

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

BAT-ERY MINERAL RESOURCES

Grass Roots Prospecting Report on the Shining Tree Property, Leonard and Tyrell Townships, District of Sudbury Northeastern, Ontario

March 3, 2021

Prepared By:

Frank Ploeger, P.GEO Battery Mineral Resources Corp. & Peter Doyle, FAusIMM Battery Mineral Resources Corp.

> With Contributions By: Andrew Salerno, B.Sc.

> > Prepared For:

Battery Mineral Resources Corp. P.O. Box 219, 14579 Government Road Larder Lake, Ontario, P0K 1L0 Canada

TABLE OF CONTENTS

1.0 Su	RVEY OVERVIEW	4
1.1	Project Name	4
1.2	Client	4
1.3	Summary	4
1.4	Activities Undertaken	5
2.0 Su	rvey Details	6
2.1	Location	6
2.2	Access	6
2.3	Mining Claims / Ownership	8
2.4	Historic Work	8
2.5	Regional and Local Geology1	0
3.0 Pr	ospecting1	3
3.1	Overview1	3
3.2	Plans & Permits1	3
3.3	Personnel1	3
3.4	Daily Log1	3
3.5	Traverses1	4
4.0 RE	SULTS1	5
4.1	Prospecting Results1	5
4.2	Sample Assay Results1	6
4.3	Recommendations1	7
6.0 RE	FERENCES1	9
7.0 Ql	JALIFICATIONS	20
		-
5.U IN	51 RUIVIENT 3PECIFICATION32	.2
9.0 AF	PENDIX2	5

LIST OF APPENDICES

APPENDIX 1: MINING CLAIM CELLS LIST APPENDIX 2: CERTIFICATES OF ANALYSES

LIST OF TABLES AND FIGURES

Figure 1: Location of the Shining Tree Project.	. 6
Figure 2: Shining Tree Project (LiDAR base) access via logging roads in red	7
Figure 3: Shining Tree Claim Cells	. 8

Figure 4: Regional geology of the area surrounding the Shining Tree project. The project is located near the northwestern margin of the Huronian Basin. Geological data are from the Ontario Geological Survey (2016)
Figure 6: Map showing GPS tracks for the 2020 prospecting of the Shining Tree area.
Figure 7: Map of Shining Tree area 2020 prospecting with sample locations

Table 1: Summary of Work Undertaken	5
Table 2: Summary of 2019 BMR IP surveys in the Shining Tree Project area	10
Table 3: Daily Log	14
Table 4: Sample coordinates and descriptions.	15
Table 5: Summarized sample assay results from the Shining Tree project.	17

1.0 SURVEY OVERVIEW

1.1 **PROJECT NAME**

This project is known as the **Shining Tree Project**.

1.2 CLIENT

BATTERY MINERAL RESOURCES Corp.

P.O. Box 219, 14579 Government Road, Larder Lake, Ontario, P0K 1L0, Canada

1.3 SUMMARY

Battery Mineral Resources Corp. (BMR) controls 143 mining cells that compose the Shining Tree project located in Leonard and Tyrrell Townships, District of Sudbury, Northeastern Ontario. The center of the project area is ~23 km southwest of Gowganda and ~18 km east of Shining Tree.

In September 2020, BMR's field team, contracted through Canadian Exploration Services (CXS) and consisting of Andrew Salerno, Sean Hicks, Ryan Wells and Stephan Trimmer, visited and prospected the Shining Tree project area. This was a follow up to the prospecting done in 2018, and, to a limited extent in 2019, where geologists attempted to locate known mineral occurrences, AMIS features, geological contacts and electromagnetic anomalies. The main objective of the work in 2020 was to verify the regional geological maps, investigate areas of geological interest for possible cobalt occurrences, ground truth geophysical IP features, as well as assess the accessibility of the area for potential winter drilling. Supervision was provided by BMR's Exploration Manager Frank Ploeger, and Vice President of Exploration Peter Doyle.

Several of the known cobalt occurrences as well as an iron formation between Bing and Fournier Lakes were located and sampled. There are also IP and Resistivity anomalies interpreted in this area as well as underlying the Caswell- Eplett and Coulee shaft areas that were investigated. A prospecting traverse was conducted south of Fournier Lake in a recent clear cut area that included the former Archibald prospect site.

A summary of activities is presented in Table 1.

All coordinates presented in this report are in UTM NAD83 Z17N.

1.4 ACTIVITIES UNDERTAKEN

Activity	Dates	Details	Performed By
Prospecting	September 2020	8 samples 22.4 km traversed	CXS Geologists
Assaying	November 2020	8 samples	ALS Minerals

Table 1: Summary of Work Undertaken

2.0 SURVEY DETAILS

2.1 LOCATION

Battery Mineral Resources' (BMR) Shining Tree project is located approximately 115 km north of Sudbury, 102 km southwest of Kirkland Lake, and 105 km south of Timmins. It comprises 134 mining cells in Leonard and Tyrrell Townships, District of Sudbury, Northeastern Ontario (Figure 1).

Figure 1: Location of the Shining Tree Project.

2.2 ACCESS

Access to the property is gained via highway 560 and Sandy Lake road, a primary logging road approximately 6 km west of Shining Tree, which in turn, is approximately 120 km west of the town of Englehart. The Sandy Lake road is followed eastwards for

about 12 km where it turns south and a secondary logging road, accessible by truck, extends eastward to a main hydro corridor from which point bush roads and trails provide ATV access to most of the project area (Figure 2).

The northwestern portion of the project area can be accessed by a boat launch at the end of an ATV trail located on Heron Lake. From the launch, a small boat or canoe can cross Heron Lake to Spider Creek providing access into Spider Lake to the northern limits of the property.

The southern area is accessible for pick up trucks south from Highway 560 via the Spear Lake logging road and westwards towards the south end of Fournier Lake along Spear Lake Road Branch 6.

Figure 2: Shining Tree Project (LiDAR base) access via logging roads in red.

2.3 MINING CLAIMS / OWNERSHIP

As of January 6, 2021, the 100% BMR Shining Tree property consists of 143 cell claims comprising 2,464 ha (24.6 km²) in Leonard and Tyrrell Townships of Northeastern Ontario. A full list of the claims that constitute the Shining Tree property are included in Appendix 1 and displayed in Figure 3.

Figure 3: Shining Tree Claim Cells.

2.4 HISTORIC WORK

The following exploration and drilling history are cited from Page (2018).

1927: Caswell – Eplett Shaft

A 100 foot deep shaft was sunk on a calcite vein and lateral drifting at the 100-foot level was completed.

1955-57: Newnorth Gold Mines Limited

In 1955, five diamond drill holes were completed by A. MacNeil for Newnorth Gold Mines Limited, for a total length of 168 feet (51 m) in the area one mile (1.6 km) west of Fournier Lake. Specks of chalcopyrite and pyrite were observed, and carbonate veins varying from 4 inches to 1.2 feet (10-36 cm) were intersected.

In 1956, Newnorth Gold Mines Limited had staked 35 claims in west-central Leonard Township, between Mullen and Fournier Lakes.

In 1956, Geo-Explorers Limited carried out a ground electromagnetic survey for the owners to locate concealed veins. Two strong and six weaker conductors were identified.

In 1957, five diamond drill holes were completed by Cameron Diamond Drilling Company for Newnorth, for a total length of 1,009 feet (308 m) between Fournier and Bing Lake. Calcite stringers were intersected in the holes.

Seven diamond drill holes were completed in 1959 for a total length of 2,206 feet (673 m) in both Cobalt sediments and Nipissing Diabase. Chalcopyrite, pyrite and carbonate stringers were intersected (Carter, 1977).

1971: United Reef Petroleum Co. Limited

In 1971, six diamond drill holes were completed in diabase by United Reef Petroleum, for a total of 420 feet (130 m). The core was assayed for silver and cobalt.

The best silver assay was 7.50 oz Ag/ton from a calcite vein, and the best cobalt assay was 0.38% Co from the same vein (Carter, 1977). This program confirmed the presence of a vein system over a length of at least 150 feet.

1976: Alamo Petroleum Ltd.

Ground EM and soil sampling surveys were completed near Eliza Lake. Elongate silver-cobalt anomalies (> 10 ppm Co and > 0.5 ppm Ag) were outlined near known mineralization.

1992- 3: Pat Donovan

Pat Donovan conducted stripping operations in 1992- 93 on claims near Bing Lake and 600 meters northwest of Eliza Lake. Channel sampling was completed across a cobalt- bearing vein (Donovan, 1993).

2018: Battery Mineral Resources

A high resolution LIDAR survey was completed by Airborne Imaging Inc. over the Shining Tree property to identify and accurately locate outcrops and historic features. The survey covered an area of 25.5 km².

Prospecting by Battery Mineral Resources was conducted in the summer of 2018 in order to ground truth existing government maps of the project area. 117.5 km was traversed in the survey and 14 samples were collected with 12 being assayed.

2019: Battery Mineral Resources

Prospecting by Battery Mineral Resources was conducted between October 17th to the 24th, 2019 in order to ground truth existing government maps of the project area. 41.6 km were traversed in the survey and 30 samples were collected and assayed.

2019: Battery Mineral Resources

In the winter of 2019, Canadian Exploration Services Limited (CXS) performed a detailed 3D Distributed Induced Polarization (3D IP) survey for Battery Mineral Resources Limited over various regions of the Shining Tree Project area; North, Central and South (Table 2). Tom Weis a geophysical consultant for BMR integrated the 3D IP models (produced by CXS) with the previous airborne data to interpret new exploration targets.

Activity	Area	Dates	Performed by
3D Distributed IP	North	February 18 to March 5, 2019	CXS of Larder Lake
3D Distributed IP	Central	January 15 to February 18, 2019	CXS of Larder Lake
3D Distributed IP	South	January 3 to January 11, 2019	CXS of Larder Lake
Interpretation	All	July 9, 2019 to October 20, 2019	Thomas V Weis and As- sociates Inc. of Colorado

Table 2: Summary of 2019 BMR IP surveys in the Shining Tree Project area.

2020: Battery Mineral Resources

In March 2020, a drill program commenced on the property but was terminated after one hole due the COVID-19 lockdown.

2.5 REGIONAL AND LOCAL GEOLOGY

The regional geology (Figure 4) comprises Early Proterozoic (2450 Ma and 2220 Ma) sedimentary rocks of the Huronian Supergroup which rest unconformably on older Archean granitic, metavolcanic, and metasedimentary rocks of the Abitibi Sub-province. Archean basement rock comprises mafic to felsic volcanic rocks, iron formation, and minor pyrite deposits that are moderately to steeply dipping. The fine to coarse grained, mildly to strongly magnetic Nipissing diabase intrudes all the other lithologies except the youngest mafic dikes or sills.

<u>Figure 4: Regional geology of the area surrounding the Shining Tree project. The project is</u> <u>located near the northwestern margin of the Huronian Basin. Geological data are from the Ontario</u> Geological Survey (2016).

Local Geology

The Shining Tree project area is located near the eastern margin of a fine to coarse grained Nipissing Diabase sill complex comprising a lower sill which is flat lying and an upper one that is "saucer shaped with inward dips" (Carter, 1977). The diabase intrudes Gowganda argillites and Lorrain arkoses of the Huronian supergroup which occur as elongate lenses. The sediments form part of the northwest margin of the Huronian Basin which unconformably overlies northwest-trending Archean basement rocks comprising mafic to felsic volcanic rocks, and iron formations, that dip moderately to steeply west. Figure 5 displays the local geology (Carter 1977) in west central Leonard Township.

Figure 5: Local geology of the Shining Tree project area; (geology after Carter, 1977).

3.0 PROSPECTING

3.1 OVERVIEW

During the autumn of 2020, prospecting was completed at the Shining Tree property. The purpose of the prospecting was to better understand the geological control of the mineralization, determine if the IP anomalies are related to the Archean volcanics with associated iron formations, and to locate AMIS features and historical work described in assessment reports which are generally centred on past developed zones of mineralization.

LiDAR tiles were systematically examined for accurately locating AMIS sites and additional undocumented features. Historically, the area had been explored for silver, and to some extent base metals and iron ore, however, the current work focussed on the exploration for cobalt. The information collected may be used to plan follow up work and a possible winter diamond drill campaign.

3.2 PLANS & PERMITS

The prospecting work was surficial and did not require any plans or permits.

3.3 PERSONNEL

The prospecting crew consisted of BMR's field staff; including Andrew Salerno, Sean Hicks, Ryan Wells and Stephan Trimmer contracted through Canadian exploration Services (CXS) of Larder Lake, Ontario. BMR Exploration Manager Frank Ploeger reviewed the LiDAR tiles to evaluate potential feature locations and supervised the field work. The daily logs are summarized in Table 3.

Date	Description	Samples Taken	Distance Traversed (km)
2020-09- 02	Traversed and ground- truthed various lidar features and AMIS features in Nipissing diabase around the Silver Pack and Caswell-Eplett- Neelands AMIS sites.	2	3.6
2020-09- 09	Traversed and ground- truthed various LiDAR and AMIS features in Nipissing diabase around the Silver Pack and Caswell-Eplett- Neelands AMIS sites and southeast of Bing Lake. A trench was found near Bing lake with 5 samples being taken in the area from various outcrops. A total of three samples were taken from pits and trenches near the Silver Pack and Caswell-Eplett- Neelands AMIS sites.	5	9.3

3.4 DAILY LOG

2020-09- 11	Traversed and ground- truthed various LiDAR and AMIS features in Nipissing diabase around the Archibald AMIS site. Two shafts and many trenches, pits and outcrops were found near the Archibald AMIS site. 1 sample was taken from a shaft in the area.	1	9.5
----------------	---	---	-----

Table 3: Daily Log

3.5 TRAVERSES

Prospecting work on the Shining Tree project area involved traverses which focused on ground truthing LiDAR features and geological areas of interest. The potential source for IP anomalies identified during the 2019 surveys was also investigated. As mentioned, targets were predetermined and prioritized using LiDAR tiles; traverses were then planned accordingly in order to ground truth the features and locate the source of the geophysical anomalies.

Figure 6: Map showing GPS tracks for the 2020 prospecting of the Shining Tree area.

Traverse tracks were recorded using Garmin InReach GPS' and synced to the Garmin website using the InReach Sync software. Along with the traverses, the locations of samples taken, and any other points of interest were recorded using the Garmin and associated software. Tracks for the prospecting traverses are illustrated in Figure 6.

4.0 RESULTS

4.1 **PROSPECTING RESULTS**

During the prospecting of the Shining Tree property in the fall of 2020, 8 grab samples were collected. Vein material, samples with disseminated sulphides, samples with pink cobalt bloom, as well as samples in areas overlying geophysical anomalies were targeted and sampled.

A small slab was cut from each sample at the CXS facility and retained as a specimen while the remainder was bagged and sent to ALS Minerals in Sudbury for analysis. The sample coordinates with brief field descriptions are detailed in Table 4; sample locations are displayed in Figure 7. The field mapping determined that the existing OGS maps were accurate with only minor discrepancies, however, the AMIS features as displayed on OGSearth projections were inaccurate and required coordinates derived from the LiDAR tiles for easy location. The electromagnetic anomalies between Bing and Fournier Lakes correspond to significant sulphides on strike with the iron formations mapped by Carter (1972).

Sample ID	Easting	Northing	Rock Description
R0652	109766	5265417	Fine grained meta-volcanics or meta-
10032	490700		sediments with disseminated py.
R0653	498749	5265330	Iron formation, rusty and full of py.
P0654	108710	5265330	Rusty iron formation with significant py. and
110034	498749		silicified zone
R0655	498772	5265273	Felsic meta-volcanics with trace py. and qtz
100000			veining
R0656	498883	5265003	Iron formation, massive py.
D1125	497840	5264584	Crack and seal calcite vein from Caswell-
K1135			Eplett muck pile
R1136	136 497905	5265195	Calcite vein material from Coulee shaft muck
11130			with minor cpy
D1120	109700	5263341	Calcite vein material from Archibald muck pile
K1130	490/99		no observed mineralization

Table 4: Sample coordinates and descriptions.

Figure 7: Map of Shining Tree area 2020 prospecting with sample locations.

4.2 SAMPLE ASSAY RESULTS

In total, 8 samples were submitted to ALS Minerals for assaying, the results of which are summarized in Table 5. The majority of the samples (R0652- R0656) were taken between Bing and Fournier Lakes within the unit of felsic metavolcanics and the iron formations mapped by Carter (1977). The iron formations were found to be sulphide dominant rather than the magnetite- rich variety further to the south that was evaluated for its iron ore potential in the early 1900's. One of the reasons for sampling the sulphides was to investigate a possible connection of sulphitic horizons with cobalt veining such as that found at BMR's McAra project area on which a cobalt resource had been established.

It was found that the samples described as being the most highly sulphitic (R0653/ 654/ 656) are very slightly anomalous in gold and silver, assaying 0.336ppm, 0.467ppm, and 0.029ppm Au, and 1.45ppm, 1.30ppm, and 0.50ppm Ag, respectively. Base metal and Co values were found to be generally low in all the samples.

Sample ID	Cobalt	Silver	Copper	Arsenic	Nickel	Gold
	(Co-ppm)	(Ag-ppm)	(Cu-ppm)	(As-ppm)	(Ni-ppm)	(Au-ppm)
R0652	53	0.10	165	10	75	0.005
R0653	58	1.45	22	185	125	0.336
R0654	51	1.30	20	162	123	0.467
R0655	138	0.07	264	8	365	0.010
R0656	31	0.50	34	129	92	0.029
R1135	10	0.09	98	2	18	0.006
R1136	170	0.77	249	224	30	0.005
R1138	1610	18.85	148	4050	153	0.003

Table 5: Summarized sample assay results from the Shining Tree project.

Sample R1135 comprising crack and seal calcitic vein material was taken from the Caswell-Eplett muck pile, while R1136, comprising calcite vein material, was from the Coulee shaft muck pile. The final sample, R1138, consisted of calcitic vein material with no obvious mineralization, taken from the muck pile at the Archibald shaft to the south of Fournier Lake. Despite a lack of obvious mineralization, R1138 returned the best cobalt and silver values at 1610ppm Co and 18.85ppm Ag.

Certificates of Analyses which detail the full assay results are attached as Appendix 2.

4.3 **RECOMMENDATIONS**

Prospecting work on the Shining tree project area in the fall of 2020 involved traverses which focused on ground truthing LiDAR features and geological areas of interest. The potential source for IP anomalies identified during the 2019 surveys was also investigated. During the traversing, 8 grab samples were collected. Vein material, samples with disseminated sulphides, samples with pink cobalt bloom, as well as samples in areas overlying geophysical anomalies were targeted and sampled.

Five samples were taken between Bing and Fournier Lakes within the unit of felsic metavolcanics and the iron formations mapped by Carter (1977). The iron formations were found to be sulphide dominant rather than magnetite- rich. This was of interest because of a possible connection of sulphitic horizons and cobalt veining such as that found at BMR's McAra project area. Three of the samples returned anomalous gold and silver values but no significant cobalt or base metals. The other three samples comprised vein material from various shaft muck piles from which a sample from the Archibald shaft to the south yielded 1610ppm Co and 18.85ppm Ag.

After reviewing the current field work and that of the 2018 and 2019 prospecting forays, the following are recommended:

1) compilation of all historic data for the various prospects, particularly the central and southern areas and incorporation into a geological model;

2) compilation, evaluation, and modelling of all historic diamond drill hole data to aid in

interpretation of geology, mineralization, and structural trends;

3) mechanical stripping, washing, mapping and sampling around historic trenches and pits to freshen up and extend old showings to supplement the historic data;

5) follow up diamond drilling where warranted.

6.0 **REFERENCES**

- Carter, M.W., 1977, Geology of Fawcett and Leonard Townships, Districts of Sudbury and Timiskaming, Ontario Division of Mines, Geoscience Report 146, 75 p.
- Donovan, P.J., 1993, Leonard Township Property, Shining Tree Area, District of Sudbury, 18 p., with appendices, maps and assay certificates.
- Middleton, R. S., 1976, Alamo Petroleum Ltd Report on EM-16 Geochemical and Geological Survey on Shining Tree Claims, Leonard Township, Ontario. Ontario Geology doc. 41P18SW8185
- Ontario Geological Survey, 2016, Shape files of geological compilation map: https://www.mndm.gov.on.ca/en/mines-andminerals/applications/ogsearth/bedrock-geology.
- Page, M.L., 2018, Cobalt Exploration Project SE Ontario and SW Quebec, Canada, 43-101 Technical Report prepared for Battery Mineral Resources Ltd., 412p.
- Tindale, C.L., 1974, Geological Report on the Property of United Reef Petroleums Ltd., Leonard Township, District of Timiskaming, Ontario, Assessment Report 41P10SW0103.

7.0 QUALIFICATIONS

CERTIFICATE OF QUALIFICATION AND CONSENT

I, Peter James Doyle of the city of Richmond Hill, Province of Ontario, do hereby certify:

1) That I am an Exploration Geologist and reside at 79 Naughton Drive, Richmond Hill Ontario, L4C8B2.

2) That I graduated from Laurentian University at Sudbury, Ontario with an Honours Bachelor of Science degree in 1980.

3) That I am a Fellow in good standing of the Australian Institute of Mining & Metallurgy (AUSIMM # 208850) as well as a member in good standing of Geological Association of Canada (GAC F0146); Canadian Institute of Mining & Metallurgy (CIMM # 91602); Prospectors & Developers Association of Canada (PDAC # 707); Society for Geology Applied to Mineral Deposits (SGA# 1333-08) and Society of Economic Geologists (SEG # 216720).

4) That I have practiced my profession in various roles as a Mineral Exploration Geologist, Exploration Manager and Vice President of Exploration for a period of about 39 years principally within Canada & Australia as well as globally in United States of America, Mexico, Indonesia, China, Mongolia, Brazil, Argentina and Guyana.

5) This document is based on information various public documents and my personal observations during visits to the property during the exploration program.

Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk.

6) I am currently employed full time as Exploration Manager – Canada for Battery Mineral Resources Limited and was directly involved in the planning and execution of the exploration program documented in this report.

7) My written permission is required for the release of any summary or excerpt.

Peter J. Doyle

Richmond Hill, Ontario, November 3, 2020

CERTIFICATE OF QUALIFICATION AND CONSENT

I, Frank Rainer Ploeger of the town of Virginiatown, Province of Ontario, do hereby certify:

1) That I am a Consulting Geologist and reside at 21 Waite Avenue, Virginiatown, Ontario, P0K 1X0.

2) That I graduated from Queen's University at Kingston, Ontario with a Bachelor of Applied Science degree in 1973; and, that I completed 2 years of an MSc program at McMaster University in Hamilton, Ontario (1980- 1982).

3) That I am a member in good standing of the Association of Geoscientists of Ontario (#479), the Association of Professional Engineers and Geoscientists of Saskatchewan (#10852, non- practicing), the Geological Association of Canada, the Prospectors and Developers Association, and the Northern Prospectors Association. I have received a temporary permit (#2153) to practice in Quebec from the Ordre des geologues du Quebec pending acceptance by the Office Quebequois de la Langue Francaise (OQLF).

4) That I have practiced my profession as a mineral exploration and mine geologist for a period of about 45 years.

5) This document is based on information various public documents and my personal observations during several visits to the property.

Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk

6) I have no interest, either directly or indirectly, in the subject property or client company.

7) My written permission is required for the release of any summary or excerpt.

Frank R. Ploeger

Virginiatown, Ontario, November 3, 2020

8.0 INSTRUMENT SPECIFICATIONS

GARMIN INREACH EXPLORER+

• Specifications obtained from www.garmin.com

General				
Physical dimensions	2.7" x 6.5" x 1.5" (6.8 x 16.4 x 3.8 cm) with keypad and SOS door bump			
Display size	1.4"W x 1.9"H (3.5 x 4.7 cm); 2.31" diag (5.9 cm)			
Display resolution	200 x 265 pixels			
Display type	transflective color TFT			
Weight	7.5 oz (213.0 g)			
Battery	Rechargeable internal lithium ion			
Battery life	Up to 100 hours at 10-minute tracking mode (default); up to 75 hours at 10-minute tracking with 1-second logging; up to 30 days at the 30-minute interval power save mode; and up to 3 years when powered off			

Water rating	IPX7
Memory/History	2 GB
High-sensitivity receiver	
Interface	USB

Maps & Memory	
Preloaded maps	yes. The North America SKU of the inReach Explorer+ comes preloaded with a 1:24k map of Garmin Yarmouth (Former DeLorme) North America data of the U.S. and Canada. Mexico also is included at a 1:125k scale (derived from Garmin Yarmouth's Digital Atlas of the Earth).
Ability to add maps	
Waypoints/favorites/locations	500
Routes	20

Sensors	
Barometric altimeter	
Compass	Yes (tilt-compensated 3-axis)

Outdoor Recreation Features	
Camera	no

Additional	
Additional	 Wireless compatible: yes (Bluetooth®)
	 Trigger an interactive SOS with 24/7 search and rescue monitoring center: yes
	 Send and receive text messages to SMS and email: yes
	 Send and receive messages with other inReach users, exchange locations: yes
	 Track and share location with friends and family on web- based MapShare® portal: yes
	 Request weather forecasts for current location and planned destination: yes
	 Virtual keyboard for custom text messaging: yes
	 Send waypoints to MapShare portal during trip: yes
	 Send route selection to MapShare portal for friends and family to see progress: yes

9.0 APPENDIX

Appendix 1: Mining Cell Claims List Appendix 2: Certificates of Analyses

Map Claim Reference Number	Tenure ID	Cell ID(s)	Tenure Type	Tenure Status	Anniversary Date	Due Date	Holder	Area (ha)	Township/Area		Work Applied	Available Consultation	Reserve	Available Exploration Reserve		Total Approved Reserve	
1	103651	41P11A271	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 600	\$	-	\$	40	\$	40
2	103652	41P11A315	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	16.07	LEONARD	\$ 200	\$ 400	\$	-	\$ 1,	333	\$	1,333
3	103993	41P11A155	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$		\$7,	322	\$	7,322
4	103994	41P11A178	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$		\$ 16,	774	\$ 1	16,774
5	105275	41P11A072	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	16.88	LEONARD	\$ 200	\$ 400	\$	-	\$	20	\$	20
6	108692	41P11A154	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$	40	\$	40
7	110950	41P11A231	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 600	\$		\$	40	\$	40
8	111013	41P11A214	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$		\$	40	\$	40
9	111014	41P11A211	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 600	\$	-	\$	40	\$	40
10	112769	41P11A096	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$	945	\$	945
11	118934	41P11A292	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$	-	\$	40	\$	40
12	119252	41P11A198	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	17.86	LEONARD	\$ 200	\$ 400	\$	-	\$3,	048	\$	3,048
13	122911	41P11A151	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$	-	\$	40	\$	40
14	125196	41P11A013	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.78	LEONARD, TYRRELL	\$ 400	\$ 800	\$	-	\$ 4,	711	\$	4,711
15	131340	41P11A035	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	10.71	LEONARD	\$ 200	\$ 400	\$		\$1,	125	\$	1,125
16	131341	41P11A054	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	14.23	LEONARD	\$ 200	\$ 400	\$	-	\$	-	\$	-
17	133650	41P11A194	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$	40	\$	40
18	134482	41P11A115	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	12.01	LEONARD	\$ 200	\$ 400	\$	-	\$2,	139	\$	2,139
19	135843	41P11A297	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$		\$3,	563	\$	3,563
20	136587	41P11A059	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	17.25	LEONARD	\$ 200	\$ 400	\$	-	\$	-	\$	-
21	140423	41P11A232	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$	40	\$	40
22	142563	41P11A078	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$2,	249	\$	2,249
23	149305	41P11A238	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	18.46	LEONARD	\$ 200	\$ 400	\$	-	\$8,	260	\$	8,260
24	149306	41P11A237	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$ 1,	864	\$	1,864
25	150322	41P11A172	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$	40	\$	40
26	150549	41P11A135	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	9.26	LEONARD	\$ 200	\$ 400	\$	-	\$	-	\$	-
27	155370	41P11A276	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$1,	525	\$	1,625
28	155371	41P11A316	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	15.38	LEONARD	\$ 200	\$ 400	\$	-	\$2,	883	\$	2,883
29	155716	41P11A132	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$ 4,	711	\$	4,711
30	155717	41P11A131	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$	-	\$	40	\$	40
31	159091	41P11A136	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	4.98	LEONARD	\$ 200	\$ 400	\$		\$	20	\$	20
32	160535	41P11A215	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$ 12,	017	\$ 1	12,017
33	161472	41P11A074	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	14.22	LEONARD	\$ 200	\$ 400	\$		\$2,	139	\$	2,139
34	165709	41P11A158	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$	-	\$4,	215	\$	4,215
35	165710	41P11A157	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$	-	\$ 11,	714	\$ 1	11,714
36	167742	41P11A331	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 600	\$	-	\$	40	\$	40
37	168155	41P11A258	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	18.80	LEONARD	\$ 200	\$ 400	\$	-	\$9,	936	\$	9,936
38	168156	41P11A257	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$	-	\$	453	\$	453
39	169227	41P11A136	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	16.81	LEONARD	\$ 200	\$ 400	\$	-	\$		\$	-
40	171299	41P11A039	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	8.47	LEONARD	\$ 200	\$ 400	\$	-	\$	-	\$	-

								_			T				_
41	171300	41P11A038	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	10.68	LEONARD	\$ 200	\$ 400	\$ -	\$ 1,559	\$ 1,5	59
42	172367	41P11A093	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
43	172368	41P11A112	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
44	175136	41P11A094	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	16.09	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
45	181179	41P11A314	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
46	181180	41P11A333	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	9.14	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
47	182644	41P11H394	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	15.35	TYRRELL	\$ 200	\$ 400	\$ -	\$ 14	\$	14
48	186700	41P11A272	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
49	186701	41P11A295	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$ -	\$ 3,517	\$ 3,5	517
50	187237	41P11A334	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	9.13	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
51	188655	41P11H393	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	18.90	TYRRELL	\$ 200	\$ 400	\$ -	\$ 20	\$	20
52	194501	41P11A251	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 600	\$ -	\$ 40	\$	40
53	196080	41P11A037	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	10.68	LEONARD	\$ 200	\$ 400	\$ -	\$ 11,130	\$ 11,1	.30
54	198451	41P11A174	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
55	198452	41P11A171	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$ -	\$ 40	\$	40
56	198453	41P11A191	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 600	\$ -	\$ 40	\$	40
57	201262	41P11A058	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$ -	\$ 1,774	\$ 1,7	'74
58	212509	41P11A254	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
59	212557	41P11A213	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
60	214629	41P11A034	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	7.02	LEONARD	\$ 200	\$ 400	\$ -	\$ -	\$	-
61	214630	41P11A094	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	5.70	LEONARD	\$ 200	\$ 400	\$ -	\$ -	\$	
62	217543	41P11A236	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 5,226	\$ 5,2	226
63	218503	41P11A053	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
64	221067	41P11A091	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$ -	\$ 40	\$	40
65	221068	41P11A114	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
66	224484	41P11A137	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	4.98	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
67	225958	41P11A014	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	17.94	LEONARD,TYRRELL	\$ 200	\$ 400	\$ -	\$ 20	\$	20
68	229039	41P11A113	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 4,972	\$ 4,9	972
69	232465	41P11A196	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 5,494	\$ 5,4	194
70	232794	41P11A036	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	10.69	LEONARD	\$ 200	\$ 400	\$ -	\$ 15,517	\$ 15,5	i17
71	232795	41P11A075	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 1,815	\$ 1,8	315
72	236597	41P11A313	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
73	236598	41P11A312	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
74	236599	41P11A335	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	0.98	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
75	237879	41P11A079	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	17.25	LEONARD	\$ 200	\$ 400	\$ -	\$ -	\$	
76	238080	41P11A012	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	11.72	LEONARD, TYRRELL	\$ 200	\$ 400	\$ -	\$ 20	\$	20
77	238081	41P11A074	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	7.56	LEONARD	\$ 200	\$ 400	\$ -	\$ 2,339	\$ 2,3	39
78	241204	41P11A135	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	12.53	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$	20
79	241666	41P11A234	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
80	244665	41P11A195	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 8,912	\$ 8,9)12
81	246400	41P11A097	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 510	\$ 5	i10
82	246684	41P11A273	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
83	249323	41P11A057	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$ -	\$ 1,660	\$ 1,6	60
84	249324	41P11A056	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$ -	\$ 5,075	\$ 5,0)75
85	249726	41P11A252	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$	40
86	253862	41P11A098	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$ -	\$	\$	
87	253863	41P11A117	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ -	\$	

88	253864	41P11A138	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	14.82	LEONARD	\$ 200	\$ 400	\$ -	\$ 10	\$ 10
89	255163	41P11A278	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	19.02	LEONARD	\$ 200	\$ 400	\$-	\$ 7,109	\$ 7,109
90	255164	41P11A317	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	15.35	LEONARD	\$ 200	\$ 400	\$-	\$ 10,310	\$ 10,310
91	257759	41P11A095	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	5.86	LEONARD	\$ 200	\$ 400	\$-	\$ 20	\$ 20
92	261255	41P11A212	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 4,711	\$ 4,711
93	265933	41P11A116	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 4,309	\$ 4,309
94	269169	41P11A197	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 7,463	\$ 7,463
95	270045	41P11A076	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 2,250	\$ 2,250
96	270415	41P11A332	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	9.16	LEONARD	\$ 200	\$ 400	\$ -	\$ 20	\$ 20
97	274012	41P11A277	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 1,424	\$ 1,424
98	274013	41P11A298	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	19.02	LEONARD	\$ 200	\$ 400	\$ -	\$ 11,627	\$ 11,627
99	276282	41P11A133	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
100	277865	41P11A233	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 427	\$ 427
101	280450	41P11A176	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 14,185	\$ 14,185
102	280451	41P11A175	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	ş -	\$ 5,258	\$ 5,258
103	282502	41P11A293	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 800	\$-	\$ 378	\$ 378
104	282520	41P11A311	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 600	\$-	\$ 40	\$ 40
105	282790	41P11A193	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 4,712	\$ 4,712
106	284467	41P11A034	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	12.90	LEONARD	\$ 200	\$ 400	\$-	\$ 13	\$ 13
107	284468	41P11A033	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
108	284469	41P11A073	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
109	284470	41P11A071	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	11.23	LEONARD	\$ 200	\$ 400	\$-	\$ 20	\$ 20
110	288324	41P11A092	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$ 40
111	290123	41P11A153	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
112	290124	41P11A192	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 40	\$ 40
113	292569	41P11H392	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	10.40	TYRRELL	\$ 200	\$ 400	\$-	\$ 20	\$ 20
114	295141	41P11A115	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	9.78	LEONARD	\$ 200	\$ 400	\$ -	\$ 2,339	\$ 2,339
115	295142	41P11A134	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
116	301679	41P11A152	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
117	301680	41P11A173	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$-	\$ 378	\$ 378
118	302538	41P11A118	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$-	\$ -	\$ -
119	303866	41P11A318	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	13.36	LEONARD	\$ 200	\$ 400	\$-	\$ 9,517	\$ 9,517
120	304576	41P11A099	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	6.93	LEONARD	\$ 200	\$ 400	\$-	\$ -	\$-
121	309053	41P11A235	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 8,390	\$ 8,390
122	315699	41P11A255	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 4,737	\$ 4,737
123	315700	41P11A253	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 40	\$ 40
124	320392	41P11A095	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	15.93	LEONARD	\$ 200	\$ 400	\$-	\$ -	\$ -
125	321208	41P11A032	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	11.43	LEONARD	\$ 200	\$ 400	\$ -	\$ 4,895	\$ 4,895
126	321209	41P11A052	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	11.15	LEONARD	\$ 200	\$ 400	\$-	\$ 20	\$ 20
127	324354	41P11A111	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 600	\$-	\$ 40	\$ 40
128	327712	41P11A156	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 6,824	\$ 6,824
129	329997	41P11A077	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.79	LEONARD	\$ 400	\$ 800	\$ -	\$ 2,704	\$ 2,704
130	330284	41P11A275	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 1,532	\$ 1,532
131	331413	41P11A218	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	18.11	LEONARD	\$ 200	\$ 400	\$ -	\$ 17,320	\$ 17,320
132	331414	41P11A216	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$-	\$ 21,590	\$ 21,590
133	331415	41P11A256	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 800	\$ -	\$ 14,625	\$ 14,625
134	332483	41P11A055	SCMC	Active	2021-04-18	2021-04-18	(100) BMR	21.78	LEONARD	\$ 400	\$ 800	\$-	\$ 4,860	\$ 4,860

135	333156	41P11A217	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 8	00	\$ -	\$ 12,074	ı ş	\$ 12,074
136	333443	41P11A137	BCMC	Active	2021-04-18	2021-04-18	(100) BMR	16.81	LEONARD	\$ 200	\$ 4	00	\$ -	\$-	Ş	\$-
137	334097	41P11A296	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 8	00	\$ -	\$ 12,889	, ;	\$ 12,889
138	340114	41P11A138	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	4.38	LEONARD	\$ 200	\$ 4	00	\$ -	\$ 20) ;	\$ 20
139	340115	41P11A177	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.79	LEONARD	\$ 400	\$ 8	00	\$ -	\$ 13,722	2 \$	\$ 13,722
140	342151	41P11A274	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.80	LEONARD	\$ 400	\$ 8	00	\$	\$ 40) ;	\$ 40
141	342152	41P11A294	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 8	00	\$	\$ 40) ;	\$ 40
142	342153	41P11A291	SCMC	Active	2020-11-04	2020-11-04	(100) BMR	21.81	LEONARD	\$ 400	\$ 6	00	\$ -	\$ 40) ;	\$ 40
143	344128	41P11A054	BCMC	Active	2020-11-04	2020-11-04	(100) BMR	7.55	LEONARD	\$ 200	\$ 4	00	\$ -	\$ 20) ;	\$ 20

CERTIFICATE SD20222362

Project: SHINING TREE 2020 RECON

This report is for 9 Rock samples submitted to our lab in Sudbury, ON, Canada on 2-OCT-2020.

The following have access to data associated with this certificate:

PETER DOYLE	MIKE HENDRICKSON	SEAN HICKS
FRANK PLOEGER	MERCEDES RICH	ANDREW SALERNO

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

	SAMPLE PREPARATION										
ALS CODE	DESCRIPTION										
WEI-21	Received Sample Weight										
CRU-QC	Crushing QC Test										
PUL-QC	Pulverizing QC Test										
LOG-22	Sample login - Rcd w/o BarCode										
CRU-31	Fine crushing - 70% <2mm										
SPL-21	Split sample - riffle splitter										
PUL-31	Pulverize up to 250g 85% <75 um										

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01
R1135		0.65	0.09	1.80	1.7	<10	0.41	0.24	19.45	<0.02	30.6	10.3	19	0.39	98.0	3.55
R1136		0.50	0.77	0.30	224	<10	0.92	2.13	27.5	0.03	39.2	169.5	6	0.07	249	0.91
R1138		0.58	18.85	0.94	4050	10	0.73	9.27	28.1	0.11	52.6	1610	3	0.39	147.5	1.88
R0652		1.50	0.10	7.44	9.7	70	0.42	0.10	7.26	0.09	27.3	53.0	89	0.55	165.0	10.35
R0653		2.34	1.45	0.37	184.5	10	0.09	0.07	0.31	0.14	2.57	57.5	7	0.37	22.0	34.9
R0654		1.21	1.30	0.33	162.0	10	0.07	0.05	0.18	0.13	2.10	51.2	10	0.32	19.7	31.7
R0655		1.86	0.07	4.49	8.2	60	0.91	0.04	7.39	0.06	76.3	137.5	807	0.18	264	7.68
R0656		2.87	0.50	1.57	129.0	30	0.13	0.18	0.05	0.10	9.30	31.3	22	2.33	33.8	32.4
R0657		1.97	0.08	6.97	10.5	260	0.78	0.06	5.68	0.44	52.9	54.0	94	1.66	80.0	11.00

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

|--|

Sample Description	Method Analyte Units LOD	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
R1135		7.89	0.05	0.7	0.120	0.04	11.6	46.1	1.01	2360	1.74	0.49	1.4	18.4	130	3.6
R1136		2.34	0.05	0.1	0.465	0.02	18.1	24.0	0.22	3290	3.28	0.04	0.1	29.8	10	59.6
R1138		4.90	0.06	0.7	0.417	0.03	22.4	14.8	0.33	3240	13.80	0.40	0.9	152.5	100	1110
R0652		20.2	0.05	2.5	0.087	0.17	11.8	15.7	3.18	1520	0.76	1.81	4.2	75.1	480	9.3
R0653		0.99	0.10	0.2	0.011	0.01	1.1	1.6	0.59	3870	1.81	0.01	0.4	124.5	10	27.9
R0654		0.90	0.08	0.2	0.008	0.01	0.9	1.4	0.62	4290	1.99	0.01	0.3	123.0	10	23.0
R0655		13.35	0.09	2.6	0.061	0.01	35.2	23.5	2.95	1880	0.59	0.93	25.6	365	920	3.0
R0656		4.45	0.11	1.1	0.025	0.19	4.8	8.7	0.57	1750	1.37	0.02	1.7	92.1	40	28.8
R0657		18.50	0.09	4.0	0.093	0.84	24.8	28.0	3.31	1690	1.03	2.48	14.5	53.2	1160	19.8

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

CERTIFICATE OF ANALYSIS	SD20222362
-------------------------	------------

Sample Description	Method Analyte Units LOD	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1
R1135		0.9	0.002	0.02	0.31	14.5	1	0.7	48.4	0.09	<0.05	1.00	0.173	<0.02	0.7	128
R1136		0.6	0.002	0.03	0.23	15.8	1	0.2	70.6	<0.05	<0.05	0.12	0.021	0.02	0.1	20
R1138		1.0	<0.002	0.20	2.60	14.6	1	<0.2	65.0	0.07	<0.05	0.76	0.133	0.04	0.3	7
R0652		12.3	<0.002	0.14	0.06	32.7	1	1.0	408	0.28	<0.05	2.03	0.608	0.07	0.5	272
R0653		0.7	0.003	>10.0	9.05	1.6	1	0.3	2.1	<0.05	0.09	0.22	0.013	0.53	0.1	4
R0654		0.7	0.003	>10.0	9.15	1.5	1	0.3	1.7	<0.05	0.18	0.19	0.011	0.44	0.1	4
R0655		0.8	<0.002	0.42	0.27	30.5	1	0.8	375	1.36	<0.05	2.48	0.924	<0.02	0.4	247
R0656		9.4	0.004	>10.0	8.59	2.2	3	0.6	4.5	0.16	0.17	0.93	0.067	0.46	0.3	16
R0657		59.9	0.002	0.23	1.25	37.7	<1	1.1	164.0	0.88	<0.05	2.96	1.105	0.38	0.5	334

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

N1135 0.1 326 27 250 0.006 86.2 90.2 R1136 -0.1 590 11 2.7 0.005 90.3 R0552 0.2 3.6 3.5 10.6 0.38 R0553 0.2 3.6 3.5 10.6 0.38 R0554 0.2 3.6 3.5 0.06 0.28 R0555 0.3 17.2 199 102.5 0.010 R0555 0.3 17.2 199 102.5 0.010 R0555 0.3 17.2 199 102.5 0.010 R0557 0.4 30.1 211 146.0 0.002	Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	CRU-QC Pass2mm % 0.01	PUL-QC Pass75um % 0.01				
R0654 0.2 3.1 37 9.3 0.467 R0655 0.3 17.2 199 10.25 0.010 R0656 0.8 4.5 24 41.4 0.029 R0657 0.4 30.1 211 146.0 0.002	R1135 R1136 R1138 R0652 R0653		0.1 <0.1 0.2 0.4 0.2	32.6 59.0 55.9 24.9 3.6	27 11 33 123 35	25.0 2.7 22.7 90.7 10.6	0.006 0.005 0.003 0.005 0.336	86.2	90.2 90.3				
	R0654 R0655 R0656 R0657		0.2 0.3 0.8 0.4	3.1 17.2 4.5 30.1	37 199 24 211	9.3 102.5 41.4 146.0	0.467 0.010 0.029 0.002						

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

		CERTIFICATE COMMENTS		
		ANALYTICAL CO	OMMENTS	
Applies to Method:	REEs may not be totally soluble in th ME-MS61	is method.		
		LABORATORY A	DDRESSES	
	Processed at ALS Sudbury located at	1351-B Kelly Lake Road, Unit #1, Sud	lbury, ON, Canada.	
Applies to Method:	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver located Au-ICP21	at 2103 Dollarton Hwy, North Vancou ME-MS61	uver, BC, Canada.	

QC CERTIFICATE SD20222362

Project: SHINING TREE 2020 RECON

This report is for 9 Rock samples submitted to our lab in Sudbury, ON, Canada on 2-OCT-2020.

The following have access to data associated with this certificate:

PETER DOYLE	MIKE HENDRICKSON	SEAN HICKS
FRANK PLOEGER	MERCEDES RICH	ANDREW SALERNO

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5 Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

SAMPLE PREPARATION										
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
CRU-QC	Crushing QC Test									
PUL-QC	Pulverizing QC Test									
LOG-22	Sample login - Rcd w/o BarCode									
CRU-31	Fine crushing - 70% <2mm									
SPL-21	Split sample - riffle splitter									
PUL-31	Pulverize up to 250g 85% <75 um									

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
ME-MS61	48 element four acid ICP-MS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

									QC CERTIFICATE OF ANALYSIS SD20222						022236	52
Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							STAN	DARDS	5							
EMOG-17 Target Range - Lower GPP-14 GPP-14 Target Range - Lower Upper KIP-19 Target Range - Lower OREAS 219 OREAS 219 Target Range - Lower Upper OREAS 684 OREAS 684 Target Range - Lower Upper OREAS 920 Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	67.6 60.9 74.5 0.11 0.08 0.13	4.66 4.18 5.13 7.90 6.91 8.47	592 522 638 5.4 4.6 6.1	180 310 440 570 450 640	1.77 1.60 2.06 2.63 2.54 3.22	5.71 5.31 6.51 0.70 0.61 0.77	1.89 1.72 2.12 0.51 0.44 0.56	20.9 18.15 22.2 0.06 0.04 0.12	49.1 42.9 52.5 99.9 84.6 103.5	753 686 838 15.9 13.9 17.3	55 49 62 83 70 88	7.07 6.56 8.12 8.74 7.72 9.54	8370 7750 8910 115.0 104.0 120.0	4.78 4.42 5.42 4.11 3.72 4.56	11.80 10.75 13.25 20.9 18.65 22.9
							RI 4	ΔΝΚS								
BLANK BLANK Target Range - Lower BLANK Target Range - Lower Upper	Bound [•] Bound Bound • Bound	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<10 <10 20	<0.05 <0.05 0.10	0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.02 <0.02 0.04	<0.01 <0.01 0.02	<0.1 <0.1 0.2	<1 <1 2	<0.05 <0.05 0.10	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<0.05 <0.05 0.10

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							STAN	DARDS								
EMOG-17 Target Range - Lower	Bound	0.08	1.7 1.6 2.2	0.900	1.62 1.49	24.4 20.7 26.4	24.3 23.9 29.7	0.91	738 670 830	1075 997 1220	1.09 0.99 1.23	13.8 12.7 15.7	7610 6820 8330	820 700 880	7280 6570 8030	107.0 98.9 121.0
GPP-14 GPP-14 Target Range - Lower Upper KIP-19 KIP-19 Target Range - Lower Upper OREAS 219 Target Range - Lower Upper OREAS 684 OREAS 684 Target Range - Lower Upper OREAS 920 Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound Bound	0.10 0.06 0.28	4.6	0.090	2.89 2.59 3 19	50.0 41.0 51 2	28.9 26.0 32 2	1.31 1.23 1.53	621 535 665	0.43 0.34 0.58	0.64 0.56 0.71	17.7 15.6 19.2	39.8 37.4 46.2	770 640 800	25.1 20.7 26.4	179.5 158.5 193.5
- Opper	bound	0.20	0.2	0.000	0.10	01.2	BL	ANKS	000	0.00	0.71	10.2	+0.L	000	20.4	100.0
BLANK BLANK Target Range - Lower Upper	Bound Bound															
BLANK Target Range - Lower	Bound	<0.05 <0.05	<0.1 <0.1	<0.005 <0.005	<0.01 <0.01	<0.5 <0.5	0.2 <0.2	<0.01 <0.01	<5 <5	<0.05 <0.05	<0.01 <0.01	<0.1 <0.1	<0.2 <0.2	<10 <10	<0.5 <0.5	<0.1 <0.1
Upper	Bound	0.10	0.2	0.010	0.02	1.0	0.4	0.02	10	0.10	0.02	0.2	0.4	20	1.0	0.2

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

								=								
Sample Description	Method Analyte Units LOD	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1
							STAN	DARDS								
EMOG-17		0.317	3.21	800	7.4	6	2.7	208	0.90	1.30	10.90	0.314	2.14	3.1	72	3.7
Target Range - Lower	Bound	0.286	2.91	643	7.2	4	2.2	184.5	0.78	1.10	10.35	0.294	1.89	2.8	67	3.3
CPP-14	Bound	0.354	3.57	869	9.0	9	3.2	226	1.08	1.46	12.65	0.370	2.61	3.7	84	4./
GPP-14																
Target Range - Lower	Bound															
Upper	Bound															
KIP-19 KIP-10																
Target Range - Lower	Bound															
Upper	Bound															
OREAS 219																
OREAS 219	Round															
Upper	Bound															
OREAS 684																
OREAS 684																
Target Range - Lower	Bound															
ORFAS 920	воипа	<0.002	0.03	1.56	13.6	<1	52	84.6	1 35	<0.05	20.4	0 481	0.90	3.8	98	31
Target Range - Lower	Bound	< 0.002	< 0.01	1.22	12.8	<1	4.3	73.6	1.08	< 0.05	17.35	0.434	0.73	3.3	86	2.5
Upper	Bound	0.004	0.05	1.76	15.8	2	5.7	90.4	1.43	0.12	21.2	0.542	1.03	4.2	108	3.7
							BL	ANKS								
BLANK																
BLANK	n 1															
Target Range - Lower	Bound															
BLANK	Bound	<0.002	<0.01	<0.05	<0.1	<1	<0.2	<0.2	<0.05	<0.05	<0.01	<0.005	<0.02	<0.1	<1	<0.1
Target Range - Lower	Bound	<0.002	<0.01	<0.05	<0.1	<1	<0.2	<0.2	< 0.05	< 0.05	<0.01	< 0.005	<0.02	<0.1	<1	<0.1
Upper	Bound	0.004	0.02	0.10	0.2	2	0.4	0.4	0.10	0.10	0.02	0.010	0.04	0.2	2	0.2

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	
						STANDARDS
EMOG-17 Target Range - Lower I	Bound	15.9 14.3	7420 6800	62.3 55.6		
GPP-14 GPP-14	Bound	17.7	0320	70.4	0.926 0.924	
Target Range - Lower I Upper KIP-19	Bound Bound				0.853 0.965 2.44	
KIP-19 Target Range - Lower I Upper	Bound Bound				2.49 2.28 2.58	
OREAS 219 OREAS 219 Target Range - Lower I	Bound				0.771 0.768 0.713	
Upper OREAS 684 OREAS 684	Bound				0.807 0.257 0.265	
Target Range - Lower I Upper	Bound Bound	047	100	457.0	0.232	
Target Range - Lower I Upper	Bound Bound	29.8 36.6	102 130	128.0 174.0		
						BLANKS
BLANK BLANK Target Range - Lower I	Bound				0.001 <0.001 <0.001	
BLANK Target Range - Lower I Upper	Bound	<0.1 <0.1 0.2	<2 <2 4	<0.5 <0.5 1.0	0.002	
opper	bound	0.2				

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
R0683 DUP		0.40 0.39	1.21 1.22	4.4 4.1	10 10	0.61 0.59	0.10 0.11	19.85 19.90	0.09 0.09	73.7 73.2	18.8 18.0	61 62	0.22 0.22	1560 1570	10.40 10.55	7.99 7.92
Target Range - Lower Upper	Bound Bound	0.37 0.42	1.14 1.29	3.8 4.7	<10 20	0.52 0.68	0.09 0.12	18.85 20.9	0.07 0.11	69.8 77.1	17.4 19.4	57 66	0.16 0.28	1510 1620	9.94 11.00	7.51 8.40
R1138 DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
R0683 DUP Target Range - Lower Upper	Bound Bound	0.12 0.12 0.06 0.18	0.1 0.1 <0.1 0.2	0.368 0.366 0.344 0.390	0.02 0.02 <0.01 0.03	28.6 28.6 26.7 30.5	20.8 19.5 18.9 21.4	1.44 1.45 1.36 1.53	2820 2840 2680 2980	2.68 2.66 2.49 2.85	0.18 0.18 0.16 0.20	0.2 0.2 <0.1 0.3	30.0 29.1 27.9 31.2	40 20 20 40	8.2 8.8 7.6 9.4	1.2 1.2 1.0 1.4
R1138 DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
R0683 DUP Target Range - Lower Upper	Bound Bound	<0.002 <0.002 <0.002 0.004	0.11 0.11 0.09 0.13	1.12 1.11 0.98 1.25	32.8 31.4 30.4 33.8	1 1 <1 2	6.2 6.1 5.6 6.7	37.7 38.1 35.8 40.0	<0.05 <0.05 <0.05 0.10	0.05 <0.05 <0.05 0.10	0.21 0.23 0.20 0.24	0.030 0.032 0.024 0.038	<0.02 <0.02 <0.02 0.04	0.9 1.0 0.8 1.1	106 108 101 113	2.5 2.4 2.2 2.7
R1138 DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound [•] Bound															
DUP Target Range - Lower Upper	Bound Bound															
DUP Target Range - Lower Upper	Bound Bound															
DUP Target Range - Lower Upper	Bound Bound															

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

Sample Description	Method Analyte Units LOD	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Au-ICP21 Au ppm 0.001	
						DUPLICATES
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound				0.002 0.002 <0.001 0.003	
R0683 DUP Target Range - Lower Upper	Bound Bound	86.1 83.0 80.2 88.9	19 19 16 22	4.0 3.9 3.2 4.7		
R1138 DUP Target Range - Lower Upper	Bound r Bound				0.003 0.001 <0.001 0.003	
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound				0.007 0.007 0.006 0.008	
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound				0.009 0.008 0.007 0.010	
ORIGINAL DUP Target Range - Lower Upper	Bound Bound				0.011 0.007 0.008 0.010	
ORIGINAL DUP Target Range - Lower Upper	Bound r Bound				0.013 0.013 0.011 0.015	

To: BATTERY MINERAL RESOURCES CORP. THE PACIFIC BUILDING SUITE 400, 744 WEST HASTINGS STREET VANCOUVER BC V6C 1A5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11-NOV-2020 Account: BMRPLLBW

Project: SHINING TREE 2020 RECON

	CERTIFICATE C	OMMENTS	
	AN	ALYTICAL COMMENTS	
Applies to Method:	REEs may not be totally soluble in this method. ME-MS61		
	LAE	ORATORY ADDRESSES	
Applies to Method:	Processed at ALS Sudbury located at 1351-B Kelly Lake Roa CRU-31 CRU-QC PUL-QC SPL-21	ıd, Unit #1, Sudbury, ON, Canada. LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy Au-ICP21 ME-MS61	γ, North Vancouver, BC, Canada.	

