

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Bedrock Stripping and Mapping Report for the Shining Tree Central Project, Leonard Township, Ontario, Canada

March 2, 2021

Prepared by:

Frank Ploeger, P.GEO Battery Mineral Resources Corp.

With contributions from: Andrew Salerno, B.Sc.

Prepared For:

P.O. Box 219
14579 Government Road
Larder Lake, Ontario
P0K 1L0 Canada

TABLE OF CONTENTS

1.		OVERVIEW	4
	1.1	PROJECT NAME	4
	1.2	CLIENT	4
	1.3	SUMMARY	[∠]
	1.4	ACTIVITIES UNDERTAKEN	5
2.		PROPERTY LOCATION, ACCESS, HISTORY	6
	2.1	LOCATION	
	2.2	ACCESS	7
	2.3	MINING CLAIMS	7
	2.4	HISTORIC WORK	8
	2.5	REGIONAL AND LOCAL GEOLOGY	10
3.		TRENCHING/ STRIPPING	. 13
	3.1	PERMITS	
	3.2	OVERVIEW	13
	3.3	STRIPPING RESULTS	16
4.		SUMMARY & RECOMMENDATIONS	. 21
	4.1	SUMMARY	21
	4.2	RECOMMENDATIONS	22
5.		REFERENCES	. 23
6.		QUALIFICATIONS	
7 .		INSTRUMENT SPECIFICATIONS	
	7.1	GARMIN INREACH EXPLORER+	
	7.2	TRIMBLE GEOXT	29
8.		APPENDIX	. 33
LI	ST OF	APPENDICES	
Δρ	DENIDIN	(1: MINING CLAIM CELLS LIST	
		2: ASSAY CERTIFICATES OF ANALYSES	
AF		L. AGGAT GERTII IGATES OF ARALTSES	

LIST OF FIGURES AND TABLES

Figure 1: Location of the Shining Tree Central Project Area (Map data © 2019 Google)	6
Figure 2: Shining Tree Project (LiDAR base) access via logging roads in red	7
Figure 3: Shining Tree Claim Cells	8
Figure 4: Regional geology of the area surrounding the Shining Tree project. The project is	1
Figure 5: Local geology of the Shining Tree central project area;	2
Figure 6: Mapping and features of stripped area	5
Figure 7 : A- aplite dike cuts coarse grained diabase host (parallel to hammer); B- Looking north at the 2 small pits near the shaft, note vertical walls on strong slips (background- the wash crew are standing near the shallow trench).	
Figure 8: A- quartz- calcite vein with Co bloom in shallow trench/ pit; B- branching vein fracture with wider vein zone at the intersection/ junction	
Figure 9: A- quartz- calcite vein with Co bloom near the Neelands pit; B- veins @ 330 cut across the	

fracture set with short pods of vein material @ 025 northwest of the pit; C- streams of veins follow

fractures @ 040 at the south edge of the pit	18
Figure 10: Sample locations on the stripped area	19
Table 1: Summary of Work Performed.	5
Table 2: Summary of 2019 BMR IP surveys in the Shining Tree Project area	
Table 3: Summary of work of the 2020 stripping at Shining Tree Central.	14
Table 4: Summary of channel sampling with assay results for the northerly stripped area	19

1. OVERVIEW

1.1 PROJECT NAME

This project is known as the **Shining Tree Central Project.**

1.2 CLIENT

BATTERY MINERAL RESOURCES CORP.

P.O. Box 219, 14579 Government Road, Larder Lake, Ontario, P0K 1L0, Canada

1.3 SUMMARY

Battery Mineral Resources Corp. (BMR) controls 143 mining cells that comprise the Shining Tree project located in Leonard and Tyrrell Townships, District of Sudbury, northeastern Ontario. The center of the project area is ~23 km southwest of Gowganda and ~18 km east of Shining Tree, "as the crow flies".

In the late fall of 2020, crews were dispatched to strip the outcrops around a series of historic pits and trenches in the central Shining Tree area near the former Caswell- Eplett- Neelands prospect from which significant cobalt assay values had been reported. Mechanical stripping commenced on October 27, 2020 followed by washing of the stripped area by personnel from Canadian Exploration Services (CXS) and limited sampling and mapping by BMR crews.

The stripping and washing exposed an area approximately 100 metres in length, ranging from about 8- 18 m in width, including four historic pits and networks of fractures and veins. Three of these pits were located near the south end of the stripped area near to the Caswell- Eplett shaft and the fourth, deeper, Neelands pit, near the north end of the stripped area. A significant snowfall and cold temperatures precluded a planned channel sampling program. A total of 12 chip and grab samples from important features and veins were taken by the BMR geologists in lieu of the channels. A DGPS survey was conducted over the stripped area to facilitate georeferencing of the sample points, geological structures and contacts, and historical features to a LiDAR base. The work performed for the stripping program is summarized in Table 1.

All coordinates presented in this report are in UTM NAD83 17N.

1.4 ACTIVITIES UNDERTAKEN

Area	Work Performed	Dates	Samples Taken
Caswell- Eplett- Neelands prospect area Recon & flag outcrop for stripping		October 13, 2020	
Caswell- Eplett- Neelands prospect area	Mechanical Stripping	October 27- November 2, 2020	-
Caswell- Eplett- Neelands prospect area	Cleaning and Washing	November 9-13, 2020	-
Caswell- Eplett- Neelands prospect area	Mapping, sampling and DGPS	November 13, 2020	12

Table 1: Summary of Work Performed.

2. PROPERTY LOCATION, ACCESS, HISTORY

2.1 LOCATION

Battery Mineral Resources' (BMR) Shining Tree Central project is located approximately 115 km north of Sudbury, 102 km southwest of Kirkland Lake, and 105 km south of Timmins. It comprises 134 mining cells in Leonard and Tyrrell Townships, District of Sudbury, northeastern Ontario (Figure 1).



Figure 1: Location of the Shining Tree Central Project Area (Map data © 2019 Google).

2.2 Access

Access to the property is gained via highway 560 and Sandy Lake road, a primary logging road approximately 6 km west of Shining Tree, which in turn, is approximately 120 km west of the town of Englehart. The Sandy Lake road is followed eastwards for about 12 km where it turns south and a secondary logging road, accessible by truck, extends eastward to a main hydro corridor from which point bush roads and trails provide ATV access to most of the project area (Figure 2).

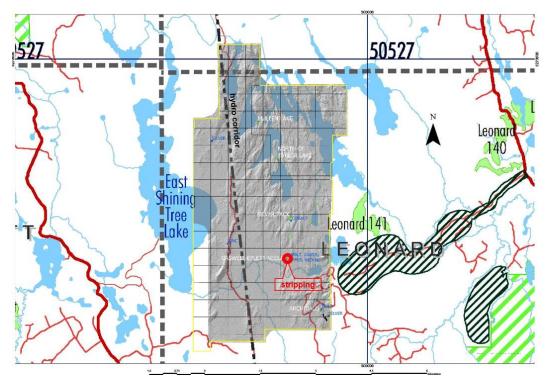


Figure 2: Shining Tree Project (LiDAR base) access via logging roads in red.

2.3 MINING CLAIMS

As of January 6, 2021, the 100% owned, BMR, Shining Tree property consisted of 143 cell claims located in Leonard and Tyrrell Townships of northeastern Ontario comprising 2,464 ha (24.6 km²). A full list of the claims that constitute the Shining Tree property are included in Appendix 1 and displayed in Figure 3.

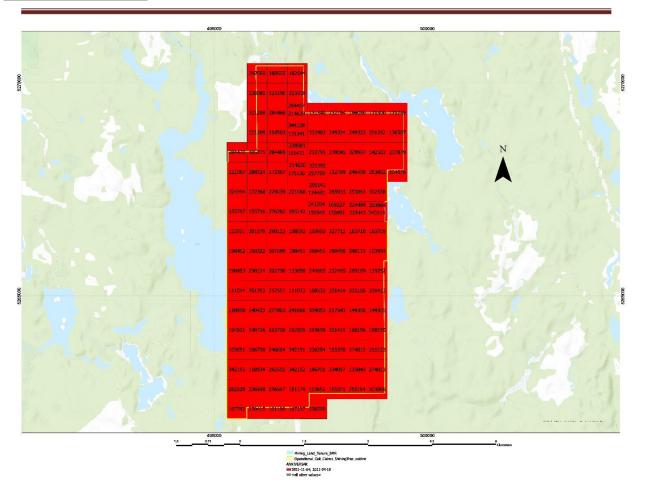


Figure 3: Shining Tree Claim Cells.

2.4 HISTORIC WORK

The following exploration and drilling history are cited from Page (2018).

1927: Caswell - Eplett Shaft

A 100-foot-deep shaft was sunk on a calcite vein and lateral drifting at the 100-foot level was completed.

1955-57: Newnorth Gold Mines Limited

In 1955, five diamond drill holes were completed by A. MacNeil for Newnorth Gold Mines Limited, for a total length of 168 feet (51 m) in the area one mile (1.6 km) west of Fournier Lake. Specks of chalcopyrite and pyrite were observed, and carbonate veins varying from 4 inches to 1.2 feet (10-36 cm) were intersected.

In 1956, Newnorth Gold Mines Limited had staked 35 claims in west-central Leonard Township, between Mullen and Fournier Lakes.

In 1956, Geo-Explorers Limited carried out a ground electromagnetic survey for the owners to locate concealed veins. Two conductors and six semi-conductors were identified.

In 1957, five diamond drill holes were completed by Cameron Diamond Drilling Company for New north, for a total length of 1,009 feet (308 m) between Fournier and Bing Lake. Calcite stringers were intersected in the holes.

Seven diamond drill holes were completed in 1959 for a total length of 2,206 feet (673 m) in both Cobalt sediments and Nipissing Diabase. Chalcopyrite, pyrite and carbonate stringers were intersected (Carter, 1977).

1971: United Reef Petroleum Co. Limited

In 1971, six diamond drill holes were completed in diabase by United Reef Petroleum, for a total of 420 feet (130 m). The core was assayed for silver and cobalt. The logs provide basic location information and geological descriptions, with intervals reported as down-hole lengths. No survey or recovery data was reported.

The best silver assay was 7.50 oz Ag/ton from a calcite vein, and the best cobalt assay was 0.38% Co from the same vein (Carter, 1977). This program confirmed the presence of a vein system over a length of at least 150 feet.

1976: Alamo Petroleum Ltd.

Ground EM and soil sampling surveys were completed near Eliza Lake. Elongate silver-cobalt anomalies (> 10 ppm Co and > 0.5 ppm Ag) were outlined near known mineralization.

1992- 3: Pat Donovan

Pat Donovan conducted stripping operations in 1992- 3 on claims 600 meters northwest of Eliza Lake. Channel sampling was completed across a cobalt-bearing vein.

2018: Battery Mineral Resources

High resolution LIDAR survey was completed by Airborne Imaging Inc. over the Shining Tree property to identify and accurately locate outcrops and historic features. The survey covered an area of 25.5 km².

Prospecting by Battery Mineral Resources was conducted in the summer of 2018 in order to ground truth existing government maps of the project area. 117.5 km was traversed in the survey and 14 samples were collected with 12 being assayed.

2019: Battery Mineral Resources

Prospecting by Battery Mineral Resources was conducted between October 17th to

the 24th, 2019 in order to ground truth existing government maps of the project area. 41.6 km were traversed in the survey and 30 samples were collected and assayed.

2019: Battery Mineral Resources

In the winter of 2019, Canadian Exploration Services Limited (CXS) performed a detailed 3D Distributed Induced Polarization (3D IP) survey for Battery Mineral Resources Limited over various regions of the Shining Tree Project; North, Central and South. Tom Weis a geophysical consultant for BMR integrated the 3D IP models (produced by CXS) with the previous airborne data to interpret new exploration targets.

Activity	Area	Dates	Performed by
3D Distributed IP	North	February 18 to March 5, 2019	CXS of Larder Lake
3D Distributed IP	Central	January 15 to February 18, 2019	CXS of Larder Lake
3D Distributed IP	South	January 3 to January 11, 2019	CXS of Larder Lake
Interpretation	All	July 9, 2019 to October 20, 2019	Thomas V Weis and As-sociates Inc. of Colorado

Table 2: Summary of 2019 BMR IP surveys in the Shining Tree Project area.

2020: Battery Mineral Resources

In March 2020, a drill program commenced on the property but was terminated after one hole due the COVID-19 lockdown.

2.5 REGIONAL AND LOCAL GEOLOGY

Regional Geology

The regional geology (Figure 4) comprises Early Proterozoic (2450 Ma and 2220 Ma) sedimentary rocks of the Huronian Supergroup which rest unconformably on older Archean granitic, metavolcanic, and metasedimentary rocks of the Abitibi Subprovince. Archean basement rock comprises mafic to felsic volcanic rocks, iron formation, and minor pyrite deposits that are moderately to steeply dipping. The fine to coarse grained, mildly to strongly magnetic Nipissing diabase intrudes all the other lithologies except the youngest mafic dikes or sills.

Figure 4: Regional geology of the area surrounding the Shining Tree project. The project is located near the northwestern margin of the Huronian Basin. Geological data are from the Ontario Geological Survey (2016).

Local Geology

Stripping in the Shining Tree central project area was conducted near the eastern margin of a fine to coarse grained Nipissing Diabase sill complex comprising a lower sill which is flat lying and an upper one that is "saucer shaped with inward dips" (Carter, 1977). The diabase intrudes Gowganda argillites and Lorrain arkoses of the Huronian supergroup which occur as elongate lenses to the east and west of the stripped area, respectively. The sediments form part of the northwest margin of the Huronian Basin which unconformably overlies northwest-trending Archean basement rocks comprising mafic to felsic volcanic rocks, and iron formations, that dip moderately to steeply west. Figure 5 displays the local geology (Carter 1977) in west central Leonard Township.

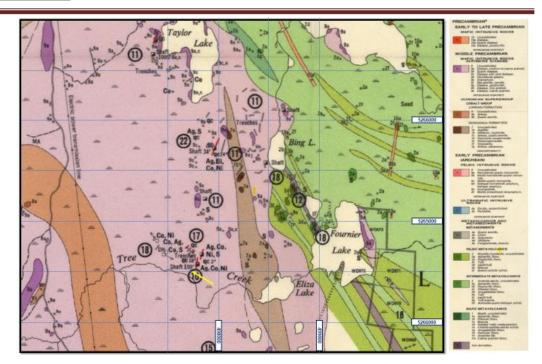


Figure 5: Local geology of the Shining Tree central project area; (geology after Carter, 1977).

3.TRENCHING/STRIPPING

3.1 PERMITS

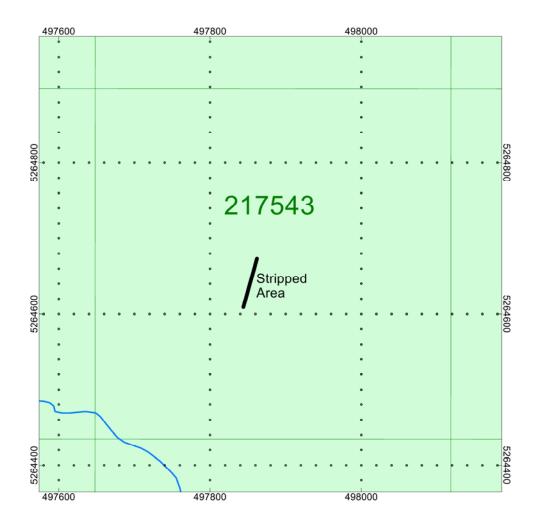
Permit for exploration stripping and drilling at the Shining Tree Central project area is PR-20-000122.

3.2 OVERVIEW

A whaleback- shaped outcrop near the Caswell-Eplett Shaft - Neelands pit prospect in the Shining Tree Central Project area was mechanically stripped, cleaned and washed, sampled and mapped in the late fall of 2020.

Prior to the commencement of the stripping program, the site was scouted by BMR Exploration Manager, F. Ploeger on October 13 to determine the extent, and mark out the boundaries, of the area to be stripped.

Mechanical stripping of the whaleback outcrop exposure hosting the Caswell-Eplett Shaft and Neelands pits was carried out between October 28 and November 2, 2020 by Bill Bonney from Canadian Exploration Services (CXS). This was followed on November 9 – November 13 by hand cleaning and washing of the stripped area by Neil and Richard Bates of CXS. The stripping and washing exposed an area approximately 100 metres in length, ranging from about 8- 18 m in width, including four historic pits and networks of fractures and veins. Three of these pits were located near the south end of the stripped area near to the Caswell-Eplett shaft and the fourth, deeper, Neelands pit, near the north end of the stripped area. The cleaned exposure was mapped and sampled on November 13, 2020 by Andrew Salerno and Sean Hicks of BMR. Table 3 summarises the details of the stripping program.


On November 13, a DGPS survey was conducted by Andrew Salerno of BMR over the stripped area to facilitate georeferencing of the sample points, geological structures and contacts, and historical features to a LiDAR base.

In total, 12 samples were taken over the most prominent fractures / structures.

Date	Description	Personnel	Samples Taken
October 13, 2020	Exploration manager	Exploration manager,	
	to Shining Tree to	F Ploeger; BMR staff,	
	scout and outline area	Andrew Salerno and	
	that is to be stripped	Steve Trimmer	
October 27, 2020	Excavator began to	Excavator Operator,	
	clear off the outcrop	Bill Bonney	
	area		
October 28, 2020	Excavator continued	Excavator Operator,	
	to clear of the outcrop	Bill Bonney; BMR	
	area; BMR crew to	staff, Frank Ploeger	
	check progress	and Steve Trimmer	
October 29, 2020	Excavator continued	Excavator Operator,	

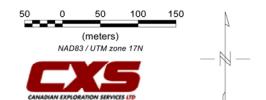

	to clear of the outcrop	Bill Bonney	
	area	Din Bornioy	
October 30, 2020	Excavator continued to clear of the outcrop area, BMR staff out to check stripping progress and to evaluate requirements for the wash crew.	Excavator Operator, Bill Bonney; BMR staff, Andrew Salerno and Stephan Trimmer	
November 2, 2020	Excavator's final day clearing the outcrop area	Excavator Operator, Bill Bonney	
November 9, 2020	CXS crew came in with gear, set up pumps at Shining Tree creek and began clearing off the sand and rocks from the stripped area. BMR staff out to help with washing and sampling.	Wash Crew: Neil & Richard Bates; BMR staff, Andrew Salerno, Sean Hicks and Stephan Trimmer	
November 10, 2020	CXS crew continued shovelling and Swede picking off the sand and boulders and washing. BMR staff out to help with washing and sampling.	Wash Crew: Neil & Richard Bates; BMR staff, Andrew Salerno, Sean Hicks and Stephan Trimmer	
November 11, 2020	CXS crew continued shovelling and Swede picking off the sand and boulders and washing. BMR staff out to help with washing and sampling.	Wash Crew: Neil & Richard Bates; BMR staff, Andrew Salerno, Sean Hicks and Stephan Trimmer	
November 12, 2020	CXS crew continued shovelling and Swede picking off the sand and boulders and washing. BMR staff out to help with washing and sampling.	Wash Crew: Neil & Richard Bates; BMR staff, Andrew Salerno, Sean Hicks and Stephan Trimmer	
November 13, 2020	CXS crew completed shovelling and Swede picking off the sand and boulders and washing. BMR staff mapped and sampled the washed outcrop.	Wash Crew: Neil & Richard Bates; BMR staff, Andrew Salerno, Sean Hicks and Stephan Trimmer	12 samples taken

Table 3: Summary of work of the 2020 stripping at Shining Tree Central.

Shinigtree Tree Project Caswell Trenching Ontario, Canada

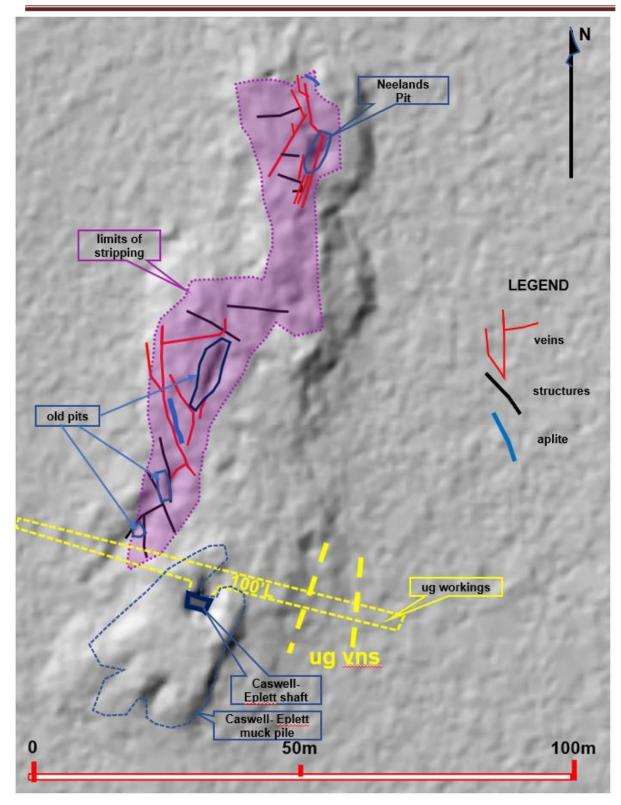


Figure 6: Mapping and features of stripped area.

3.3 STRIPPING RESULTS

Shining Tree Central Stripped Area

Mechanical stripping of the whaleback outcrop exposure hosting the Caswell-Eplett Shaft and Neelands pits was carried out in the late fall of 2020. The stripping and washing exposed an area approximately 100 metres in length, ranging from about 8-18 m in width, including four historic pits and networks of fractures and veins. Three of these pits were located near the south end of the stripped area in proximity to the Caswell-Eplett shaft and the fourth, deeper, Neelands pit, near the north end of the stripped area. Sampling of the northerly portion of the outcrop by a previous owner (Donovan, 1992) returned high Co values from several areas around the historic deep pit. A DGPS survey was conducted over the stripped area to facilitate georeferencing of the sample points, geological structures and contacts, and historical features to a LiDAR base (Figure 6).

Both the north and south halves of the stripped outcrop area are comprised of medium to coarse grained Nipissing diabase. Cutting the diabase, particularly the southern portion, are a series of fine grained, pinkish coloured aplitic dikes to 10" maximum width (Figure 7A). Stripping on the southern half of the outcrop revealed that 2 small pits appeared to be sunk on strong slips/ fractures @ about 350 degrees (7B) which roughly line up with the shaft. The steep north walls of the pit in the foreground and in the distance probably reflect the structures that parallel those on which the shaft was sunk.

<u>Figure 7: A- aplite dike cuts coarse grained diabase host (parallel to hammer); B- Looking north at the 2 small pits near the shaft, note vertical walls on strong slips (background-the wash crew are standing near the shallow trench).</u>

A shallow rock trench/ pit about 12- 15m north of the smaller pits exposed a calcite-quartz vein in which Co bloom was noted (Figure 8A). Several aplite dikes to 10" and a branching vein/ fracture system trending @ 350 were also noted (Figure 8B) in the area.

Figure 8: A- quartz- calcite vein with Co bloom in shallow trench/ pit; B- branching vein fracture with wider vein zone at the intersection/ junction.

Sampling of the outcrop at the north end of the stripped area by Donovan in 1992, returned high Co values from several areas around the historic Neelands pit. According to his sketch, four in situ vein chip samples and a grab sample returned values of 7.04%, 3.36%, 0.035%, 1.92%, 2.26%, and 2.35% Co.

The stripping and washing at the north end of the whaleback outcrop near the deep pit uncovered several quartz- carb veins and associated structures. Figure 9A displays one of the wider sections of Co stained, calcite- quartz veining uncovered near the pit in which the vein appears to be curving, possibly along a cylindroidal joint or at the junction of 2 structures.

Figure 9B illustrates the complex structure on the northwest side of the pit where quartz- carbonate veins stained with Co bloom trend @ 330 while the fracture zone trends @ approximately 025. Short patches of vein material with Co bloom also track along these structures.

At the southern edge of the Neelands pit, a series of white carbonate- quartz veins are associated with the set of fractures trending @ 040 (roughly parallel with the

hammer handle in Figure 9C while another set runs diagonally to the left.

Figure 9: A- quartz- calcite vein with Co bloom near the Neelands pit; B- veins @ 330 cut across the fracture set with short pods of vein material @ 025 northwest of the pit; C- streams of veins follow fractures @ 040 at the south edge of the pit.

Following the washing of the outcrop exposures, a number of veins and structures on the southern area around the Caswell- Eplett shaft and historic pits, and, the northern area around the Neelands pit, were sampled. In total, 5 samples numbered R2240 to R 2245 were taken from the 2 old pits, the long trench and the aplitic dikes, while the 7 samples in the northern portion of the stripped area (R2239, R2245 to R2250) were chipped from the various vein swarms, junctions and structures south and west of the large Neelands pit. Sample locations, anomalous assay results and descriptions are given in Table 4 while locations are displayed in Figure 9.

Sample (ID)	East- ing	North- ing	Co (ppm)	Ag (ppm)	As (ppm)	Details
R2239	497870	5264661	2840	4.22	3100	Calcite vein muck with significant co- bloom from northern pit
R2240	497834	5264590	235	4.28	153	3 cm qtz-carb vein with mag., py., and cpy. from the south pit 1 (344/78)
R2241	497844	5264609	44.5	1.07	52.8	Intersection of qtz-carb vein and aplitic dike with blebby cpy. (020/82) and (335/80)
R2242	497845	5264619	13.9	5.05	16.4	Aplitic dike with <1 cm qtz. veins with minor py.
R2243	497846	5264632	26.2	1.56	8.5	Cm-scale bifurcating qtz-vein with minor py and Co-bloom (060/76)
R2244	497849	5264615	521	0.25	669	Main carbonate vein from central trench with minor co-bloom (184/86)

R2245	497858	5264662	5990	6.83	8240	Large quartz carbonate vein on west side of north pit with blebby cpy. vein margins and co-bloom
R2246	497864	5264667	50.3	3.49	23.9	Highly oxidized qtz-carb vein with significant cpy. (330/86)
R2247	497863	5264662	11300	35.0	14950	Large carbonate vein on north side of north pit with significant co-bloom
R2248	497863	5264665	1110	3.43	1100	Main vein north side of north pit with significant co-bloom
R2249	497862	5264673	48.6	0.39	59.5	Dike intersecting main vein north of north pit with disseminated cpy. (110/80)
R2250	497864	5264659	22	0.33	21.9	Parallel set of cm-scale carb vein with minor cpy. (040/82)

Table 4: Summary of channel sampling with assay results for the northerly stripped area.

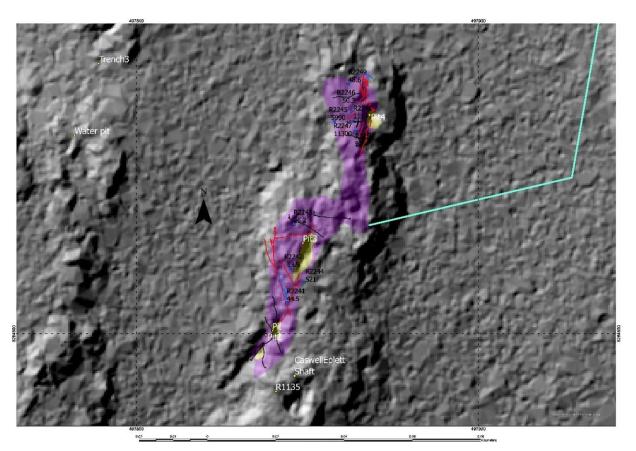


Figure 10: Sample locations on the stripped area.

Assays confirmed the presence of cobalt bearing minerals in samples R2239, R2245, R2247 and R2248 returning 2840, 5990, 11300 and 1110 ppm Co, respectively, while the rest of the samples had negligible Co concentrations. Anomalous As

assays mimicked the Co values along with R2247 which returned significant Ag at 35.0 ppm.

Of the samples taken in the southern half of the stripped area, R2240, a 3 cm quartz- carbonate vein trending @ 334 degrees and dipping 78 E with magnetite, pyrite, and chalcopyrite from pit 1, returned anomalous Co and Ag values of 235ppm and 4.28 ppm, respectively. One other sample (R2244) of vein material with erythrite staining from the elongate trench assayed 521 ppm Co.

As mentioned above, samples R2239, R2245, R2247 and R2248, all from the northerly stripped area surrounding the Neelands pit, yielded anomalous Co values but could not repeat the significant values obtained by Donovan in his 1992 sampling. The best value obtained was 1.13% Co from a sample of a large carbonate vein on the north side of the pit with abundant Co-bloom which is pictured in Figure 8A. As noted in the Table (4), the silver value was significant at 35.0 ppm. Several other samples yielded slightly anomalous silver values to 6.83ppm (R2245). Also noteworthy is the fact that the anomalous Co values corresponded with enriched As.

A complete listing of the assay data is attached as Appendix 2.

A significant snowfall and cold temperatures precluded a planned channel sampling program.

4. SUMMARY & RECOMMENDATIONS

4.1 SUMMARY

Battery Mineral Resources Corp. (BMR) controls 143 mining cells that comprise the Shining Tree project located in Leonard and Tyrrell Townships, District of Sudbury, northeastern Ontario. The center of the project area is ~23 km southwest of Gowganda and ~18 km east of Shining Tree.

Following a preliminary prospecting forage into the area in 2018 and completion of a diamond drill hole in early 2020, it was decided to expose a whaleback outcrop containing old pits and trenches near the historic Caswell- Eplett shaft and Neelands pit from which significant cobalt values had been obtained. Mechanical stripping of the area between the shaft in the south, and large pit in the north, which began on October 27, 2020, was followed from November 9 to 13 by washing of the stripped area by personnel from Canadian Exploration Services (CXS), and, mapping and sampling by a BMR crew. A DGPS survey was conducted over the area to tie in the samples and features to control points for the mapping.

The stripping and washing exposed various fractures and veins around the historic pits and long rock trench near the south end of the stripped area close to the Caswell- Eplett Shaft and also around the Neelands pit in the northern portion of the stripped area. The host for the veining and structures is medium to coarse grained Nipissing diabase intruded by very minor aplitic dikes ranging up to 10" in width. Descriptions of the dikes indicate that they are fine grained and pale orange/ pink coloured; in the southern half of the stripped outcrop their trend is 020 degrees whereas the azimuth measured in a northern aplite is essentially perpendicular at 110 degrees.

It was noted during the mapping that many of the veins splay, or form intersecting sets, generally trending at 330-335 and at 040-060 degrees. Visually, it appears that the best veining (and mineralization?) occurs at the junction of the two fracture/structural sets.

Two of the samples taken in the southern half of the stripped area, R2240 and R2244, returned anomalous Co values of 235 ppm and 521 ppm with the former running 4.28 ppm Ag as well. Samples R2239, R2245, R2247 and R2248, all from the northerly stripped area surrounding the Neelands pit, yielded anomalous Co values of 2840, 5990, 11300 and 1110 ppm Co but did not replicate the significant values obtained by Donovan in his 1992 sampling. The best value of 1.13% Co was obtained from a wide carbonate vein with significant Co-bloom on the north side of the north pit accompanied by a corresponding high silver value of 35.0 ppm.

It was noted that all the fractures were deeply eroded/ weathered suggesting the possible dissolution and weathering of vein material and mineralization.

A significant snowfall and cold temperatures precluded a planned channel sampling program.

4.2 RECOMMENDATIONS

It is recommended that:

- 1) the structures and veins in the southerly and northerly stripped areas be examined more closely and deep channel sampled to obtain a fresh sample below the weathering profile;
- 2) the water in the pits/ trenches be drained to permit direct mapping and sampling of the features:
- 3) the shaft, pits, structural features and veins be incorporated into a 3-D model of the area, utilizing the drill hole and IP data to determine the continuity of the vein systems/ structure, perhaps generating drill targets;
- 4) the surrounding outcrop areas be mapped in detail and also integrated into the 3-D model to aid in the geological interpretation of the site with respect to veining, structure and possible influence of basement paleotopography on the veining and as a source/ conduit for the mineralizing fluids;
- 5) a pattern of 4 diamond drill holes under the stripped area be planned to test the veining described in the Caswell- Eplett workings, to determine the geometry and continuity of the structures mapped on surface, and to aid in the interpretation of the model and IP signatures.

5. REFERENCES

Primary References

- Carter, M.W., (1977): Geology of Fawcett and Leonard Townships, Districts of Sudbury and Timiskaming; Ontario Div. Mines, GR146, 50p. Accompanied by Map 2359, scale I inch to ^mile (1:31,680).
- Donovan P, 1992; LEONARD PROPERTY- Co, Cu, Ni, Ag, Shining Tree Area, Leonard Township, Larder Lake Mining Division: Geological mapping & sampling, Mag/ VLF surveys; (Larder Lake Mining Division, Assessment Report CO-1372/ 41P10SW9028/ 2.14990);
- Donovan, P. 1993, Pat Donovan Leonard Property: Co, Cu, Ni, Ag, Shining Tree Area, Leonard Township, Larder Lake Mining Division, Assessment Report No. CO-1380: 41P11SE0078.
- Google Earth Pro. (2019). Location of the Gowganda Project. 47°40'16.71"N, 80°43'46.78"W, eye alt 255.46km, Viewed November 19, 2019. http://www.google.com/earth/index.html.
- Ontario Geological Survey, 2016, Shape files of geological compilation map: https://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/bedrock-geology.
- Page, M., 2018. Cobalt Exploration Project SE Ontario and SW Quebec, Canada; NI 43-101 report prepared for Battery Mineral Resources Ltd, by Exploration Services International, 520p.

Secondary References

- Andrews, A.J., Owsiacki, L., Kerrich, R., and Strong, D.F., (1986a). The silver deposits at Cobalt and Gowganda, Ontario. I: Geology, petrography, and whole-rock geochemistry: Canadian Journal of Earth Sciences, v.23 (10), p. 1480-1506.
- Andrews, A.J., Masliwec, A., Morris, W.A., Owsiacki, L., and York, D., (1986b). The silver deposits at Cobalt and Gowganda, Ontario. II: An experiment in age determinations employing radiometric and paleomagnetic measurements: Canadian Journal of Earth Sciences, v.23 (10), p. 1507-1518.
- Hanych, W. (1999). *Roy Lacarte Property, Geological Evaluation.* Tyrrell Township, Timiskaming District, Northeastern Ontario.
- Hitzman, M.W., Bookstrom, A. A., Slack, J. F., and Zientek, M. L. (2016). Cobalt— Styles of Deposits and the Search for Primary Deposits: USGS Open-File Report 2017–1155, 53 p.

- Jambor, J.L. (1971). *The Nipissing Diabase.* The Canadian Mineralogist, 11(1):34-75.
- Joyce, J.K. (n.d.). *The Cobalt-Gowganda Silver Mining Area*. Retrieved from https://www.davidkjoyceminerals.com/pagefiles/articles_cobaltgowganda.asp.
- Kerrich, R., Strong, D.F., Andrews, A.J., and Owsiacki, L., (1986). The silver deposits at Cobalt and Gowganda, Ontario. III: Hydrothermal regimes and source reservoirs—evidence from H, O, C, and Sr isotopes and fluid inclusions: Canadian Journal of Earth Sciences, v.23 (10), p. 1519-1550.
- Lebrun, E., (2019). Gowganda Cobalt Exploration Project Site Visit. Internal Memo, SRK Consulting, p. 1-5.
- Lindsey, D.A. (1969). Glacial Sedimentology of the Precambrian Gowganda Formation, Ontario, Canada. GSA Bulletin, 80 (9): p. 1685-1702.
- Palmer, H. C.; Ernst, R. E.; Buchan, K. L. (2007). "Magnetic Fabric Studies of the Nipissing sill province and Senneterre dykes, Canadian shield, and Implications for Emplacement". Canadian Journal of Earth Sciences. NRC Research Press 44 (4): p. 507–528.
- Siddom, James P. (1999). Differential Uplift of the Archean Basement North of the Sudbury Basin: Petrographic Evidence from the Matachewan Dyke Swarm (submitted in conformity with the requirements for the degree of M.Sc. Graduate Department of Geology University of Toronto thesis).
- Siemiatkowska, K.M. (1977). Geology of the Wakomata Lake Area, District of Algoma. Ontario Division of Mines: Geoscience Report 151.

6. QUALIFICATIONS

CERTIFICATE OF QUALIFICATION AND CONSENT

- I, Frank Rainer Ploeger of the town of Virginiatown, Province of Ontario, do hereby certify:
- 1) That I am a Consulting Geologist and reside at 21 Waite Avenue, Virginiatown, Ontario, P0K 1X0.
- 2) That I graduated from Queen's University at Kingston, Ontario with a Bachelor of Applied Science degree in 1973; and, that I completed 2 years of an MSc program at McMaster University in Hamilton, Ontario (1980- 1982).
- 3) That I am a member in good standing of the Association of Geoscientists of Ontario (#479), the Association of Professional Engineers and Geoscientists of Saskatchewan (#10852, non- practicing), the Geological Association of Canada, the Prospectors and Developers Association, and the Northern Prospectors Association. I have received a temporary permit (#2153) to practice in Quebec from the Ordre des geologues du Quebec pending acceptance by the Office quebequois de la langue francaise (OQLF).
- 4) That I have practiced my profession as a mineral exploration and mine geologist for a period of about 45 years.
- 5) This document is based on information various public documents and my personal observations during several visits to the property.

Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk.

- 6) I have no interest, either directly or indirectly, in the subject property or client company.
- 7) My written permission is required for the release of any summary or excerpt.

 Frank R. Ploeger

 Virginiatown, Ontario, January 13, 2020

CERTIFICATE OF QUALIFICATION AND CONSENT

- I, Peter James Doyle of the city of Richmond Hill, Province of Ontario, do hereby certify:
- 1) That I am an Exploration Geologist and reside at 79 Naughton Drive, Richmond Hill Ontario, L4C8B2.
- 2) That I graduated from Laurentian University at Sudbury, Ontario with an Honours Bachelor of Science degree in 1980.
- 3) That I am a Fellow in good standing of the Australian Institute of Mining & Metallurgy (AUSIMM # 208850) as well as a member in good standing of Geological Association of Canada (GAC F0146); Canadian Institute of Mining & Metallurgy (CIMM # 91602); Prospectors & Developers Association of Canada (PDAC # 707); Society for Geology Applied to Mineral Deposits (SGA# 1333-08) and Society of Economic Geologists (SEG # 216720).
- 4) That I have practiced my profession in various roles as a Mineral Exploration Geologist, Exploration Manager and Vice President of Exploration for a period of about 39 years principally within Canada & Australia as well as globally in United States of America, Mexico, Indonesia, China, Mongolia, Brazil, Argentina and Guyana.
- 5) This document is based on information various public documents and my personal observations during visits to the property during the exploration program.

 Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk.
- 6) I am currently employed full time as Exploration Manager Canada for Battery Mineral Resources Limited and was directly involved in the planning and execution of the exploration program documented in this report.

7) <u>My written permissi</u>	<u>ion is required for the rel</u>	lease of any summary or excerpt.	
Peter J. Doyle		Richmond Hill, Ontario, Janua	ary 13, 2020

7.INSTRUMENT SPECIFICATIONS

7.1 GARMIN INREACH EXPLORER+

Specifications obtained from www.garmin.com

General	
Physical dimensions	2.7" x 6.5" x 1.5" (6.8 x 16.4 x 3.8 cm) with keypad and SOS door bump
Display size	1.4"W x 1.9"H (3.5 x 4.7 cm); 2.31" diag (5.9 cm)
Display resolution	200 x 265 pixels
Display type	transflective color TFT
Weight	7.5 oz (213.0 g)
Battery	Rechargeable internal lithium ion
Battery life	Up to 100 hours at 10-minute tracking mode (default); up to 75 hours at 10-minute tracking with 1-second logging; up to 30 days at the 30-minute interval power save mode; and up to 3 years when powered off
Water rating	IPX7
Memory/History	2 GB
High-sensitivity receiver	
Interface	USB

Maps & Memory					
Preloaded maps	yes. The North America SKU of the inReach Explorer+ comes preloaded with a 1:24k map of Garmin Yarmouth (Former DeLorme) North America data of the U.S. and Canada. Mexico also is included at a 1:125k scale (derived from Garmin Yarmouth's Digital Atlas of the Earth).				

Ability to add maps	
Waypoints/favorites/loca- tions	500
Routes	20

Sensors						
Barometric altimeter						
Compass	Yes (tilt-compensated 3-axis)					

Outdoor Recreation Features	
Camera	no

dditional	
Additional	Wireless compatible: yes (Bluetooth®)
	 Trigger an interactive SOS with 24/7 search and rescue monitoring center: yes
	Send and receive text messages to SMS and email: yes
	 Send and receive messages with other inReach users, exchange locations: yes
	Track and share location with friends and family on web-based Map- Share® portal: yes
	 Request weather forecasts for current location and planned destination yes
	Virtual keyboard for custom text messaging: yes
	Send waypoints to MapShare portal during trip: yes
	 Send route selection to MapShare portal for friends and family to see progress: yes

7.2 TRIMBLE GEOXT¹

STANDARD FEATURES

<u>System</u>

- Windows Mobile 6.1(Classic edition)
- VGA display (480 x 640), sunlight-readable color touch screen
- Integrated Bluetooth 1.2 wireless technology
- Integrated 802.11b/g wireless LAN
- Ergonomic cable-free handheld
- Rugged and water-resistant design
- All-day internally rechargeable Li-ion battery
- Marvell 520 MHz XScale processor
- 128 MB RAM
- 1 GB non-volatile Flash data storage
- Sealed SD/SDHC card slot
- Integrated speaker and microphone

GPS

- Integrated high-performance GPS/SBAS1 receiver and L1 antenna
- Submeter real-time or 50 cm postprocessed accuracy
- RTCM and CMR real-time correction support
- TSIP and NMEA protocol support

¹ Trimble instrument information available from: https://seafloorsystems.com/sup-port/brochures/trimble-docs/43-trimble-geoxt-handheld-gps-receiver/file

- EVEREST multipath rejection technology

Standard Software

- GPS Controller for control of integrated GPS and in-field mission planning
- GPS Connector for connecting integrated GPS to external ports
- Microsoft Office Mobile
- Transcriber (handwriting recognition)

Standard Accessories

- Support module
- AC Power supply with International adapter kit
- USB data cable
- Stylus(x2)
- Screen protectors (2-pack)
- Quick Start Guide
- Getting Started CD
- Hand strap
- Pouch

OPTIONAL FEATURES

Optional Software

- Terra Sync software
- Trimble GPS correct extension for ESRI ArcPad software
- GPS Pathfinder Tools Software Development Kit (SDK)
- GPS Pathfinder Office software
- Trimble GPSAnalyst™ extension for ESRI ArcGIS Desktop software
- TrimPix™ Pro system

Optional Accessories

- TDL 3G cellular modem accessory
- Power/serial clip (9-pin RS-232 serial connector and power input)
- Vehicle power adaptor
- Null modem cable
- Backpack kit
- Hard carry case
- Tempest[™] antenna
- External patch antenna
- Pole-mountable ground plane
- Baseball cap with patch antenna pocket
- 2 meter range pole
- Range pole bracket
- Geo Beaconreceiver
- Anti-glare screen protectors (2-pack)

TECHNICAL SPECIFICATIONS

<u>Physical</u>
Size
Power usage Low (no GPS or backlight)
Environmental
Operating temperature
Input/Output
Expansion
LED back light InterfaceTouch screen, 10 hardware control keys, power status LED Audio system events, warnings, and notifications Soft Input Panel (SIP) virtual keyboard and handwriting recognition software AudioMicrophone and speaker, record and playback utilities I/OUSB 1.1 client via support module Serial via optional 9-pin RS-232 power/serial clip adaptor Radios ⁵
<u>GPS</u>
Channels
Data outputTSIP, NMEA-0183 v3.0 (GGA, VTG, GLL, GSA, ZDA,

- 1 SBAS (Satellite Based Augmentation System). Includes WAAS available in North America only, EGNOS available in Europe only, and MSAS available in Japan only.
- 2 Power/serial clip also required.
- 3 With backlight at default setting (50% brightness).
- 4 Power draw will vary depending on radio usage.
- 5 Bluetooth and wireless LAN type approvals are country specific. GeoExplorer 2008 series handhelds have Bluetooth and wireless LAN approval in the U.S. and in most European countries. For further information please consult your local reseller.
- 6 Horizontal Root Mean Squared accuracy, 1-sigma (68%). Except in conditions where most GPS signals are affected by trees, or buildings, or other objects. Except when using VRS corrections, accuracy varies with proximity to base station by +1 ppm for code postprocessing and real-time.
- 7 Postprocessed carrier accuracy varies with proximity to base station by +2 ppm. 45 minute carrier capability applies only to the GPS Pathfinder Office software and is limited to 10km from the base station.

8.APPENDIX

APPENDIX 1: Mining Claim Cells List

APPENDIX 2 Assay Certificates of Analyses

Converted Cell ID	Township / Area	Tenure Type	Holder	Tenure Percentage	Work Required
105275	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
292569	TYRRELL	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
188655	TYRRELL	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
182644	TYRRELL	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
238080	LEONARD, TYRRELL	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
225958	LEONARD, TYRRELL	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
125196	LEONARD, TYRRELL	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
344128	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
321209	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
321208	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
288324	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
284470	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
284469	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
284468	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
284467	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
238081	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
221067	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
218503	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
175136	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
172367	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
155716	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
324354	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
295142	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
295141	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
276282	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
257759	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
241204	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
229039	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
221068	LEONARD	LEONARD Single Cell Mining Claim Battery Mineral Resou		100	\$400.00
172368	LEONARD	LEONARD Single Cell Mining Claim Battery Mineral Resc		100	\$400.00
155717	LEONARD	LEONARD Boundary Cell Mining Claim Battery Mi		100	\$200.00
103993	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
301680	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
301679	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
290124	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
290123	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
282790	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
280451	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
244665	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
198453	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
198452	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
198451	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
150322	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
133650	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
122911	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
108692	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00

Converted Cell ID	Township / Area	Tenure Type	Holder	Tenure Percentage	Work Required
340115	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
340114	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
327712	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
280450	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
269169	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
232465	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
224484	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
165710	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
165709	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
159091	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
119252	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
103994	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
333156	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
331415	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
331414	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
331413	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
330284	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
315699	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
309053	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
274012	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
255163	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
217543	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
168156	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
168155	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
160535	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
155370	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
149306	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
149305	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
103651	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
342151	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
315700	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
277865	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
261255	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
249726	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
246684	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
241666	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
212557	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
212509	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
194501	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
186700	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
140423	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
111014	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
111013	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
110950	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
342153	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
342152	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00

Converted Cell ID	Township / Area	Tenure Type	Holder	Tenure Percentage	Work Required
282520	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
282502	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
270415	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
236599	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
236598	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
236597	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
187237	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
186701	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
181180	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
181179	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
167742	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
118934	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
103652	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
334097	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
303866	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
274013	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
255164	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
155371	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
135843	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
112769	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
332483	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
329997	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
320392	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
270045	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
253862	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
249324	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
249323	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
246400	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
232795	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
232794	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
214630	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
214629	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
201262	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
196080	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
171300	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
161472	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
142563	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00
131341	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
131340	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
136587	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
304576	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
237879	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
171299	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
333443	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
302538	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00
265933	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00

Converted Cell ID	Township / Area	hip / Area Tenure Type Holder					
253864	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00		
253863	LEONARD	Single Cell Mining Claim	Battery Mineral Resources	100	\$400.00		
169227	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00		
150549	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00		
134482	LEONARD	Boundary Cell Mining Claim	Battery Mineral Resources	100	\$200.00		
143					\$43,600.00		

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: BATTERY MINERAL RESOURCES CORP.
THE PACIFIC BUILDING
SUITE 400, 744 WEST HASTINGS STREET
VANCOUVER BC V6C 1A5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-DEC-2020

Account: BMRPLLBW

CERTIFICATE SD20271237

Project: Shining Tree - Stripping

This report is for 14 Rock samples submitted to our lab in Sudbury, ON, Canada on

20-NOV-2020.

The following have access to data associated with this certificate:

PETER DOYLE MIKE HENDRICKSON SEAN HICKS
FRANK PLOEGER MERCEDES RICH ANDREW SALERNO

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							
LOG-23	Pulp Login - Rcvd with Barcode							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Co-OG62	Ore Grade Co - Four Acid	
Cu-OG62	Ore Grade Cu - Four Acid	
Ni-OG62	Ore Grade Ni - Four Acid	
As-OG62	Ore Grade As - Four Acid	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: BATTERY MINERAL RESOURCES CORP.
THE PACIFIC BUILDING
SUITE 400, 744 WEST HASTINGS STREET
VANCOUVER BC V6C 1A5

CERTIFICATE OF ANALYSIS SD20271237

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 29-DEC-2020
Account: BMRPLLBW

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
R2239		0.93	4.22	1.85	3100	10	0.56	42.9	26.2	0.02	51.1	2840	4	<0.05	18.4	0.38
R2240		0.85	4.28	2.01	153.0	10	15.95	4.41	20.2	0.02	105.5	235	5	1.13	445	5.47
R2241		1.07	1.07	4.75	52.8	10	1.45	0.60	0.47	0.06	82.4	44.5	24	0.46	2070	3.81
R2242		2.10	5.05	5.00	16.4	20	1.16	0.31	1.06	0.03	46.6	13.9	23	0.29	1150	2.61
R2243		0.59	1.56	3.39	8.5	90	1.19	0.98	14.80	0.08	64.9	26.2	6	1.28	2890	7.44
R2244		1.16	0.25	0.06	669	<10	1.21	1.74	37.9	<0.02	62.7	521	1	< 0.05	11.3	0.40
R2245		1.68	6.83	2.67	8240	10	0.83	306	23.7	0.03	78.8	5990	3	0.18	37.2	2.36
R2246		1.72	3.49	4.30	23.9	20	1.72	5.38	0.57	0.05	174.0	50.3	12	0.17	>10000	8.11
R2247		1.70	35.0	3.50	>10000	10	0.81	266	18.35	0.22	65.7	>10000	4	0.24	461	3.05
R2248		1.59	3.43	2.41	1100	10	0.56	32.0	22.2	< 0.02	53.2	1110	3	0.05	166.5	0.62
R2249		1.82	0.39	5.82	59.5	30	1.31	2.10	1.87	<0.02	66.0	48.6	14	0.14	560	4.13
R2250		0.80	0.33	2.99	21.9	20	0.50	3.78	23.0	< 0.02	46.5	22.0	3	0.12	73.6	1.70
R2058		0.02	0.91	7.01	1.9	250	1.06	0.22	5.78	0.86	37.9	>10000	163	0.72	1980	7.26
R2059		0.97	0.03	0.09	6.6	10	0.09	0.30	35.0	< 0.02	1.27	17.8	2	0.08	7.2	0.13

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

TO: BATTERY MINERAL RESOURCES CORP.
THE PACIFIC BUILDING
SUITE 400, 744 WEST HASTINGS STREET
VANCOUVER BC V6C 1A5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-DEC-2020 Account: BMRPLLBW

									C	ERTIFIC	CATE O	F ANAI	LYSIS	SD202	71237	
Sample Description	Method	ME-MS61														
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOD	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R2239		3.47	0.14	0.6	0.418	0.27	23.6	5.5	0.10	4020	55.1	1.40	1.3	224	120	25.9
R2240		16.60	0.23	0.9	0.297	0.02	39.5	51.7	2.08	1980	7.50	0.03	1.4	30.3	370	37.8
R2241		17.20	0.11	6.9	0.205	0.16	38.9	42.1	1.23	439	3.14	2.82	6.1	22.1	160	57.4
R2242		19.75	0.11	9.2	0.176	0.09	21.6	28.5	0.79	439	2.51	3.52	8.8	9.7	110	18.7
R2243		16.60	0.09	2.1	0.322	0.25	28.1	48.8	1.93	2860	1.72	1.44	3.3	15.1	300	77.7
R2244		0.57	0.15	<0.1	0.793	<0.01	27.6	2.2	0.10	4550	1.44	0.05	0.1	55.6	<10	1.6
R2245		10.65	0.16	1.3	0.664	0.23	36.4	26.4	0.90	3870	145.5	1.47	2.1	1105	250	38.3
R2246		16.45	0.21	6.8	0.649	0.54	71.8	54.8	1.32	306	1.82	2.39	1.6	24.2	210	15.5
R2247		12.60	0.11	1.6	0.391	0.42	32.8	37.1	0.99	3030	205	1.79	2.7	1470	340	233
R2248		4.60	0.13	1.3	0.409	0.33	24.9	10.3	0.27	3200	39.6	1.76	2.2	87.7	240	22.4
R2249		22.8	0.12	9.6	0.106	0.43	33.7	12.2	0.30	366	2.73	4.33	10.5	17.1	570	3.4
R2250		8.13	0.10	1.6	0.475	0.40	22.3	17.4	0.43	3800	5.62	1.75	2.6	17.6	290	4.1
R2058		19.20	0.12	3.4	0.061	0.68	19.2	7.1	3.78	966	2.74	2.23	21.8	>10000	1470	19.9
R2059		0.27	0.07	0.1	0.005	0.01	1.4	1.2	2.22	132	0.24	0.04	0.1	16.2	80	0.7

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax:

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: BATTERY MINERAL RESOURCES CORP.
THE PACIFIC BUILDING
SUITE 400, 744 WEST HASTINGS STREET
VANCOUVER BC V6C 1A5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-DEC-2020 Account: BMRPLLBW

									CERTIFICATE OF ANALYSIS SD20271237							
Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
R2239		1.8	0.005	0.07	0.78	18.7	1	0.3	66.1	0.10	<0.05	0.75	0.176	0.49	6.2	56
R2240		1.1	0.007	0.03	0.79	18.3	<1	0.8	62.7	0.12	0.09	1.10	0.201	0.03	1.1	121
R2241		2.4	0.002	0.15	1.43	5.5	1	1.3	20.8	0.70	< 0.05	9.21	0.238	0.02	2.8	74
R2242		2.2	< 0.002	0.10	1.02	1.8	<1	1.3	22.5	0.91	< 0.05	12.05	0.152	< 0.02	4.9	22
R2243		11.2	0.006	0.27	0.52	21.2	1	1.8	80.3	0.28	< 0.05	2.65	0.464	0.05	2.0	220
R2244		0.2	<0.002	0.02	0.20	25.0	1	<0.2	113.5	< 0.05	< 0.05	0.06	0.007	0.02	0.3	8
R2245		1.9	0.003	0.27	4.08	29.9	3	0.3	72.5	0.18	< 0.05	1.68	0.396	0.52	4.3	261
R2246		4.9	0.002	1.53	2.03	10.0	8	1.8	23.7	0.30	0.68	9.81	0.165	0.05	3.7	137
R2247		5.2	0.013	0.53	14.05	22.2	2	0.6	51.5	0.22	< 0.05	1.89	0.555	1.42	12.7	415
R2248		4.3	< 0.002	0.04	0.43	18.1	1	0.5	56.2	0.17	< 0.05	1.50	0.419	0.41	3.2	129
R2249		7.9	<0.002	0.07	0.29	6.9	1	2.1	30.0	1.01	< 0.05	12.00	0.291	0.05	4.8	31
R2250		11.8	0.002	0.08	0.20	26.3	<1	0.5	68.2	0.20	< 0.05	1.91	0.504	0.09	1.0	220
R2058		20.3	< 0.002	2.72	2.02	18.9	1	1.5	413	1.25	< 0.05	2.69	1.005	0.13	0.6	144
R2059		0.4	< 0.002	0.01	0.08	0.3	<1	< 0.2	75.3	< 0.05	< 0.05	0.09	0.008	0.03	0.1	2

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING **SUITE 400, 744 WEST HASTINGS STREET** VANCOUVER BC V6C 1A5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29-DEC-2020 **Account: BMRPLLBW**

(ALS	,										CATE OI	ANALYSIS	SD20271237	•
Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	As-OG62 As % 0.001	Co-OG62 Co % 0.0005	Cu-OG62 Cu % 0.001	Ni-OG62 Ni % 0.001	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01			
R2239 R2240 R2241 R2242 R2243		0.2 0.2 0.5 0.4 0.3	62.3 89.6 18.3 22.3 44.1	2 50 61 26 65	24.2 33.6 241 341 87.0					94.5	91.0			
R2244 R2245 R2246 R2247 R2248		<0.1 0.2 0.9 0.5 0.4	96.2 85.8 20.5 49.3 59.3	<2 19 32 57 3	1.2 51.7 257 63.8 47.4	1.495	1.130	1.875		89.7				
R2249 R2250 R2058 R2059		0.5 0.7 1.7 0.1	34.5 57.5 20.9 2.4	12 14 125 5	342 59.4 144.5 2.4		2.08		2.25					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

ALS Canada Ltd.

To: BATTERY MINERAL RESOURCES CORP.
THE PACIFIC BUILDING
SUITE 400, 744 WEST HASTINGS STREET
VANCOUVER BC V6C 1A5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-DEC-2020 Account: BMRPLLBW

Project: Shining Tree - Stripping

CERTIFICATE OF ANALYSIS SD20271237

		CERTIFICATE COMMENTS		
Applies to Method:	REEs may not be totally soluble in this ME-MS61	ANALYTICAL CO	OMMENTS	
Applies to Method:	Processed at ALS Sudbury located at 1 CRU-31 PUL-31	LABORATORY AI 351-B Kelly Lake Road, Unit #1, Sud CRU-QC PUL-QC		LOG-23 WEI-21
Applies to Method:	Processed at ALS Vancouver located at As-OG62 ME-OG62	t 2103 Dollarton Hwy, North Vancou Co-OG62 Ni-OG62	uver, BC, Canada. Cu-OG62	ME-MS61