4	0.42	21
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas	3	69.9	291	3730	555	13	23	> 5000	> 10000	1.90	78	3		0.6	< 2	1.70	27	30	3.50	10	4	0.44	21
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0	-		0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		72.3																					
Oreas 621 (Aqua Regia) Cert		68.0																					
OREAS 229b (Fire Assay) Meas	12.1																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 257b (Fire Assay) Meas	14.3																						
OREAS 257b (Fire Assay) Cert	14.2																						
A852055 Orig		< 0.2	< 0.5	57	658	< 1	20	< 2	116	3.59	8	< 10	74	< 0.5	< 2	1.86	29	11	8.43	20	< 1	0.16	< 10
A852055 Dup		< 0.2	< 0.5	57	661	< 1	23	< 2	117	3.59	6	< 10	76	< 0.5	< 2	1.87	29	11	8.48	20	< 1	0.17	< 10
A852057 Orig	4.90																	[[
A852057 Dup	4.53																						
A852066 Orig	< 0.02																						
A852066 Dup	< 0.02																						
A852072 Orig		< 0.2	< 0.5	3	321	< 1	< 1	< 2	26	0.49	< 2	< 10	56	< 0.5	< 2	0.86	2	5	0.87	< 10	< 1	0.15	21
A852072 Dup		< 0.2	< 0.5	3	323	< 1	< 1	< 2	26	0.51	< 2	< 10	54	< 0.5	< 2	0.86	2	5	0.87	< 10	< 1	0.15	22
Method Blank	< 0.02																						
Method Blank	< 0.02				-																		
Method Blank		< 0.2																					
Method Blank		< 0.2																					
Method Blank	5	< 0.2	1		l	6	1	9			1 7	9					9	9	9	9	9		
Method Blank		< 0.2																					
Method Blank		< 0.2																					
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	<1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas	0.42	0.082	0.032	0.01	3	16	29		< 20	< 1	< 2	< 10	178	< 10	3	6
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.42	0.085	0.033	0.01	6	17	29		< 20	< 1	< 2	< 10	178	< 10	3	7
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas			-	3	-	3					3			-	3	
GXH-6 Cert																
Regia) Meas																
OREAS 98 (Aqua Regia) Cert																
OREAS 922 (AQUA REGIA) Meas	1.37	0.028	0.062	0.37	3	4	18		< 20		<2	< 10	41	< 10	16	23
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.39	0.029	0.063	0.40	2	4	17		< 20		< 2	< 10	39	< 10	16	14
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas																
OREAS 922 (AQUA REGIA) Cert																
OREAS 923 (AQUA REGIA) Meas	1.45		0.058	0.68	2	4	15		< 20		< 2	< 10	39	< 10	14	28
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas																
OREAS 923 (AQUA REGIA) Cert																
Oreas 96 (Aqua Regia) Meas				3.74	7											
Oreas 96 (Aqua Regia) Cert				4.38	4.53											
Oreas 96 (Aqua Regia) Meas				4.20	6											
Oreas 96 (Aqua Regia) Cert				4.38	4.53											
Oreas 96 (Aqua Regia) Meas				4.05	7											
Oreas 96 (Aqua Regia) Cert		-1		4.38	4.53					-	4			-1		
Oreas 96 (Aqua Regia) Meas																
Oreas 96 (Aqua Regia) Cert				0.21	6 general			5			5		300			
Oreas 621 (Aqua Regia) Meas	0.44	0.171	0.032	4.38	112	3	18		< 20		< 2	< 10	14	< 10	6	59
Oreas 621 (Aqua	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0

Activation Laboratories Ltd.

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Regia) Cert								() (
Oreas 621 (Aqua Regia) Meas	0.46	0.187	0.034	4.80	129	3	19		< 20		< 2	< 10	14	< 10	6	61
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.46	0.187	0.034	4.85	133	3	20		< 20		< 2	< 10	14	< 10	6	63
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas																
Oreas 621 (Aqua Regia) Cert																
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert	0				1		1		0		:) ;}			Ð		3
OREAS 257b (Fire Assay) Meas																-
OREAS 257b (Fire Assay) Cert																
A852055 Orig	1.91	0.034	0.038	0.20	4	17	29	0.16	< 20	< 1	< 2	< 10	310	< 10	3	5
A852055 Dup	1.92	0.035	0.038	0.20	2	17	30	0.17	< 20	< 1	< 2	< 10	310	< 10	3	5
A852057 Orig	1			1			3				1		3	2		1
A852057 Dup	1										1		1			1
A852066 Orig																
A852066 Dup																
A852072 Orig	0.03	0.122	0.019	0.01	< 2	<1	16	0.01	< 20	<1	< 2	< 10	2	< 10	4	6
A852072 Dup	0.03	0.123	0.020	0.01	< 2	<1	16	0.01	< 20	2	< 2	< 10	2	< 10	4	4
Method Blank														-		-
Method Blank																
Method Blank																
Method Blank																10
Method Blank														l î		
Method Blank																
Method Blank																6
Method Blank	< 0.01	0.010	< 0.001	< 0.01	< 2	<1	<1	< 0.01	< 20	<1	< 2	< 10	<1	< 10	< 1	<1

Quality Analysis ...

Innovative Technologies

Report No.:A20-10221Report Date:24-Sep-20Date Submitted:28-Aug-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

48 Rock samples were submitted for analysis.

The following analytical package(s) were i	equested:	Testing Date:	
1A3-50-Geraldton	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-09-09 15:07:06	1
1A4-1000 (100mesh)-Geraldton	QOP AA-Au (Au-Fire Assay-Metallic Screen-1000g)	2020-09-10 17;39:48	

REPORT A20-10221

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is served at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

801 Main Street, P.O. Box 999, Geraldton, Ontario, Canada, POT 1M0 TELEPHONE +807 854-2020 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Geraldton@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis ...

Innovative Technologies

Report No.:A20-10221Report Date:24-Sep-20Date Submitted:28-Aug-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

48 Rock samples were submitted for analysis.

The following analytical package(s) we	ere requested:	Testing Date:	
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-09-17 13:03:33	

REPORT A20-10221

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

bord bord <t< th=""><th>Analyte Symbol</th><th>Ag</th><th>Cd</th><th>Cu</th><th>Mn</th><th>Мо</th><th>Ni</th><th>Pb</th><th>Zn</th><th>AI</th><th>As</th><th>В</th><th>Ba</th><th>Be</th><th>Bi</th><th>Ca</th><th>Co</th><th>Cr</th><th>Fe</th><th>Ga</th><th>Hg</th><th>К</th><th>La</th><th>Mg</th></t<>	Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La	Mg
Lower/Lenk 0.2 0.5 1 0.1 1 0.1 1 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 0.0 10 0.1 0.0 10 0.1 0.0 10 0.1 0.0 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 <	Unit Symbol	mag	ppm	mqq	mqq	mqq	mqq	mqq	mqq	%	ppm	mqq	ppm	mqq	ppm	%	ppm	mqq	%	mqq	mqq	%	mqq	%
Intend Code AH-CP AH-CP AH-CP AH-CP	Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
ABS009 < 0.2 < 0.5 122 1340 <1 4 4 10 1 0.5 <2 0.58 9 24 0.1 0.1 0.0 0.1	Method Code	AR-ICP																						
ABSCOP C C C D C D C D D D C D D C D C D C D C D C C D D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D <td>A852095</td> <td>< 0.2</td> <td>< 0.5</td> <td>122</td> <td>1340</td> <td>< 1</td> <td>47</td> <td>< 2</td> <td>88</td> <td>3.08</td> <td>4</td> <td>< 10</td> <td>11</td> <td>< 0.5</td> <td>< 2</td> <td>6.38</td> <td>37</td> <td>27</td> <td>9.11</td> <td>< 10</td> <td>2</td> <td>0.02</td> <td>< 10</td> <td>1.69</td>	A852095	< 0.2	< 0.5	122	1340	< 1	47	< 2	88	3.08	4	< 10	11	< 0.5	< 2	6.38	37	27	9.11	< 10	2	0.02	< 10	1.69
ABS2097 < < < < < < < < < < < < < < < < < < < < < < < <	A852096	< 0.2	< 0.5	9	249	<1	6	< 2	8	0.40	7	< 10	17	< 0.5	< 2	1.63	6	7	1.05	< 10	<1	0.04	< 10	0.19
ABSCOPP - 0.2 -0.5 118 942 -1 22 -2 2 100 80 -0.5 -2 2 0.8 -10 10 10 0.8 -10 11 0.84 11 0.84 11 0.84 11 0.84	A852097	< 0.2	< 0.5	313	1120	< 1	85	< 2	98	4.34	10	< 10	24	< 0.5	< 2	2.69	64	63	10.7	10	< 1	0.05	< 10	4.09
ABSC00 O.3 eVS 133 fecto eV1 00 eVS <	A852098	< 0.2	< 0.5	118	942	< 1	52	< 2	52	3.60	< 2	< 10	80	< 0.5	< 2	3.92	34	55	7.01	< 10	2	0.62	< 10	1.60
ABS2100 -0.02 0.05 37 500 c1 210 c2 400 c2 490 186 c2 c10 c10 c10 c10 c10 c10 c11 c10 c10 c11 c10 c11 c10 c10 c11 c10 c11 c10 c11 c10 c11 c10 c10 <thc10< th=""> c10 c10</thc10<>	A852099	0.3	< 0.5	133	1620	<1	30	< 2	62	0.83	94	< 10	13	< 0.5	< 2	5.82	47	10	8.05	< 10	1	0.04	< 10	1.81
ABS2101 < 0.02 0.05 100 < 0.05 < 22 0.05 < 22 0.05 < 22 0.05 < 22 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 0.05 < 20 20 0.05 < 20 20 0.05 < 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	A852100	< 0.2	< 0.5	37	530	< 1	40	< 2	49	1.85	< 2	< 10	51	< 0.5	< 2	1.10	16	59	3.35	< 10	< 1	0.21	12	1.27
ABS2151 <0.02 0.05 010 010 113 1.78 <10 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.00 <11 0.0	A852101	< 0.2	< 0.5	18	1870	<1	21	< 2	90	0.72	2	< 10	34	< 0.5	< 2	5.42	22	8	6.37	< 10	<1	0.08	< 10	1.12
ABS2152 < CO2 CO5 118 1200 <1 73 <22 77 <249 3 <10 12 <20 78 8.86 100 2 001 <10 28 ABS2153 0.03 <0.5	A852151	< 0.2	< 0.5	60	610	<1	9	< 2	21	0.33	< 2	< 10	21	< 0.5	< 2	0.06	10	13	1.78	< 10	<1	< 0.01	< 10	0.19
ABS2150 < < 2 < 0.5 < 97 <2.76 <2 <2 <0.5 <2 3.00 <45 4 11.4 11.0 0.00	A852152	< 0.2	< 0.5	128	1260	< 1	73	< 2	67	2.49	3	< 10	12	< 0.5	< 2	5.20	35	78	8.26	< 10	2	0.01	< 10	2.93
ABS2154 0.2 < 0.5 76 912 ct 11 91 c.2 43 187 6 ct 132 col ct 33 col ct 33 col ct 132 ABS2156 <0.2 col 54 116 10 31 0.06 <10 132 ABS2157 col 2 0.05 c2 1.08 col col 1.27 ABS2158 <0.2 col 18 10 11 0.06 <10 133 col 2 2.2 0.05 c2 2.2 0.05 c2 2.3 0.08 8.88 10 11 0.06 <10 135 ABS2169 <0.2 col 18 40 13 2.3 1< c2 133 col 11 11.0 10.05 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 <t< td=""><td>A852153</td><td>< 0.2</td><td>< 0.5</td><td>97</td><td>1560</td><td><1</td><td>35</td><td>< 2</td><td>77</td><td>2.76</td><td>< 2</td><td>< 10</td><td>29</td><td>< 0.5</td><td>< 2</td><td>3.20</td><td>45</td><td>4</td><td>11.4</td><td>10</td><td><1</td><td>0.07</td><td>< 10</td><td>2.09</td></t<>	A852153	< 0.2	< 0.5	97	1560	<1	35	< 2	77	2.76	< 2	< 10	29	< 0.5	< 2	3.20	45	4	11.4	10	<1	0.07	< 10	2.09
ABS2156 $< < 2 < < < < < < < < < < < < < < < < <$	A852154	0.3	< 0.5	76	912	<1	19	< 2	43	1.87	6	< 10	22	< 0.5	< 2	3.07	38	4	6.39	< 10	< 1	0.06	< 10	1.52
ABS2165 < < < < < < < < < < < < < < < < </td <td>A852155</td> <td>< 0.2</td> <td>< 0.5</td> <td>109</td> <td>886</td> <td><1</td> <td>34</td> <td>< 2</td> <td>98</td> <td>3.51</td> <td>10</td> <td>< 10</td> <td>33</td> <td>< 0.5</td> <td>< 2</td> <td>1.78</td> <td>62</td> <td>3</td> <td>11.8</td> <td>10</td> <td>3</td> <td>0.08</td> <td>< 10</td> <td>2.31</td>	A852155	< 0.2	< 0.5	109	886	<1	34	< 2	98	3.51	10	< 10	33	< 0.5	< 2	1.78	62	3	11.8	10	3	0.08	< 10	2.31
ABS2157	A852156	< 0.2	< 0.5	94	471	< 1	21	< 2	66	2.05	7	< 10	28	< 0.5	< 2	0.89	41	4	6.54	< 10	< 1	0.06	< 10	1.27
ABS2158 . 0.2 . 0.5 18 719 c.1 69 c.2 49 147 3 c.10 66 c.05 2 3.20 20 88 8.77 c.10 c.11 10.5 23 10.4 11 10.5 23 11.6 11.1 11.6 11.1 <t< td=""><td>A852157</td><td>< 0.2</td><td>< 0.5</td><td>24</td><td>881</td><td><1</td><td>38</td><td>< 2</td><td>122</td><td>4.72</td><td>2</td><td>< 10</td><td>39</td><td>< 0.5</td><td>< 2</td><td>2.24</td><td>45</td><td>3</td><td>12.4</td><td>10</td><td><1</td><td>0.05</td><td>< 10</td><td>3.03</td></t<>	A852157	< 0.2	< 0.5	24	881	<1	38	< 2	122	4.72	2	< 10	39	< 0.5	< 2	2.24	45	3	12.4	10	<1	0.05	< 10	3.03
ABS2169 (0.2) (0.5) 88 889 (1) (2) (2) (0.5) (2) (2) (3) (2) (2) (3) (2)	A852158	< 0.2	< 0.5	18	719	< 1	69	< 2	49	1.47	3	< 10	86	< 0.5	2	3.20	20	88	3.87	< 10	< 1	0.15	23	1.94
ABS2160 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	A852159	< 0.2	< 0.5	88	889	< 1	21	< 2	73	2.51	< 2	< 10	46	< 0.5	< 2	2.71	25	3	7.14	< 10	2	0.08	< 10	1.45
ABS2161 0.0 < 0.5 0.00 < 468 < 1 < 0.2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <th< td=""><td>A852160</td><td>< 0.2</td><td>< 0.5</td><td>34</td><td>435</td><td>1</td><td>29</td><td>< 2</td><td>43</td><td>1.73</td><td>3</td><td>< 10</td><td>47</td><td>< 0.5</td><td>< 2</td><td>1.21</td><td>13</td><td>41</td><td>2.82</td><td>< 10</td><td><1</td><td>0.18</td><td>12</td><td>0.98</td></th<>	A852160	< 0.2	< 0.5	34	435	1	29	< 2	43	1.73	3	< 10	47	< 0.5	< 2	1.21	13	41	2.82	< 10	<1	0.18	12	0.98
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A852161	0.3	< 0.5	1030	468	<1	3	< 2	48	0.91	3	< 10	21	< 0.5	< 2	0.16	13	5	3.67	< 10	< 1	< 0.01	< 10	0.65
ABS2163 < 0.2 < 0.5 45 2400 < 1 11 < 2 46 0.93 3 < 10 22 < 0.5 < 2 7.90 19 4 6.52 < 10 < 1 0.00 < 10 32.31 ABS2165 < 0.2 < 0.5 56 1570 < 1 36 < 2 78 38 < 10 22 < 0.5 < 2 6.87 36 8.47 < 10 < 1 0.00 < 10 3.10 ABS2166 < 0.2 < 0.5 124 $(0.5$ < 2 6.87 36 8.47 8.95 < 10 $.310$ ABS2167 < 0.22 < 0.5 141 1290 < 1 42 23 8.95 < 10 $.310$ < 2 $8.95 < 10 .310 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < $	A852162	< 0.2	< 0.5	94	1180	<1	18	< 2	40	1.49	6	19	29	< 0.5	2	2.57	33	17	5.04	< 10	<1	< 0.01	< 10	1.23
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A852163	< 0.2	< 0.5	45	2490	<1	11	< 2	46	0.93	3	< 10	23	< 0.5	< 2	7.90	19	4	6.52	< 10	< 1	0.07	< 10	3.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A852164	< 0.2	< 0.5	134	913	<1	32	< 2	100	3.41	3	< 10	22	< 0.5	< 2	0.99	41	22	9.27	10	<1	0.02	< 10	2.31
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852165	< 0.2	< 0.5	56	1570	<1	36	< 2	78	2.81	18	< 10	13	< 0.5	2	6.87	36	26	8.47	< 10	3	0.05	< 10	3.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A852166	< 0.2	< 0.5	133	1300	< 1	39	< 2	92	3.25	6	< 10	13	< 0.5	< 2	6.09	42	23	8.95	< 10	< 1	0.09	< 10	2.84
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852167	< 0.2	< 0.5	127	1240	<1	47	< 2	89	3.95	6	< 10	12	< 0.5	< 2	4.98	44	38	9.77	10	< 1	< 0.01	< 10	2.60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852168	0.2	< 0.5	144	1290	<1	53	< 2	500	4.61	5	< 10	< 10	< 0.5	<2	3.70	46	42	13.4	20	2	< 0.01	< 10	3.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852169	< 0.2	< 0.5	69	1190	<1	45	< 2	123	3.95	7	< 10	66	< 0.5	<2	3.90	35	18	9.33	10	2	0.08	< 10	2.77
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852170	20.9	0.9	361	600	6	200	218	134	3.68	13	< 10	99	< 0.5	< 2	2.68	20	199	3.81	< 10	<1	0.22	11	2.11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852171	< 0.2	< 0.5	47	1830	<1	12	< 2	69	0.74	5	< 10	17	< 0.5	<2	6.42	30	2	8.80	< 10	<1	0.06	< 10	2.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852172	< 0.2	< 0.5	2	1070	< 1	6	< 2	27	0.09	< 2	< 10	25	< 0.5	< 2	2.70	8	7	3.61	< 10	< 1	0.02	13	0.92
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852173	< 0.2	0.5	45	1290	<1	38	3	60	0.46	4	< 10	44	< 0.5	4	5.66	35	23	7.27	< 10	<1	0.04	21	2.48
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852174	0.2	< 0.5	111	846	<1	38	3	36	0.32	5	< 10	48	< 0.5	3	3.55	22	20	5.10	< 10	< 1	0.04	10	1.16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852175	< 0.2	< 0.5	1	381	< 1	8	< 2	16	0.17	< 2	< 10	26	< 0.5	< 2	0.54	4	21	1.53	< 10	< 1	0.01	< 10	0.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A852176	< 0.2	< 0.5	71	1350	<1	16	< 2	42	0.25	4	< 10	61	< 0.5	< 2	5.20	13	13	4.89	< 10	< 1	0.03	11	1.56
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A852177	< 0.2	< 0.5	188	1920	< 1	9	< 2	61	0.50	8	< 10	20	< 0.5	< 2	7.01	34	< 1	8.35	< 10	< 1	0.06	< 10	2.08
A852179 < 0.2 < 0.5 < 1 204 < 1 < 2 20 0.22 < 2 < 10 30 < 0.5 < 2 0.05 2 2 0.89 < 10 < 1 0.07 < 10 0.01 A852180 < 0.2	A852178	< 0.2	< 0.5	59	604	<1	13	< 2	64	1.07	9	< 10	21	< 0.5	< 2	0.51	36	5	4.76	< 10	< 1	0.02	< 10	0.43
A852180 < 0.2 < 0.5 39 573 < 1 41 < 2 51 2.00 9 12 49 < 0.5 < 2 1.28 18 66 3.69 < 10 < 1 0.19 < 10 1.29 A852181 < 0.2 < 0.5 1 253 < 1 1 < 2 12 0.35 11 < 10 24 < 0.5 < 2 0.45 3 2 0.75 < 10 < 1 0.04 29 0.10 A852182 < 0.2 < 0.5 10 781 < 1 7 < 2 18 0.62 2 < 10 20 < 0.5 < 2 0.45 3 2 0.75 < 10 < 1 < 0.01 < 10 0.56 A852183 < 0.2 < 0.5 143 1480 < 1 23 < 2 129 4.12 < 2 < 10 25 < 0.5 < 2 1.22 52 110 10.9 10 1 < 0.01 < 10 4.62 A852184 0.2 < 0.5 143 1480 < 1 23 < 2 129 4.12 < 2 < 10 25 < 0.5 < 2 3.85 40 3 11.4 10 < 1 < 0.01 < 10 1.462 A852185 < 0.2 < 0.5 132 1940 < 1 49 < 2 138 2.79 5 < 10 47 < 0.5 < 2 2.09 46 29 11.0 <	A852179	< 0.2	< 0.5	<1	204	< 1	<1	< 2	20	0.22	< 2	< 10	30	< 0.5	< 2	0.05	2	2	0.89	< 10	< 1	0.07	< 10	0.01
A852181 <0.2 <0.5 1 253 <1 1 <2 12 0.35 11 <10 24 <0.5 <2 0.45 3 2 0.75 <10 <1 0.04 29 0.10 A852182 <0.2	A852180	< 0.2	< 0.5	39	573	< 1	41	< 2	51	2.00	9	12	49	< 0.5	< 2	1.28	18	66	3.69	< 10	< 1	0.19	< 10	1.29
A852182 <0.2 <0.5 10 781 <1 7 <2 18 0.62 2 <10 20 <0.5 <2 0.89 9 7 1.63 <10 <1 <0.01 <10 0.56 A852183 <0.2 <0.5 120 832 <1 82 <2 106 4.68 6 <10 11 <0.5 <2 1.82 52 110 10.9 10 1 <0.01 <10 4.62 A852184 0.2 <0.5 143 1480 <1 23 <2 129 4.12 <2 <10 47 <0.5 <2 3.85 40 3 11.4 10 <1 0.04 <10 1.74 A852185 <0.2 <0.5 132 1940 <1 49 <2 138 2.79 5 <10 47 <0.5 <2 2.09 46 29 11.0 <1 0.04 <1 1.74 A852186 <0.2 <0.5 28 10 <1 21	A852181	< 0.2	< 0.5	1	253	< 1	1	< 2	12	0.35	11	< 10	24	< 0.5	< 2	0.45	3	2	0.75	< 10	< 1	0.04	29	0.10
A852183 < 0.2 < 0.5 120 832 < 1 82 < 2 106 4.68 6 < 10 11 < 0.5 < 2 1.22 52 110 10.9 10 1 < 0.01 < 10 4.62 A852184 0.2 < 0.5 143 1480 < 1 23 < 2 129 4.12 < 2 < 10 25 < 0.5 < 2 3.85 40 3 11.4 10 < 1 0.04 < 10 1.74 A852185 < 0.2 < 0.5 132 1940 < 1 49 < 2 138 2.79 5 < 10 47 < 0.5 < 2 2.09 46 29 11.0 < 1 0.04 < 10 1.74 A852186 < 0.2 < 0.5 286 1190 < 1 21 < 2 137 2.50 10 < 10 18 < 0.5 < 2 3.61 77 2 10.7 < 10 2 0.06 < 10 1.42 A852187 < 0.2 < 0.5 96 614 < 1 18 < 2 122 2.72 < 2 < 10 27 < 0.5 < 2 3.61 77 2 10.7 < 10 2 0.06 < 10 1.42 A852188 0.2 < 0.5 170 1440 < 1 18 < 2 186 1.69 6 < 10 41 < 0.5 < 2 2.45 50 2 9.81 < 1	A852182	< 0.2	< 0.5	10	781	<1	7	< 2	18	0.62	2	< 10	20	< 0.5	< 2	0.89	9	7	1.63	< 10	< 1	< 0.01	< 10	0.56
A852184 0.2 < 0.5 143 1480 < 1 23 < 2 129 4.12 < 2 < 10 25 < 0.5 < 2 3.85 40 3 11.4 10 < 1 0.04 < 10 1.74 A852185 < 0.2 < 0.5 132 1940 < 1 49 < 2 138 2.79 5 < 10 47 < 0.5 < 2 2.09 46 29 11.0 < 10 < 1 0.04 < 10 1.63 A852186 < 0.2 < 0.5 286 1190 < 1 21 < 2 137 2.50 10 < 10 18 < 0.5 < 2 3.61 77 2 10.7 < 10 2 0.06 < 10 1.42 A852187 < 0.2 < 0.5 96 614 < 1 18 < 2 122 2.72 < 2 < 10 27 < 0.5 < 2 0.28 46 3 8.96 < 10 < 1 0.08 < 10 0.87 A852188 0.2 < 0.5 3 <td>A852183</td> <td>< 0.2</td> <td>< 0.5</td> <td>120</td> <td>832</td> <td>< 1</td> <td>82</td> <td>< 2</td> <td>106</td> <td>4.68</td> <td>6</td> <td>< 10</td> <td>11</td> <td>< 0.5</td> <td>< 2</td> <td>1.22</td> <td>52</td> <td>110</td> <td>10.9</td> <td>10</td> <td>1</td> <td>< 0.01</td> <td>< 10</td> <td>4.62</td>	A852183	< 0.2	< 0.5	120	832	< 1	82	< 2	106	4.68	6	< 10	11	< 0.5	< 2	1.22	52	110	10.9	10	1	< 0.01	< 10	4.62
A852185 < 0.2 < 0.5 132 1940 < 1 49 < 2 138 2.79 5 < 10 47 < 0.5 < 2 2.09 46 29 11.0 < 10 < 1 0.05 < 10 1.63 A852186 < 0.2 < 0.5 286 1190 < 1 21 < 2 137 2.50 10 < 10 18 < 0.5 < 2 3.61 77 2 10.7 < 10 2 0.06 < 10 1.42 A852187 < 0.2 < 0.5 96 614 < 1 18 < 2 122 2.72 < 2 < 10 27 < 0.5 < 2 0.28 46 3 8.96 < 10 < 11 0.08 < 10 0.87 A852188 0.2 < 0.5 170 1440 < 1 18 < 2 186 1.69 6 < 10 41 < 0.5 < 2 2.45 50 2 9.81 < 10 < 1 0.08 < 10 0.99 A852189 < 0.2 < 0.5 3 </td <td>A852184</td> <td>0.2</td> <td>< 0.5</td> <td>143</td> <td>1480</td> <td>< 1</td> <td>23</td> <td>< 2</td> <td>129</td> <td>4.12</td> <td>< 2</td> <td>< 10</td> <td>25</td> <td>< 0.5</td> <td>< 2</td> <td>3.85</td> <td>40</td> <td>3</td> <td>11.4</td> <td>10</td> <td>< 1</td> <td>0.04</td> <td>< 10</td> <td>1.74</td>	A852184	0.2	< 0.5	143	1480	< 1	23	< 2	129	4.12	< 2	< 10	25	< 0.5	< 2	3.85	40	3	11.4	10	< 1	0.04	< 10	1.74
A852186 < < 1 < 2 137 2.50 10 < 10 18 < 2 3.61 77 2 10.7 < 10 2 0.66 < 10 18 < 2 3.61 77 2 10.7 < 10 2 0.66 < 10 18 < 2 3.61 77 2 10.7 < 10 2 0.06 < 10 1.42 A852187 0.2 <.0.5 96 614 < 1 8 2 122 2.72 <2 < 10 27 < 2 0.28 46 3 8.96 < 10 < 10 0.87 A852188 0.2 <.0.5 11 10 2 170 0.29 2 < 10 21 2.01 23 < 2 0.02 < 1 2 0.01 < 0.03 < 10 < 10 30 10 <th< td=""><td>A852185</td><td>< 0.2</td><td>< 0.5</td><td>132</td><td>1940</td><td>< 1</td><td>49</td><td>< 2</td><td>138</td><td>2.79</td><td>5</td><td>< 10</td><td>47</td><td>< 0.5</td><td>< 2</td><td>2.09</td><td>46</td><td>29</td><td>11.0</td><td>< 10</td><td><1</td><td>0.05</td><td>< 10</td><td>1.63</td></th<>	A852185	< 0.2	< 0.5	132	1940	< 1	49	< 2	138	2.79	5	< 10	47	< 0.5	< 2	2.09	46	29	11.0	< 10	<1	0.05	< 10	1.63
A852187 < < 1 1 8 < 2 1 2 2 < 2 < 0 2 0 3 8.96 < 10 < 1 0.08 < 10 0.87 A852188 0.2 <0.5	A852186	< 0.2	< 0.5	286	1190	< 1	21	< 2	137	2.50	10	< 10	18	< 0.5	< 2	3.61	77	2	10.7	< 10	2	0.06	< 10	1.42
A852188 0.2 < 0.5 170 1440 <1 18 <2 186 1.69 6 <10 41 <0.5 <2 2.45 50 2 9.81 <10 <1 0.08 <10 0.99 A852189 <0.2	A852187	< 0.2	< 0.5	96	614	<1	18	< 2	122	2.72	< 2	< 10	27	< 0.5	< 2	0.28	46	3	8.96	< 10	<1	0.08	< 10	0.87
A852189 < 0.2 < 0.5 3 112 < 1 < 1 < 2 17 0.29 < 2 < 10 23 < 0.5 < 2 0.02 < 1 2 0.76 < 10 < 1 0.05 < 10 < 0.01 A852190 1.1 < 0.5	A852188	0.2	< 0.5	170	1440	<1	18	<2	186	1.69	6	< 10	41	< 0.5	<2	2.45	50	2	9.81	< 10	<1	0.08	< 10	0.99
A852190 1.1 < 0.5 1960 525 88 11 16 62 1.50 8 < 10 38 < 0.5 < 2 3.50 16 17 4.06 < 10 < 11 0.37 16 1.47 A852191 <0.2	A852189	< 0.2	< 0.5	3	112	< 1	<1	<2	17	0.29	< 2	< 10	23	< 0.5	< 2	0.02	<1	2	0.76	< 10	< 1	0.05	< 10	< 0.01
A852191 < 0.2 < 0.5 122 1550 < 1 38 < 2 72 3.52 4 < 10 13 < 0.5 5 4.82 37 31 8.35 10 < 1 < 0.01 < 10 2.27	A852190	1.1	< 0.5	1960	525	88	11	16	62	1.50	8	< 10	38	< 0.5	< 2	3.50	16	17	4.06	< 10	<1	0.37	16	1.47
	A852191	< 0.2	< 0.5	122	1550	< 1	38	< 2	72	3.52	4	< 10	13	< 0.5	5	4.82	37	31	8.35	10	< 1	< 0.01	< 10	2.27

Results

Activation Laboratories Ltd.

Analyte Symbol	Na	Ρ	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	%	%	%	ррт	ррт	ррт	%	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02	0.03	0.03	0.03	0.03			
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT											
A852095	0.067	0.035	0.04	3	17	30	0.13	< 20	< 1	< 2	< 10	153	< 10	4	3	0.18							
A852096	0.016	0.004	< 0.01	< 2	1	18	0.02	< 20	< 1	< 2	< 10	10	< 10	2	< 1	0.02							
A852097	0.029	0.022	0.61	3	28	44	0.21	< 20	< 1	< 2	< 10	227	< 10	7	3	< 0.02	1					1	
A852098	0.242	0.030	0.29	< 2	17	81	0.19	< 20	3	< 2	< 10	211	< 10	3	3	0.48]		l l	ļ.]),
A852099	0.062	0.030	1.45	2	11	26	0.06	< 20	<1	< 2	< 10	49	14	2	7	< 0.02					3	3	
A852100	0.087	0.045	0.04	< 2	6	57	0.20	< 20	1	< 2	< 10	66	< 10	5	11	0.04				l l			
A852101	0.048	0.033	0.01	< 2	7	35	0.09	< 20	< 1	< 2	< 10	29	< 10	3	11	0.12							
A852151	0.025	0.009	0.02	< 2	4	3	< 0.01	< 20	<1	< 2	< 10	25	< 10	< 1	<1	< 0.02							
A852152	0.043	0.027	0.05	2	23	29	0.01	< 20	2	< 2	< 10	134	< 10	3	3	< 0.02							
A852153	0.027	0.041	0.10	4	18	32	0.15	< 20	< 1	< 2	< 10	317	< 10	4	4	< 0.02							
A852154	0.019	0.023	0.74	3	9	36	0.10	< 20	3	< 2	< 10	165	70	3	3	17.8	22.5	15.4	16.8	16.6	25.65	282.44	308.09
A852155	0.021	0.040	1.68	3	15	23	0.14	< 20	< 1	< 2	< 10	316	17	4	5	4.29							
A852156	0.018	0.025	0.87	<2	9	13	0.13	< 20	< 1	<2	< 10	205	16	2	3	0.95					-		
A852157	0.019	0.039	0.10	4	22	29	0.16	< 20	2	< 2	< 10	445	< 10	4	4	< 0.02					-	-	2
A852158	0.024	0.085	< 0.01	<2	2	28	< 0.01	< 20	2	<2	< 10	19	< 10	4	2	< 0.02							
A652159	0.020	0.032	0.34	2	10	39	0.16	< 20	< 1	< 2	< 10	1//	< 10	4	4	1.78		-		-	-	-	5
A052100	0.104	0.046	0.03	2	4	04	0.19	< 20	3	< 2	< 10	55	< 10	5	11	< 0.02							12
A002101	0.022	0.007	0.10	< 2		20	0.04	< 20	< 1	< 2	< 10	<u></u> 57	< 10	< 1	2	< 0.02							
A052102	0.010	0.019	0.09	- 2	11	50	0.10	< 20	2	<2	< 10	57	< 10	3	3	< 0.02							
A852164	0.010	0.014	0.03	<2	24	11	0.02	< 20	<1	<2	< 10	216	< 10	2	4	< 0.02							2
A852165	0.016	0.025	0.00	<2	11	83	0.07	< 20	<1	12	< 10	105	< 10	4	8	< 0.02	2		2	-	2	2	
A852166	0.021	0.030	0.08	<2	9	64	0.09	< 20	<1	<2	< 10	112	< 10	3	4	< 0.02					1		
A852167	0.028	0.034	0.16	2	25	69	0.11	< 20	4	<2	< 10	251	< 10	3	3	< 0.02	-						
A852168	0.025	0.039	0.47	4	29	58	0.12	< 20	<1	<2	< 10	288	< 10	8	5	< 0.02							
A852169	0.017	0.038	0.18	3	12	45	0.10	< 20	< 1	< 2	< 10	184	< 10	4	4	< 0.02	9.	0	1		0	9.	8
A852170	0.479	0.033	0.11	10	4	105	0.11	< 20	< 1	< 2	< 10	73	< 10	7	4	4.05					i i	Ĩ	Ĩ
A852171	0.090	0.044	0.06	< 2	9	42	0.11	< 20	3	< 2	< 10	37	< 10	2	11	< 0.02							
A852172	0.029	0.031	< 0.01	< 2	4	45	< 0.01	< 20	< 1	< 2	< 10	5	< 10	3	2	0.08							
A852173	0.069	0.071	1.31	3	6	102	< 0.01	< 20	2	< 2	< 10	15	< 10	5	4	< 0.02							
A852174	0.061	0.041	1.81	5	3	59	< 0.01	< 20	5	< 2	< 10	10	< 10	3	8	< 0.02							
A852175	0.042	0.042	< 0.01	< 2	3	13	< 0.01	< 20	< 1	< 2	< 10	6	< 10	2	12	< 0.02							
A852176	0.059	0.043	0.02	< 2	3	66	0.03	< 20	< 1	< 2	< 10	14	< 10	3	10	< 0.02]
A852177	0.093	0.057	0.13	< 2	9	43	0.11	< 20	< 1	< 2	< 10	32	< 10	2	11	< 0.02							
A852178	0.062	0.042	0.39	< 2	11	8	0.06	< 20	< 1	< 2	< 10	40	< 10	2	14	< 0.02	l.	Ţ	Ī	Ĩ		Ū.	
A852179	0.077	0.017	0.02	< 2	< 1	9	0.02	< 20	< 1	< 2	< 10	1	< 10	3	14	< 0.02					į.		
A852180	0.086	0.042	0.03	< 2	7	47	0.24	< 20	4	< 2	< 10	79	< 10	5	10	< 0.02							
A852181	0.114	0.016	0.05	< 2	< 1	18	< 0.01	< 20	< 1	< 2	< 10	2	< 10	3	23	< 0.02							Ĵ
A852182	0.024	0.005	< 0.01	< 2	2	17	0.01	< 20	< 1	< 2	< 10	35	< 10	< 1	< 1	< 0.02							-
A852183	0.031	0.039	0.06	3	29	31	0.13	< 20	< 1	< 2	< 10	248	< 10	10	3	0.10							
A852184	0.028	0.045	0.04	3	18	55	0.13	< 20	< 1	< 2	< 10	219	< 10	3	5	< 0.02					, i		
A852185	0.050	0.039	0.04	3	17	16	0.11	< 20	7	< 2	< 10	136	< 10	2	4	< 0.02							
A852186	0.061	0.047	0.45	3	15	29	0.12	< 20	5	< 2	< 10	176	< 10	2	7	< 0.02							
A852187	0.061	0.033	0.15	3	14	10	0.19	< 20	2	< 2	< 10	165	< 10	2	6	0.06).
A852188	0.057	0.045	0.46	3	12	16	0.15	< 20	< 1	<2	< 10	100	< 10	3	6	< 0.02					1	3	3
A852189	0.098	0.014	< 0.01	< 2	< 1	12	0.01	< 20	3	< 2	< 10	2	< 10	2	15	< 0.02							
A852190	0.059	0.162	2.60	3	7	311	0.07	< 20	< 1	< 2	< 10	115	< 10	8	7	3.24							
A852191	0.038	0.029	0.06	3	24	52	0.05	< 20	<1	< 2	< 10	216	< 10	3	3	< 0.02							

Activation Laboratories Ltd.

Analyte Symbol	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
GXR-6 Meas	0.3	< 0.5	/6	1120	1	22	94	124	6.82	254	< 10	/10	0.8	< 2	0.11	10.0	84	6.33	20	4	1.13	< 10	0.45
GXH-b Cert	1.30	1.00	72	1070	2.40	27.0	101	101	6.61	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	0.08	35.0	0.0680	1.07	13.9	0.609
GXR-6 Cert	1 30	< 0.5	66.0	1010	2 40	27.0	101	121	17.7	234	< 10	1300	1 40	0.290	0.11	13.8	96.0	5.58	35.0	0.0680	1.00	< 10	0.43
ORFAS 922	0.8	< 0.5	2230	777	< 1	35	56	249	2 77	7	5.00	86	0.7	0.230	0.180	20	45	5.25	< 10	0.0000	0.50	35	1.39
(AQUA REGIA) Meas	0.0	2 0.0	2200				5	240	2.77	*		3	0.7	J	0.00		2	0.20			0.00	55	1.00
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OREAS 922 (AQUA REGIA) Meas	0.8	< 0.5	2180	772	< 1	34	63	251	2.73	7		87	0.7	7	0.39	19	45	5.16	< 10		0.51	35	1.36
OREAS 922 (AQUA REGIA) Cert	0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5	1.33
OREAS 923 (AQUA REGIA) Meas	1.6	< 0.5	4370	881	<1	30	76	322	2.71	9		69	0.7	13	0.39	22	42	5.90	< 10		0.42	33	1.45
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 923 (AQUA REGIA) Meas	1.6	< 0.5	4390	874	< 1	30	79	320	2.76	8		72	0.7	14	0.39	22	43	6.03	< 10		0.44	33	1.47
OREAS 923 (AQUA REGIA) Cert	1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0	1.43
OREAS 254 Fire Assay Meas																							
OREAS 254 Fire Assay Cert			4						4	4	4	4										4	12
OREAS 254 Fire Assay Meas																			ļ				
Assay Cert OREAS 229 (Fire		5		- Fr		5			8	5	57	5		-	8	52				5	5	5	
Assay) Meas OREAS 229 (Fire	-						-			-			-				-		-				
Assay) Cert OREAS 229 (Fire	-			1				-			-		_										
Assay) Meas OREAS 229 (Fire Assay) Cort		i fini		-		-										-					1		10
Oreas 621 (Aqua Regia) Meas	66.9	278	3540	544	12	25	> 5000	> 10000	1.66	72			0.6	< 2	1.57	28	31	3.31	< 10	4	0.37	20	0.45
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
Oreas 621 (Aqua Regia) Meas	64.7	275	3450	540	12	24	> 5000	> 10000	1.62	72			0.6	< 2	1.57	28	30	3.30	< 10	4	0.37	20	0.44
Oreas 621 (Aqua Regia) Cert	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0	4		0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436
A852153 Orig	3	30	3	3	a	3	3	3	3	3	3	3	3	3	3	a a	3	3	3	3	30	30	
A052153 Dup					0																		
A852154 Ong	200	<0F	QF	174	- 1	21	- 0	67	2 10	e	< 10	29	<0F	- 2	0.00	42	A	6.67	< 10		0.06	< 10	1 20
A852156 Dup	< 0.2	< 0.5	92	4/4	<1	21	<2	66	2.10	7	< 10	28	< 0.5	<2	0.90	42	4	6.41	< 10	<1	0.06	< 10	1.30
A852163 Orig	- 0.2	20.0			~ 1		~~~		2.01					~~~	0.00			0.41			0.00	10	

Activation Laboratories Ltd.

Analyte Symbol	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La	Mg
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP								
A852163 Dup	ла — п	1	1						· · · · · · · · · · · · · · · · · · ·				-		· · · · · · · · · · · · · · · · · · ·			, 					
A852170 Orig	20.8	0.8	365	603	6	199	220	135	3.70	13	< 10	101	< 0.5	< 2	2.69	20	200	3.83	< 10	< 1	0.22	11	2.12
A852170 Dup	20.9	1.0	357	597	6	201	216	133	3.65	12	< 10	98	< 0.5	< 2	2.68	20	198	3.78	< 10	<1	0.22	11	2.09
A852173 Orig					9					9					-								
A852173 Dup	1																						
A852183 Orig	< 0.2	< 0.5	118	830	<1	83	< 2	106	4.67	6	< 10	10	< 0.5	< 2	1.23	53	110	10.9	10	1	< 0.01	< 10	4.60
A852183 Dup	< 0.2	< 0.5	121	834	< 1	82	< 2	106	4.70	7	< 10	12	< 0.5	< 2	1.22	52	110	10.9	10	1	< 0.01	< 10	4.63
A852188 Orig																							
A852188 Dup																							
Method Blank															l l	l l	l l						
Method Blank															l j								
Method Blank																							
Method Blank					l i											l l	i i			l i		l i	
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01
Method Blank	< 0.2	< 0.5	< 1	< 5	<1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	< 1	< 0.01	< 10	<1	< 0.01	< 10	< 0.01
Analyte Symbol	Na	Ρ	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Ŷ	Zr	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
-----------------------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	------------	---------------------	----------------------------	----------------------------	-------------	---------------	---------------	-----------------
Unit Symbol	%	%	%	ррт	ррт	ррт	%	ррт	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02	0.03	0.03	0.03	0.03			
Method Code	AR-ICP	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT														
GXR-6 Meas	0.081	0.034	0.01	5	18	25		< 20	< 1	< 2	< 10	172	< 10	4	9							Ĩ,	
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110								
GXR-6 Meas	0.078	0.033	0.01	4	17	24		< 20	< 1	< 2	< 10	164	< 10	4	10						1		
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110	4	4	4	4			4	15
OREAS 922 (AQUA REGIA) Meas	0.030	0.061	0.36	2	4	16		< 20		<2	< 10	35	< 10	16	26								
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3								
OREAS 922 (AQUA REGIA) Meas	0.031	0.060	0.35	2	4	16		< 20		< 2	< 10	35	< 10	17	25	4.				43	4	4	
OREAS 922 (AQUA REGIA) Cert	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3								
OREAS 923 (AQUA REGIA)		0.057	0.64	2	4	14		< 20		< 2	< 10	34	< 10	15	32								1
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5								
OREAS 923 (AQUA REGIA) Meas		0.058	0.65	2	4	14		< 20		< 2	< 10	35	< 10	15	29								
OREAS 923 (AQUA REGIA) Cert		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5								
OREAS 254 Fire Assay Meas																2.49							
OREAS 254 Fire Assay Cert																2.55							
OREAS 254 Fire Assay Meas																2.49							
OREAS 254 Fire Assay Cert						1										2.55				1	1		
OREAS 229 (Fire Assay) Meas																12.0				12.2			
OREAS 229 (Fire Assay) Cert																12.1				12.1			
OREAS 229 (Fire Assay) Meas																12.0							
OREAS 229 (Fire Assay) Cert																12.1							
Oreas 621 (Aqua Regia) Meas	0.182	0.031	4.51	117	2	19		< 20		< 2	< 10	12	< 10	7	63								
Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0								
Oreas 621 (Aqua Regia) Meas	0.180	0.031	4.36	118	2	19		< 20		4	< 10	12	< 10	7	62								
Oreas 621 (Aqua Regia) Cert	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0								
A852153 Orig	3	3	3	3	3	3	3	3	3		3	3	3	3	3	< 0.02	3	3	3	3	35	35	ŝ
A852153 Dup			5	0	0	17		8			8					< 0.02	00 F	15.4	10.0	16.0	25.65	282 44	308.00
A002104 Ong																	22.5	15.4	10.8	10.0	20.00	202.44	308.09

Analyte Symbol	Na	Ρ	S	Sb	Sc	Sr	Ті	Th	Te	TI	U	V	W	Y	Zr	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	%	%	%	ррт	ррт	ррт	%	ррт	ррт	ррт	ррт	ррт	ppm	ррт	ррт	g/tonne	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.02	0.03	0.03	0.03	0.03			
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	FA- GRA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
A852156 Orig	0.019	0.025	0.88	< 2	9	13	0.13	< 20	1	< 2	< 10	208	15	2	3								
A852156 Dup	0.018	0.024	0.86	< 2	9	13	0.13	< 20	< 1	< 2	< 10	203	16	2	3						l l		
A852163 Orig	3															0.44							
A852163 Dup	8			1	1	9	1									0.42				9			3
A852170 Orig	0.483	0.033	0.11	10	4	105	0.11	< 20	3	< 2	< 10	73	< 10	7	4]]				
A852170 Dup	0.476	0.033	0.11	10	4	105	0.11	< 20	< 1	< 2	< 10	73	< 10	7	4								
A852173 Orig	1								j.							< 0.02							
A852173 Dup																< 0.02							
A852183 Orig	0.031	0.038	0.06	3	29	31	0.13	< 20	< 1	< 2	< 10	247	< 10	10	3								
A852183 Dup	0.030	0.039	0.06	3	28	31	0.13	< 20	< 1	< 2	< 10	248	< 10	10	3								
A852188 Orig																< 0.02							[
A852188 Dup																< 0.02							
Method Blank						l i	l l									< 0.02							l i
Method Blank	9							<u> </u>	[[[ļ.				< 0.02				[[
Method Blank																< 0.02							
Method Blank	1					ļ.			l l											< 0.03	l l		j j
Method Blank	0.011	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1								
Method Blank	0.013	< 0.001	< 0.01	<2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1								
Method Blank	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1				1			l l l	

Quality Analysis ...

Innovative Technologies

Report No.:A20-10621Report Date:16-Oct-20Date Submitted:08-Sep-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

4 Rock samples were submitted for analysis.

The following analytical package(s)	were requested:	Testing Date:	
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-09-28 14:32:45	
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-10-02 09:14:50	

REPORT A20-10621

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A852192	< 0.02	0.3	< 0.5	106	746	< 1	24	< 2	134	4.69	20	< 10	51	< 0.5	3	1.75	39	15	10.5	10	1	0.09	< 10
A852193	< 0.02	< 0.2	< 0.5	164	1210	< 1	51	4	90	2.41	4	< 10	21	< 0.5	< 2	4.02	43	31	7.98	< 10	<1	0.02	< 10
A852194	< 0.02	< 0.2	< 0.5	171	1190	<1	25	< 2	60	1.43	7	< 10	13	< 0.5	< 2	5.37	33	13	6.98	< 10	<1	0.03	< 10
A852195	< 0.02	< 0.2	< 0.5	79	1160	< 1	39	< 2	69	1.45	4	< 10	31	< 0.5	< 2	4.60	37	14	6.64	< 10	< 1	0.04	< 10

Analyte Symbol	Mg	Na	Ρ	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
A852192	2.36	0.031	0.070	0.25	3	19	20	0.13	< 20	<1	< 2	< 10	246	36	5	7
A852193	2.28	0.055	0.023	0.37	3	16	18	0.04	< 20	1	< 2	< 10	114	< 10	2	3
A852194	2.05	0.077	0.021	0.32	4	12	23	0.06	< 20	2	< 2	< 10	78	< 10	2	4
A852195	1.36	0.070	0.031	0.05	< 2	11	23	0.09	< 20	<1	< 2	< 10	72	< 10	2	3

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
GXR-6 Meas		0.3	< 0.5	65	1030	1	23	90	118	6.86	204	< 10	767	0.8	< 2	0.13	15	74	5.23	20	3	1.05	10
GXR-6 Cert	1	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	65	1020	1	23	91	118	6.82	214	< 10	764	0.8	2	0.13	14	73	5.23	20	1	1.04	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	65	1020	1	24	89	116	6.78	222	< 10	757	0.8	< 2	0.13	14	72	5.20	10	2	1.04	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 922 (AQUA REGIA) Meas		0.8	0.5	2170	749	<1	34	56	243	2.75	5		81	0.7	6	0.39	19	41	4.79	< 10		0.45	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2170	760	< 1	35	60	243	2.78	6		81	0.7	6	0.39	19	42	4.88	< 10		0.45	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2190	759	< 1	35	61	242	2.81	5		82	0.7	6	0.39	20	41	4.85	< 10		0.46	37
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		1.5	< 0.5	4210	839	< 1	34	75	323	2.80	6		62	0.6	23	0.39	21	44	5.65	< 10		0.38	33
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA)		1.8	0.6	4420	875	< 1	33	77	330	2.89	7		64	0.6	25	0.40	23	40	5.81	< 10		0.39	34
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4170	850	< 1	32	74	315	2.78	5		64	0.6	17	0.39	22	38	5.62	< 10		0.39	33
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
Oreas 621 (Aqua Regia) Meas		64.6	291	3540	527	11	28	> 5000	> 10000	1.74	71			0.5	< 2	1.60	30	35	3.35	< 10	3	0.36	18
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		66.5	286	3540	531	13	28	> 5000	> 10000	1.71	73			0.5	< 2	1.62	30	35	3.37	< 10	4	0.36	19
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Regia) Meas		63.9	282	3530	516	12	24	> 5000	> 10000	1.67	75.0			0.5	< 2	1.57	29	27	3.24	< 10	2.02	0.34	19
Regia) Cert	12.2	08.0	2/8	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.00	27.9	31.3	3.43	9.29	3.93	0.333	19.4
(Fire Assay) Meas OREAS 229b	11.9	5	0					3			р — 4 Г — 6	9 9	3	91 21	3	-11 -11	3	3	3	97 14	3	3	3
(Fire Assay) Cert							5							8	5	3	5	5	5	5	5	5	5

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
OREAS 45f (Aqua Regia) Meas				339	166	1	230	9	25	7.22			141	1.0	2	0.07	39	328	13.2	20	< 1	0.10	11
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas				332	165	1	223	7	25	7.15			140	1.0	< 2	0.07	36	325	13.1	20	< 1	0.10	11
OREAS 45f (Aqua Regia) Cert		9	9.	336	150	1.19	192	12.4	22.2	4.81	9	9	158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas		-		349	173	1	226	10	26	7.35			143	1.0	< 2	0.07	40	332	13.6	20	3	0.10	11
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 257b (Fire Assay) Meas	14.3																						
OREAS 257b (Fire Assay) Cert	14.2																						
A852194 Orig	< 0.02				Į.												l l		Ű,	í.			24 25
A852194 Dup	< 0.02																						
Method Blank	< 0.02					j.									Į.		Ű		ļ.	. Ű			3
Method Blank		< 0.2	< 0.5	<1	< 5	< 1	<1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	<1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	<1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
GXR-6 Meas	0.38	0.127	0.032	0.01	< 2	21	28		< 20	< 1	< 2	< 10	156	< 10	5	7
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.38	0.126	0.033	0.01	5	21	28		< 20	< 1	< 2	< 10	157	< 10	5	9
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.38	0.125	0.032	0.01	4	20	28		< 20	<1	< 2	< 10	160	< 10	5	11
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0	9.	5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 922 (AQUA REGIA) Meas	1.30	0.035	0.059	0.34	3	4	15		< 20		3	< 10	33	< 10	19	16
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.32	0.036	0.061	0.36	3	4	15		< 20		2	< 10	33	< 10	19	26
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.31	0.035	0.060	0.36	2	4	15		< 20		2	< 10	33	< 10	19	23
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.42		0.058	0.65	< 2	4	14		< 20		< 2	< 10	33	< 10	17	28
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.46		0.059	0.67	2	4	14	3	< 20		3	< 10	33	< 10	18	31
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6	9	14.3	9	0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.42		0.057	0.65	<2	4	14		< 20		<2	< 10	32	< 10	18	30
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
Oreas 621 (Aqua Regia) Meas	0.44	0.177	0.032	4.24	104	2	16		< 20		< 2	< 10	12	< 10	7	62
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.44	0.176	0.033	4.46	113	2	16		< 20		3	< 10	12	< 10	7	66
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Regia) Meas	0.42	0.170	0.031	4.33	105	2	17		< 20		<2	< 10	12	< 10	7	63
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
(Fire Assay) Meas																<u> </u>
(Fire Assay) Cert	0.10	0.055	0.000	0.00				0.10					100			
UHEAS 451 (Aqua	0.18	0.055	0.020	0.02		28	14	0.10	< 20		<2	< 10	192		5	16

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Regia) Meas					() 							,				
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 45f (Aqua Regia) Meas	0.18	0.054	0.021	0.02		28	14	0.10	< 20		< 2	< 10	193		5	18
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 45f (Aqua Regia) Meas	0.18	0.054	0.021	0.02		29	15	0.12	< 20		3	< 10	199		6	19
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
A852194 Orig			9	9			1			1			9			
A852194 Dup	. 1												l I		1	1
Method Blank																
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	2	< 10	< 1	< 10	< 1	<1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Quality Analysis ...

Innovative Technologies

Report No.:A20-10899Report Date:16-Oct-20Date Submitted:11-Sep-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

10 Rock samples were submitted for analysis.

The following analytical package(s)	were requested:	Testing Date:	
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-10-05 14:16:35	
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-10-02 09:14:50	

REPORT A20-10899

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A852196	< 0.02	0.4	0.7	172	1540	< 1	15	< 2	123	3.70	3	< 10	20	< 0.5	< 2	3.28	46	4	10.5	10	< 1	0.01	< 10
A852197	< 0.02	< 0.2	< 0.5	137	1440	< 1	33	< 2	94	1.70	< 2	< 10	14	< 0.5	< 2	7.26	20	20	7.92	< 10	2	0.03	< 10
A852198	< 0.02	< 0.2	< 0.5	182	1160	<1	45	< 2	122	3.96	2	< 10	38	< 0.5	< 2	5.48	35	29	8.60	10	<1	0.07	< 10
A852199	< 0.02	< 0.2	< 0.5	142	1320	< 1	44	< 2	107	3.64	11	< 10	13	< 0.5	2	4.47	36	46	8.27	10	< 1	0.02	< 10
A852200	< 0.02	< 0.2	< 0.5	35	620	< 1	42	< 2	47	2.39	< 2	< 10	63	< 0.5	< 2	1.63	18	59	3.96	< 10	<1	0.24	13
A852201	< 0.02	< 0.2	< 0.5	170	1650	5	15	< 2	26	0.67	12	< 10	22	< 0.5	< 2	5.70	10	17	3.98	< 10	<1	0.02	< 10
A852202	0.71	0.4	< 0.5	122	937	< 1	25	4	51	1.34	276	< 10	22	< 0.5	< 2	3.20	45	13	6.53	< 10	<1	0.06	< 10
A852203	< 0.02	< 0.2	< 0.5	121	1370	< 1	39	< 2	91	1.50	7	< 10	38	< 0.5	< 2	4.15	39	20	7.50	< 10	< 1	0.09	< 10
A852204	< 0.02	< 0.2	< 0.5	132	928	< 1	15	< 2	116	2.83	4	< 10	19	< 0.5	< 2	2.76	40	4	9.04	10	< 1	0.03	< 10
A852205	< 0.02	< 0.2	< 0.5	200	1310	< 1	10	< 2	96	2.73	20	< 10	45	< 0.5	< 2	3.30	28	3	9.11	< 10	< 1	0.24	< 10

Analyte Symbol	Mg	Na	Ρ	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
A852196	2.47	0.036	0.043	0.28	< 2	27	78	0.13	< 20	<1	< 2	< 10	272	< 10	3	6
A852197	1.67	0.066	0.020	0.03	< 2	12	35	0.06	< 20	2	< 2	< 10	82	< 10	4	3
A852198	2.13	0.035	0.027	0.02	< 2	16	57	0.04	< 20	< 1	< 2	< 10	134	< 10	6	6
A852199	2.03	0.054	0.031	0.91	< 2	27	49	< 0.01	< 20	< 1	< 2	< 10	191	< 10	4	3
A852200	1.24	0.159	0.061	0.05	< 2	7	89	0.27	< 20	2	< 2	< 10	76	< 10	7	12
A852201	0.70	0.027	0.007	0.21	< 2	4	79	< 0.01	< 20	< 1	< 2	< 10	28	< 10	5	1
A852202	1.13	0.101	0.020	1.52	3	9	27	< 0.01	< 20	2	< 2	< 10	53	< 10	2	3
A852203	1.23	0.138	0.040	0.14	3	11	40	0.15	< 20	2	< 2	< 10	91	< 10	2	5
A852204	1.15	0.104	0.044	0.07	3	18	22	0.17	< 20	<1	< 2	< 10	195	< 10	2	6
A852205	1.59	0.116	0.044	0.39	3	12	44	0.16	< 20	2	< 2	< 10	142	10	3	14

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La
Unit Symbol	g/tonne	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas		0.3	< 0.5	65	1030	1	23	90	118	6.86	204	< 10	767	0.8	< 2	0.13	15	74	5.23	20	3	1.05	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	65	1020	1	23	91	118	6.82	214	< 10	764	0.8	2	0.13	14	73	5.23	20	1	1.04	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	65	1020	1	24	89	116	6.78	222	< 10	757	0.8	< 2	0.13	14	72	5.20	10	2	1.04	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 922 (AQUA REGIA) Meas		0.8	0.5	2170	749	<1	34	56	243	2.75	5		81	0.7	6	0.39	19	41	4.79	< 10		0.45	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas	r	0.8	< 0.5	2170	760	< 1	35	60	243	2.78	6		81	0.7	6	0.39	19	42	4.88	< 10	4	0.45	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2190	759	< 1	35	61	242	2.81	5		82	0.7	6	0.39	20	41	4.85	< 10		0.46	37
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA)	1	1.5	< 0.5	4210	839	< 1	34	75	323	2.80	6		62	0.6	23	0.39	21	44	5.65	< 10		0.38	33
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA)		1.8	0.6	4420	875	< 1	33	77	330	2.89	7		64	0.6	25	0.40	23	40	5.81	< 10		0.39	34
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4170	850	< 1	32	74	315	2.78	5		64	0.6	17	0.39	22	38	5.62	< 10		0.39	33
OREAS 923 (AQUA REGIA)		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
Oreas 621 (Aqua Regia) Meas		64.6	291	3540	527	11	28	> 5000	> 10000	1.74	71			0.5	< 2	1.60	30	35	3.35	< 10	3	0.36	18
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		66.5	286	3540	531	13	28	> 5000	> 10000	1.71	73			0.5	< 2	1.62	30	35	3.37	< 10	4	0.36	19
Oreas 621 (Aqua Regia) Cert	ļ	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Regia) Meas		63.9	282	3530	516	12 12 2	24	> 5000	51700	1.6/	75.0			0.5	2 85	1.5/	29	2/	3.24	< 10	3 02	0.34	19
Regia) Cert OREAS 229b	11.9	00.0	2/8	3000	520	13.3	20.8	13000	51700	1.00	75.0	-		0.530	3.00	1.05	21.9	31.3	3.43	9.29	3.93	0.333	19.4
(Fire Assay) Meas OREAS 229b	11.9			9	9	3	3	3	3	-	-	3	3	31 31	9	3 3	3 A	3	3 3	9 9	3	31 31	
(Fire Assay) Cert							8						5	3	8		8	8	5	3	3	3	

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
OREAS 45f (Aqua Regia) Meas				339	166	1	230	9	25	7.22			141	1.0	2	0.07	39	328	13.2	20	< 1	0.10	11
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas				332	165	1	223	7	25	7.15			140	1.0	< 2	0.07	36	325	13.1	20	< 1	0.10	11
OREAS 45f (Aqua Regia) Cert		9		336	150	1.19	192	12.4	22.2	4.81	-		158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas				349	173	1	226	10	26	7.35			143	1.0	< 2	0.07	40	332	13.6	20	3	0.10	11
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 257b (Fire Assay) Meas	14.2																						
OREAS 257b (Fire Assay) Cert	14.2																						
A852198 Orig	< 0.02					[1						1	[
A852198 Dup	< 0.02																						
A852204 Orig	< 0.02													l l	l l	j j	l l	j j	j.	Ĵ.	j j		
A852204 Dup	< 0.02																						
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank	l i	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank]	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank	< 0.02																			-			
Method Blank	< 0.02	1											3	9		1	2	1	1		1		

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
GXR-6 Meas	0.38	0.127	0.032	0.01	< 2	21	28		< 20	< 1	< 2	< 10	156	< 10	5	7
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.38	0.126	0.033	0.01	5	21	28		< 20	< 1	< 2	< 10	157	< 10	5	9
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.38	0.125	0.032	0.01	4	20	28	3	< 20	<1	< 2	< 10	160	< 10	5	11
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
(AQUA REGIA) Meas	1.30	0.035	0.059	0.34	3	4	15		< 20		3	< 10	33	< 10	19	16
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.32	0.036	0.061	0.36	3	4	15		< 20		2	< 10	33	< 10	19	26
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.31	0.035	0.060	0.36	2	4	15		< 20		2	< 10	33	< 10	19	23
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.42		0.058	0.65	< 2	4	14		< 20		< 2	< 10	33	< 10	17	28
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.46		0.059	0.67	2	4	14	3	< 20		3	< 10	33	< 10	18	31
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6	1	14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.42		0.057	0.65	< 2	4	14		< 20		< 2	< 10	32	< 10	18	30
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
Oreas 621 (Aqua Regia) Meas	0.44	0.177	0.032	4.24	104	2	16		< 20		< 2	< 10	12	< 10	7	62
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.44	0.176	0.033	4.46	113	2	16		< 20		3	< 10	12	< 10	7	66
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.42	0.170	0.031	4.33	105	2	17		< 20		< 2	< 10	12	< 10	7	63
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
(Fire Assay) Meas																
(Fire Assay) Cert																
OREAS 45f (Aqua	0.18	0.055	0.020	0.02		28	14	0.10	< 20		< 2	< 10	192		5	16

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Regia) Meas												,				
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 45f (Aqua Regia) Meas	0.18	0.054	0.021	0.02		28	14	0.10	< 20		< 2	< 10	193		5	18
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 45f (Aqua Regia) Meas	0.18	0.054	0.021	0.02		29	15	0.12	< 20		3	< 10	199		6	19
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
A852198 Orig		2					9									
A852198 Dup																
A852204 Orig																
A852204 Dup																
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	<1	< 1	< 0.01	< 20	<1	< 2	< 10	<1	< 10	< 1	<1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	2	< 10	< 1	< 10	< 1	<1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank																
Method Blank																

Quality Analysis ...

Innovative Technologies

Report No.:A20-13802Report Date:27-Nov-20Date Submitted:30-Oct-20Your Reference:Rand 2

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

7 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-11-20 16:10:44
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-11-26 13:40:54

REPORT A20-13802

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A852206	< 0.02	< 0.2	< 0.5	98	467	< 1	39	< 2	39	5.64	< 2	< 10	< 10	< 0.5	< 2	3.24	29	61	6.89	10	2	0.02	< 10
A852207	< 0.02	< 0.2	< 0.5	106	1470	< 1	43	< 2	102	4.54	4	< 10	11	< 0.5	3	3.07	41	34	10.9	< 10	2	0.03	< 10
A852208	< 0.02	< 0.2	< 0.5	123	403	< 1	19	< 2	36	3.31	< 2	< 10	< 10	< 0.5	< 2	2.45	20	28	5.42	10	1	0.03	< 10
A852209	< 0.02	< 0.2	< 0.5	33	358	< 1	18	3	43	2.29	< 2	< 10	88	< 0.5	< 2	1.78	24	17	5.38	< 10	2	0.41	24
A852210	3.86	19.0	1.0	330	557	5	189	218	131	3.63	12	< 10	93	< 0.5	< 2	2.54	20	181	3.52	< 10	2	0.20	11
A852211	< 0.02	< 0.2	< 0.5	168	518	< 1	30	< 2	44	3.88	< 2	< 10	72	< 0.5	< 2	2.79	21	27	5.57	< 10	3	0.27	< 10
A852212	< 0.02	< 0.2	< 0.5	62	607	< 1	40	< 2	25	2.86	15	< 10	12	< 0.5	< 2	2.09	40	29	7.51	10	2	0.04	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
A852206	1.84	0.592	0.035	0.04	2	13	259	0.15	< 20	< 1	< 2	< 10	201	< 10	8	2
A852207	2.95	0.048	0.029	0.07	3	10	41	0.34	< 20	6	2	< 10	179	< 10	8	3
A852208	0.79	0.544	0.041	0.10	2	9	89	0.17	< 20	2	< 2	< 10	215	< 10	9	5
A852209	0.67	0.474	0.139	0.06	< 2	9	75	0.18	< 20	2	< 2	< 10	224	< 10	19	4
A852210	1.79	0.430	0.034	0.11	12	4	102	0.10	< 20	2	< 2	< 10	72	< 10	9	3
A852211	0.83	0.655	0.053	0.08	< 2	9	59	0.16	< 20	3	< 2	< 10	202	< 10	13	8
A852212	2.12	0.096	0.041	0.01	3	11	30	0.33	< 20	4	< 2	< 10	177	< 10	12	4

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
GXR-6 Meas		0.3	< 0.5	68	1050	1	24	94	121	6.98	205	< 10	822	0.9	< 2	0.14	12	76	5.59	20	2	1.09	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	68	1040	1	25	94	121	7.01	211	< 10	829	0.9	< 2	0.14	11	77	5.58	20	1	1.09	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2230	775	< 1	36	60	255	2.87	5		76	0.7	9	0.38	18	44	5.25	< 10		0.46	35
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.9	< 0.5	2240	782	< 1	37	65	263	2.92	4		78	0.7	9	0.39	19	46	5.28	< 10		0.46	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4470	874	< 1	31	84	335	2.88	7		62	0.6	22	0.38	21	41	5.99	< 10		0.39	33
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4450	877	< 1	33	81	332	2.86	7		63	0.6	23	0.38	21	41	5.96	< 10		0.39	32
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
Oreas 621 (Aqua Regia) Meas		68.1	298	3570	545	13	26	> 5000	> 10000	1.73	76			0.6	6	1.57	29	32	3.40	< 10	4	0.36	18
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		67.6	301	3540	539	12	24	> 5000	> 10000	1.68	76			0.5	3	1.56	30	28	3.32	< 10	4	0.35	17
Oreas 621 (Aqua Regia) Cert	10.0	68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
(Fire Assay) Meas	12.0																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 45f (Aqua Regia) Meas				353	171	< 1	232	10	26	7.25			139	1.0	4	0.07	35	343	14.3	20	< 1	0.10	< 10
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas				357	170	< 1	233	17	26	7.24			139	1.0	3	0.07	38	345	14.4	20	< 1	0.10	< 10
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 257b (Fire Assay) Meas	14.2																						
OREAS 257b (Fire Assay) Cert	14.2																						
A852208 Orig	< 0.02					ļ						1											
A852208 Dup	< 0.02																						
Method Blank	< 0.02		0.5		-					0.01		10	10	0.5		0.01		· ·	0.01	10			10
Ivietnog Blank		< 0.2	< 0.5	< 1	< 5	<1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
IVIELITIOU BIANK	<u> </u>	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ва	Be	Bi	Ca	Со	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas	0.38	0.160	0.034	0.01	4	18	32		< 20	3	< 2	< 10	163	< 10	5	5
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.38	0.166	0.034	0.01	4	18	32		< 20	< 1	< 2	< 10	165	< 10	5	6
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 922 (AQUA REGIA) Meas	1.32	0.032	0.064	0.37	3	4	16		< 20		< 2	< 10	35	< 10	20	19
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.35	0.032	0.065	0.37	3	4	16		< 20		< 2	< 10	36	< 10	20	23
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.41		0.061	0.68	3	4	14		< 20		< 2	< 10	34	< 10	18	28
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.41		0.061	0.68	2	4	14		< 20		< 2	< 10	34	< 10	18	29
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
Oreas 621 (Aqua Regia) Meas	0.43	0.174	0.034	4.64	113	2	18		< 20		< 2	< 10	13	< 10	7	69
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.42	0.169	0.033	4.49	111	2	17		< 20		< 2	< 10	12	< 10	7	67
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert	0.17	0.050	0.001	0.00				0.00				10	100			10
Regia) Meas	0.17	0.052	0.021	0.02		25	14	0.09	< 20		< 2	< 10	199		5	12
Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	/.0/		0.120	1.09	217		0.74	30.0
Regia) Meas	0.18	0.051	0.021	0.02		26	14	0.09	< 20		< 2	< 10	202		5	12
Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
(Fire Assay) Meas																
(Fire Assay) Cert	ļ								ļ				ļ			
A952200 Dup																
Mothod Blank																
Mothod Blank	< 0.01	0.007	< 0.001	< 0.01		. 1	. 1	< 0.01	< 20	. 1		< 10	. 1	< 10	. 1	21
Method Blank		0.007	< 0.001		~ 2	~ 1	< _ 1		~ 20	~ 1	~ 2	< 10	< l _ 1	< 10	< l _ 1	< l _ 1
Method Blank	< 0.01	0.007	< 0.001	< 0.01	< 2	21	21	< 0.01	< 20	21	< 2	< 10	21	< 10	~ 1	21
	20.01	0.007	1 \$ 0.001	~ 0.01	~ ~ ~	I ~ '		~ ~ ~ ~ ~ ~ ~	~ 20		~ ~ ~	~ 10		< · · ·		

APPENDIX 4

Month	Day	Roach	Riddle	Hamilton	Phillips	Wright	O'Neill	Project	Work Description	Claim Cell Activity	
July	1										x = 1 day/claim
	2										x(0.5) = 1/2 day/claim
	3										x(0.33) = 1/3 day/claim
	4										x(0.25) = 1/4 day/claim
	5										
	6										
	7										
	8										
	9										
	10										
	11										
	12										
	12										
	13			v(0 E)		v(0 E)	v	Aguania	Stripping transpose and campling	101071	
	14			X(U.5)		X(U.5)	X	Aguonie	Stripping trenches and structural morning	121271	_
	15			X		X	X	Aguonie	Stripping trenches and structural mapping	121271	-
	16			x				Aguonie	Stripping trenches and structural mapping	121271	
	16			(0.0)		X	X	Aguonie	Stripping trenches	121272	_
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121271	
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121272	
	18					x(0.5)		Aguonie	Stripping trenches	121272	
	18			x(0.5)			x(0.5)	Aguonie	Stripping trenches	121271	
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, a	121271	
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, a	121272	
	20			х		х	х	Aguonie	Following up on historic occurences, mapping, a	104120	
	21			х		х	х	Aguonie	Following up on historic occurences, mapping, a	104120	
	22			x(0.5)		x(0.5)	x(0.5)	Rand 2	Following up on historic occurences, mapping, a	261007	
	23			х		х	х	Rand 2	Following up on historic occurences, mapping, a	261007	
	24			х		х	х	Rand 2	Following up on historic occurences, mapping, a	158306	
	25					x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and samplin	297812/279177	
	26					x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and samplin	118986/297892	
	27		x(0.5)			x(0.5)	x(0.5)	Rand 2	Following up on historic occurences and samplin	297812/279177	
	28		()			. ,	. ,				
	29										
	30										
	31										
Διισμετ	1										-
	2		x	x				Aguonie	Geological manning and sampling	121271	
	3		v	x				Aguonie	Geological mapping and sampling.	121271	-
	<u> </u>		x(0.5)	x(0.5)				Aguonie	Geological mapping and sampling.	121272/10/120	-
	5		x(0.5)	X(0.5)				Aguonic	Pain day	121272/104120	-
	6		v(0.5)	v(0.5)				Aguania	Goological mapping and campling	121272/10/120	
	7		x(0.5)	x(0.5)				Aguonic	Geological mapping and sampling	121272/104120	
	0		X(U.5)	x(0.5)				Aguonie	Coological mapping and compling	1212/2/104120	_
	0	x(0 E)	X	X x(0,5)	V(0 F)			Aguonie	Site Tour (Coological mapping and sampling.	1212/2	-
	9	X(U.5)	x(0.5)	x(0.5)	x(0.5)			Aguonie	Site Tour/Geological mapping.	1212/2	_
	10		X	X					Geological Mapping Interpretation	424272	-
	11		Х	Х					Geological mapping and sampling.	121272	_
	12		/ - - •	/ <u>-</u>							_
	13		x(0.5)	x(0.5)				Rand2	Geological mapping and sampling.	177824/338825	_
	14		x(0.5)	x(0.5)		_		Rand2	Geological mapping and sampling.	338825/177824	_
	15		x(0.5)	x(0.5)				Rand2	Geological mapping and sampling.	338825/177824	

	16		x(0.5)	x(0.5)				Rand2	Geological mapping and sampling.	261007/158306
	17									
	18									
	19		x(0.5)	x(0.5)				Rand2	Geological mapping and sampling.	261007
	20									
	21					х	х	Rand2	Prospecting	261007
	21	x(0.5)	x(0.5)					Rand2	Geological mapping and sampling.	261007/158306
	22		x			х	х	Rand2	Prospecting	158306
	23					х	х	Rand2	Geological mapping and prospecting.	158306
	24									
	25					x(0.5)	x(0.5)	Rand2	Prospecting	118986/297812
	26					, ,	, ,		1 0	•
	27									
	28					x(0.5)	x(0.5)	Rand 2	Prospecting	297812
	28					x(0.5)	x(0.5)	Oban	prospecting	123563
	29					()	()			
	30					x(0.5)	x(0.5)	Oban	Prospecting	281407/265750
	31					x(0.5)	x(0.5)	Selkirk	Prospecting	269799/225097
September	1					x	x	Doublewood	Scouting access to highland south/Doublewood	202520
	2			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/297812
	3								Rain Day	,
	4			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/297812
	5			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/279177
	6			x	x (0.5)			Rand2	Geological mapping and sampling	279177
	7			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	8			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	9			x	x(0.5)			Selkirk Lake	Geological mapping and sampling	191852
-	10			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	191852/221768
	11			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	162470/295830
-	12			x (0.07	,(0.0)			Selkirk Lake	Geological Mapping Interpretation	102 11 0/ 200000
	13			~				ocini i zanc		
	14		x(0.5)	x(0.5)	x(0.5)			Oban	Geological mapping and sampling	108851/123563
	15		х(0.5)	х(0.57	х(0.5)			0.0011		100031/123303
	16			x(0.5)			x(0.5)	Oban	Prospecting	123563/265750
	17		x	x(0.07			,(010)	Oban	Geological manning and sampling	123563
	17		~	~	x	x		Oban	Prospecting	123563
	18		x(0.5)	x(0.5)	~	~	x(0.5)	Ohan	Geological manning and sampling	265750/123563
	18			A(0.0)	x	x	A(0.5)	Oban	Prospecting	123563
-	19		x	x	~	A		0.5011	Geological mapping and sampling	179503
	19		~	~	x(0.5)	x(0.5)		Ohan	Prospecting	179503/265749
	20		v(0.5)	v(0.5)	X(0.3)	x(0.5)		Oban	Geological manning and sampling	123563/265749
	20		A(0.5)	λ(0.5)	v	v		Doublewood	Scouting access	123303/203743
	21				^	x	v	Taliskar	Prospecting	145811
	21		x(0.5)	x(0.5)		^	^	Doublewood	Geological manning and sampling	258551/202520
	22		A(0.5)	A(0.5)	v	v		Taliskar	Prospecting	145811
	22		v	v	^	^		Doublewood	Geological manning and sampling	202520
	23		^	X	v	×		Taliskar	Drochosting	1/5811
	23				×	×		Taliskar	Prospecting	150008
	24		~	~	X	X		I dilSKdi	Coological manning and compling	100194
	25	1	Х	х				B+C	Geological mapping and sampling	199184

	28
	29
	30
October	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

November

31

1 2

November

3					
4	×				179251/166330/121272/121271/11
4	X	x	Agounie	Agounie Technical Reporting	9373/104120/119372
					179251/166330/121272/121271/11
5	x	x	Agounie	Agounie Technical Reporting	9373/104120/119372
e	×.				179251/166330/121272/121271/11
8	x	x	Agounie	Agounie Technical Reporting	9373/104120/119372
7					
8					
9					179251/166330/121272/121271/11
5	х	x	Agounie	Agounie Technical Reporting	9373/104120/119372
10					179251/166330/121272/121271/11
10	х	х	Agounie	Agounie Technical Reporting	9373/104120/119372
					179251/166330/121272/121271/11
11	х	x	Agounie	Agounie Technical Reporting	9373/104120/119372

					110917/207911/119096/242962/26
					11901//29/811/116980/245802/20
					1007/338825/297810/326926/2978
					12/2/91///158306/1//824/231161
12					/231162/29/813/183880/103345/3
					38826/177825/341387/252075/160
					402/160401/252074/215210/27115
					3/289813/179891/252076/215211/
	х	X	Rand2	Rand2 Technical Reporting	179890
					119817/297811/118986/243862/26
					1007/338825/297810/326926/2978
					12/279177/158306/177824/231161
13					/231162/297813/183880/103345/3
10					38826/177825/341387/252075/160
					402/160401/252074/215210/27115
					3/289813/179891/252076/215211/
	х	х	Rand2	Rand2 Technical Reporting	179890
14					
15					
					119817/297811/118986/243862/26
					1007/338825/297810/326926/2978
					12/279177/158306/177824/231161
16					/231162/297813/183880/103345/3
10					38826/177825/341387/252075/160
					402/160401/252074/215210/27115
					3/289813/179891/252076/215211/
	х	х	Rand2	Rand2 Technical Reporting	179890
					119817/297811/118986/243862/26
					1007/338825/297810/326926/2978
					12/279177/158306/177824/231161
17					/231162/297813/183880/103345/3
17					38826/177825/341387/252075/160
					402/160401/252074/215210/27115
					3/289813/179891/252076/215211/
	х	x	Rand2	Rand2 Technical Reporting	179890
					119817/297811/118986/243862/26
					1007/338825/297810/326926/2978
					12/279177/158306/177824/231161
10					/231162/297813/183880/103345/3
18					38826/177825/341387/252075/160
					402/160401/252074/215210/27115
					3/289813/179891/252076/215211/
	х	x	Rand2	Rand2 Technical Reporting	179890
10					179251/166330/121272/121271/11
19	 x	x	Agounie	Agounie Technical Reporting	9373/104120/119372
20					179251/166330/121272/121271/11
20	х	x	Agounie	Agounie Technical Reporting	9373/104120/119372
21					
22					
22					179230/269799/295830/191852/22

	24					179230/269799/295830/191852/22
	24	х	x	Selkirk Lake	Selkirk Lake Technical Reporting	5097/162470/221768
						179230/269799/295830/191852/22
	25	х	х	Selkirk Lake	Selkirk Lake Technical Reporting	5097/162470/221768
	26					
	27					
	28					
	29					
	30					
December	1					
						179251/166330/121272/121271/11
	2	х	х	Agounie	Agounie Technical Reporting	9373/104120/119372
						179251/166330/121272/121271/11
	3	x	x	Agounie	Agounie Technical Reporting	9373/104120/119372
			~	Agouine	Agouine reconnect reporting	119817/297811/118986/243862/26
						1007/338825/297810/326926/2978
						12/279177/158306/177824/231161
						/231162/297813/183880/103345/3
	4					38826/177825/341387/252075/160
						402/160401/252074/215210/27115
						402/100401/2520/4/215210/27115
				Denda	Dand? Taskying Departing	3/283813/1/3831/2320/0/213211/
		Х	X	Rand2	Rand2 Technical Reporting	179890
	5					
	6					440047/207044/440005/242052/25
						11981//29/811/118986/243862/26
						100//338825/29/810/326926/29/8
						12/279177/158306/177824/231161
	7					/231162/297813/183880/103345/3
						38826/177825/341387/252075/160
						402/160401/252074/215210/27115
						3/289813/179891/252076/215211/
		х		Rand2	Rand2 Technical Reporting	179890
	0					179230/269799/295830/191852/22
	٥	х		Selkirk Lake	Selkirk Lake Technical Reporting	5097/162470/221768
	0					179251/166330/121272/121271/11
	9	х		Agounie	Agounie Technical Reporting	9373/104120/119372
	10					179251/166330/121272/121271/11
	10	х		Agounie	Agounie Technical Reporting	9373/104120/119372
	11					
	12					
	13					
	14					
	15					
						179230/269799/295830/191852/22
	16	x		Selkirk Lake	Selkirk Lake Technical Reporting	5097/162470/221768

				119817/297811/118986/243862/26
				1007/338825/297810/326926/2978
				12/279177/158306/177824/231161
17				/231162/297813/183880/103345/3
17				38826/177825/341387/252075/160
				402/160401/252074/215210/27115
				3/289813/179891/252076/215211/
	Х	Rand2	Rand2 Technical Reporting	179890
				119817/297811/118986/243862/26
				1007/338825/297810/326926/2978
				12/279177/158306/177824/231161
18				/231162/297813/183880/103345/3
				38826/177825/341387/252075/160
				402/160401/252074/215210/27115
				3/289813/179891/252076/215211/
	x	Rand2	Rand2 Technical Reporting	179890
19				
20				
21				
22				
23				
24				
25				
20				
26				
26				

APPENDIX 5

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser Quadrature Contours Lines 1150E - 1700E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser In-Phase Contours

Lines 650E-750E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser In-Phase Contours Lines 650E-750E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property

VLF NAA Fraser Quadrature Contours Lines 650E-750E

Prodigy Gold Inc. (First Minerals Option)

- **Rand 2 Property**
- VLF NAA Karous Hjelt Contours Minus 12 meters Lines 650E - 750E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Resistivity 4000 Ohm Contours Lines 650E-750E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser In-Phase Contours Lines 1150E - 1700E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Fraser Quadrature Contours Lines 1150E - 1700E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Karous Hjelt Contours Minus 12 meters Lines 1150E - 1700E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Resistivity 2000 Ohm Contours Lines 1150E - 1700E

Prodigy Gold Inc. (First Minerals Option) Rand 2 Property VLF NAA Resistivity 4000 Ohm Contours Lines 1150E - 1700E

