

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2020 Assessment Report: Janes Property

Property maintenance and line cutting Trench Rehabilitation Channel and grab sampling program Induced Polarization and Magnetic Surveys

Janes Property Janes Township, Sudbury Mining Division, Ontario, Canada

SPC Nickel Corp. 410 Falconbridge Road, Unit 5 Sudbury, Ontario P3A 4S4

Feb 20th 2021 Prepared by: Brad Clarke, P.Geo.

Contents

Introduction	3
Property Details	4
Previous Work	7
Geology	10
Regional Geology	10
Property Geology	12
Current Work	13
Property maintenance and line cutting (PR-18-010952_51_50)	13
Trench Rehabilitation	14
Channel and grab sampling program	16
Induced Polarization and Magnetic Surveys (PR-20-000115_6_7)	16
Results	17
Samples	17
Samples IP and Magnetic Surveys	
•	20
IP and Magnetic Surveys	20 20
IP and Magnetic Surveys Conclusions	20 20 20
IP and Magnetic Surveys Conclusions Recommendations	20 20 20 21
IP and Magnetic Surveys Conclusions Recommendations References	20 20 20 21 22
IP and Magnetic Surveys Conclusions Recommendations References Appendices	20 20 21 22 22
IP and Magnetic Surveys Conclusions Recommendations References Appendices. Tables	20 20 21 22 22 25
IP and Magnetic Surveys Conclusions Recommendations References Appendices. Tables Figures	20 20 21 22 22 25

Introduction

This report outlines the work completed by SPC Nickel for assessment purposes on the Janes Property. The property is primarily of interest for Palladium mineralization associated with Platinum, Gold, Copper and Nickel. The property is located roughly 50km north east (80km drive) of Sudbury in Janes Township and consists of 95 contiguous claims. Most claims were recently optioned from the claim owners and a few claims were recently staked by SPC Nickel.

The main showing on the property contains Cu Ni and PGE mineralization hosted within a large Nipissing Sill. Nipissing dykes and sills are typically gabbroic in composition and are observed to intrude Huronian sedimentary rocks throughout the Southern Province. They are interpreted to be related to a Large Igneous Province related to Ungava magmatic event 2.22Ga (Dressler, 1977). Work previously done notes that mineralization is related to structural features, and disseminated and massive sulfides.

The work done by SPC Nickel aimed to confirm and better define the known mineralization observed at surface. Road maintenance was needed to access the property since the road had not been maintained over the previous years. The trenches required cleaning in order to better observe the mineralization at surface. Channels were systematically cut and sampled. Modern analytical methods were used to analyze the samples taken to better understand the geochemistry and mineralization. A new grid was cut for the Induced Polarization and Magnetic survey. The results of this work and the improved analytical methods used will help guide future exploration work.

Property Details

The property consists of 95 claims within the Janes, McNish, and Davis Townships. The property lies within the Sudbury Mining District and the North Bay MNR district. It can be accessed by road north of the community of Markstay-Warren, approximately 40km east of the City of Sudbury. The property contains Murray Creek in the northeast and the Sturgeon River in the west and central portions. The property is projected using NAD 83 Zone 17N.

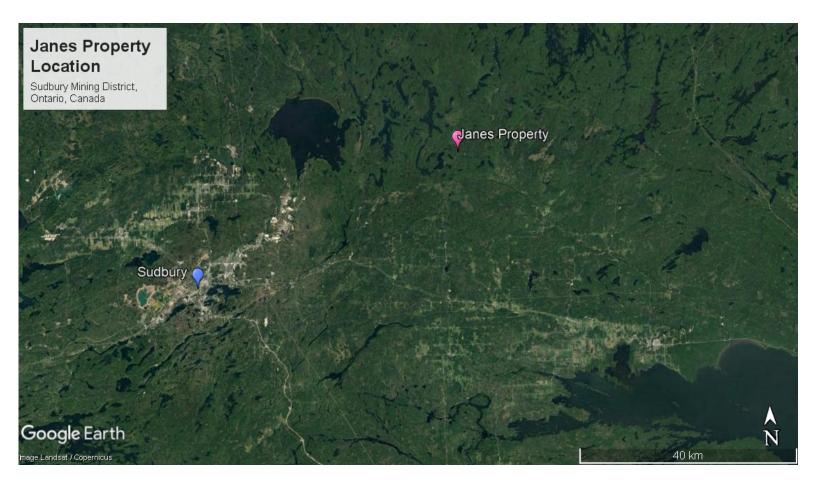


Figure 1: Location of Janes Property in Ontario Canada.

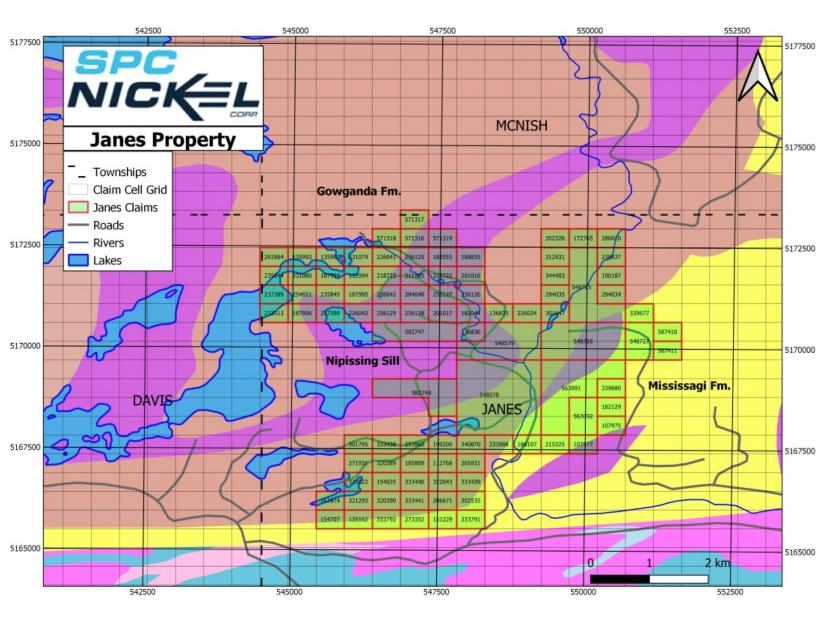


Figure 2: Janes Property, MLAS Claim Cell Grid; Ontario Geology

Table 1: Claim Details

Claim	Туре	Owner	Claim	Туре	Owner
548578	12 Multi Cell	Brian Wright (210254) 100%	135992	Single Cell	Randy Stewart (408174)100%
548579	5 Multi Cell	Brian Wright (210254) 100%	331079	Single Cell	Randy Stewart (408174)100%
548725	5 Multi Cell	Brian Wright (210254) 100%	331080	Single Cell	Randy Stewart (408174)100%
548726	6 Multi Cell	Brian Wright (210254) 100%	254651	Single Cell	Randy Stewart (408174)100%
548727	2 Multi Cell	Brian Wright (210254) 100%	187996	Single Cell	Randy Stewart (408174)100%
238837	Boundary	Brian Wright (210254) 100%	187994	Single Cell	Randy Stewart (408174)100%
190187	Boundary	Brian Wright (210254) 100%	235845	Single Cell	Randy Stewart (408174)100%
294034	Boundary	Brian Wright (210254) 100%	237390	Single Cell	Randy Stewart (408174)100%
202326	Single Cell	Brian Wright (210254) 100%	135994	Single Cell	Randy Stewart (408174)100%
172765	Single Cell	Brian Wright (210254) 100%	187995	Single Cell	Randy Stewart (408174)100%
136835	Single Cell	Brian Wright (210254) 100%	582747	3 Multi Cell	Randy Stewart (408174) 100%
226024	Single Cell	Brian Wright (210254) 100%	582748	4 Multi Cell	Randy Stewart (408174) 100%
312931	Single Cell	Brian Wright (210254) 100%	563092	2 Multi Cell	Randy Stewart (408174)100%
344403	Single Cell	Brian Wright (210254) 100%	107977	Single Cell	Randy Stewart (408174)100%
294035	Single Cell	Brian Wright (210254) 100%	182129	Boundary	Randy Stewart (408174) 100%
301447	Single Cell	Brian Wright (210254) 100%	107975	Boundary	Randy Stewart (408174) 100%
286010	Single Cell	Brian Wright (210254) 100%	265931	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
563091	7 Multi Cell	Brian Wright (210254) 100%	333439	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
339677	Boundary	Brian Wright (210254) 100%	302535	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
339680	Boundary	Brian Wright (210254) 100%	301795	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
215325	Single Cell	Brian Wright (210254) 100%	333438	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
233888	Single Cell	Brian Wright (210254) 100%	253860	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
186107	Single Cell	Brian Wright (210254) 100%	199200	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
340870	Single Cell	Brian Wright (210254) 100%	271931	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
136836	Single Cell	Brian Wright (210254) 100%	320389	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256125	Single Cell	Brian Wright (210254) 100%	185809	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
182055	Single Cell	Brian Wright (210254) 100%	112768	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
188835	Single Cell	Brian Wright (210254) 100%	333022	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
311585	Single Cell	Brian Wright (210254) 100%	154035	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
284640	Single Cell	Brian Wright (210254) 100%	333440	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256128	Single Cell	Brian Wright (210254) 100%	322043	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
218722	Single Cell	Brian Wright (210254) 100%	167974	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
201016	Single Cell	Brian Wright (210254) 100%	321293	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256127	Single Cell	Brian Wright (210254) 100%	320390	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256126	Single Cell	Brian Wright (210254) 100%	333441	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
201017	Single Cell	Brian Wright (210254) 100%	206671	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
182044	Single Cell	Brian Wright (210254) 100%	333791	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226041	Single Cell	Brian Wright (210254) 100%	154707	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226043	Single Cell	Brian Wright (210254) 100%	135162	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
218723	Single Cell	Brian Wright (210254) 100%	333792	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226042	Single Cell	Brian Wright (210254) 100%	273352	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256129	Single Cell	Brian Wright (210254) 100%	151229	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
291864	Single Cell	Randy Stewart (408174)100%	587411	Single Cell	Sudbury Platinum Corp 100%
235844	Single Cell	Randy Stewart (408174)100%	587410	Single Cell	Sudbury Platinum Corp 100%
237389	Single Cell	Randy Stewart (408174)100%	571319	Single Cell	Sudbury Platinum Corp 100%
272513	Single Cell	Randy Stewart (408174)100%	571318	Single Cell	Sudbury Platinum Corp 100%
135993	Single Cell	Randy Stewart (408174)100%	571317	Single Cell	Sudbury Platinum Corp 100%
135992	Single Cell	Randy Stewart (408174)100%	571316	Single Cell	Sudbury Platinum Corp 100%

Previous Work

1958: Norseman Nickel Corp conducted a diamond drill program on the property and reports results for Copper, Nickel, and some Gold. No report available.

1969-1970: Kennco Explorations (Canada) Ltd. conducted a diamond drill program consisting of 14 holes and 5 Packsack drill holes. They intersected several mineralized intercepts. Also, an IP survey was conducted. Assessment Reports: 41109NW0210, 41109NW0211, 41109NW0054, 41109NW0020.

1968-1969: Ossington Exploration Ltd. and Triller Exploration Ltd. completed a sampling program. A follow up diamond drill program was completed. No assay data reported. Assessment Reports: 41109NW0212, 41109NW0213.

1988: BP Resources Canada contracted Aerodat to complete a helicopter magnetic VLF/EM survey that covered the properties.

1988-1989: Falconbridge Ltd. conducted ground geophysical surveys (IP, Mag) and re-assays Kennco's core using more modern methods which reported PGMs. The results of the re-assayed material were better than previously reported by Kennco Explorations Ltd. Assessment Reports: 41l14SW0014, 41l09NW0200.

1995: WMC international Ltd. conducted a sampling program on the River Valley project. This consisted of rock, soil, and till sampling in the area. Also a DIGHEM Survey was also completed over the River Valley Project. Assessment Reports: 41109NE0006, 41109NE0007.

1995: Falconbridge conducted a BEEPMAP geophysical survey and prospecting program. Assessment Report: 41I09NW0012.

1997: GoldWright Explorations Inc. conducted some trenching and sampling work on the property. Assessment Report: 41109NW2002.

1998: Pacific North West Corp., Anglo Platinum, and Goldwright Explorations Inc. did several geophysical surveys, line cutting, sampling, trenching, and channel sampling. Assessment Report: 41109NW2014.

1999-2001: Pacific North West Corp., Anglo Platinum, and Goldwright Explorations Inc. conducted line cutting, geophysical surveys (IP, Mag), and a diamond drill program consisting of 26 holes. Several mineralized intercepts were reported with elevated Ni Cu and PGEs. Pacific North West Corp. contracted JVX to complete downhole surveys on several holes. Assessment Reports: 41109NW2016, 41109NW2005, 41109NW2038.

2007: Goldwright Explorations Inc. conducted a diamond drill program consisting of 9 holes. They also contracted JVX to complete down hole IP surveys on two drill holes. Assessment Report: 20008291.

2011: GoldTrain Resources (formerly Goldwright Exploration Inc.) did some trenching which expended the existing Jackie-Rastall showing and also conducted a diamond drill program consisting of 4 drill holes. Several mineralized intercepts were reported. Assessment Reports: 20011419, 20009380.

2014: Randy Stewart and Brian Wright conducted some mapping and prospecting work. A total of 44 samples were collected. Assessment Report: 20008340.

2015: Randy Stewart and Brian Wright conducted some mapping and prospecting work. A total of 10 samples were collected. Assessment Report: 20000014863.

2015: North American Palladium Ltd. did some mapping and prospecting on the property. A total of 21 samples were collected. Also a HELITEM electromag and magnetic airborne geophysical survey was done over the area. Assessment Report: 20000013856.

2016: Randy Stewart and Brian Wright conducted some mapping and prospecting work. Assessment Report: 20000015250.

2018: Randy Stewart and Brian Wright conducted some line cutting, mapping, and prospecting work. Assessment Report: 20000017135.

DDH	From_m	To_m	Int_Length	Pt_g/t	Pd_g/t	Au_g/t	Cu_%	Ni_%	E3_g/t
69-01	68.73	88.90	20.17				0.300	0.160	
69-03	54.56	61.87	7.32				0.515	0.270	
69-06	80.16	105.00	24.84				0.293	0.160	
69-08	171.90	181.70	9.80	0.244	1.151	0.190	1.780	0.951	1.586
JR01-20	87.50	90.80	3.30	0.062	0.331	0.022	0.073	0.032	0.415
JR01-20	119.35	123.10	3.75	0.130	0.508	0.138	0.302	0.126	0.777
JR01-22	32.80	34.80	2.00	0.245	0.735	0.086	0.119	0.062	1.067
JR01-22	65.00	83.00	18.00	0.092	0.208	0.093	0.211	0.078	0.392
JR01-23	17.90	21.50	3.60	0.220	0.124	0.012	0.008	0.013	0.356
JR01-23	32.00	36.50	4.50	0.130	0.112	0.011	0.010	0.009	0.253
JR01-23	42.50	53.00	10.50	0.100	0.048	0.009	0.009	0.006	0.157
JR01-23	75.00	87.00	12.00	0.072	0.252	0.096	0.228	0.091	0.419
JR01-24	35.50	58.00	22.50	0.082	0.280	0.215	0.300	0.123	0.577
JR01-25	16.50	21.00	4.50	0.188	0.189	0.237	0.202	0.071	0.614
JR01-25	28.00	32.00	4.00	0.249	0.228	0.123	0.090	0.052	0.599
JR01-25	71.00	74.00	3.00	0.074	0.208	0.091	0.163	0.065	0.372
JR07-27	26.00	28.00	2.00	0.141	0.867	0.090	0.140	0.054	1.097
JR07-28	35.00	42.00	7.00	0.041	0.183	0.027	0.041	0.011	0.251
JR07-29	7.20	27.00	19.80	0.197	1.076	0.184	0.474	0.195	1.457
JR07-30	11.00	41.00	30.00	0.148	0.599	0.186	0.499	0.206	0.933
JR07-31	13.00	38.00	25.00	0.165	0.717	0.191	0.529	0.206	1.073
JR07-32	42.00	57.00	15.00	0.112	0.408	0.131	0.544	0.245	0.651
JR99-01	12.21	32.00	19.79	0.073	0.187	0.112	0.358	0.146	0.372
JR99-01	32.00	50.05	32.00	0.333	2.282	0.195	1.012	0.269	2.809
JR99-02	0.50	3.36	2.86	0.060	0.352	0.087	0.175	0.024	0.499
JR99-02	6.87	11.00	4.13	0.369	1.710	0.180	1.206	0.579	2.259
JR99-03	0.00	3.93	3.93	0.765	6.189	0.447	1.033	0.765	7.401
JR99-03	6.58	8.68	2.10	0.149	1.060	0.059	0.524	0.014	1.268
JR99-05	2.75	9.57	6.82	0.121	0.772	0.081	0.191	0.090	0.973
JR99-05	18.73	33.76	15.39	0.041	0.216	0.028	0.096	0.044	0.285
JR99-06	9.90	23.91	14.01	0.331	2.084	0.292	0.841	0.353	2.707
JR99-08	22.08	29.71	7.63	0.051	0.234	0.036	0.093	0.029	0.321
JR99-08	35.83	37.37	1.54	0.891	5.597	0.217	0.353	0.275	6.705
JR99-09	1.63	6.55	4.92	0.096	0.318	0.157	0.578	0.220	0.570
JR99-09	6.55	14.49	7.94	0.044	0.224	0.027	0.100	0.041	0.295
JR99-11 JR99-11	3.03	5.89	2.86	0.071 0.193	0.420	0.034 0.179	0.095	0.043	0.525
JR99-11 JR99-14	16.15	49.22	33.07				0.535	0.219	1.330
JR99-14 JR99-14	48.20 65.90	65.90 79.85	17.70 13.95	0.068	0.158	0.093	0.340	0.152 0.160	0.319
JR99-14 JR99-15	60.00	79.85	13.95	0.177	0.985	0.165	0.338	0.160	0.496
JR99-15 JR99-16	24.50	37.50	13.00	0.084	0.883	0.097	0.203	0.113	1.152
JR99-16 JR99-17	83.45	88.50	5.05	0.156	0.883	0.113	0.457	0.211	0.364
JR99-17 JR99-17	88.80	95.30	6.50	0.009	0.335	0.115	0.301	0.266	0.639
JR99-17 JR99-19	109.25	111.55	2.30	0.119	0.335	0.185	0.563	0.189	0.671
JR99-19 JR99-19	132.10	133.15	1.05	0.143	0.343	0.181	4.171	0.189	0.590
PS-1	6.10	7.01	0.91	5.155	0.570	5.001	5.320	4.600	0.070
PS-2	0.00	10.36	10.36				0.527	0.210	
PS-3	0.00	20.73	20.73				0.570	1.130	
1.5-5	0.00	20.75	20.75		l	L	0.570	1.150	l

Table 2: Summary of Past Drilling Highlights

Geology

This section of the report has been taken from the 2011 assessment report filed by GoldTrain Resources. The majority of the 2011 report Geology section was adapted from a technical report (43-101) completed by Hadyn Butler in 2008 on behalf of GoldTrain Resources Inc.

Regional Geology

To the north and west of the Chiniguchi River Property, the Archean basement is dominated by complex mesozonal gregarious granite-gneiss batholiths. As part of the Superior Province, a major portion of these gneisses consists of granodioritic gneiss. Infolded into these granite-gneiss domes are narrow greenstone belts with submarine tholeiitic basalts and andesites along with interflow chert horizons, some very large banded iron formations, and acid volcanics. Past producers in these greenstones included small volcanogenic massive sulphide ("VMS") deposits (mostly zinc) and iron mines.

Sometime before 2.4 gigayears ("Ga") passive anoxic sedimentation (with uraniferous conglomerates) and basaltic volcanism (Elsie Mountain and Stobie formations) commenced above a major unconformity at the southern-rifted margin of the Archean aged Superior Province. Sometime thereafter, this sedimentation was accompanied by the injection of anorthosite-ultramafic complexes (East Bull Lake gabbros, and the Matachewan dyke swarm), and acid volcanics (Copper Cliff formation) representing the remains of an early Proterozoic Large Igneous Province ("LIP"). Episodic sedimentation continued, and the sediments and volcanics are collectively known as the Huronian Supergroup. To the NE, Huronian sedimentation occurred in fault-bounded basins, forming the Cobalt Embayment. Part of the Cobalt Embayment is controlled by long lived NNW faults showing sinistral displacements for a period of nearly 1Ga. The Chiniguchi River Property lies near the southern margin of the Cobalt Embayment, and about 20 km north of the later Proterozoic (~1Ga) Grenville Front Tectonic Zone.

In the period 2.4 to 2.2 Ga, folding and metamorphism (up to upper amphibolite facies) of the Huronian sedimentary-volcanic packages commenced to the south during the Blezardian orogeny, and small-sized granitic plutons were injected. Just before the Blezardian folding ceased, regional basaltic magmatism in the form of well-differentiated tholeiitic diabase sheets (the Nipissing diabase LIP) injected the Huronian units, and the upper parts of its underlying Archean basement. The initiation of Huronian deformation certainly occurred pre-Nipissing, as indicated by the Nipissing sheets cutting early folds within the Huronian units. In places, pre-Nipissing metamorphism attained amphibolite facies. In the South Range of the Sudbury Structure, Blezardian tectonism led to a southward overturning of Huronian units.

The subsequent 1.9-1.7 Ga Penokean Orogeny imposed a static greenschist overprint on to Blezardian metamorphics accompanied by northward thrusting and dextral transpression. This new tectono-metamorphic event was accompanied by shearing and faulting along ENE lines following major faults that were part of the pre-2.4 Ga rifting event. The Sudbury Basin and its Ni-Cu-PGE ore bodies are the result of a 1.85 Ga meteorite impact melt sheet near the centre of a ~260 km wide impact basin. The impact hit the active Penokean mountain belt and its adjacent Archean-Proterozoic basement. Penokean shearing and ENE faulting continued after the impact. The Chiniguchi River Property resides within the "outer zone of damage" of this large impact structure.

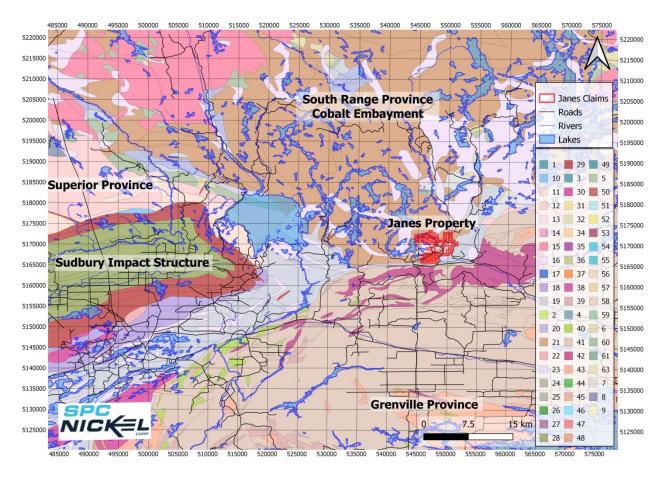


Figure 3: Regional Geology; OGS Ontario Geology Layer; Janes Property Claims; Roads and Major Water Ways

Property Geology

The Property is underlain by Nipissing gabbros and Huronian sediments (Gowganda and Lorrain formations). The gabbro has inward-dipping lower contacts that might define an original lopolith. Called the Chiniguchi River intrusion, this Nipissing body hosts Ni-Cu- PGE mineralization at the Jackie Rastall Prospect. Irregularities in an undulating footwall contact may be of consequence in the localization of mineralization. Bedrock mapping did not recognize any lithological patterns suggestive of cryptic or rhythmic intrusive layering. Nonetheless, mapping did show a crude change from fine-grained gabbro to the west to a medium-grained hypersthene gabbro, medium-to coarse-grained leucocratic gabbro and coarse-grained to pegmatitic and vari-textured gabbro in the east (Jobin-Bevans, 1998). Gabbro units to the east contain more modal quartz. Furthermore, hypersthene gabbro, the host rock to the majority of known mineralization is recognized in outcrop to occur within ~150 m of the basal contact with Gowganda formation sediments and the majority of the hypersthene gabbro occurs within ~75 to100 m of the basal contact. All units show the effects of greenschist facies regional metamorphism. Metamorphic mineral assemblages in Nipissing gabbro on the Property include chlorite, albite, epidote and saussurite after plagioclase as well as chlorite and actinolite after pyroxene - these effects are more obvious in leucocratic phases. Minor biotite occurs in some gabbro but it is uncertain whether the mineral is a primary magmatic or a secondary metamorphic phase. A late NW-striking olivine diabase dyke crosses the Property – part of the Sudbury Dyke Swarm.

Current Work

Property maintenance and line cutting (PR-18-010952_51_50)

After many years of minimal activity on the property access and ground work required maintenance before current work could be completed. Sturgeon Falls Brush and Contracting was contracted to brush the road with an excavator for approximately 10km along the existing road parallel to the river and the side road that accesses the property south passed the two trenches on site. The resulting work widened the work road and made access much easier for future work. Canadian Exploration Services Ltd. (CXS) completed the 21913 meters of line cutting at 100 meter spacing. The grid was then surveyed by CXS using a DGPS. Line cutting was used for the IP and Mag surveys and will likely be utilized for future mapping efforts.

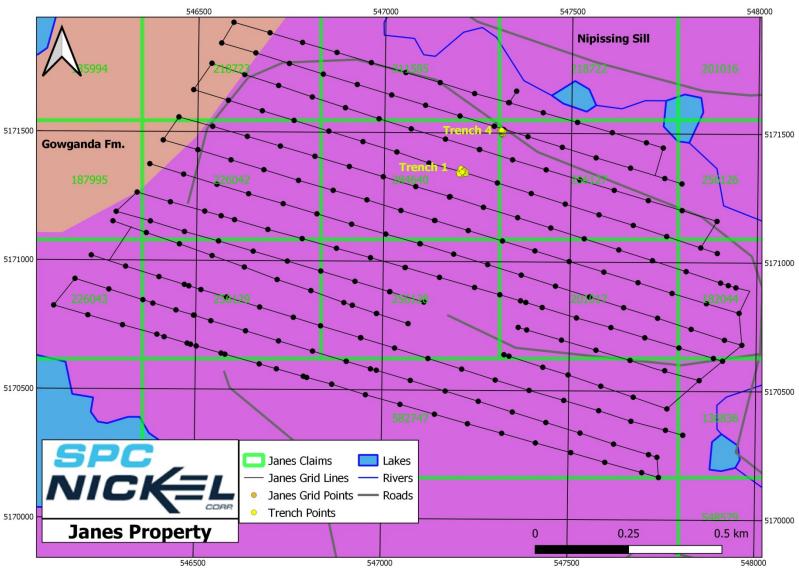


Figure 4: Line cutting grid, Janes Property 2020.

Trench Rehabilitation

CXS was contracted to wash and clean trenches 1 and 4 in preparation for channel sampling. Both trenches are located along a north south trail located in the center of the gird. Debris and growth had accumulated over the years and needed to be cleared for the full length channels to be cut. Additionally a drone was flown to photograph the trenches in high resolution before being cut.

Figure 5: Aerial view of Trench 1

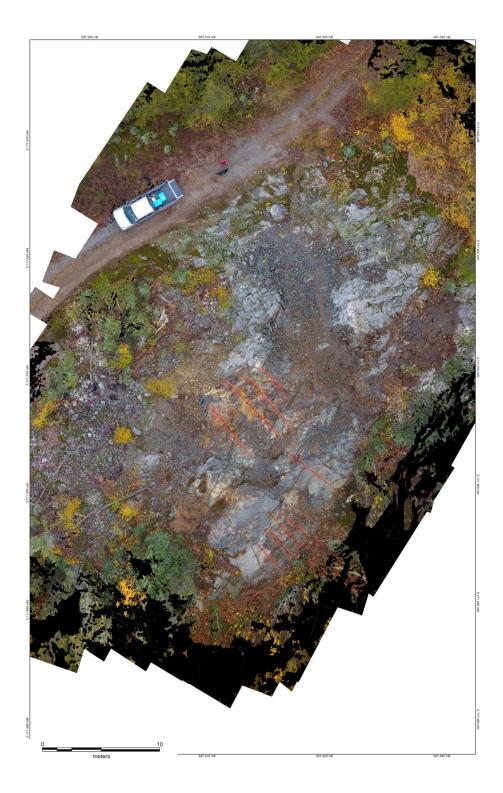


Figure 6: Aerial view of Trench 2

Channel and grab sampling program

CXS was contracted cut the channels as outlined by SPC Nickel. Channel samples were completed on Trench 1 and 4. Several parallel and perpendicular channels were completed on each trench creating a grid. A total of 16 channels were cut totalling 137 meters and 273 samples. The samples were cut, collected, and sent for ICP and Atomic Absorption analysis. The collars of each channel were later DGPSed by CXS for accurate plotting. Three grab samples were collected by SPC Nickel while on site. The samples were also sent for ICP and Atomic Absorption analysis. Standard and blanks were inserted every 20 samples within the batch of samples for QAQC purposes. Barren felsic Norite was used as blank material.

Induced Polarization and Magnetic Surveys (PR-20-000115_6_7)

CXS was contracted to do the line cutting for the IP and magnetic surveys. A new grid was planned, cut, and then surveyed for accuracy. Wire was run along the grid and the surveys were conducted. See Appendix for IP and Mag survey reports.

Results

Samples

The results from the channel samples and grab samples were promising as they reproduced historical samples and channels previously reported. A summary of notable intercepts can be seen in Table 2 below. The assay results (Pd+Pt+Au in g/t) of the channel samples were plotted on Trench 1 and 4, and grade contours were made highlighting where the mineralization was distributed.

			INTERVAL		BASE N	NETALS		PR	ECIOUS MET	ALS	
Trench	Channel	From	То	Length	Ni	Cu	Pt	Pd	Au	Ag	PGM
		m	m	m	%	%	g/t	g/t	g/t	g/t	g/t
T1	1	0.00	18.00	18.00	0.30	0.73	0.33	1.85	0.32	2.55	2.50
inc	luding	2.00	14.50	12.50	0.33	0.80	0.37	2.17	0.35	2.88	2.89
т1	2	0.00	22.00	22.00	0.50	1.09	0.41	2.25	0.43	3.61	3.09
inc	luding	0.00	14.00	14.00	0.56	1.20	0.48	2.95	0.48	3.80	3.91
T1	3	0.00	15.00	15.00	0.22	0.57	0.27	1.58	0.26	1.97	2.10
inc	luding	0.00	10.50	10.50	0.27	0.71	0.34	2.07	0.32	2.39	2.73
T1	4	0.00	9.00	9.00	0.10	0.24	0.13	0.77	0.13	1.04	1.03
T1	5	0.00	9.50	9.50	0.09	0.21	0.14	0.93	0.10	1.16	1.17
T1	6	0.00	9.50	9.50	0.53	1.07	0.39	2.01	0.42	3.48	2.82
T1	7	0.00	10.00	10.00	0.26	0.69	0.32	1.81	0.32	2.35	2.45
inc	luding	0.00	7.50	7.50	0.30	0.78	0.36	2.01	0.36	2.59	2.73
Т4	1	0.00	3.00	3.00	0.08	0.21	0.18	1.59	0.11	0.55	1.88
inc	luding	0.00	1.00	1.00	0.17	0.48	0.51	4.35	0.26	2.10	5.12
т4	2	0.00	3.00	3.00	0.10	0.31	14.80	6.93	0.29	1.73	22.02
т4	3	0.00	4.00	4.00	0.10	0.41	2.21	6.55	0.79	2.69	9.55
Т4	4	0.00	3.00	3.00	0.08	0.58	11.66	23.62	1.84	7.98	37.12
Т4	5	0.00	5.00	5.00	0.01	0.04	0.02	0.15	0.02	0.10	0.19
Т4	6	0.00	7.50	7.50	0.14	0.35	0.16	0.92	0.25	0.94	1.32
inc	luding	3.00	4.50	1.50	0.56	1.36	0.61	3.51	1.09	3.83	5.21
Т4	7	0.00	6.00	6.00	0.78	0.66	1.00	4.15	0.35	2.78	5.51
inc	luding	0.00	3.50	3.50	1.15	1.02	1.00	3.96	0.42	3.26	5.38
Т4	8	0.00	7.00	7.00	0.21	0.40	0.21	1.52	0.14	1.12	1.87
inc	luding	1.50	4.50	3.00	0.44	0.86	0.43	3.15	0.28	2.27	3.86
Т4	9	0.00	6.00	6.00	0.30	0.70	0.52	3.16	0.51	2.19	4.19
inc	luding	0.00	3.00	3.00	0.49	1.13	0.72	4.57	0.85	3.40	6.14

Table 3: Highlights from the 2020 channel samples.

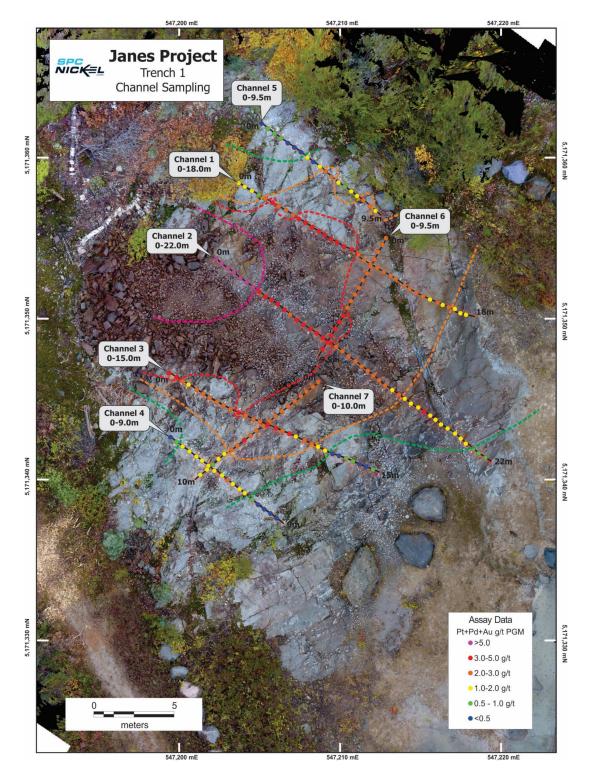


Figure 7: Drone images of the Trench 4 showing the location of the completed channel samples with assays color coded to total PGM (Pt+Pd+Au) g/t values. Assays points represent the start of each 0.5 m sample. Preliminary interpretations of the local geological contact and potential structures have been added.

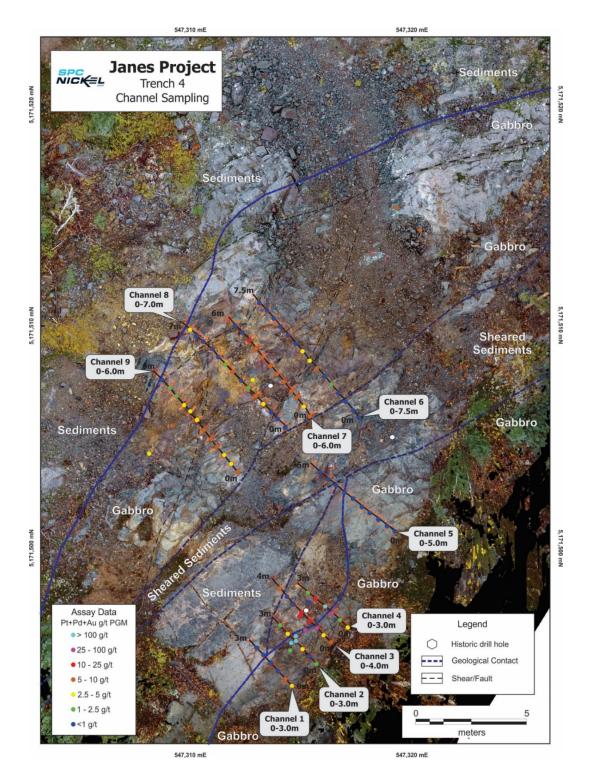


Figure 8: Drone images of the Trench 4 showing the location of the completed channel samples with assays color coded to total PGM (Pt+Pd+Au) g/t values. Assays points represent the start of each 0.5 m sample. Preliminary interpretations of the local geological contact and potential structures have been added.

IP and Magnetic Surveys

The geophysical surveys showed several features that were mapped and known to exist on the property and several features were observed that were new. Few of the anomalies observed correlated with known mineralization. See appendix for cross sections of the results.

Conclusions

The results from the channels showed the lateral extent of the mineralization at surface on the two trenches. Additionally, the geochemical results confirmed previously noted controls on mineralization and highlighted several new geological structures and controls on mineralization. Several channels started or ended in mineralization, suggesting that mineralization at surface could likely extend beyond the currently exposed trenches.

Several new anomalies of interest were observed from the geophysical surveys. Most obvious were the anomalies observed where the contact between the Nipissing Gabbro and Gowganda Sediments is crosscut by the younger magnetic Diabase dyke. There were anomalies observed around known mineralization, but spatially they seemed to be offset. There were also anomalous features observed to the west where little mapping and exploration has been done.

Recommendations

The mineralization observed on surface matches the reported mineralization previously reported in drill holes. Several geological relationships were observed between the geology and the geochemical results which might help targeting in the future with more drilling. Therefore a drilling program is recommended to attempt to estimate a resource at surface. This, of course, would be a 'first pass' estimate as minimum drill spacing required to estimate a resource would be too costly to initiate at this point.

Furthermore, mapping and sampling is recommended to the west and along the contact of the Diabase dyke to the south where geophysical anomalies are observed. It is also recommended that the contact between the sediments and the gabbro should defined better as the recent maps and OGS maps don't accurately fit what is observed on surface and don't reflect the structural complexity of the property.

Lastly, the available drilling data should be compiled, merged, and modeled in 3D. This will not only help targeting but would be a necessary step in estimating a resource.

References

- Butler, H. (2008): Technical Report (43-101) on the Chiniguchi River Property, Janes Township; prepared for Goldwright Explorations Inc.
- Dressler, B.,1977: Janes Township, District of Sudbury; Ontario Geological Survey Prelim. Map P.1231, Geol. Ser., scale 1:15,840 or 1 inch to 14 mile. Geology 1976
- Jobin-Bevans, L.S. (1998): Report on the 1998 Exploration Program Janes Project (Jackie Rastall Prospect); prepared for Pacific North West Capital Corp.
- Kleimboeck, J., Stewart, R., Wright, B., 2012: 2011 Diamond Drilling Program: Chiniguchi River Property assessment report: 20011419

Appendices

Tables

Table 1: Claim Details

Claim	Туре	Owner	Claim	Туре	Owner
548578	12 Multi Cell	Brian Wright (210254) 100%	135992	Single Cell	Randy Stewart (408174)100%
548579	5 Multi Cell	Brian Wright (210254) 100%	331079	Single Cell	Randy Stewart (408174)100%
548725	5 Multi Cell	Brian Wright (210254) 100%	331080	Single Cell	Randy Stewart (408174)100%
548726	6 Multi Cell	Brian Wright (210254) 100%	254651	Single Cell	Randy Stewart (408174)100%
548727	2 Multi Cell	Brian Wright (210254) 100%	187996	Single Cell	Randy Stewart (408174)100%
238837	Boundary	Brian Wright (210254) 100%	187994	Single Cell	Randy Stewart (408174)100%
190187	Boundary	Brian Wright (210254) 100%	235845	Single Cell	Randy Stewart (408174)100%
294034	Boundary	Brian Wright (210254) 100%	237390	Single Cell	Randy Stewart (408174)100%
202326	Single Cell	Brian Wright (210254) 100%	135994	Single Cell	Randy Stewart (408174)100%
172765	Single Cell	Brian Wright (210254) 100%	187995	Single Cell	Randy Stewart (408174)100%
136835	Single Cell	Brian Wright (210254) 100%	582747	3 Multi Cell	Randy Stewart (408174) 100%
226024	Single Cell	Brian Wright (210254) 100%	582748	4 Multi Cell	Randy Stewart (408174) 100%
312931	Single Cell	Brian Wright (210254) 100%	563092	2 Multi Cell	Randy Stewart (408174)100%
344403	Single Cell	Brian Wright (210254) 100%	107977	Single Cell	Randy Stewart (408174)100%
294035	Single Cell	Brian Wright (210254) 100%	182129	Boundary	Randy Stewart (408174) 100%
301447	Single Cell	Brian Wright (210254) 100%	107975	Boundary	Randy Stewart (408174) 100%
286010	Single Cell	Brian Wright (210254) 100%	265931	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
563091	7 Multi Cell	Brian Wright (210254) 100%	333439	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
339677	Boundary	Brian Wright (210254) 100%	302535	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
339680	Boundary	Brian Wright (210254) 100%	301795	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
215325	Single Cell	Brian Wright (210254) 100%	333438	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
233888	Single Cell	Brian Wright (210254) 100%	253860	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
186107	Single Cell	Brian Wright (210254) 100%	199200	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
340870	Single Cell	Brian Wright (210254) 100%	271931	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
136836	Single Cell	Brian Wright (210254) 100%	320389	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256125	Single Cell	Brian Wright (210254) 100%	185809	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
182055	Single Cell	Brian Wright (210254) 100%	112768	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
188835	Single Cell	Brian Wright (210254) 100%	333022	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
311585	Single Cell	Brian Wright (210254) 100%	154035	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
284640	Single Cell	Brian Wright (210254) 100%	333440	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256128	Single Cell	Brian Wright (210254) 100%	322043	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
218722	Single Cell	Brian Wright (210254) 100%	167974	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
201016	Single Cell	Brian Wright (210254) 100%	321293	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256127	Single Cell	Brian Wright (210254) 100%	320390	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256126	Single Cell	Brian Wright (210254) 100%	333441	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
201017	Single Cell	Brian Wright (210254) 100%	206671	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
182044	Single Cell	Brian Wright (210254) 100%	333791	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226041	Single Cell	Brian Wright (210254) 100%	154707	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226043	Single Cell	Brian Wright (210254) 100%	135162	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
218723	Single Cell	Brian Wright (210254) 100%	333792	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
226042	Single Cell	Brian Wright (210254) 100%	273352	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
256129	Single Cell	Brian Wright (210254) 100%	151229	Single Cell	Brian Wright (210254) 50%, Randy Stewart (408174) 50%
291864	Single Cell	Randy Stewart (408174)100%	587411	Single Cell	Sudbury Platinum Corp 100%
235844	Single Cell	Randy Stewart (408174)100%	587410	Single Cell	Sudbury Platinum Corp 100%
237389	Single Cell	Randy Stewart (408174)100%	571319	Single Cell	Sudbury Platinum Corp 100%
272513	Single Cell	Randy Stewart (408174)100%	571318	Single Cell	Sudbury Platinum Corp 100%
135993	Single Cell	Randy Stewart (408174)100%	571317	Single Cell	Sudbury Platinum Corp 100%
135992	Single Cell	Randy Stewart (408174)100%	571316	Single Cell	Sudbury Platinum Corp 100%

Table 2: Summary of Past Drilling Highlights

DDH	From_m	To_m	Int_Length	Avg_Pt	Avg_Pd	Avg_Au	Avg_Ag	Avg_Cu	Avg_Ni	Avg_E3
69-01	68.73	88.90	20.17					0.300	0.160	
69-03	54.56	61.87	7.32					0.515	0.270	
69-06	80.16	105.00	24.84					0.293	0.160	
69-08	171.90	181.70	9.80	0.244	1.151	0.190	4.614	1.780	0.951	1.586
JR01-20	87.50	90.80	3.30	0.062	0.331	0.022		0.073	0.032	0.415
JR01-20	119.35	123.10	3.75	0.130	0.508	0.138		0.302	0.126	0.777
JR01-22	32.80	34.80	2.00	0.245	0.735	0.086		0.119	0.062	1.067
JR01-22	65.00	83.00	18.00	0.092	0.208	0.093		0.211	0.078	0.392
JR01-23	17.90	21.50	3.60	0.220	0.124	0.012		0.008	0.013	0.356
JR01-23	32.00	36.50	4.50	0.130	0.112	0.011		0.010	0.009	0.253
JR01-23	42.50	53.00	10.50	0.100	0.048	0.009		0.009	0.006	0.157
JR01-23	75.00	87.00	12.00	0.072	0.252	0.096		0.228	0.091	0.419
JR01-24	35.50	58.00	22.50	0.082	0.280	0.215		0.300	0.123	0.577
JR01-25	16.50	21.00	4.50	0.188	0.189	0.237		0.202	0.071	0.614
JR01-25	28.00	32.00	4.00	0.249	0.228	0.123		0.090	0.052	0.599
JR01-25	71.00	74.00	3.00	0.074	0.208	0.091		0.163	0.065	0.372
JR07-27	26.00	28.00	2.00	0.141	0.867	0.090		0.140	0.054	1.097
JR07-28	35.00	42.00	7.00	0.041	0.183	0.027		0.041	0.011	0.251
JR07-29	7.20	27.00	19.80	0.197	1.076	0.184		0.474	0.195	1.457
JR07-30	11.00	41.00	30.00	0.148	0.599	0.186		0.499	0.206	0.933
JR07-31	13.00	38.00	25.00	0.165	0.717	0.191		0.529	0.206	1.073
JR07-32	42.00	57.00	15.00	0.112	0.408	0.131		0.544	0.245	0.651
JR99-01	12.21	32.00	19.79	0.073	0.187	0.112		0.358	0.146	0.372
JR99-01	32.00	50.05	32.00	0.333	2.282	0.195		1.012	0.269	2.809
JR99-02	0.50	3.36	2.86	0.060	0.352	0.087		0.175	0.024	0.499
JR99-02	6.87	11.00	4.13	0.369	1.710	0.180		1.206	0.579	2.259
JR99-03	0.00	3.93	3.93	0.765	6.189	0.447		1.033	0.765	7.401
JR99-03	6.58	8.68	2.10	0.149	1.060	0.059		0.524	0.014	1.268
JR99-05	2.75	9.57	6.82	0.121	0.772	0.081		0.191	0.090	0.973
JR99-05	18.73	33.76	15.39	0.041	0.216	0.028		0.096	0.044	0.285
JR99-06	9.90	23.91	14.01	0.331	2.084	0.292		0.841	0.353	2.707
JR99-08	22.08	29.71	7.63	0.051	0.234	0.036		0.093	0.029	0.321
JR99-08	35.83	37.37	1.54	0.891	5.597	0.217		0.353	0.275	6.705
JR99-09	1.63	6.55	4.92	0.096	0.318	0.157		0.578	0.220	0.570
JR99-09	6.55	14.49	7.94	0.044	0.224	0.027		0.100	0.041	0.295
JR99-11	3.03	5.89	2.86	0.071	0.420	0.034		0.095	0.043	0.525
JR99-11	16.15	49.22	33.07	0.193	0.958	0.179		0.535	0.219	1.330
JR99-14	48.20	65.90	17.70	0.068	0.158	0.093		0.340	0.152	0.319
JR99-14	65.90	79.85	13.95	0.177	0.985	0.165		0.338	0.160	1.326
JR99-15	60.00	78.50	18.50	0.084	0.315	0.097		0.263	0.115	0.496
JR99-16	24.50	37.50	13.00	0.156	0.883	0.113		0.457	0.211	1.152
JR99-17	83.45	88.50	5.05	0.069	0.180	0.115		0.356	0.167	0.364
JR99-17	88.80	95.30	6.50	0.119	0.335	0.185		0.301	0.266	0.639
JR99-19	109.25	111.55	2.30	0.145	0.345	0.181		0.563	0.189	0.671
JR99-19	132.10	133.15	1.05	0.153	0.376	0.061		4.171	0.276	0.590

			INTERVAL		BASE I	METALS		PR	ECIOUS META	ALS	
Trench	Channel	From	То	Length	Ni	Cu	Pt	Pd	Au	Ag	PGM
		m	m	m	%	%	g/t	g/t	g/t	g/t	g/t
T1	1	0.00	18.00	18.00	0.30	0.73	0.33	1.85	0.32	2.55	2.50
inc	luding	2.00	14.50	12.50	0.33	0.80	0.37	2.17	0.35	2.88	2.89
T1	2	0.00	22.00	22.00	0.50	1.09	0.41	2.25	0.43	3.61	3.09
inc	luding	0.00	14.00	14.00	0.56	1.20	0.48	2.95	0.48	3.80	3.91
T1	3	0.00	15.00	15.00	0.22	0.57	0.27	1.58	0.26	1.97	2.10
inc	luding	0.00	10.50	10.50	0.27	0.71	0.34	2.07	0.32	2.39	2.73
T1	4	0.00	9.00	9.00	0.10	0.24	0.13	0.77	0.13	1.04	1.03
T1	5	0.00	9.50	9.50	0.09	0.21	0.14	0.93	0.10	1.16	1.17
T1	6	0.00	9.50	9.50	0.53	1.07	0.39	2.01	0.42	3.48	2.82
T1	7	0.00	10.00	10.00	0.26	0.69	0.32	1.81	0.32	2.35	2.45
inc	luding	0.00	7.50	7.50	0.30	0.78	0.36	2.01	0.36	2.59	2.73
T4	1	0.00	3.00	3.00	0.08	0.21	0.18	1.59	0.11	0.55	1.88
inc	luding	0.00	1.00	1.00	0.17	0.48	0.51	4.35	0.26	2.10	5.12
T4	2	0.00	3.00	3.00	0.10	0.31	14.80	6.93	0.29	1.73	22.02
T4	3	0.00	4.00	4.00	0.10	0.41	2.21	6.55	0.79	2.69	9.55
T4	4	0.00	3.00	3.00	0.08	0.58	11.66	23.62	1.84	7.98	37.12
Т4	5	0.00	5.00	5.00	0.01	0.04	0.02	0.15	0.02	0.10	0.19
T4	6	0.00	7.50	7.50	0.14	0.35	0.16	0.92	0.25	0.94	1.32
inc	luding	3.00	4.50	1.50	0.56	1.36	0.61	3.51	1.09	3.83	5.21
T4	7	0.00	6.00	6.00	0.78	0.66	1.00	4.15	0.35	2.78	5.51
inc	luding	0.00	3.50	3.50	1.15	1.02	1.00	3.96	0.42	3.26	5.38
T4	8	0.00	7.00	7.00	0.21	0.40	0.21	1.52	0.14	1.12	1.87
inc	luding	1.50	4.50	3.00	0.44	0.86	0.43	3.15	0.28	2.27	3.86
Т4	9	0.00	6.00	6.00	0.30	0.70	0.52	3.16	0.51	2.19	4.19
inc	luding	0.00	3.00	3.00	0.49	1.13	0.72	4.57	0.85	3.40	6.14

Table 3: Highlights from the 2020 channel samples.

Figures

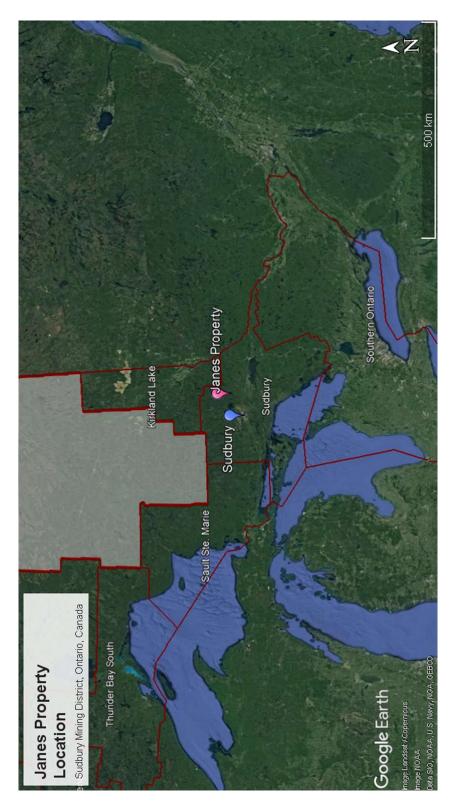


Figure 1: Location of Janes Property in Ontario Canada.

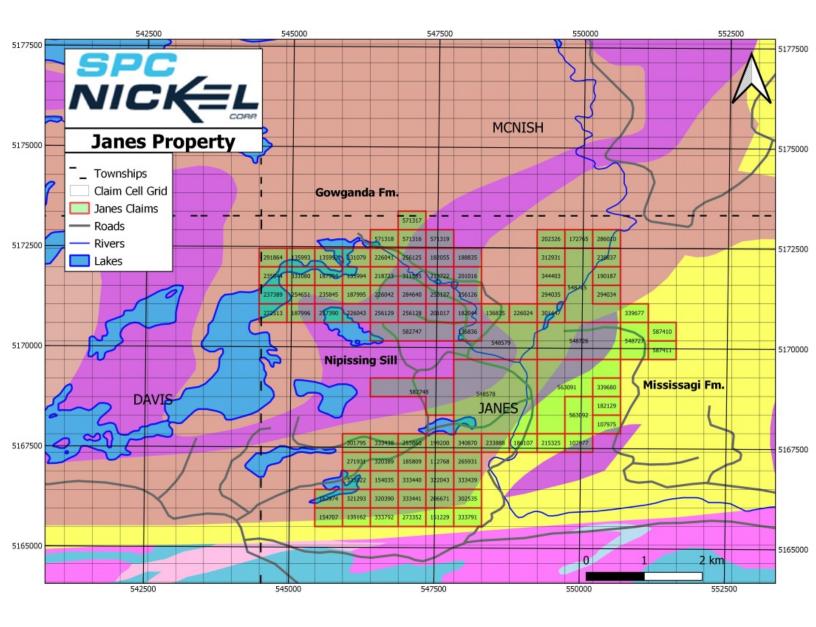


Figure 2: Janes Property, MLAS Claim Cell Grid; Ontario Geology

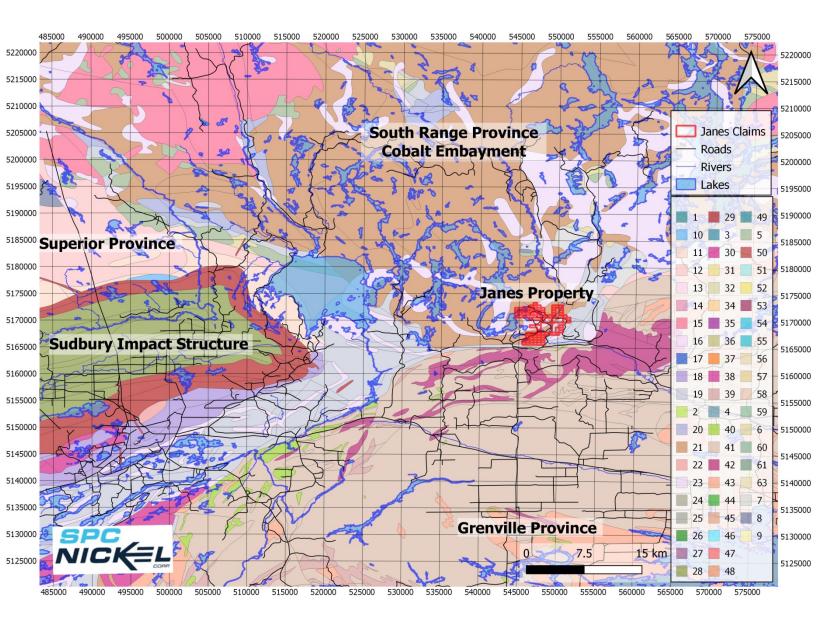


Figure 3: Regional Geology; OGS Ontario Geology Layer; Janes Property Claims; Roads and Major Water Ways

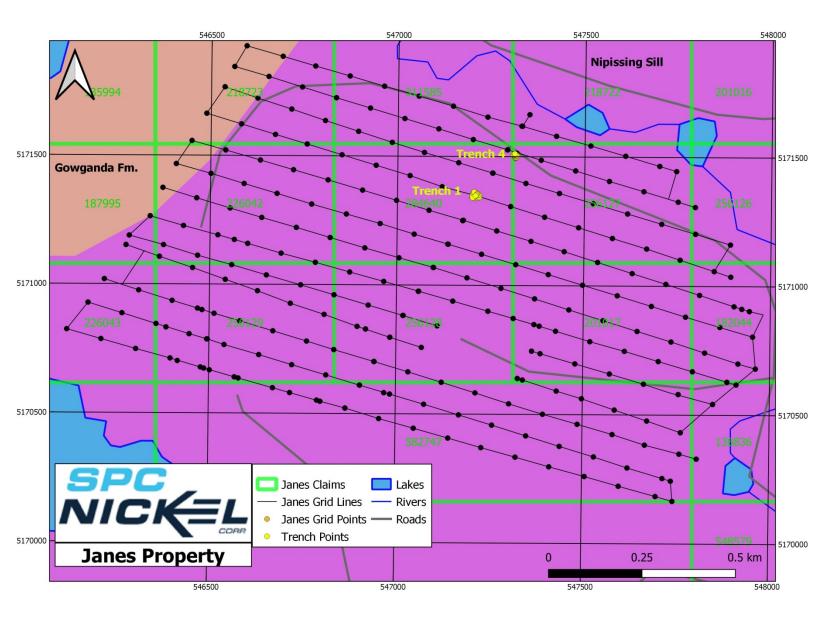


Figure 4: Line cutting grid, Janes Property 2020.

Figure 5: Aerial view of Trench 1.

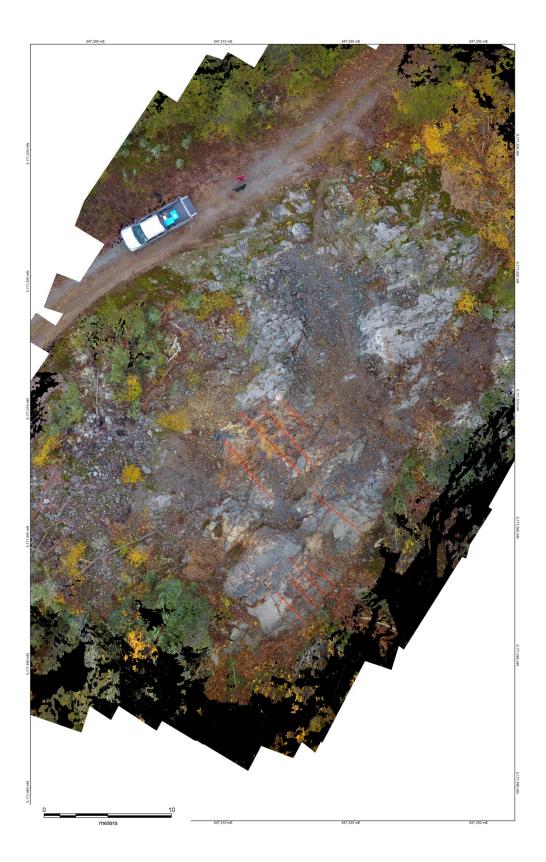


Figure 6: Aerial view of Trench 2.

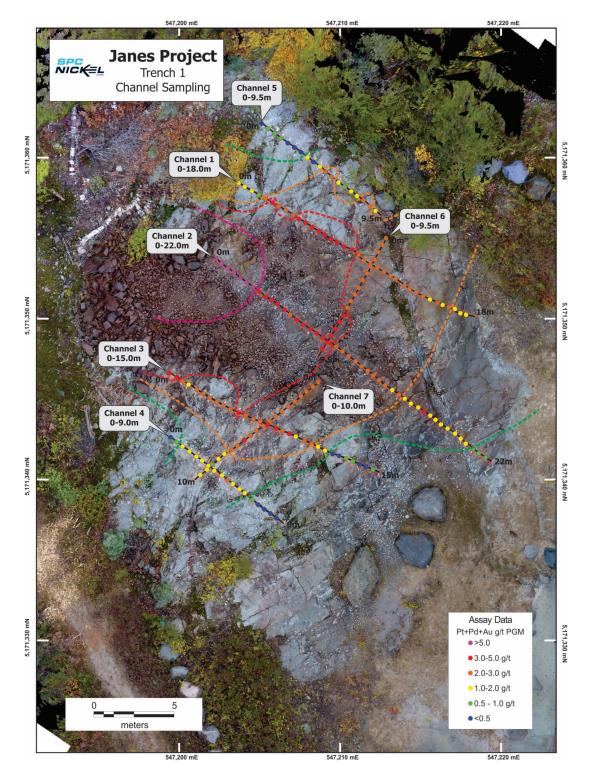


Figure 7: Drone images of the Trench 4 showing the location of the completed channel samples with assays color coded to total PGM (Pt+Pd+Au) g/t values. Assays points represent the start of each 0.5 m sample. Preliminary interpretations of the local geological contact and potential structures have been added.

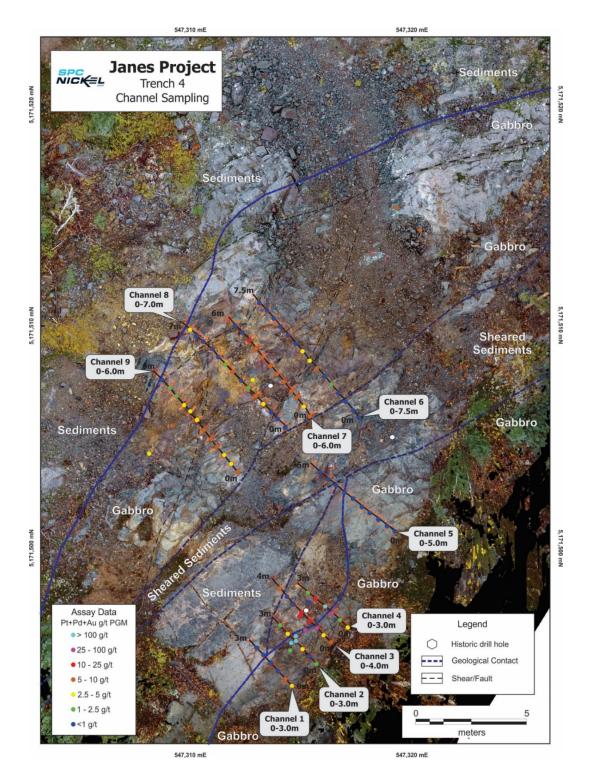


Figure 8: Drone images of the Trench 4 showing the location of the completed channel samples with assays color coded to total PGM (Pt+Pd+Au) g/t values. Assays points represent the start of each 0.5 m sample. Preliminary interpretations of the local geological contact and potential structures have been added.

Summary of Distribution of Work and costs

	Invoice #	5691	5705	5719	5729	5737	5778	5779	5780	5804	5805	J002807	SD20225580	N/A	2010.3	
	Date	16-Sep-20	24-Sep-20	19-Oct-20	3-Nov-20	6-Nov-20	18-Dec-20	18-Dec-20	18-Dec-20	11-Jan-21	11-Jan-21	15-Sep-20	27-Nov-20	13-Jan-21	2020-09-31	
Invoice	Company	CXS	CXS	CXS	CXS	CXS	CXS	CXS	CXS	CXS	CXS	S.F.B.C	ALS	SPC	Hart Geo.	
Data	Туре	Trenching	Line Cutting and DGPS	Trenching	Line Cutting and DGPS	IP Mag Survey	Road Work	Assay	Report	Drone	Totals					
	Amount	\$10,000.00	\$15,000.00	\$3,531.75	\$14,566.45	\$36,250.00	\$21,750.00	\$8,573.48	\$5,650.00	\$23,925.00	\$2,443.11	\$8,232.05	\$24,259.00	\$3,500.00	\$1,243.00	\$177,680.84
	284640	6715.3	\$1,517.51	2371.7	\$1,473.65	\$3,667.32	\$2,200.39	\$867.36	\$571.60	\$2,420.43	\$247.16	548.8	\$16,290.72	233.3	621.5	\$39,125.30
	256127	3284.7	\$1,505.29	1160.1	\$1,461.78	\$3,637.77	\$2,182.66	\$860.37	\$566.99	\$2,400.93	\$245.17	548.8	7968.3	233.3	621.5	\$26,056.12
	136836		\$205.73		\$199.78	\$497.18	\$298.31	\$117.59	\$77.49	\$328.14	\$33.51	548.8		233.3		\$2,539.87
	182044		\$761.95		\$739.93	\$1,841.39	\$1,104.83	\$435.51	\$287.00	\$1,215.32	\$124.10	548.8		233.3		\$7,292.18
	187995		\$223.44		\$216.98	\$539.98	\$323.99	\$127.71	\$84.16	\$356.38	\$36.39	548.8		233.3		\$2,691.16
	201017		\$1,493.60		\$1,450.43	\$3,609.53	\$2,165.72	\$853.69	\$562.59	\$2,382.29	\$243.27	548.8		233.3		\$13,543.23
Claims and	218722		\$172.74		\$167.75	\$417.45	\$250.47	\$98.73	\$65.06	\$275.52	\$28.13	548.8		233.3		\$2,257.99
Value of	218723		\$965.83		\$937.91	\$2,334.08	\$1,400.45	\$552.03	\$363.80	\$1,540.50	\$157.31	548.8		233.3		\$9,034.04
Work	226042		\$1,540.84		\$1,496.30	\$3,723.69	\$2,234.21	\$880.69	\$580.38	\$2,457.63	\$250.96	548.8		233.3		\$13,946.84
	226043		\$556.36		\$540.28	\$1,344.55	\$806.73	\$318.00	\$209.56	\$887.40	\$90.62	548.8		233.3		\$5,535.64
	256126		\$137.17		\$133.21	\$331.50	\$198.90	\$78.40	\$51.67	\$218.79	\$22.34	548.8		233.3		\$1,954.11
	256128		\$1,179.41		\$1,145.32	\$2,850.24	\$1,710.15	\$674.11	\$444.24	\$1,881.16	\$192.10	548.8		233.3		\$10,858.87
	256129		\$1,475.61		\$1,432.96	\$3,566.07	\$2,139.64	\$843.41	\$555.81	\$2,353.60	\$240.34	548.8		233.3		\$13,389.59
	311585		\$790.51		\$767.66	\$1,910.39	\$1,146.23	\$451.83	\$297.76	\$1,260.86	\$128.75	548.8		233.3		\$7,536.11
	582747		\$2,474.01		\$2,402.51	\$5,978.87	\$3,587.32	\$1,414.06	\$931.88	\$3,946.05	\$402.95	548.8		233.3		\$21,919.78

Assay Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: SPC METALS 410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

CERTIFICATE SD20225580

Project: janes

P.O. No.: JANES

This report is for 290 Rock samples submitted to our lab in Sudbury, ON, Canada on 5-OCT-2020.

The following have access to data associated with this certificate:

GRANT MOURRE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
LOG-23	Pulp Login - Rcvd with Barcode
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP27	Ore grade Pt, Pd and Au by ICP	ICP-AES
Pd-AA23	Pd 30g FA-AA finish	AAS
Ag-AA45	Trace Ag - aqua regia/AAS	AAS
ME-ICP81	ICP Fusion - Ore Grade	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 AI2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927501 X927502 X927503 X927504 X927505		2.51 3.46 3.00 2.66 2.61	83.7	85.5 90.3	0.076 0.101 0.080 0.054 0.156	0.148 0.155 0.120 0.091 0.274	0.989 1.095 0.843 0.634 1.725					0.6 0.8 0.6 0.5 1.1	13.75 14.10 14.15 14.00 13.85	<0.01 0.01 <0.01 0.01 <0.01	11.80 11.65 11.75 11.50 11.80	0.005 0.007 0.005 0.005 0.007
X927506 X927507 X927508 X927509 X927510		2.38 3.06 1.79 2.17 2.55			0.310 0.206 0.203 0.211 0.314	0.363 0.286 0.313 0.340 0.418	2.41 1.900 2.09 2.25 2.73					1.8 1.2 1.7 1.7 2.4	13.70 14.00 14.05 13.90 13.50	0.01 <0.01 <0.01 <0.01 <0.01 <0.01	11.65 11.50 10.50 10.45 10.90	0.008 0.007 0.008 0.007 0.007 0.010
X927511 X927512 X927513 X927514 X927515		2.16 2.51 2.78 1.99 2.25			0.335 0.386 0.382 0.377 0.512	0.454 0.458 0.441 0.443 0.387	2.81 2.90 2.75 2.80 2.49					2.7 2.7 2.6 2.8 2.5	13.45 13.60 13.75 13.70 13.80	<0.01 <0.01 <0.01 0.01 0.01	10.85 11.25 11.20 11.25 11.50	0.011 0.010 0.011 0.012 0.010
X927516 X927517 X927518 X927519 X927520		2.82 1.02 1.94 1.57 0.07			0.395 0.318 0.378 0.370 0.187	0.406 0.405 0.406 0.383 0.540	2.71 2.40 2.24 2.12 0.606					2.8 2.7 2.8 4.1 3.4	13.60 13.80 13.70 13.60 10.45	0.01 <0.01 <0.01 <0.01 <0.01 0.01	11.25 11.15 10.85 11.00 6.02	0.013 0.011 0.011 0.014 0.035
X927521 X927522 X927523 X927524 X927525		1.87 1.98 1.41 2.19 1.07			0.293 0.715 0.388 0.399 0.459	0.338 0.330 0.327 0.420 0.421	1.775 1.770 1.730 1.965 2.11					3.0 2.4 3.1 3.6 4.5	13.65 13.85 13.30 13.50 13.35	<0.01 <0.01 0.01 0.01 <0.01	10.95 11.25 10.55 10.85 10.15	0.011 0.014 0.015 0.016 0.016
X927526 X927527 X927528 X927529 X927529		1.96 1.83 2.05 3.46 2.92			0.213 0.320 0.355 0.370 0.360	0.380 0.380 0.315 0.320 0.318	2.22 1.800 1.530 1.560 1.510					5.3 3.7 4.3 3.3 3.1	14.50 13.70 13.45 13.60 13.55	0.06 0.05 0.01 0.01 0.01	4.86 7.23 9.09 10.70 10.40	0.013 0.010 0.011 0.012 0.011
X927531 X927532 X927533 X927533 X927534 X927535		3.33 2.76 2.60 1.89 2.39			0.319 0.344 0.348 0.346 0.294	0.266 0.300 0.274 0.292 0.234	1.235 1.390 1.360 1.410 1.165					2.6 2.6 2.5 2.7 2.2	13.80 13.45 13.75 13.50 13.70	0.01 <0.01 <0.01 <0.01 <0.01 <0.01	11.25 10.95 11.00 10.85 11.40	0.011 0.016 0.014 0.014 0.013
X927536 X927537 X927538 X927539 X927539		2.54 2.54 2.00 2.26 0.69	81.0	95.9	0.352 0.327 0.486 0.412 0.002	0.260 0.240 0.721 0.652 <0.005	1.175 1.050 5.07 5.68 0.033					2.4 2.5 3.4 3.6 <0.2	13.75 13.90 13.05 13.10 14.85	<0.01 0.01 <0.01 <0.01 <0.01	11.40 11.10 10.65 9.79 6.20	0.012 0.012 0.015 0.014 0.002

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580

Sample Description	Method Analyte Units	ME-ICP81 Cr %	ME-ICP81 Cu %	ME-ICP81 Fe %	ME-ICP81 Fe2O3 %	ME-ICP81 K %	ME-ICP81 MgO %	ME-ICP81 MnO %	ME-ICP81 Ni %	ME-ICP81 Pb %	ME-ICP81 S % 0.01	ME-ICP81 SiO2 %	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn %	
· · ·	LOD	0.01	0.002	0.05	0.05	0.1	0.01	0.01	0.002	0.01		0.2		0.002	
X927501		0.04	0.172	7.21	10.30	0.6	8.47	0.16	0.086	< 0.01	0.39	49.2	0.52	0.004	
X927502		0.04	0.226	7.50	10.70	0.5	8.18	0.17	0.099	<0.01	0.46	50.5	0.55	0.006	
X927503		0.04	0.178	7.28	10.40	0.4	7.95	0.16	0.082	< 0.01	0.39	49.6	0.55	0.004	
X927504		0.04	0.140	7.33	10.50	0.3	7.99	0.16	0.072	<0.01	0.31	49.0	0.54	0.003	
X927505		0.04	0.365	7.79	11.15	0.3	8.04	0.16	0.137	<0.01	0.70	48.6	0.54	0.004	
X927506		0.04	0.519	8.08	11.55	0.3	8.03	0.16	0.215	<0.01	1.06	47.9	0.51	0.004	
X927507		0.04	0.377	7.78	11.10	0.4	7.99	0.16	0.145	<0.01	0.73	48.8	0.54	0.003	
X927508		0.04	0.535	8.10	11.60	0.4	7.94	0.16	0.196	<0.01	1.02	48.3	0.50	0.005	
X927509		0.04	0.517	8.32	11.90	0.2	8.11	0.15	0.186	<0.01	0.99	47.9	0.50	0.003	
X927510		0.04	0.679	8.43	12.05	0.2	7.95	0.15	0.277	<0.01	1.46	47.3	0.48	0.004	
X927511		0.04	0.730	8.70	12.45	0.2	8.12	0.15	0.289	<0.01	1.58	47.3	0.46	0.003	
X927512		0.04	0.788	8.70	12.45	0.2	7.68	0.14	0.330	< 0.01	1.78	46.2	0.46	0.003	
X927513		0.04	0.843	8.78	12.55	0.2	7.71	0.14	0.352	<0.01	1.86	46.4	0.46	0.004	
X927514		0.04	0.853	8.79	12.55	0.2	7.69	0.14	0.381	< 0.01	2.03	46.2	0.45	0.005	
X927515		0.04	0.757	8.58	12.25	0.2	7.84	0.14	0.322	< 0.01	1.74	46.8	0.47	0.004	
X927516		0.04	0.843	8.98	12.85	0.2	7.85	0.14	0.393	<0.01	2.07	46.6	0.46	0.004	
X927517		0.04	0.738	8.60	12.30	0.2	7.82	0.15	0.300	< 0.01	1.58	46.8	0.47	0.004	
X927518		0.04	0.814	8.61	12.30	0.2	7.68	0.14	0.274	< 0.01	1.74	46.4	0.45	0.003	
X927519		0.04	1.010	9.03	12.90	0.1	7.78	0.14	0.377	< 0.01	2.23	47.5	0.44	0.007	
X927520		0.03	0.890	18.30	26.2	0.6	5.79	0.15	1.200	< 0.01	6.92	41.1	0.61	0.013	
X927521		0.04	0.872	8.86	12.65	0.1	7.88	0.14	0.282	<0.01	1.59	49.2	0.44	0.007	
X927522		0.04	0.831	8.55	12.20	0.2	8.04	0.14	0.365	< 0.01	1.98	49.2	0.45	0.006	
X927523		0.04	0.911	9.10	13.00	0.3	7.87	0.14	0.522	< 0.01	2.65	46.6	0.42	0.006	
X927524		0.04	1.040	9.34	13.35	0.4	8.04	0.14	0.530	< 0.01	2.83	46.6	0.37	0.006	
X927525		0.04	1.205	8.66	12.40	0.5	8.59	0.12	0.550	< 0.01	2.98	47.1	0.42	0.008	
X927526		0.05	0.961	7.47	10.70	0.7	13.90	0.12	0.393	0.04	1.73	44.5	0.45	0.017	
X927527		0.05	0.870	7.47	10.70	0.8	10.95	0.12	0.327	0.01	1.65	48.1	0.44	0.011	
X927528		0.05	1.210	8.38	12.00	0.5	8.17	0.12	0.352	<0.01	2.37	48.3	0.43	0.012	
X927529		0.05	0.907	8.56	12.25	0.4	8.62	0.15	0.313	<0.01	1.90	49.2	0.44	0.007	
X927530		0.05	0.840	8.64	12.35	0.4	8.73	0.16	0.338	<0.01	1.95	48.8	0.45	0.006	
X927531		0.05	0.738	8.23	11.75	0.5	8.51	0.15	0.286	<0.01	1.74	49.2	0.46	0.005	
X927532		0.05	0.852	8.61	12.30	0.3	8.52	0.15	0.381	<0.01	2.19	48.1	0.44	0.005	
X927533		0.05	0.800	8.68	12.40	0.4	8.51	0.15	0.366	<0.01	2.05	49.0	0.44	0.005	
X927534		0.05	0.817	8.47	12.10	0.4	8.53	0.15	0.382	<0.01	2.08	48.1	0.44	0.005	
X927535		0.05	0.718	8.40	12.00	0.4	8.45	0.15	0.309	<0.01	1.79	49.2	0.45	0.005	
X927536		0.05	0.763	8.39	12.00	0.3	8.52	0.15	0.320	<0.01	1.87	48.6	0.45	0.006	
X927537		0.05	0.763	8.56	12.00	0.3	8.82	0.15	0.320	<0.01	1.76	40.0	0.45	0.008	
X927538		0.05	1.075	9.46	13.50	0.3	0.02 7.90	0.15	0.309	<0.01	2.31	49.0 47.5	0.46	0.007	
X927538 X927539		0.04	1.075	9.46 9.89	13.50	0.2	7.90 8.07	0.15	0.443	<0.01 <0.01	2.31	47.5 47.5	0.45	0.007	
		0.04 <0.01	0.008	9.89 5.65	8.08	0.4 1.6	8.07 3.47	0.16	0.465	<0.01 <0.01	2.54 0.10	47.5 60.1	0.45	0.008	
X927540		<0.01	0.008	2.05	0.08	0.1	3.47	0.13	0.005	<0.01	0.10	00.1	0.63	0.008	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 Al2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927541 X927542 X927543 X927544		1.98 1.39 1.92 1.62		94.2	0.594 0.520 0.630 0.613	0.702 0.766 0.675 0.706	5.69 4.80 4.18 5.62					3.4 3.2 2.9 4.3	13.20 13.00 13.15 12.95	<0.01 0.01 <0.01 0.01	10.65 10.60 10.80 9.58	0.016 0.017 0.015 0.020
X927545 X927546		1.44 1.57			0.502	0.694	5.32 3.82					4.6 4.3	13.10 13.00	0.01	7.12 9.46	0.011
X927547 X927548 X927549 X927550		1.61 1.48 1.62 2.41			0.452 0.443 0.566 0.488	0.453 0.456 0.486 0.438	2.67 2.60 2.55 2.40					3.1 3.1 4.1 3.8	13.25 13.15 12.95 12.95	0.01 0.01 <0.01 0.01	9.75 9.78 9.77 9.72	0.011 0.012 0.015 0.020
X927551 X927552 X927553 X927554 X927555		2.65 2.71 2.21 1.25 1.78			0.454 0.493 0.543 0.536 0.500	0.430 0.429 0.495 0.491 0.440	2.05 2.22 2.65 2.48 2.26					4.9 4.9 4.4 4.5 4.1	12.80 12.60 12.80 12.80 12.40	<0.01 0.01 <0.01 <0.01 0.01	9.11 9.47 9.60 10.35 9.50	0.018 0.022 0.025 0.023 0.023
X927556 X927557 X927558 X927559 X927560		2.44 1.98 2.24 2.47 0.07			0.450 0.413 0.438 0.335 0.191	0.450 0.463 0.415 0.380 0.532	2.23 2.68 1.925 1.915 0.603					4.6 4.6 4.1 3.7 3.5	12.50 12.50 12.20 12.55 10.60	0.01 0.01 <0.01 0.01 0.01 0.01	9.53 9.32 9.37 9.99 5.99	0.023 0.023 0.025 0.023 0.035
X927561 X927562 X927563 X927564 X927565		2.01 2.17 1.00 2.50 2.42			0.389 0.405 0.350 0.383 0.349	0.369 0.359 0.326 0.340 0.325	1.895 1.860 1.725 1.715 1.510					3.1 2.8 3.2 3.7 2.5	12.85 12.60 13.15 12.60 13.10	0.01 <0.01 0.01 0.01 <0.01 <0.01	9.99 10.55 11.20 10.60 11.50	0.018 0.018 0.017 0.014 0.013
X927566 X927567 X927568 X927569 X927570		1.42 2.23 2.20 2.51 2.04			0.367 0.435 0.275 0.401 0.363	0.354 0.361 0.341 0.320 0.299	1.630 1.460 1.340 1.345 1.270					3.6 3.9 4.3 4.2 4.0	13.15 12.95 12.80 12.95 12.80	0.01 <0.01 <0.01 <0.01 <0.01 0.01	10.75 10.65 11.15 9.91 9.93	0.016 0.018 0.018 0.020 0.020
X927571 X927572 X927573 X927574 X927575		2.58 2.51 2.67 2.58 3.02			0.328 0.376 1.920 0.392 0.395	0.280 0.324 0.319 0.322 0.293	1.145 1.220 1.170 1.165 1.165					3.2 4.2 6.2 4.4 4.3	13.20 12.25 12.95 13.05 13.35	0.01 <0.01 0.01 <0.01 0.01	10.85 10.05 10.95 10.55 10.55	0.020 0.023 0.019 0.017 0.014
X927576 X927577 X927578 X927579 X927580		2.25 1.30 1.80 2.58 0.55	79.4	87.2 92.7	0.091 0.015 0.079 0.304 0.003	0.319 0.322 0.275 0.241 <0.005	1.405 1.345 1.050 0.800 0.017					2.1 0.8 1.6 4.8 <0.2	15.15 17.10 14.80 13.65 14.90	0.16 0.14 0.20 0.02 <0.01	3.43 1.62 3.23 9.12 6.07	0.005 0.004 0.011 0.014 0.003

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580
	10/0//17700

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002	
X927541		0.04	1.075	9.67	13.85	0.5	7.94	0.16	0.486	<0.01	2.61	47.9	0.46	0.006	
X927542		0.04	1.005	9.69	13.85	0.4	7.77	0.15	0.531	<0.01	2.75	47.5	0.45	0.006	
X927543		0.04	0.894	9.46	13.50	0.4	7.89	0.16	0.429	<0.01	2.38	47.9	0.47	0.005	
X927544		0.04	1.135	10.05	14.35	0.4	7.90	0.16	0.647	<0.01	3.18	47.1	0.45	0.005	
X927545		0.04	1.495	10.50	15.00	0.4	7.89	0.15	0.267	<0.01	2.29	47.7	0.46	0.005	
X927546		0.04	1.280	9.53	13.65	0.4	8.09	0.16	0.485	<0.01	2.73	46.6	0.46	0.005	
X927547		0.04	0.919	8.65	12.35	0.4	8.19	0.16	0.381	<0.01	1.83	47.5	0.48	0.006	
X927548		0.04	0.971	9.05	12.95	0.4	8.29	0.17	0.411	<0.01	2.09	47.1	0.48	0.012	
X927549		0.04	1.250	9.72	13.90	0.4	8.29	0.16	0.470	<0.01	2.91	46.4	0.45	0.006	
X927550		0.04	1.210	10.25	14.65	0.5	8.44	0.16	0.641	<0.01	3.32	46.4	0.43	0.006	
X927551		0.04	1.660	10.90	15.60	0.3	8.06	0.16	0.535	<0.01	3.64	44.7	0.40	0.011	
X927552		0.05	1.490	10.70	15.30	0.4	8.44	0.16	0.745	<0.01	3.99	45.4	0.43	0.008	
X927553		0.05	1.440	10.90	15.60	0.3	8.37	0.15	0.839	<0.01	4.31	46.0	0.42	0.006	
X927554		0.05	1.475	11.00	15.75	0.3	8.41	0.15	0.738	<0.01	4.36	45.8	0.41	0.005	
X927555		0.05	1.290	10.65	15.25	0.3	8.27	0.15	0.728	<0.01	4.14	44.7	0.40	0.005	
X927556		0.05	1.495	10.80	15.45	0.3	8.46	0.15	0.666	<0.01	3.99	45.1	0.40	0.005	
X927557		0.05	1.595	11.25	16.10	0.3	8.26	0.15	0.747	<0.01	4.28	44.9	0.41	0.007	
X927558		0.05	1.240	10.85	15.50	0.3	8.06	0.15	0.741	<0.01	4.07	43.9	0.40	0.005	
X927559		0.05	1.185	10.65	15.25	0.3	8.14	0.15	0.682	<0.01	3.64	45.1	0.42	0.005	
X927560		0.03	0.934	18.30	26.2	0.6	5.84	0.14	1.220	<0.01	7.05	40.9	0.63	0.013	
X927561		0.05	1.080	9.48	13.55	0.3	8.26	0.15	0.521	<0.01	2.98	46.2	0.42	0.005	
X927562		0.06	0.948	9.71	13.90	0.3	8.89	0.16	0.586	<0.01	3.01	46.6	0.42	0.005	
X927563		0.06	1.070	9.72	13.90	0.3	8.57	0.16	0.514	<0.01	3.02	47.7	0.42	0.006	
X927564		0.05	1.160	9.20	13.15	0.3	8.47	0.16	0.435	<0.01	2.58	45.8	0.43	0.007	
X927565		0.06	0.885	9.04	12.90	0.3	8.89	0.16	0.438	<0.01	2.38	48.1	0.44	0.005	
X927566		0.06	1.140	9.25	13.20	0.2	8.26	0.15	0.487	<0.01	2.83	46.4	0.45	0.008	
X927567		0.06	1.180	9.53	13.65	0.2	8.11	0.15	0.499	<0.01	3.28	45.6	0.43	0.009	
X927568		0.05	1.350	10.70	15.30	0.1	8.21	0.17	0.520	<0.01	3.50	45.6	0.42	0.010	
X927569		0.06	1.260	10.55	15.10	0.2	8.16	0.16	0.582	<0.01	3.51	46.2	0.44	0.008	
X927570		0.06	1.140	10.15	14.50	0.2	8.08	0.15	0.565	<0.01	3.44	45.6	0.44	0.009	
X927571		0.06	0.967	10.25	14.65	0.3	8.37	0.15	0.567	<0.01	3.36	47.1	0.43	0.007	
X927572		0.05	1.145	10.60	15.15	0.2	7.99	0.14	0.655	<0.01	3.92	43.9	0.42	0.007	
X927573		0.05	1.545	9.52	13.60	0.3	8.06	0.14	0.491	<0.01	3.51	45.4	0.41	0.011	
X927574		0.06	1.200	9.62	13.75	0.4	8.39	0.13	0.549	<0.01	3.19	48.1	0.42	0.008	
X927575		0.06	1.225	8.69	12.40	0.3	8.69	0.13	0.405	<0.01	2.59	49.8	0.43	0.010	
X927576		0.06	0.323	7.75	11.10	0.1	22.8	0.16	0.331	0.05	0.59	37.9	0.49	0.017	
X927577		0.07	0.067	8.02	11.45	<0.1	26.0	0.17	0.264	0.01	0.11	34.0	0.53	0.015	
X927578		0.06	0.387	7.12	10.20	0.1	21.6	0.15	0.337	0.01	0.59	38.5	0.49	0.018	
X927579		0.05	1.150	7.51	10.75	0.5	9.40	0.11	0.380	0.01	2.49	48.1	0.45	0.012	
X927580		< 0.01	0.013	5.59	7.99	1.6	3.62	0.13	0.008	<0.01	0.11	59.5	0.63	0.007	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 4 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 Al2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927581 X927582 X927583 X927583		2.73 2.24 2.55 1.89			0.269 0.213 0.203 0.197	0.187 0.137 0.149 0.140	0.671 0.481 0.485 0.461					2.7 1.8 1.9 1.9	13.25 13.50 13.30 13.65	0.01 <0.01 0.01 0.01	11.35 11.55 11.30 11.85	0.009 0.008 0.010 0.010
X927585 X927586		2.99 2.14			0.235 0.265	0.465	3.04 3.01					2.3 2.6	13.85 13.50	<0.01 0.01	11.25 10.65	0.008
X927587 X927588 X927589 X927590		2.35 3.41 2.07 2.52			0.165 0.136 0.201 0.261	0.303 0.211 0.257 0.280	2.03 1.495 1.680 1.840					1.4 1.1 1.4 1.8	14.00 14.35 13.85 14.30	<0.01 <0.01 <0.01 <0.01	11.15 11.60 11.10 11.60	0.010 0.007 0.007 0.009
X927591 X927592 X927593 X927594 X927595		2.04 2.30 1.88 1.75 1.89	83.3		0.331 0.319 0.393 0.349 0.450	0.351 0.344 0.360 0.329 0.393	2.22 2.09 2.16 1.940 2.26					2.4 2.4 2.5 2.4 3.1	13.60 13.55 13.55 13.50 13.50	<0.01 0.01 <0.01 0.01 <0.01	10.80 10.95 10.25 10.60 10.75	0.009 0.011 0.010 0.011 0.012
X927596 X927597 X927598 X927599		1.80 1.89 1.51 1.96			0.359 0.369 0.336 0.523	0.372 0.362 0.364 0.403	2.22 2.24 1.980 2.31					3.1 3.2 3.3 3.3	13.75 13.45 13.30 13.65	<0.01 <0.01 <0.01 0.01	10.55 10.25 11.20 11.05	0.012 0.011 0.011 0.013
X927600 X927601 X927602 X927603 X927604		0.07 1.88 2.36 1.82 1.98			0.182 0.420 0.346 0.377 0.249	0.541 0.365 0.349 0.404 0.244	0.607 2.21 1.970 2.28 1.310					3.3 3.0 2.3 2.9 1.6	10.20 13.35 13.50 13.25 13.90	<0.01 <0.01 <0.01 <0.01 <0.01	5.90 10.85 10.85 11.05 11.20	0.034 0.014 0.013 0.013 0.007
X927605 X927606 X927607 X927608 X927608 X927609		1.87 2.25 2.02 2.01 2.03			0.336 0.291 0.188 0.158 0.077	0.284 0.288 0.158 0.129 0.064	1.530 1.570 0.759 0.719 0.323					2.2 1.9 1.3 0.9 0.6	13.95 13.90 13.75 13.45 13.80	<0.01 <0.01 0.01 <0.01 <0.01	11.05 10.75 11.30 11.20 12.00	0.009 0.011 0.006 0.007 0.004 0.004
X927610 X927611 X927612 X927613 X927614 X927615		2.14 2.44 2.18 1.81 2.53 2.13			0.009 0.137 0.136 0.079 0.090 0.136	0.026 0.118 0.102 0.064 0.068 0.102	0.100 0.466 0.457 0.277 0.312 0.502					<0.2 1.1 1.0 0.5 0.6 0.9	13.90 13.60 13.75 13.90 13.80 13.55	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	12.00 11.45 11.40 11.20 11.45 11.00	0.004 0.005 0.007 0.006 0.006 0.008
X927616 X927617 X927618 X927619 X927620		1.69 2.17 2.45 1.85 0.58	87.4	89.9 93.4	0.027 0.055 0.128 0.148 <0.001	0.038 0.067 0.158 0.185 <0.005	0.211 0.449 1.030 1.140 0.006					<0.2 0.4 0.6 1.0 <0.2	14.65 14.95 14.60 14.30 14.75	<0.01 <0.01 <0.01 <0.01 0.01	12.20 12.45 12.05 11.30 6.34	0.005 0.007 0.008 0.007 0.004

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 4 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

	Method Analyte	ME-ICP81 Cr	ME-ICP81 Cu	ME-ICP81 Fe	ME-ICP81 Fe2O3	ME-ICP81 K	ME-ICP81 MgO	ME-ICP81 MnO	ME-ICP81 Ni	ME-ICP81 Pb	ME-ICP81 S	ME-ICP81 SiO2	ME-ICP81 TiO2	ME-ICP81 Zn	
Sample Description	Units LOD	% 0.01	% 0.002	% 0.05	% 0.05	% 0.1	% 0.01	% 0.01	% 0.002	% 0.01	% 0.01	% 0.2	% 0.01	% 0.002	
X927581		0.05	0.724	7.94	11.35	0.2	8.61	0.13	0.255	<0.01	1.67	47.5	0.43	0.006	
X927582		0.06	0.536	7.67	10.95	0.3	8.76	0.14	0.210	<0.01	1.28	49.0	0.43	0.004	
X927583		0.06	0.572	7.71	11.00	0.3	8.86	0.14	0.217	<0.01	1.33	48.3	0.42	0.005	
X927584		0.06	0.589	7.74	11.05	0.3	8.94	0.15	0.227	<0.01	1.43	49.4	0.42	0.006	
X927585		0.04	0.659	7.98	11.40	0.3	7.87	0.15	0.251	<0.01	1.31	48.6	0.47	0.005	
X927586		0.04	0.731	8.31	11.90	0.3	7.97	0.15	0.280	<0.01	1.46	48.6	0.48	0.006	
X927587		0.04	0.440	7.90	11.30	0.3	8.36	0.16	0.228	<0.01	1.04	50.7	0.49	0.006	
X927588		0.04	0.345	7.69	11.00	0.4	8.25	0.16	0.187	<0.01	0.83	51.1	0.50	0.005	
X927589		0.04	0.410	7.63	10.90	0.3	7.88	0.15	0.166	<0.01	0.86	49.2	0.50	0.004	
X927590		0.04	0.573	8.20	11.70	0.3	8.11	0.16	0.219	<0.01	1.28	50.1	0.48	0.005	
X927591		0.04	0.659	8.45	12.10	0.3	7.90	0.16	0.211	<0.01	1.31	48.6	0.46	0.005	
X927592		0.04	0.711	8.24	11.80	0.4	7.89	0.15	0.289	<0.01	1.64	47.9	0.46	0.005	
X927593		0.04	0.744	8.68	12.40	0.4	7.90	0.15	0.267	<0.01	1.55	47.9	0.45	0.004	
X927594		0.04	0.719	8.39	12.00	0.4	8.14	0.15	0.277	<0.01	1.54	48.1	0.45	0.006	
X927595		0.04	0.931	8.82	12.60	0.3	8.00	0.15	0.270	<0.01	1.87	47.9	0.44	0.006	
X927596		0.04	0.941	8.68	12.40	0.4	8.01	0.15	0.330	<0.01	2.12	48.1	0.43	0.007	
X927597		0.04	0.832	8.49	12.15	0.4	7.98	0.14	0.314	<0.01	1.90	47.7	0.43	0.006	
X927598		0.04	0.918	8.58	12.25	0.1	7.85	0.14	0.332	<0.01	2.03	47.1	0.43	0.006	
X927599		0.05	1.065	8.67	12.40	0.2	7.85	0.14	0.344	<0.01	2.15	47.9	0.44	0.006	
X927600		0.03	0.873	18.00	25.7	0.6	5.65	0.14	1.165	<0.01	6.82	40.2	0.60	0.013	
X927601		0.05	0.959	8.45	12.10	0.3	7.94	0.14	0.390	<0.01	2.18	47.5	0.43	0.007	
X927602		0.05	0.764	8.20	11.70	0.3	8.04	0.15	0.304	<0.01	1.74	48.1	0.45	0.006	
X927603		0.05	0.853	8.45	12.10	0.3	8.17	0.14	0.394	< 0.01	2.17	47.5	0.44	0.006	
X927604		0.05	0.478	7.56	10.80	0.4	8.25	0.15	0.200	<0.01	1.02	49.8	0.49	0.005	
X927605		0.05	0.594	8.17	11.70	0.2	8.01	0.15	0.254	<0.01	1.43	49.2	0.46	0.006	
X927606		0.05	0.573	8.09	11.55	0.3	8.10	0.15	0.260	<0.01	1.41	49.4	0.46	0.007	
X927607		0.05	0.349	7.33	10.50	0.4	8.58	0.15	0.147	<0.01	0.73	49.8	0.48	0.005	
X927608		0.06	0.250	7.31	10.45	0.2	9.01	0.16	0.111	< 0.01	0.50	50.5	0.47	0.005	
X927609		0.06	0.163	6.78	9.69	0.3	8.97	0.16	0.067	< 0.01	0.34	51.3	0.50	0.005	
X927610		0.05	0.030	6.49	9.28	0.3	9.03	0.16	0.025	<0.01	0.06	51.6	0.51	0.003	
X927611		0.06	0.294	7.25	10.35	0.3	8.67	0.15	0.121	<0.01	0.70	50.1	0.48	0.005	
X927612		0.05	0.305	7.41	10.60	0.4	8.83	0.16	0.132	<0.01	0.71	50.3	0.47	0.006	
X927613		0.06	0.186	7.07	10.10	0.3	9.03	0.16	0.092	<0.01	0.39	51.1	0.50	0.004	
X927614		0.06	0.203	6.80	9.72	0.4	8.90	0.16	0.093	<0.01	0.46	49.8	0.49	0.006	
X927615		0.06	0.300	7.05	10.10	0.4	8.88	0.15	0.127	<0.01	0.65	49.4	0.48	0.006	
X927616		0.04	0.052	6.70	9.57	0.3	8.36	0.16	0.029	<0.01	0.12	51.3	0.53	0.005	
X927617		0.04	0.109	7.03	10.05	0.3	8.49	0.16	0.054	<0.01	0.24	52.2	0.54	0.006	
X927618		0.04	0.248	7.29	10.40	0.3	8.37	0.16	0.120	<0.01	0.60	50.7	0.51	0.006	
X927619		0.04	0.276	7.16	10.25	0.3	8.24	0.16	0.132	<0.01	0.63	49.8	0.51	0.006	
X927620		<0.01	0.002	5.39	7.71	1.4	3.18	0.13	<0.002	<0.01	0.05	58.4	0.65	0.010	
1															

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 5 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 Al2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927621 X927622 X927623 X927624 X927625		1.97 1.90 1.83 0.80 1.54		89.0 90.7	0.231 0.221 0.156 0.142 0.148	0.226 0.216 0.158 0.144 0.165	1.425 1.245 0.912 0.811 0.998					1.5 1.5 1.2 0.9 0.9	13.95 14.15 13.80 14.05 14.20	<0.01 0.01 <0.01 0.01 0.01	11.15 10.75 10.85 11.05 12.05	0.009 0.007 0.006 0.005 0.004
X927626 X927627 X927628 X927629 X927630		1.43 1.91 2.10 1.57 1.52			0.287 0.164 0.232 0.179 0.109	0.260 0.182 0.226 0.154 0.093	1.545 1.035 1.345 0.824 0.455					1.7 1.1 1.5 1.1 0.8	14.05 14.10 13.85 14.20 14.10	<0.01 0.01 <0.01 0.01 <0.01	11.95 11.55 11.75 11.70 12.35	0.007 0.005 0.005 0.006 0.004
X927631 X927632 X927633 X927634 X927635		2.24 2.16 1.44 1.44 2.63			0.050 0.023 0.003 0.001 0.019	0.052 0.023 0.010 0.009 0.060	0.228 0.112 0.024 0.019 0.231					0.4 <0.2 <0.2 <0.2 <0.2 <0.2	14.35 14.40 14.45 14.50 14.10	<0.01 <0.01 0.01 <0.01 0.01	12.45 12.30 12.65 12.40 11.65	0.004 <0.002 0.003 0.003 <0.002
X927636 X927637 X927638 X927639 X927640		2.88 2.62 3.15 3.03 0.07			0.036 0.047 0.042 0.027 0.195	0.066 0.085 0.061 0.052 0.537	0.416 0.562 0.430 0.300 0.606					<0.2 0.2 <0.2 <0.2 3.7	14.05 13.75 13.65 14.30 10.25	0.01 0.01 <0.01 <0.01 0.01	11.75 11.65 11.85 11.85 5.57	0.004 0.004 0.003 0.003 0.034
X927641 X927642 X927643 X927644 X927644 X927645		2.59 3.36 2.78 2.55 2.27			0.028 0.002 0.113 0.017 0.129	0.054 0.010 0.150 0.037 0.199	0.334 0.020 1.115 0.207 1.310					<0.2 <0.2 0.7 <0.2 1.1	13.70 13.95 14.00 14.00 14.35	0.01 0.01 0.01 0.01 0.01	11.15 11.45 11.65 11.35 11.35	0.005 0.005 0.006 0.003 0.008
X927646 X927647 X927648 X927649 X927650		1.86 1.79 1.84 2.01 2.38			0.184 0.187 0.111 0.064 0.127	0.260 0.284 0.159 0.122 0.169	1.770 1.900 1.065 0.648 1.335					1.4 1.7 0.8 0.5 1.2	14.25 13.80 14.15 13.95 14.05	0.01 0.01 <0.01 <0.01 0.01	11.10 10.50 11.10 10.75 11.05	0.007 0.008 0.006 0.007 0.008
X927651 X927652 X927653 X927654 X927655		1.78 2.21 2.06 1.54 2.01			0.140 0.204 0.225 0.188 0.349	0.181 0.257 0.301 0.231 0.333	1.040 1.655 1.820 1.535 2.05					0.8 1.6 1.9 2.0 2.4	14.30 14.05 14.20 14.15 13.70	0.01 0.01 0.01 0.01 0.01	11.10 10.90 10.60 10.25 10.85	0.007 0.006 0.009 0.009 0.012
X927656 X927657 X927658 X927659 X927660		2.20 2.41 1.99 1.95 0.55	86.1	95.0 95.1	0.345 0.406 0.373 0.390 0.003	0.342 0.388 0.338 0.357 <0.005	1.990 2.10 1.870 1.805 0.015					2.5 3.1 2.8 3.1 <0.2	13.75 13.75 13.60 13.10 14.70	0.01 0.01 0.01 0.01 0.01	10.80 10.90 10.65 10.45 6.16	0.011 0.013 0.013 0.014 0.003

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 5 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580
CENTIFICATE OF ANALISIS	3020223300

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002	
X927621		0.04	0.417	7.33	10.50	0.2	8.27	0.15	0.165	<0.01	0.84	48.8	0.48	0.007	
X927622		0.04	0.396	7.54	10.80	0.2	8.56	0.15	0.142	<0.01	0.73	49.4	0.48	0.006	
X927623		0.04	0.324	7.07	10.10	0.3	8.49	0.15	0.131	<0.01	0.73	48.8	0.46	0.005	
X927624		0.04	0.279	7.03	10.05	0.4	8.69	0.16	0.098	<0.01	0.54	49.8	0.47	0.006	
X927625		0.05	0.292	7.16	10.25	0.4	8.54	0.15	0.126	<0.01	0.67	50.9	0.46	0.005	
X927626		0.05	0.478	7.74	11.05	0.3	8.36	0.15	0.190	<0.01	1.01	49.8	0.45	0.005	
X927627		0.05	0.303	7.29	10.40	0.4	8.46	0.16	0.126	<0.01	0.63	50.3	0.45	0.005	
X927628		0.05	0.408	7.47	10.70	0.3	8.36	0.15	0.181	<0.01	0.94	49.4	0.45	0.006	
X927629		0.05	0.332	7.45	10.65	0.3	8.35	0.15	0.129	<0.01	0.73	50.5	0.47	0.005	
X927630		0.05	0.214	6.63	9.48	0.4	8.29	0.15	0.086	<0.01	0.43	50.3	0.47	0.005	
X927631		0.05	0.112	6.66	9.52	0.3	8.55	0.16	0.046	<0.01	0.23	51.3	0.49	0.005	
X927632		0.06	0.049	6.50	9.29	0.3	8.54	0.16	0.030	<0.01	0.12	51.6	0.49	0.004	
X927633		0.06	0.014	6.28	8.98	0.4	8.60	0.16	0.015	<0.01	0.03	52.0	0.50	0.005	
X927634		0.06	0.012	6.43	9.19	0.4	8.62	0.16	0.019	<0.01	0.05	52.2	0.50	0.004	
X927635		0.04	0.047	7.05	10.10	0.6	8.27	0.17	0.020	<0.01	0.09	52.4	0.56	0.006	
X927636		0.04	0.072	7.04	10.05	0.5	8.24	0.17	0.026	<0.01	0.13	52.0	0.57	0.006	
X927637		0.04	0.098	7.14	10.20	0.5	8.71	0.17	0.034	<0.01	0.15	51.8	0.54	0.006	
X927638		0.04	0.077	7.09	10.15	0.6	8.77	0.17	0.031	<0.01	0.14	51.1	0.53	0.006	
X927639		0.04	0.059	7.04	10.05	0.6	8.55	0.17	0.025	<0.01	0.09	52.4	0.56	0.006	
X927640		0.03	0.870	18.05	25.8	0.6	5.65	0.14	1.160	<0.01	6.77	39.4	0.59	0.013	
X927641		0.04	0.064	6.86	9.81	0.5	8.38	0.17	0.028	<0.01	0.11	49.6	0.53	0.007	
X927642		0.04	0.010	6.75	9.65	0.4	8.36	0.17	0.014	<0.01	0.03	49.8	0.52	0.005	
X927643		0.04	0.215	7.53	10.75	0.3	8.20	0.18	0.075	<0.01	0.45	49.6	0.55	0.007	
X927644		0.04	0.041	6.86	9.81	0.3	8.31	0.16	0.021	<0.01	0.06	50.3	0.53	0.005	
X927645		0.04	0.284	7.62	10.90	0.4	8.10	0.16	0.132	<0.01	0.61	50.3	0.53	0.007	
X927646		0.04	0.369	7.95	11.35	0.5	8.20	0.16	0.158	<0.01	0.68	49.8	0.53	0.009	
X927647		0.04	0.398	7.97	11.40	0.4	7.95	0.16	0.156	<0.01	0.74	47.9	0.51	0.006	
X927648		0.04	0.223	7.37	10.55	0.4	8.15	0.16	0.108	<0.01	0.47	49.6	0.51	0.006	
X927649		0.04	0.164	7.23	10.35	0.4	8.24	0.16	0.082	<0.01	0.32	49.6	0.50	0.006	
X927650		0.04	0.317	7.53	10.75	0.3	8.17	0.15	0.150	<0.01	0.67	49.4	0.49	0.006	
X927651		0.04	0.252	7.35	10.50	0.3	8.14	0.15	0.117	<0.01	0.49	50.1	0.51	0.005	
X927652		0.04	0.397	7.71	11.00	0.4	8.04	0.15	0.158	<0.01	0.79	49.2	0.49	0.006	
X927653		0.04	0.468	7.87	11.25	0.4	8.18	0.14	0.181	<0.01	0.91	49.4	0.48	0.005	
X927654		0.04	0.470	7.24	10.35	0.5	8.30	0.13	0.200	<0.01	1.05	49.2	0.50	0.009	
X927655		0.04	0.676	7.98	11.40	0.3	7.86	0.13	0.312	<0.01	1.67	47.1	0.45	0.006	
X927656		0.04	0.752	8.16	11.65	0.2	7.82	0.13	0.305	<0.01	1.72	47.5	0.43	0.005	
X927657		0.04	0.918	8.70	12.45	0.2	7.63	0.13	0.389	<0.01	2.15	46.8	0.44	0.005	
X927658		0.04	0.807	8.56	12.25	0.2	7.67	0.13	0.378	<0.01	2.02	47.9	0.44	0.006	
X927659		0.04	0.935	8.89	12.70	0.2	7.80	0.14	0.422	<0.01	2.37	45.4	0.42	0.007	
X927660		<0.01	0.007	5.47	7.82	1.5	3.19	0.13	0.010	<0.01	0.07	58.4	0.61	0.008	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 6 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 AI2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927661 X927662 X927663 X927664 X927665		2.64 2.47 2.39 2.56 2.64	76.7	89.6	0.426 0.442 0.425 0.400 0.450	0.357 0.341 0.373 0.346 0.372	1.835 1.745 1.920 1.715 1.885					3.4 3.7 3.5 3.2 3.5	13.20 13.20 13.05 12.85 12.95	0.01 <0.01 0.01 0.01 0.01	10.25 10.45 10.00 10.15 9.58	0.017 0.018 0.018 0.016 0.019
X927666 X927667 X927668 X927669 X927669 X927670		1.87 1.76 1.77 2.34 1.71			0.340 0.477 0.464 0.440 0.463	0.324 0.469 0.448 0.472 0.457	1.520 2.48 2.18 2.16 2.32					3.0 4.2 4.1 4.5 4.7	12.75 12.40 12.50 12.35 12.50	0.01 0.01 <0.01 <0.01 0.01	9.68 9.15 9.60 9.61 9.39	0.020 0.024 0.027 0.024 0.023
X927671 X927672 X927673 X927674 X927675		1.96 1.55 2.30 3.01 2.55			0.503 0.419 0.416 0.413 0.353	0.444 0.432 0.410 0.403 0.332	2.33 2.26 2.12 2.09 1.685					4.0 3.4 3.2 2.8 2.1	12.50 12.65 12.90 13.00 13.40	<0.01 0.01 0.01 0.01 0.01	9.72 9.86 9.93 10.25 10.70	0.025 0.023 0.020 0.015 0.009
X927676 X927677 X927678 X927679 X927679 X927680		2.09 2.47 2.15 1.98 0.07			0.313 0.403 0.372 0.398 0.174	0.269 0.322 0.340 0.411 0.545	1.555 1.830 1.855 2.05 0.595					1.8 2.4 2.7 3.3 3.8	13.25 13.25 12.95 13.55 10.50	<0.01 <0.01 <0.01 <0.01 0.01	10.80 10.85 10.40 10.65 5.75	0.009 0.010 0.012 0.014 0.033
X927681 X927682 X927683 X927684 X927684 X927685		2.35 2.24 1.92 1.94 2.04		92.2 90.3	0.371 0.388 0.379 0.311 0.280	0.406 0.372 0.355 0.344 0.348	2.08 2.07 2.10 2.08 2.13					3.1 3.3 3.0 1.9 2.3	13.60 13.70 13.95 14.00 14.20	<0.01 0.01 <0.01 <0.01 0.01	10.40 11.50 11.55 11.00 11.05	0.012 0.009 0.006 0.007 0.007
X927686 X927687 X927688 X927689 X927689 X927690		1.57 1.70 1.79 2.07 2.05			0.346 0.343 0.285 0.223 0.262	0.391 0.366 0.303 0.254 0.249	2.32 2.26 1.870 1.505 1.480					2.4 2.3 2.3 1.8 1.8	14.05 13.90 14.20 14.20 14.20 14.20	0.01 <0.01 <0.01 <0.01 <0.01 0.01	12.00 11.25 11.05 11.65 11.90	0.010 0.008 0.008 0.008 0.008 0.009
X927691 X927692 X927693 X927694 X927695		1.57 2.18 1.58 1.97 2.27			0.124 0.209 0.232 0.320 0.192	0.126 0.180 0.238 0.318 0.711	0.705 0.998 1.375 2.07 6.63					0.9 1.3 1.5 1.9 2.3	14.40 13.95 14.10 12.95 12.85	<0.01 <0.01 <0.01 <0.01 0.01	11.20 11.05 11.20 8.65 8.69	0.004 0.005 0.004 0.007 0.006
X927696 X927697 X927698 X927699 X927700		2.20 1.81 2.13 3.02 0.53	77.3	91.9 88.6	0.009 0.049 0.064 0.002 0.002	0.017 <0.005 0.016 <0.005 <0.005	0.072 0.505 0.228 0.031 0.004					<0.2 0.6 0.5 <0.2 <0.2	13.95 14.50 14.20 14.35 14.65	<0.01 <0.01 0.01 <0.01 <0.01	7.71 1.39 0.71 0.78 6.42	0.002 <0.002 <0.002 <0.002 0.002

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 6 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002	
X927661		0.04	1.050	9.45	13.50	0.2	7.84	0.14	0.477	<0.01	2.70	45.8	0.40	0.005	
X927662		0.04	1.150	9.63	13.75	0.2	7.82	0.14	0.479	<0.01	2.73	45.8	0.42	0.005	
X927663		0.04	1.180	9.91	14.15	0.4	7.93	0.15	0.496	<0.01	3.07	45.6	0.41	0.005	
X927664		0.04	1.035	9.86	14.10	0.3	8.19	0.15	0.490	<0.01	2.83	45.6	0.41	0.005	
X927665		0.04	1.085	10.05	14.35	0.3	8.24	0.16	0.467	<0.01	2.67	45.8	0.41	0.005	
X927666		0.05	0.942	10.05	14.35	0.3	8.43	0.15	0.541	<0.01	3.01	45.8	0.41	0.005	
X927667		0.04	1.170	10.45	14.95	0.3	8.02	0.15	0.673	<0.01	3.99	44.1	0.40	0.004	
X927668		0.05	1.170	10.90	15.60	0.3	8.25	0.15	0.725	<0.01	4.13	44.9	0.40	0.004	
X927669		0.05	1.355	10.80	15.45	0.3	8.21	0.14	0.711	<0.01	4.22	44.5	0.40	0.005	
X927670		0.05	1.415	10.65	15.25	0.3	8.53	0.15	0.668	<0.01	3.81	45.4	0.38	0.005	
X927671		0.05	1.355	11.00	15.75	0.3	8.30	0.15	0.710	<0.01	3.98	44.9	0.39	0.005	
X927672		0.05	1.135	10.55	15.10	0.3	8.41	0.15	0.708	<0.01	3.70	45.4	0.40	0.005	
X927673		0.05	1.080	9.60	13.75	0.4	8.40	0.16	0.531	<0.01	2.97	46.6	0.39	0.006	
X927674		0.05	0.893	8.70	12.45	0.4	8.34	0.15	0.400	<0.01	2.17	46.8	0.43	0.005	
X927675		0.05	0.690	8.25	11.80	0.4	8.48	0.16	0.288	<0.01	1.58	49.6	0.47	0.004	
X927676		0.06	0.636	8.19	11.70	0.4	8.99	0.17	0.212	<0.01	1.27	50.5	0.46	0.008	
X927677		0.05	0.793	8.42	12.05	0.3	8.76	0.16	0.302	<0.01	1.82	50.1	0.46	0.005	
X927678		0.06	0.827	8.57	12.25	0.3	8.67	0.16	0.317	<0.01	1.75	49.0	0.46	0.006	
X927679		0.05	0.996	8.67	12.40	0.3	8.25	0.15	0.361	<0.01	2.21	49.4	0.46	0.006	
X927680		0.03	0.915	18.15	25.9	0.6	5.81	0.15	1.215	<0.01	6.89	41.9	0.62	0.013	
X927681		0.05	0.877	8.61	12.30	0.3	7.95	0.14	0.318	<0.01	1.86	49.0	0.45	0.006	
X927682		0.04	0.958	8.66	12.40	0.1	7.97	0.15	0.353	<0.01	2.05	48.6	0.44	0.006	
X927683		0.05	0.766	8.57	12.25	0.2	8.20	0.15	0.252	<0.01	1.47	50.3	0.45	0.008	
X927684		0.05	0.556	7.96	11.40	0.2	8.06	0.15	0.206	<0.01	1.07	50.3	0.47	0.005	
X927685		0.04	0.661	8.19	11.70	0.2	8.26	0.15	0.239	<0.01	1.34	50.9	0.47	0.005	
X927686		0.04	0.771	8.35	11.95	0.2	8.14	0.15	0.321	<0.01	1.65	50.1	0.44	0.006	
X927687		0.04	0.679	8.13	11.60	0.2	8.10	0.15	0.235	<0.01	1.42	49.8	0.45	0.005	
X927688		0.04	0.552	8.26	11.80	0.3	8.35	0.15	0.170	<0.01	1.01	50.9	0.46	0.006	
X927689		0.04	0.562	7.77	11.10	0.3	8.43	0.15	0.236	<0.01	1.23	50.9	0.46	0.006	
X927690		0.05	0.557	7.73	11.05	0.3	8.55	0.15	0.188	<0.01	1.08	50.9	0.47	0.006	
X927691		0.05	0.257	7.36	10.50	0.3	8.87	0.16	0.102	<0.01	0.46	52.4	0.49	0.005	
X927692		0.04	0.333	7.09	10.15	0.3	8.20	0.15	0.122	<0.01	0.56	49.6	0.49	0.005	
X927693		0.04	0.379	7.32	10.45	0.3	8.26	0.15	0.136	<0.01	0.70	49.8	0.47	0.007	
X927694		0.01	0.513	9.38	13.40	0.4	6.13	0.17	0.167	<0.01	1.07	50.7	0.81	0.008	
X927695		0.02	0.440	8.63	12.35	0.5	6.76	0.17	0.179	<0.01	1.00	49.8	0.66	0.007	
X927696		0.02	0.037	6.95	9.94	0.7	7.34	0.14	0.019	<0.01	0.02	53.1	0.59	0.004	
X927697		0.01	0.193	3.79	5.42	1.2	2.72	0.06	0.050	<0.01	0.19	67.0	0.50	0.002	
X927698		0.01	0.091	3.63	5.19	1.7	2.71	0.04	0.051	<0.01	0.03	68.0	0.48	0.003	
X927699		0.01	0.014	3.62	5.18	1.7	2.91	0.05	0.013	<0.01	<0.01	66.7	0.50	0.003	
X927700		<0.01	0.002	5.33	7.62	1.5	3.12	0.13	<0.002	<0.01	0.03	59.7	0.64	0.007	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 7 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS

	Method Analyte Units	WEI-21 Recvd Wt. kg	CRU-QC Pass2mm %	PUL-QC Pass75um %	PGM-ICP23 Au ppm	PGM-ICP23 Pt ppm	PGM-ICP23 Pd ppm	PGM-ICP27 Au ppm	PGM-ICP27 Pt ppm	PGM-ICP27 Pd ppm	Pd-AA23 Pd ppm	Ag-AA45 Ag ppm	ME-ICP81 Al2O3 %	ME-ICP81 As %	ME-ICP81 CaO %	ME-ICP81 Co %
Sample Description	LOD	0.02	0.01	0.01	0.001	0.005	0.001	0.01	0.01	0.01	0.07	0.2	0.01	0.01	0.05	0.002
X927701		2.67			0.065	0.171	0.830					1.9	13.55	<0.01	9.26	0.006
X927702		4.26			0.022	0.076	0.302					<0.2	14.00	0.01	9.82	0.004
X927703		3.02			0.102	1.580	1.015					0.8	13.95	<0.01	10.10	0.005
X927704		2.94			1.055	>10.0	>10.0	1.08	85.8	35.0		2.8	13.65	0.01	7.63	0.018
X927705		2.74			0.384	1.025	3.47					4.0	14.35	0.01	1.34	<0.002
X927706		3.14			0.069	0.127	0.957					0.9	14.80	0.01	0.98	<0.002
X927707		3.84			0.857	1.090	4.65					3.4	12.75	0.01	8.86	0.010
X927708		3.62			0.284	0.427	2.30					2.6	13.50	<0.01	9.84	0.006
X927709		3.40			1.260	8.14	>10.0	1.32	7.71	26.5		5.2	13.40	<0.01	6.21	0.003
X927710		2.98			0.539	5.33	7.20					2.1	13.70	0.01	6.84	0.004
X927711		2.53			2.79	3.03	8.92					6.1	13.75	<0.01	5.29	0.002
X927712		2.95			0.059	0.074	0.583					1.0	13.95	<0.01	5.53	<0.002
X927713		3.07			0.048	0.009	0.086					0.3	13.35	<0.01	5.43	0.003
X927714		3.51			0.442	0.031	4.54					0.8	14.20	0.01	2.87	0.004
X927715		2.77			0.631	0.411	3.45					2.0	12.90	<0.01	8.79	0.005
X927716		2.89			0.198	0.309	1.270					0.9	13.90	0.01	9.23	0.004
X927717		4.51			1.945	>10.0	>10.0	1.83	24.8	21.8		7.7	13.75	0.01	1.62	<0.002
X927718		5.60			6.19	>10.0	>10.0	7.21	43.2	>100	103.5	31.5	10.30	0.01	3.82	<0.002
X927719		2.77			0.815	1.430	>10.0	0.74	1.19	11.10		3.8	12.05	0.01	7.11	0.002
X927720		0.07			0.174	0.535	0.588					3.5	10.30	0.01	5.86	0.035
X927721		4.66			0.444	0.047	0.610					2.0	13.85	0.01	3.09	0.002
X927722		1.54			0.003	0.008	0.076					<0.2	13.25	0.01	8.73	0.004
X927723		2.17			0.111	0.129	0.753					0.6	12.70	0.01	8.51	0.004
X927724		2.26			0.064	0.015	0.353					0.2	13.05	<0.01	7.01	0.003
X927725		1.75			0.015	0.020	0.177					0.2	14.05	0.01	6.10	0.003
X927726		1.45			0.004	<0.005	0.018					<0.2	13.65	<0.01	8.00	0.002
X927727		1.83			0.003	0.009	0.013					<0.2	13.40	<0.01	6.70	0.002
X927728		1.67			0.001	<0.005	0.015					<0.2	14.35	0.01	1.41	<0.002
X927729		1.91			0.001	<0.005	0.013					<0.2	15.20	<0.01	0.92	0.002
X927730		1.29			0.002	<0.005	0.017					<0.2	15.05	<0.01	1.19	<0.002
X927731		2.49			0.002	<0.005	0.015					<0.2	15.40	<0.01	1.09	<0.002
X927732		2.72			0.124	0.140	0.699					0.5	13.90	0.01	11.30	0.005
X927733		2.59			0.007	0.014	0.021					<0.2	13.95	<0.01	11.20	0.004
X927734		1.99			0.051	0.049	0.214					<0.2	14.05	0.01	11.05	0.002
X927735		1.56			0.050	0.060	0.409					<0.2	14.00	0.01	10.65	0.003
X927736		1.89			0.080	0.161	0.852					<0.2	14.50	<0.01	5.96	0.002
X927737		1.67			0.037	0.080	0.465					0.2	14.10	0.01	8.44	0.006
X927738		2.66			0.408	0.894	5.06					6.9	12.00	0.01	4.83	0.023
X927739		2.16		92.9	0.862	0.657	2.87					3.1	9.74	0.01	5.01	0.030
X927740		0.48	78.4	90.3	0.003	0.006	0.052					<0.2	14.65	<0.01	6.67	0.002

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

Phone: +1 604 984 0221 Fax: +1 604 984 0218

SD20225580

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 7 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580
	JDLULLJJUU

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002	
X927701		0.01	0.500	8.05	11.50	0.5	7.45	0.17	0.113	<0.01	0.77	51.1	0.61	0.005	
X927702		0.02	0.069	7.28	10.40	0.7	7.85	0.17	0.032	<0.01	0.05	52.2	0.60	0.005	
X927703		0.02	0.153	7.40	10.60	0.7	7.82	0.18	0.055	<0.01	0.16	52.2	0.60	0.005	
X927704		0.02	0.589	9.14	13.05	0.3	6.90	0.15	0.311	<0.01	1.55	50.3	0.57	0.005	
X927705		0.01	0.437	4.59	6.56	0.6	2.46	0.05	0.058	<0.01	0.21	66.5	0.53	0.003	
X927706		0.01	0.117	4.00	5.72	0.7	2.69	0.05	0.047	<0.01	0.03	67.2	0.52	0.003	
X927707		0.01	1.055	10.40	14.85	0.4	6.47	0.17	0.311	<0.01	2.44	49.2	0.59	0.007	
X927708		0.03	0.483	8.53	12.20	0.6	7.52	0.18	0.197	0.01	0.90	50.7	0.60	0.008	
X927709		0.01	0.772	6.56	9.38	0.3	4.42	0.10	0.138	<0.01	1.08	57.3	0.54	0.005	
X927710		0.01	0.373	7.74	11.05	0.3	4.80	0.13	0.042	<0.01	0.39	57.1	0.66	0.003	
X927711		0.01	0.197	6.21	8.88	0.2	3.42	0.09	0.028	<0.01	0.11	59.5	0.73	<0.002	
X927712		0.01	0.206	6.62	9.46	0.3	4.23	0.13	0.032	<0.01	0.08	57.8	0.62	<0.002	
X927713		0.01	0.107	7.91	11.30	0.4	3.87	0.13	0.026	<0.01	0.08	57.3	0.99	<0.002	
X927714		0.01	0.116	7.06	10.10	0.7	4.31	0.11	0.037	<0.01	0.14	58.8	0.76	0.002	
X927715		0.01	0.399	9.57	13.70	0.5	7.15	0.17	0.159	<0.01	1.45	47.1	0.59	0.002	
X927716		0.02	0.144	7.71	11.00	1.0	7.80	0.17	0.033	<0.01	0.19	51.6	0.60	<0.002	
X927717		0.01	1.070	4.89	6.99	0.2	2.39	0.04	0.135	<0.01	1.38	62.5	0.49	<0.002	
X927718		0.01	0.975	11.20	16.00	0.3	2.68	0.06	0.108	<0.01	2.21	52.8	0.60	<0.002	
X927719		0.01	0.236	11.20	16.00	0.2	4.56	0.14	0.019	<0.01	0.18	50.7	0.89	<0.002	
X927720		0.03	0.901	18.30	26.2	0.6	5.72	0.14	1.165	<0.01	6.91	40.2	0.61	0.010	
X927721		0.02	0.636	7.45	10.65	0.3	3.72	0.10	0.045	<0.01	0.40	57.5	0.88	<0.002	
X927722		<0.01	0.016	9.51	13.60	0.4	5.27	0.20	0.007	<0.01	0.06	52.8	0.95	0.003	
X927723		<0.01	0.154	10.40	14.85	0.3	4.25	0.19	0.034	<0.01	0.27	52.8	1.14	0.004	
X927724		0.01	0.072	9.19	13.15	0.3	3.84	0.17	0.023	<0.01	0.18	56.0	1.08	0.002	
X927725		0.01	0.043	8.10	11.60	0.4	3.87	0.15	0.012	<0.01	0.18	56.5	0.97	<0.002	
X927726		0.01	0.036	8.15	11.65	0.3	5.61	0.18	0.010	<0.01	0.10	53.3	0.78	0.004	
X927727		0.01	0.015	6.93	9.91	0.4	4.72	0.14	0.011	<0.01	0.08	54.8	0.68	0.031	
X927728		0.02	0.044	3.24	4.63	1.2	2.87	0.05	0.017	<0.01	0.05	63.3	0.49	0.006	
X927729		0.02	0.022	4.02	5.75	1.0	4.38	0.06	0.007	<0.01	0.04	62.5	0.52	<0.002	
X927730		0.02	0.016	3.31	4.73	1.2	2.67	0.05	0.006	<0.01	0.07	67.4	0.52	<0.002	
X927731		0.02	0.012	3.87	5.53	1.1	3.71	0.05	0.008	<0.01	0.06	64.8	0.52	<0.002	
X927732		0.04	0.154	7.49	10.70	0.2	8.61	0.15	0.085	<0.01	0.43	51.1	0.55	0.002	
X927733		0.03	0.006	7.23	10.35	0.2	8.09	0.15	0.014	<0.01	0.05	51.1	0.59	<0.002	
X927734		0.02	0.043	7.34	10.50	0.2	7.85	0.15	0.016	<0.01	0.10	51.1	0.59	<0.002	
X927735		0.02	0.050	7.35	10.50	0.2	8.01	0.15	0.024	<0.01	0.10	51.1	0.60	<0.002	
X927736		0.02	0.107	6.89	9.85	0.3	11.55	0.14	0.059	<0.01	0.18	49.0	0.62	0.006	
X927737		0.03	0.191	7.58	10.85	0.2	9.67	0.14	0.039	<0.01	0.38	49.4	0.60	<0.002	
X927738		0.03	2.38	13.60	19.45	0.2	5.86	0.11	0.897	<0.01	5.44	42.4	0.56	<0.002	
X927739		0.06	1.415	12.80	18.30	0.3	7.54	0.14	0.615	<0.01	4.13	48.8	0.53	<0.002	
X927740		<0.01	0.017	5.59	7.99	1.5	3.34	0.13	0.008	<0.01	0.17	59.0	0.65	0.004	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 8 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS S	D20225580
---------------------------	-----------

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 AI2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927741 X927742 X927743 X927744 X927745		1.49 1.69 1.21 1.39 2.19		92.5 96.3	2.00 0.007 0.015 0.005 0.007	0.264 <0.005 <0.005 <0.005 0.012	2.61 0.017 0.013 0.005 0.017					1.5 <0.2 <0.2 <0.2 <0.2 <0.2	13.00 13.65 14.45 15.00 14.15	0.01 0.01 0.01 0.01 <0.01	1.82 5.11 1.72 2.28 12.05	0.029 0.007 0.004 <0.002 0.004
X927746 X927747 X927748 X927749 X927750		2.18 2.35 1.89 2.43 2.68			0.003 0.021 0.668 0.218 0.623	0.012 0.014 1.480 1.140 0.858	0.015 0.458 3.57 3.50 4.09					<0.2 1.0 2.3 2.0 3.4	13.60 13.65 12.25 9.58 8.09	0.01 0.01 0.01 0.01 0.01 0.01	9.56 9.72 6.81 3.22 4.66	0.002 0.002 0.035 0.100 0.077
X927750 X927751 X927752 X927753 X927754 X927755		2.00 2.11 2.79 2.30 3.00 2.33			0.393 0.211 0.359 0.466 0.754	0.838 0.818 0.811 1.030 0.853 1.035	4.09 4.01 4.26 3.75 4.57 5.87					3.9 2.8 4.2 4.2 2.5	10.65 7.28 8.81 10.50 12.35	0.01 0.03 0.01 0.01 0.01 0.01	4.86 4.16 1.90 3.55 4.02 0.27	0.054 0.110 0.076 0.014 0.007
X927756 X927757 X927758 X927759 X927760		2.38 1.63 1.36 1.63 0.07			0.089 0.333 0.003 0.059 0.174	1.355 2.58 0.021 0.064 0.542	6.19 9.45 0.070 0.510 0.599					1.9 5.8 <0.2 0.3 3.6	13.25 12.10 13.25 14.40 10.35	0.01 0.01 0.01 0.01 0.01 0.02	0.29 0.29 0.99 11.85 5.83	0.013 0.010 0.002 0.004 0.033
X927761 X927762 X927763 X927764 X927765		1.37 1.85 2.29 1.42 2.64			0.006 0.004 0.006 0.326 0.730	0.009 <0.005 0.006 0.577 0.856	0.029 0.013 0.027 3.13 4.34					<0.2 <0.2 <0.2 2.3 4.1	14.85 14.10 13.90 11.85 10.30	0.01 0.01 <0.01 0.01 0.01	10.50 10.95 9.58 8.66 9.93	0.003 0.003 0.003 0.020 0.012
X927766 X927767 X927768 X927769 X927770		1.88 1.93 2.88 2.52 1.39			0.066 0.040 0.452 0.073 0.027	0.124 0.041 0.883 0.081 0.005	1.830 0.376 7.45 1.760 0.042					1.6 <0.2 5.1 0.5 <0.2	13.90 14.30 10.65 12.80 14.35	0.01 0.01 0.01 0.01 0.01 0.01	10.05 10.60 6.59 5.97 5.83	0.006 0.002 0.033 0.026 0.006
X927771 X927772 X927773 X927774 X927775		1.76 1.97 2.27 2.38 2.96	83.5		0.002 0.001 0.001 0.257 0.428	<0.005 <0.005 <0.005 0.391 0.658	0.010 0.007 0.005 2.26 4.22					<0.2 <0.2 <0.2 1.4 2.2	14.05 14.85 14.25 13.85 13.40	<0.01 0.01 0.01 0.01 0.01 0.01	9.63 1.47 1.50 9.30 11.30	0.003 <0.002 <0.002 0.004 0.009
X927776 X927777 X927778 X927779 X927780		2.22 3.05 2.56 3.09 0.57	78.5	94.6 96.0	0.461 0.301 0.334 0.765 0.005	0.586 0.501 1.245 0.612 0.006	3.61 2.87 6.09 4.46 0.042					2.3 1.7 1.8 4.3 <0.2	13.60 13.70 13.50 11.35 14.65	0.01 0.01 <0.01 0.01 0.01	11.45 11.55 5.82 9.82 6.60	0.009 0.007 0.012 0.026 <0.002

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 8 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS	SD20225580

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002	
X927741 X927742 X927743 X927744 X927745		0.04 0.01 0.01 0.01 0.03	0.298 0.037 0.124 0.052 0.009	8.68 7.25 5.07 3.94 6.69	12.40 10.35 7.25 5.63 9.56	0.4 0.2 0.3 0.4 0.2	5.35 6.19 5.95 3.40 8.50	0.09 0.14 0.10 0.08 0.15	0.163 0.033 0.044 0.045 0.013	<0.01 <0.01 <0.01 <0.01 <0.01	2.31 0.30 0.12 0.06 0.10	55.4 53.7 59.7 62.9 50.7	0.47 0.73 0.61 0.51 0.46	<0.002 <0.002 0.002 <0.002 <0.002 <0.002	
X927746 X927747 X927748 X927749 X927750		0.03 0.02 0.02 0.02 0.02 0.06	0.011 0.360 1.005 0.717 1.250	6.56 7.40 12.65 22.0 19.90	9.38 10.60 18.10 31.5 28.5	0.3 0.2 0.3 1.2 1.2	9.33 7.42 6.08 5.13 6.65	0.15 0.16 0.15 0.11 0.13	0.017 0.022 0.722 1.760 1.220	<0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.42 4.77 15.40 11.80	47.7 48.1 42.8 29.5 33.6	0.40 0.45 0.48 0.20 0.30	0.006 0.006 0.009 0.007 0.005	
X927751 X927752 X927753 X927754 X927755		0.02 0.03 0.04 0.05 0.02	1.245 0.931 0.939 1.020 0.284	17.40 24.8 17.00 11.50 12.50	24.9 35.5 24.3 16.45 17.85	1.2 1.6 0.7 0.2 0.1	5.53 4.29 4.36 6.26 6.32	0.12 0.09 0.09 0.13 0.12	0.948 2.35 0.868 0.206 0.237	<0.01 <0.01 <0.01 <0.01 <0.01	8.78 19.05 8.77 2.46 0.92	35.3 26.7 41.3 48.6 49.0	0.32 0.30 0.42 0.66 0.86	0.005 0.002 0.003 0.005 0.011	
X927756 X927757 X927758 X927759 X927760		0.01 0.01 0.01 0.06 0.03	0.088 0.354 0.023 0.080 0.878	8.20 10.35 3.20 6.21 17.80	11.70 14.80 4.58 8.88 25.4	<0.1 0.1 0.3 0.4 0.6	10.05 9.16 3.22 8.62 5.70	0.13 0.11 0.05 0.14 0.14	0.656 0.271 0.048 0.044 1.210	0.03 0.01 <0.01 <0.01 0.01	1.19 1.12 0.07 0.11 6.96	49.8 50.7 65.2 49.2 39.1	0.92 1.00 0.49 0.47 0.60	0.023 0.010 0.003 0.004 0.013	
X927761 X927762 X927763 X927764 X927765		0.02 0.01 0.01 0.04 0.07	0.025 0.015 0.024 0.845 1.445	6.29 6.22 7.00 10.60 11.85	8.99 8.89 10.00 15.15 16.95	0.3 0.2 0.3 0.2 0.1	8.89 7.94 7.35 6.99 8.16	0.14 0.14 0.15 0.16 0.17	0.030 0.013 0.017 0.739 0.361	<0.01 <0.01 <0.01 <0.01 <0.01	0.05 0.13 0.10 3.28 3.38	50.5 48.8 52.6 46.4 44.5	0.52 0.49 0.57 0.60 0.42	0.004 0.004 0.004 0.008 0.009	
X927766 X927767 X927768 X927769 X927770		0.01 0.02 0.01 0.02 0.01	0.565 0.056 2.05 0.170 0.038	8.09 7.04 15.70 11.55 7.42	11.55 10.05 22.4 16.50 10.60	0.2 0.2 0.1 0.2 0.4	7.43 8.29 5.31 7.09 7.98	0.16 0.16 0.13 0.13 0.19	0.129 0.022 1.280 0.133 0.048	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1.03 0.09 9.14 2.64 0.08	48.6 49.4 37.4 45.4 50.9	0.53 0.44 0.42 0.56 0.57	0.006 0.004 0.008 0.005 0.006	
X927771 X927772 X927773 X927774 X927775		0.01 0.02 0.01 0.07 0.08	0.017 0.005 0.005 0.333 0.590	7.91 3.32 3.05 6.18 7.66	11.30 4.75 4.36 8.84 10.95	0.2 0.9 0.8 0.4 0.3	6.74 2.55 2.29 7.79 8.67	0.18 0.05 0.05 0.13 0.15	0.020 0.005 0.006 0.103 0.276	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.09 0.07 0.10 0.48 1.39	50.1 65.2 64.4 50.5 47.7	0.64 0.50 0.47 0.45 0.44	0.007 0.005 0.002 0.004 0.006	
X927776 X927777 X927778 X927779 X927780		0.08 0.08 0.08 0.05 0.01	0.626 0.484 0.467 1.310 0.008	7.69 7.06 8.91 11.40 5.41	11.00 10.10 12.75 16.30 7.73	0.3 0.4 0.2 0.1 1.5	8.47 8.35 12.80 6.26 3.25	0.15 0.14 0.16 0.13 0.14	0.269 0.189 0.337 0.757 0.007	<0.01 <0.01 <0.01 <0.01 <0.01	1.38 1.03 1.22 4.32 0.10	47.9 47.5 42.6 44.1 57.3	0.43 0.45 0.52 0.51 0.65	0.006 0.006 0.010 0.006 0.007	

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 9 - A Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP27 Au ppm 0.01	PGM-ICP27 Pt ppm 0.01	PGM-ICP27 Pd ppm 0.01	Pd-AA23 Pd ppm 0.07	Ag-AA45 Ag ppm 0.2	ME-ICP81 Al2O3 % 0.01	ME-ICP81 As % 0.01	ME-ICP81 CaO % 0.05	ME-ICP81 Co % 0.002
X927781		2.93			2.81	0.733	6.19					8.1	9.36	0.01	8.51	0.024
X927782		2.89			0.244	0.353	2.12					1.2	13.65	<0.01	9.68	0.006
X927783		2.47			0.224	0.394	2.21					1.5	13.85	<0.01	11.20	0.004
X927784		2.56			0.225	0.359	2.15					1.2	14.15	<0.01	11.80	0.004
X927785		1.74			0.181	0.368	1.880					1.2	14.10	<0.01	11.55	0.006
X927786		2.47			0.143	0.346	1.720					0.6	14.45	<0.01	8.38	0.004
X927787		2.33			0.037	0.066	0.393					0.2	14.10	0.01	11.95	0.002
X927788		1.36			0.100	0.542	2.56					1.1	6.72	<0.01	5.85	0.088
X927789		1.67			0.771	0.657	4.18					3.3	12.25	0.01	3.60	0.024
X927790		1.70			0.794	0.960	3.21					2.0	12.55	0.01	2.42	0.026

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: 9 - B Total # Pages: 9 (A - B) Plus Appendix Pages Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

Sample Description	Method Analyte Units LOD	ME-ICP81 Cr % 0.01	ME-ICP81 Cu % 0.002	ME-ICP81 Fe % 0.05	ME-ICP81 Fe2O3 % 0.05	ME-ICP81 K % 0.1	ME-ICP81 MgO % 0.01	ME-ICP81 MnO % 0.01	ME-ICP81 Ni % 0.002	ME-ICP81 Pb % 0.01	ME-ICP81 S % 0.01	ME-ICP81 SiO2 % 0.2	ME-ICP81 TiO2 % 0.01	ME-ICP81 Zn % 0.002
X927781		0.07	3.28	14.05	20.1	0.1	7.40	0.14	1.090	<0.01	7.09	39.6	0.34	0.012
X927782		0.08	0.391	7.53	10.75	0.4	8.82	0.15	0.145	<0.01	0.73	47.1	0.40	0.006
X927783		0.08	0.401	7.25	10.35	0.2	8.47	0.15	0.136	<0.01	0.63	47.5	0.41	0.006
X927784		0.08	0.344	6.88	9.84	0.2	8.61	0.15	0.152	0.01	0.62	49.0	0.46	0.006
X927785		0.07	0.331	6.94	9.92	0.3	8.55	0.14	0.131	<0.01	0.65	48.8	0.44	0.006
X927786		0.06	0.155	6.90	9.86	0.3	10.50	0.15	0.104	0.01	0.31	47.5	0.48	0.007
X927787		0.06	0.053	5.94	8.49	0.5	9.46	0.15	0.037	<0.01	0.10	49.2	0.38	0.005
X927788		0.09	0.339	17.25	24.7	1.2	6.93	0.16	0.126	<0.01	8.22	41.7	0.44	0.006
X927789		0.01	1.025	14.70	21.0	0.5	4.69	0.12	0.326	<0.01	4.50	42.8	0.77	0.004
X927790		0.02	0.608	11.90	17.00	0.4	5.20	0.11	0.379	<0.01	3.50	49.0	0.47	0.004

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

www.alsglobal.com/geochemistry

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: SPC METALS 410 FALCONBRIDGE RD, UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 27-NOV-2020 Account: SDPTCP

Project: janes

CERTIFICATE OF ANALYSIS SD20225580

		CERTIFICATE COMMENTS	5							
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Sudbury located at 1351-B Kelly Lake Road, Unit #1, Sudbury, ON, Canada. CRU-31 CRU-QC LOG-22 LOG-23									
	PUL-31	PUL-QC	SPL-21	WEI-21						
Applies to Method:	Processed at ALS Vancouver located Ag-AA45 PGM-ICP27	d at 2103 Dollarton Hwy, North Vanco ME-ICP81	uver, BC, Canada. Pd-AA23	PGM-ICP23						

Geophysical Report

CANADIAN EXPLORATION SERVICES LTD

SUDBURY PLATINUM CORPORATION Q2845 – Janes Property 3D Distributed Induced Polarization Survey Magnetometer

C Jason Ploeger, P.Geo. Claudia Moraga, BSc

December 17, 2020

Abstract

Canadian Exploration Services Limited (CXS) was contracted to perform detailed magnetometer and 3D Distributed IP surveys on Sudbury Platinum Corporation's Janes Property. The surveys were designed to investigate the signature of the mineralization and to assist in the determination of the extent of the mineralization.

The walking magnetometer and 3D Distributed IP surveys highlighted numerous anomalies. Most of the anomalous regions appeared as shallow responses, with the deepest chargeability responses, being associated with a dike. The strongest shallow chargeability responses appeared to be related to a weak linear chargeability response which indicates that these are most likely related to alteration surrounding a structure.

SUDBURY PLATINUM CORPORATION

Q2845 – Janes Property3D Distributed Induced Polarization andMagnetometer SurveysC Jason Ploeger, P.Geo.Claudia Moraga, BScDecember 17, 2020

TABLE OF CONTENTS

1.		SURVEY DETAILS	5
	1.1	PROJECT NAME	5
	1.2	CLIENT	5
	1.3	OVERVIEW	5
	1.4	OBJECTIVE	5
	1.5	SURVEY & PHYSICAL ACTIVITIES UNDERTAKEN	5
	1.6	SUMMARY OF RESULTS, CONCLUSIONS & RECOMMENDATIONS	6
	1.7	CO-ORDINATE SYSTEM	6
2.		SURVEY LOCATION DETAILS	7
	2.1	LOCATION	7
	2.2	Access	7
	2.3	MINING CLAIMS	8
	2.4	PROPERTY HISTORY	11
	2.5	GENERAL REGIONAL/LOCAL GEOLOGICAL SETTINGS	12
	2.6	TARGET OF INTEREST	14
3.		PLANNING	15
	3.1	EXPLORATION PERMIT/PLAN	15
	3.2	SURVEY DESIGN	15
4.		SURVEY WORK UNDERTAKEN	20
	4.1	SUMMARY	20
	4.2	SURVEY GRID	20
	4.3	SURVEY SETUP	21
	4.4	DATA ACQUISITION	23
	4.5	SURVEY LOG S	29
	4.6	Personnel	32
	4.7	FIELD NOTES: CONDITION AND CULTURE	32
	4.8	SAFETY	56
5.		INSTRUMENTATION & METHODS	60
	5.1	INSTRUMENTATION	60
	5.2	THEORETICAL BASIS	60
	5.3	SURVEY SPECIFICATIONS	61
6.		QUALITY CONTROL & PROCESSING	64
	6.1	FIELD QUALITY CONTROL	64
	6.2	PROCESSING	64

6.3	INVERSION	70
7.	RESULTS, INTERPRETATION & CONCLUSIONS	
7.1	RESULTS	73
7.2	INTERPRETATIONS	
7.3	RECOMMENDATIONS	89
7.4	CONCLUSIONS	

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS APPENDIX B: INSTRUMENT SPECIFICATIONS APPENDIX C: REFERENCES APPENDIX D: DIGITAL DATA APPENDIX E: LIST OF MAPS (IN MAP POCKET)

LIST OF TABLES AND FIGURES

Figure 1: Location of the Janes Property (Map data ©2020 Google)7
Figure 2: Operational Claim Map with Cut grid for Magnetometer Survey
Figure 3: Operational Claim Map with 3D IP Electrode Sites for Setup 1 – Red=Transmit Locations – Blue=Read Dipole
Figure 4: Operational Claim Map with 3D IP Electrode Sites for Setup 2 – Red=Transmit Loca-tions – Blue=Read Dipole
Figure 5: Survey Design Model Looking Down – Pink=Current Injection, Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2020 CNES/Airbus, Image ©2020 Maxar Technologies, Image ©2020 Google) 16
Figure 6: Survey Design Model Looking Northwest –Red=Current Injection, Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2020 CNES/Airbus, Image ©2020 Maxar Technologies, Image ©2020 Google) 17
Figure 7: Planned Survey Layout for Setup 1 – Green Circles and lines =Current Injections, Pink and Blue Lines=Dipoles, Black Dots=Read Electrodes 18
Figure 8Planned Survey Layout for Setup 1 – Green Circles and lines =Current Injections, Blue Lines=Dipoles, Black Dots=Read Electrodes
Figure 9: Survey Grid Image (©2020 Google, Image ©2020 CNES/Airbus) 21
Figure 10: Field survey layout with injection sites for setup 1 (green dots) and dipoles (pink lines)
Figure 11: Receiver Dipole Orientations for Setup 1 on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)
Figure 12: Topographical Relief with the Survey Deployment for Setup 1 Looking Northwest (©2020 Google, Image ©2020 CNES/Airbus)
Figure 13: Field Survey Layout with Injection Sites for Setup 2 (green dots) and dipoles (pink lines)

Figure 14: Receiver Dipole Orientations for Setup 2 on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)
Figure 15: Topographical Relief with the Survey Deployment for Setup 2 Looking Northwest (©2020 Google, Image ©2020 CNES/Airbus)
Figure 16: 3D Distributed IP Configuration
Figure 17: Transmit Cycle Used
Figure 18: Receiver recordings (red) synchronized with the current injections (blue)
Figure 19: Good 90 second transmit/read pair. Injection (blue), read signal (red), transmit signal (bottom left), decay curve (bottom centre), FFT (bottom right).
Figure 20: Output .bin file viewed in Prosys. Larger abnormal M values circled in red
Figure 21: Signal, cycle, and curves of abnormal unaccepted M values
Figure 22: Filtering options
Figure 23: Measured chargeability data points (top down)
Figure 24: Side view of the complete measured chargeability dataset facing north with the survey layout on top
Figure 25: Export settings selection from Prosys to RES3DINV71
Figure 26: 25m model cell size with topographical contours – model viewer in
RESOUNV BOOKMARK NOT GENNED.
RES3DINV Error! Bookmark not defined. Figure 27: Diurnally Corrected Mag Grid (TFM)
Figure 27: Diurnally Corrected Mag Grid (TFM)
 Figure 27: Diurnally Corrected Mag Grid (TFM)
Figure 27: Diurnally Corrected Mag Grid (TFM) 73 Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google) 74 Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left) 75
Figure 27: Diurnally Corrected Mag Grid (TFM)73Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)74Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left)75Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV 7676Figure 31: 8 resistivity depth sections ranging from 10-170m as viewed in76
Figure 27: Diurnally Corrected Mag Grid (TFM) 73 Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google) 74 Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left) 75 Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV 76 76 Figure 32: Chargeability grid (250m MSL) overlaying Google Earth. (©2020
Figure 27: Diurnally Corrected Mag Grid (TFM)73Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)74Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left)75Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV 7676Figure 31: 8 resistivity depth sections ranging from 10-170m as viewed in RES3DINV76Figure 32: Chargeability grid (250m MSL) overlaying Google Earth. (©2020
Figure 27: Diurnally Corrected Mag Grid (TFM)73Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)74Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left)75Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV 7676Figure 31: 8 resistivity depth sections ranging from 10-170m as viewed in RES3DINV76Figure 32: Chargeability grid (250m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)77Figure 33: Resistivity grid (200m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)78
Figure 27: Diurnally Corrected Mag Grid (TFM)73Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)74Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left)75Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV76Figure 31: 8 resistivity depth sections ranging from 10-170m as viewed in RES3DINV76Figure 32: Chargeability grid (250m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)77Figure 33: Resistivity grid (200m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)78Figure 34: Diurnally Corrected Mag Grid (TFM)79
Figure 27: Diurnally Corrected Mag Grid (TFM)73Figure 28: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)74Figure 29: Measured and calculated apparent correlation plots (right) and histograms (left)75Figure 30: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV76Figure 31: 8 resistivity depth sections ranging from 10-170m as viewed in RES3DINV76Figure 32: Chargeability grid (250m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)77Figure 33: Resistivity grid (200m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)78Figure 34: Diurnally Corrected Mag Grid (TFM)79Figure 35: Magnetic Anomaly Map80Figure 36: 3D chargeability model (red=15mV/V) with a 50m MSL chargeability

Figure 39: 3D resistivity model with a 50m MSL slice (purple = <1000 ohm*m). 84	
Figure 40: 3D resistivity model with a 200m MSL slice (purple = <1000 ohm*m) and interpretations	
Figure 41: Resistivity Low Anomaly Map	
Figure 42: 3D resistivity model (purple <1000 ohm*m) with 3D chargeability model (red >15 mV/V) on 50 MSL Chargeability Slice	
Figure 43: Anomaly Map 88	
Table 1: Survey and Physical Activity Details 6	
Table 2: Mining Lands and Cells Information 8	
Table 3: Receiver Electrode Coordinates for Setup 1	
Table 4: Receiver Electrode Coordinates for Setup 2	
Table 5: 3D IP Survey Log 32	
Table 6: CXS Induced Polarization Personnel	
Table 7: Logger Electrode & Dipole Field Notes Setup 1 35	
Table 8: Current Injection Field Notes Setup 1	
Table 9: Current Injection Field Notes Setup 2 55	
Table 10: General Safety Topic Protocols 57	
Table 11: Daily Field Safety Topics 59	
Table 12: Inversion Parameter Descriptions (© (1996-2018) M.H.Loke)	

1. SURVEY DETAILS

1.1 PROJECT NAME

This project is known as the Janes Property

1.2 CLIENT

Sudbury Platinum Corporation

410 Falconbridge Road Unit 5 Sudbury, Ontario P3A 4S4

1.3 OVERVIEW

In the late fall and early winter of 2020, Canadian Exploration Services Limited (CXS) performed a detailed magnetometer and 3D distributed induced polarization (3D IP) survey for Sudbury Platinum Corporation over the Janes Property in Janes Township. A total of 25.55-line kilometres of current injection was performed at an approximate injection interval between 25m and 50m. This consisted of 574 injection locations over two setups that spanned a footprint of 2.04 km². The survey was performed between November 16th and December 1st, 2020.

1.4 OBJECTIVE

The objective of the magnetometer and 3D distributed IP surveys were to perform a multidirectional reconnaissance survey of the area. The surveys were designed to investigate the signature of the mineralization and to assist in the determination of the extent of the mineralization

1.5 SURVEY & PHYSICAL ACTIVITIES UNDERTAKEN

Survey/Physical Activity	Dates	Total Days in Field	Total Line Kilometres
Line Cutting	October 5 to October 16, 2020	17	22.425
Walking Magnetom- eter	November 9 to November 12, 2020	4	22.425

3D Distributed IP	November 16 to December 1, 2020	16	25.55
-------------------	---------------------------------	----	-------

Table 1: Survey and Physical Activity Details

1.6 SUMMARY OF RESULTS, CONCLUSIONS & RECOMMENDATIONS

A total of 22944 filtered data points were collected from this 3D IP survey. An inversion model of the resistivity and chargeability was produced with a depth up to 400 metres.

The walking magnetometer and 3D Distributed IP surveys highlighted numerous anomalies. Most of the anomalous regions appeared as shallow responses with the deepest chargeability responses associated with a dike. The strongest shallow chargeability responses appeared to be related to a weak linear chargeability response which indicates that these are most likely related to alteration surrounding a structure.

1.7 CO-ORDINATE SYSTEM

Projection: UTM zone 17N Datum: NAD83 UTM Coordinates near center of grid: 547225 Easting, 5171125 Northing

2. SURVEY LOCATION DETAILS

2.1 LOCATION

The Janes Property is located in Janes Township, approximately 20 kilometres northwest of River Valley, Ontario or 50 km northeast of Sudbury, Ontario.

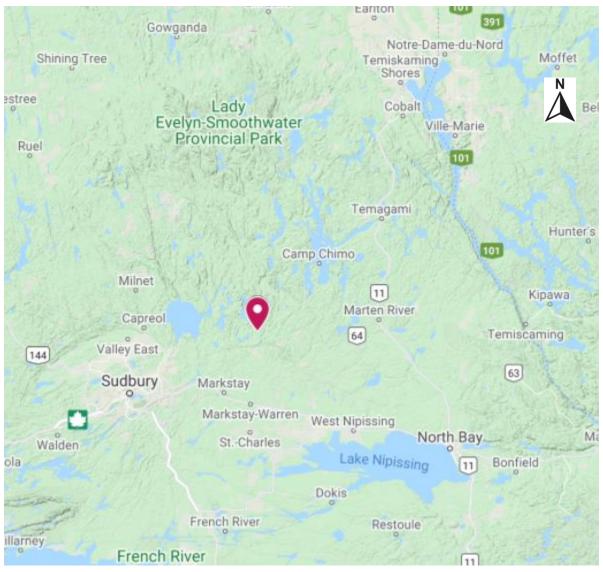


Figure 1: Location of the Janes Property (Map data ©2020 Google)

2.2 ACCESS

Access to the property was attained with a 4x4 truck. Highway 535 runs north from the town of Markstay-Warren until the name changes to the Boundary Road. This combination was travelled 34km to the survey area.

2.3 MINING CLAIMS

The survey area covers a portion of mining claims 218723, 311585, 218722, 187995, 226042, 284640, 256127, 256126, 226043, 256129, 256128, 201017, 182044, 582747 and 136836 located in Janes Township, within the Sudbury Mining Division.

Cell Number	Provincial Grid Cell ID	Ownership of Land	Township
218723	41109L258	Brian Wright	Janes
311585	41109L259	Brian Wright	Janes
218722	41109L260	Brian Wright	Janes
187995	41109L277	Brian Wright	Janes
226042	41109L278	Brian Wright	Janes
284640	41109L279	Brian Wright	Janes
256127	41109L280	Brian Wright	Janes
256126	41109K261	Brian Wright	Janes
226043	41109L297	Brian Wright	Janes
256129	41109L298	Brian Wright	Janes
256128	41109L299	Brian Wright	Janes
201017	41109L300	Brian Wright	Janes
182044	41109K281	Brian Wright	Janes
582747	41109L318 41109L319 41109L320	Randy Stewart	Janes
136836	41109K301	Brian Wright	Janes

Table 2: Mining Lands and Cells Information

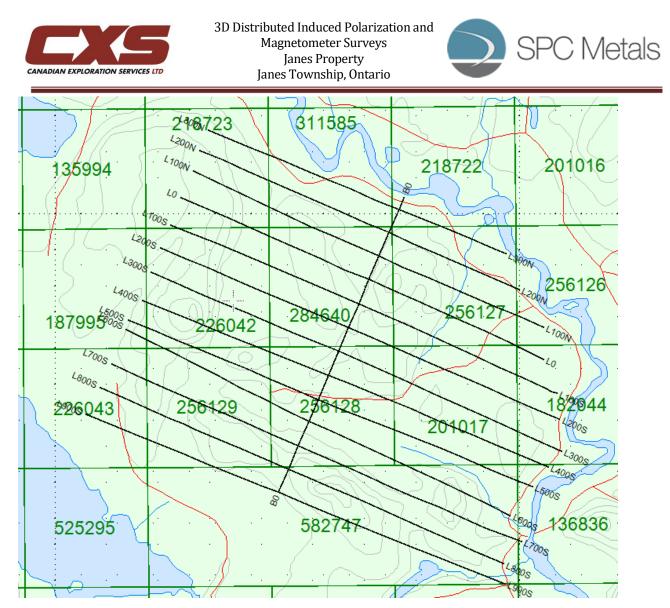
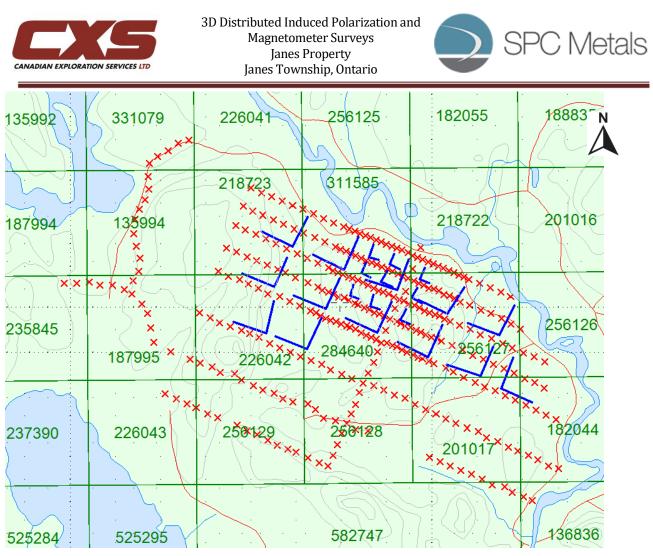
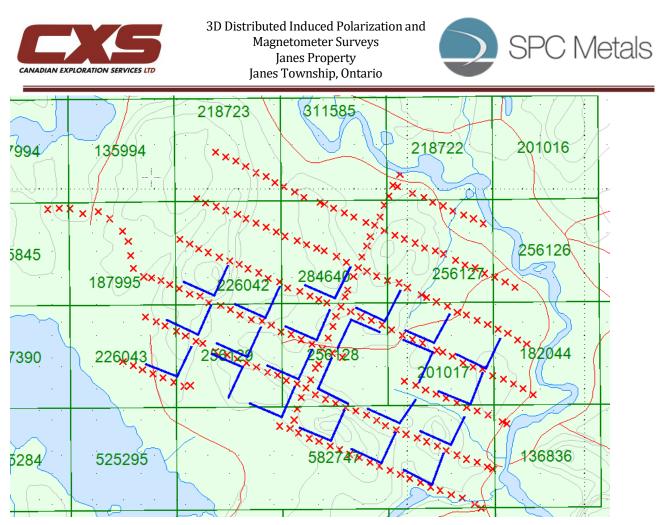




Figure 2: Operational Claim Map with Cut grid for Magnetometer Survey

<u>Figure 3: Operational Claim Map with 3D IP Electrode Sites for Setup 1 –</u> <u>Red=Transmit Locations – Blue=Read Dipole</u>

<u>Figure 4: Operational Claim Map with 3D IP Electrode Sites for Setup 2 –</u> <u>Red=Transmit Locations – Blue=Read Dipole</u>

2.4 PROPERTY HISTORY

Some historical exploration has been carried out over the years over the survey area. The following list describes details of the previous geoscience work which was collected by the Mines and Minerals division and provided by OGSEarth (MNDM & OGSEarth, 2020).

• 1969-1970: Kennco Exploration (Canada) Ltd (File 41I16SW0020, 41I09NW0210)

Airborne Geophysics, Geological and Diamond Drilling – Janes Townships Kennco Exploration contracted an Airborne Mag and EM survey to be flown. Along with this they compiled historic data and mapped the geology. A 6560 foot drilling campaign was then performed.

• 1988-1995: Falconbridge Limited (File 41I14SW0014, 41I09NW0200, 41I09NW0012)

Ground Geophysical and Geochemical Surveys – Janes Townships

Between 1988 and 1995 Falconbridge conducted a magnetometer, EM and borehole EM surveys over the property. They also performed a geochemical survey.

• 1997: Goldwright Exploration Inc. (File 41109NW2002) Geological and Physical – Janes Townships

In 1997 Goldwright Exploration mapped the geology, they also performed mechanical stripping and trenching.

• 1998-1999: Goldwright Exploration Inc. and Pacific Northwest Capital Corp. (File 41109NW2014, 41109NW2005)

Ground Geophysical, Geochemical, Diamond Drilling and Physical – Janes Townships

In 1998-1999 Goldwright Exploration and Pacific Northwest Capital performed an SP, IP, VLF and geochemical surveys over portions of the property. During this period they also performed some stripping and trenching along with 13 diamond drill holes totalling 1041m.

• 1999-2001: Goldwright Exploration Inc., Anglo American Platinum Corp. and Pacific Northwest Capital Corp. (File 41109NW2016, 41109NW2038)

Diamond Drilling– Janes Townships

Between 1999-2001 the group drilled 13 diamond drill holes totalling 1512m.

• 2000: Pacific Northwest Capital Corp. (File 41109NW2035)

Ground Geophysical– Janes Townships

In 2000 Pacific Northwest Capital performed a borehole IP survey.

• 2007-2008: Goldwright Exploration Inc. (File 20000003668, 20000003605) Ground Geophysical and Diamond Drilling – Janes Townships

Between 2007-2008 Goldwright Exploration drilled 2 diamond drill holes totalling 133m and performed a borehole IP survey.

• 2001: Goldtrain Resources Inc and Pacific Northwest Capital Corp. (File 20000006549)

Physical – Janes Townships

In 2001 Goldtrain Resources and Pacific Northwest Capital Corp. performed some stripping on the property.

• 2014-2017: Brian Wright, Randy Stewart and Pacific Northwest Capital Corp. (File 20000008340, 20000015250, 20000013856)

Geological and Ground Geophysics – Janes Townships

During this period parts of the property were mapped and magnetometer surveys performed.

2.5 GENERAL REGIONAL/LOCAL GEOLOGICAL SETTINGS

Regional Geology:

The geology was taken from 2014 Geologic Assessment by Randy Stewart (OAFD 2000008340). Randy Stewart adapted the geology from Butler (2009) and Jobin-Bevans (1998)

To the north and west of the properties, the Archean basement is dominated by complex meso-zonal gregarious granite-gneiss batholiths. As part of the Superior Province, a major portion of these gneisses consists of granodioritic gneiss. Infolded into these granite-gneiss domes are narrow greenstone belts with submarine tholeiitic basalts and andesites along with interflow chert horizons, some very large, banded Janes and Janes South Property 2014 Geological Assessment Program 9 iron formations, and acid volcanics. Past producers in these greenstones included small volcanogenic massive sulphide ("VMS") deposits (mostly zinc) and iron mines.

Sometime before 2.4 gigayears ("Ga") passive anoxic sedimentation (with uraniferous conglomerates) and basaltic volcanism (Elsie Mountain and Stobie formations) commenced above a major unconformity at the southern-rifted margin of the Archean-aged Superior Province. This sedimentation was accompanied by the injection of an-orthosite-ultramafic complexes (East Bull Lake gabbros, and the Matachewan dyke swarm), and acid volcanics (Copper Cliff formation) representing the remains of an early Proterozoic Large Igneous Province ("LIP"). Episodic sedimentation continued, and the sediments and volcanics are collectively known as the Huronian Supergroup. To the NE, Huronian sedimentation occurred in fault-bounded basins, forming the Cobalt Embayment. Part of the Cobalt Embayment is controlled by long lived NNW faults showing sinistral displacements for a period of nearly 1Ga. The Janes and Janes South Properties lie near the southern margin of the Cobalt Embayment, and about 20 km north of the later Proterozoic (~1Ga) Grenville Front Tectonic Zone.

In the period 2.4 to 2.2 Ga, folding and metamorphism (up to upper amphibolite facies) of the Huronian sedimentary-volcanic packages commenced to the south during the Blezardian orogeny, and small-sized granitic plutons were injected. Just before the Blezardian folding ceased, regional basaltic magmatism in the form of well-differentiated tholeiitic diabase sheets (the Nipissing diabase LIP) injected the Huronian units, and the upper parts of its underlying Archean basement. The initiation of Huronian deformation certainly occurred pre-Nipissing, as indicated by the Nipissing sheets cutting early folds within the Huronian units. In places, pre-Nipissing metamorphism attained amphibolite facies. In the South Range of the Sudbury Structure, Blezardian tectonism led to a southward overturning of Huronian units.

The subsequent 1.9-1.7 Ga Penokean Orogeny imposed a static greenschist overprint on to Blezardian metamorphics accompanied by northward thrusting and dextral trans-pression. This new tectono-metamorphic event was accompanied by shearing and faulting along ENE lines following major faults that were part of the pre-2.4 Ga rifting Janes and Janes South Property 2014 Geological Assessment Program 10 event. The Sudbury Basin and its Ni-Cu-PGE ore bodies are the result of a 1.85 Ga

meteorite impact melt sheet near the centre of a ~260 km wide impact basin. The impact hit the active Penokean mountain belt and its adjacent Archean-Proterozoic basement. Penokean shearing and ENE faulting continued after the impact. The Janes and Janes South Properties reside within the "outer zone of damage" of this large impact structure.

The Property is underlain by Nipissing gabbro and Huronian sediments (Gowganda and Mississagi Formations). The gabbro has inward-dipping lower contacts that might define an original lopolith. Called the Chiniguchi River intrusion, this Nipissing body hosts NiCu- PGE mineralization at the Main Showing. Irregularities in an undulating footwall Janes and Janes South Properties Janes and Janes South Property 2014 Geological Assessment Program 11 contact may be of consequence in the localization of mineralization. L o c a l i z e d lithological patterns suggestive of cryptic or rhythmic intrusive layering were noted in the Main Trench area. Previous mapping has shown a crude change from fine-grained gabbro to the west to a medium-grained hypersthene gabbro, medium-to coarse grained leucocratic gabbro and coarse-grained to pegmatitic and vari-textured gabbro in the east. Gabbro units to the east contain more modal quartz. Furthermore, hypersthene gabbro, the host rock to the majority of known mineralization is recognized in outcrop to occur within ~150 m of the basal contact with Gowganda Formation sediments and the majority of the hypersthene gabbro occurs within ~75 to100 m of the basal contact. All units show the effects of greenschist facies regional metamorphism. Metamorphic mineral assemblages in Nipissing gabbro on the properties include chlorite, albite, epidote and saussurite after plagioclase as well as chlorite and actinolite after pyroxene - these effects are more obvious in leucocratic phases. Minor biotite occurs in some gabbro but it is uncertain whether the mineral is a primary magmatic or a secondary metamorphic phase. A late NW-striking olivine diabase dyke crosses the Janes property – part of the Sudbury Dyke Swarm.

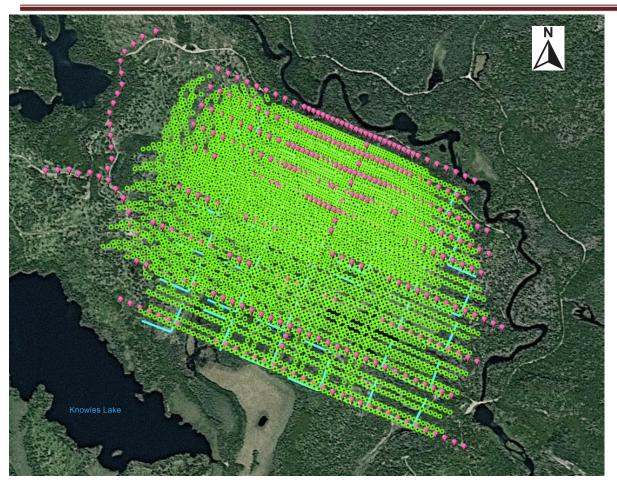
2.6 TARGET OF INTEREST

The targeting of the survey was to investigate the area with known mineralization. The signatures identified in this area would then be applied to additional areas throughout the area of investigation.

3. PLANNING

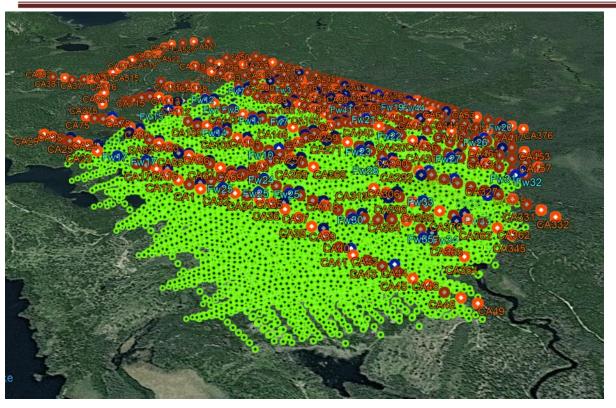
3.1 EXPLORATION PERMIT/PLAN

The 3D Distributed Induced Polarization survey was performed over mining claims held by Battery Mineral Resources Limited. This required plans are PL-18-010951, PL-20-000115, PL-18-010952, PL-20-000116, PL-18-010950 and PL-20-000117 for the entire area of the survey coverage.

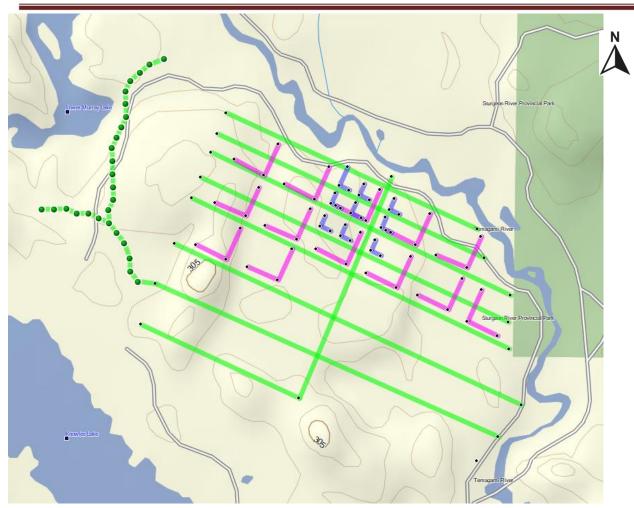

3.2 SURVEY DESIGN

Specialized IP survey design software was used as a tool to assist in the targeting of the survey. In this case a theoretical survey distribution scenario was established to determine the survey results coverage.

For optimal coverage, two setups with 22 receivers, each with 3 read electrodes, were placed in selected locations in between the current injection paths. The 3 read electrodes of each receiver were placed in 2 orthogonal directions, with 25 to 150-metre dipole lengths (grid north-south and grid east-west). Current injections were placed at 25 to 50 metre intervals along cut lines. An infinite was placed far from the survey location to achieve a pole-dipole array scenario. A theoretical depth of 500 metres was obtained from the software with this layout.



<u>Figure 5: Survey Design Model Looking Down – Pink=Current Injection,</u> <u>Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2020</u> <u>CNES/Airbus, Image ©2020 Maxar Technologies, Image ©2020 Google)</u>



<u>Figure 6: Survey Design Model Looking Northwest – Red=Current Injection,</u> <u>Blue=Receiver Electrodes, Green=Theoretical Data Point (Image ©2020</u> <u>CNES/Airbus, Image ©2020 Maxar Technologies, Image ©2020 Google)</u>

<u>Figure 7: Planned Survey Layout for Setup 1 – Green Circles and lines =Cur-</u> <u>rent Injections, Pink and Blue Lines=Dipoles, Black Dots=Read Electrodes</u>

<u>Figure 8: Planned Survey Layout for Setup 1 – Green Circles and lines =Cur-</u> <u>rent Injections, Blue Lines=Dipoles, Black Dots=Read Electrodes</u>

4. SURVEY WORK UNDERTAKEN

4.1 SUMMARY

CXS was contracted to cut a grid and perform a detailed magnetometer and 3D distributed induced polarization survey over the Janes Project. The CXS magnetometer crew occupied the Janes Project grid in early November 2020. A total length of 22.425 kilometers was covered with the magnetometer survey.

The CXS 3D IP crew occupied the site in mid-November of 2020. A total length of 25.55 kilometers was covered with IP current injections and two setups and 574 injected current points for this survey occurring between November 16th and December 1st, 2020. True GPS locations were collected upon setting up the grid and utilized as field electrode locations for data processing. The survey area footprint was 2.04 km² (1200m x 1700m).

4.2 SURVEY GRID

A grid was cut along the intended current injection paths. The grid consisted of 13 east-west lines spaced at 100-metre intervals and 1 north-south baseline at 25 degrees, with stations picketed at 25-metre intervals (Figure 6). All lines were cut by Five on Line Contracting based out of Belleterre, Quebec in November 2020.

Figure 9: Survey Grid Image (©2020 Google, Image ©2020 CNES/Airbus)

4.3 SURVEY SETUP

22 receivers were placed in 22 previously selected locations scattered between the grid lines. Each receiver was connected to 2 approximately orthogonal, ~150-metre and ~25-metre dipoles (grid north-south and grid east-west). The coordinates of the read electrodes were recorded by GPS and are listed in Table 3. Due to field conditions exact locations and directions were not always achieved. The infinite was located approximately 4 km south from the centre of the survey area at 545823E, 5167038N to achieve a pole-dipole array scenario. The survey layout covered a footprint of 2.04 km² with dimensions of 1.7 km (X) x 1.2 km (Y).

Read Electrode	UTM X (m)	UTM Y (m)	Read Electrode	UTM X (m)	UTM Y (m)
402-P1	546849	5171798	413-P1	547671	5171225
402-P2	546784	5171666	413-P2	547615	5171096
402-P3	546648	5171735	413-P3	547464	5171146

403-P1	546757	5171617	414-P1	547759	5171176
403-P2	546702	5171489	414-P2	547705	5171042
403-P3	546560	5171548	414-P3	547842	5170979
404-P1	546699	5171425	415-P1	547141	5171675
404-P2	546667	5171286	415-P2	547122	5171621
404-P3	546523	5171335	415-P3	547164	5171610
405-P1	547073	5171708	416-P1	547108	5171595
405-P2	547010	5171566	416-P2	547088	5171550
405-P3	546874	5171632	416-P3	547128	5171532
406-P1	546991	5171525	417-P1	547052	5171499
406-P2	546930	5171393	417-P2	547037	5171451
406-P3	546789	5171450	417-P3	547074	5171437
407-P1	546911	5171351	418-P1	547257	5171567
407-P2	546847	5171215	418-P2	547213	5171591
407-P3	546709	5171272	418-P3	547233	5171633
408-P1	547295	5171609	419-P1	547201	5171560
408-P2	547246	5171475	419-P2	547175	5171513
408-P3	547107	5171521	419-P3	547223	5171490
409-P1	547220	5171424	420-P1	547142	5171454
409-P2	547156	5171287	420-P2	547126	5171405
409-P3	547019	5171352	420-P3	547168	5171389
410-P1	547542	5171488	421-P1	547369	5171573
410-P2	547469	5171372	421-P2	547346	5171522
410-P3	547340	5171431	421-P3	547388	5171506
411-P1	547446	5171321	422-P1	547334	5171484
411-P2	547383	5171180	422-P2	547309	5171443
411-P3	547249	5171246	422-P3	547354	5171418
412-P1	547766	5171407	423-P1	547286	5171389
412-P2	547699	5171277	423-P2	547261	5171342
412-P3	547560	5171330	423-P3	547302	5171326

Table 3: Receiver Electrode Coordinates for Setup 1

Read Electrode	UTM X (m)	UTM Y (m)	Read Electrode	UTM X (m)	UTM Y (m)
402-P1	546591	5171255	547084	5170885	547084
402-P2	546530	5171121	547146	5171013	547146
402-P3	546392	5171182	547275	5170958	547275
403-P1	546515	5171076	547059	5170837	547059
403-P2	546456	5170944	546997	5170700	546997

403-P3	546314	5171011	547131	5170634	547131
404-P1	546426	5170889	547115	5170605	547115
404-P2	546362	5170755	547054	5170467	547054
404-P3	546223	5170812	546915	5170525	546915
405-P1	546823	5171161	547589	5171036	547589
405-P2	546760	5171020	547521	5170907	547521
405-P3	546623	5171082	547393	5170964	547393
406-P1	546738	5170979	547452	5170731	547452
406-P2	546678	5170843	547513	5170867	547513
406-P3	546541	5170905	547384	5170919	547384
407-P1	546593	5170661	547437	5170654	547437
407-P2	546656	5170799	547366	5170547	547366
407-P3	546519	5170858	547223	5170610	547223
408-P1	547142	5171250	547346	5170504	547346
408-P2	547074	5171108	547283	5170368	547283
408-P3	546940	5171168	547146	5170430	547146
409-P1	547050	5171055	547819	5170927	547819
409-P2	546991	5170921	547755	5170794	547755
409-P3	546850	5170981	547622	5170857	547622
410-P1	546969	5170878	547740	5170771	547740
410-P2	546908	5170744	547685	5170633	547685
410-P3	546770	5170806	547540	5170689	547540
411-P1	546892	5170708	547658	5170575	547658
411-P2	546832	5170573	547595	5170448	547595
411-P3	546691	5170635	547459	5170509	547459
412-P1	547367	5171142	547564	5170411	547564
412-P2	547298	5171006	547511	5170269	547511
412-P3	547169	5171065	547383	5170337	547383

Table 4: Receiver Electrode Coordinates for Setup 2

4.4 DATA ACQUISITION

CXS began acquiring data on November 20th. Current injection sites were injected along the select grid lines at approximately 25-50-metre increments. GPS points were collected at each injection rod location prior to each current injection and recorded along with their respective injection details; such as, injection file numbers and ground conditions. There was a total of 574 injection locations for this survey over the two survey setups.

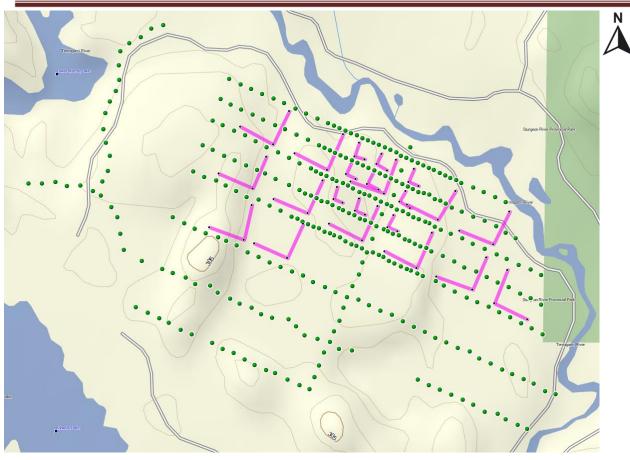


Figure 10: Field survey layout with injection sites for setup 1 (green dots) and dipoles (pink <u>lines)</u>

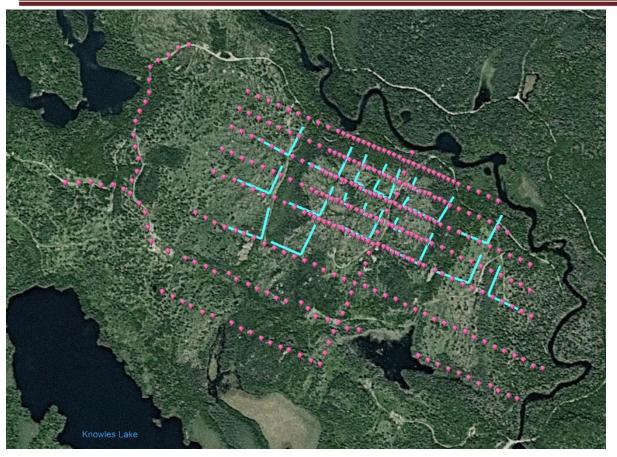


Figure 11: Receiver Dipole Orientations for Setup 1 on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)

Figure 12: Topographical Relief with the Survey Deployment for Setup 1 Looking Northwest (©2020 Google, Image ©2020 CNES/Airbus)

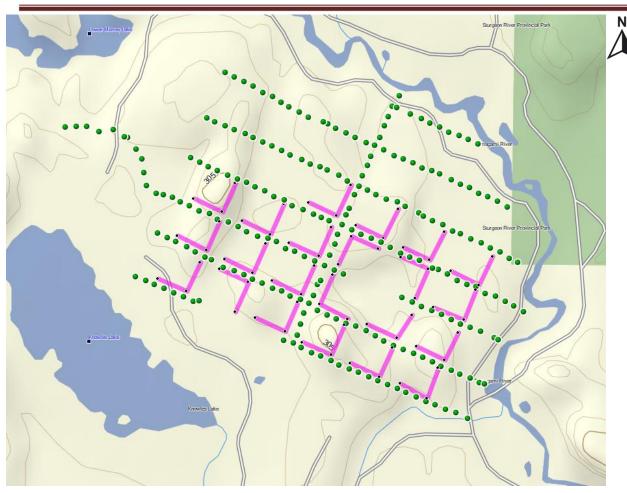


Figure 13: Field Survey Layout with Injection Sites for Setup 2 (green dots) and dipoles (pink <u>lines)</u>

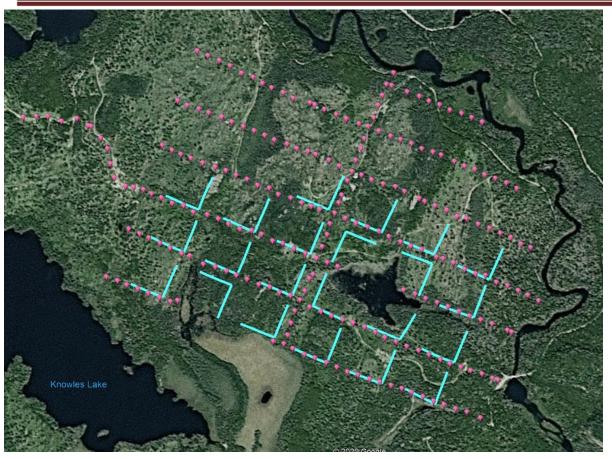


Figure 14: Receiver Dipole Orientations for Setup 2 on Google Earth (©2020 Google, Image ©2020 CNES/Airbus)

Figure 15: Topographical Relief with the Survey Deployment for Setup 2 Looking Northwest (©2020 Google, Image ©2020 CNES/Airbus)

4.5 SURVEY LOGS

Walking Magnetometer Survey

	Magnetometer Survey Log						
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)		
Novem- ber 8, 2020	Mobilized to survey area and checked access. Unloaded ATVs, trailers and equipment. Start prepping access.	-	-	-	-		
Novem-		BL0E 900S	900S 400W	350N 950E	1250 1350		
ber 9, 2020	Begin magnetometer survey.	800S 700S	450W 0E	925E 950E	1375 950		
			Total 4.9	25 km			
		600S	0E	900E	900		
		500S 400S	0E 0E	900E 925E	900 925		
Novem-		300S 200S	0E 0E	950E 900E	950 900		
ber 10,	Continue magnetometer survey.	100S	0E	850E	850		
2020		0N 100N	0E 0E	750E 700E	750 700		
		200N 300N	0E 0E	550E 450E	550 450		
		Total 7.875 km					
		900S 800S	800W 800W	475W 500W	325 300		
		700S	800W	0E	800		
		600S	800W	100E	900		
Novem-		500S	800W	100E	900		
ber 11, 2020	Continue magnetometer survey.	400S 300S	800W 800W	0E 0E	800 800		
2020		200S	800W	0E 0E	800		
		100S	800W	0E 0E	800		
		0	800W	0E	800		
			Total 7.2	25 km	·		

	Magnetometer Survey Log					
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)	
Nerver	Complete magnetometer survey and demobilize.	100N	800W	0E	800	
Novem- ber 12,		200N	800W	0E	800	
2020		300N	800W	0E	800	
		Total 2.4 km				

3D IP Distributed Array IP Survey

	3D IP Survey Log						
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)		
Novem- ber 16, 2020	Mobilized to survey area and checked access. Unloaded ATVs, trailers and equipment.	-	-	-	-		
Novem- ber 17, 2020	Continued setup of Loggers and infinite sites on setup 1	-	-	-	-		
Novem- ber 18, 2020	Continued setup of Loggers and infinite sites on setup 1	-	-	-	-		
Novem- ber 19, 2020	Complete setup of Loggers and infinite sites on setup 1	-	-	-	-		
		300N	800W	450E	1250		
Novem- ber 20,	Setup power wire. Began acquisition on setup 1; read L300N and partial of	200N	800W	450E 75E	875		
2020	L200N.	67 injections and 2.125 km					
Novem-	Continued IP survey on setup 1. Fin-	200N	75E	550E	475		
ber 21,	ished remainder of L200N read com-	100N	800W	700E	1500		
2020	plete L100N and partial of L0N.	0N	800W	250E	1050		
		90 injections and 3.025 km					

	3D IP Survey Lo	og			
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)
		0N	250E	750E	500
Novem-	Continued IP survey on setup 1. Com-	100S	800W	850E	1650
ber 22,	plete read on L0N. Read complete	300S	800W	950E	1750
2020	L100S and L300S. Read partial L500S.	500S	800E	900E	100
		96 i	njections	and 4.0	km
Novom	Continued ID survey on actur 1. Massa	500S	800W	800E	1600
Novem-	Continued IP survey on setup 1. Moose	BL0E	500S	350N	850
ber 23, 2020	issues with wire. Complete L500S read partial BL0E and west road.	Road			600
2020		32 i	njections a	and 3.05	km
Novem-	Complete IP survey on setup 1. Com-	Road			700
	plete read on baseline 0E and west road. Complete read on L700S. Begin	BL0E	700S	500S	200
ber 24, 2020		700S	800W	0E	800
2020	to move to setup 2.	32 injections and 1.7 km			
Novem- ber 25, 2020	Continued setup of Loggers sites on setup 2.	-	-	-	-
Novem- ber 26, 2020	Continued setup of Loggers sites on setup 2.	-	-	-	-
			5000	0501	050
		BLOE	500S	350N	850
Novem-	Begin IP on setup 2. Read west road,	500S	800W	100E	900
ber 27,	read partial BLOE, 500S, 700S and	700S	800W	500W	300
2020	900S.	900S	800W	450W	350
		Road			600
		63	njections	and 3.0	ĸm
		BL0E	900S	500S	400
Novem-	Continued IP survey on setup 2. Com-				
ber 28,	plete read on line BL0E, 700S and	700S	450W	950E	1400
2020	900S.	900S	50W	950E	1000
		00	njections	anu 2.8	KI II
		500S	400E	900E	500
Novem-	Continued IP survey on setup 2. Com-	300S	800W	950E	1750
ber 29,	plete read on L500S. Read complete	100S	800W	850E	1650
2020	lines L300S and L100S. Read partial	1000 100N	450E	700E	250
	100N.		njections		

	3D IP Survey Log						
Date	Description	Line	Min Extent	Max Extent	Total Survey (m)		
Novem-	Complete IP survey. Complete read on	300N	0	450E	450		
ber 30,	L100N and read complete L300N.	100N	800W	450E	1250		
2020	Begin dismantling setup 2.	34	injections	and 1.7	km		
			-				
Decem- ber 1, 2020	Dismantle setup 2. Demobilize.	-	-	-	-		
Total	574 injections and 25.55 km						

Table 5: 3D IP Survey Log

4.6 PERSONNEL

Crew Member	Position	Resident	Province
Bruce Lavalley	Crew Chief	Dobie	Ontario
Claudia Moraga	Transmitter Operator/Mag- netometer Operator	Dobie	Ontario
Neil Jack	Transmitter Operator	Kirkland Lake	Ontario
Joey Emmell	IP Technician	Englehart	Ontario
Kameron Stoesz	IP Technician	Kirkland Lake	Ontario
Richard Bates	IP Technician	Virginiatown	Ontario
Five on Line Contracting	Line Cutters	Belleterre	Quebec
C Jason Ploeger P.Geo.	Senior Geophysicist	Larder Lake	Ontario

Table 6: CXS Induced Polarization Personnel

4.7 FIELD NOTES: CONDITION AND CULTURE

Walking Magnetometer Survey

The average weather over the five field days was 10.9°C with highs up to 20.1°C and lows down to -2.4°C.

3D IP Distributed Array IP Survey

The average weather over the ten field days was -2°C with highs up to 9°C and lows down to -12.5°C. There was snow that fell on November 16, 21 and December 1.

No culture was noted in the survey area that would affect the data. Topographical

features and ground characteristics along the read dipoles and current injection lines are noted in the following two tables (Table 6 & 7, respectively).

	Logger Field Notes Setup 1 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)				
	Soil	P1 and P2 Soft ground. P3 Rocky			
402	Торо	P1 and P2 Flat. P3 Uphill			
	Veg	P1, P2 and P3 Mixed bush			
	Soil	P1, P2 and P3 Rocky, sandy			
403	Торо	P1, P2 and P3, Uphill			
	Veg	P1, P2 and P3 Mixed bush			
	Soil	P1, P2 and P3 Rocky, sandy			
404	Торо	P1 to P2 Flat. P3 Uphill			
	Veg	P1, P2 and P3 Mixed bush			
	Soil	P1 Sandy, Ioam. P2 Sand. P3 Rocky, sand.			
405	Торо	P2 to P1 Up and down. P2 to P3 Up and down for 70m, downhill for 80m. P1 Flat. P2 and P3 Sidehill			
	Veg	P1 and P2 Mixed bush. P3 Jack Pine, Spruce and Balsam			
	Soil	P1 and P2 Sand. P3 Mossy, wet.			
406	Торо	P2 to P1 Uphill for 100m, downhill for 50m. P2 to P3 Downhill for 100m, flat for 50m. P1 and P2 Sidehill. P3 Flat.			
	Veg	P1 Spruce, Balsam, Jack Pine and Birch. P2 Spruce and Jack Pine. P3 Alder and Spruce.			
	Soil	P1 and P2 Rocky, sand. P3 Mossy, wet.			
407	Торо	P2 to P1 Downhill for 50m, flat for 50m, uphill for 50m. P2 to P3 50m Downhill, 100m flat. P1 and P3 Flat. P2 Sidehill.			
	Veg	P1 and P2 Spruce and Jack Pine. P3 Alder and Spruce			
	Soil	P1 and P3 Rocky, moist. P2 Rocky, sandy, moist.			
408	Торо	P2 to P1 and P2 to P3 Flat. P1, P2 and P3 Flat.			
400	Veg	P1, P2 and P3 Thick bush, Poplar, Birch, Jack Pine, Pine.			
	Culture	P1 and P2 Approx. 18m from road. P2 to P3 Near trail			
	Soil	P1 Sand. P2 and P3 Sandy, rocky.			
409	Торо	P2 to P1 Crosses trail, mostly flat, 50m uphill. P2 to P3 Steep uphill to a cliff down for 25m. P1 Flat. P2 and P3 Sidehill.			
	Veg	P1 Spruce, Balsam. P2 Jack Pine, Balsam. P3 Jack Pine, Spruce.			
410	Soil	P1 and P3 Sandy, wet. P2 Rocky, sandy. P2 to P1 Rocky.			
710	Торо	P2 to P3 Up hill, crossed swamp. P2 to P1 Down hill. P3 Top of hill.			

	Logger Field Notes Setup 1 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)				
	Veg	P1 Birch, Poplar, Pine. P2 Pine, Poplar. P3 Pine, Birch			
	Culture	P1 Near road.			
	Soil	P1 Rocky, sandy, wet. P2 Swamp with some rocks, mossy. P3 Rocky,			
411	Торо	muddy. P2 to P1 Across swamp, up hill. P2 to P3 Up hill and side hill thru swamp. P2 Bottom of steep hill.			
	Veg	P1 and P3 Pine, Spruce, Birch. P2 Pine, Spruce.			
	Soil	P1 Sandy, wet. P2 Sandy, rocky, wet. P3 Rocky			
	Торо	P1 and P2 Flat. P3 Uphill. P2 to P1 Flat. P2 to P3 Uphill.			
412	Veg	P1 Cedar, Birch, Pine. P2 Pine, Birch, Poplar. P3 Pine, Birch			
	Culture	P2 to P1 Crosses main road.			
	Soil	P1 Sandy, wet. P2 Soft ground. P3 Rocky, swampy, wet.			
413	Торо	P1, P2 and P3, Flat. P2 o P3 Uphill, downhill then crosses a little swamp			
	Veg	P1 Mixed thick bush. P2 Pine. P3 Poplar, Birch.			
	Soil	P1 Rocky. P2 Swampy, mossy. P3 Mossy, wet.			
	Торо	P1 to P2 and P2 to P3, Flat. P1, P2 and P3 Flat			
414	Veg	P1 and P2 Pine, Birch. P3 Pine, Poplar			
	Culture	P1 Side of ATV trail. P2 to P3 crosses trail			
	Soil	P1 Soft ground. P2 and P3 Rocky			
415	Торо	P1 Down hill. P2 and P3 Flat			
	Veg	P1, P2 and P3 Mixed bush.			
	Soil	P1, P2 and P3 Rocky			
416	Торо	P1, P2 and P3 Flat			
	Veg	P1, P2 and P3 Mixed bush.			
	Soil	P1 Rocky, outcrop. P2 and P3 Rocky			
417	Торо	P1 Side hill. P2 Up hill. P3 Down hill.			
	Veg	P1, P2 and P3 Mixed bush.			
	Soil	P1, P2 and P3 Soft ground			
418	Торо	P1, P2 and P3 Flat			
	Veg	P1, P2 and P3 Mixed bush			
440	Soil	P1, P2 and P3 Soft ground.			
419	Торо	P1, P2 and P3 Flat			

	Logger Field Notes Setup 1 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)									
	Veg	Veg P1, P2 and P3 Mixed bush.								
	Soil	P1 and P3 Rocky. P2 Soft ground								
420	Торо	P1, P2 and P3 Flat								
	Veg	P1, P2 and P3 Mixed bush								
	Soil	P1 and P3 Rocky. P2 Rocky, outcrop.								
421	Торо	P1 Down hill. P2 and P3 Up hill.								
	Veg	P1, P2 and P3 Mixed bush								
	Soil	P1 Rocky, sandy, mossy. P2 Wet, rocky. P3 Sandy, rocky								
422	Торо	P2 to P1 Uphill (sidehill). P2 to P3 Sidehill. P1, P2 and P3 Sidehill.								
	Veg	P1 Pine, Spruce. P2 Jack Pine, Birch. P3 Pine								
	Soil	P1 Rocky, sandy. P2 and P3 Rocky, sandy, wet								
423	Торо	P2 to P1 Uphill (sidehill). P2 to P3 Uphill to flat terrain. P1 Sidehill. P2 Uphill, near cliff and trail. P3 Flat								
	Veg	P1 Birch, Pine, Spruce. P2 Thick mixed bush. P3 Mixed bush, Pine.								
	Soil	Rocky, muddy								
Infi-	Торо	Flat, beside creek								
nite	Veg	Jack Pine, Maple, Oak								
	Culture	Beside main trail								

Table 7: Logger Electrode & Dipole Field Notes Setup 1

	Logger Field Notes Setup 2 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)									
	Soil P1, P2 and P3 Rocky, mossy									
402	Торо	P2 to P1 Steep Uphill. P2 to P3 Sidehill. P1 and P2 Steep sidehill. P3 Flat								
	Veg	P1 White pine. P2 and P3 Mixed bush, Spruce								
	Soil	P1 Rocky, mossy. P2 and P3 Rocky, sandy								
403	Торо	P2 to P1 Up and down sidehill. P2 to P3 Smooth up and down. P1 and P3 Sidehill. P2 Flat								
	Veg	P1 and P3 Mixed bush. P2 White pine, balsam.								
404	Soil	P1 Sand, very rocky. P2 Sandy, loam, rock. P3 Rocky, sandy								

	Logger Field Notes Setup 2 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)							
	Торо	P2 to P1 Slight downhill. P2 to P3 Mostly flat. P1 Bottom of cliff. P2 and P3 Flat.						
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1 and P3 Rocky, mossy, sand, loam. P2 Very rocky (moved 4m because of cliff.						
405	Торо	P2 to P1 Up and down, rough. P2 to P3 Downhill for 50m, then flat for 100m. P1 Moderate sidehill. P2 Sidehill. P3 Flat						
	Veg	P1 and P2 Mixed bush. P3 Spruce and Alder						
	Soil	P1 and P2 Rocky, sandy, loam. P3 Sandy, loam.						
406	Торо	P2 to P1 Sidehill for 50m, flat for 50m, uphill for 50m. P2 to P3 Downhill (sidehill). P1 and P2 Sidehill. P3 Steep sidehill.						
	Veg	P1, P2 and P3 Mixed bush.						
	Soil	P1 and P2 Sandy, rocky. P3 Sandy, loam, wet.						
407	Торо	P2 to P1 75m Uphill, 75m downhill. P2 to P3 Downhill (sidehill)						
	Veg	P1 and P2 Mixed bush. P3 Spruce, Jack Pine, Birch.						
	Soil P1 Rocky. P2 and P3 Soft ground.							
408	408 Topo P1 Uphill. P2 and P3 Flat.							
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1, P2 and P3 Rocky.						
409	Торо	P2 Sidehill. P1 and P3 Flat						
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1 and P2 Rocky. P3 Soft ground						
410	Торо	P1 and P3 Bottom of hill. P2 Top of hill.						
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1, P2 and P3 Rocky						
411	Торо	P2 and P3 Sidehill. P1 Downhill						
	Veg	P1, P2 and P3 Mixed bush.						
	Soil P1, P2 and P3 Rocky							
412	412 Topo P1 Uphill. P2 and P1 Flat							
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1 and P2 Soft ground. P3 Rocky						
413	Торо	P1 and P2 Flat. P3 Downhill.						
	Veg	P1, P2 and P3 Mixed bush.						
414	Soil	P1, P2 and P3 Rocky						

	Logger Field Notes Setup 2 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)							
	Торо	P1 Flat. P2 Uphill. P3 Sidehill						
	Veg	P1, P2 and P3 Mixed bush						
	Soil	P1 Sandy, loam. P2 Sandy, rocky. P3 Very rocky, sandy						
415	Торо	P2 to P1 Flat for 75m, steep downhill for 75m. P2 to P3 Steep Sidehill. P1, P2 and P3 Sidehill.						
	Veg	P1 and P3 Mixed bush. P2 Pine, Birch.						
	Soil	P1 Sandy. P2 Mossy, sandy. P3 by beaver pond, muddy						
416	Торо	P1, P2 and P3 Flat						
	Veg	P1, P2 and P3 Open mixed bush						
	Soil	P1 Mossy, rocky. P2 Mossy, sandy. P3 Mossy, swampy						
417	Торо	P1 and P3 Level ground. P2 Slight hill						
	Veg	P1 Mixed open bush. P2 and P3 Mixed thick bush.						
	Soil	P1 and P2 Rocky, mossy. P3 Rocky, sandy						
418	118Topo P1 to P2 Uphill, downhill. P2 to P3 Sidehill. P1 Sidehill by beave Flat. P3 near drop off							
	Veg	P1 and P2 Open mixed bush. P3 Pine						
	Soil	P1 and P2 Rocky, sand. P3 Boulders, sand.						
419	Торо	P2 to P3 and P2 to P1 Mostly Flat. P1 Flat. P2 and P3 Sidehill.						
	Veg	P1, P2 and P3 Mixed bush.						
	Soil	P1 Mossy, sandy. P2 Mossy. P3 Mossy, swampy						
420	Торо	P1, P2 and P3 Flat						
	Veg	P1 and P2 Open mixed bush. P3 Thick mixed bush						
	Soil	P1 Mossy, clay. P2 Mossy, rocky. P3 Sandy, mossy, clay (old swamp).						
421	Торо	P1 Slight hill. P2 and P3 Flat.						
421	Veg	P1, P2 and P3 Thick mixed bush						
	Culture	P1 to P2 crossed trail. P2 by ATV trail						
	Soil	P1 Rocky, mossy. P2 and P3 Sandy, rocky						
422	Торо	P1 Down big sidehill by lake. P2 Sidehill.						
	Veg	P1 and P3 Thick mixed bush. P2 Mixed bush						
	Soil	P1 Rocky, mossy. P2 and P3 Rocky, sandy						
423	Торо	P1 Edge of rock drop off, level. P2 and P3 Flat.						
	Veg	P1 Mixed bush. P2 and P3 Thick mixed bush						

	Logger Field Notes Setup 2 (Soil/Topography/Vegetation/Culture notes on dipoles and corresponding electrodes P1/P2/P3)						
	Soil	Rocky, muddy					
Infi-	Торо	Flat, beside creek					
nite	Veg	Jack Pine, Maple, Oak					
	Culture	Beside main trail					

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
20-Nov-20	L300N				
	450E	547748	5171446	1400	Sidehill, sand, rock, mixed bush
	400E	547704	5171466	1400	Flat, wet, mossy
	350E	547658	5171486	1500	Level, wet, mossy
	300E	547612	5171504	1400	Level, mud, moss
	250E	547564	5171521	500	Level, mud, moss
	225E	547542	5171532	600	Level, sand, rock, beside road
	200E	547518	5171541	1000	Downhill, sand, rock, mixed bush
	175E	547496	5171551	1000	Uphill, mud, sand, mixed bush
	150E	547475	5171561	500	Uphill, rock, moss
	125E	547450	5171571	400	Uphill, rock, moss
	100E	547428	5171579	400	Top of hill, rock, moss
	75E	547405	5171590	300	Flat, rock, moss
	50E	547383	5171600	300	Flat, sand, rock, beside road
	25E	547359	5171610	400	Downhill, sand, moss
	0E	547336	5171619	400	Uphill, rock, moss
	25W	547313	5171626	400	Flat, rock, moss
	50W	547294	5171640	500	Downhill, rock, moss
	75W	547268	5171651	400	Flat, mud, sand
	100W	547245	5171660	400	Flat, mud, rock
	125W	547222	5171669	400	Flat, mud, moss
	150W	547198	5171677	400	Downhill, mud, moss
	175W	547176	5171687	400	Flat, mud, rock, moss
	200W	547152	5171696	400	Flat, mud, sand, moss
	225W	547129	5171707	400	Flat, mud, sand, rock, moss
	250W	547105	5171715	400	Flat, mud, sand, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	275W	547082	5171725	400	Downhill, mud, sand, rock, moss
	300W	547058	5171735	400	Flat, sand, rock
20-Nov-20	325W	547034	5171745	400	Downhill, sand, moss
	350W	547010	5171755	500	Bottom of hill, rock, moss
	400W	546965	5171772	1200	Uphill, wet, sand, moss
	450W	546919	5171792	600	Flat, sand, moss
	500W	546875	5171812	500	Uphill, sand, moss
	550W	546828	5171832	300	Flat, mud, moss
	600W	546783	5171850	400	Uphill, sand, rock
	650W	546737	5171868	200	Uphill, sand, rock, moss
	700W	546691	5171887	300	Top of hill, rock, moss
	750W	546647	5171904	300	Top of hill, clay, sand
	800W	546599	5171926	300	Uphill, mud, moss
	L200N				
	800W	546564	5171846	500	Flat, rock, moss
	750W	546606	5171825	400	Downhill, rock, moss
	700W	546651	5171806	300	Downhill, sand, rock
	650W	546699	5171785	400	Downhill, clay, sand
	600W	546742	5171767	500	Downhill, clay, rock
	550W	546791	5171745	600	Flat, clay, sand
	500W	546832	5171728	400	Uphill, mud, moss
	450W	546881	5171707	800	Uphill, rock, moss
	400W	546927	5171687	500	Top of hill, rock, sand, moss
	350W	546974	5171665	600	Uphill, sand, rock, moss
	325W	546996	5171656	700	Downhill, sand, rock moss
	300W	547019	5171646	600	Downhill, sand, mud, moss
	275W	547041	5171636	600	Sidehill, rock, moss
	250W	547063	5171626	500	Downhill, rock, moss
	225W	547086	5171617	300	Flat, mud, sand, moss
	200W	547110	5171606	300	Downhill, sand, rock, moss
	175W	547133	5171597	300	Downhill, mud, rock, moss
	150W	547156	5171588	400	Flat, rock, sand, moss
	125W	547179	5171577	400	Flat, rock, clay, moss
	100W	547203	5171568	400	Uphill, mud, moss
	75W	547226	5171557	400	Uphill, rock, moss
	50W	547249	5171546	400	Flat, rock, moss
	25W	547271	5171536	600	Flat, rock, sand, moss
	0E	547295	5171526	300	Flat, sand, rock, beside road
	25E	547319	5171515	200	Uphill, rock, trench

Data	Line/	UTM X	UTM Y	1 (m A)	Ground & Surrounding Area
Date	Station	(m)	(m)	l (mA)	Characteristics
	50E	547343	5171505	400	Top of hill, rock
	75E	547363	5171496	400	Flat, rock, moss
21-Nov-20	100E	547385	5171484	400	Flat, swamp, moss
	125E	547409	5171479	400	Flat, rock, moss
	150E	547431	5171473	700	Downhill, rock, moss
	175E	547453	5171456	600	Downhill, rock, moss
	200E	547477	5171451	700	Flat, rock, sand, moss
	225E	547500	5171439	700	Downhill, rock, moss
	250E	547524	5171423	800	Downhill, rock, sand, moss
	300E	547567	5171407	700	Flat, rock, sand, moss
	350E	547615	5171387	1100	Flat, mud, moss
	400E	547661	5171372	800	Flat, sand, clay, moss
	450E	547709	5171351	1000	Uphill, sand, moss
	500E	547749	5171326	400	Flat, sand, rock, moss, beside road
	550E	547791	5171304	200	Flat, sand, rock, beside road
	L100N				
	700E	547898	5171158	300	Flat, sand, rock
	650E	547853	5171180	300	Flat, rock, mud, moss
	600E	547804	5171198	400	Flat, sand, rock, moss
	550E	547755	5171220	400	Flat, sand, rock, beside trail
	500E	547712	5171238	400	Uphill, sand, mud, moss
	450E	547664	5171260	400	Flat, sand, moss
	400E	547614	5171279	400	Flat, mud, moss
	350E	547570	5171302	400	Uphill, mud
	300E	547522	5171319	400	Top of hill, mud, sand, moss
	250E	547481	5171335	400	Flat, rock, sand
	225E	547456	5171347	400	Downhill, rock, sand, moss
	200E	547433	5171360	400	Swamp
	175E	547415	5171367	400	Uphill, mud, moss
	150E	547389	5171375	400	Uphill, rock, moss
	125E	547366	5171384	400	Top of hill, rock, moss
	100E	547344	5171396	400	Downhill, rock, moss
	75E	547322	5171408	400	Downhill, rock, moss
	50E	547297	5171413	400	Downhill, rock, moss
21-Nov-20	25E	547276	5171427	400	Downhill, rock, moss
	0E	547255	5171434	400	Bottom of hill, sand, rock, beside trail
	25W	547232	5171444	400	Flat, rock, sand, moss
	50W	547208	5171457	400	Flat, rock, sand, moss
	75W	547184	5171467	400	Uphill, sand, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	100W	547163	5171473	400	Flat, clay, moss
	125W	547142	5171482	400	Flat, clay, moss
	150W	547116	5171496	400	Flat, clay, sand, moss
	175W	547095	5171508	400	Flat, clay, sand, moss
	200W	547074	5171518	400	Uphill, clay, sand
	225W	547047	5171526	300	Uphill, sand, moss
	250W	547031	5171532	400	Bottom of cliff, rock, moss
	275W	547005	5171544	400	Flat, rock, moss
	300W	546983	5171553	400	Uphill, rock, sand, moss
	325W	546961	5171561	400	Top of hill, rock, moss
	350W	546942	5171574	400	Uphill, rock, moss
	400W	546894	5171594	400	Downhill, rock, moss
	450W	546849	5171615	400	Bottom of hill, sand, moss
	500W	546804	5171636	400	Flat, rock, clay, moss
	550W	546757	5171657	300	Flat, rock, moss
	600W	546710	5171679	300	Uphill, rock, moss
	650W	546666	5171703	400	Flat, clay, sand, moss
	700W	546622	5171721	300	Uphill, clay, sand, moss
	750W	546574	5171742	800	Flat, swamp, rock, moss
	800W	546532	5171761	400	Flat, sand, moss
	LON				
	800W	546491	5171661	200	Sidehill, rock, moss
	750W	546534	5171645	500	Downhill, rock, sand, moss
	700W	546581	5171622	600	Flat, rock, sand, moss
	650W	546624	5171604	300	Uphill, rock, sand, moss
	600W	546672	5171585	300	Downhill, rock, sand, moss
	550W	546718	5171566	400	Downhill, rock, moss
	500W	546750	5171552	200	Downhill, rock, moss, beside trail
	450W	546795	5171531	1100	Flat, swamp, moss
	400W	546850	5171507	600	Uphill, rock, moss
	350W	546894	5171488	300	Flat, rock, clay, moss
	325W	546916	5171474	600	Uphill, sand, clay
	300W	546943	5171466	400	Flat, sand, rock
	275W	546965	5171456	200	Uphill, sand, rock, moss
21-Nov-20	250W	546986	5171445	400	Downhill, sand, rock
	225W	547011	5171441	400	Downhill, sand, rock,
	200W	547032	5171429	400	Flat, rock, moss
	175W	547058	5171416	300	Downhill, rock
	150W	547074	5171410	400	Sidehill, rock, sand

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	125W	547100	5171398	300	Beside cliff, rock
	100W	547123	5171390	400	Flat, rock, moss
	75W	547145	5171376	400	Flat, sand, clay
	50W	547166	5171370	300	Flat, rock, sand, moss
	25W	547190	5171360	400	Flat, clay
	0E	547214	5171347	600	Middle of trench, rock
	25E	547245	5171335	400	Top of cliff, sand, rock
	50E	547261	5171328	400	Uphill, sand, rock, moss
	75E	547281	5171317	200	Top of hill, rock, clay
	100E	547306	5171311	400	Flat, sand, rock, moss
	125E	547332	5171296	400	Flat, rock, clay, moss
	150E	547350	5171290	300	Downhill, rock, moss
	175E	547373	5171278	400	Downhill, sand, rock
	200E	547396	5171268	400	Flat, swamp
	225E	547421	5171262	400	Flat, swamp
	250E	547441	5171249	400	Uphill, rock, sand, moss
22-Nov-20	300E	547490	5171232	600	Downhill, rock, sand, moss
	350E	547537	5171210	1400	Flat, mud, sand, moss
	400E	547579	5171185	1100	Uphill, sand, moss
	450E	547627	5171170	500	Flat, sand, rock, moss
	500E	547671	5171147	200	Uphill, sand, rock, beside trail
	550E	547718	5171127	1200	Flat, sand, rock, moss
	600E	547763	5171108	500	Flat, sand, rock, beside trail
	650E	547811	5171084	800	Flat, sand, rock, moss
	700E	547854	5171067	300	Flat, sand, mud
	750E	547897	5171041	300	Flat, sand, rock, moss
	L100S				
	850E	547949	5170903	300	Downhill, sand, rock, moss
	800E	547905	5170923	300	Downhill, sand, rock, moss
	750E	547860	5170946	300	Uphill, sand, mud, moss
	700E	547816	5170967	200	Flat, sand, moss
	650E	547769	5170989	400	Flat, sand, clay
	600E	547725	5171008	400	Flat, sand, clay
	550E	547681	5171031	400	Uphill, sand, clay
22-Nov-20	500E	547633	5171048	300	Uphill, sand, clay
	450E	547590	5171067	400	Flat, clay
	400E	547540	5171090	400	Flat, sand, clay
	350E	547494	5171113	400	Downhill, sand, clay, rock
	300E	547460	5171130	400	Uphill, sand, rock

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	250E	547407	5171150	400	Top of hill, rock
	225E	547385	5171160	300	Flat, rock
	200E	547357	5171172	400	Downhill, rock, moss
	175E	547340	5171179	500	Downhill, sand
	150E	547316	5171188	400	Flat, swamp, rock
	125E	547290	5171200	400	Flat, swamp, rock
	100E	547266	5171210	300	Uphill, sand, clay
	75E	547244	5171224	300	Flat, rock, sand
	50E	547224	5171232	400	Uphill, sand, clay, rock
	25E	547199	5171243	400	Flat, sand, rock
	0E	547175	5171243	300	Flat, sand, clay
	25W	547154	5171257	300	Uphill, sand, rock, clay
	50W	547131	5171267	600	Uphill, sand, rock, moss
	75W	547110	5171274	300	Downhill, sand, rock
	100W	547086	5171286	200	Uphill, rock
	125W	547062	5171302	300	Uphill, rock, sand, clay
	150W	547038	5171310	400	Cliff, rock
	175W	547022	5171318	300	Downhill, rock, sand, moss
	200W	546999	5171324	300	Uphill, sand, rock, clay
	225W	546976	5171336	400	Uphill, sand, rock
	250W	546952	5171342	300	Downhill, rock, moss
	275W	546930	5171351	300	Downhill, sand, rock
	300W	546907	5171362	300	Flat, sand, rock, moss
	325W	546887	5171375	400	Downhill, sand, rock, moss
	350W	546861	5171382	400	Downhill, sand, rock, clay, moss
	400W	546816	5171405	400	Flat, swamp, moss
	450W	546771	5171424	400	Flat, swamp, rock
	500W	546725	5171448	400	Flat, swamp
	550W	546674	5171459	300	Uphill, sand, rock
	600W	546631	5171482	200	Uphill, sand, rock, moss
	650W	546587	5171503	200	Flat, sand, rock, moss
	700W	546548	5171523	300	Downhill, sand, rock, moss
	750W	546498	5171537	500	Flat, sand, rock, moss
	800W	546454	5171558	400	Uphill, sand, rock, moss
22-Nov-20	L300S				
	800W	546370	5171375	600	Flat, swamp
	750W	546418	5171352	200	Uphill, sand, rock
	700W	546461	5171331	300	Uphill, sand, rock, moss
	650W	546507	5171313	300	Uphill, sand, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	600W	546558	5171297	300	Top of hill, sand, rock, moss
	550W	546592	5171284	300	Downhill, rock, moss
	500W	546635	5171266	200	Down a cliff, rock, moss
	450W	546681	5171239	400	Bottom of cliff, rock, moss
	400W	546727	5171220	700	Flat, swamp, moss
	350W	546772	5171200	300	Flat, sand, rock, moss
	300W	546818	5171182	400	Uphill, sand, rock, moss
	250W	546865	5171165	400	Uphill, sand, rock, moss
	200W	546912	5171148	500	Flat, sand, rock, clay, moss
	150W	546952	5171123	400	Flat, sand, rock, clay, moss
	100W	547002	5171103	800	Flat, sand, rock, moss
	50W	547046	5171083	600	Uphill, sand, rock, moss
	0E	547095	5171064	400	Uphill, sand, rock, moss
	50E	547142	5171054	300	Downhill, sand, rock, moss
	100E	547186	5171033	300	Uphill, sand, rock, moss
	150E	547234	5171012	500	Uphill, sand, rock, moss
	200E	547281	5170997	300	Uphill, rock, moss
	250E	547325	5170971	600	Uphill, sand, rock, moss
	300E	547372	5170948	400	Bottom cliff, rock, moss
	350E	547418	5170928	500	Flat, sand, rock, moss
	400E	547460	5170905	400	Uphill, sand, rock, moss
	450E	547506	5170888	300	Downhill, sand, rock, moss
	500E	547554	5170866	700	Flat, sand, rock, clay, moss
	550E	547604	5170852	500	Flat, sand, moss
	600E	547642	5170824	1200	Flat, sand, clay, moss
	650E	547691	5170806	900	Flat, sand, moss
	700E	547738	5170782	400	Uphill, sand, moss
	750E	547780	5170765	200	Downhill, sand, moss
	800E	547828	5170745	100	Downhill, sand, rock, clay, moss
	850E	547869	5170727	200	Downhill, sand, rock, moss
	900E	547917	5170698	200	Uphill, sand, rock, moss
	950E	547961	5170686	300	Flat, sand, rock
	L500S				
	900E	547116	5170853	100	Flat, sand, beside road
22-Nov-20	850E	547063	5170858	300	Flat, sand, rock
	800E	546974	5170898	300	Flat, rock, clay
23-Nov-20	750E	546919	5170910	800	Flat, sand, moss
	700E	546883	5170947	900	Flat, sand, clay, moss
	650E	546852	5170974	300	Flat, sand, clay

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	600E	546784	5170980	300	Flat, sand, clay
	550E	546739	5170994	1300	Flat, sand, clay, swamp
	500E	546700	5171019	700	Flat, sand, clay
	450E	546650	5171035	400	Flat, sand, clay
	400E	546611	5171054	600	Flat, sand, clay, moss
	BL0E				
	350N	547351	5171662	600	Flat, sand, rock, beside trail
	250N	547315	5171569	400	Uphill, sand, rock, moss
	150N	547284	5171470	300	Flat, sand, rock, on road
	50N	547237	5171394	300	Flat, sand, rock, beside road
	50S	547196	5171297	600	Uphill, sand, rock, beside road
	150S	547158	5171203	500	Flat, sand, rock, beside road
	200S	547142	5171155	400	Uphill, sand, rock
	250S	547116	5171109	400	Uphill, sand, rock
	350S	547079	5171022	400	Downhill, sand, rock
	400S	547063	5170970	400	Downhill, sand, rock
	450S	547042	5170928	400	Flat, sand, rock, clay
	500S	547024	5170887	400	Flat, sand, rock
	L500S				
	100E	547116	5170853	500	Downhill, sand, rock, moss
	50E	547063	5170858	300	Flat, sand, rock
	50W	546974	5170898	1200	Flat, sand, rock, swamp
	100W	546919	5170910	400	Downhill, sand, rock, moss
	150W	546883	5170947	500	Flat, swamp, sand, rock, clay
	200W	546852	5170974	300	Flat, sand, clay
	250W	546784	5170980	300	Uphill, sand, moss
	300W	546739	5170994	600	Uphill, sand, rock
	350W	546700	5171019	400	Downhill, sand, rock
	400W	546650	5171035	500	Flat, sand, rock, moss
	450W	546611	5171054	600	Flat, sand, moss, swamp
	500W	546557	5171078	400	Top of hill, sand, rock, moss
	550W	546527	5171105	400	Sidehill, sand, rock, clay
	600W	546464	5171111	100	Sidehill, sand, rock
	650W	546426	5171136	300	Downhill, sand, rock
23-Nov-20	700W	546373	5171154	100	Cliff, rock, moss
	750W	546329	5171171	400	Downhill, sand, rock
	800W	546286	5171189	1400	Flat, swamp
	L500S				
	850W	546244	5171202	1400	Flat, sand

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	900W	546211	5171205	1000	Flat, rock, sand
	950W	546169	5171245	300	Flat, sand
	1000W	546154	5171308	500	Flat, sand
	1050W	546141	5171373	200	Flat, sand
	1100W	546115	5171414	200	Flat, rock
	1150W	546072	5171459	200	Flat, sand, rock
	1200W	546038	5171478	500	Flat, rock, sand
	1250W	545987	5171498	800	Flat, sand
	1300W	545930	5171497	400	Flat, sand
	1350W	545883	5171512	700	Flat, sand
	1400W	545828	5171506	1200	Flat, sand, rock
	1450W	545771	5171506	300	Uphill, sand, rock
	L1100W				
	300S	546078	5171516	500	Flat, rock
24-Nov-20	250S	546101	5171558	500	Flat, rock, sand
	200S	546107	5171617	800	Downhill, rock, sand
	150S	546090	5171669	200	Downhill, rock, sand
	100S	546080	5171723	600	Flat, rock, sand
	50S	546087	5171787	200	Flat, sand
	0N	546105	5171833	200	Flat, sand
	50N	546130	5171875	200	Flat, sand, rock
	100N	546146	5171920	300	Downhill, sand, rock
	150N	546143	5171977	400	Flat, sand, rock
	200N	546149	5172034	200	Uphill, sand
	250N	546186	5172064	300	Flat, sand, rock
	300N	546232	5172091	200	Flat, sand
	350N	546276	5172124	500	Flat, sand
	400N	546324	5172138	500	Flat, sand
	L700S				
	800W	546220	5171017	200	Flat, sand, clay
	750W	546269	5170996	400	Flat, sand, rock
	700W	546317	5170974	900	Flat, swamp, rock, moss
	650W	546356	5170956	400	Uphill, sand, rock
	600W	546407	5170929	500	Flat, sand, rock, moss
24-Nov-20	550W	546452	5170912	300	Flat, sand, rock, moss, beside trail
	500W				Pond, no reading
	450W	546538	5170879	400	Uphill, sand, rock
	400W	546581	5170854	400	Uphill, sand, rock, moss
	350W	546626	5170838	400	Downhill, sand, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	300W	546673	5170813	400	Downhill, sand, rock, moss
	250W	546714	5170791	200	Sidehill, sand, rock, moss
	200W	546762	5170773	200	Sidehill, rock, moss
	150W	546798	5170760	600	Sidehill, rock, sand, moss
	100W	546850	5170735	400	Sidehill, rock, sand, moss
	50W	546900	5170713	1500	Flat, swamp
	0E	546941	5170697	400	Sidehill, rock, sand, moss
	BL0E				
	650S	546963	5170745	200	Downhill, rock, sand
	600S	546980	5170793	200	Sidehill, rock, sand, moss
	550S	547001	5170843	900	Flat, rock, sand, moss, beside pond

Table 8: Current Injection Field Notes Setup 1

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
27-Nov-20	BL0E				
	350N	547367	5171665	1100	Flat, sand, rock, beside trail
	300N	547335	5171616	800	Uphill, sand, rock
	250N	547316	5171569	400	Uphill, sand, rock, clay, moss
	200N	547296	5171527	300	Flat, sand, rock, beside road
	150N	547277	5171473	500	Flat, sand, rock, beside road
	100N	547252	5171437	200	Flat, sand, rock, beside road
	50N	547233	5171385	200	Flat, sand, rock, beside road
	0N	547218	5171343	900	Trench, rock
	50S	547195	5171294	800	Uphill, rock, sand, clay, moss
	100S	547178	5171246	200	Uphill, rock, sand, beside trail
	150S	547157	5171207	1300	Flat, rock, sand, wet, moss
	200S	547131	5171146	400	Uphill, rock, sand
	250S	547118	5171114	400	Flat, rock, sand, moss
	300S	547100	5171070	400	Downhill, sand, rock, moss
	350S	547078	5171026	400	Downhill, sand, rock, moss
	400S	547065	5170980	400	Downhill, sand, rock, clay, moss
	450S	547043	5170929	400	Downhill, sand, rock, moss
	500S	547017	5170879	300	Flat, sand, rock, clay, moss
	L500S				
	50E	547062	5170861	200	Flat, rock, moss
27-Nov-20	100E	547107	5170843	400	Downhill, rock, moss, beside lake
	50W	546970	5170902	500	Flat, rock, sand, moss, beside trail
	100W	546922	5170922	400	Uphill, rock, moss
	150W	546875	5170946	400	Flat, rock, sand, moss
	200W	546831	5170958	200	Downhill, rock, sand, moss
	250W	546786	5170988	400	Uphill, rock, sand
	300W	546745	5171005	400	Uphill, rock, sand, moss
	350W	546695	5171012	400	Downhill, rock, clay, moss
	400W	546645	5171034	300	Flat, rock, clay, moss
	450W	546602	5171057	400	Flat, rock, sand, moss
	500W	546558	5171076	400	Uphill, rock, sand, clay, moss
	550W	546504	5171088	300	Sidehill, rock, moss
	600W	546466	5171117	200	Sidehill, rock, sand, moss
	650W	546418	5171127	300	Flat, rock, sand, moss
	700W	546371	5171152	200	Top of hill, rock, moss
	750W	546328	5171170	300	Downhill, rock, sand, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	800W	546288	5171189	800	Flat, swamp
	850W	546245	5171200	1000	Uphill, sand, moss
	900W	546211	5171205	500	Flat, rock, sand
	950W	546165	5171242	200	Flat, rock, sand, beside trail
	1000W	546151	5171301	400	Flat, rock, sand, beside trail
	1050W	546141	5171365	200	Flat, rock, sand, beside trail
	1100W	546115	5171410	100	Flat, rock, sand, beside trail
	1200W	546072	5171462	200	Flat, rock, sand, beside trail
	1250W	546057	5171466	400	Flat, rock, sand, beside trail
	1300W	546006	5171498	200	Flat, rock, sand, beside trail
	1350W	545936	5171489	200	Downhill, rock, sand, beside trail
	1400W	545879	5171512	900	Flat, rock, sand beside trail
	1450W	545829	5171513	1400	Uphill, rock, sand, beside trail
	1500W	545777	5171509	100	Uphill, rock, sand, beside trail
	L900S				
	800W	546117	5170822	200	Flat, rock, sand
	750W	546165	5170804	300	Flat, rock, sand, moss
	700W	546205	5170786	300	Flat, rock, sand, moss
	650W	546253	5170769	300	Flat, rock, sand, moss
	600W	546298	5170749	400	Uphill, rock, sand
	550W	546346	5170730	300	Downhill, rock, sand, moss
	500W	546391	5170712	300	Downhill, rock, sand, clay, moss
	450W	546421	5170715	600	Bottom of hill, rock, moss
27-Nov-20	L700S				
	500W	546478	5170904	400	Beside pond, rock, moss
	550W	546446	5170914	400	Flat, sand, rock, beside trail
	600W	546400	5170939	400	Uphill, sand, rock, moss
	650W	546358	5170961	400	Downhill, rock, sand, moss
	700W	546308	5170985	500	Flat, beside pond, rock, sand
	750W	546267	5171002	300	Flat, sand, rock
	800W	546219	5171023	200	Flat, sand, moss
28-Nov-20	L700S				
	450W	546535	5170867	300	Uphill, sand, rock
	400W	546586	5170854	400	Uphill, sand, rock, moss
	350W	546634	5170835	300	Flat, rock, moss
	300W	546675	5170816	400	Flat, rock, sand, moss
	250W	546719	5170799	200	Downhill, rock, moss
	200W	546769	5170775	200	Uphill, rock, sand, moss
	150W	546815	5170762	100	Downhill, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	100W	546855	5170737	400	Uphill, rock, sand, moss
	50W	546903	5170723	400	Flat, swamp
	0E	546943	5170705	400	Uphill, rock, sand
	BL0E				
	650S	546964	5170742	300	Flat, rock, sand, clay, moss
	600S	546984	5170794	100	Flat, rock
	550S	547000	5170811	400	Flat, rock
	L900S				
	50N	546824	5170533	300	Downhill, rock, sand
	0N	546871	5170522	300	Uphill, rock, sand
	BL0E				
	850S	546889	5170560	400	Flat, rock, sand
	800S	546904	5170611	400	Flat, rock
	750S	546921	5170661	400	Downhill, rock
	L700S				
	50E	546984	5170675	400	Sidehill, rock, moss
	100E	547031	5170654	200	Sidehill, rock
	150E	547076	5170635	300	Flat, rock, sand, moss
	200E	547123	5170616	200	Downhill, rock, sand
	250E	547168	5170602	400	Flat, swamp
	300E	547216	5170582	400	Flat, rock, sand, moss
	350E	547262	5170559	300	Flat, rock, sand, moss
	400E	547302	5170535	300	Flat, rock, sand, moss
28-Nov-20	450E	547350	5170516	300	Uphill, rock, sand
	500E	547394	5170496	200	Flat, rock, sand, moss
	550E	547444	5170479	400	Flat, rock, sand, moss
	600E	547487	5170463	300	Uphill, rock, sand, moss
	650E	547535	5170442	400	Flat, rock, sand, moss
	700E	547576	5170421	400	Side of cliff, rock, moss
	750E	547624	5170402	400	Flat, rock, sand
	800E	547667	5170384	400	Flat, rock, sand
	850E	547716	5170369	300	Uphill, rock, sand, moss
	900E	547761	5170348	300	Flat, rock, sand, moss
	950E	547785	5170340	300	Flat, rock, sand, beside road
	L1000S				
	550E	547680	5169693	300	Downhill, rock, sand
	500E	547648	5169766	400	Flat, rock, sand
	450E	547619	5169813	600	Flat, rock, sand, moss
	400E	547586	5169861	1200	Flat, next to pond, rock, sand

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	350E	547561	5169928	300	Flat, rock, sand
	300E	547524	5169981	400	Flat, rock, sand, moss
	250E	547502	5170032	100	Flat, gravel, rock, sand, beside trail
	200E	547463	5170082	100	Flat, rock, moss, beside trail
	150E	547467	5170106	200	Flat, gravel, rock, sand, beside trail
	100E	547506	5170121	100	Flat, gravel, rock, sand, beside trail
	50E	547574	5170131	100	Flat, gravel, rock, sand, beside trail
	0E	547647	5170143	200	Flat, gravel, rock, sand, beside trail
	L900S				
	1450E	548080	5169852	300	Flat, rock, sand, beside trail
	1400E	548043	5169875	200	Flat, rock, sand, beside trail
	1350E	547997	5169894	200	Flat, rock, sand, beside trail
	1300E	547963	5169903	500	Flat, rock, sand, beside trail
	1250E	547907	5169914	400	Flat, rock, sand, beside trail and culvert
	1200E	547849	5169937	500	Flat, rock, sand
	1150E	547815	5169968	400	Flat, rock, sand
	1100E	547771	5170012	400	Flat, rock, sand
	1050E	547766	5170073	300	Flat, rock, sand
	1000E	547749	5170135	200	Uphill, rock, sand
	950E	547734	5170164	300	Uphill, rock, sand
	900E	547704	5170181	200	Flat, rock, sand, clay
	850E	547647	5170208	1100	Beaver dam
	800E	547598	5170224	500	Flat, rock, sand, moss
28-Nov-20	750E	547548	5170244	300	Uphill, rock, sand, clay, moss
	700E	547504	5170259	600	Flat, rock, sand, clay, moss
	650E	547459	5170279	400	Flat, rock, sand, clay, moss
	600E	547410	5170298	600	Flat, sand, clay
	550E	547370	5170316	300	Downhill, rock, sand, moss
	500E	547323	5170334	400	Uphill, rock, sand, clay, moss
	450E	547275	5170353	400	Uphill, rock, sand
	400E	547232	5170369	400	Flat, rock, sand, moss
	350E	547183	5170391	400	Sidehill, rock, sand, moss
	300E	547139	5170405	400	Flat, next to pond, rock, moss
	250E	547090	5170422	400	Flat, rock, sand, moss
	200E	547051	5170444	300	Sidehill, rock, sand, moss
	150E	547002	5170464	300	Sidehill, rock, sand, moss
	100E	546958	5170478	400	Sidehill, rock, sand, moss
	50E	546908	5170502	300	Sidehill, rock, sand, moss
29-Nov-20	L500S				

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	400E	547387	5170736	400	Uphill, sand, clay
	450E	547437	5170717	400	Flat, rock, sand, moss
	500E	547482	5170696	400	Flat, rock, sand, clay, moss
	550E	547531	5170678	800	Uphill, swamp
	600E	547576	5170659	300	Uphill, sand, moss
	650E	547623	5170637	300	Flat, sand, clay, moss
	700E	547668	5170617	400	Flat, sand, moss
	750E	547714	5170601	300	Uphill, sand, moss
	800E	547763	5170583	300	Flat, sand, moss
	850E	547829	5170553	300	Flat, sand, moss
	900E	547848	5170544	200	Downhill, sand, moss, beside road
	L300S				
	950E	547968	5170675	300	Flat, sand, moss
	900E	547921	5170701	200	Flat, sand, moss
	850E	547879	5170722	300	Uphill, sand, rock, moss
	800E	547833	5170745	200	Uphill, sand, rock, moss
	750E	547785	5170759	300	Downhill, sand, rock, moss
	700E	547739	5170790	300	Downhill, sand, clay, moss
	650E	547697	5170798	600	Flat, swamp
	600E	547651	5170818	400	Uphill, sand, moss
	550E	547604	5170847	500	Flat, sand, rock, moss
	500E	547560	5170866	500	Uphill, sand, moss
	450E	547532	5170873	400	Uphill, sand, rock, moss
29-Nov-20	400E	547468	5170907	200	Downhill, sand, moss
	350E	547422	5170922	600	Downhill, sand, rock, moss
	300E	547378	5170941	400	Uphill, sand, rock, moss
	250E	547329	5170965	400	Top of hill, rock, moss
	200E	547287	5170989	400	Flat, rock, moss
	150E	547238	5171008	400	Downhill, rock, moss
	100E	547190	5171025	300	Downhill, rock, sand, moss
	50E	547145	5171047	200	Uphill, rock, moss
	50W	547037	5171088	400	Flat, rock, sand, moss
	100W	547001	5171102	300	Flat, rock, sand, moss
	150W	546961	5171117	300	Uphill, sand, rock, moss
	200W	546914	5171139	400	Uphill, sand, rock, moss
	250W	546861	5171154	400	Downhill, sand, rock, moss
	300W	546823	5171183	400	Downhill, sand, rock
	350W	546773	5171196	500	Flat, rock, sand
	400W	546729	5171223	600	Flat, swamp

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	450W	546682	5171241	200	Flat, sand, rock, beside trail
	500W	546641	5171261	200	Uphill, cliff, rock
	550W	546600	5171276	200	Uphill, cliff, rock, moss
	600W	546552	5171293	200	Top of cliff, rock, moss
	650W	546502	5171314	300	Downhill, sand, rock, moss
	700W	546458	5171332	300	Downhill, sand, rock, moss
	750W	546418	5171351	200	Flat, sand, rock, moss
	800W	546375	5171374	700	Flat, swamp
	L100S				
	800W	546450	5171557	400	Top of hill, sand, rock, moss
	750W	546489	5171537	500	Flat, swamp
	700W	546538	5171521	200	Uphill, rock, moss
	650W	546581	5171503	300	Sidehill, rock, moss
	600W	546634	5171486	300	Downhill, sand, rock, moss
	550W	546672	5171466	300	Downhill, sand, rock, moss
	500W	546718	5171447	500	Flat, swamp
	450W	546763	5171429	600	Flat, swamp
	400W	546808	5171408	700	Flat, swamp
	350W	546849	5171387	200	Uphill, sand, rock, moss
	300W	546904	5171368	500	Flat, sand, rock, moss
	250W	546945	5171348	300	Uphill, sand, rock, moss
	200W	546992	5171335	400	Downhill, sand, rock, moss
	150W	547025	5171321	300	Bottom of cliff, rock, moss
29-Nov-20	100W	547081	5171296	300	Downhill, sand, rock, moss
	50W	547124	5171271	500	Downhill, sand, rock, moss
	50E	547218	5171229	400	Downhill, sand, rock, moss
	100E	547261	5171208	300	Uphill, sand, rock, moss
	150E	547310	5171189	800	Flat, swamp
	200E	547362	5171177	300	Uphill, sand, rock, moss
	250E	547400	5171156	300	Sidehill, sand, rock, moss
	300E	547464	5171125	500	Bottom of hill, sand, rock, moss
	350E	547487	5171112	400	Uphill, sand, rock, moss
	400E	547531	5171092	400	Flat, sand, rock, moss
	450E	547581	5171072	400	Flat, sand, rock, moss
	500E	547625	5171044	400	Uphill, sand, clay, moss
	550E	547665	5171034	500	Downhill, sand, rock, moss
	600E	547714	5171009	500	Flat, sand, rock, moss
	650E	547762	5170991	400	Flat, sand, rock, moss
	700E	547808	5170968	200	Flat, sand, rock, moss

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	750E	547853	5170950	200	Downhill, sand, moss
	800E	547897	5170920	300	Flat, sand, moss
	850E	547938	5170903	300	Uphill, sand, moss
	L100N				
	700E	547885	5171158	300	Flat, sand, rock
	650E	547841	5171183	200	Flat, sand, moss
	600E	547793	5171203	500	Flat, sand, rock, moss
	550E	547748	5171220	400	Downhill, sand, rock, moss
	500E	547706	5171244	700	Uphill, sand, rock, moss
	450E	547661	5171259	400	Flat, sand, moss
30-Nov-20	400E	547618	5171280	800	Flat, sand, rock, moss
	350E	547562	5171308	1000	Flat, swamp
	300E	547526	5171321	600	Uphill, sand, rock, moss
	250E	547477	5171335	900	Flat, sand, rock, clay, moss
	200E	547434	5171357	1000	Flat, swamp
	150E	547387	5171375	300	Uphill, sand, rock, moss
	100E	547345	5171391	500	Uphill, sand, rock, moss
	50E	547297	5171414	600	Downhill, sand, rock, moss
	50W	547212	5171449	700	Flat, sand, rock, moss
	100W	547159	5171473	200	Flat, sand, rock, moss
	150W	547116	5171491	400	Flat, sand, rock, moss
	200W	547066	5171513	300	Uphill, sand, rock, moss
	250W	547026	5171532	200	Sidehill, rock, moss
30-Nov-20	300W	547006	5171541	300	Flat, rock, sand, moss
	350W	546934	5171562	300	Flat, rock, sand, moss
	400W	546892	5171587	400	Downhill, sand, rock, moss, clay
	450W	546842	5171610	900	Flat, swamp
	500W	546803	5171630	700	Flat, swamp
	550W	546764	5171656	400	Uphill, sand, rock, moss
	600W	546717	5171673	300	Uphill, sand, rock, moss
	650W	546670	5171703	300	Uphill, sand, rock, moss, clay
	700W	546627	5171725	300	Uphill, sand, rock, moss, clay
	750W	546580	5171745	400	Flat, swamp
	800W	546536	5171765	300	Flat, swamp
	L300N				
	50E	547357	5171610	300	Flat, sand, rock, beside road
	100E	547422	5171581	400	Downhill, sand, rock, moss
	150E	547474	5171561	400	Downhill, sand, rock, moss
	200E	547515	5171540	700	Uphill, sand, rock, moss, clay

Date	Line/ Station	UTM X (m)	UTM Y (m)	l (mA)	Ground & Surrounding Area Characteristics
	250E	547561	5171524	500	Flat, sand, rock, moss
	300E	547605	5171500	1500	Flat, swamp
	350E	547655	5171484	1500	Flat, swamp
	400E	547698	5171466	1500	Flat, swamp
	450E	547743	5171445	500	Flat, sand, rock

Table 9: Current Injection Field Notes Setup 2

4.8 SAFETY

Canadian Exploration Services Ltd prides itself in creating and maintaining a safe work environment for its employees. Each crew member is briefed on the jobsite location, equipment safety, standard operating procedures along with our health and safety manual. An emergency response plan is generated relating to the specific job and with the jobsite predominantly in the field, which is unpredictable, morning safety briefings are essential. Topics are generally chosen based off jobsite characteristics of the area, weather conditions, timing and crew experience. All possible topics discussed during a survey, dependent on field conditions and time of the year, are listed in the following table.

Safety Topic	Protocol
Active Work Site	Be aware of surrounding activities – drilling, mine monitoring, and traffic. Caution when working near roads, and post safety signs to alert passers-by of ongoing geophysical surveys.
ΑΤν	Conduct circle check before operating an ATV. Ensure brakes and tires are in good working condition. Drive at reasonable speeds according to terrain to avoid accidents. The use of hel- mets is mandatory.
Extreme Temperatures	With temperatures down to -40, there is an increased risk of cold related injuries (i.e. frostbite, hypothermia). Dress accordingly and take breaks to warm up if necessary. Bring extra clothing to anticipate for possible drop in temperature throughout the day. With temperatures up to +30C, there is an increased risk of heat stroke. Keep hydrated throughout the day and in shaded areas if possible.
Communication	Check in with the crew leader or any crew member when work- ing individually to inform the team of your safety and well-being.
Heavy Lifting	When lifting equipment individually, always lift with your legs ra- ther than your back. Always ask fellow crew members for help when lifting or moving heavy and large equipment (i.e. transmit- ter, generator, snowmobile, etc.).
Hunting Seasons	There may be more traffic during hunting season. Be careful when crossing. Wear proper (high-visibility) attire to avoid being mistaken for an animal in the bush.
Power Protocol	When in doubt, always assume that power is on and stay clear of survey circuits until confirmed otherwise.
Power Tools	Be alert when operating power tools – chainsaw, Tanaka, etc. Do not operate equipment when unsure of safety instructions for

Safety Topic	Protocol
	the specific tool.
Rain	Terrains may be slippery. Traverse carefully to avoid slipping, especially when ascending, descending, or walking along side of hills. When there is a chance of thunderstorm, notify person in-charge of transmitter when thunder is heard. Be extra careful with power protocol due to increased risk of shock. Bring extra clothing in case gear gets too wet and heavy.
Sharp Tools	Be careful when handling tools such as a machete and knives to avoid injuries. Inform another crew member of any injuries.
Slips, Trips and Falls	Increased risk of hidden hazards with snow coverage. Proper use of snow shoes is encouraged to avoid injuries from slipping, tripping, or falling. 3 points of contact is encouraged.
Snowmobile	Proper use of PPE (i.e. safety helmet, high visibility attire, etc.). Practice safety checks before operating snowmobiles. Ensure that engines and brakes are in good working condition. Ensure that oil, coolant, and gasoline levels are sufficient for distance of travel. Check that snowmobile is physically safe to operate (i.e. no broken parts).
Truck and Trailer	Conduct safety checks prior to operation of company trucks to ensure engines, brakes, tires, and etc. are in good working con- dition prior to operating vehicle. Conduct circuit checks when mobilizing and de-mobilizing trailers.
Water Hazards	Creeks, lakes, and swamps may not be fully frozen even under very low temperatures. The use of a stick or pole is encouraged for testing water bodies prior to crossing.
Wildlife	Always be aware of surroundings, keeping an eye out for ani- mals such as bears, moose and wolves. Carry bear spray when in the field during the summer.
Winter Driving	Snow accumulation, freezing rain and icy conditions create added road hazards. Road into field sites may be rough. Drive at appropriate speeds according to road conditions.

Table 10: General Safety Topic Protocols

Emphasized daily topics discussed in the field for this project include:

Date	Safety Topic
November 8, 2020	Mobilization. Trucks and trailers circle check. Drive according to road conditions

November 9, 2020	Chainsaw use and chainsaw PPE.
November 10, 2020	Hunter awareness
November 11, 2020	Slips/trips/falls, number one cause of lost time, 3 points of contact rule. High hills, steep topo, cliffs, find safe way down.
November 12, 2020	Weekly review. Reviewed safety topics covered throughout week.
November 16, 2020	Mobilization. Trucks and trailers circle check. Drive according to road conditions.
November 17, 2020	Emergency response plan. Satellite phone and Spot use.
November 18, 2020	ATV Safety, circle check. Drive according trails conditions
November 19, 2020	Slips/trips/falls, number one cause of lost time, 3 points of contact rule. High hills, steep topo, cliffs, find safe way down.
November 20, 2020	Power Protocol. Always assume Power is ON. Clear in Front/Back. Do not clip in/out while transmitting. Always ask if not sure before touching wire.
November 21, 2020	Covid-19 Increase risk in Sudbury (City) Yellow Zone. Use all protocols, masks, sanitizer, social distancing, etc.
November 22, 2020	Weekly review. Reviewed safety topics covered throughout week.
November 23, 2020	Hunter awareness – Safety precautions. Be safe, be seen, Hi-Vis, Vest, Jacket, hats, etc. If encounter a hunter, inform we are working in area.
November 24, 2020	High Voltage signs – Trails. Post High Voltage signs every 500m on main road. Post a trail crossings-flag.
November 25, 2020	Winter weather driving. Drive according to conditions, allow additional space between vehicle in front, 4x4 on secondary road.
November 26, 2020	Working hand tools: Knife, axes, machete. Power tools: Chainsaws, Tanakas
November 27, 2020	Garbage. Empty containers, boxes, tape, food, etc. Take re- sponsibility and clean up after yourself. If you take food, bot- tles, plastic IN, take empty OUT.
November 28, 2020	Power Protocol. Always assume Power is ON. Clear in Front/Back. Do not clip in/out while transmitting. Do not untie wire at end of line until final reading is done.
November 29, 2020	Heavy lifting. Lift with legs not your back. Lift within limits, ask for help, generator, transmitter, etc. Try to avoid twisting, square up to lift.
November 30, 2020	Weather warning in effect. Snow heavy at times expected though today until Wednesday. Dress appropriately, extra clothes.

December 01, 2020	Truck and Trailer circle check. Check straps and load on trailers periodically. Drive according to conditions, using 4x4 if need be. Demob			
Table 11: Daily Field Safety Topics				

CANADIAN EXPLORATION SERVICES LIMITED PLAN-EXECUTE-DISCOVER-DEVELOP Page 59

5. INSTRUMENTATION & METHODS

5.1 INSTRUMENTATION¹

Walking Magnetometer Survey

The survey was conducted with a GSM-19 v7 Overhauser magnetometer in stop and go mode with a second GSM-19 magnetometer in base station mode for diurnal correction. The system was also configured to collect VLF EM data.

The GSM-19 measures the Earth's magnetic field with less than 0.1 nT sensitivity, 0.01 resolution, and 0.2 nT absolute accuracy over its full temperature range.

3D IP Distributed Array IP Survey

20 two-channel IRIS Full Waver IP receivers were employed for the 3D IP survey. The transmitter consisted of a GDDII (5kW) with a Honda 6500 as a power plant. A current monitor was connected to the transmitter to record the current transmitted over 90s for each injection point.

Time-domain IP surveys involve measurement of the magnitude of the polarization voltage that results from the injection of pulsed current into the ground. Apparent resistivity and chargeability are the parameters of interest measured through this procedure.

5.2 THEORETICAL BASIS

Walking Magnetometer Survey

The GSM-19 Overhauser magnetometer measures the Earth's magnetic field in a multi-step process that provides better results by using the Overhauser effect. The Overhauser effect occurs when a special liquid (with unpaired electrons) is combined with hydrogen atoms. The unpaired electrons couple with the protons within the hydrogen atom, to produce a two-spin system. This electron-proton coupling is then disturbed once exposed to secondary polarization from a strong radio frequency (RF) magnetic field. The unpaired electrons transfer their stronger polarization to hydrogen atoms, which allows an increased polarization of protons in the sensor liquid. Thus, generating a strong precession signal, which causes a deflection of the proton magnetization into the plane of precession. A pause then allows the electrical transient to die off. This leaves the proton precession signal to slowly decay above the noise level. Following this slow decay, the proton precession frequency is counted, measured and converted into magnetic field units. Finally, the results are stored in memory with the

¹ Refer to appendix B for instrument specifications.

date, time, and coordinates of the measurements. In the base station mode, only the time and total field are stored (GEM Systems, 2007).

<u>3D IP Distributed Array IP Survey</u>

Time domain IP (TD-IP) surveys involve measurement of the magnitude of the polarization voltage that results from the injection of pulsed current into the ground.

Two main mechanisms are known to be responsible for the IP effect although the exact causes are still poorly understood. The main mechanism in rocks containing metallic conductors is electrode polarization (overvoltage effect). This results from the buildup of charge on either side of conductive grains within the rock matrix as they block the flow of current. Upon removal of this current the ions responsible for the charge slowly diffuse back into the electrolyte (groundwater) and the potential difference across each grain slowly decays to zero.

The second mechanism, membrane polarization, results from a constriction of the flow of ions around narrow pore channels. It may also result from the excessive build up of positive ions around clay particles. This cloud of positive ions similarly blocks the passage of negative ions through pore spaces within the rock. Upon removal of the applied voltage the concentration of ions slowly returns to its original state resulting in the observed IP response.

In TD-IP, the current is usually applied in the form of a square waveform, with the polarization voltage being measured over a series of short time intervals after each current cut-off, following a short delay of approximately 0.5s. These readings are integrated to give the area under the decay curve. The integral voltage is divided by the observed steady voltage (the voltage due to the applied current, plus the polarization voltage) to give the apparent chargeability (Ma) measured in milliseconds. For a given charging period and integration time the measured apparent chargeability provides qualitative information on the subsurface geology.

The polarization voltage is measured using a pair of non-polarizing electrodes like those used in spontaneous potential measurements and other IP techniques.

5.3 SURVEY SPECIFICATIONS

Walking Magnetometer Survey

Base station corrected Total Magnetic Field surveying was used for this magnetometer survey. Two synchronized GSM-19 v7 Overhauser magnetometers of identical type were needed. One magnetometer unit was set in a fixed position in a region of

stable geomagnetic gradient, and away from possible cultural effects (i.e. moving vehicles) to monitor and correct for daily diurnal drift of the magnetic field. This magnetometer, given the term 'base station', stored the time, date and total field measurement at fixed time intervals over the survey day. A second, remote mobile unit was set to magnetometer mode. Readings were taken at 1 second increments along the cut grid line. The remote magnetometer stored the grid coordinates time, date, total field measurements, simultaneously and the GPS coordinates. The procedure consisted of taking total field magnetic measurements of the Earth's magnetic field along cut grid lines. At each grid picket (25-metre interval) a position stamp would be taken with continuous 1 second magnetic and GPS readings between pickets.

3D IP Distributed Array IP Survey

The 3D Distributed Induced Polarization array configuration was used for this survey. This array consisted of 66 mobile stainless steel read electrodes and two current electrodes in each setup. 22 portable receivers were each connected to 3 read electrodes (P1, P2, and P3) to create 2 orthogonal components with 25-150m dipole spacings. The power location (CA) was chosen based on field conditions but placed throughout the survey area (randomly or in a grid-like manner). In this case, there were 13 eastwest, spaced at 100m intervals and a single baseline. Along various lines the power transmits were injected at approximately every 25-50m. The infinite was located approximately 4.5 kilometres north-northeast of the center of the survey grid at 545823E and 5167038N. The infinite was placed as far as possible to achieve a pole-dipole array. The maximum theoretical depth obtained was approximately 480 metres. An 8 second transmit cycle time, with a 2 second energizing time was used for a duration of 90 seconds for approximately 12 stacks.

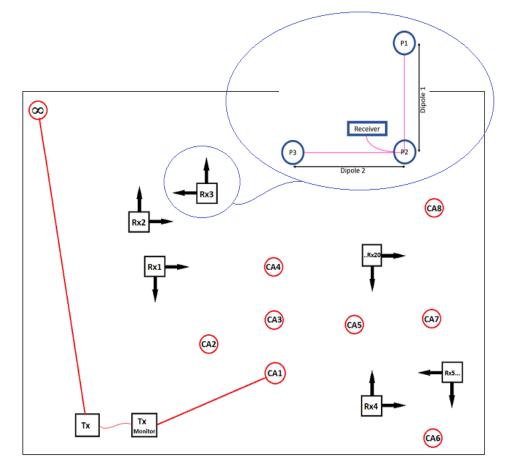
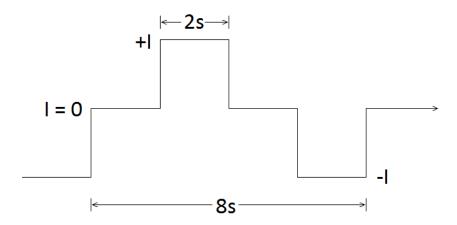
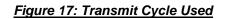




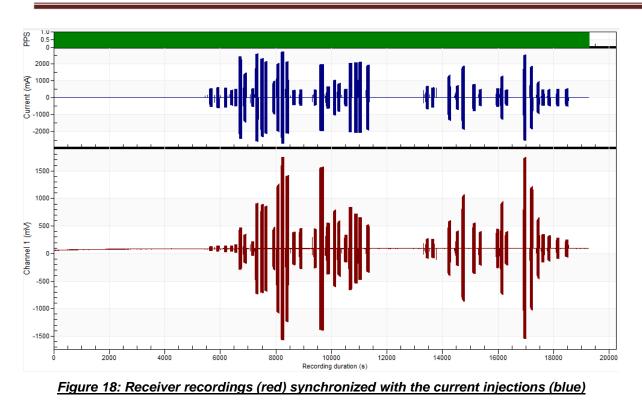
Figure 16: 3D Distributed IP Configuration

6. QUALITY CONTROL & PROCESSING

6.1 FIELD QUALITY CONTROL

Daily field quality control steps consisted of the following:

- 1. Resistivity checks the resistivity of each dipole was recorded in the field preand post-acquisition to ensure dipoles were connected to the receiver properly and the electrode was well contacted with the ground.
- 2. GPS checks internal GPS of each receiver was checked that they were placed in the proper position. GPS and injection file time stamps were compared to confirm correlation.
- 3. Data check data was dumped daily and confirmed that the number of GPS points matched the number of injection files.
- 4. Backup a second current monitor recorded the transmit cycles continuously throughout every acquisition day. If necessary, the backup was used.
- 5. Repeats repeats of lines/data were taken if necessary.


6.2 PROCESSING

In the office, processing of the data and quality control was done interchangeably. The steps included:

- Import positions GPS coordinates were imported into each corresponding current injection file (IAB) and receiver file (VMN) using the Fullwave Viewer Software.
- 2. GPS check the imported positions were confirmed on Google Earth.
- 3. Synchronization check in case of GPS lags or different time settings the synchronization of the files was checked to determine they match (Figure 12).

- 4. Prosys output a complete .bin file was output from the Fullwave Viewer software.
- 5. Data quality control values were viewed in the complete .bin file. Accepted values with a normal M1-M20 range would have a proper transmit cycle, a smooth curve, and a high amplitude low frequency narrow peak (Figure 13). Unaccepted values with an abnormal M1-M20 range (Figure 14, red circle) would not have proper signals (Figure 15). These abnormal values could be due to a few different things or a combination of the following: the dipole being too far from the current injected, the background noise being greater than that of the current injected, poor dipole coupling, and/or cultural features on surface causing coupling or a significant background noise interference. These were removed in step 7.
- Topography 1 arc-second Shuttle Radar Topography Mission (SRTM) topography data for Canada was downloaded from the Geosoft Public DAP server. The grid was sampled to the receiver and injection electrode coordinates to produce topography values above mean sea level (MSL) for each electrode.

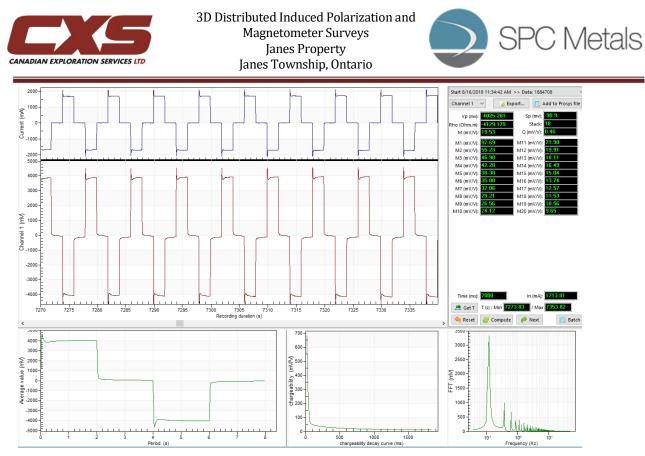


Figure 19: Good 90 second transmit/read pair. Injection (blue), read signal (red), transmit signal (bottom left), decay curve (bottom centre), FFT (bottom right).

📁 M1 (📁 M2 (📁 МЗ (📁 M4 (📁 М5 (📁 Мб (📁 M7 (📁 M8 (
69.11	45.44	39.99	36.58	33.48	30.76	28.53	26.05
75.78	48.86	41.69	37.53	34.34	31.16	27.97	25.89
75.73	50.14	43.65	39.60	36.34	33.18	30.49	27.90
81.56	54.13	46.51	41.97	38.16	34.65	31.68	28.80
69.46	44.71	38.75	35.17	32.20	29.45	27.06	24.76
94,25	66.44	57.79	52.34	47.77	43.66	40.14	36.61
128554.88	-11085.17	-14311.44	-14973.24	-16379.58	-4281.03	4318.25	-3929.44
67.53	41.83	35.53	32.24	29.36	28.85	24.26	22.33
65.87	42.73	37.79	34.62	31.80	29.44	27.04	24.97
91.27	62.90	54.94	49.39	45.30	41.31	37.83	34.67
91.55	63.34	55.08	50.01	45.57	41.54	38.07	34.83
124.30	92.27	80.17	72.73	66.38	61.02	56.01	50.97
66.66	44.00	37.08	32.36	29.95	27.68	24.13	22.05

Figure 20: Output .bin file viewed in Prosys. Larger abnormal M values circled in red.

Figure 21: Signal, cycle, and curves of abnormal unaccepted M values.

Page 67

 Filtering – Values with unrealistic resistivities and chargeabilities, high standard deviations, large geometric factors, and that are oversaturated were filtered out (Figure 16).

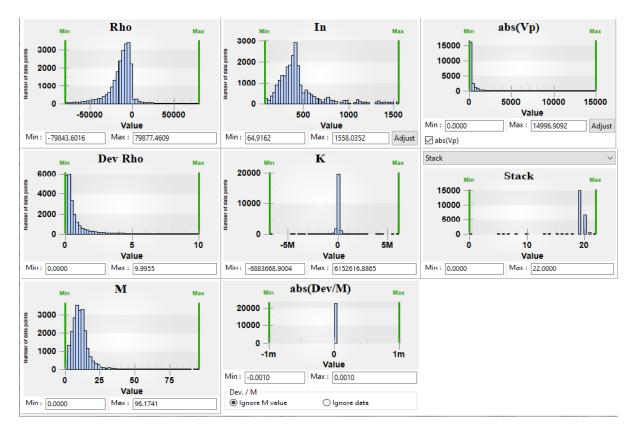


Figure 22: Filtering options

3D viewing of the raw calculated chargeability and resistivity results was observed in Geosoft Oasis (Figures 17-19; Y=North). Calculated report points from acquisition were recorded at a maximum depth of approximately 650 metres depth.

A total of 10133 filtered data points was collected from this 3D IP survey configuration over a period of 7 days.

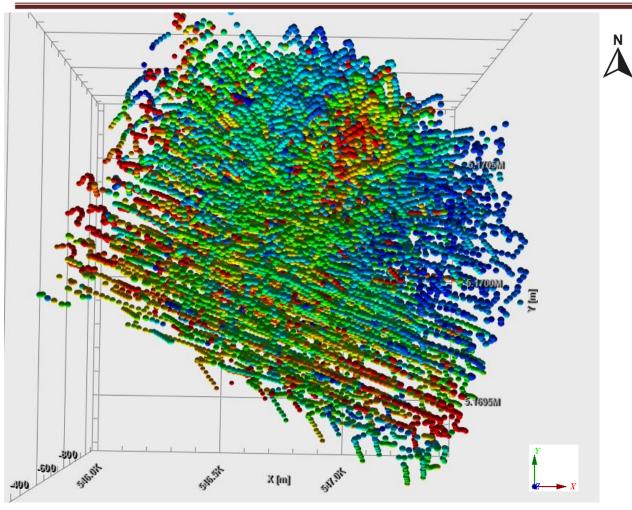


Figure 23: Measured chargeability data points (top down).

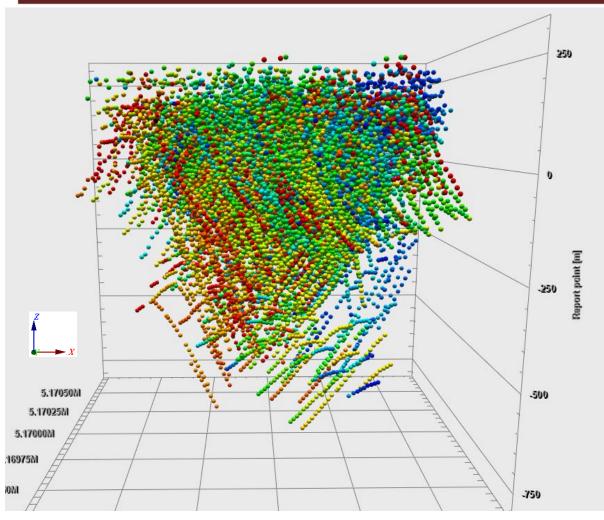
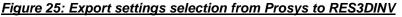



Figure 24: Side view of the complete measured chargeability dataset facing north with the survey layout on top

6.3 INVERSION

Inversions of the filtered data was done in RES3DINV Professional version 3.15.11. RES3DINV is a 3D inversion software specifically used for resistivity and induced polarization data. A RES3DINV format was created from the finalized Prosys file with specific selections depending on the survey type completed. The selections seen in Figure 20 are standard 3D distributed IP array settings. Depending on the intended survey array type, including the remote may or may not be used. For example, in this case there was a single remote electrode placed as far from the survey grid as possible to achieve a pole-dipole array scenario, thus it was not necessary to include the remote. Topography was included.

CANADIAN EXPLORATION SERVICES LTD	3D Distributed Induced Polarization and Magnetometer Surveys Janes Property Janes Township, Ontario
Enter title for data set : 3DIP_ALL_topo_filt.bin Electrode array : Other Include IP (M) : X location distance Along ground surface True horizontal Type of Measurement Apparent resistivity (Rho) Resistance (V/I)	Grid type Rectangular Allow electrode at arbitrary position Trapezoidal Number of lines O Number of columns O Random grid Include remote in RES3DINV grid Value of the state of the st
	Import file

Model grid settings were chosen based on the infinite locations and the dipole lengths. A uniform cell size was chosen to be ¼ or 1/5 of the dipole length, in this survey case a cell size of 25m was used (Figure 21). To reduce edge artifacts a few cells extension was added. Manual edits to the cell uniformity may be necessary depending on the location of the infinite. In this case manual edits were not made.

The theoretical maximum depth obtained from the Fullwave Designer was 750 metres. Calculated report points from acquisition were recorded at a maximum depth of approximately 750 metres depth. However, a maximum depth of 400 metres was used because resolution and sensitivity decrease as depth increases. Sensitivity values represent how well the model is constrained, with higher sensitivities providing less uncertainty and greater validity. Data density also decreases at a certain depth with increasing depth, so beyond a certain maximum depth there is limited data to produce valuable information for the whole survey area.

Important inversion parameters used for the creation of the model are described in Table 9^2 .

Parameter	Description
Refined	Estimates topography of each interior node individually to take non-
Topography	linear topography variations within each model block into account.

² Refer to the RES3DINV manual and tutorial by Dr. M.H. Loke.

Higher Damping	Useful to avoid unusually large resistivity variations in the top layer
of 1 st layer	(Loke and Dahlin 2010).
Diagonal Filter	Reduces effects of produced structures with boundaries aligned
Components	along the horizontal and vertical directions.
Robust Data	Attempts to minimize the absolute difference between the measured
Constraint	and calculated apparent resistivity values (Claerbout and Muir 1971).
	Less sensitive to very noisy data point.
Robust Model	Produces models with regions of more uniform resistivity values with
Constraint	sharper boundaries.
Incomplete	An approximate solution of the least-squares equation that uses an
Gauss-Newton	iterative linear conjugate-gradient method.
Reference Model	An additional constraint on the model to limit the deviation of the
	model resistivity from a homogenous reference model. This is nor-
	mally the average of the apparent resistivity values.
Logarithm of	In 2D systems it is ~impossible to determine whether the measured
Apparent	potential has the same sign as the transmitted current, thus it was
Resistivity	assumed apparent resistivity is always positive and the logarithm is
	used. However, negative apparent resistivity values not caused by
	noise are observed in 3D distributed IP systems, especially with
	near-surface large resistivity contrasts and topography. Thus, the
	logarithm of apparent resistivity is not used because negative appar-
	ent resistivity values are real and kept throughout the inversion for a
	more accurate model. (Loke, 2018)
Forward Modeling	The finite-element method with a medium extended 4 horizontal
Method	node mesh between electrodes is used for datasets with topography
	and for improved accuracy.
Non-Linear IP	The non-linear method calculates apparent IP using a complex resis-
Complex Method	tivity formula. This method treats the conductivity as a complex
	quantity with real and imaginary components (Kenma et al. 2000).
	The complex conductivity and complex potential are calculated.
	These components are calculated in a two-step inversion process
	during each iteration. First the resistivity model is calculated, then
	the IP model is calculated.
IP Model	The "range-bound" transformation method is used to ensure the
Transformation	model IP values produced by the inversion program does not exceed
	the lower or upper limits set by the user.

Table 12: Inversion Parameter Descriptions (© (1996-2018) M.H.Loke)

7. RESULTS, INTERPRETATION & CONCLUSIONS

7.1 RESULTS

Walking Magnetometer Survey

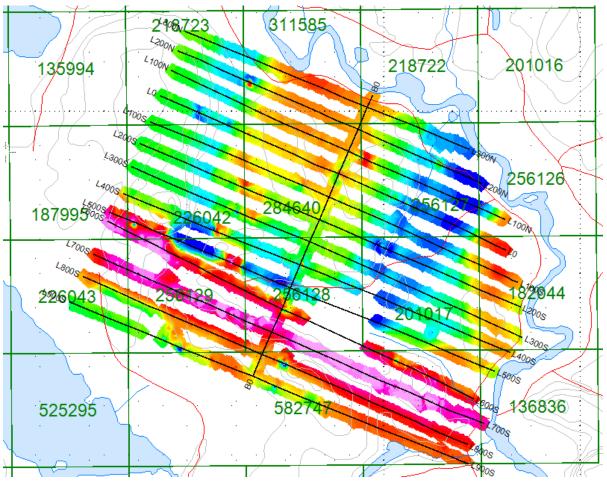


Figure 26: Diurnally Corrected Mag Grid (TFM)

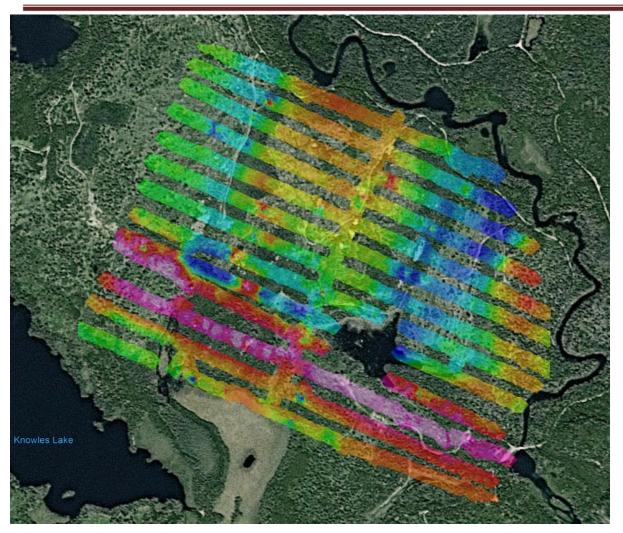
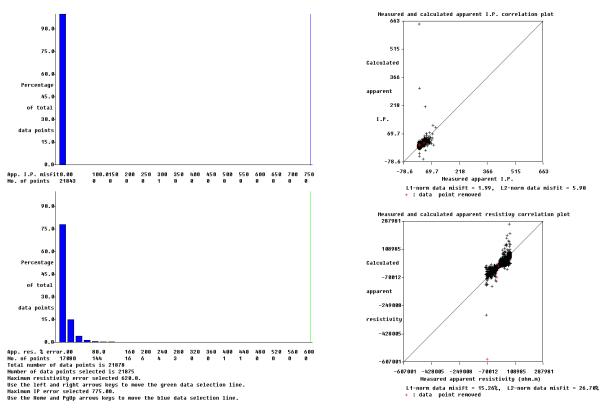
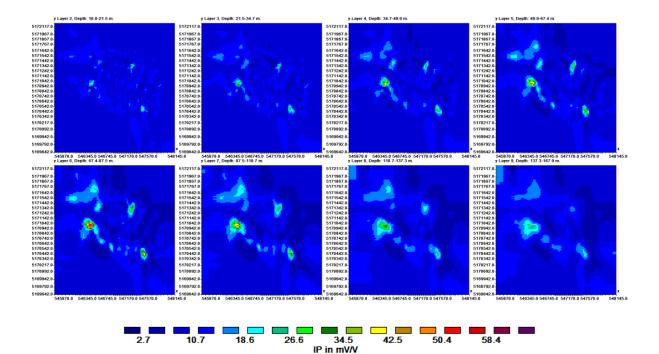
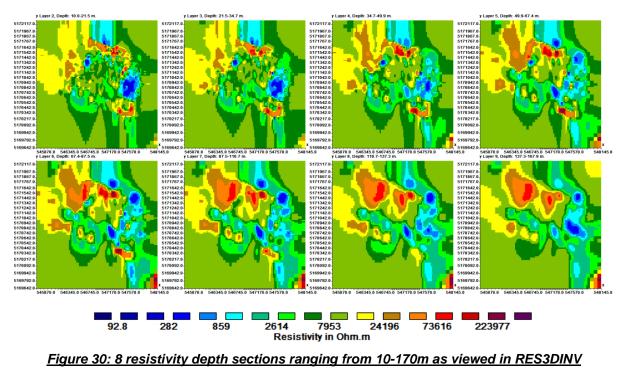


Figure 27: Magnetic plan over the Janes Property on Google Earth. (Image ©2020 CNES/Airbus & Image ©2020 Google)

<u>3D IP Distributed Array IP Survey</u>

Two inversions were run to produce this model. Data misfit outliers from the first model created were removed and a second inversion was run using a refined dataset. Each inversion was run through multiple iterations to reduce the misfit error of the model. Iteration 7 of the second inversion was the chosen version. See the following figure for the correlation plots and histograms of the data misfits. Eight of the depth sections of the IP and resistivity from the RES3DINV viewer of iteration 7 is shown in the next two figures, respectively. From top left to top right and bottom left to bottom right the blocks are at depths: 10-21.5m, 21.5-34.7m, 34.7-49.9m, 49.9-67.4m, 67.4-87.5m, 87.5-110.7m, 110.7-137.3m, and 137.36-167.9m.


Figure 28: Measured and calculated apparent correlation plots (right) and histograms (left)

CANADIAN EXPLORATION SERVICES LTD

Figure 29: 8 IP depth sections ranging from 10-170m as viewed in RES3DINV

A final XYZ was output from iteration 7 of the inversion and provided the resistivity, conductivity, chargeability, and sensitivity values at the centre and the corner of the model blocks. In this case resolution was also calculated. This was imported and modelled in Geosoft Oasis. The model was then trimmed to the survey boundary to refrain from including edge effects into the interpretation.

A horizontal slice of the chargeability and resistivity from the final inversion model overlaid in Google Earth is seen in the following two figures.

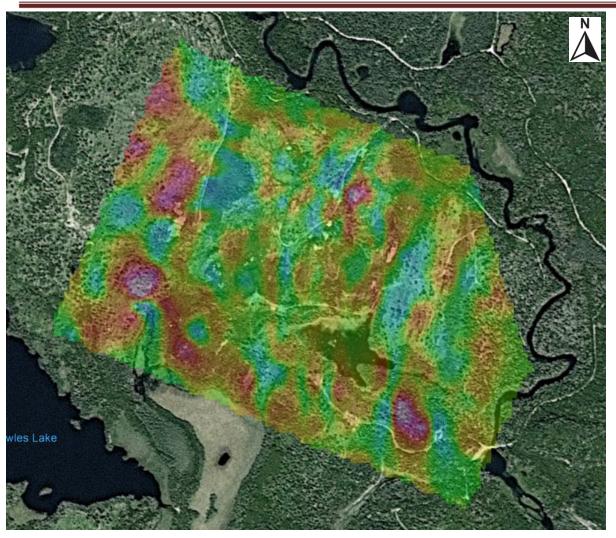


Figure 31: Chargeability grid (250m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 CNES/Airbus)

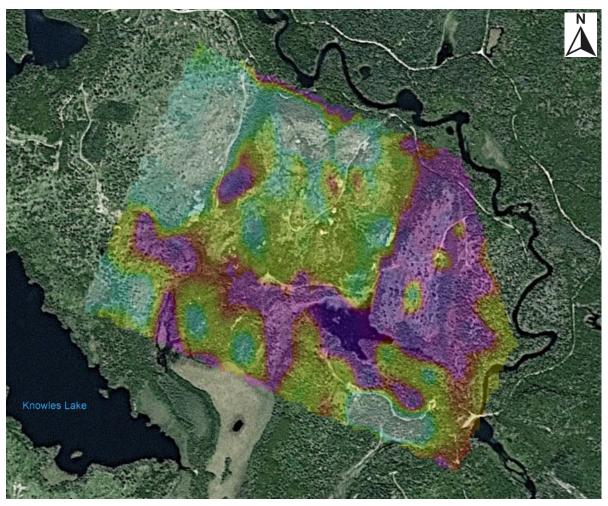


Figure 32: Resistivity grid (200m MSL) overlaying Google Earth. (©2020 Google, Image ©2020 <u>CNES/Airbus</u>)

7.2 INTERPRETATIONS³

Targeting of the 3D Distributed IP array was based on favourable geology correlating to airborne magnetic signatures.

³ Note for all interpretation figures North is in the Y-direction.

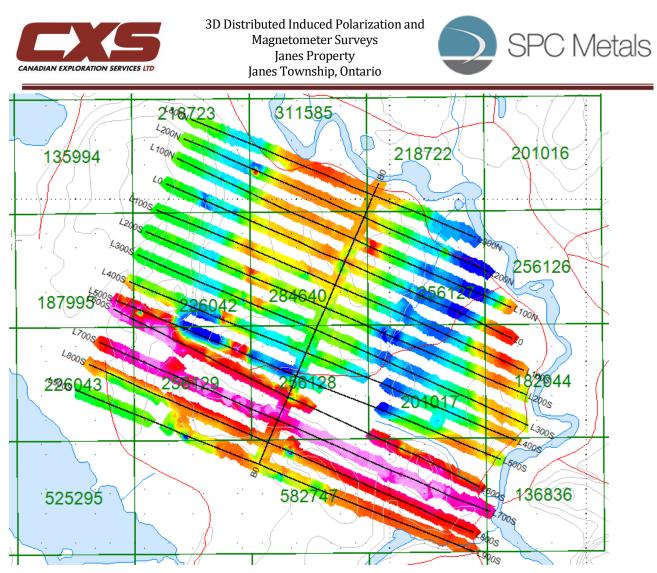


Figure 33: Diurnally Corrected Mag Grid (TFM)

The magnetic survey indicates the presence of two geologic units which are intruded by a third feature. These can be seen on the following figure as units A, B and C.

The shape of these units suggests the presence of a folded geological series. This is indicated by the slightly elevated magnetic unit A, being surrounded on the three sides by magnetic unit B. This contact appears not to be a sharp contrast, indicating a gradual dip in the 3 directions. This unit also appears to increase in magnetic signature towards the center, indicating a possible thickening of the unit. Unit A also appears to be repeated on the east side of the survey area.

Within these three areas, their appears to be four magnetic features. This indicates that there is a contrast within the magnetite content in these anomalous areas. These four anomalies are numbered 1 through 4 within the following figure.

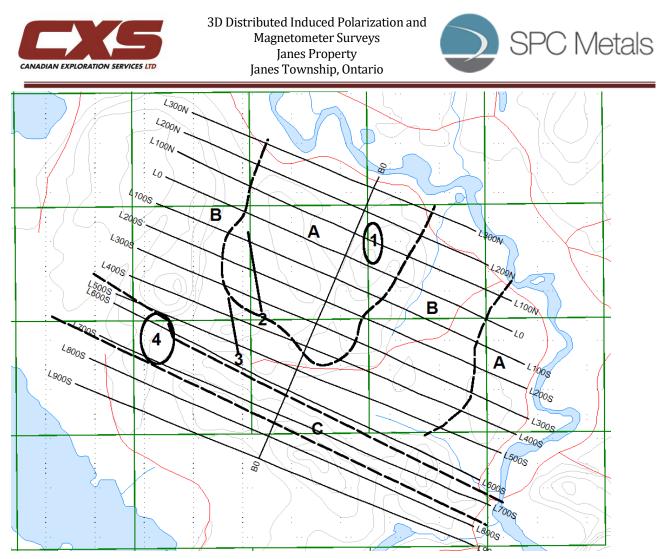


Figure 34: Magnetic Anomaly Map

Magnetic Anomaly 1 is the only magnetic anomaly that appears in magnetic unit A. This unit may weakly cross multiple lines striking subparallel to the baseline. Magnetic anomaly 2 is similar to that observed as anomaly 1 but not as intense. This indicates the localized increase of magnetite within magnetic unit A.

Magnetic anomaly 3 again is similar to anomalies 1 and 2, however is located in magnetic unit B. This anomaly may be related to a splay of magnetic unit C.

Magnetic anomaly 4 appears as an increase in the magnetic signature within the increase and broadening of the magnetic signature. This may be due to a structural feature crossing the magnetic unit.

Both the inverted chargeability and resistivity data were modelled in 3D. Some chargeability and low resistivity responses were detected.

Examples of the 3D chargeability model at 15mV/V superimposed on a 50 metre MSL chargeability slice (Figures 26 and 27) are shown in the next figure.

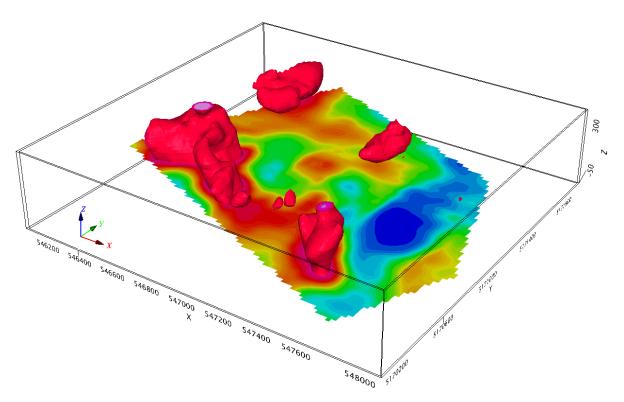


Figure 35: 3D chargeability model (red=15mV/V) with a 50m MSL chargeability slice

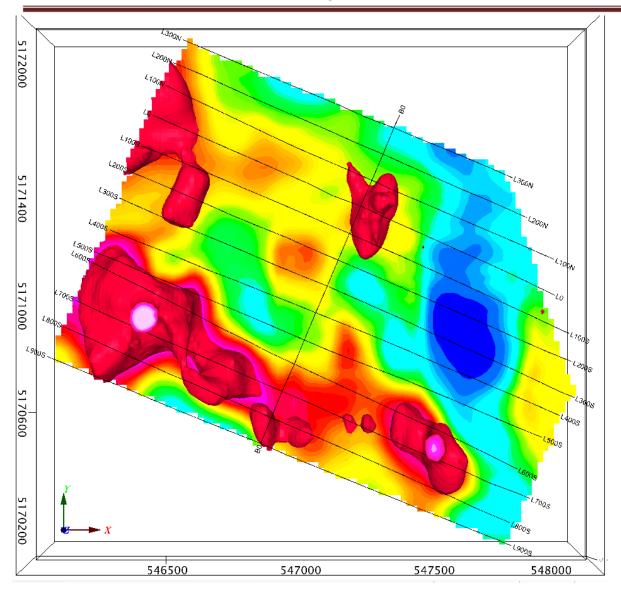


Figure 36: Top view of the 3D chargeability model (pink=10mV/V) with a 200m MSL chargeability slice with interpretations

The chargeability survey identified numerous chargeability anomalies. From these there are 7 chargeability anomalies of note.

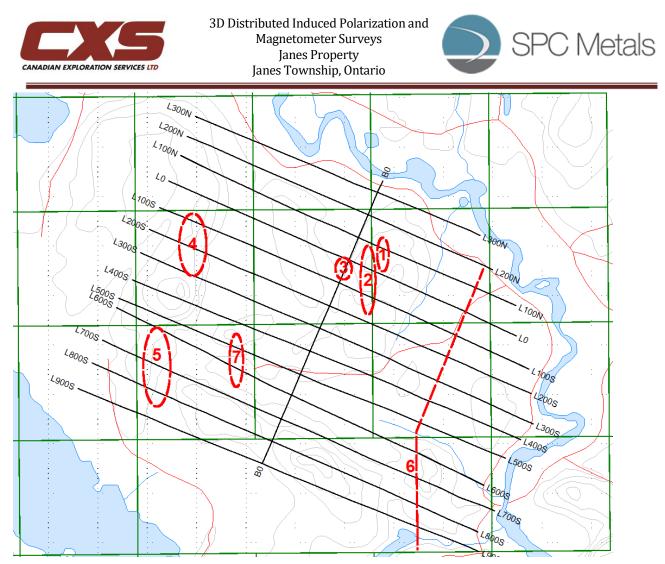


Figure 37: Chargeability Anomaly Map

Chargeability cluster 1, 2 and 3 all occur near the baseline and line 0. This cluster appears like it should outcrop; it also appears that it only projects to a shallow depth. These anomalies also indicate a slight dip to grid east. These anomalies appear as discreet parallel features, however a weak anomaly appears to extend south. This may indicate that this is related to a larger structural feature. Anomalies 1, 2 and 3 appear slightly offset from this larger structural feature and may be related to a mineralized alteration.

Chargeability anomaly 4 appears as a shallow strong chargeability signature on the west side of the survey area. This anomaly does not appear to outcrop but appears similar in size as that observed in anomalies 1 through 3. The orientation of anomaly 4 is also similar to that of anomalies 1 through 3 and there appears to be a linear weak chargeability response that strike similar to the one mentioned in anomalies 1 through 3. This may indicate that these anomalies are similar in origin.

Anomaly 5 appears to represent strong chargeability anomalies that outcrop and extend to depth. Anomaly 6 appears to also be associated with a linear anomaly that strikes parallel to the baseline. This may indicate that Anomaly 6 is related to a structural feature and that there may be a mineralized alteration associated with this feature.

Chargeability anomaly 7 appears as another shallow chargeability anomaly, parallel to anomalies 1, 2 and 3. This anomaly does not appear to exhibit a strong depth extent.

The following figures show the resistivity model on the resistivity 50m MSL plane. A low resistivity response correlated with the swamp at shallow depths of the model.

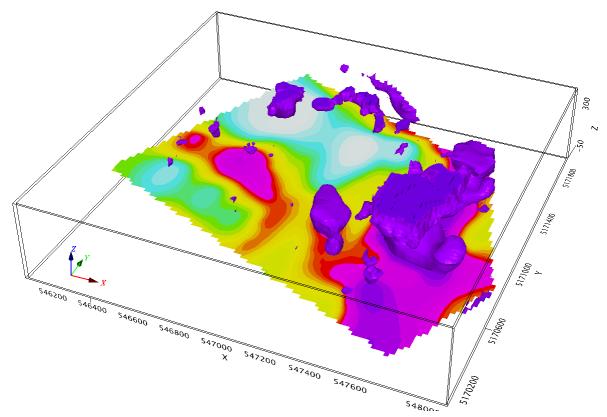


Figure 38: 3D resistivity model with a 50m MSL slice (purple = <1000 ohm*m)

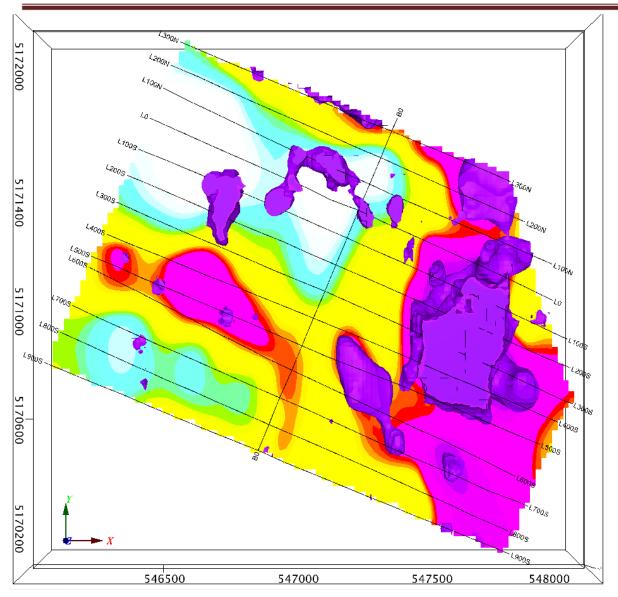


Figure 39: 3D resistivity model with a 200m MSL slice (purple = <1000 ohm*m) and interpretations

The resistivity model indicates variations with depth. Most of the larger low resistivity anomalies near surface may be related to conductive overburden. Five near surface, low resistivity anomalies do stand out, as they appear in areas where conductive overburden conditions were not reported in the field notes.

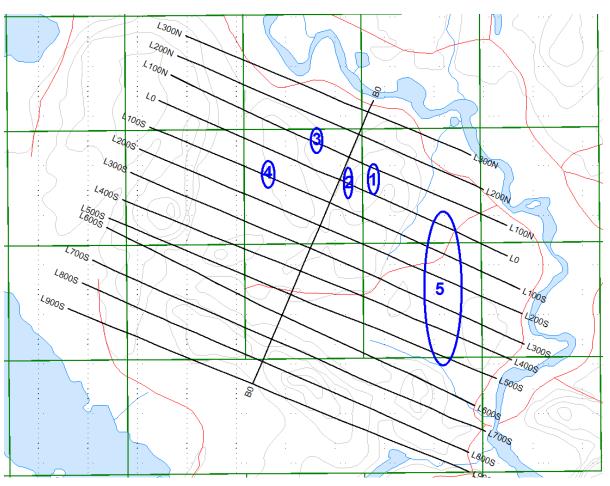


Figure 40: Resistivity Low Anomaly Map

Low resistivity anomaly 1, 2, 3 and 4 appear as small shallow low resistivity signatures. These two anomalies appear to represent outcropping features. These low resistivity features appear shallow and do not appear to extend to depth.

Low resistivity anomaly 5 appears as a larger area and from the field notes, does not occur in a shallow area. This could indicate that the overburden depth may increase in this area. The 3D model indicates that this anomaly may also be present at depth and represents a different, more conductive, geological unit.

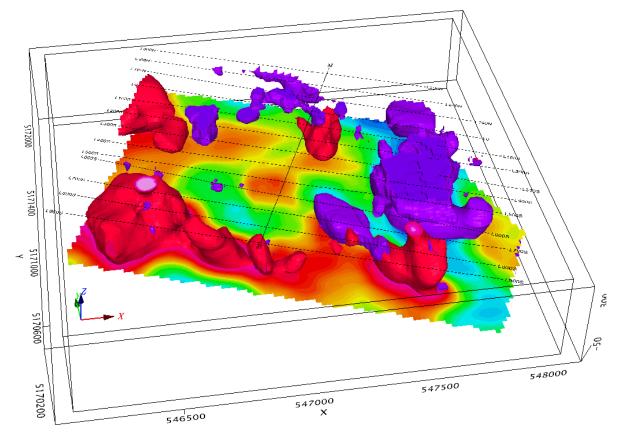


Figure 41: 3D resistivity model (purple <1000 ohm*m) with 3D chargeability model (red >15 <u>mV/V) on 50 MSL Chargeability Slice</u>

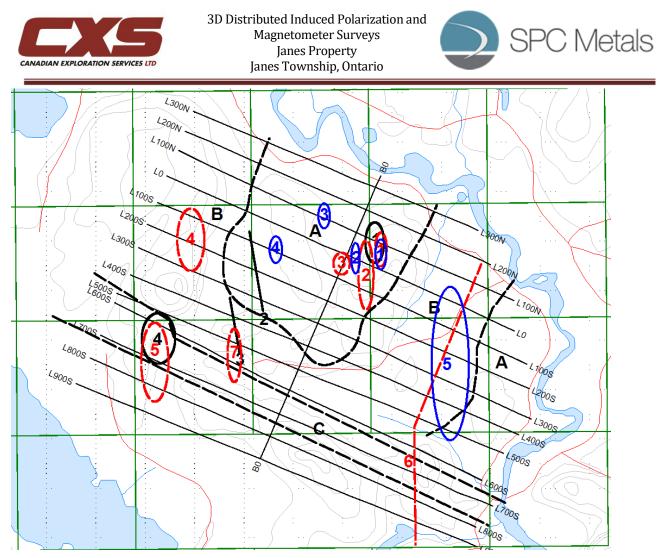


Figure 42: Anomaly Map

When combining the anomalies, some correlations begin to appear. Anomalous area 1 represents magnetic anomaly 1, chargeability anomaly 1 and low resistivity anomaly 1. These three anomalies overlap and overprint each other. They appear as shallow anomalies that should outcrop and do not appear to extend to depth. Flanked to the west appears chargeability anomalies 2 and 3 along with low resistivity anomaly 2. This would appear to be related to mineralization, with the area around anomaly one containing magnetic sulphides such as pyrrhotite. The west flanking anomalies indicate the potential existence of localized disseminated and more massive units of mineralization.

Magnetic anomaly 3 and chargeability anomaly 7 also appear as coincidental anomalies. The magnetic signature indicates a narrow increase in magnetics striking at approximately 350 degrees. The correlating increase in chargeability may indicate the presence of an alteration pattern surrounding a feature.

Magnetic unit C appears as a late feature intruding the other units and most likely

represents a dike. Within this magnetic unit, coincidental anomalies, magnetic anomaly 4 and chargeability anomaly 5 appear. This may represent a mineralized region or a strong increase in the magnetite concentration of the dike.

7.3 RECOMMENDATIONS

The primary targets identified by the surveys lie between lines 100S and 100N and are proximal to the baseline. The data indicates that these are shallow anomalies that most likely can be seen on surface. I would recommend prospecting these locations. These would be located near coordinates, 547341E 5171356N 547249E 5171332N, 547192E 5171316N and 547292E 5171270N.

I would also recommend prospecting the areas surrounding the other anomalies listed.

ANOMALY	NUMBER	COORDINATES N	COORDINATES N
Resistivity	3	547123	5171504
Resistivity	4	546926	5171371
Chargeability	4	546585	5171405
Magnetic/Chargeability	4/5	546445	5170985
Magnetic/Chargeability	3/7	546761	5170954

It is also recommended to perform soil sampling in these areas to help determine if favorable mineralization is the source of the anomalous responses.

7.4 CONCLUSIONS

The walking magnetometer and 3D Distributed IP surveys highlighted numerous anomalies. Most of the anomalous regions appeared as shallow responses with the deepest chargeability responses associated with a dike. The strongest shallow chargeability responses appeared to be related to a weak linear chargeability response which indicates that these are most likely related to alteration surrounding a structure.

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, C. Jason Ploeger, hereby declare that:
- 1. I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist and Geophysical Manager of Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- 5. I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do not have nor expect an interest in the properties and securities of **SUDBURY PLATINUM CORPORATION.**
- 7. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. Geophysical Manager Canadian Exploration Services Ltd.

Larder Lake, ON December 17, 2019

APPENDIX A

STATEMENT OF QUALIFICATIONS

- I, Claudia Moraga Millán, hereby declare that:
- 1. I am a soon-to-be a Professional Geoscientist with residence in Dobie, Ontario and am presently employed as a Field Geophysicist with Canadian Exploration Services Ltd. of Larder Lake, Ontario.
- 2. I graduated with a Bachelor of Science degree in Physics specialization in geophysics from the University of Santiago of Chile, in Santiago, Chile, in 1993.
- 3. I have practiced my profession continuously since graduation in Chile, Argentina, Bolivia, Canada, Colombia, Mexico, United States, South Africa, Botswana, Bulgaria, Serbia, and Indonesia.
- 4. I am in the process to be registered as a Professional Geoscientist and practicing member of the Association of Professional Geoscientists.
- 5. I do not have nor expect an interest in the properties and securities of **SUDBURY PLATINUM CORPORATION.**
- 6. I am responsible for assisting with the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Caloffulu.

Claudia Moraga Millán, B.Sc. Field Geophysicist (non-Professional)

Larder Lake, ON December 17, 2020

APPENDIX B

IRIS V-FullWaver Receiver⁴

2 CHANNELS IP FULL WAVE RECORD

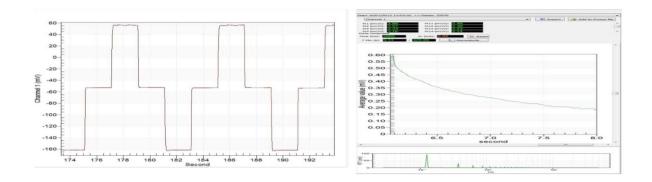
- 2 simultaneous dipoles
- Several weeks recording
- Time stamped data

V-Full Waver: this logger for electrical signal is a new concept of compact and low consumption unit designed for advanced Time Domain Induced Polarization, Resistivity and SP measurements. It can work in all field conditions, small, discrete, autonomous and can record continuously without operator.

Compactness: light, discrete and easy to setup on the field, even on remote areas. Autonomous two dipoles logger, no need of the operator during acquisition. V-Full Waver allows a high productivity for dipole-dipole, gradient, extended pole-pole and other arrays. A network of several tens of channels can be quickly installed on the field for deep exploration and advanced processing (perpendicular dipoles, remote reference...)

Internal GPS: an integrated GPS, very accurate and providing PPS signal (one pulse per second) allows to store all time series with time information. This is crucial to process data from several V-Full Waver loggers installed in a same area. This is

⁴ Information obtained from http://www.iris-instruments.com/Pdf_file/V_fullwaver.pdf



also useful to correlate with injection dipole waveform, in case this has also been recorded with a I-Full Waver logger.

High resolution: samples are recorded every 10 (ten) milliseconds (100 Hz sampling frequency). Data from several recorders can be merged and processed together with the Full Wave Viewer program delivered with the system. All data is synchronized through the GPS-PPS time stamping. A post acquisition processing permits to improve the signal-to-noise ratio. This also allows good quality IP data for deep investigations and for noisy areas.

Internal memory: the memory can store up to one month recording time. Then data can directly be transferred to a USB key in a few seconds.

TECHNICAL SPECIFICATIONS

- Max. input voltage: 15 V
- Protection: up to 1 000 V
- Accuracy: 0.2 % typical
- Resolution: 10 µV
- Sampling rate: 10 milli seconds (100 Hz)
- Induced Polarization (chargeability) measured every 10 milliseconds (200 IP windows for a 2 sec pulse)
- Input impedance: 100 MΩ
- Low pass filter Cut off frequency: 10 Hz
- Upper frequency which can be resolved: 50 Hz
- Frequency resolution: up to 34 micro Hz
- Internal GPS with PPS (one pulse per second)
- Time resolution: 250 micro seconds (time stamped samples)
- Battery test
- Contact resistance check

GENERAL SPECIFICATIONS

• LCD display, graphic and alpha numeric with 16 lines of 40 characters

- · Data flash memory: one-month recording
- After acquisition: possibility of data storage on a USB key (8 GB or more).

• Power supply: internal Li-Ion rechargeable battery; optional external 12V standard car battery can be also used

- Autonomy: 20 operating hours with the internal Li-Ion battery
- Weather proof IP 67
- Shock resistant resin NK-7, case with handle
- Operating temperature: -20 °C to +70 °C
- Dimensions: 31 x 25 x 15 cm
- Weight: 2.8 kg

APPENDIX B

IRIS I-FullWaver Current Monitor⁵

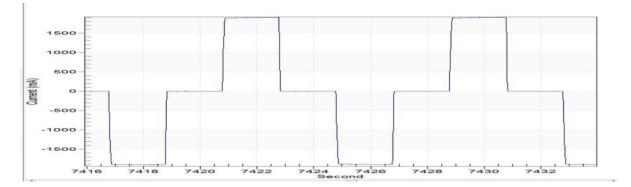
IP Fullwave Record

- Recording injected current
- Several weeks recording
- Time stamped data

Fullwaver: this logger for electrical signal is a new concept of compact and low consumption unit designed for advanced Time Domain Induced Polarization, Resistivity and SP measurements. It can work in all field conditions, small, discrete, autonomous and can record continuously without operator. I-Fullwaver is connected in series on the AB injection line, it measures and logs very accurately the injected current IAB.

Compactness: light, discrete and easy to setup on the field, even on remote areas. This autonomous logger does not need any operator during the acquisition. I-Fullwaver is connected close to the transmitter or close to any injection electrode

Integrated GPS: an integrated gps, very accurate and providing PPS signal (one pulse per second) allows to store all time series with time information. This is crucial to correlate and process data with V-Fullwaver receiver loggers installed in a same area. This information displays the behaviour of the transmitter, its regulation specifications and the value of lab in order to compute accurately the apparent resistivity.


⁵ Information obtained from http://www.iris-instruments.com/Pdf_file/I_fullwaver.pdf

High resolution: samples are recorded every 10 (ten) milliseconds (100 Hz sampling frequency). Data from several recorders (for current and received voltages) can be merged and processed together with the FullWaveViewer program delivered with the system. All data is synchronized through the GPS-PPS time stamping. A post acquisition processing allows to improve the signal-to-noise ratio, giving good quality IP data for deep investigations in noisy areas.

Internal memory: the memory can store up to three months recording time. Then data can directly be transferred to a USB key in a few seconds.

TECHNICAL SPECIFICATIONS

- Current range: +/- 25 000 mA
- Current resolution: 0.1 mA
- Accuracy: +/- 1 mA
- Protection: up to 50 A and 3 000 V
- Magnetic sensor
- Magnetization offset (offset memory): up to 0.05%
- Offset calibration
- Sampling rate: 10 milliseconds (100 Hz)
- Integrated GPS with PPS (one pulse per second)
- Time resolution: 250 micro seconds (time stamped samples)
- Battery test

GENERAL SPECIFICATIONS

- LCD display, alpha numeric with 4 lines of 20 characters
- Data flash memory: three months recording
- After acquisition: possibility of data storage on a USB key (8 Gb or more).
- Power supply: internal Li-Ion rechargeable battery; optional external 12V standard car battery can be also used
- Autonomy: 20 operating hours with the internal Li-Ion battery.
- Weather proof IP 67
- Shock resistant resin NK-7, case with handle
- Operating temperature: -20 °C to +70 °C

- Dimensions: 31 x 25 x 15 cm
- Weight: 3.0 kg

APPENDIX B

GGD II 5kW

SPECIFICATIONS

- Protection against short circuits even at 0 ohms
- Output Voltage range: 150V to 2400V in 14 steps
- Power source is a standard 220/240V, 20/60 Hz source
- Displays electrode contact, transmitting power and current

ELECTRICAL CHARACTERISTICS

- Standard Time Base of 2 seconds for time domain 2 seconds on, 2 seconds' off
- Optional Time Base of DC, 0.5, 1, 2, 4 or 8 seconds
- Output Current Range, 0.030 to 10A
- Output Voltage Range, 150 to 2400V in 14 steps
- Ability to Link 2 GDD transmitters to double power output

CONTROLS

- Switch ON/OFF
- Output Voltage Range Switch: 150V, 180V, 350V, 420V, 500V, 600V, 700V, 840V, 1000V, 1200V, 1400V, 1680V, 2000V and 2400V

DISPLAYS

- Output Current LCD: reads +- 0.0010A
- Electrode Contact Displayed when not Transmitting
- Output Power Displayed when Transmitting
- Automatic Thermostat controlled LCD heater for LCD
- Total Protection Against Short Circuits
- Indicator Lamps Indicate Overloads
- •

GENERAL SPECIFICATIONS

- Weather proof
- Shock resistant pelican case
- Operating temperature: -40 °C to +65 °C
- Dimensions: 26 x 45 x 55 cm
- Weight: 40 kg

APPENDIX C

REFERENCES

- Bauer, R.L., Czeck, D.M., Hudleston, P.J., and Tikoff, B., 2011, Structural geology of the subprovince boundaries in the Archean Superior Province of northern Minnesota and adjacent Ontario. In: Miller, J.D., Hudak, G.J., Wittkop, C., McLaughlin, P.I. (Eds.), Archean to Anthropocene: Field Guides to the Geology of the Mid-Continent of North America: Geological Society of America Field Guide 24, p. 203–241.
- Bleeker, W., 2015, Synorogenic gold mineralization in granite-greenstone terranes: the deep connection between extension, major faults, synorogenic clastic basins, magmatism, thrust inversion, and long-term preservation, In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, (ed.) B. Dubé and P. Mercier-Langevin; Geological Survey of Canada, Open File 7852, p. 24–47.
- Claerbout, J.F., Kuras, O., Meldrum, P.I., Ogilvy, R.O. and Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71, B231-B239.
- Corfu, F., and Andrews, A.J., 1986, A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario: Canadian Journal of Earth Sciences, v. 23, p.107–109.
- Google. (2020). Location of the Janes Property. Retrieved December 2020 from https://www.google.com/maps/
- Google, CNES/Airbus (2020). Accessed on December, 2020.
- Kenma, A., Binley, A., Ramirez, A. and Daily, W., 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77, 11-18.
- Loke, M. H., 2018. Tutorial: 2-D and 3-D electrical imaging surveys. (available for download from www.geotomosoft.com)
- Loke, M. H. (1996-2018). Rapid 3-D Resistivity & IP inversion using the leastsquares method (For 3-D surveys using the pole-pole, pole-dipole, dipole-dipole, rectangular, Wenner, Wenner-Schlumberger and non-conventional arrays) On land, aquatic, cross-borehole and time-lapse surveys. Geotomo Software Sdn Bhd.

- Loke, M.H. and Dahlin, T., 2010. Methods to Reduce Banding Effects in 3-D Resistivity Inversion. Near Surface 2010 – 16th European Meeting of Environmental and Engineering Geophysics 6 – 8 September 2010, Zurich, Switzerland, A16.
- Mercier-Langevin, P., Gibson, H.L., Hannington, M.D., Goutier, J., Monecke, T., Dubé, B. and Houlé, M.G., 2014, A special issue on Archean magmatism, volcanism, and ore deposits: part 2. Volcanogenic massive sulfide deposits preface: Economic Geology, v. 109(1), p.1-9.
- MNDM & OGSEarth. (2020). OGSEarth. Ontario Ministry of Northern Development and Mines.
- Stott, G.M., 2011, A Revised Terrane Subdivision of the Superior Province of Ontario: Ontario Geological Survey, Miscellaneous Release – Data, 278 p.
- Stott, G.M., Corkery, M.T., Percival, J.A., Simard, M., and Goutier, J., 2010, A revised terrane subdivision of the Superior Province. In: Summary of Field Work and Other Activities, Open File Report 6260: Ontario Geological Survey, pp. 20–21 to 20–10.
- Young, G.M., Long, D.G., Fedo, C.M., and Nesbitt, H.W., 2001, Paleoproterozoic Huronian basin: product of a Wilson cycle punctuated by glaciations and a meteorite impact: Sedimentary Geology, v. 141, p. 233-254.

APPENDIX D

DIGITAL DATA

The digital data contains

- PDF copy of this report
- PDF copy of the maps
- Raw data in binary format
- Raw data in CSV format
- Ascii XYZ of inversion results
- RES3DINV INV output of inversion results
- Text document of electrode GPS Coordinates
- KMZ of final survey layout
- Packed Oasis maps
- Oasis databases
- 3D Oasis voxels created

APPENDIX E

LIST OF MAPS (IN MAP POCKET)

Grid Sketch (1:5000)

- 1) Q2845-SPC-Janes-3DIP-Layout-Setup1-Claims
- 2) Q2845-SPC-Janes-3DIP-Layout-Setup2-Claims
- 3) Q2845-SPC-Janes-Grid

IP Plan Map (1:5000)

- 4) Q2845-SPC-Janes-3DIP-INV-CHR--50MSL
- 5) Q2845-SPC-Janes-3DIP-INV-CHR-0MSL
- 6) Q2845-SPC-Janes-3DIP-INV-CHR-50MSL
- 7) Q2845-SPC-Janes-3DIP-INV-CHR-100MSL
- 8) Q2845-SPC-Janes-3DIP-INV-CHR-150MSL
- 9) Q2845-SPC-Janes-3DIP-INV-CHR-200MSL
- 10) Q2845-SPC-Janes-3DIP-INV-CHR-250MSL
- 11) Q2845-SPC-Janes-3DIP-INV-CHR-300MSL
- 12) Q2845-SPC-Janes-3DIP-INV-RES--50MSL
- 13) Q2845-SPC-Janes-3DIP-INV-RES-0MSL
- 14) Q2845-SPC-Janes-3DIP-INV-RES-50MSL
- 15) Q2845-SPC-Janes-3DIP-INV-RES-100MSL
- 16) Q2845-SPC-Janes-3DIP-INV-RES-150MSL
- 17) Q2845-SPC-Janes-3DIP-INV-RES-200MSL
- 18) Q2845-SPC-Janes-3DIP-INV-RES-250MSL
- 19) Q2845-SPC-Janes-3DIP-INV-RES-300MSL

Magnetometer Plan Map (1:5000)

20) Q2845-SPC-Janes-Mag

TOTAL MAPS = 20

877.504.2345 | info@cxsltd.com | www.cxsltd.com

