

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Geological Mapping and Prospecting Report on the Selkirk Lake Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.

Prodigy Gold Inc.

(First Minerals Exploration Ltd. Option)

Prepared By:

Geordie Hamilton, M.Sc., G.I.T.

Prodigy Gold, Inc.

Isaac Riddle, B.Sc.

Prodigy Gold, Inc.

With Contributions From:

Stephen Roach, P.Geo

Prodigy Gold, Inc.

April 23, 2021

Table of Contents

SUMMARY	page I
1.0 Survey Overview	page 1
1.1 Introduction	page 1
1.2 Activities Undertaken	page 1
2.0 Property Description and Access	page 1
2.1 Location, Access, and Accommodations	page 1
2.2 Description of Mining Claims	page 2
3.0 Physiography and Vegetation	page 4
4.0 Historical Exploration	page 4
5.0 Geological Setting	page 5
5.1 Regional Geology	page 5
5.2 Property Geology	page 7
5.3 Deposit Styles	page 8
6.0 Summary of Geological Mapping and Prospecting Program	page 10
7.0 Analytical Quality Control and Quality Assurance	page 10
7.1 Sample Preparation	page 11
7.2 Gold Analysis	page 11
7.3 Multi-Scan Analysis	page 11
7.4 Laboratory Quality Control and Quality Assurance (QC/QA)	page 11
7.5 Company Quality Control and Quality Assurance (QC/QA)	page 12
8.0 Discussion of Geological Mapping and Prospecting Results	page 12
8.1 Lithology and Alteration	page 12
8.2 Structure	page 15
8.3 Mineralization	page 16
10.0 Conclusions	page 16
11.0 Recommendations	page 17
References	page 18
Qualifications	page 20
Instrument Specifications	page 23

Figures

Figure 1: Selkirk Lake Property Location Map	page 2
Figure 2: Selkirk Lake Property Claim Map with Legacy Claim Boundary	page 3
Figure 3: Regional Geology Map of Wawa Sub-province of the Superior Craton	page 6
Figure 4: Geology/Sample Locations/Track Compilation of 2020 Activities	page 13
Figure 5: Quartz Tourmaline Veining as Blast Rock from Historical Trench	page 17

Tables

Table 1: Selkirk Lake Property Summary of Work Activities	page 1
Table 2: Selkirk Lake Property Claim Distribution	page 4
Table 3: Historical Exploration Work on Aguonie Property	page 5
Table 4: Historical & Current Gold Producers in Michipicoten Greenstone Belt	page 9
Table 5: 2020 Surface Exploration Personnel	page 10
Table 6: Selkirk Lake Property Observed Lithologies	page 14

Appendices

- Appendix 1 Geology-Tracks-Sample Locations-Abbreviations Map Scales at1:2500
- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- Appendix 4 Daily Logs
- Appendix 5 Expenditure & Invoices

Summary

The Selkirk Lake Property is located 29 kilometers northeast of Wawa and 14 kilometers south of Dubreuilville in the central portion of Abotossaway Township. The site can be accessed via ATV or UTV along the Goudreau road from highway 519, just outside Dubreuilville. The Selkirk Lake Property consists of 7 unpatented mining claims, totaling roughly 61 hectares of workable land.

Gold was first discovered in the Goudreau-Michipicoten area in 1896 along the shore of Dog Lake (Edgar, 2017). Exploration carried out by Madoc Mining began in the Goudreau area in 1913, focused on iron formations to exploit for their sulfur content (Black, 1952). In 1914, ore started to be mined and continued until late 1919 when it ceased due to natural sulfur mining in the United States (Black, 1952). Historical documentation from the Ontario assessment files database shows little work was completed on the Selkirk Lake Property. R.J McGowan carried out the first documented exploration program in 1984, which consisted of a 5 kilometers VLF-EM and magnetometer survey. This survey's VLF-EM data indicated several west to southwest weak linear trends, with weak discontinuous magnetic anomalies forming in conjuncture to the VLF-EM anomalies. These anomalies were interpreted to be stratigraphically bound sulfides. Exploration then ceased until 2017 when First Minerals Exploration Ltd. visited the property for one day. First Minerals geologists collected ten (10) rock samples, which returned gold values below the detection limit (<0.02 g/t Au).

The Selkirk Lake Property is located on the Superior Craton's southern margin within the Michipicoten Greenstone Belt, part of the Wawa Subprovince. The Michipicoten Greenstone Belt comprises an assemblage of metavolcanic, metasedimentary, and intrusive rocks that have undergone greenschist to amphibolite facies metamorphism. The principal structure through this area is the Goudreau-Lochalsh Deformation Zone. The Goudreau-Lochalsh Deformation Zone comprises multiple shear zones spanning up to 25 kilometers long and roughly 4.5 kilometers wide, oriented 070°-100°. This shear zone separates felsic metavolcanic assemblages to the south and mafic metavolcanic assemblages to the north. The Selkirk Lake Property is directly underlain by mafic metavolcanics, gabbro, quartz porphyry, and Matachewan Diabase. Mafic metavolcanic flows comprise >40% of the surficial exposure and are typically massive flows with localized pillowed sections. Gabbroic rocks are massive, occur as sill-like bodies within the mafic volcanic sequence, and have been observed >30 meter wide. Quartz +/- feldspar porphyry units are also sill-like bodies that display sharp, conformable contacts that range from 1-2 meter up to >15 meter in apparent thickness. Locally these units are observed medium-coarse grained and appear granodioritic. Two Matachewan Diabase dykes have been interpreted based on northwest-trending magnetic highs crosscutting the Property.

A total of 5.6 kilometer of GPS geological mapping and a total of 13 rock samples were taken over the course of six days from August 31 to September 11, 2020 to help delineate gold-bearing structures. Work was carried out for Prodigy Gold Inc. and First Minerals Exploration Ltd. by geologists Geordie Hamilton and Eldon Phillips with assistance from Shane O'Neill and Brian Wright.

The mapping and prospecting program was successful in finding anomalous gold values of 0.16 and 0.22 g/t associated with shear structures and quartz-tourmaline veining on the Selkirk Lake Property. These shear structures are characterized to have a strong schistosity oriented between 230°-260° with steep dips to the north. They are focussed along lithological contacts such as mafic metavolcanics and quartz-feldspar-porphyry, and display moderately developed alteration including chlorite, ankerite, calcite, and sericite.

Validation of results from the 2020 field program would be best achieved with a follow-up ground VLF-EM and magnetic survey (13.4 line-km). A current ground VLF-EM and magnetic survey would have significantly better resolution than historic data, which would help delineate gold-bearing structures.

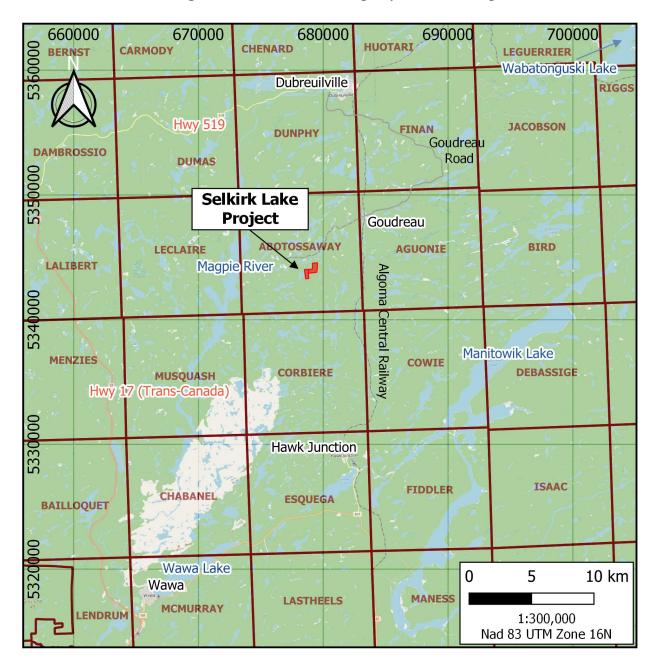
1.0 Survey Overview

1.1 Introduction

Geological mapping and prospecting activities were undertaken to evaluate the potential for gold mineralization with the purpose of building a geological framework in addition to finding new prospective zones. This report describes and interprets the results from the geological mapping and geochemical data obtained during the 2020 field season.

1.2 Activities Undertaken

Activity	Dates	Details	Performed By
Prospecting	August 31, 2020	8 rock samples	Prospectors
Geological Mapping	September 7 – 11, 2020	~5.6 km of traversed line 5 rock samples	Contracting geologists
Assaying	September 2020	13 samples for gold and multi-element analysis	Activation Laboratories Ltd.


Table 1 - Selkirk Lake Property Summary of Work Activities

2.0 Property Description and Access

2.1 Location, Access, and Accommodations

The Selkirk Lake Property is located in the central portion of Abotossaway Township, Sault Ste Marie Mining District, Ontario, Canada (Figure 1). The property is located approximately 29 kilometers northeast of Wawa, 14 kilometers south of Dubreuilville, and approximately 6 kilometers southwest of Goudreau. This property is best accessed by vehicle from Dubreuilville to Goudreau for 21 kilometers along the Goudreau Road, where ATV or UTV access can be used along an old, narrow, and rough logging road for approximately 6 kilometers. The Selkirk Lake Property boundaries are located 750 meters south of the road. Accommodations during the 2020 field program were made at the Magpie Relay Motel in Dubreuilville.

Figure 1 - Selkirk Lake Property Location Map

2.2 Description of Mining Claims

The property is comprised of 7 unpatented mining claims with a total working area of roughly 61 hectares. These claims are currently under option from First Minerals Exploration Ltd. (67 Third Street, Timmins, Ontario, Canada P4N 1C2) to Prodigy Gold Inc., a subsidiary of Argonaut Gold Inc. (9600 Prototype Court, Reno, Nevada, United States 89521). The transfer of

claim ownership to Prodigy Gold Inc. has been consummated, and currently, Prodigy Gold Inc. has 100% of mining rights to the seven (7) unpatented claims.

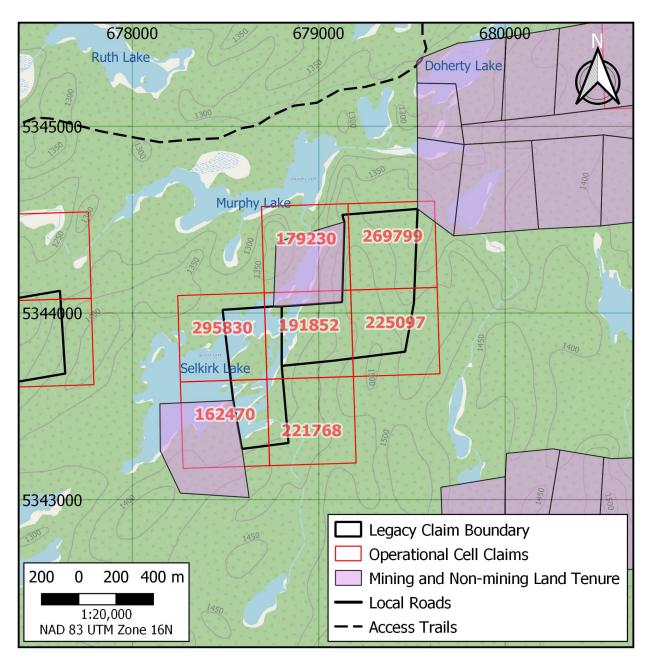


Figure 2 - Selkirk Lake Property with Legacy Claim Boundary

Township	Claim #	Provincial Grid Cell	Claim Holder	Claim Due Date	Work Required (\$)	Total Reserves (\$)
Abotossaway	179230	42C02I106	Prodigy Gold Inc.	2021-05-02	200	349
Abotossaway	269799	42C02I107	Prodigy Gold Inc.	2021-05-02	200	0
Abotossaway	295830	42C02I125	Prodigy Gold Inc.	2021-05-02	200	0
Abotossaway	191852	42C02I126	Prodigy Gold Inc.	2021-05-02	200	0
Abotossaway	225097	42C02I127	Prodigy Gold Inc.	2021-05-02	200	0
Abotossaway	162470	42C02I145	Prodigy Gold Inc.	2021-05-02	200	0
Abotossaway	221768	42C02I146	Prodigy Gold Inc.	2021-05-02	200	0

Table 2 - Selkirk Lake Property Claim Distribution Summary

3.0 Physiography and Vegetation

The Selkirk Lake Property covers 61 hectares along the eastern shore of Selkirk Lake. The property exhibits moderate topographic changes with a topographic high of approximately 457 meters above sea level and a topographic low of 411 meters above sea level. Most of the forest cover around the property is old growth, such as large jack pine, poplar, and birch trees, with moderate outcrop exposure. Several topographic lows are present throughout the property, typically seen as swampy areas with small growth vegetation such as alders and black spruce. Little to no outcrop is found within these areas except on the margins where steep but relatively short ridges are usually present. The most prominent topographic high is to the southeast of the property, as this ridge line continues north to the northeast property boundary. Significant outcrop exposure is present along this ridge.

4.0 Historical Exploration

Historical exploration on the Selkirk Lake Property is minimal, with only two historic programs documented on the Ontario assessment file database. Documented work includes R.J. McGowan, who conducted work in 1984, and First Minerals Exploration Ltd, where a brief evaluation was conducted in 2017.

In 1984, R.J. McGowan Exploration carried out approximately 5 kilometers ground VLF-EM and magnetometer survey over the current north and central portions of the property. This survey outlined several VLF-EM anomalies described as weak, continuous linear trends. There are several weak magnetic anomalies of limited continuity and strike length. All trends are in a west to southwest direction and are interpreted as stratigraphically bound sulphides. R.J. McGowan proposed to follow up their results with geological mapping and trenching followed by diamond drilling program, with no follow-up recorded.

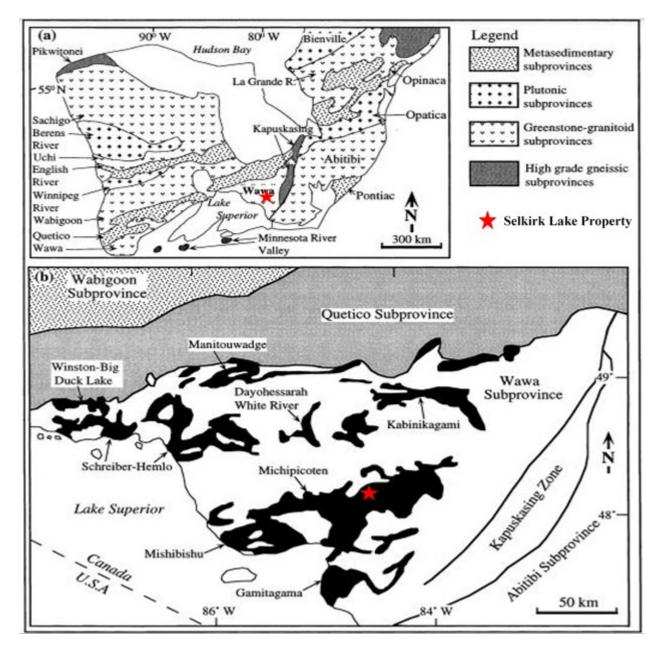
The only other documented exploration on the property on the property was in 2017, when First Minerals Exploration Ltd conducted a one-day prospecting program. A total of ten (10) grab samples were obtained, all of which came back below the detection limit for gold (<0.02 g/t Au). The author noted that outcrops were massive to weakly foliated mafic metavolcanics, showing very weak deformation within the Goudreau-Lochalsh Deformation Zone (GLDZ).

Company	Year	Area	File No	Description of Work
First Minerals Exploration	2017	Abotossaway	20000015280	Prospecting (10 samples). All assays came back below detection limit in gold
R.J. McGowan	1984	Abotossaway	42C02NE0211	~5km ground magnetometer and VLF-EM survey. Highlighted 3 weak linear WSW features.

Table 3 - Historical Exploration on Selkirk Lake Property.

5.0 Geological Setting

5.1 Regional Geology


The Selkirk Lake Property occurs within the late Archean Michipicoten Greenstone Belt (2660-2900 Ma). The belt is part of the Wawa Sub-province, situated along the Superior Craton's southern margin in the Precambrian Shield (Figure 3).

The belt is east-west striking with an approximate length of 141 km and a maximum width of 38 km (Sage, et al., 1996).

The Michipicoten Greenstone Belt consists of an assemblage of metavolcanic, metasedimentary, and intrusive rocks that have undergone greenschist to amphibolite facies metamorphism (Williams et al., 1991). Supracrustal rocks are intruded by subvolcanic tonalite to granodiorite and post-supracrustal granitoid stocks that range from syenite, monzonite to granodiorite in composition (Sage, et al., 1996).

Figure 3 (a) Map of the Superior Province. (b) Simplified geological map of the Wawa Subprovince showing the location of the Michipicoten Greenstone Belt and other greenstone belts in the area (modified from Polat and Kerrich (2000), after Williams et al. (1991)

Metavolcanic rocks occur in three bimodal cycles that have been dated at 2900, 2750, and 2700 Ma in age (Turek et al., 1984; 1992; Arias and Helmstaedt, 1990; Sage, 1994). These metavolcanic cycles are included in the Hawk Lake, Wawa, and Catfish assemblages of Williams et al. (1991) (Sage, 1994). The Hawk Lake and Wawa assemblages are comprised of an ultramafic-mafic metavolcanic base with an overlying intermediate-felsic metavolcanic unit capped by iron formation. Similarly, the Catfish assemblage consists of a tholeiitic mafic-intermediate metavolcanic base and an intermediate-felsic upper portion. Iron formations do not cap the Catfish assemblage but occur at the contact between the mafic and felsic intervals (Sage, 1994).

The Doré assemblage is a sequence of metasedimentary rocks that unconformably overly the Catfish and Wawa assemblages. The Doré assemblage is dominated by greywacke and conglomerate. Clasts in the conglomerate are largely felsic-intermediate metavolcanic and granitic in composition (Sage, 1994). All units are crosscut by north to northwest striking, Paleoproterozoic Matachewan diabase dykes that are relatively undeformed.

The Goudreau-Lochalsh Deformation Zone (GLDZ) is the principal structures in the Michipicoten Greenstone Belt. The Goudreau-Lochalsh Deformation Zone comprises multiple shear zones with an approximate width of 4.5 km that can be followed along a strike length of 25 km. This zone is oriented between 250°- 280° and occurs along the contact between Cycle 2 metavolcanic rocks to the south and Cycle 3 to the north (Heather and Arias, 1992). Other notable structures include three brittle fault zones: 1) McVeigh Creek Fault, 2) Herman Lake Fault, and 3) Maskinonge Lake Fault. The McVeigh Creek Fault trends approximately north-south, while the Herman Lake and Maskinonge Faults are southeast-northwest trending.

5.2 Property Geology

Property geology has been mapped and summarized as part of the regional township undertaken by Sage (1993). The area is chiefly underlain by mafic metavolcanic rocks with gabbroic and felsic to intermediate porphyry intrusive bodies. Mafic metavolcanics are typically massive to pillowed flows with thin units of breccia and tuff. Mafic intrusions range from gabbro to quartz diorite in composition. Felsic to intermediate intrusives are generally granodiorite-trondhjemite-tonalite in composition, interpreted to be associated with the Gutcher Lake Pluton, which is located to the west of the property. There are younger northwest-striking diabase dykes.

The Selkirk Lake Property is situated along the southwestern edge of the Goudreau-Lochalsh Deformation Zone and is structurally complex. Shearing is generally strongly developed and trend approximately southwest dipping sub-vertically. Pillow shapes have been interpreted by Sage (1993) to indicate a north-facing sequence of rocks. The property also occurs proximal to the McVeigh Creek Fault, a north-south oriented lineament, which offsets the Michipicoten Iron Range by approximately 1900 meters. The Rand Fault also occurs to the east, where it cuts off the south band of the Rand No. 2 iron formation at approximately 330°, which is occupied by a diabase dyke. This fault also displays sinistral movement with an inferred displacement in excess of 800 meters.

The Murphy Mine lies immediately to the north of the Selkirk Property and has undergone limited production from 1926 to 1940 (Table 4). It produced 2,450 oz gold at an average grade of 3.77 g/t Au. Band-Ore Resources completed a 43-101 report in 2004, which presented an unclassified resource of 98,059 tonnes @ 13.42 g/t Au for 42,372 oz Au. It is hosted in both sheared and ankerite altered mafic metavolcanics and quartz-feldspar porphyry bodies.

5.3 Deposit Types

The Michipicoten Greenstone Belt hosts numerous precious metal deposits within several discrete deformation zones (Table 4). The rocks underlying the Selkirk Lake Property underly the Goudreau-Lochalsh Deformation Zone (GLDZ). Other productive regional deformation zones in the area include the Eagle River Deformation Zone, Mishibishu Lake Deformation Zone, and zones within the Missanabie-Renabie District. Two distinct gold mineralization styles are recognized; 1) orogenic lode-gold greenstone hosted mesothermal gold, 2) intrusive-related 'porphyry' disseminated gold. Examples of orogenic gold deposits are Wesdome's Eagle River Mine (Eagle River Deformation Zone) and Harte Gold's Sugar Zone in the Dayohesarrah (Sugar Deformation Zone). Intrusiverelated hosts are like the Moose Lake Porphyry Complex at Hemlo and Webb Lake Intrusive at Magino. The Missanabie-Renabie Gold District, which includes the past-producing Renabie Mine, has been proposed by McDivitt et al., (2017) to be a form of hybrid mineralization that involves a Au-bearing, pre-orogenic veining event, followed by regional deformation and a later orogenic stage of Au enrichment.

Nearly 2.4 million ounces of gold has been produced across the Michipicoten greenstone belt to date (Table 4). The currently producing Island Gold Mine has produced 3,456,299 tonnes at an average head grade of 7.62 g/t, yielding 812,188 oz. Au and has a proven and probable reserve of 3,643,000 tonnes at 10.37 g/t for 1,215,000 oz, as of December 31, 2019 (Bourgeault et al., 2020). The Magino Mine was historically active between 1988-1992 and produced 803,135 tonnes of ore yielding 114,319 ounces Au at 4.43 g/t Au. The Magino Deposit currently has a proven and probable reserve of 58.9 Mt @ 1.13 g/t for 2.14 Moz Au and a total measured and indicated gold reserve of 144 Mt @ 0.91 g/t Au for 4.2 Moz Au (Makarenko et al., 2017).

Mine Name	Township	In Production	Tons Milled	Oz. Au	Grade (opt)
Alden-Goudreau	Cowie	1937, 1940, 1943, 1945	13,479	3220	0.24
Centennial	Naveau	1939-40	8,612	610	0.07
Cline	Jacobson	1938-40, 47-48	331,842	63,328	0.19
Darwin/Grace McMurray		1902-03, 1907- 1908, 1910, 1923, 1925, 1930, 1935, 1937, 1940, 1943- 44	45,528	15,191	0.33
Deep Lake	McMurray	1936-38, 43	2790	1633	0.59
Edwards	Jacobson	1938, 1997-2002	1537	485	0.32
			389,309	140,258	0.36
Holdsworth Prospect	Corbiere	1933	60	10	0.17
Island Gold*	Finan	2007-2019	3,809,917	812,188	0.245
Kremzar	Finan	1988-90	392,858	37,678	0.1
Magino/Algoma Summit	Finan	1930-40, 1988-92	>768,679	113,228	0.15
Minto (includes Jubilee and Cooper)	McMurray	1929-42	184,600	37,678	0.2
Murphy/Algold/Amherst	Abotossaway	1926-32, 1936-38, 1940	23,211	2,450	0.11
Norwalk/Manxman	Naveau	1904, 10	820	60	0.07
Parkhill	McMurray	1902, 1929, 1930- 38, 1940-44	125,778	54,301	0.43
Ranson	Rabazo	1939	774	156	0.2
Renabie	Leeson	1947-70, 1981-91	5,583,895	1,100,000	0.2
Smith/Van Sickle	McMurray	1935-36	9228	536	0.06
Stanley	McMurray	1936	1963	84	0.04
Surluga	McMurray	1968-69, 88-89	87,460	8898	0.1
Total			11,013,661	2,391,992	0.21

Table 4 - Historical Gold Production (Atkinson et al., 2003) and current producers in the
Michipicoten Greenstone Belt.

* Production statistics for Eagle River are as of December 2018 and Island Gold are as of December 2019.*

Potential for gold mineralization on the Selkirk Lake Property favours orogenic style gold hosted in mafic metavolcanics and/or iron formation associated with high strain zones within the Goudreau-Lochalsh Deformation Zone.

6.0 Summary of Geological Mapping and Prospecting Program

Between August 31 to September 11, 2020, Prodigy Gold Inc. conducted a detailed geological mapping and prospecting program on the Selkirk Lake Property. The 2020 surface exploration program was initiated to evaluate the potential for gold mineralization throughout the property. Field work focused on establishing relationships between structural features and alteration zones to understand gold distribution.

Mapping was conducted by Geordie Hamilton and Eldon Phillips with the aid of Shane O'Neil and Brian Wright, who carried out prospecting and sampling. (Table 5 & Appendix 5).

Mapping and prospecting/sampling were completed using a GPS (Garmin GPSMAP 64S) and compass. Geological surveying was completed over 100-meter intervals along north-south oriented lines as well as localized infill mapping and prospecting, when deemed necessary. All mapping was performed using NAD 83 in UTM Zone 16N with a GPS accuracy of approximately 3 to 6 meters. Approximately 5.6 kilometers of geological mapping was completed, and 13 rock samples were taken by both prospectors and geologists (Appendix 2).

Table 5 - 2020 Surface Exploration Personnel

Name	Title	Residence
Geordie Hamilton	Junior Geologist	Sudbury, ON
Eldon Phillips	Junior Geologist	Sudbury, ON
Shane O'Neil	Prospector	Sudbury, ON
Brian Wright	Prospector	Markstay, ON

The following is presented in the appendices at the back of the report.

- Appendix 1 Geology-Tracks-Sample Locations-Abbreviations with Map Scales at 1:2500
- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- Appendix 4 Daily Logs
- Appendix 5 Expenditure Invoices & Receipts

7.0 Analytical Quality Control and Quality Assurance

An aggregate total of 13 rock samples (including both grab and standards/blanks) were analyzed from this surface exploration program. Samples were analyzed by Activation Laboratories (Actlabs) with gravimetric assay completed Thunder Bay (*1201 Walsh Street West*, *Thunder Bay, Ontario, Canada, P7E 4X6*) and ICP-OES analyses completed in Ancaster (*41 Bittern St, Ancaster, Ontario, Canada, L9G 4V5*).

All samples were bagged and secured with security twist tags in rice bags. The samples were delivered to the Actlabs laboratory in Thunder Bay for sample preparation for gold and ICP-OES analyses. All samples were analyzed for gold by fire assay/A.A. and a 38 element ICP-OES rock package. All methods used, analyses, and detection limits are on hand in the form of assay certificate A20-11626 and A20-10623 (Appendix 3).

Actlabs are accredited by the Standards Council of Canada to ISO 17025 for specific registered tests or certification to ISO 9001:2015 certifications for accredited methods. Sample preparation, analytical and quality control procedures employed are mutually similar in procedure and are as follows:

7.1 Sample Preparation

Once the samples have been received, they are entered into the Actlabs Quality Management System and given an internal sample control number. The samples are then checked for dryness before any sample preparation and dried if needed. The samples are split off 1.0 kg and pulverized split to better than 85% passing 75 microns using a Jones Rifler. Silica cleaning between each sample is also performed to prevent any crosscontamination. Random screen analysis is performed daily to check for attainable mesh size.

7.2 Gold Analysis

All Au analysis is performed at a 50g charge by fire assay using lead collection with a silver in-quart. The detection limit is 20 ppb. Au is separated from the Ag in the doré bead by parting with nitric acid. The resulting gold flake is annealed using a torch. The gold flake remaining is weighed gravimetrically on a microbalance.

7.3 Multi Scan Analysis

Multi-scan analysis (38 elements) was performed using an aqua regia "partial" digestion which uses a combination of hydrochloric and nitric acids. It is then analyzed by ICP-OES method.

7.4 Laboratory Quality Control / Quality Assurance (QC/QA)

Certified standard and blank assays are usually run for each rack of samples. A nonreproducible check assay is an indication of nugget problems within the sample and both laboratories recommend that further analysis be performed to generate a better representation of the sample. All standards run are graphed to monitor the performance of the laboratory. Actlabs warning limit is 2 times the standard deviation and our control limit is 3 times the standard deviation. Any work order with a standard running outside the warning limit will have selected re-assays performed, and any work order with a standard running outside the control limit will have the entire batch of samples re-analyzed.

All QC/QA data run with each work order is kept with the clients' file. If desired, the client may have all the blanks and certified standards reported on a certificate to correspond to the client's samples. All quality control graphs are available upon request.

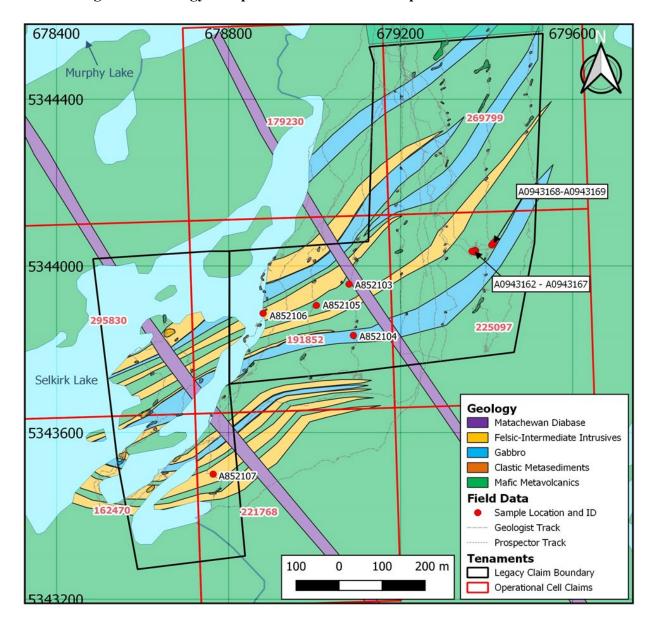
The laboratory also keeps daily logbooks for the sample throughput. These logs record all information pertaining to; 1) who performed the analysis, 2) when the analysis was done, 3) how the analysis was performed, and 4) what other sample were analyzed at the same time. This is done to help eliminate the possibility of misrepresentation and crosscontamination of the client's samples.

Actlabs instruments are calibrated using ISO traceable calibration standards and our quality control standards are created from separate stock solutions. Their instruments are directly tied to their quality control program eliminating the need for manual data entry, hence, reducing human error.

7.5 Company Quality Control / Quality Assurance (QC/QA)

Prodigy Gold Inc. inserted and alternated one sample standard and blank every 10 samples, however due to the limited sampling at Selkirk Lake no standards or blanks were inserted.

8.0 Discussion of Geological Mapping and Prospecting Results


The following describes the key observations made during mapping and sampling with respect to lithology, alteration, structure, and mineralization. A geological compilation map complete with tracks and sample locations is presented at a scale of 1:2500 in Appendix 1. Sample descriptions with gold and ICP geochemistry and Actlabs assay certificates are presented in Appendix 2 and 3, respectively.

8.1 Lithology and Alteration

The dominant lithologies underlying the Selkirk Lake Property include mafic metavolcanics, gabbro, quartz +/- feldspar porphyry, with minor mudstone (argillite), and cross-cutting Matachewan diabase (Figure 4 and Table 6). Mafic metavolcanic flows comprise approximately 40% of the surficial exposure and are typically massive flows with localized pillowed sections. Gabbroic rocks are massive, occur as sill-like bodies within the mafic metavolcanic sequence, and have been observed in excess of 30 meters wide. Quartz

+/- feldspar porphyry units are also sill-like bodies that display sharp, conformable contacts that range from 1 to 2 meters and are in excess of 15 meters in apparent thickness. Locally these units are medium to coarse grained and appear granodiorite composition. Two Matachewan diabase dykes have been interpreted based on northwest trending magnetic highs cross-cutting the property. Weak to moderate pervasive chlorite-ankerite-calcite alteration is associated with mafic volcanic units. While quartz+/- feldspar porphyry units display weak to moderate sericite-ankerite-calcite alteration. Alteration intensity is typically stronger in sheared domains.

8.2 Observed Lithologies

Lithology	Description	Photograph
Matachewan Diabase	Dark grey to black with medium to dark brown weathered surface, fine to medium-grained, massive, equigranular, and moderately magnetic.	
Quartz +/- Feldspar Porphyry	Light green-tan, fine to medium grained, locally coarse grained with 2-4 mm quartz phenocrysts, foliation development, ranges from weak to strong, typically non-magnetic with variably developed (weak to strong) sericite and carbonate alteration, unit locally hosts up to 10% quartz-tourmaline and quartz- carbonate veins and associated with up to 1-2% disseminated pyrite. These units are in sharp, conformable contact with mafic volcanics.	<complex-block></complex-block>

Table 6 – Selkirk Lake Property Observed Lithologies

Gabbro	Medium-dark green-grey, fine to medium-grained, equigranular, massive, non-magnetic with weak-moderate patchy carbonate and chlorite alteration. No contacts were observed with this unit.	
Mudstone	Dark grey, very fine-grained, non-magnetic, localized weak carbonate alteration, unit is locally cut by cm-scale quartz- carbonate veining. No contacts were observed with this unit.	
Mafic Metavolcanic	Dark grey-green, very fine to fine-grained, massive to strongly foliated, locally pillowed, non- magnetic to strongly magnetic, unit is variably (weak to strong) silicified, chloritized, and carbonate altered.	Reading its in the second seco

8.2 Structure

Stratigraphy is defined along variably developed southwest to west southwest (230°-260°) trend, which parallels the shearing/schistosity. It is steeply dipping (65°-80°) to vertical. It is also important to note that shearing locally dip to the south. Two west southwest trending shear zones have been interpreted based on strong shear fabric development. The first shear zone transects the central portion of the claim group and is host

to two historic trenches to the northeast. The second occurs in the southwestern extent of the property and includes a small trench. The true extent of these zones has not been well constrained and should be followed-up on with more detailed infill mapping. These zones are also coincident with historical VLF-EM conductors outlined by R.J McGowan (1984).

Anomalous gold values appear to be associated with shear structures transecting the core of the property. Shear zones occur along contacts between the quartz-feldspar porphyry and mafic metavolcanic units, which indicates that these structures are being concentrated along a rheological boundary favourable for strain partitioning and shear formation.

8.3 Mineralization

There were no significant gold values returned from the surface, with only two samples returning weakly anomalous gold values of 0.22 g/t Au and 0.16 g/t Au. These gold results are associated with quartz-tourmaline+/-carbonate veins within historic trenches in the northeastern corner of the claim group.

Quartz-tourmaline veins contain a laminated/ribboned texture observed in both the northeastern and southwestern trenches (Figure 5). These veins have been observed up to 30 cm wide with an orientation of 230°/85°. They are hosted within sheared mafic metavolcanic and quartz porphyry units and are associated with 1-2% blebby to disseminated pyrite.

Bullish white to light grey quartz \pm carbonate veins were also observed within shear zones up to 10 cm wide, oriented 262°/74°, slightly oblique to the shear fabric of 248°/82°, associated with 0.5% to 1.0% pyrite.

9.0 Conclusions

The mapping and prospecting program was successful in discovering anomalous gold values associated with shear structures and quartz-tournaline veining on the Selkirk Lake Property. It was also successful in characterizing shear structures associated with anomalous gold values, which include the following features:

- Strong shearing oriented between 230° - 260° with dips to the north between 65° - 80° .
- Strata-bound implications to gold mineralization to shears along lithological contacts (i.e., iron formation and quartz porphyry/mafic metavolcanic contacts)
- Shear is focussed along lithological contacts (i.e., mafic metavolcanic-quartz-feldspar porphyry)

Zones display moderately developed alteration, including pervasive chlorite-ankerite-calcite and sericite-ankerite-calcite

Figure 5 - Quartz-Tourmaline Veining as Blast Rock from a Historic Trench Located in Southwestern Sector of Selkirk Lake Property

10.0 Recommendations

A ground VLF-EM and magnetic survey is highly recommended. The survey would be designed to provide higher resolution of data compared to historical airborne and ground surveys. It would also confirm and verify additional ground geophysical targets which may control gold mineralization and support future exploration efforts.

A proposed ground VLF-EM and magnetics survey consists of 13.4 line-kilometers in 20 north-south lines and 2 east-west lines for a total of 13.4 line kilometers. There would be follow-up mapping, prospecting and sampling from the results of the surveys.

11.0 References

- Arias, Z.G., and Helmstaedt, H. 1990. Grant 343 Structural Evolution of the Michipicoten (Wawa) Greenstone Belt, Superior Province: Evidence for an Archean Fold and Thrust Belt. In Geoscience Research Grant Program Summary of Research 1989-1990. Edited by V.G. Milne. Ontario Geological Survey, Miscellaneous Paper 150, pp. 107-114. Program, Timmins Regional Resident Geologist Report: Timmins and Sault Ste. Marie Districts; Ontario Geological Survey, Open File Report 6113, 84p.
- Atkinson, B.T., Hailstone, M., Seim, G. Wm., Wilson, A.C., Draper, D.M., Farrow, D., Hope, P. and Koroschetz, A.M. 2003. Report of Activities 2002, Resident Geologist
- Black, N.H. 1952. Report on the Examination of Pyrite Properties in The Goudreau-Michipicoten Area, Ontario, dated June 1, 1962; Ministry of Northern Development, Mines and Forestry, assessment file No. 42C07SE0008.
- Bourgeault, N., Vincent, R., Webster, C. 2020. NI 43-101 Technical report for the Island Gold Mine, Dubreuilville, Ontario, Canada. 249p.
- Edgar, B. 2017. Prospecting Report On Claim 4279211, Abotossaway Township, Ontario. Ministry of Northern Development, Mines and Forestry, assessment file No. 20000015281
- Heather, K. B. and Arias, Z. 1992. Geological and structural setting of gold mineralization in the Goudreau-Lochalsh area, Wawa gold camp; Ontario Geological Survey, Open File Report 5832, 159p.
- Makarenko, M., Pilotto, D., Lechner, M., Castro, L., Cheng, S. 2017. Feasibility Study Technical Report on The Magino Project, Ontario, Canada. Prepared for Argonaut Gold Inc. by JDS Energy and Mining Inc. 460p.
- McDivitt, J. A., Lafrance, B., Kontak, D. J., & Robichaud, L. 2017. The Structural Evolution of the Missanabie-Renabie Gold District: Pre-orogenic Veins in an Orogenic Gold Setting and Their Influence on the Formation of Hybrid Deposits. Economic Geology, 112(8), 1959– 1975.
- Reid, R. G., Sears, S. M. 1984. Report on a Geophysical Survey over the properties of R. J. McGowan, Abotossaway Township, SSM Mining Division. Ontario. Ministry of Northern Development, Mines and Forestry, assessment file No. 42C02NE0211
- Sage, R. P., Lightfoot, P. C., & Doherty, W. 1996. Geochemical characteristics of granitoid rocks from within the Archean Michipicoten Greenstone Belt, Wawa Subprovince, Superior Province, Canada: implications for source regions and tectonic evolution. Precambrian Research, 76(3-4), 155–190.

- Sage, R.P. 1993. Geology of Abotossaway, Corbiere, Leclaire and Musquash Townships and part of Dunphy Township; Ontario Geological Survey, Open File Report 5587, 308p.
- Sage, R.P. 1994. Geology of the Michipicoten greenstone belt; Ontario Geological Survey, Open File Report 5888, 592p.
- Solski, M. Report on The Rand No. 2 Prospect, M.E.R.I.T., Mineral Exploration Resources in Toronto, Goudreau-Lochalsh Area, Ontario, July 9, 1986; Ministry of Northern Development, Mines and Forestry, assessment file No. 42C02NE0209.
- Tilsley, J. E. Summary Report, Exploration Program 1987, Faldo Mines and Energy Corporation, McVeigh Creek and Jackson Lake Properties, February 12, 1988
- Turek, A., Sage, R.P., and Van Schmus, W.R. 1992. Advances in the U-Pb zircon geochronology of the Michipicoten Greenstone Belt, Superior Province, Ontario. Canadian Journal of Earth Sciences, 29: 1154-1165.
- Turek, A., Smith, P.E., and Van Schmus, W.R. 1984. U-Pb zircon ages and the evolution of the Michipicoten plutonic-volcanic terrane of the Superior Province, Ontario. Canadian Journal of Earth Sciences, 21: 457-464.
- Williams, H. R., Scott, G. M., Heather, K. B., Muir, T. L., and Sage, R. P., 1991. Wawa Subprovince; in Geology of Ontario, (eds.) P. C. Thurston, H. R. Williams, R. H., Sutcliffe, and G. M. Scott; Ontario Geological Survey, Special Paper 4, pt.1, pages 485 539.

Qualifications

STATEMENT OF QUALIFICATIONS

I, Isaac Riddle, of 340 Gilmour Street, Ottawa, Ontario K2P 0R3, certify that;

- 1) I obtained a Bachelor's Degree in Geological Sciences from Acadia University in 2016.
- 2) I have worked as a geologist for 4 years since my graduation from university in 2016.
- I am responsible for writing this report entitled, Geological Mapping and Prospecting Report on the Selkirk Lake Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>
- 5) I have no beneficial interest, direct or indirect in the Selkirk Lake Project that is the subject of this report.

Dated April 23, 2021

Isaac Riddle

Isaac Riddle

STATEMENT OF QUALIFICATIONS

I, Geordie Hamilton, of 1770 Paris Street, Sudbury, Ontario P3E 3C3, certify that;

- 1) I acquired an Honours Bachelor's Degree specializing in Earth Sciences from Laurentian University in 2018. I also obtained my Master's Degree in Applied Mineral Exploration from Laurentian University in 2020.
- 2) I have worked as a geologist for approximately 2.5 years.
- 3) I am responsible for writing this report entitled, Geological Mapping and Prospecting Report on the Selkirk Lake Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.
- 4) This document is based on information from various public documents and my personal observations during several visits to the property. <u>Although the information supplied to me is believed to be accurate and all reasonable care has been taken in the completion of this report, I hereby disclaim any and all liability arising out of its use and circulation. While I stand behind my interpretations, I cannot guarantee the accuracy of the source information and the use of this report or any part thereof shall be at the user's sole risk</u>
- 5) I have no beneficial interest, direct or indirect in the Agounie Project that is the subject of this report.

April 23, 2021

Geordie Hamilton

Geordie Hamilton

STATEMENT OF QUALIFICATIONS

I, Stephen Roach, of 47 Crantham Crescent, Stittsville, Ontario K2S 1R2, certify that;

1) I obtained a Bachelor Degree in Geological Sciences from Concordia University in 1977. In addition, I attended Carleton University from 1981-83 in a Graduate Program.

2) I have worked as a geologist for more than 45 years since my graduation from university been in the practice of my profession as an exploration Geologist since 1977.

3) I am responsible for the contributions in this report entitled, entitled Geological Mapping and Prospecting Report on the Selkirk Lake Property, Abotossaway Township, Sault Ste Marie Mining Division, Ontario, Canada.

4) I have no beneficial interest, direct or indirect in the Selkirk Lake Property that is the subject of this report.

Dated April 23, 2021

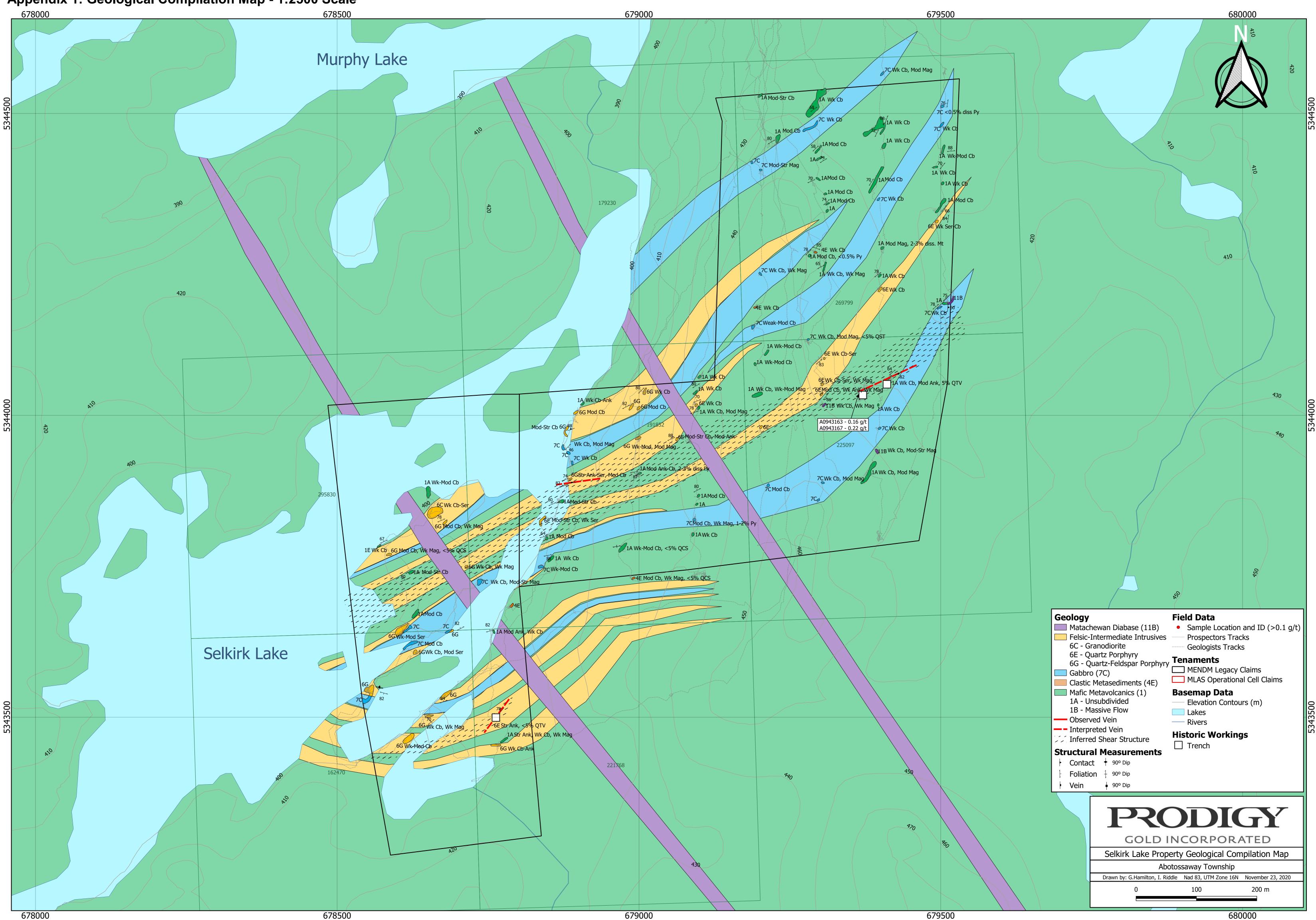
Stephen Roach

Stephen Roach

Instrument Specifications

Garmin 64s GPS

• Specifications obtained from www.garmin.com


Physical dimensions	2.4" x 6.3" x 1.4" (6.1 x 16.0 x 3.6 cm)
Display size	1.43" x 2.15" (3.6 x 5.5 cm); 2.6" diag (6.6 cm)
Display resolution	160 x 240 pixels
Display type	transflective, 65K color TFT
Weight	8.1 oz (230 g) with batteries
Battery	2 AA batteries (not included); NiMH or Lithium
Battery life	16 hours
<u>Water rating</u>	IPX7
Memory/History	4 GB
High-sensitivity receiver	Yes
Interface	high speed mini USB and NMEA 0183 compatible

Appendices

- Appendix 1 Geology-Tracks-Sample Locations-Abbreviations with Map Scales at 1:2500
- Appendix 2 2020 Rock Sample Descriptions
- Appendix 3 2020 Activation Laboratories (Actlabs) Assay/Geochemical Certificates
- Appendix 4 Daily Logs
- Appendix 5 Expenditure Invoices & Receipts ***withheld for confidentiality**

APPENDIX 1

Appendix 1: Geological Compilation Map - 1:2500 Scale

679000

Appendix 7: Abbreviations

IF – Iron Formation

- Carb Carbonate
- Cpy Chalcopyrite
- Py Pyrite
- Mod Moderate
- N North
- N.W. Northwest
- NNW- North northwest
- S- South
- S.W.- Southwest
- S.E. Southeast
- S.E. South southeast
- W- West
- WNW -West northwest
- WSW- West southwest
- VLF Very low frequency
- E.M. Electromagnetic

APPENDIX 2

Appendix 2: Rock Samples

Sample	Date	Easting	Northing	Elevation (m)	Description	Au
Number		*	* NAD 83, Zone 16 *			(g/t)
A0943162	31-Aug-20	679371	5344034		*Taken in old trench*, light grey to bull white quartz vein in felsic volcanics fine grained to medium grained with 1% bleb pyrite	< 0.02
A0943163	31-Aug-20	679367	5344035		*Taken in old trench*, smokey grey to black quartz tourmaline vein in felsic volcanics medium grained with 1% bleb pyrite	0.16
A0943164	31-Aug-20	679374	5344037		Medium grained quartz vein white to grey with 1% diss. Pyrite	< 0.02
A0943165	31-Aug-20	679374	5344033		Medium grained quartz vein white to grey with 1% bleb. Pyrite	< 0.02
A0943166	31-Aug-20	679371	5344036		Fine grained to medium grained light grey to bull white quartz vein in felsic volcanics 1 %bleb pyrite	< 0.02
A0943167	31-Aug-20	679366	5344035		Smokey grey black quartz tourmaline vein medium grained in felsic volcanics 1% bleb pyrite	0.22
A0943168	31-Aug-20	679412	5344050		Fine grained smokey grey black and bull white quartz vein in felsic volcanics with 2% diss and bleb pyrite foot wall	< 0.02
A0943169	31-Aug-20	679417	5344056		Strong sheared zone felsic volcanic hanging wall light grey to brown 1 % diss pyrite	< 0.02
A852103	9-Sep-20	679080	5343956	429	Light grey brownish green with very strong shearing and fine grained with 2 to 3 mm phenocrysts of feldspar and qtz with weak chlorite and moderate carbonate and ankerite. Trace disseminated py along strong shear at 248 / 88.	< 0.02

A852104	9-Sep-20	679090	5343833	436	Mostly massive Gabbro (7C) with a grey greenish color and medium to fine grained with a weak foliated appearance but mostly massive looking in appearance. Contained 1 to 2 % euhedral Pyrite	< 0.02
A852105	9-Sep-20	679004	5343905	419	Light fine grained grey green mafic Volcanic with weak chlorite and moderate carbonate and ankerite alteration that is moderately sheared at 080 / 87 with very fine grained disseminated Py at about 2 to3%	< 0.02
A852106	10-Sep-20	678880	5343886	394	Light brownish white grey quartz vein with a fine to medium grained qtz vein striking at 262 / 74 and the foliation striking at 248 / 82. There are minor blebs of Py and it is non magnetic	< 0.02
A852107	10-Sep-20	678764	5343500	400	Dark black tourmaline with large qtz vein blasted out from a trench. There was no visible insitu outcrop with the tourmaline and qtz with 1 to 2% disseminated Py.	< 0.02

APPENDIX 3

Quality Analysis ...

Innovative Technologies

Report No.:A20-10623Report Date:05-Oct-20Date Submitted:08-Sep-20Your Reference:Highland South

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

22 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-09-14 12:26:04
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-09-25 19:21:56

REPORT A20-10623

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A0943151	< 0.02	< 0.2	< 0.5	283	1560	< 1	15	< 2	15	0.92	< 2	< 10	18	< 0.5	< 2	> 10.0	9	24	1.97	< 10	< 1	0.05	< 10
A0943152	< 0.02	< 0.2	< 0.5	5	394	< 1	20	< 2	23	1.29	< 2	< 10	14	< 0.5	< 2	1.19	14	21	2.53	< 10	< 1	0.03	< 10
A0943153	< 0.02	< 0.2	< 0.5	45	2080	< 1	64	< 2	60	4.11	< 2	< 10	21	< 0.5	< 2	7.60	31	117	6.77	< 10	< 1	0.01	< 10
A0943154	< 0.02	< 0.2	< 0.5	3	112	< 1	1	< 2	4	0.14	< 2	< 10	10	< 0.5	< 2	0.18	2	9	0.56	< 10	< 1	< 0.01	< 10
A0943155	< 0.02	< 0.2	< 0.5	15	448	< 1	7	< 2	11	0.48	< 2	< 10	12	< 0.5	< 2	1.32	4	20	1.34	< 10	< 1	< 0.01	< 10
A0943156	< 0.02	< 0.2	< 0.5	125	1260	< 1	70	< 2	60	3.93	4	< 10	18	< 0.5	< 2	4.58	35	120	6.01	< 10	< 1	< 0.01	< 10
A0943157	< 0.02	< 0.2	< 0.5	86	1200	< 1	55	< 2	66	3.33	< 2	< 10	< 10	< 0.5	2	5.23	32	120	6.80	< 10	< 1	< 0.01	< 10
A0943158	< 0.02	< 0.2	< 0.5	93	1400	< 1	67	< 2	53	1.42	< 2	< 10	11	< 0.5	< 2	5.51	34	73	5.72	< 10	< 1	0.03	< 10
A0943159	< 0.02	< 0.2	< 0.5	117	3200	< 1	40	< 2	78	2.55	< 2	< 10	< 10	< 0.5	< 2	8.65	25	59	7.68	< 10	< 1	< 0.01	< 10
A0943160	< 0.02	< 0.2	< 0.5	36	520	< 1	38	< 2	49	1.93	3	< 10	45	< 0.5	< 2	1.13	17	58	3.36	< 10	< 1	0.21	< 10
A0943161	< 0.02	0.4	< 0.5	170	6460	< 1	9	2	40	0.78	< 2	< 10	< 10	< 0.5	2	5.71	12	13	15.9	< 10	< 1	< 0.01	< 10
A0943162	< 0.02	< 0.2	< 0.5	83	1120	< 1	72	< 2	63	1.69	< 2	< 10	14	< 0.5	< 2	4.76	37	89	5.86	< 10	< 1	0.05	< 10
A0943163	0.16	0.3	0.8	198	1170	< 1	84	< 2	62	0.71	2	< 10	11	< 0.5	< 2	5.34	42	37	5.74	< 10	< 1	0.05	< 10
A0943164	< 0.02	0.4	< 0.5	760	1310	< 1	38	< 2	38	0.33	< 2	< 10	18	< 0.5	< 2	6.34	29	13	5.64	< 10	< 1	0.07	< 10
A0943165	< 0.02	< 0.2	< 0.5	194	1630	1	69	< 2	48	0.55	2	< 10	15	< 0.5	< 2	7.89	40	21	6.73	< 10	< 1	0.06	< 10
A0943166	< 0.02	< 0.2	< 0.5	218	1590	< 1	46	< 2	61	0.70	< 2	< 10	18	< 0.5	< 2	7.78	31	27	6.54	< 10	< 1	0.06	< 10
A0943167	0.22	< 0.2	< 0.5	15	1410	< 1	36	< 2	55	0.28	< 2	< 10	< 10	< 0.5	< 2	8.02	20	10	6.05	< 10	< 1	0.02	< 10
A0943168	< 0.02	< 0.2	< 0.5	71	926	< 1	42	< 2	38	0.49	< 2	< 10	14	< 0.5	< 2	5.23	31	24	4.94	< 10	< 1	0.06	< 10
A0943169	< 0.02	< 0.2	< 0.5	81	1330	< 1	61	< 2	67	2.04	< 2	< 10	23	< 0.5	< 2	3.00	49	98	6.87	< 10	< 1	0.06	< 10
A0943170	3.72	17.1	0.8	308	504	5	157	186	114	3.35	10	< 10	93	< 0.5	< 2	2.57	19	176	3.27	< 10	< 1	0.20	10
A0943171	< 0.02	< 0.2	< 0.5	100	265	< 1	11	< 2	20	0.95	84	< 10	47	< 0.5	< 2	0.59	15	12	3.46	< 10	< 1	0.13	10
A0943172	< 0.02	< 0.2	< 0.5	142	436	1	10	< 2	19	0.93	< 2	< 10	10	< 0.5	< 2	1.62	19	7	3.01	< 10	< 1	0.01	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
A0943151	0.63	0.021	0.011	0.04	< 2	6	72	0.03	< 20	< 1	< 2	< 10	30	< 10	7	< 1
A0943152	0.95	0.022	0.002	< 0.01	< 2	5	9	0.01	< 20	< 1	< 2	< 10	48	< 10	2	< 1
A0943153	2.59	0.016	0.015	0.01	5	15	53	< 0.01	< 20	< 1	< 2	< 10	125	< 10	5	2
A0943154	0.10	0.025	< 0.001	< 0.01	< 2	< 1	3	< 0.01	< 20	< 1	< 2	< 10	6	< 10	< 1	< 1
A0943155	0.40	0.025	0.003	0.03	< 2	1	7	0.01	< 20	< 1	< 2	< 10	14	< 10	< 1	< 1
A0943156	2.80	0.018	0.020	0.08	3	9	43	0.27	< 20	6	< 2	< 10	103	< 10	6	3
A0943157	2.54	0.031	0.026	0.09	3	25	27	< 0.01	< 20	< 1	< 2	< 10	174	< 10	4	3
A0943158	2.54	0.079	0.019	0.03	2	13	12	< 0.01	< 20	< 1	< 2	< 10	67	< 10	1	2
A0943159	2.88	0.029	0.012	0.42	4	18	26	< 0.01	< 20	< 1	< 2	< 10	91	< 10	4	3
A0943160	1.18	0.092	0.041	0.02	< 2	6	57	0.23	< 20	6	< 2	< 10	71	< 10	6	11
A0943161	2.04	0.014	0.007	1.11	7	3	16	< 0.01	< 20	< 1	< 2	< 10	35	< 10	< 1	8
A0943162	2.34	0.103	0.024	0.07	3	12	28	< 0.01	< 20	< 1	< 2	< 10	71	< 10	1	2
A0943163	2.02	0.075	0.018	1.16	3	7	26	< 0.01	< 20	< 1	< 2	< 10	31	< 10	1	2
A0943164	1.94	0.081	0.016	0.64	3	6	33	< 0.01	< 20	< 1	< 2	< 10	15	< 10	2	3
A0943165	2.92	0.067	0.017	0.98	4	6	46	< 0.01	< 20	2	< 2	< 10	24	< 10	2	3
A0943166	3.00	0.078	0.017	0.43	3	8	46	< 0.01	< 20	< 1	< 2	< 10	29	< 10	2	3
A0943167	3.01	0.051	0.004	0.11	2	10	50	< 0.01	< 20	< 1	< 2	< 10	17	< 10	1	3
A0943168	1.62	0.073	0.016	0.38	3	7	28	< 0.01	< 20	2	< 2	< 10	21	< 10	< 1	2
A0943169	1.41	0.080	0.027	0.08	4	11	17	< 0.01	< 20	< 1	< 2	< 10	88	< 10	2	3
A0943170	1.75	0.441	0.030	0.10	9	5	101	0.10	< 20	4	< 2	< 10	69	< 10	10	5
A0943171	0.69	0.076	0.042	1.04	< 2	3	7	0.04	< 20	< 1	< 2	< 10	18	< 10	5	17
A0943172	0.48	0.068	0.036	0.48	< 2	2	23	0.11	< 20	< 1	< 2	< 10	25	< 10	3	15

Activation Laboratories Ltd.

Analyte Symbol	Au	Aq	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	в	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La
Unit Symbol	g/tonne	- V	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm		ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	0.02		0.5		5	1	1	2	2	0.01	2	10		0.5	2	0.01	1		0.01	10	1	0.01	10
Method Code	FA- GRA	-	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP		AR-ICP	-	-		AR-ICP		AR-ICP		AR-ICP	AR-ICP	AR-ICP		AR-ICP
GXR-6 Meas		0.3	< 0.5	63	947	1	20	85	113	6.50	217	< 10	790	0.9	< 2	0.15	14	73	5.19	20	< 1	1.09	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	68	1020	1	21	91	121	6.89	241	< 10	747	0.9	< 2	0.14	14	77	5.54	20	< 1	1.15	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		< 0.2	< 0.5	70	1050	4	21	94	123	6.86	247	< 10	661	0.8	2	0.11	15	77	5.73	20	1	1.09	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
GXR-6 Meas		0.3	< 0.5	73	1080	3	23	98	123	7.06	229	< 10	688	0.8	< 2	0.11	15	80	5.90	20	1	1.12	< 10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2180	726	< 1	30	52	236	2.78	4		85	0.8	6	0.41	19	44	5.01	< 10		0.51	34
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.9	< 0.5	2240	762	< 1	33	56	251	2.89	8		87	0.8	7	0.43	20	45	5.14	< 10		0.52	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.7	< 0.5	2170	775	2	34	58	248	2.84	6		79	0.7	4	0.38	19	45	5.05	< 10		0.48	36
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 922 (AQUA REGIA) Meas		0.8	< 0.5	2310	782	< 1	34	57	254	2.89	6		78	0.8	7	0.39	20	45	5.28	< 10		0.48	38
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		2.1	< 0.5	4240	811	< 1	27	74	306	2.74	6		67	0.7	21	0.40	22	40	5.79	< 10		0.42	30
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.5	< 0.5	4450	860	< 1	29	78	314	2.84	6		69	0.7	18	0.42	23	41	5.94	< 10		0.44	32
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		2.1	< 0.5	4250	854	3	31	78	321	2.84	6		63	0.7	12	0.39	22	40	5.75	< 10		0.41	33
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
OREAS 923 (AQUA REGIA) Meas		1.7	< 0.5	4420	901	< 1	32	77	331	2.95	9		64	0.7	8	0.39	24	42	5.96	< 10		0.42	35
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
Oreas 96 (Aqua		10.5		> 10000				87	402						< 2		47						
Regia) Meas Oreas 96 (Aqua		11.50		39100.				100	448		 				27.9		49.2				I	I	

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Ha	к	La
Unit Symbol	a/tonne	ppm	ppm		mqq	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	maa	ppm	%	ppm	ppm	%	ppm
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10		0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA			AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP		AR-ICP	-	-	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP		AR-ICP	AR-ICP	AR-ICP
Regia) Cert				00																			
Oreas 96 (Aqua Regia) Meas		11.0		> 10000				88	416						< 2		49						
Oreas 96 (Aqua Regia) Cert		11.50		39100. 00				100	448						27.9		49.2						
Oreas 621 (Aqua Regia) Meas		64.0	263	3450	487	12	23	> 5000	> 10000	1.65	73			0.6	4	1.57	29	30	3.24	< 10	4	0.35	18
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		65.8	267	3540	509	12	23	> 5000	> 10000	1.74	74			0.6	4	1.62	29	32	3.35	< 10	4	0.38	18
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
Oreas 621 (Aqua Regia) Meas		65.5	289	3460	539	11	25	> 5000	> 10000	1.75	73			0.6	< 2	1.60	30	29	3.35	< 10	4	0.37	20
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
OREAS 229b (Fire Assay) Meas	11.9																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 45f (Aqua Regia) Meas				296	161	1	198	9	28	7.09			139	1.0		0.07	37	308	11.7	20	1	0.10	11
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 45f (Aqua Regia) Meas				315	175	< 1	211	9	28	7.56			147	1.0	< 2	0.08	39	324	12.3	20	1	0.11	12
OREAS 45f (Aqua Regia) Cert				336	150	1.19	192	12.4	22.2	4.81			158	0.980	0.170	0.0750	39.2	341	13.7	20.3	0.0310	0.0820	10.7
OREAS 257b (Fire Assay) Meas	13.7																						
OREAS 257b (Fire Assay) Cert	14.2																						
A0943159 Orig	< 0.02																						
A0943159 Dup	< 0.02																						
A0943167 Orig		< 0.2	< 0.5	15	1420	< 1	37	< 2	55	0.28	< 2	< 10	< 10	< 0.5	< 2	8.07	21	11	6.08	< 10	< 1	0.02	< 10
A0943167 Dup	0.00	< 0.2	< 0.5	15	1410	< 1	34	< 2	54	0.28	< 2	< 10	< 10	< 0.5	3	7.97	20	10	6.01	< 10	< 1	0.02	< 10
A0943168 Orig	< 0.02																						
A0943168 Dup Method Blank	< 0.02																						
Method Blank	< 0.02																						
Method Blank	< 0.02	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	<1	<1	< 2	< 2		< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	<1	< 0.01	< 10	<1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	<1	<1	< 2	< 2		< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	<1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	<1	<1	< 2	< 2		< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	<1	<1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	<1	< 0.01	< 10	<1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	<1	< 2	< 2		< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	<1	< 0.01	< 10	<1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	<1	<1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	<1	<1	< 0.01	< 10	<1	< 0.01	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
GXR-6 Meas	0.37	0.085	0.031	0.01	4	23	33		< 20	< 1	< 2	< 10	161	< 10	6	12
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.39	0.077	0.034	0.01	6	24	31		< 20	< 1	2	< 10	170	< 10	6	13
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.39	0.077	0.034	0.01	5	16	24		< 20	< 1	< 2	< 10	161	< 10	3	9
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
GXR-6 Meas	0.40	0.081	0.035	0.01	4	17	26		< 20	< 1	2	< 10	164	< 10	3	5
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 922 (AQUA REGIA) Meas	1.28	0.032	0.059	0.33	< 2	4	16		< 20		< 2	< 10	36	< 10	21	21
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.31	0.030	0.060	0.36	3	4	16		< 20		< 2	< 10	36	< 10	21	16
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.28	0.028	0.060	0.37	2	4	16		< 20		< 2	< 10	34	< 10	15	15
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	1.34	0.032	0.062	0.39	< 2	4	16		< 20		< 2	< 10	34	< 10	16	17
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.37		0.056	0.61	2	4	14		< 20		< 2	< 10	34	< 10	19	24
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.41		0.057	0.66	3	4	14		< 20		< 2	< 10	35	< 10	19	24
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.38		0.058	0.68	4	4	14		< 20		< 2	< 10	33	< 10	14	24
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	1.44		0.060	0.71	< 2	4	15		< 20		< 2	< 10	34	< 10	15	29
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
Oreas 96 (Aqua Regia) Meas				4.12	7											
Oreas 96 (Aqua Regia) Cert				4.38	4.53											

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
Oreas 96 (Aqua Regia) Meas				4.16	8											
Oreas 96 (Aqua Regia) Cert				4.38	4.53											
Oreas 621 (Aqua Regia) Meas	0.41	0.186	0.031	4.22	106	2	19		< 20		< 2	< 10	12	< 10	7	63
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.42	0.194	0.032	4.24	105	2	19		< 20		< 2	< 10	13	< 10	7	65
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	0.43	0.190	0.033	4.51	106	3	18		< 20		< 2	< 10	12	< 10	6	61
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert																
OREAS 45f (Aqua Regia) Meas	0.16	0.042	0.019	0.02		27	14	0.13	< 20		4	< 10	187		5	29
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 45f (Aqua Regia) Meas	0.16	0.041	0.020	0.02		29	15	0.13	< 20		< 2	< 10	194		6	29
OREAS 45f (Aqua Regia) Cert	0.152	0.0320	0.0220	0.0270		31.4	13.2	0.0970	7.67		0.120	1.09	217		6.74	30.0
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
A0943159 Orig																
A0943159 Dup																
A0943167 Orig	3.03	0.052	0.004	0.11	3	10	51	< 0.01	< 20	1	< 2	< 10	17	< 10	1	3
A0943167 Dup	3.00	0.050	0.004	0.11	2	10	50	< 0.01	< 20	< 1	< 2	< 10	17	< 10	1	2
A0943168 Orig																
A0943168 Dup																
Method Blank																
Method Blank																
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012		< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.014	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.013		< 0.01	< 2	< 1	< 1	< 0.01	< 20	1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.013	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Quality Analysis ...

Innovative Technologies

Report No.:A20-11626Report Date:23-Oct-20Date Submitted:24-Sep-20Your Reference:Selkirk Lake (SL)- Surface

PRODIGY GOLD 9600 Prototype ct. Reno Nevada 89521 United States

ATTN: Stephen Roach

CERTIFICATE OF ANALYSIS

5 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1A3-50-Tbay	QOP AA-Au (Au - Fire Assay Gravimetric)	2020-10-15 14:02:42
1E3-Tbay	QOP AquaGeo (Aqua Regia ICPOES)	2020-10-22 09:28:52

REPORT A20-11626

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	Al	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol	g/tonne	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm							
Lower Limit	0.02	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP																					
A852103	< 0.02	< 0.2	< 0.5	98	1980	< 1	72	5	95	2.25	< 2	< 10	10	< 0.5	< 2	5.78	54	56	8.75	< 10	2	0.03	< 10
A852104	< 0.02	< 0.2	< 0.5	122	1130	< 1	81	< 2	93	4.18	< 2	< 10	< 10	< 0.5	< 2	3.80	41	91	8.76	10	3	< 0.01	< 10
A852105	< 0.02	< 0.2	< 0.5	135	1720	< 1	55	< 2	78	4.02	67	< 10	16	< 0.5	2	5.20	48	45	9.49	< 10	2	0.02	< 10
A852106	< 0.02	< 0.2	< 0.5	119	2180	< 1	26	< 2	21	0.24	4	< 10	< 10	< 0.5	< 2	> 10.0	12	11	3.45	< 10	< 1	< 0.01	< 10
A852107	< 0.02	< 0.2	< 0.5	7	127	3	6	< 2	8	0.11	4	30	< 10	< 0.5	< 2	0.67	10	21	1.18	< 10	< 1	0.02	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP															
A852103	1.75	0.063	0.024	0.08	3	17	34	< 0.01	< 20	< 1	< 2	< 10	106	< 10	3	2
A852104	3.08	0.022	0.033	0.09	3	30	43	< 0.01	< 20	< 1	< 2	< 10	223	< 10	4	3
A852105	2.67	0.055	0.025	0.80	2	25	37	< 0.01	< 20	< 1	< 2	< 10	163	< 10	3	2
A852106	1.70	0.043	0.007	0.10	< 2	6	61	< 0.01	< 20	< 1	< 2	< 10	11	< 10	6	< 1
A852107	0.14	0.038	0.029	0.38	< 2	< 1	6	< 0.01	< 20	< 1	< 2	< 10	3	< 10	< 1	9

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Мо	Ni	Pb	Zn	AI	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	К	La
Unit Symbol					ppm		ppm	ppm	ppm			ppm		ppm	ppm		ppm	ppm	%	ppm	ppm	%	mqq
Lower Limit	0.02		0.5	1	5	1	1	2	2	0.01	2	10		0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA- GRA	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP							
GXR-6 Meas		0.4	< 0.5	68	1020	1	25	91	122	6.78	218	< 10	766	0.8	2	0.14	12	75	5.57	20	2	1.09	10
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 922 (AQUA REGIA) Meas		0.9	< 0.5	2210	755	< 1	33	60	257	2.79	4		79	0.7	7	0.38	19	44	5.15	< 10		0.47	38
OREAS 922 (AQUA REGIA) Cert		0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62		0.376	32.5
OREAS 923 (AQUA REGIA) Meas		1.5	< 0.5	4230	841	< 1	31	76	325	2.73	6		65	0.7	20	0.38	21	40	5.77	< 10		0.40	34
OREAS 923 (AQUA REGIA) Cert		1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01		0.322	30.0
Oreas 621 (Aqua Regia) Meas		66.4	291	3500	525	12	23	> 5000	> 10000	1.64	73			0.5	7	1.53	31	27	3.29	< 10	3	0.35	19
Oreas 621 (Aqua Regia) Cert		68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93	0.333	19.4
OREAS 229b (Fire Assay) Meas	12.1																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 229b (Fire Assay) Meas	12.0																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 229b (Fire Assay) Meas	11.9																						
OREAS 229b (Fire Assay) Cert	11.9																						
OREAS 257b (Fire Assay) Meas	13.9																						
OREAS 257b (Fire Assay) Cert	14.2																						
OREAS 257b (Fire Assay) Meas	13.5																						
OREAS 257b (Fire Assay) Cert	14.2																						
OREAS 257b (Fire Assay) Meas	13.7																						
OREAS 257b (Fire Assay) Cert	14.2																						
Method Blank	< 0.02																	L					
Method Blank	< 0.02																						
Method Blank	< 0.02																						\mid
Method Blank	< 0.02																						\mid
Method Blank	< 0.02			,					-						<u> </u>								
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10
Method Blank		< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm							
Lower Limit	0.01			0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-6 Meas	0.39	0.152	0.032	0.01	3	21	33		< 20	< 1	< 2	< 10	162	< 10	5	8
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 922 (AQUA REGIA) Meas	1.34	0.038	0.060	0.36	2	4	16		< 20		< 2	< 10	35	< 10	19	21
OREAS 922 (AQUA REGIA) Cert	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	1.41		0.057	0.60	2	4	14		< 20		< 2	< 10	34	< 10	17	33
OREAS 923 (AQUA REGIA) Cert	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
Oreas 621 (Aqua Regia) Meas	0.43	0.173	0.032	4.42	110	2	17		< 20		< 2	< 10	12	< 10	7	61
Oreas 621 (Aqua Regia) Cert	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert																
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert																
OREAS 229b (Fire Assay) Meas																
OREAS 229b (Fire Assay) Cert																
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
OREAS 257b (Fire Assay) Meas																
OREAS 257b (Fire Assay) Cert																
Method Blank																
Method Blank																
Method Blank																
Method Blank																
Method Blank	0.01	0.010	0.004					0.01				10	· .	10		
Method Blank	< 0.01		< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1
Method Blank	< 0.01	0.014	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 20	< 1	< 2	< 10	< 1	< 10	< 1	< 1

APPENDIX 4

Month July	Day 1 2 3 4 5 6 7 8 9 10 11 12 13	Roach	Riddle	Hamilton	Phillips	Wright	O'Neill	Project	Work Description	Claim Cell Activity x = 1 day/claim x(0.5) = 1/2 day/claim x(0.33) = 1/3 day/claim x(0.25) = 1/4 day/claim
	14			x(0.5)		x(0.5)	х	Aguonie	Stripping trenches and sampling	121271
	15			х		х	х	Aguonie	Stripping trenches & structural mapping	121271
	16			х				Aguonie	Stripping trenches and structural mapping	121271
	16					х	х	Aguonie	Stripping trenches	121272
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121271
	17			x(0.5)		x(0.5)	x(0.5)	Aguonie	Stripping trenches and sampling	121272
	18					x(0.5)		Aguonie	Stripping trenches	121272
	18			x(0.5)			x(0.5)	Aguonie	Stripping trenches	121271
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, and sampling.	121271
	19			x(0.5)		x(0.5)	x(0.5)	Aguonie	Following up on historic occurences, mapping, and sampling.	121272
	20			х		х	x	Aguonie	Following up on historic occurences, mapping, and sampling.	104120
	21			х		х	x	Aguonie	Following up on historic occurences, mapping, and sampling.	104120
	22			x(0.5)		x(0.5)	x(0.5)	Rand 2	Following up on historic occurences, mapping, and sampling.	261007

								Following up on historic occurences,	
	23			х	х	х	Rand 2	mapping, and sampling.	261007
								Following up on historic occurences,	
	24			Х	Х	х	Rand 2	mapping, and sampling.	158306
					(0.5)	(0, 5)		Following up on historic occurences and	000010/000100
	25				x(0.5)	x(0.5)	Rand 2	sampling.	297812/279177
	20					··(0 E)	Daniel 2	Following up on historic occurences and	110005/202202
	26				x(0.5)	x(0.5)	Rand 2	sampling.	118986/297892
	27		x(0.5)		v(0 E)	γ(0 E)	Rand 2	Following up on historic occurences and	297812/279177
	27		X(U.5)		x(0.5)	x(0.5)	Kallu Z	sampling.	297812/279177
	28								
	29								
	30								
	31								
August	1								
	2		Х	Х			Aguonie	Geological mapping and sampling.	121271
	3		Х	Х			Aguonie	Geological mapping and sampling.	121271
	4		x(0.5)	x(0.5)			Aguonie	Geological mapping and sampling.	121272/104120
	5							Rain day	
	6		x(0.5)	x(0.5)			Aguonie	Geological mapping and sampling.	121272/104120
	7		x(0.5)	x(0.5)			Aguonie	Geological mapping and sampling.	121272/104120
	8		Х	Х			Aguonie	Geological mapping and sampling.	121272
	9	x(0.5)	x(0.5)	x(0.5)	x(0.5)		Aguonie	Site Tour/Geological mapping.	121272
	10		Х	Х				Geological Mapping Interpretation	
	11		Х	Х				Geological mapping and sampling.	121272
	12								
	13		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	177824/338825
	14		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	338825/177824
	15		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	338825/177824
	16		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	261007/158306
	17								
	18		()				n 10		
	19		x(0.5)	x(0.5)			Rand2	Geological mapping and sampling.	261007
	20								

	21					х	х	Rand2	Prospecting	261007
	21	x(0.5)	x(0.5)					Rand2	Geological mapping and sampling.	261007/158306
	22		Х			х	х	Rand2	Prospecting	158306
	23					х	х	Rand2	Geological mapping and prospecting.	158306
	24									
	25					x(0.5)	x(0.5)	Rand2	Prospecting	118986/297812
	26									
	27									
	28					x(0.5)	x(0.5)	Rand 2	Prospecting	297812
	28					x(0.5)	x(0.5)	Oban	prospecting	123563
	29									
	30					x(0.5)	x(0.5)	Oban	Prospecting	281407/265750
	31					x(0.5)	x(0.5)	Selkirk	Prospecting	269799/225097
	1					х	х	Doublewood	Scouting access to highland	202520
September						~	~		south/Doublewood prospecting	
	2			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/297812
	3								Rain Day	
	4			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/297812
	5			x(0.5)	x(0.5)			Rand2	Geological mapping and sampling	118986/279177
	6			Х	Х			Rand2	Geological mapping and sampling	279177
	7			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	8			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping	269799/226097
	9			х	х			Selkirk Lake	Geological mapping and sampling	191852
	10			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	191852/221768
	11			x(0.5)	x(0.5)			Selkirk Lake	Geological mapping and sampling	162470/295830
	12			х				Selkirk Lake	Geological Mapping Interpretation	
	13									
	14		x(0.5)	x(0.5)	x(0.5)			Oban	Geological mapping and sampling	108851/123563
	15									
	16			x(0.5)			x(0.5)	Oban	Prospecting	123563/265750
	17		х	х				Oban	Geological mapping and sampling	123563
	17				х	х		Oban	Prospecting	123563
	18		x(0.5)	x(0.5)			x(0.5)	Oban	Geological mapping and sampling	265750/123563
	18				х	х		Oban	Prospecting	123563

	19	x	х					Geological mapping and sampling	179503
	19			x(0.5)	x(0.5)		Oban	Prospecting	179503/265749
	20	x(0.	5) x(0.5		<u> </u>		Oban	Geological mapping and sampling	123563/265749
	20			х	х		Doublewood	Scouting access	
	21				х	х	Taliskar	Prospecting	145811
	22	x(0.	5) x(0.5)			Doublewood	Geological mapping and sampling	258551/202520
	22			х	х		Taliskar	Prospecting	145811
	23	х	х				Doublewood	Geological mapping and sampling	202520
	23			х	х		Taliskar	Prospecting	145811
	24			х	х		Taliskar	Prospecting	159908
	25	х	х				B+C	Geological mapping and sampling	199184
	26								
	27								
	28								
	29								
	30								
October	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	13								
	14								
	15								
	16								
	17								
	18								

	19					
	20					
	21					
	22					
	23					
	24					
	25					
	26					
	27					
	28					
	29					
	30					
	31					
November	1					
	2					
	3					
	4	x	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
	4	^	^	Agouine		20/119372
	5	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
	5	Λ	~	Agouine		20/119372
	6	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
		Λ	~	Agouine	Agoune reennearkeporting	20/119372
	7					
	8					
	9	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
		~				20/119372
	10	х	x	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
		~	~	. Source		20/119372
	11	х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041
		~	~	. Source		20/119372

12		x	X	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
13		x	Х	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
14						
15						
16	x (0.5)	x	X	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
17		x	x	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
18	x (0.5)	x	X	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
19		x	Х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372

	20		х	х	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	21						
	22						
	23		x	x	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	24		х	x	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	25		х	х	Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	26						
	27						
	28						
	29						
	30						
December	1	х					
	2		х	x	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	3		x	x	Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	4		x	х	Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
	5						
	6						
	7		x		Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890

	х		Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
x	x		Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	x		Agounie	Agounie Technical Reporting	179251/166330/121272/121271/119373/1041 20/119372
	x		Selkirk Lake	Selkirk Lake Technical Reporting	179230/269799/295830/191852/225097/1624 70/221768
	x		Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
	x		Rand2	Rand2 Technical Reporting	119817/297811/118986/243862/261007/3388 25/297810/326926/297812/279177/158306/1 77824/231161/231162/297813/183880/10334 5/338826/177825/341387/252075/160402/16 0401/252074/215210/271153/289813/179891 /252076/215211/179890
	X	x x x	x x x x x x x x x x	x Agounie x Agounie x Agounie x Selkirk Lake x Selkirk Lake	x x Agounie Agounie Technical Reporting x Agounie Agounie Technical Reporting x Agounie Selkirk Lake Technical Reporting x Selkirk Lake Selkirk Lake Technical Reporting