

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2021 Diamond Drilling Program

On the Raleigh Lake Property

Ignace Area Kenora Mining Division Raleigh Lake Township Northwestern Ontario

Prepared For: International Lithium Corp. Suite 400 725 Granville Street Vancouver, British Columbia V7Y 1G5

NTS Map Sheet 52G/05 NW Latitude 49°23' N, Longitude 91°57' W

> Prepared By: Patrick McLaughlin, P.Geo Coast Mountain Geological Ltd. July 18th 2021

CONTENTS

SUN	1MAI	RY	. 4
1.	PRC	PERTY LOCATION, DESCRIPTION and LAND POSITION	.4
2.	ACC	ESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY	11
2.	1	ACCESSIBILITY	11
2.	2	LOCAL RESOURCES AND INFRASTRUCTURE	11
2.	3	CLIMATE	13
2.	4	PHYSIOGRAPHY, TOPOGRAPHY AND WILDLIFE	13
3.	HIST	FORY	13
4.	GEC	DLOGICAL SETTING	22
4.	1	REGIONAL GEOLOGY	22
4.	2	PROPERTY GEOLOGY	22
			24
4.	3	LOCAL GEOLOGY	25
	4.3.	1 MAFIC TO INTERMEDIATE META-VOLCANIC ROCKS	25
	4.3.	2 FELSIC TO INTERMEDIATE INTRUSIVE ROCKS	25
	4.3.	3 PEGMATITES	25
5.	202	1 DIAMOND DRILLING PROGRAM	27
5.	1	Drillhole summaries.	29
5.	2	Quality Assurance and Quality Control	31
5.	3	Statement of Expenditures	32
6.	CON	ICLUSIONS and RECOMMENDATIONS	33
REFE	EREN	ICES	35
Арр	endio	ces List	37

List of Tables

TABLE 1: RALEIGH LAKE PROJECT MINERAL CLAIM CELL INFORMATION AS OF JULY 6TH, 2021	5
TABLE 2: TABLE OF ALL SIGNIFICANT HISTORICAL DIAMOND DRILLHOLE INTERSECTION MODIFIED FROM EDDISON 2016	20
TABLE 3: DRILL COLLAR ATTRIBUTES TABLE FROM THE 2021 DRILLING PROGRAM	27

TABLE 4: TABLE OF SIGNIFICANT INTERSECTIONS

List of Figures

- Appendix I Author Qualifications
- Appendix II Diamond Drill Logs
- Appendix III Cross Sections
- Appendix IV Activation Labs Certificate

SUMMARY

The Raleigh Lake Property ("Project") is located approximately 25 kilometres west of Ignace in northwestern Ontario just south of the Trans Canada Highway. It consists of 185 single cell and 24 boundary cell mining claims that encompass a total of 3,024.63 Ha.

The Project was initially acquired by International Lithium Corp. ("ILC") from Robert Fairservice in March of 2016 and was subsequently optioned to Pioneer Resources Ltd ("Pioneer") in July, 2016. Pioneer had the option to earn a 51% interest in the Project by spending \$1.25 million dollars (CAD) over the next three years. In August 2018, ILC signed an agreement with Pioneer terminating the option on the Raleigh project. The royalty free Property reverted 100% to ILC. In September 2018, ILC acquired an additional 55 claim cells (1,976 hectares) at Raleigh from a third Party and shortly thereafter staked another 50 claim cells to bring the property to its current size. The property was acquired because of the rare-metal significance hosted in LCT type pegmatite dykes within the Raleigh Lake Pegmatite Field (the "RLPF").

ILC moved forward with their first diamond drilling program on the property in March of 2021 that was permitted and planned to define the extents of pegmatite 1 and 3 located around Zone 1 that would help define a modern mineral inventory on the project. Coast Mountain Geological Ltd, a geological service provider based in Vancouver, was contracted to oversee the drilling program. Rodren Drilling Ltd. based out of Winnipeg was utilized for coring services. A total of 1504 metres of oriented NQ drillcore was cored on the property across 8 diamond drill holes between March 19th and April 5th. A total of 26 days were needed to both prepare and oversee that program which also included demobilization.

The drilling program was incredibly successful at testing and adding to the known extents of and improving the understanding of pegmatite 1 and 3 and deposit model. The focus of exploration for this program was limited to pegmatite 1 and 3. Additional diamond drilling is warranted that would continue to evaluate pegmatite 1 and 3 in addition to exploring the potential of other pegmatite targets in the tenure area since the property was last explored in 2010. Biogeochemical orientation surveys are in development across several target areas. They have been used on other Li pegmatite deposits in the region and could substitute as a practical alternative to lithogeochemical testing for future exploration surveys.

This report documents the historical exploration, geology, mineralogy in addition to the details, results, conclusions and recommendations derived from drilling program observations and results from 2021 and is formatted for assessment filing purposes with the Ministry of Northern Development and Mines.

1. PROPERTY LOCATION, DESCRIPTION AND LAND POSITION

The Raleigh Lake Property (the "Project") is located approximately 25 kilometres west of Ignace, and 235 kilometres west of Thunder Bay in northwestern Ontario within the Kenora Mining District and is as part of the National Topographic Systems (NTS) map sheet 52G/05 (Figure 1). The main pegmatite field is centred on UTM co-ordinates 576550mE/ 5473800mN (EPSG: 26915).

ILC entered into an agreement with Robert Fairservice for 100% ownership interest in March of 2016 for six mining claims (K4218370, K4218371, K4242501, K4242502, K4242505, K4245250) and

subsequently the remaining 8 (K4274924, K4274925, K4274926, K4274927, K4279997, K4279998, K4279999, K4280000) additional claims were staked contiguously to this group the following July of the same year.

The fourteen 14 contiguous unpatented 'legacy' mineral claims were converted to forty-eight (48) contiguous single cell and nine (9) boundary cell claims (Figure 2). All pertinent claim information is located in Table 1. The single and boundary cell claims range in surface area from 20.992 Ha in the North to 21.010 Ha in the South part of the claim group. Prior to conversion, the 14 contiguous legacy claims had a total area of 806 Ha. After conversion, the total area of single and boundary cell claims is 1008 Ha and 189 Ha respectively.

In September 2018, ILC purchased the adjacent claims to the south and southwest held by Perry English. This added fifty five (55) single cell mineral claim (covering 1,976 hectares) of unencumbered mineral tiles to the Raleigh project.

In October 2018, ILC acquired through staking fifty (50) claim cells to the southwest of the pre-existing group of claims bringing the total claim area to 3,024.63 hectares.

Tenure ID	Anniversary Date	Exploration serve (\$ CAD)
100812	2022-05-11	\$ 67.00
100813	2022-05-11	\$ 67.00
101033	2022-04-21	\$ 67.00
110552	2022-03-21	\$ -
114888	2022-07-30	\$ 12,413.00
116375	2022-04-21	\$ 67.00
116516	2022-05-11	\$ 67.00
117719	2022-03-21	\$ -
117720	2022-07-28	\$ 764.00
120991	2022-04-21	\$ -
120992	2022-04-21	\$ 67.00
121808	2022-07-28	\$ 523.00
121809	2022-07-28	\$ -
123065	2022-04-21	\$ 67.00
123067	2022-04-21	\$ 67.00
123750	2022-03-21	\$ -
123751	2022-03-21	\$ 617.00
126334	2022-07-30	\$ 37,014.00
129670	2022-05-11	\$ 67.00
136638	2022-07-28	\$ -
136723	2022-07-28	\$ 1,466.00
156145	2022-07-30	\$ 29,132.00
158259	2022-06-02	\$ 19,303.00

Table 1: Raleigh Lake Project Mineral Claim Cell Information as of July 6th, 2021

		Exp	loration
Tenure ID	Anniversary Date	Res	erve (\$ CAD)
166187	2022-04-21	\$	67.00
166926	2022-07-28	\$	-
167675	2022-04-21	\$	67.00
167676	2022-04-21	\$	67.00
168356	2022-03-21	\$	-
168866	2022-07-28	\$	915.00
178289	2022-05-11	\$	67.00
179765	2022-07-28	\$	172.00
180999	2022-04-21	\$	67.00
181525	2022-03-21	\$	-
188631	2022-07-28	\$	-
194184	2022-05-11	\$	67.00
197590	2022-04-21	\$	67.00
198290	2022-07-28	\$	-
204912	2022-06-02	\$	548.00
205030	2022-04-21	\$	67.00
205031	2022-04-21	\$	67.00
205032	2022-04-21	\$	67.00
212174	2022-06-02	\$	25,056.00
212853	2022-05-11		67.00
214865	2022-07-28	\$ \$ \$	384.00
216363	2022-04-21	\$	67.00
216364	2022-04-21	\$	67.00
234255	2022-06-02	\$	777.00
234365	2022-07-03	\$	308.00
237632	2022-03-21	\$	-
249532	2022-07-28	\$	390.00
255303	2022-07-28	\$	-
255412	2022-07-28	\$	974.00
256298	2022-03-21	\$	-
260821	2022-05-11	\$	67.00
260822	2022-05-11	\$	67.00
263575	2022-04-21	\$	67.00
268318	2022-05-11	\$	67.00
269537	2022-04-21	\$	67.00
270290	2022-07-28	\$	384.00
271531	2022-04-21	\$	67.00
271533	2022-04-21	\$	67.00
282385	2022-07-28	\$	-
283652	2022-04-21	\$	67.00
287365	2022-07-28	\$	79.00

		Exploration
Tenure ID	Anniversary Date	Reserve (\$ CAD)
287958	2022-07-28	\$-
288157	2022-07-30	\$ 12,408.00
288158	2022-09-28	\$ 15,683.00
289745	2022-07-28	\$ -
290971	2022-04-21	\$ 67.00
294903	2021-09-28	\$ - \$ 67.00 \$ 13,191.00
295467	2022-07-28	\$ -
297668	2022-05-11	\$ - \$ 67.00
298911	2022-04-21	\$ 67.00
304697	2022-07-28	\$ -
307598	2022-07-28	\$ 431.00
314890	2022-07-28	\$ -
321809	2022-07-28	\$ 1,171.00
326795	2022-07-03	\$ 24,474.00
327474	2022-05-11	\$ 67.00
328174	2022-04-21	\$ 67.00
335753	2022-07-28	\$ -
341323	2022-07-28	\$ 89.00
342578	2022-04-21	\$ 67.00
344211	2022-07-28	\$ 390.00
532762	2021-10-09	\$ 867.00
532763	2021-10-09	\$ 867.00
532764	2021-10-09	\$ 867.00
532765	2021-10-09	\$ 867.00
532766	2021-10-09	\$ 867.00
532767	2021-10-09	\$ 867.00
532768	2021-10-09	\$ 867.00
532769	2021-10-09	\$ 867.00
532770	2021-10-09	\$ 867.00
532770	2021-10-09	\$ 867.00
532772	2021-10-09	\$ 867.00
532773	2021-10-09	\$ 867.00
532774	2021-10-09	\$ 867.00
532775	2021-10-09	\$ 867.00
532776	2021-10-09	\$ 867.00
532770	2021-10-09	\$ 867.00
532778	2021-10-09	\$ 867.00 \$ 867.00 \$ 867.00 \$ 867.00 \$ 867.00 \$ 867.00 \$ 867.00
532778	2021-10-09	\$ 007.00 \$ 067.00
532780 532781	2021-10-09	
532781	2021-10-09	
532782	2021-10-09	
532783	2021-10-09	\$ 867.00

		Exp	oloration
Tenure ID	Anniversary Date	Res	erve (\$ CAD)
532784	2021-10-09	\$	867.00
532785	2021-10-09	\$	867.00
532786	2021-10-09	\$	867.00
532787	2021-10-09	\$	867.00
532788	2021-10-09	\$ \$ \$ \$	867.00
532789	2021-10-09		867.00
532790	2021-10-09	\$ \$	867.00
532791	2021-10-09	\$	867.00
532792	2021-10-09	\$	867.00
532793	2021-10-09	\$	867.00
532794	2021-10-09	\$	867.00
532795	2021-10-09	\$	867.00
532796	2021-10-09	\$	867.00
532797	2021-10-09	\$ \$	867.00
532798	2021-10-09	\$	867.00
532799	2021-10-09	\$	867.00
532800	2021-10-09	\$	867.00
532801	2021-10-09	\$	867.00
532802	2021-10-09	\$	867.00
532803	2021-10-09	\$	867.00
532804	2021-10-09	\$	867.00
532805	2021-10-09	\$	867.00
532806	2021-10-09	\$	867.00
532807	2021-10-09	\$	867.00
532808	2021-10-09	\$	867.00
532809	2021-10-09	\$	867.00
532810	2021-10-09	\$	867.00
532811	2021-10-09	\$	867.00
583602	2022-07-28	\$	206.00
584795	2022-07-28	\$	240.00
584796	2022-07-03	\$	2,388.00
584797	2022-07-03	\$	40.00
584798	2022-07-03		518.00
584799	2022-07-03	\$ \$ \$ \$	1,131.00
584800	2022-07-03	\$	514.00
584801	2022-07-03	\$	335.00
584802	2022-07-03	\$	241.00
	TOTAL RESERVE (CAD)	\$	250,431.00

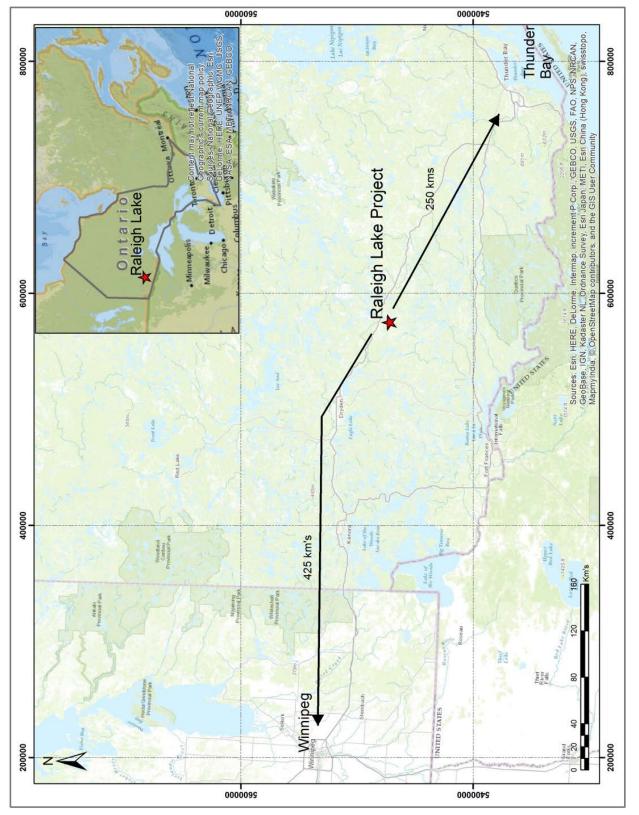


Figure 1: Raleigh Lake Project location map in northwestern Ontario

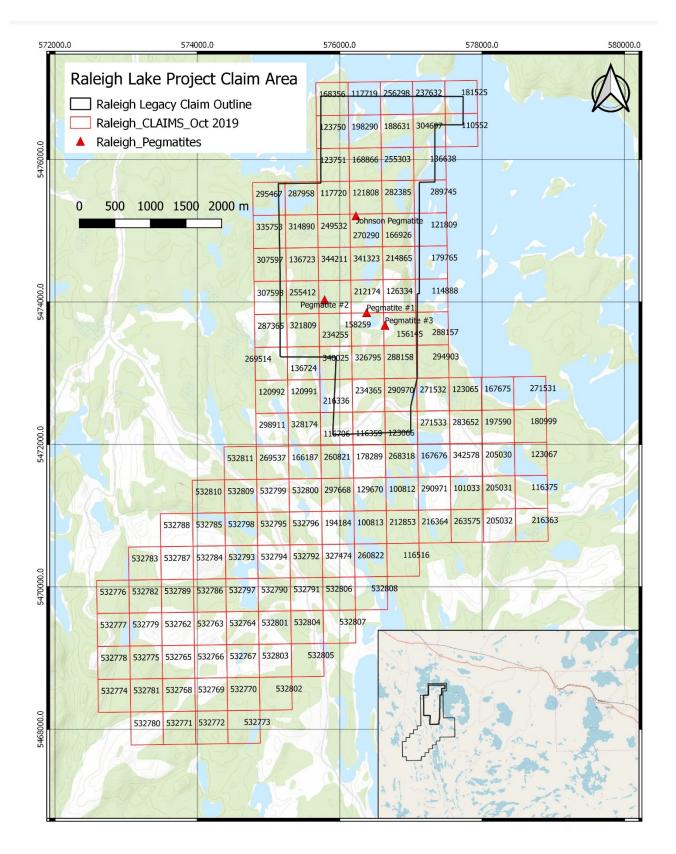


Figure 2: Raleigh Lake project Cell claim outline.

2. ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY

2.1 ACCESSIBILITY

The Project is located approximately 25 Km west of Ignace and 235 Km's west of Thunder Bay, ON. It is easily accessed via a well-maintained network of logging roads that branch south from Highway 17 (Trans-Canada Highway) along the Doreen Lake road (Figure 3). It is also possible to access portions of the property by watercraft.

Vehicular access to the Project via logging roads is gained by driving 28.8 kilometres west of Ignace on Highway 17 and turning south from Highway 17 on Doreen Lake Road. Travelling 8.7 kilometres south to the George Lake junction, continue to the left and travel another 3.1 kilometres before turning left again (East) on to Trent Road (logging road 46-02). Approximately 1.5 kilometres from this junction, an old logging road veers off of Trent Road to the left (North) on to the property and provides easy access to the Projects main pegmatite occurrences on claim cell 158259. Trent Road continues to the eastern side of Raleigh Lake and ultimately reconnects with Highway 17.

Access by watercraft is gained by driving 25 kilometres west of Ignace on Highway 17 to the Raleigh Lake Road. This road winds southward for one kilometre to the Raleigh Lake shoreline and Raleigh Lake Outpost and Resort at which point the watercraft can be navigated to the Northern and Eastern portions of the claim group. This approach is a particularly effective if frequent access to the northernmost part of the property is necessary. Particularly if the project is supported by a team from these lodges, or cabins in the area during the summer months.

2.2 LOCAL RESOURCES AND INFRASTRUCTURE

The property is conveniently located 25 km West of the town of Ignace, Ontario with a population of 1,202 inhabitants (2016 Census) in the Kenora District of Northwestern Ontario. The town of Ignace offers little for support services and skilled labour therefore mining and specialized exploration services and equipment are better sourced from larger nearby towns such as Dryden (80 km west on Highway 17), or even larger centres such as Thunder Bay, Ontario, and Winnipeg, Manitoba, which are respectively located 250 km east and 425km km west of Ignace. The nearest airport is 77 km west in Dryden with connecting flights to many major Canadian cities, including Thunder Bay and Winnipeg, which can also serve as points to many international flights.

Highway 17 and the CP rail line are major transportation arteries for both truck and trailer traffic and train services with links to eastern and western Canada and also south to the USA is readily available from Ignace. An electrical power line network and natural gas pipeline pass within a few kilometres of the property making for an ideal infrastructure setting for the project.

2021 Diamond Drilling Assessment Report Raleigh Lake Project, Ont.

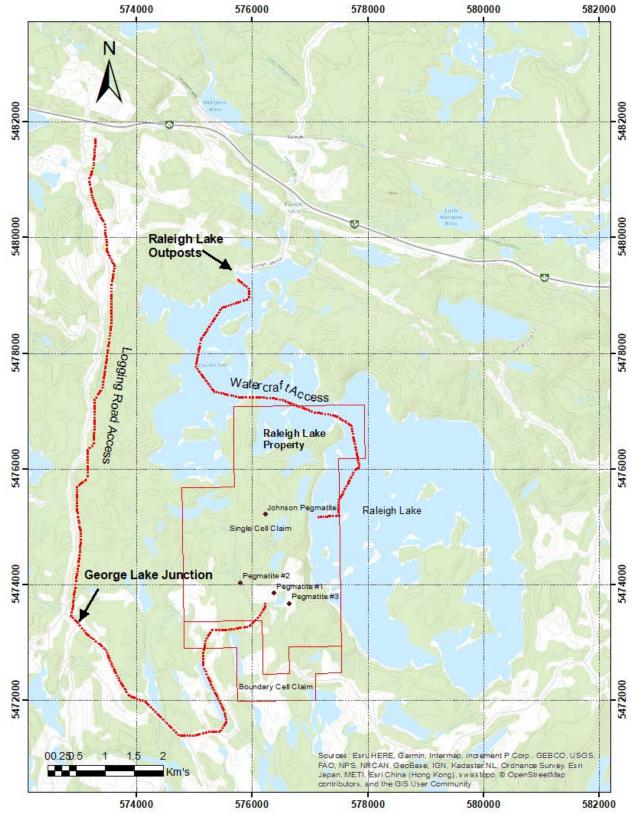


Figure 3: Property location and access

2.3 CLIMATE

The property regionally located within the Southern Boreal Shield climate of Canada and generally classified as having long cold winters with short and warm summers. The climate is considered to be temperate and is classified as a mid-latitude continental environment where field operations are possible year-round with no restrictions on access. The average mid-winter temperatures is -15°C while the midsummer temperatures hover around 17°C.

2.4 PHYSIOGRAPHY, TOPOGRAPHY AND WILDLIFE

The topography is typical of a Canadian Shield paleo-glacial terrain varying from generally flat low-lying swamps to slightly undulating areas with prominent hills. The topographic relief for the project is approximately 50m with elevations ranging around 450m along the lakeshore to crests and ridges as high as 500m on select areas of the property.

Characteristic vegetation includes a succession from trembling aspen, paper birch, white and black spruce, and balsam fir. Cooler and wetter areas support black spruce and tamarack growth.

Characteristic wildlife includes moose, black bear, wolf, lynx, snowshoe hare and woodchuck. Bird species include ruffed grouse, woodpecker, bald eagle, herring gull and waterfowl. Forestry, recreation, fishing and hunting are the major land uses in this region.

3. HISTORY

Historically, work has been carried out near the Raleigh Lake area for greenstone hosted gold and base metal mineralization. Relatively recent exploration activity, primarily from Avalon Ventures Ltd. ("Avalon"), has focused on developing the property solely on the tantalum potential and with little regard to developing and understanding the lithium potential of the Project.

- 1966: Stan Johnson: Discovered a spodumene-bearing pegmatite, classified in his name as the Johnson pegmatite, in the Raleigh Lake area that was not fully disclosed until the early 1990's. Tenements were held by Johnson during the 1970's and 1980's.
- 1993-1998: Ontario Geological Survey: Studied the Raleigh Lake pegmatite field as part of a significant project on various granite-related mineralization occurrences in the Superior Province. Breaks (1993) included descriptions of the Johnson Pegmatite and detailed several new pegmatite occurrences including Pegmatite #1, #2 and #3 from boulder mapping (Error! Reference source not found.).

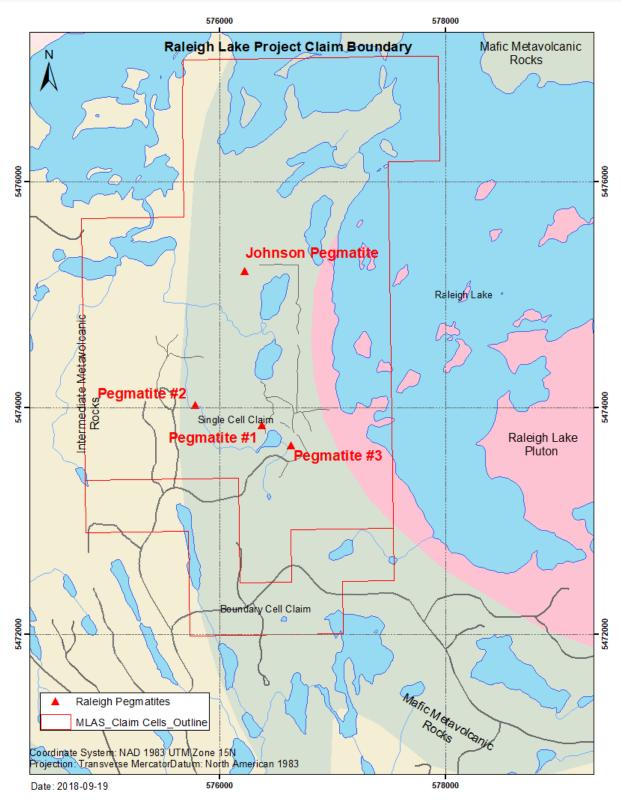


Figure 4: Sketch highlighting the main pegmatite occurrences on the property.

- 3) **1996-1998**; Ontario Geological Survey: Field mapping and geological compilation work of the Ignace area including Raleigh Lake (Stone, 1999) identified and mapped the two-mica granite outcrops believed to be the parent source to the Raleigh Lake pegmatite bodies.
- 4) **1997-1998**: R. Fairservice, S. Johnson, J.Bond staked and subsequently optioned the properties to Avalon in 1998.
- 5) 1998-2000; Following a preliminary property visit and brief compilation period Avalon subsequently carried out a property wide and regional prospecting program. The initial exploration period in July confirmed the presence of pegmatite bodies and also included a 29 sample lithogeochemical program across 4 widely spaced East-West traverses designed to review the breadth of lithophile enrichment halo within the mafic metavolcanic host rocks (Pederson, 1999a).
- 6) Additional claims were staked the following year in 1999 and in September a small grid was cut over the main pegmatite occurrence encompassing Pegmatites #1 and #3 to provide control for diamond drilling. This was in turn followed by a 5-hole, 602 metre diamond drilling program in October of 1999 delineating the tanatalum potential around Pegmatite #1 and #3 (Pedersen, 1999b). The diamond drilling both confirmed the presence of and outlined a set of stacked pegmatite body geometries that were determined to have significant lateral and subsurface continuity up to 450m down dip from surface exposures (Figure 5: Pederson, 1999b). It was observed that pegmatite #3 had elevated Ta and higher Ta/Nb ratios relative pegmatite #1 leading Avalon to interpret a fractionation pattern trending towards the southeast (Pederson, 2000). A complete list of all historically significant drillhole intersections are listed in Table 2.

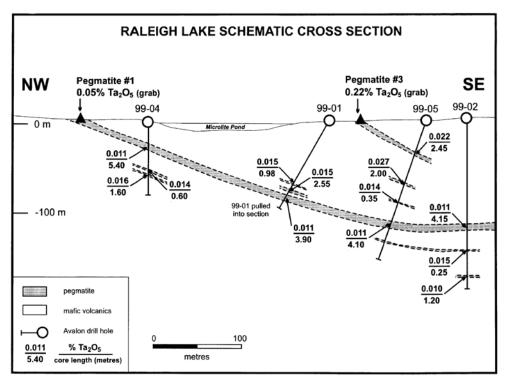
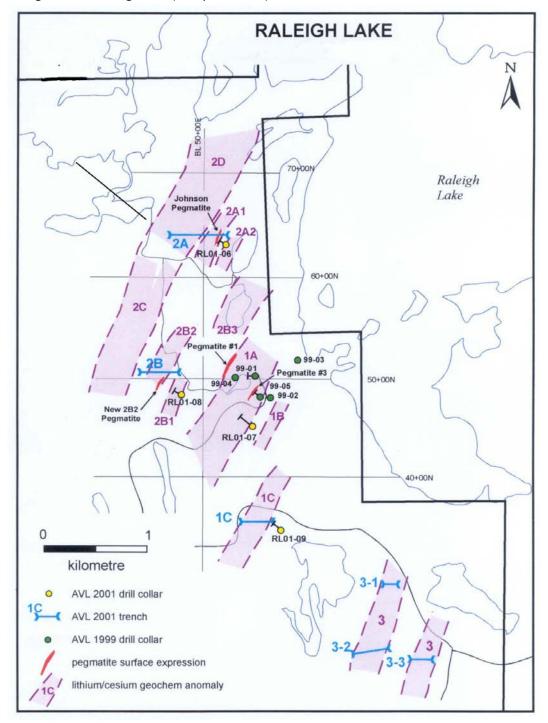


Figure 5: Schematic cross section showing 'stacked' geometry and down dip continuity of pegmatite #1 (Pederson, 2000)

In the fall of 2000, a \$120,000 surface exploration program funded by Global Canada Company ("Global") consisted of linecutting, lithogeochemical sampling and pegmatite evaluation (Pedersen, 2000). Approximately 966 bedrock samples identified three significant bedrock rare-metal geochemical trends 1 through 3 with several minor sub-parallel trends a, b, c, etc..(Figure 6:Pederson 2001).

7) **2001:** Avalon carried out lithogeochemical sampling, trenching, structural studies and diamond drilling. A total of 398 surface bedrock samples were collected in 3 separate areas south of the primary survey area from 2000 work with a fourth single line survey traverse at the south side of the claim group (Figure 6).


Campbell (2001) believes the bedrock sampling didn't identify any new or significant anomalies because the highest bedrock chip sample assay of 92 ppm Li wasn't considered anomalous.

Six trenches totalling 1500m linear metres were excavated across several lithogeochemical trends. Trenches were identified as A1, 2A, 2B and 3-1, 3-2 and 3-, identified by their respective trend they transected (Figure 6). Trenches were mapped at a 1:500 scale. Trenching uncovered areas with significant pegmatite dyklets that could potentially explain the lithogeochemical responses for trends targets 2A (Johnson pegmatite) and 2B (Pegmatite #2). All other trenches did not uncover anything of geological significance with the exception that some of results from samples located at the end of the trenches were suggestive of unexposed pegmatite bodies beyond the trench margins (Campbell, 2001).

J.Willoughby, while working simultaneously on the project during the field season, completed a B.Sc. (Honours) thesis at the University of Windsor in Ontario consisting of petrological and geochemical studies on Archean granitoids related to the Raleigh Lake pegmatites (Willoughby, 1999). Willoughby divided the granitoid rocks in the study area into three main suites and suggested a continuous fractionation trending towards the southeast.

Structural studies by Barclay (2001), conducted during the bedrock sampling program concluded that major pegmatite bodies have not been significantly modified from interpreted regional deformation patterns and they should have extensive lateral continuity (Campbell 2001). Barclay (2001) also notes that more evolved dykes and bodies emplaced at higher elevations that the current known pegmatite bodies may occur to the southeast.

A 752metre, four-hole diamond drilling program was conducted between July and August 2001. The program was a continuation to previous activity and carried on testing the main pegmatite occurrences at depth which also included several holes testing lithogeochemical anomalies. RL01-06 through RL01-08 intersected multiple shallow dipping pegmatite dikes and dikelets and RL01-09 was the only drilh hole testing an anomalous surface lithogeochem

that failed to intersect any pegmatite veins as it collared and remained in a felsic dike or Raleigh Lake Pluton granite (Campbell 2001).

Figure 6: Interpretation from Avalon Ventures Ltd highlighting the main geochemical trends, pegmatite occurrences, trench locations and diamond drilling (from Pederson, 2001).

8) **2001:** Kings Bay Gold Corp collected 520 soil samples were collected from the property in November. The program was designed to mainly target the properties Au potential within the

mafic metavolcanic host rocks towards the Southwest of the main pegmatite occurrences and claim group.

9) 2010: Consolidated Abaddon Resources Inc. ("Abaddon") conducted 50 line km's ground based magnetometer survey in October 2009 which was followed up with 7 diamond drill holes totalling 1463.5 metres in February and March of 2010 to further evaluate the properties tantalum potential. Diamond drilling confirmed the presence of several stacked and shallow dipping spodumene-bearing pegmatite bodies. Significant drill intersections are listed in Table 2.

The ground-based magnetometer survey was conducted at 12.5 metre station intervals and was carried out over the main pegmatite occurrences near pegmatite #1 and #3. The magnetometer results were used to primarily characterize and highlight any significant structural elements for pegmatite emplacement. A combined review of the newly acquired magnetic data and lithogeochemical surveys highlighted number potential subsurface structural trends that required further investigation (Figure 7).

In February of 2010, P. Vanstone of Vanstone Geological services and former Chief Geologist at Cabot Corporations' Tanco Mine was commissioned by Abaddon to conduct a property and diamond drill core review. Key comments from his report confirm that the pegmatite fractionation trends are towards the southeast. Additionally, there is a prominent gabbroic hosting body encapsulating pegmatite #1, and this information, along with sheared contact relationships caused by reactivated structural features, multiple pegmatite phases insinuating a complex pegmatite emplacement history that adds exceptional value to the to the Project and its potential to host a significant pegmatite body (Vanstone, 2010).

- 10) **2016**: PIO conducted an 8-day 310 sample lithogeochemistry bedrock sampling program at the end of September through to October, 2016. The programs primary objective was to reestablish positional control on the known pegmatite occurrences in addition to refining existing anomalous geochemical trends from previous work that ultimately would aid in delineating drill targets for a follow-up drill program. The work was effective at defining narrower geochemical trends within the broader geochemical corridors.
- 11) **2016**: PIO conducted an UAV magnetometer survey consisting of a total of 189.8 line kilometres of continuous profiling at 40 metre line-spacing.
- 12) 2019: Following the success of the survey flown in 2018, ILC commissioned another airborne UAV magnetometer survey to cover additional ground added to the project in 2018 and conducted an additional 560.62 line-km UAV potassium magnetometer surveys. The total magnetic field results from this survey combined with the 2016 are detailed in Figure 8.

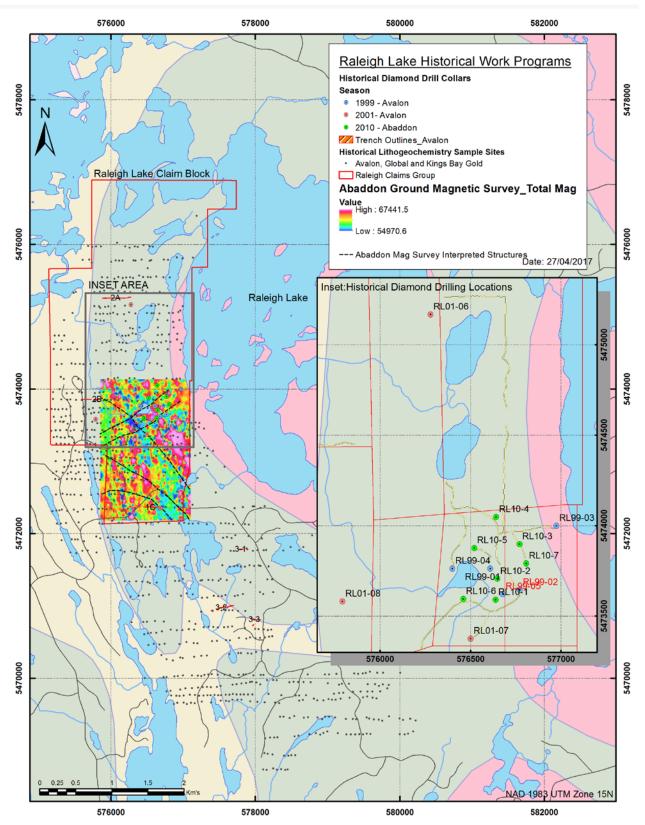


Figure 7: Outline of historical exploration activity on the Raleigh Lake Property (*note that claim boundaries reflect legacy claim shapes.

RL99-01 90 incl. 90 RL99-02 107.1 RL99-04 26 incl. 27 RL99-04 57.3 RL99-05 32.5 RL99-05 108.4 incl. 1108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 111 RL10-1 29 RL10-1 153 incl. 218 RL10-1 218 RL10-2 84 incl. 87 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89	.4 9 .5 10 .0 2 .3 2 .5 57 .0 33 .8 112 .8 108 .3 3		(m) 0.8 0.4 1.45 3.4 1.0 0.40 1.45 2.52	1.278 1.747 1.900 1.402 2.186 1.076	0.011 0.010 0.014 0.009 0.011 0.019	0.201 0.174 0.437 0.234 0.331	0.017 0.016 0.058 0.019 0.024	0.010 0.008 0.012 0.011
incl. 90 RL99-02 107.1 RL99-04 26 incl. 27 RL99-04 57.3 RL99-05 32.5 RL99-05 108.4 incl. 111 RL01-7 182 incl. 111 RL01-7 182 incl. 113 RL10-1 29 RL10-1 153 incl. 84 incl. 84 incl. 87 incl. 88 incl. 89	.4 9 .5 10 .0 2 .3 2 .5 57 .0 33 .8 112 .8 108 .3 3	0.8 8.6 9.4 28.3 .75 .95 .00	0.4 1.45 3.4 1.0 0.40 1.45	1.747 1.900 1.402 2.186 1.076	0.010 0.014 0.009 0.011	0.174 0.437 0.234 0.331	0.016 0.058 0.019	0.008 0.012 0.011
RL99-04 26 incl. 27 RL99-04 57.3 RL99-05 32.5 RL99-05 108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 112 RL10-1 153 incl. 216 incl. 218 RL10-1 216 incl. 84 incl. 84 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 99	0 2 .3 2 5 57 60 33 48 112 48 108 .3 3	9.4 28.3 .75 .95 .00	3.4 1.0 0.40 1.45	1.402 2.186 1.076	0.009 0.011	0.234 0.331	0.019	0.011
RL99-04 26 incl. 27 RL99-04 57.3 RL99-05 32.5 RL99-05 108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 182 RL10-1 153 incl. 216 incl. 218 RL10-1 218 RL10-2 84 incl. 87 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 104 RL10-3 103.0 <td>0 2 .3 2 5 57 60 33 48 112 48 108 .3 3</td> <td>9.4 28.3 .75 .95 .00</td> <td>3.4 1.0 0.40 1.45</td> <td>1.402 2.186 1.076</td> <td>0.009 0.011</td> <td>0.234 0.331</td> <td>0.019</td> <td>0.011</td>	0 2 .3 2 5 57 60 33 48 112 48 108 .3 3	9.4 28.3 .75 .95 .00	3.4 1.0 0.40 1.45	1.402 2.186 1.076	0.009 0.011	0.234 0.331	0.019	0.011
RL99-04 57.3 RL99-05 32.5 RL99-05 108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 182 RL10-1 29 RL10-1 153 incl. 216 incl. 218 RL10-1 218 RL10-2 84 incl. 87 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 104.0 incl. 104.0 </td <td>.3 2 5 57 0 33 8 112 48 108 .3</td> <td>28.3 .75 .95 .00</td> <td>0.40 1.45</td> <td>1.076</td> <td></td> <td>0.331</td> <td>0.024</td> <td></td>	.3 2 5 57 0 33 8 112 48 108 .3	28.3 .75 .95 .00	0.40 1.45	1.076		0.331	0.024	
RL99-05 32.5 RL99-05 108.4 incl. 1108.4 incl. 111 RL01-7 182 incl. 111 RL01-7 182 incl. 112 RL10-1 29 RL10-1 153 incl. 153 incl. 154 incl. 155 incl. 155 incl. 155 incl. 218 RL10-1 216 incl. 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-3 103.0	0 33 8 112 18 108 .3	.95 .00	1.45		0 019	_		0.011
RL99-05 108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 182 RL10-1 153 incl. 153 incl. 154 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 284 incl. 218 RL10-2 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 104	8 112 8 108 .3	.00		4 4 6 4	0.010	0.314	0.015	0.012
RL99-05 108.4 incl. 108.4 incl. 111 RL01-7 182 incl. 182 RL10-1 153 incl. 153 incl. 154 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 284 incl. 218 RL10-2 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 104	8 112 8 108 .3	.00	2 5 2	1.164	0.025	0.311	0.022	0.011
incl. 108.4 incl. 111 RL01-7 182 incl. 182 RL10-1 29 RL10-1 153 incl. 153 incl. 154 incl. 155 incl. 155 incl. 216 RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 104 RL10-4 185	108 .3	2 95	3.52	1.048	0.010	0.248	0.016	0.010
RL01-7 182 incl. 182 RL10-1 29 RL10-1 153 incl. 153 incl. 155 incl. 155 incl. 155 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 216 incl. 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 104 RL10-3 103.0 incl. 104 RL10-4 185			0.47	2.389	0.011	0.236	0.015	0.008
incl. 182 RL10-1 29 RL10-1 153 incl. 153 incl. 154 incl. 154 incl. 155 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 216 incl. 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	2 40	112	0.7	1.881	0.017	0.283	0.018	0.008
RL10-1 29 RL10-1 153 incl. 154 incl. 155 incl. 155 incl. 155 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 216 incl. 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	.3 18	5.4	3.1	1.054	0.018	0.225	0.009	0.010
RL10-1 153 incl. 153 incl. 154 incl. 155 incl. 155 incl. 155 incl. 155 incl. 216 incl. 218 RL10-1 216 incl. 84 incl. 87 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	.3 183	3.75	1.45	1.619	0.011	0.113	0.004	0.009
incl. 153 incl. 154 incl. 155 incl. 15 RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	3 3	2.0	2.7	2.015	0.013	0.304	0.018	0.008
incl. 154 incl. 155 incl. 15 RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 104 RL10-4 185	2 16	1.0	7.8	1.486	0.012	0.171	0.010	0.012
incl. 155 incl. 15 RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 RL10-3 103.0 incl. 104 RL10-4 185	.2 15	54.3	1.1	1.773	0.034	0.245	0.014	0.030
incl. 119 RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 88 incl. 88 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	.3 15	54.8	0.5	2.038	0.012	0.162	0.012	0.009
RL10-1 216 incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	.3	156	0.7	2.733	0.005	0.078	0.006	0.007
incl. 218 RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	9	160	1.0	2.927	0.004	0.066	0.004	0.003
RL10-2 84 incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 incl. 103.0 incl. 103.0 incl. 103.0 incl. 103.0 incl. 104 RL10-4 185	8 21	9.5	2.7	1.137	0.007	0.144	0.011	0.006
incl. 84 incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	.3 21	L9.1	0.8	1.670	0.011	0.080	0.004	0.007
incl. 87 incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	0 9	2.5	8.5	2.379	0.006	0.126	0.009	0.005
incl. 87 incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	.0 0.	34.5	0.5	4.476	0.001	0.229	0.012	0.001
incl. 88 incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185	.0 0.	37.5	0.5	2.798	0.006	0.073	0.008	0.004
incl. 88 incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185		38.0	0.5	3.357	0.013	0.129	0.012	0.009
incl. 89 incl. 89 RL10-3 103.0 incl. 103.0 RL10-4 185		38.5	0.5	3.551	0.009	0.079	0.006	0.011
incl. 89 RL10-3 103.0 incl. 103.0 incl. 104 RL10-4 185		39.0	0.5	4.648	0.010	0.029	0.003	0.008
RL10-3 103.0 incl. 103.0 incl. 104.0 RL10-4 185.0		39.5	0.5	4.950	0.007	0.067	0.005	0.007
incl. 103.0 incl. 104 RL10-4 185		0.0	0.5	3.465	0.003	0.103	0.006	0.002
incl. 104 RL10-4 185			5.95	1.635	0.027	0.295	0.033	0.009
RL10-4 185		1.00	0.95	2.075	0.006	0.222	0.027	0.003
)5.0	1.0	2.137	0.055	0.202	0.032	0.009
		6.8	1.8	1.226	0.015	0.454	0.030	0.013
RL10-5 26		1.0	5.0	1.308	0.018	0.167	0.018	0.015
incl. 27		28.0	1.0	1.668	0.020	0.150	0.010	0.025
incl. 30		31.0	1.0	1.982	0.022	0.163	0.012	0.012
RL10-6 114	A I 42	8.2	14.2	1.070	0.008	0.164	0.017	0.007
		L4.7	0.7	2.303	0.013	0.156	0.010	0.007
incl. 124 OTE: Calculated core	11	25.2	0.5	2.733	0.004	0.147	0.009	0.005

Table 2: Table of all significant historical diamond drillhole intersection modified from Eddison 2016.

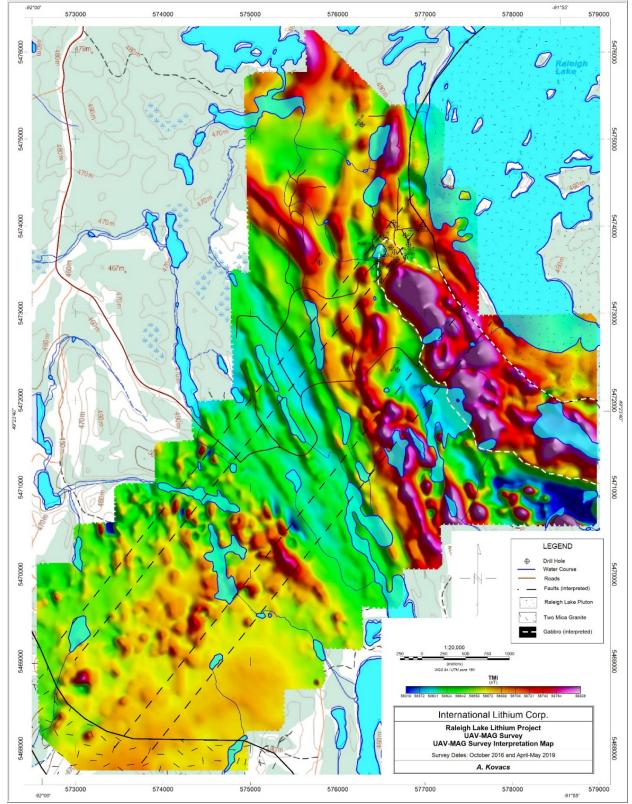


Figure 8: Total Magnetic Intensity (TMI) map with combined results from the 2016 and 2019 airborne surveys (from McLaughlin, 2019)

4. GEOLOGICAL SETTING

4.1 REGIONAL GEOLOGY

The Raleigh Lake property is located within the Wabigoon Subprovince of the Canadian Shields' Archean Superior Province (Figure 8). More specifically, it is situated in the western portion of the central Wabigoon Region which is characterized by bifurcated and anastomosed supracrustal greenstone belts separated by large ovoid gneissic domes and elliptical batholiths (Tomlinson et al., 2004).

The supracrustal greenstone belt is composed essentially of mafic meta-volcanic rocks with lesser parts of intermediate to felsic metavolcanic and volcaniclastic rocks, gabbros and their derived metasedimentary equivalents (Breaks, 1991). These metavolcanic rocks both overly and are intruded by older foliated and gneissic tonalitic bodies and are cut and surrounded by younger massive and foliated granitic bodies forming large-scale dome and basin structures (Breaks, 1991). Greenstone sequences of the western Wabigoon terrane are interpreted to have developed in a somatic environment about 2745 to 2712 Ma and tectonically emplaced onto the Winnipeg River and Marmion terranes at 2703 to 2695 Ma (Davis, Sutcliffe and Trowell 1988; Sandborn-Barrie Skulski 2006)

Metamorphism in the region is commonly low pressure greenschist facies grading to lower amphibolite facies in aureoles around pre and post tectonic plutons (Easton 2004).

4.2 PROPERTY GEOLOGY

Excluding regional work by OGS geologists (Breaks, 1993; Stone et. al., 1998, 1999), and exploration work by Avalon (Pedersen, 1999a, 1999b, 2000; Campbell, 2001; Willoughby, 1999), little is known about structural or lithological details of the Projects pegmatite bodies. The property is predominantly underlain by Archean supracrustal rocks comprised essentially of mafic metavolcanics and their derived metasedimentary equivalents, which both overlie and are intruded by granitic plutons and batholiths of various ages including the peraluminous (S-type) Revell Lake Batholith (Break, 1993) (Figure 9). The supracrustal volcanic rocks of the Raleigh Lake Greenstone Belt extends southeasterly over a distance of 50km in to the central Wabigoon Subprovince and are truncated in the east by the oval granite White otter and Indian Batholiths (Figure 9). The elongate, northwesterly trending Revell Lake Batholith transitions in the northwest from a foliated tonalite, granodiorite and a muscovite and biotite Two-mica granite in the southeastern margin of the batholith. The last two-mica granite phase and is believed to be parental to the rare element pegmatites of the Raleigh Lake pegmatite field (Campbell, 2001).

A preliminary structural study by Barclay (2001) suggest primary bedding and cleavage foliation trends are generally North- and Northwest of Raleigh Lake, varying from 160°-220° and dipping moderately to the east between 25°-75° to the east of Raleigh Lake, and swinging around to an easterly trend south of Raleigh Lake. These structural features imply doma and basin fold features, particularly in the vicinity of Raleigh Lake that could be topographic expressions of shallow-dipping, gently undulating layers and sills.

Most pegmatite occurrences trend north-northeast with moderate easterly dips ranging from 25°-40° (Barclay, 2001).

The Raleigh Lake area is extensively covered by thin to moderate layers of glacial till and sandy soil. Outcrop exposure is generally poor, even along the shorelines of numerous lakes examined in the area, including Raleigh Lake (Campbell, 2001).

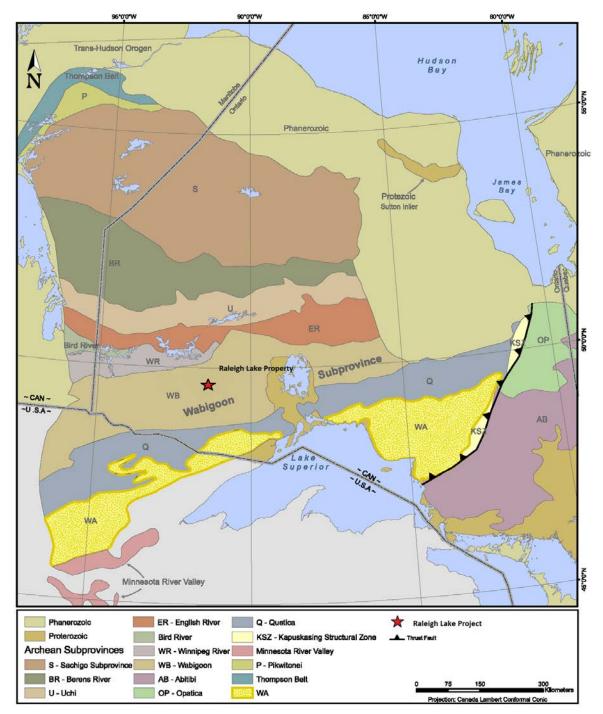


Figure 9: Geological setting of the Raleigh Lake Property within the Wabigoon Subprovince of the Superior Province of the Canadian Shield (Modified from Map

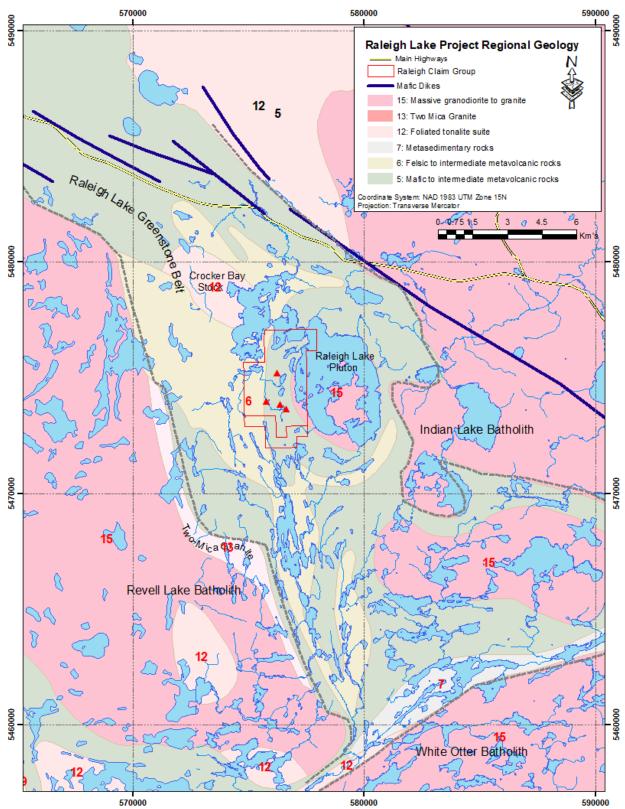


Figure 10: Raleigh Lake Project Regional and Property Scale Geology

4.3 LOCAL GEOLOGY

4.3.1 MAFIC TO INTERMEDIATE META-VOLCANIC ROCKS

The metavolcanics in the Raleigh Lake area are comprised predominantly of meta-basalts, likely flows and interbedded pillowed horizons. Where observed, pillows range from exceptionally preserved and undeformed, to highly flattened and recrystallized (Campbell, 2001). These mafic units are intercalated with lighter coloured, more siliceous volcanic rocks that range in composition from calc-alkalic basalts to rhyolites (Breaks, 1991). All varieties are generally fine-grained, semi-massive with moderate foliation, and dark green-grey to grey-yellow in colour. Chloritic alteration varies from absent to abundant, including zones of intense silica flooding and remobilization, in large part due to metamorphic recrystallization. In these sections, breccia textures are common, as is hematization of disseminated sulphides, as seen in drill core from the 1999 and 2001 drill programs (Campbell, 2001). Quartz veins commonly contain epidote and possible ankerite. Mafic units are locally moderately to strongly magnetic in the presence of locally common disseminated pyrrhotite (Campbell, 2001). Calcareous horizons are also locally common, and in places resemble zones of silica flooding due to their siliceous character. These horizons contain distorted nodules and bands of quartz-epidote-calcite-diopside-grossular. Garnet, var. Grossular, is commonly very coarse, to several centimetres.

4.3.2 FELSIC TO INTERMEDIATE INTRUSIVE ROCKS

Feldspar porphyries have been noted mainly in the vicinity of the 1999 drilling program near Microlite Pond, but also occur randomly as narrow cross-cutting dykes distributed throughout the property (Campbell, 2001). They are massive, medium-grained, medium to dark grey in colour, with common to abundant 1 to 2 mm subhedral feldspar phenocrysts (Pederson, 1999b). The matrix is aphanitic to fine-grained, commonly with fine-grained biotite, and local disseminated sulphides. They are generally unaltered and are associated with local zones of silica flooding and brecciation. Trace to minor pyrite, pyrrhotite, and chalcopyrite occur in the siliceous zones. The porphyries are granodioritic to dioritic, and may be related to the Raleigh Lake Pluton.

4.3.3 PEGMATITES

The rare-metal-bearing pegmatite dykes on the Raleigh Lake property occur in a south- southeast striking zone approximately 1.5 kilometres wide and at least 4 kilometres long (Breaks, 1993), with a new trend of tantalum-mineralized albitic dykes occurring south of Raleigh Lake. The main pegmatite trend, which includes Pegmatite #1 through #3, and the Johnson Pegmatite, belong to the albite-spodumene sub-type of rare metal pegmatites (Cerny, 1989). It is likely that the dykes south of Raleigh Lake are genetically linked, although no spodumene-bearing dykes have been found to date (Campbell, 2001). Several of the spodumene-bearing dykes were described by Breaks (1993) as part of a study on granite-related mineralization in northwestern Ontario. The dyke mineralogy is K-feldspar-albite, including secondary cleavelandite, quartz, and spodumene. Accessory minerals identified in the field and in drilling include microlite, tantalite, and bismuthinite (Breaks, 1993).

Pegmatite #1 has a minimum surface exposure of 200 metres, an average width ranging from 3.90 to 8.00 metres, and has been traced along strike for 300 metres and down dip for over 400 metres (Pederson, 2000: Figure 6). Highly anomalous tantalum values were encountered in drilling ranging from 0.011% Ta205 over 5.40 metres to 0.027% Ta205 over 2.00 metres, with the best individual sample assaying 0.039% Ta20s over 0.70 metres in hole RL99-05 (Campbell, 2001). It is crudely zoned with local strong albitization with heterogeneous intermediate zones consisting of light green to tan spodumene and K-feldspar in an albitic matrix with local muscovite. These zones are bounded by albitic "wall" zones.

Breaks and Nurmikivi (1995) have mapped Pegmatite #1 in detail. The pegmatite is the widest and most laterally continuous pegmatite intercepted to date and forms a train of outcrops up to 10 m wide that extend for 200 m. Drilling has shown that Pegmatite #1 flattens down-dip from 15–20° easterly to a horizontal position (Pederson, 2000) (Figure 5). Campbell (20010) considered the flattening as evidence for structural modification of pegmatite emplacement conditions, which would provide areas for ponding and continued remobilization of volatiles in the pegmatites, such as at the Tanco deposit. The country rock is albitised and contains exomorphic minerals of holmquistite and biotite adjacent to the dyke. This pegmatite, along with Pegmatite #3, is characterized by a strong crescumulate texture defined by elongate spodumene crystals up to 1.5 by 75 cm oriented normal to pegmatite contacts.

Pegmatite #2, was discovered and subsequently mapped by Breaks (1993) owing to the presence of several bright blue, holmquistite bearing boulders nearby. The pegmatite is located approximately 800m west of Microlite Lake and specifically noted to have a lithium dispersion halo greater than the Johnson pegmatite at 2 metres (Breaks 1993). However, shortly after discovery, the exposure was enclosed beneath a beaver dam and then forgotten during all future exploration endeavors. It was re-discovered by F.Breaks and ILC/Pioneer representatives during a brief property visit in May of 2016 and a volcanic host rock sample collected during this time was analysed to have the highest lithium assay of 2290ppm to date. Avalon's lithogeochemical corridor 2B and trench 2B2 potentially represents SW extension to this overlooked pegmatite body.

Pegmatite #3, located SE of Microlite Lake, is exposed for at least 50 metres and is at least four metres thick at surface (Figure 6). It is crudely zoned with feldspathic wall zones and heterogeneous intermediate and "core" zones comprised of albite-quartz-muscovite, and spodumene-K-feldspar-albite. Diamond drilling has shown that Pegmatite #3 ranges up to 1.20 metres in thickness at depth but does show strong lateral continuity having been identified over approximately 300 metres of strike length.

The Johnson Pegmatite, located 1400 metres north of Pegmatites #1, is exposed on surface for 83 metres along strike, with an apparent width of 3 to 4 metres (Figure 6). It consists predominantly of coarse white to pink K-feldspar and accessory muscovite and trace tantalum oxides. Diamond drilling of hole RLO1-06 produced an average grade of 0.017% Ta205 over a core length of 2.65 metres (Campbell, 2001).

Avalon Ventures Ltd considered the two-mica granite fringed Revell Lake Batholith to be the likely source of the pegmatite melt (Pedersen, 2000) (Figure 9), and that the pegmatites formed swarms of 'stacked' bodies aligned parallel with the pluton margin (Pedersen, 2000).

The known pegmatites form shallowly to moderately dipping, north-northeasterly trending undeformed sheets with a significant potential for extensive lateral continuity. Strong fractionation minerals and the fact that the dykes are weakly zoned suggest the potential that strongly enriched rare-metal zonation may exist within other domains of the main pegmatites. They are hosted in both mafic and intermediate volcanic rocks. Crude zoning is evident in the wider pegmatites, with albitic 'wall' zones and 'core' (intermediate) zones of albite–quartz– muscovite or spodumene–K-feldspar–albite.

Spodumene crystals are generally green in colour, exhibiting tan colours locally in the presence of albite. Grains typically range in size from <1 cm to >8 cm, and display ragged, corroded grain boundaries that have undergone complete replacement by "a dark green, aphanitic, serpentine-like assemblage" (Pedersen, 1999b).

5. 2021 DIAMOND DRILLING PROGRAM

A total of 1504 meters of oriented NQ diamond drilling was cored on the Raleigh Lake property between March 19th to April 5th. Geological support crews arrived on site to prepare for the program on March 12th and supported the program out of the town of Ignace. The coring work was completed by Rodren Drilling from Winnipeg using a skid mounted Hydracore drill. The collaring attributes from all holes cored on the property during the program are Listed in Table 3 and the diamond drilling layout is shown inFigure 11 . The spacing of drillholes proposed for the program and to the MNDM was designed to facilitate a fast and thorough evaluation of pegmatite 1 and 3 that would eventually lead to the development of a mineral inventory. The work program was completed under the terms laid out in International Lithium Corp's Exploration permit PR-20-000001 and all drilling occurred within the boundaries of single cell mineral claims ID 156145, 158259, 326795 and 288158. The spring conditions were too wet to transport core responsibly until the conditions dried up. As a result, drillcore is currently being stored at an old garage in Ignace until field teams return in the summer.

DDH_ID	Easting_m*	Northing_m*	Elev_mASL	Azi_deg	Dip_deg	Length_m	Capped
RL21-01	576759	5473557	474	308	-70	170.0	yes
RL21-02	576689	5473464	478	330	-70	209.0	yes
RL21-03	576583	5473516	468	308	-70	170.0	yes
RL21-04	576877	5473355	485	308	-70	185.0	yes
RL21-05	576261	5473294	479	308	-70	173.0	yes
RL21-06	576335	5473238	475	308	-70	176.0	yes
RL21-07	576343	5473516	472	308	-70	167.0	yes
RL21-08	576644	5473380	474	308	-70	254.0	yes
					TOTAL	1504.0	

*Collar coordinates are positioned in Nad 83 Zone 15N (EPSG:26915)

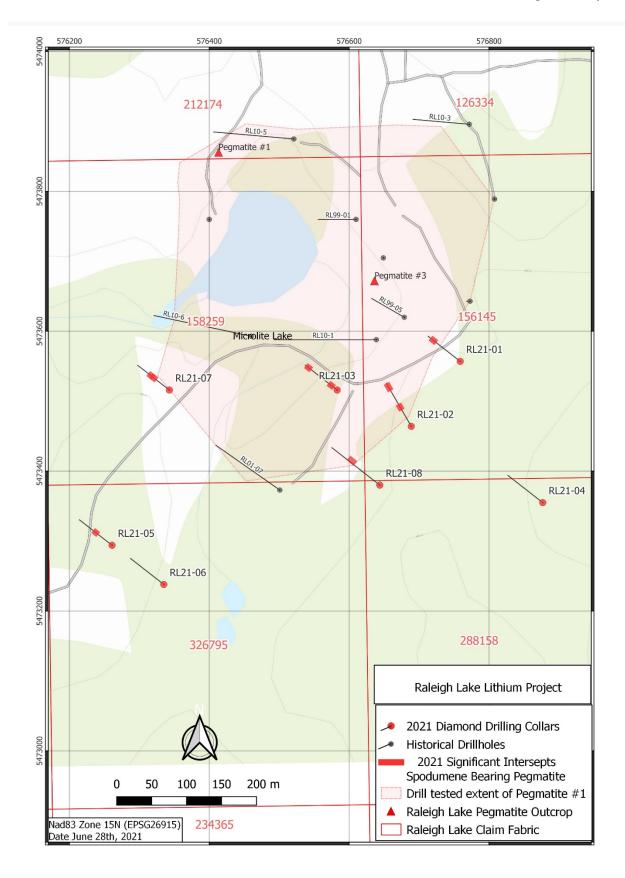


Figure 11: Layout of diamond drilling locations within the projects claim cell fabric

5.1 DRILLHOLE SUMMARIES.

RL21-01: Water return was lost at 65m. This hole encountered dominantly dark-green to green, fine to coarse-grained mafic volcanic rocks characterized by stringer veins of chlorite-epidote-garnet and minor carbonate. Intermixed with the volcanic rocks are later feldspar porphyry dikes that have coarse anhedal to euhedral porphyritic feldspar grains. Pegmatite #3 is interpreted between 80.62 and 82.21m. It is characterized by high angle contacts to the volcanic host rock and predominantly composed of albite-(pink) cleavelandite, quartz. Pegmatite #1 occurs from 139.88 to 144.9m and characterized by feldspar (k-spar) quartz, secondary cleavelandite a minor spodumene slight post-emplacement breakdown of spodumene crystals where the outer margins are altered to fine white sericite. Spodumene makes up about 10-15% of the intervals. RL21-01 finished in barren mafic volcanic rocks at 170.0m

RL21-02: Hole lost water at 59 m. This hole started in a moderately magnetic equigranular, pink granodiorite with patches of elevated pink potassic-alteration. This subvolcanic intrusive unit may be related to the Raleigh Lake pluton and appears to have internal foliation fabrics parallel to volcanic regional fabrics. This granodiorite changes to coarse grained gabbro and volcanic rocks to a depth of 91.25m. A zoned pegmatite occurs from 91.25 to 94.55 which is interpreted as Pegmatite #3. This pegmatite is composed of narrow wall zones and a spodumene dense intermediate zone with spodumene crystals elongated normal to the pegmatite there are both mafic volcanic rocks which changes to gabbro at 146.27m. A porphyritic gabbro occurs from 146.27-187.56 which appears to be a host for, at least in the hanging wall, an underlying gabbro. This gabbro contains 10-15% phenocrysts of beige feldspars up to 1.5cm in size. A coarse spodumene pegmatite occurs from 187.56-194.00m. This is interpreted to be pegmatite #1. It has a sharp high angle contact to the gabbro host and it also contains green spodumene oriented normal to contacts and zone margins as large as 25cm. Overall there is 15% spodumene through the interval. Porphyritic gabbro is at the base of the pegmatite and the hole terminates in MV.

RL21-03: RL21-03 collared into gabbro. Pegmatite #3 occurs from 27.19 to 28.27 and 29.86 to 33.09. It is generally spodumene-rich with 10-15% in the narrow one above and up to 20% in the second interval from 29.86 to 33.09m. This pegmatite is hosted by a porphyritic gabbro. The proceeding spodumene bearing pegmatite occurs from 150.52 to 153.84 which is interpreted as pegmatite #1. Spodumene crystal development is lower than the shallower intersection which makes up about 3% of the interval. Pegmatite contacts for both pegmatites are at high angles to regional fabric planes.

RL21-04: RL21-04 is predominantly composed of mafic volcanic sequences and narrow feldspar porphyry intrusions. Pegmatites or spodumene-bearing pegmatites were not encountered in this hole. The entire volcanic pile consists of dark green to green and fine grained mafic volcanic rocks that are different from other areas drilled to date and characterized by an abundance of chlorite-epidote-qtz-carbonate and garnetiferous stringer veins. These stringer veins, theircarbonate components and dissolution texture extend to a considerable depth in hole. These dissolution textures are thought to be a result of meteoric origin which would suggest there is a deep fault structure oriented near-parallel to the drill trace. This texture, combined with the relatively higher remnant magnetism within the

metavolcanic rocks.are characteristics significantly different to the metavolcanic rocks seems in all the other holes drilled this season. These observations lead the author to believe there is a significant geological break and offset in the bedrock architecture between RL21-04 and other rocks of the Zone 1 target block. The contrasting magnetic signatures and varied metavolcanic basement rocks can easily be seen in the UAV airborne data.

RL21-05: Mafic and intermediate volcanics are strongly foliated and lack the extensive epi-chlori-qtzcarb veins seen in previous hole RL21-04. Veining typically occurs along or at a low angle to existing foliation. Narrow spodumene pegmatite zones occur from 13.76-14.5 and 86.0-87.63. Both zones contain about 12% fine spodumene and their contact orientations are regional fabric parallel suggesting sill-like geometries. Structural evaluation of contact and regional foliation trends suggests the pegmatites are trending North with moderate dips East.

RL21-06: Partial loss of water return at 74 m and complete loss at 128 m. RL21-06 started in MV which continued down to 62.22m. Spodumene pegmatite was encountered from 62.22-62.95, 126.58-127.94 and 144.36-145.66m. The zones are generally narrow but slightly wider than up-dip hole RL21-05. The pegmatite occurrence from 126.58-127.94 is gabbro hosted. The contact orientations are parallel to regional volcanic fabric/strat. A cursory structural review indicates a North trend and moderate East dip for pegmatite sills. Very similar to RL21-05 and RL21-07 below.

RL21-07: This hole was cored on the western end of the resource area. This drillhole contains a mixture of mafic metavolcanic rocks and narrow spodumene pegmatites. The contact angles across most of the contacts suggest that pegmatites in this drillholes are hosted within the primary bedding foliation in the mafic metavolcanics rocks. This hole is characterized by several narrower pegmatite bodies that occur from 81.38-84.68, 93.4-94.05, 97.76-99.21 and 103.06 to 103.59 metres. This drillhole finished in intermediate metavolcanic rocks.

RL21-08: This hole was designed to test down-dip of spodumene pegmatite intersections of RL21-02 and RL21-03. This hole encountered predominantly mafic metavolcanic rocks and porphyritic gabbro's. Pegmatite #1 and #3 were encountered where the modelling projected but the grade and thickness were less developed than the up dip holes. Spodumene bearing pegmatite was drilled from 139.56-140.71m (pegmatite #3) and 217.88-224.47m (pegmatite #1). Contact measurements were sharp and were determined to have an estimated easterly strike and shallow to moderate dip to the SSW. The drillholes finished in intermediate metavolcanic rocks before finished at 254.0m.

Hole_ID	From_m	To_m	Lithium_ppm	Lithia_Li20	width_m	Grade_Thickness	Comments
RL21-01	139.88	144.9	3962	0.85	5.02	4.282	Pegmatite #1
RL21-02	91.25	94.55	5973	1.29	3.3	4.244	Pegmatite #3
RL21-02	185	195	3157	0.68	10	6.797	Pegmatite #1 and gabbro shoulder.
RL21-03	29.86	33.09	9023	1.94	3.23	6.275	Pegmatite #3
RL21-03	150.54	153.45	1269	0.27	2.91	0.795	Pegmatite #1?
RL21-05	86	87.63	2502	0.54	1.63	0.878	Pegmatite Unkwn.
RL21-07	81.38	84.67	3008	0.65	3.29	2.130	Pegmatite Unkwn?
RL21-07	97.76	99.21	6417	1.38	1.45	2.003	Pegmatite Unkwn?
RL21-07	217.88	224.47	1741	0.37	6.59	2.471	Pegmatite #1

Table 4: Table of significant intersections

5.2 QUALITY ASSURANCE AND QUALITY CONTROL

International Lithium Corp. deployed industry recognized certified reference materials and blanks for this diamond drilling program. 6 quartz garden stone blanks and 8 MF-1 standards were inserted into the sampling stream at a rate of approximately 2.5% each by the logging geologist under the supervision of a Professional Geoscientist with Engineers and Geoscientists BC. Diamond drill core was split by Wabigoon Lake Ojibway National members under the supervision of company representatives. A total of 173 samples were dispatched to Actlabs preparation lab located in Dryden.

Primary analysis method: Peroxide (Total) Fusion, ICP-OES & ICP-MS with 55 elements including Li (3ppm – 5%). Sodium peroxide fusion provides total metal recovery and is effective for the decomposition of sulphides and refractory minerals that typify pegmatite and their associated minerals of interest. The upper detection limits of this package at 5% lithium from Actlabs ensured that no overlimit analysis were needed for the program. The results from the QA/QC program performed as expected.

5.3 STATEMENT OF EXPENDITURES

Raleigh Lake 2021 Diamond Drilling Program			
Statement of Expenditures		Total Expenditures	Eligible Expenditures
Associated Costs			
Internet/Communication (+15% A	dmin)	\$120.75	\$120.75
Activation Labs	Analytical Costs (GST excluded)	\$8,482.49	\$8,482.49
Rodren Drilling Costs (ALL-In per metre)		\$270,287.00	\$270,287.00
Mobilization/Demobilization (+15% Admin)		\$466.19	\$233.10
Field Supplies (+15% Admin)	All field supplies-gear	\$1,786.27	\$1,786.27
	EXPENSES		\$280,909.61
Meals and Lodging			
+15% Admin	Accommodation	\$5,842.00	\$5,842.00
	2 Geo's/ILC Rep for program duration		
	Meals for CMG/ILC	\$2,779.18	\$2,779.18
	LODGING		\$8,621.18
Transportation			
+15% Admin	Truck Rental	\$3,113.92	\$3,113.92
	Flights/Airfare	\$2,943.85	\$0.00
	Fuel	\$871.79	\$871.79
	TRANSPORTATION		\$4,384.29
Professional Wages - Field			
P.McLaughlin (Prj. Mgr)@\$800/da	y 35.8	\$28,600.00	\$1,500.00
K.Purdue (geologist) @\$650day	27.3	\$17,712.50	\$17,712.50
G. Waldock (tech) @\$400/day	14.8	\$5,900.00	\$5,900.00
WLON Core Splitting Services	*12 hrs (@\$37.50/hr) + 44 hrs (@\$25/r)	\$1,550.00	\$1,550.00
	WAGES		\$26,662.50
Professional Wages - Office			
P.McLaughlin @\$750/day	Assessment Report: 6 Days		\$4,800.00
	Program Total		\$325,377.58

6. CONCLUSIONS AND RECOMMENDATIONS

The ground conditions, drilling production rates, proximity to and the support from the towns of Ignace and Dryden and the general access to infrastructure led to a very cost-friendly coring program. This was complimented with geological success where drill testing continued to successfully target spodumene pegmatite in 7 of 8 holes utilizing the existing geological and exploration modelling.

The most attractive grades and thicknesses of pegmatite 1 and 3 from this program in addition to results from previous seasons, are generally in a NNW/SSE trend of drillholes along the eastern margin of Microlite Lake. The pegmatite bodies in this corridor could be characterized as thicker, better developed with larger spodumene crystals. Additionally, exomorphic dispersion of lithium into the gabbro host occurs up to 2.8m from the pegmatite gabbro contact envelope. Lithium dispersion into the gabbro ranges from 0.1 to 0.68% Li₂0 in pegmatite 1 in RL21-02. This is a strong indication of the pegmatite systems mass, longer crystallization history and hopefully it is also a strong proximity indicator for emplacement structures in this area.

Pegmatite 1 and 3 intersections from this season of drilling occurred a little deeper than what was projected by the model. This suggests pegmatite 1 and 3 geometries have exceptional laterally continuity, however the geometries have steepened slightly beyond the southern limits of historical drilling. This is also supported in the oriented core data on pegmatite contact orientations. Figure 12 is a stereonet projection of pegmatite contact orientations. There are two primary distributions and a slight arc of data in between. Contact orientations of pegmatite from this season of drilling occur in the moderate to shallow dipping east-trending domains which is dominant in the pegmatite 1 and 3 area. Contact orientations of pegmatites from RL21-05, 06 and 07 occurs in shllow to moderately dipping and NNW to NNE trending domains. Pegmatites bodies in the pegmatite 1 and 3 area generally occur at a moderate to low angle to bedding/foliation planes.

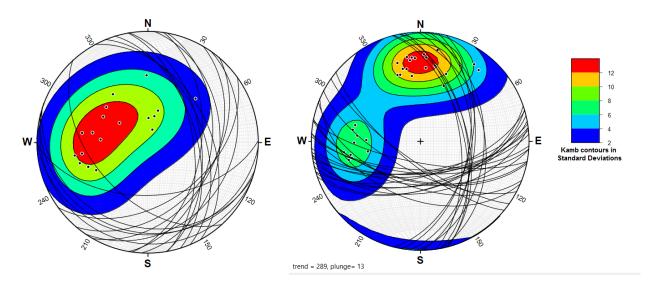


Figure 12: Stereonet projection of pegmatite contact orientations (left) and metavolcanic bedding plane (right) results from 2021 Drilling

RL21-04 appears to have been cored into another, potentially uplifted block of highly magnetic metavolcanic rocks. The step-out distance to RL21-04 is nearly 200m away from RL21-01/02 so there is strong exploration potential and open ground between those two drillholes that warrants additional drilling.

A biogeochemistry orientation survey on spruce and alder vegetation material was successfully conducted at the Big Whopper/Separation Rapids pegmatite by Avalon Advanced Material in 2017. The results of the follow-up work are not public but an orientation survey of a similar nature will be run across the know pegmatites and sent to ALS Geochemistry for their ME-VEG41 technique.

Driven by the success of this drilling campaign, additional diamond drilling is warranted around Zone 1. A 2000m \$450K CAD diamond drilling program could significantly advance the mineral inventory figures of pegmatite 1 and 3. An additional 2000m, \$450 CAD of exploration diamond drilling is recommended to test the remaining known pegmatites and untested geochemical anomalies outside of Zone 1.

Additional early stage exploration and reconnaissance work such as lithogeochemistry and mapping surveys should be carried out over the Company's claims, especially in regions that were recently clearcut to further identify prospective targets for drill testing.

REFERENCES

- Barclay, W.A., 2001. Report on the Structural Geology Investigations at the Lilypad Lake, East Braintree and Raleigh Lake Tantalum Properties, NW Ontario and SE Manitoba; internal report for Avalon Ventures Ltd.
- Breaks, F.W. 2016. Field Visit Summary. Pegmatite #2, Raleigh Lake Pegmatite Field. 3p.
- Breaks, F.W. 1993. Granite Related Mineralization in northwestern Ontario: Raleigh Lake and Separation
 Rapids (English River) rare-metal pegmatite fields: *in* Summary of Field Work and Other Activities
 1993. Ontario Geological Survey, Miscellaneous Paper 162. P. 104-110.
- Break, F.W., and Nurmikivi, M., 1995. Precambrian geology of Pegmatite #1, Raleigh Lake Area, Wabigoon Subprovince: Ontario Geological Survey, Preliminary Map P.3318, scale 1:125
- Breaks, F.W., 1989: Origin and evolution of peraluminous granite and rare element pegmatite in the Dryden area of northwestern Ontario; Unpublished Ph.D. thesis, Carleton University, Ottawa, Ontario, 549p.
- Breaks, F.W. and Janes, D.A., 1991: Granite-related mineralization of the Dryden area, Superior Province of northwestern Ontario; Geological Association-Mineralogical Association of Canada-Society of Economic Geologists, Joint Annual Meeting 1991, Field Trip B7-Guidebook, 71p.
- Breaks, F.W. and Moore, J.M., Jr., 1992. The Ghost Lake batholith, Superior Province of northwestern Ontario: a fertile, perluminous, granite-rare-element pegmatite system; The Canadian Mineralogist, Vol. 30, 835-876.
- Breaks, F.W., Selway, J.B. and Tindle, A.G. 2003: Fertile peraluminous granites and related rare-element mineralization in pegmatites, Superior Province, northwest and northeast Ontario: Operation Treasure Hunt; Ontario Geological Survey, Open File Report 6099, 179p.
- Breaks, F. W., Selway, J.B., and Tindle, A.G., 2005: Fertile peraluminous granites and related rareelement mineralization in pegmatites, Superior Province of Ontario; in Linnen, R.L. and Samson, I.M., editors, Rare-element Geochemistry and Mineral Deposits, Geological Association of Canada, GAC Short Course Notes 17, p. 87-125.
- Černý, P. and Ercit, T.S., 2005: Classification of granitic pegmatites revisited; The Canadian Mineralogist, vol. 43, no.6, 2005-2026.
- Černý, P. and Meintzer, R., 1988: Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships; in R.P. Taylor and D.F. Strong (editors), Recent Advances in the Geology of Granite-Related Mineral Deposits, The Canadian Institute of Mining and Metallurgy, Special Publication 39, p. 176-206.
- Černý, P., 1989: Characteristics of pegmatite deposits of tantalum. In Lanthanides, Tantalum, and Niobium. Edited by P. Moller, P. Černý and F. Saupe. Springer- Verlag, New York, p. 195-239.

- Davis, D.W.,Sutcliffe, R.H. and Trowell, N.F., 1988. Geological Constraints on the tectonic evolution of a Late Archean greenstone belt, Wabigoon Subprovince, northwest Ontario, Canada: Precambrian Research, v. 39, p.171-191.
- Easton, R.M., and Berman, R.G., 2004. Geology, tectonomorphic map of Ontario, Canada and parts of the United States of America: Geological survey of Canada, Open File 1810; Ontario Geological Survey, Preliminary Map P. 3533; scale 1:1 500 000.
- Eddison, F.J., 2016. Open File data review of the Raleigh Lake Lithium Project, Ontario, Canada. *For* Pioneer Reosources Ltd. 8 August 2016
- McLaughlin, P, 2019. 2019 UAV Airborne Magnetometer Survey on the Raleigh Lake Property, Ignace, Ontario, International Lithium Corp. 31 October, 2019.
- Ontario Geological Survey, 1991b: Bedrock geology of Ontario, west-central sheet; Ontario Geological Survey, Map 2542, scale 1:1 000 000.
- Pederson, J.C., 1999a. Report on 1998 Exploration Program. Raleigh Lake Tantalum Property, Ignace Ontario, Avalon Ventures Ltd. 31 May, 1999.
- Pederson, J.C., 1999b. Report on 1999 Exploration Program. Raleigh Lake Tantalum Property, Ignace Ontario, Avalon Ventures Ltd. 31 December, 1999.
- Pederson, J.C., 2000. Report on 2000 Exploration Program. Raleigh Lake Tantalum Property, Ignace Ontario, Avalon Ventures Ltd. 19 December, 2000.
- Pederson, J.C., 2001. Report on 2001 Exploration Program. Raleigh Lake Tantalum Property, Ignace Ontario, Avalon Ventures Ltd. 25 October, 2001.
- Sandborne-Barrie, M., and Skulski, T. 2006. Sedimentary and structural evidence for 2.7 Ga continental arc-oceanic arc collision in the Savant Surgeon greenstone belt, western Superior Province, Canada; Canadian Journal of Earth Sciences, v.43, p 995-1030.
- Stone, D., Hall, J. and Chaloux, E. 1999. Precambrian geology, Ignace area; Ontario Geological Survey, Map P.3360, scale 1:50 000.
- Tomlinson, K.Y., Stott, G.M., Percival, J.A., Stone, D.. 2004. Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambrian Research, v. 132, p. 245-274.

Vanstone, P.J. 2010. Report on the Raleigh Lake Rare-Element Pegmatite Property, Ignace Area, northwestern Ontario, *for* Consolidated Abaddon Resources, 21 March 2010.

Willoughby, J., 1999. Petrology and Geochemistry of Archean granitoids in the Raleigh Lake area of northwestern Ontario and relation to rare-metal pegmatites; unpublished B.Sc. (Hons.) thesis, University of Waterloo.

APPENDICES LIST

APPENDIX I

Author Qualifications

APPENDIX II

Diamond Drill Logs (RL21-01 through RL21-08)

APPENDIX III

Diamond Drill Holes Sections (RL21-01 through RL21-08)

APPENDIX IV

Activation Labs Analytical Certificates

APPENDIX I

Statement of Qualifications

01/07/2021

I, Patrick David Michael McLaughlin, declare that:

- 1. I reside at 22-1560 Prince Street of the city of Port Moody, in the province of British Columbia and do herby certify that:
- :
- I am a graduate of the University of Manitoba (2005) with a Bachelor of Science (Honours) from the Faculty of Science, Department of Geological Sciences and have been continuously practicing my profession since 2004.
- 3. I am a registered professional Geoscientist with Engineers and Geoscientists British Columbia, member **#41479**
- 4. I am a Project Geologist for Coast Mountain Geological Ltd. of Vancouver, BC and have directly managed recent exploration programs on this Project and have reviewed the field exploration program described in this report and all contributions on my behalf are true and accurate to the best of my knowledge.
- 5. I hold no direct or indirect personal interest in the property that is the subject of this report.

Date Signed

July 18th, 2021

Patrick McLaughlin Digitally signed by Patrick McLaughlin DN: cn=Patrick McLaughlin, o=Coast Mountain Geological, ou, email=p.dm.mclaughlin@gmail.com, c=CA Date: 2021.07.18 23:07:15 -07'00'

Patrick McLaughlin, B.Sc., P.Geo

APPENDIX II

		Hole Id:	RL21-01		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Pegmatite #1 and #3 extents			Date Logged:	March 21-22
Client:	International Lithium Corp.			Tech By	G.Waldocks

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576759	Azimuth:	308
	Northing:	5473557	Dip:	-70
	Elevation:	474	Length:	170.0
			Declin	1.5 w (-1.5)
Proposed:		RL20_'A'		
	Easting:	576758	Azimuth:	308
	Northing:	5473554	Dip:	-70
	Elevation:		Length:	175

Survey Type	:	Ez-trac Single Shot	
Distance	Azi	Dip	Accept
11.00	9.5	-69.5	Y
62.00	60.5	-69.5	Y
92.00	90.5	-69.6	Y
122.00	120.5	-69.6	Y
152.00	150.5	-69.5	Y

Drilling Informatio	n:		
Co	ntractor:	Rodren	
Co	re Diameter:	NQ	
Sta	rt Date:	20-Mar-2021	
En	d Date:	22-Mar-2021	
Ca	sing In:	left in hole	
Ca	sing Capped:	YES	
Uni	its:	Metric	
Ori	ented:	YES	

Hole Objective: ~100m down dip and SW of RL99- 05 and RL99-02	

Hole Summary: Water return was lost at 65m. This hole encountered dominantly dark-green to green, fine to coarsegrained mafic volcanic rocks characterized by stringer veins of chlorite-epidote-garnet and minor carbonate. Intermixed with the volcanic rocks are later feldspar porphyry dikes that have coarse andhedal to euhedral porhyritic feldspar grains. Pegmatite #3 is interpreted between 80.62 and 82.21m. It is characterized by high angle contacts to the volcanic host rock and predominantly composed of albite-(pink) cleavalandite, quartz. Pegmatite #1 occurs from 139.88 to 144.9m and characterized by feldpspar (k-spar) quartz, secondary cleavalandite a minor podumene slight post-emplacement breakdown of spodumene crystals where outter margins are altered to fine white sericite. Spodumene makes up about 10-15% of the intervals. RL21-01 finsihed in barren mafic volcanic rocks at 170.0m

		Lithology Summary	
From	То	Lith	Comment
3.44	14.81	Mafic Volcanics	
14.81	26.62	Feldspar Porphyry	
26.62	63.16	Mafic Volcanics	
63.16		Feldspar Porphyry	
65.71		Mafic Volcanics	
80.62		Pegmatite	Peg #3?
82.21	116.9	Mafic Volcanics	
116.86	117.8	Feldspar Porphyry	
117.80	122.6	Mafic Volcanics	
122.62	123.9	Feldspar Porphyry	
123.89	139.9	Mafic Volcanics	
139.88		Spodumene Pegmatite	Peg #1
144.9	170	Mafic Volcanics	

RL21-01 Major and Minor Lithology

DDH ID	From m	To m	SubFROM m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-01	0.00	3.44				OVBD	Overburden	
RL21-01	3.44	14.81				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite +- accessory garnet and magnetite. Foliation and stringer veins occur at a low angle (~5-20 degrees) to the core axis. Actinolite is fine to medium coarse- grained with euhedral to subhedral crystal habit. Epidote is commonly found as fine to medium-grained subhedral to anhedral while chlorite and carbonate is commonly fine-grained; both are concentrated in stringer veins. Garnet is hosted by stringer veins and range from fine to medium-grained subhedral to anhedral to subhedral crystals.
RL21-01	14.81	26.62				FP	Feldspar Porphyry	Feldspar Porphyry contains coarse to very coarse-grained blocky feldspar (~2-7 mm), coarse-grained anhedral grey quartz and fine to medium-grained biotite. Feldspar porphyry intrudes the MV at a low angle to the core axis (~5 to 10 degrees) with beta measurements commonly ranging from ~70 to 75 degrees. Mild foliation is present with beta measurements ~70-75 degrees . Between 16.02 m and 22.02 m, FP and MV are mixed. MV contacts are discordant. Joints within FP are consistent, average alpha measurements ~60
RL21-01	26.62	63.16				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite +- accessory garnet and magnetite. Foliation and stringer veins occur at a low angle to the core axis. Actinolite is fine to medium coarse-grained with euhedral to subhedral crystal habit. Epidote is commonly fine to medium-grained subhedral to anhedral while chlorite is commonly fine-grained; both are concentrated in stringer veins. Garnet is hosted by stringer veins and range from fine to medium-grained subhedral to anhedral to subhedral to subhedral crystals. Rare mm-scale subhides present.
RL21-01	63.16	65.71				FP	Feldspar Porphyry	Feldspar Porphyry contains fine to very coarse-grained blocky feldspar (~.5-5 mm), medium to coarse- grained anhedral grey quartz and fine to medium-grained biotite. Upper and lower contacts occur at a low angle to the core axis and have alpha measurements of ~15 degrees. Feldspar grains are subhedral and can exhibit diffuse grain boundaries. Low-angle mm-cm scale (<1.5 cm) diffuse quartz veins crosscut at a low angle to the core axis (~5-20 degrees).
RL21-01	65.71	80.62				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite +- accessory garnet and magnetite. Actinolite is fine to medium coarse-grained with euhedral to subhedral crystal habit. Epidote is commonly found as fine to medium-grained subhedral to anhedral crystals while chlorite is commonly fine-grained. Garnet is rare. Uncommon mm-scale sulphide blebs are present throughout. Planar or slightly deformed quartz veins (0.5-1.5 cm) occur at a medium to medium-high angle to bedding (alpha ~35-65 degrees) and beta measurements are generally 60-75 degrees (uncommon veins between 75-90).
RL21-01	80.62	82.21				PEG	Pegmatite	Aplitic Pegmatite. Contains K-Feldspar, Albite, Quartz, Muscovite and secondary Cleavelandite. Pegmatite intrudes into the MV; upper contact has an alpha of ~70 degrees and a beta measurement of 002 degrees while the lower contact has an alpha of ~50 degrees and a beta measurement of 269 degrees. Upper contact contains a 5 cm wall zone defined by very coarse-grained muscovite and secondary cleavelandite oriented orthogonal to the contact. Muscovite content increases slightly downhole while grain size decreases, muscovite up to 1 cm in diameter occurs. Pink K-Feldspar is blocky to saccharoidal, ranging from medium to very coarse-grained. Secondary Cleavelandite is coarse to very-coarse grained with pseudo-acicular crystal
RL21-01	82.21	116.86				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite, minor carbonate+- accessory garnet and magnetite. Foliation and stringer veins occur at a medium to medium-high angle to the core axis. Actinolite is fine to medium coarse-grained with euhedral to subhedral crystal habit. Epidote is commonly fine to medium-grained subhedral to anhedral while chlorite is commonly fine-grained; both are concentrated in stringer veins. Garnet is rare, hosted by stringer veins, and range from fine to medium-grained subhedral to anhedral to anhedral crystals. Mm-scale subhides hosted in stringer veins and throughout MV.

RL21-01 Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-01	116.86	117.80				FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (~.5-3 mm), medium-grained anhedral grey
								quartz and fine-grained biotite. Upper and lower contacts are diffuse and appear to be at a high angle to the
	447.00	400.00						core axis Feldspar grains are subhedral to anhedral and exhibit diffuse grain boundaries. Little to no foliation
RL21-01	117.80	122.62				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite +- accessory garnet and magnetite. Foliation
								and stringer veins occur at a medium to medium-high angle to the core axis. Actinolite is fine to medium
								coarse-grained with euhedral to subhedral crystal habit. Epidote is commonly fine to medium-grained
								subhedral to anhedral while chlorite is commonly fine-grained; both are concentrated in stringer veins. Garnet is common, hosted centrally in zoned stringer veins, and range from fine to medium-grained subhedral to
								anhedral crystals and rare coarse euhedral to subhedral crystals. Mm-scale subhides present.
RL21-01	122.62	123.89				FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (~.5-3 mm), medium-grained anhedral grey
_	_							quartz and fine-grained biotite. Upper and lower contacts are diffuse and appear to be at a high angle to the
								core axis Feldspar grains are subhedral to anhedral and exhibit diffuse grain boundaries. Uncommon mm-
								scale (<5 mm) diffuse guartz veins crosscut FP at a low angle to the core axis (~5-20 degrees). Slightly
RL21-01	123.89	139.88				MV	Mafic Volcanics	Green mafic volcanics containing actinolite, epidote, chlorite +- accessory garnet, magnetite and sulphides.
								Foliation and stringer veins occur at a low angle. Actinolite is fine to medium coarse-grained with euhedral to
								subhedral crystal habit. Epidote is commonly fine to medium-grained subhedral to anhedral while chlorite is
								commonly fine-grained; both are concentrated in stringer veins. Garnet is hosted by stringer veins and range
								from fine to medium-grained subhedral to anhedral crystals and rare coarse euhedral to subhedral crystals.
RL21-01	139.88	144.90				SPD-PEG	Spodumene Pegmatite	Common mm-scale sulphides grains in addition to disseminated sulphides are present. Weak to mild
RL21-01	139.00	144.90				SPD-PEG	Spodumene Pegmalile	Quartz, K-spar, secondary cleavelandite, muscovite, spodumene, +- accessory oxides, garnet and trace sulphides. Quartz is smoky gray, extremely coarse-grained. Potassium Feldspar is salmon-pink, blocky or
								saccharoidal and commonly replaced by cleavelandite. Cleavelandite is secondary and exhibits radiating
								pseudo-acicular euhedral to subhedral habit in crystals and crystal clusters up to 2 cm in diameter.
								Spodumene displays elongated mint-green crystals ranging from subhedral mm-scale to euhedral to
								subhedral cm-scale crystals (~up to 10 cm long and 1.5 cm wide). In the first meter of the interval,
								spodumene crystal rims appear altered. It is associated with quartz, oxides and K-spar. Muscovite is
								green/brown, typically subhedral to euhedral and strongly associated with K-spar and quartz. Dark brown to
								black euhedral to subhedral oxides are present throughout the interval, ranging from medium to coarse-
								grained. Uncommon euhedral to subhedral mm-scale garnets are present throughout. A single mm-scale Mo
								sulphide grain was noted.
								Pegmatite does not have strong internal zonation however crystal size and blocky feldspar decrease slightly
								downhole. Contains an interval of decreased grain size (<10 mm) that locally contains up to 20-25%
								spodumene at 142.83-143.39 m. Internal banding occurs at a high angle to the core axis. The orientation of
								the upper contact has an alpha of 52 degrees and a beta of 62 degrees while the lower contact orientation
RL21-01	144.90	170.00				MV	Mafic Volcanics	Dark green mafic volcanics containing actinolite, epidote, chlorite +- accessory magnetite. Also contains up to
								1% fine-grained subhedral to euhedral sulphides including pyrrhotite, pyrite and chalcopyrite. Medium to
								strong foliation throughout. Foliation is oriented at a mediumm to high to the core axis. Interval is mildly
								magnetic, possibly due to accessory magnetite and pyrrhotite. Grain size is coarse and increases to very
			454.00	450.44				coarse downhole. Black to dark brown needles are present (up to 10 mm) and are associated with sulphides.
			151.22	152.11		PEG		Unmineralized pegmatite intervals occur from 151.22-152.11 m and 155.51-155.86 m. They are
								predominantly composed of quartz, k-feldspar, secondary cleavelandite, green-brown muscovite and

RL21-01 Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
			155.51	155.86		PEG		Unmineralized pegmatite intervals occur from 151.22-152.11 m and 155.51-155.86 m. They are
								predominantly composed of quartz, k-feldspar, secondary cleavelandite, green-brown muscovite and
RL21-01	170.00	EOH						

RL21-01 Samples

	F ara and T ar and		Commist.	Queda	1.46.01.0.000					Mine	ralizati	ion Dis	tributio	n (tr. T	o %)						F	esults for	elements	of interes	st
DDH_ID	From_m To_m	Width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Ġrt	Brl	Ру	Mcl	Cst	llm	Tour	Csppm l	ippm	Rbppm	Tappm	Li%
RL21-01	78.62 79.62	1.00	413001	MV																	3.2	328	15.7	1.5	5 0.0328
RL21-01	79.62 80.62	1.00	413002	MV																	92.7	410	180	2.5	5 0.041
RL21-01	80.62 82.21	1.59	413003	PEG						15	30	40	15								42.4	39	330	177	7 0.0039
RL21-01	82.21 83.22	1.01	413004	MV																	90	294	242	1.9	9 0.0294
RL21-01	83.22 84.23	1.01	413005	MV																	6.9	102	42.3	1.6	6 0.0102
RL21-01	138.30 139.37	1.07	413006	MV																	59.3	1170	132	1.3	3 0.117
RL21-01	139.37 139.88	0.51	413007	MV																	114	1900	276	2.3	3 0.19
RL21-01	139.88 141.58	1.70	413008	SPD-PEG	i	15				40	20	10	15								147	3040	2800	41.5	5 0.304
RL21-01	141.58 143.87	2.29	413009	SPD-PEG	ì	15				35	25	15	10								188	6280	3510	75.3	3 0.628
RL21-01	143.87 144.90	1.03	413010	SPD-PEG	i	5				40	30	20	5								126	329	2380	123	3 0.0329
RL21-01	144.90 145.41	0.51	413011	MV																	189	1200	408	5.8	8 0.12
RL21-01	145.41 147.40	1.99	413012	MV																	25	766	75.5	1.3	3 0.0766
RL21-01	147.40 149.40	2.00	413013	MV																	27.6	776	26.7	1.3	3 0.0776
RL21-01	149.40 151.22	1.82	413014	MV																	30.5	789	70.3	1.1	1 0.0789
RL21-01	151.22 152.11	0.89	413015	PEG						60	20	5	15								81.1	113	955	106	6 0.0113
RL21-01	152.11 153.80	1.69	413016	MV																	46.3	1100	125	1.2	2 0.11
RL21-01	153.80 155.50	1.70	413017	MV																	228	881	568	4.5	5 0.0881
RL21-01	155.50 155.86	0.36	413018	PEG						30	30	20	20						_		88.5	128	651	274	0.0128
RL21-01	155.86 156.86	1.00	413019	MV																	318	833	918	4.7	7 0.0833

		Hole Id:	RL21-02		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Microlite Lake			Date Logged:	March 22-23/21
Client:	International Lithium Corp.			Tech By	G.Waldock

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576689	Azimuth:	330
	Northing:	5473464	Dip:	-70
	Elevation:	478.0	Length:	209.0
Proposed:		RL_20_'B'		
	Easting:	576685	Azimuth:	308
	Northing:	5473462	Dip:	-70
	Elevation:	475	Length:	200

Survey Type		Ez-trac Single Shot	
Distance	Azi	Dip	Accept
14.00	324.6	-68.2	Rejected.
44.00	332.4	-65.8	Y
74.00	322.1	-68.9	Y
104.00	325.9	-68.5	Y
134.00	325.2	-68.5	Y
164.00	327.3	-68.5	Y
194.00	333.4	-68.1	Y

Drilling Inform	nation:		
Ũ	Contractor:	Rodren	
	Core Diameter:	NQ	
	Start Date:	March 22/21	
	End Date:	March 23/21	
	Casing In:	Gran	
	Casing Capped:	Yes	
	Units:	Metric	
	Oriented:	Yes	

Hole Objective: Testing town dip continuity of pegmatite mineralization below RL99-05 to RL21-01.

Hole Summary: Hole lost water at 59 m. This hole started in a moderately magnetic equigranular, pink granodiorite with patche sof K-alteration. This subvolcanic intrusive unit may be related to the Raleigh Lake pluton and appears to have internal folation fabrics parallel to volcanic regional fabrics. This granodiorite changes to Coarse gabbros and volcanic rocks to a depth of 91.25m. A zoned Pegmaitte occurs from 91.25 to 94.55 which is interpreted as Pegmatite #3. This pegmatite is composed of narrow wall zones and a spodumene dense intermediate zone with spd crystals elongated normal to the pegmatite contact orientations. Spodumce concentration is approximately 12-15% overall. Below this pegmatite there are both mafic volcanic rocks which changes to gabbro at 146.27m. A prophyritic gabbr occurs from 146.27-187.56 which appears to be a host for. This gabbro contains 10-15% phenocrysts of beige feldpars up to 1.5cm in size. A Well mineralized spodumene pegmatite occurs from 187.56-194.00m. This is interpreted to be pegmatite #1. Sharp high angle contact to the gabbro host and it also contains green spodumene oriented normal to contacts and zone margins and as large as 25cm. Overall 15% spodumene through interval. Porphyritic gabbro is at the base of the pegmatite and hole terminates in MV.

		Lithology Summ	nary
From	То	Lith	Comment
2.64	55.34	GRAN	
55.34	62.36	GAB	
62.36	73.68	GRAN	
73.68	91.25	MV	
91.25	94.55	SPD-PEG	Pegmatite #3 12% Spd
94.55	124.32	MV	
124.32	146.27	IV	
146.27	187.56	PGAB	
187.56	194.00	SPD-PEG	Pegmatite #1 15% Spd
194.00	206.66	PGAB	
206.66	209	MV	
209	EOH		

RL21-02 Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-02	0.00	2.64				OVBD		Overburden
RL21-02	2.64	55.34				GRAN	Granodiorite	massive, phanentic, relatively equigranular granodionite. Zones of potassic (K-rich) alteration present, strongly associated with minor disseminated magnetic and non-magnetic sulphide minerals (unaltered GRAN is commonly non-magnetic). Mafic minerals include primary biotite and secondary magnetite. Short interval of mafic volcanics from 17.97-18.21 m. Minor amounts of chlorite (?) also present.
								Approximate Modal (unaltered?): 45 Quartz, 40 Plag, 15 Mafics (Quartz Monzodiorite/Granodiorite) Approximate Modal (Potassic alteration?): 40 Plag 20 K-spar 25 Qtz 15 Mafics
RL21-02			17.97	18.21		MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite and minor sulphides. Fine to medium-grained, little to no foliation and variably magnetic. Lower contact is approximately 75 degrees to the core axis. Upper contact has an alpha of ~45 degrees.
RL21-02	55.34	62.36				GAB	Gabbro	biotite and disseminated sulphides + common sulphide blebs (<2 mm). Contains pyrrhotite +- magnetite. Chlorite alteration increases slightly downhole.
								Approximate Modal (~40 Plag, 40 Amphiboles, 10 Chlorite, 5 Epidote, 3 Biotite, 2 Sulphides)
								Gabbro has undergone regional metamorphism resulting in alignment of amphibole minerals (fabric). Fabric and grain size change considerably over the interval. Fabric appears to be influenced by the proximity of GRAN contacts and mm to cm-scale veins. Fabric displays cross-cutting relationships. See detailed photos.
								Upper contact is at a low angle to the core axis (alpha ~ 5) while the lower contact with GRAN is at a high angle to the core axis (~75 degrees). See detailed photos for contact nature.
RL21-02	62.36	73.68				GRAN	Granodiorite	Massive, phaneritic, relatively equigranular granodiorite. Zones of potassic (K-rich) alteration present, strongly associated with minor disseminated magnetic and non-magnetic sulphide minerals. Mafic minerals include primary biotite and secondary magnetite.
								Approximate Modal (Potassic alteration?): 40 Plag 20 K-spar 25 Qtz 15 Mafics
RL21-02			65.43	65.99		GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and secondary chlorite, epidote, biotite and disseminated sulphides + common sulphide blebs (<2 mm). Contains pyrrhotite +- magnetite. Chlorite alteration increases slightly downhole.
RL21-02			65.99	69.46		GRAN	Granodiorite	Massive, phaneritic, relatively equigranular granodiorite. Zones of potassic (K-rich) alteration present, strongly associated with disseminated magnetic sulphide minerals.
RL21-02			69.46	71.98		GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and secondary chlorite, epidote, biotite and disseminated sulphides + common sulphide blebs (<2 mm). Contains pyrrhotite +- magnetite.
RL21-02			71.98	73.68		GRAN	Granodiorite	Massive, phaneritic, relatively equigranular granodiorite. Zone contains less sulphides and substantially less K-spar alteration. Less than 5% of plagioclase shows K-spar alteration.
RL21-02	73.68	83.94				MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite and minor sulphides. Fine to medium-grained, little to no foliation and variably magnetic.
RL21-02			79.59	80.41		FP	Feldspar Poprhyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-3 mm), medium-grained anhedral grey quartz and fine-grained biotite. Upper and lower contacts are diffuse and appear to be at a high angle to the core axis. Feldspar grains exhibit diffuse grain boundaries.
RL21-02	83.94	88.26				GRAN	Granodiorite	Massive, phaneritic, relatively equigranular granodiorite. Plagioclase grain boundaries are more diffuse and grain size decreased compared to granodiorite intervals uphole.

RL21-02 Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-02	88.26	91.25				MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained,
								weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and
								thicknesses; veins commonly zoned with garnet strongly associated with epidote.
RL21-02	91.25	94.55				SPD-PEG		smoky gray, extremely coarse-grained. Potassium Feldspar is salmon-pink, blocky or sucrosic and commonly replaced
								by cleavelandite. Cleavelandite is secondary and exhibits radiating pseudo-acicular euhedral to subhedral habit in
								crystals. Spodumene displays elongated mint-green crystals ranging from subhedral mm-scale to euhedral to subhedral
								cm-scale crystals(~up to 8 cm long and 1.5 cm wide, one crystal measuring 13x2 cm noted at 93 m). Muscovite is
								green/brown, typically subhedral to euhedral.
								Demotite has mild internal consting. Contains on interval of decreased arein size $($
								Pegmatite has mild internal zonation. Contains an interval of decreased grain size (<10 mm) at 93.53-93.81 m. Internal
								banding occurs at a medium-high angle to the core axis. The orientation of the upper contact has an alpha of 75 degrees
								while the lower contact orientation has an alpha of 55 degrees. Beta measuremements were not taken; there was an extremely low degree of confidence in the orientation marks due to equipment malfunction.
RL21-02	94.55	124.32				MV		Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained,
RL21-02	94.55	124.32				IVI V		weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and
RL21-02	124.32	146.27				IV	Intermediate Volcanics	thicknesses; veins commonly zoned with garnet strongly associated with epidote. Intermediate volcanics containing actinolite, epidote, chiorite, sulphides and minor garnet. Fine to medium-grained,
1121 02	124.02	140.27				1.4		weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and
								thicknesses; veins commonly zoned with garnet strongly associated with epidote. Magnetic pyrrhotite stringers are
								present throughout but more common downhole.
								High-angle felsic vein (~40 cm thick) at 138.89.
RL21-02			97.64	97.83		PEG	Pegmatite	Unmineralized pegmatite intervals predominantly composed of quartz, k-feldspar, secondary cleavelandite, green-brown
							0	muscovite and accessory oxides. Upper and lower contacts are at a high angle to the core axis.
RL21-02			125.70	125.85		PEG	Pegmatite	Unmineralized pegmatite intervals predominantly composed of quartz, k-feldspar, secondary cleavelandite, green-brown
								muscovite and accessory oxides. Upper and lower contacts are at a high angle to the core axis.
RL21-02	146.27	187.56				GAB	Gabbro	Strongly foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor
								sulphides. Chaotic stringer veins containing epidote, minor garnet and sulphides are present throughout, as well as a
								medium to high-angle planar quartz vein set. Sheared vein example at BLANK, see detailed photo. Feldspar Porphyry contains fine to medium-coarse grained blocky feldspar (<1-3 mm), medium-grained anhedral grey
RL21-02			170.29	170.57		FP	Feldspar Poprhyry	
								quartz and fine-grained biotite. Upper and lower contacts are diffuse and appear to be at a high angle to the core axis
			170 57	407.50		0.15		Feldspar grains are subhedral to anhedral and exhibit diffuse grain boundaries.
RL21-02			170.57	187.56		GAB		Strongly foliated porphyroblastic (or altered phenocrystic) greenschist facies meta-gabbro containing actinolite,
								hornblende, biotite, plagioclase and minor sulphides. Phenocrysts are composed of dull white material (hardness ~5),
								are generally equant, subhedral and range from 2-10 mm in diameter, rarely up to 15 mm. Size generally increases with
								proximity to spodumene-bearing pegmatite.

RL21-02 Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-02	187.56	194.00				SPD-PEG		Spodumene-bearing pegmatite containing Quartz, K-Feldspar, Albite/Cleavelandite, Muscovite, minor Garnet +- accessory oxides and sulphides. Quartz is smoky gray, extremely coarse-grained. Potassium Feldspar is salmon-pink to pale creamy pink and blocky. Albite is commonly sucrosic and replaced by cleavelandite. Secondary cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. Spodumene displays elongated mint-green crystals ranging from subhedral mm-scale to euhedral to subhedral decimeter-scale crystals (~up to 20 cm long and 4 cm wide, one crystal measuring 25 cm noted). Euhedral to subhedral garnets are commonly found bordering the spodumene. Muscovite is coarse-grained green/brown, typically subhedral to euhedral. Pegmatite displays internal zonation. Wall zone measuring approximately 23 cm is noted at the UPCT, contains sucrosic aplite variably replaced by radiating cleavelandite. Transitions into a muscovite and quartz-rich zone, ~5 cm thick and into a zone of blocky K-spar, albite and quartz with skeletal spodumene (oriented approximately normal to UPCT) measuring up to 20 cm. At 189.4 m, the K-spar and albite content drastically decreases and transitions into a quartz and spodumene rich zone (possible peg core?). Another zone of skeletal spodumene oriented normal to the LWCT contact is noted at 193.10 m. At 193.35, the spodumene content decreases sharply and remains low until the LWCT.
RL21-02	194.00	206.66				GAB	Gabbro	the core axis. Internal banding occurs at a medium-high angle to the core axis. Strongly foliated porphyroblastic (or altered phenocrystic) greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides. Phenocrysts are generally anhedral and range from 2-5 mm on average.
RL21-02	203.13	209.00				MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and thicknesses; veins commonly zoned with garnet strongly associated with epidote.
	209.00	EOH						

RL21-02 Sample Sheet

		To m		Commist.	Quala	1.1414 - 1					Mine	ralizati	on Dist	tributio	on (tr. 1	Го %)							Ele	ments o	Interest		
DDH_ID	-rom_m	IO_M	Width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap				Ms	Ġrt		Ру	Mcl	Cst	llm	Tour	Csppm	Lippm	Rbppr	n Tapp	m Li	.i%
RL21-02	88.50	89.50	1.00	413020	MV	Mafic																3.4	22	5	1.2	1.1	0.0225
RL21-02				413021	STD MF-1																	58.3	802	0 📃 1	700	<mark>9</mark> 7.5	0.802
RL21-02	89.50	90.50		413022	MV																	4.8	29	3	7.7	1.2	0.0293
RL21-02	90.50	91.25		413023	MV																	2.5	50	8 2	4.6	1.1	0.0508
RL21-02	91.25	92.00		413024	SPD-PEG		1				50	25	15	10								300	44	0 3	340	1 05	0.044
RL21-02	92.00	93.35		413025	SPD-PEG		20				35	20	15	9	1							266			230	141	1.12
RL21-02	93.35	94.55		413026	SPD-PEG		15				30	20	20	14	1							150			150	<mark>9</mark> 9.8	0.355
RL21-02	94.55	95.00		413027	GAB																	77.9		-	188	1.4	0.109
RL21-02	95.00	96.00		413028	GAB																	11.1	=		5.7	1.3	0.0861
	96.00	97.10		413029	GAB																	1.4	-		7.4	1.2	0.0574
RL21-02	184.00	185.00		413030	GAB	13 cm rep																59.6			142	1	0.061
RL21-02				413031	BLANK																	0.8		1. A.	4.3	1.2	0.0021
RL21-02		186.00		413032	GAB																	178			456	1.1	0.134
		187.10		413033	GAB																	332			385	1	0.217
RL21-02		187.58		413034	GAB																	303			302	2	0.234
RL21-02		188.60		413035	SPD-PEG		15				30	20	25	9	1							133		-		48.2	0.384
RL21-02		189.40		413036	SPD-PEG		10				30	25	20	14	1							115			350	44.6	0.466
		191.00		413037	SPD-PEG		15				50	10	10	14	1							59.2		-	312	48.8	0.709
RL21-02		192.50		413038	SPD-PEG		8				35	20	20	15	2							113	-	_	380	30.8	0.0372
RL21-02		193.35		413039	SPD-PEG		10				50	20	15	15	1							34.7			638	32.9	0.44
	193.35	194.00		413040	SPD-PEG		10				40	20	20	9	1							79.4			140	78.2	0.132
RL21-02	10100	101.1-		413041	STD MF-1																	59.7	811	-		117	0.811
		194.45		413042	GAB																	210			561	1.1	0.182
RL21-02		195.00		413043	GAB																	419			751	0.9	0.319
		196.00		413044	GAB																	135			223	0.8	0.11
		197.00		413045	GAB																	86.8			188	0.7	0.101
RL21-02	197.00	198.10		413046	GAB																	61.5	64	5	116	1.1	0.0645

		Hole Id:	RL21-03		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Microlite Lake area			Date Logged:	March 24-25/21
Client:	International Lithium Corp.			Tech By	G.Waldock

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576583	Azimuth:	308
	Northing:	5473516	Dip:	-70
	Elevation:	468	Length:	170.0
Proposed:				
	Easting:	576582	Azimuth:	308
	Northing:	5473520	Dip:	-70
	Elevation:	472	Length:	175

Survey Type	:	Ez-trac Single Shot	
Distance	Azi	Dip	Accept
14	311.5	-68.4	Y
44	312.9	-68	Y
74	312.3	-67.9	Y
104	313.3	-67.7	Y
134	316.5	-68.0	Y
164	319.7	-68.0	Y

Drilling Inform	nation:		
	Contractor:	Rodren	
	Core Diameter:	NQ	
	Start Date:	24-Mar-2021	
	End Date:	25-Mar-2021	
	Casing In:	yes	
	Casing Capped:	Yes	
	Units:	Metric	
	Oriented:	Yes	

Hole Objective: Testing continuity between historical pegmatite intersections between RL10-01 and RL01-07

Hole Summary: RL21-03 collared in to gabbro. Pegmatite #3 occurs from 27.19 to 28.27 and 29.86 to 33.09. It is generally spodumene-rich with 10-15% in the narrow one above and up to 20% in the second interval from 29.86 to 33.09m. This pegmatite is hosted by a porphyritic gabbro. The proceeding spodumene bearing pegmatite occurs from 150.52 to 153.84 which is interpreted as pegmatite #1. Spodumene crystal development is lower than the shallower intersection which makes up about 3% of the interval. Pegmatite contacts for both pegmatites are at high angles to regional fabric planes.

		Lithology Summary	
From	То	Lith	Comment
0.00	2.09	OVBD	
2.09	27.19	GAB	
27.19	28.27	SPD-PEG	Peg #3 10% Spd
28.27	29.86	GAB	
29.86	33.09	SPD-PEG	Peg #3 20% Spd
33.09	70.30	PGAB	
70.30	144.58	MV	
144.58	146.57	GAB	
146.57	149.76	FP	
149.76	150.07	PEG	
150.07	150.52	FP	
150.52	153.84	SPD-PEG	Peg #1 3% Spd
153.84	154.86	FP	
154.86	156.31	GAB	
156.31	170	GAB	

RL21-03_ Major and Minor Lithology

DDH_ID	DDH_ID From_m To_m S		SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-03	0.00	2.09				OVBD		Overburden
RL21-03	2.09	27.19				GAB	Gabbro	Strongly foliated amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and secondary chlorite, epidote, biotite and disseminated sulphides + common sulphide blebs (<2 mm). Variably magnetic.
RL21-03			17.59	19.02		FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and fine-grained biotite. Upper and lower contacts are at a medium to medium-high angle to the core axis Feldspar grains are subhedral to anhedral and exhibit diffuse grain boundaries at its lower contact with the GAB. Some feldspar grains are slightly K-spar altered around a medium-low angle mm-scale vein at 18.16 & 18.82 m in addition to a diffuse K-spar altered 3 cm interval at 18.97 m. Variably magnetic.
RL21-03	27.19	28.27				SPD-PEG	Spodumene Pegmatite	Spodumene-bearing quartz-rich pegmatite. Spodumene crystals are significantly altered, with dark rims as well as mild internal color and textural changes (see detailed photos). Garnet commonly rims spodumene crystals in association with oxides and oxide staining. Cleavelandite is coarse-grained, euhedral to subhedral and oriented normal to spodumene rims or replaces minor albite at the beginning of the interval. Short interval of blocky K-spar/microcline is found from 27.85 to 28.09 m. bordered by an albite/cleavelandite and muscovite-rich
RL21-03	28.27	29.86				GAB	Gabbro	Amphibole-rich phaneritic/coarse mafic intrusive containing actinolite, hornblende, plagioclase and secondary chlorite, epidote, biotite and disseminated sulphides + common sulphide blebs (<2 mm). Variably magnetic.
RL21-03	29.86	33.09				SPD-PEG	Spodumene Pegmatite	Pegmatite displays internal zonation, approximately 3 zones present. From the UPCT to 31.04 m, the interval contains sucrosic aplite variably replaced by radiating cleavelandite, smokey-grey blocky quartz with minor muscovite. Skeletal mint-green spodumene crystals radiate normal to the UPCT, up to 10-12 cm long and 1 cm thick. Spodumene crystals within 20 cm of the UPCT have altered rims.
								Transitions into a quartz and pale mint-green to white spodumene-rich zone until ~32.09 m. Grain size generally decreases downhole. From 32.36-32.75 m, an intergrowth or mass of quartz and ~1 cm spodumene crystals is noted (SQI?). The mass interval is bordered on either side by a ~30 cm interval of quartz-muscovite-Kspar-cleavelandite with minor spodumene.
RL21-03	33.09	70.30				PGAB	Porphyritic Gabbro	Strongly foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides. Uncommon phenocrysts are generally anhedral, ranging from 3-5 mm. Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and thicknesses; veins commonly zoned with garnet strongly associated with epidote. Gradual increase in grain size towards GAB contact downhole.
			41.05	48.34		MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and thicknesses; veins commonly zoned with garnet strongly associated with epidote. Gradual increase in grain size towards GAB contact downhole.
			64.98	65.88		IV	Intermediate Metavolcanic	Intermediate volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and thicknesses; veins commonly zoned with garnet strongly associated with epidote.
RL21-03	70.30	144.58				MV	Mafic Metavolcanic	Green mafic volcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, weakly to strongly foliated and variably magnetic. Stringer veins are chaotic and exhibit a range of orientations and thicknesses; veins commonly zoned with garnet strongly associated with epidote. Interval of increased grain size between ~96.5-98.5 m. Possibly gabbro? Uncommon phenocrysts between ~81 and 97
			105.80	106.11		PEG	Pegmatite	m_measuring 3-30 mm (average 5 mm) Unmineralized pegmatite containing Quartz, Albite, Cleavelandite, Muscovite and K-spar. Contacts with MV are at a high angle to the core axis.

RL21-03_ Major and Minor Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
			143.88	144.45				Interval of decreased grain size from 143.88-144.45 m, also characterized by less deformation/veining.
			144.45	144.58		PEG	Pegmatite	Pegmatite vein measuring 3 cm, containing Albite, Quartz, Kspar, minor muscovite and oxides. Medium-high contacts.
RL21-03	144.58	146.57				GAB		Highly altered and strongly foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides.
RL21-03	146.57	149.76				FP		Feldspar Porphyry contains fine to medium-grained blocky feldspar (<1-2mm), fine to medium-grained anhedral grey quartz and fine-grained biotite. Feldpsar boundaries become diffuse downhole and feldspar content also decreases downhole.
RL21-03	149.76	150.07				PEG		Unmineralized albitic pegmatite containing Quartz, Albite, Cleavelandite, Muscovite and K-spar. Upper and lower contacts are at a high angle to the core axis.
RL21-03	150.07	150.52				FP		Feldspar Porphyry contains fine to medium-coarse grained blocky feldspar (<1-3 mm), medium-grained anhedral grey quartz and fine-grained biotite. Uncommon Kspar-bearing veinlets infiltrate FP and feldspar grains in close proximity are creamy-pink.
RL21-03	150.52	153.84				SPD-PEG		Spodumene-bearing pegmatite containing Quartz, K-Feldspar, Albite/Cleavelandite, Muscovite, Garnet +- accessory oxides and possible tourmaline. Quartz is smoky gray, extremely coarse-grained. Potassium Feldspar is salmon-pink to pale creamy pink and blocky, concentrated in the upper half of the interval.
								Albite is commonly sucrosic and replaced by cleavelandite. Secondary cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. Spodumene is predominantly blocky and subhedral with a transition to elongated subhedral to euhedral cm-scale crystals (one crystal measuring 15 cm noted). Euhedral to subhedral garnets are commonly found bordering the spodumene. Altered spodumene rims are also present, as well as oxides and possible tourmaline. Muscovite is coarse-grained green/brown, typically subhedral to euhedral.
								At 152.10 m, pegmatite increases in spodumene content and decreases in K-spar and albite. UPCT has an alpha of
RL21-03	153.84	154.86				FP		Feldspar Porphyry contains fine to medium-coarse grained blocky feldspar (<1-3 mm), medium-grained anhedral grey quartz and fine-grained biotite. Bleaching occurs in proximity to the upper and lower contacts, along with an increase in grain size downhole. Bleached zone is ~20 cm at the upper contact and ~45 cm at the lower contact.
RL21-03	154.86	170.00				GAB		Strongly foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides. Low angle upper contact with FP. 15 cm alteration 'bleached' (possibly carbonate/clay rich) alteration halo. Lower contact of alteration halo is at a medium-high angle to the core axis followed by an m interval of increased grain size and phenocrysts until 158.82 m.
RL21-03			155.55	156.31		FP		Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and fine-grained biotite. Feldspar grains are subhedral to anhedral and exhibit diffuse grain boundaries. FP contains inclusion of GAB (see detailed photos). Evidence of baked margins on GAB and quenching on the FP surrounding the GAB intrusion.
	170.00	EOH						

		_		• • • •							Mine	ralizati	ion Dis	tributio	n (tr. T	o %)							Elen	nents of Int	erest	
DDH_ID	From_m	To_m	Width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Grt	Brl	Ру	Mcl	Cst	llm	Tour	Csppm	Lippm		Таррт	Li%
RL21-03	25.63	26.66	1.03	413047	gab																	1.5	484	13.2	0.9	0.0484
RL21-03	26.66	27.19	0.53	413048	gab																	30.7	1130	92.3	1	0.113
RL21-03	27.19	28.27	1.08	413049	spd-peg		10				35	20	25	10								71.4	563	6 🔲 1640	64.5	0.0563
RL21-03	28.27	29.86	1.59	413050	gab																	160	1870	441	2.3	0.187
RL21-03				413051	blank																	0.7	15	5.7	1	0.0015
RL21-03	29.86	31.04	1.18	413052	spd-peg		20				30	15	25	10								197	9160	4210	17.9	0.916
	31.04	32.09	1.05	413053	spd-peg		25				40	10	15	10								161	12500		81.5	
	32.09	33.09	1.00	413054	spd-peg		15				40	15	15	15								179	5210	1880	207	
	33.09	33.64	0.55	413055	gab																	997			13.4	
	33.64	34.67	1.03	413056	gab																	16.3			0.7	
	104.30	105.30		413057	gab																	22.3			0.9	
	105.30	105.80		413058	mv																	2.7			1.1	
	105.80	106.11	0.31	413059	peg						50	20	15	15								30.4				
	106.11	106.66	0.55	413060	mv																	8.2			1.1	
RL21-03				413061	std																	57.6		1790	112	
RL21-03			0.95	413062	mv																	7			0.8	
	148.12	149.24		413063	fp																	102			2.7	
	149.24	149.76		413064	fp																	237			2.8	
	149.76	150.07	0.31	413065	peg						30	30	30	9	1							139			96.1	
	150.07	150.54		413066	fp																	396			11.7	
	150.54	152.11	1.57	413067	spd-peg		2				20	30	35	12	1							174			36.4	
	152.11	153.45		413068	spd-peg		5				40	17	20	15	2						1	92.5			88.8	
	153.45	153.84	0.39	413069	fp																	150			2.6	
	153.84	154.86		413070	fp																	95.4			1.8	
	154.86	155.55		413071	blank																	0.8			0.9	
	155.55	156.40		413072	gab																	227			0.8	
	156.40	158.00	1.60	413073	fp																	103			32.1	
RL21-03	158.00	159.02	1.02	413074	gab																	40.1			2	
				413075	gab																	138	794	406	1	0.0794
																										<u> </u>
																										
																										
]

		Hole Id:	RL21-04		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Microlite Lake-Mian Pegmatite Fi			Date Logged:	March 26-27
Client:	International Lithium Corp.			Tech By	G.Waldock

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576877	Azimuth:	308
	Northing:	5473355	Dip:	-70
	Elevation:	485	Length:	185.0
			Declin.	1.5°W (-1.5)
Proposed:				
	Easting:	576799	Azimuth:	308
	Northing:	5473369	Dip:	-70
	Elevation:	480	Length:	200

Survey Type:		Ez-trac Single Shot	
Distance	Azi	Dip	Accept
14	313	-67.5	Y
44.00	313.5	-67.3	Y
74.00	315	-67.3	Y
105.00	318.5	-67	Y
134.00	328.7	-66.9	Y

From	То	Lith	Comment
0	1.89	OVBD	
1.89	23.05	MV	
23.05	27.82	FP	
27.82	57.38	MV	
57.38	58.37	FP	
58.37	63.51	MV	
63.51	64.43	FP	
64.43	180.00	MV	

Drilling Information:	
Contractor:	Rodren
Core Diamet	er: NQ
Start Date:	26-Mar-2021
End Date:	27-Mar-2021
Casing In:	MV
Casing Capp	bed: Yes
Units:	Metric
Oriented:	Yes

Hole Objectiv	re: Informal resource definition	

Hole Summary: RL21-04 is predominantly composed of mafic volcanic sequences and narrow feldspar porphyry intrusions. Pegmatites or spodumene-bearing pegmatites were not encountered in this hole. The entire volcanic pile consists of dark green to green and fine grained mafic volcanic rocks that are different from other areas drilled to date and characterized by an abundance of chlorite-epdiote-qtz-cabronate and garnetiferous stringer veins. These stringer veins and their cabronate components have dissolution features (meteoric dissolution) The depth to which the carbonate has been dissolved is probably a reflection of the a fault hacing a similar orientation to the drill stem. These volcanic rocks are significantly more magnetic that MVs in adjoining holes. No pegmatites were intersected. The lack of pegmatite and uniques to the MV rock may a be results of the adjoining fault block to the NW being uplifted. The relatively stronger magetism may be reflected in the UAV mag data.

RL21-04 Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-04	0.00	1.89				OVBD		Overburden
RL21-04	1.89	23.05				MV	Mafic Metavolcanics	Green mafic volcanics containing actinolite, epidote, chlorite, magnetite (secondary) and 1-3% disseminated magnetic and non-magnetic sulphides (pyrrhotite + pyrite) as well as common mm-scale (<2mm sulphide blebs). Fine-grained epidote, chlorite, quartz and carbonate with coarse-grained actinolite. Garnet is rare compared to mafic volcanic sequences in previous holes (RL21-01 to RL21-03).
RL21-04	23.05	27.82				FP	Feldspar Porphyry	Mildly foliated with common sulfide stringers parallel to foliation. Up to 10% sulphides locally. Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-5 mm, 2 mm average), medium-grained anhedral grey quartz and medium-grained biotite. Feldspar grains exhibit diffuse grain boundaries and K-spar alteration/staining is present in Feldspar and groundmass.
								Zones of K-spar alteration present, strongly associated with minor disseminated magnetic and non-magnetic sulphide minerals. Mafic minerals include primary biotite and secondary magnetite
RL21-04	27.82	57.38				MV	Mafic Metavolcanics	Green mafic volcanics containing actinolite, epidote, chlorite and 1-3% disseminated magnetic and non-magnetic sulphides (pyrrhotite + pyrite) as well as common mm-scale (<2 mm) sulphide blebs and rare euhedral grains (<2 mm). Fine-grained epidote, chlorite, quartz and carbonate with coarse-grained actinolite. Garnet is rare compared to mafic volcanic sequences in previous holes (RL21-01 to RL21-03).
								Well-developed foliation. Highly magnetic.
			54.69	54.79		PEG	Pegmatite	Pegmatitic vein containing Ab, Qtz, Musc and unknown fibrous green-blue mineral (hardness <4).
RL21-04	57.38	58.37				FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-5 mm, 2 mm average), medium-grained anhedral grey quartz and fine-grained biotite. Feldspar grains exhibit diffuse grain boundaries and K-spar alteration/staining. Variable weak magnetism present.
RL21-04	58.37	63.51				MV	Mafic Metavolcanics	Green mafic volcanics containing actinolite, epidote, chlorite, magnetite (secondary) and 2-3% disseminated magnetic and non-magnetic sulphides (pyrrhotite + pyrite) as well as common mm-scale (<2mm sulphide blebs). Fine-grained epidote and chlorite with coarse-grained actinolite. Garnet is rare compared to mafic volcanic sequences in previous holes (RL21-01 to RL21-03). Highly magnetic.
RL21-04	63.51	64.43				FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-5 mm, 2 mm average), medium-grained anhedral grey quartz and fine-grained biotite. Feldspar grains exhibit diffuse grain boundaries and K-spar alteration/staining. Variable weak magnetism present.
RL21-04	64.43	180.00				MV	Mafic Metavolcanics	Green mafic volcanics containing actinolite, epidote, chlorite, magnetite (secondary) and 2-3% disseminated magnetic and non-magnetic sulphides (pyrrhotite + pyrite) as well as common mm-scale (<2mm sulphide blebs). Locally up to 5% sulphides. Fine-grained epidote, chlorite and magnetite with coarse-grained actinolite. Garnet is rare compared to mafic volcanic sequences in previous holes (RL21-01 to RL21-03).
								Highly magnetic.
								Vein containing Ab+Qtz+Musc noted from 95.19-95.33 m.
			92.00	111.00				Prominent dissolution textures. Dissolution is more common in epidote+chlorite veins where carbonate minerals have dissolved, leaving behind guartz+ep+chl. Highly magnetic.
			130.00	143.00				Zone of increased grain size within mafic volcanics.
		+	143.00	146.50				Deformed zone with locally increased concentrations of quartz, coarse-grained biotite and actinolite. Decrease in epidote
			143.00	140.00				and chlorite content in association with chaotic quartz-carb veins/alteration. Weakly to non-magnetic.
	180.00	EOH						
Í								

		Tam	Width m	Comple#	Cada	Lithologu					Mine	ralizatio	on Dist	ributio	on (tr. T	o %)							Elem	ents of Int		
			Width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Ġrt	Brl	Ру	Mcl	Cst	llm	Tour	Csppm	Lippm	Rbppm	Tappm	Li%
RL21-04				413076	MV	check																115			0.8	
RL21-04	143.52	144.97	1.45	413077	MV	check																48.8			0.8 0.7	0.0111
RL21-04	144.97	146.00	1.03	413078	MV	check																105	210	349	0.7	0.021
RL21-04	146.00	146.50	0.50	413079	MV	check																0.8	79	16.9	0.7	0.0079
										-																

Property: Area: Client:	Microlite	jh Lake Iake area Lithium Corp.	Hole Id: 	<u>RL21-05</u>	Logged By: Date Logged: Tech By	KPurdue March 28-29 2021 Gwaldocks	=	COAST MOUNTAIN GEOLOGICAL Mineral Exploration Consultants							
Collar Locat	tion:						Survey Type:		Ez-trac Single Shot						
	Actual:						Distance	Azi	Dip	Accept					
		Datum:	Nad 83 Zone 15				14.00	312.0	-69.00	Y					
		Easting:	576261	Azimuth	: 308		23.00	312.9	-68.40	Y					
		Northing:	5473294	Dip:	-70		53.00	313.5	-68.40	Y					
		Elevation:	479	Length:	173.0		83.00	314.4	-68.50	Y					
l				Declin.	1.5°W (-1.5)		113.00	314.7	-68.60	Y					
	Proposed:						143.00	315.4	-68.50	Y					
		Easting:	576252	Azimuth:	308		173.00	319.6	-68.60	Y					
		Northing:	5473305	Dip:	-70										
		Elevation:	479	Length:	175										
Drilling Infor	rmation:			Hole Objective:Test	ting 1020 ppm Li				Lithology Summary						
	Contractor:	Rodren		lithogeochemical sa		nd the access	From	То	Lith	Comment					
	Core Diameter:		-	trail in addtion to tes			0.00	2.03	OVBD						
	Start Date:	28-Mar-2021	-	pegmaites.			2.03	5.25							
	End Date:	29-Mar-2021	-				5.25	13.76							
1	Casing In:	Left in Hole	-				13.76	14.50		10% Spd					

 Oriented:
 Y

 Hole Summary:
 Mafic and intermediate volcanics are strongly foliated and lack the extensive epi-chlori-qtz-carb veins seen in previous hole RL21-04. Veining typically occurs along or at a low angle to existing foliation. Narrow spodumene pegmatite zones occur from 13.76-14.5 and 86.0-87.63. Both zones contain about 12% fine spodumene and their contact orientations are regional fabric parallel suggesting sill-like geometries. Structural evaluation of contact and regional foliation trends suggest the pegmatites are trending North with moderate dips East.

Casing Capped: Yes

Metric

Units:

0.00	2.03	OVBD	
2.03	5.25	GAB	
5.25	13.76	MV	
13.76	14.50	SPD-PEG	10% Spd
14.50	26.74	GAB	
26.74	44.69	MV	
44.69	64.68	GAB	
64.68	86.00	MV	
86.00	87.63	SPD-PEG	12% Spd
87.63	93.17	GAB	
93.17	173.00	MV	
173.00	EOH		

RL21-05 Lithology

DDH_ID	From_m	To_m	Width	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-05	0.00	2.03	2.03				OVBD	OVBD	Overburden
RL21-05	2.03	5.25	3.22				GAB	Gabbro	Foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides.
RL21-05	5.25	13.76	8.51				MV	Mafic Metavolcanics	Foliated mafic volcanic sequence with fine-grained epidote and chlorite with fine to medium-grained actinolite and minor sulphides.
RL21-05	13.76	14.50	0.74				SPD-PEG	Spodumene Pegmatite	Quartz, Cleavelandite, Muscovite, Spodumene-bearing pegmatite with minor oxides and garnet. 5 cm thick 'wall zone' at the UPCT, consisting of radiating cleavelandite and fine to medium-grained quartz. Lower contact has an alpha measurement of ~65 degrees.
									Spodumene occurs as uncommon pale mint-green to common white subhedral crystals (~2-5 mm), intergrown with quartz and secondary cleavelandite. Uncommon spodumene crystals up to 5 cm present from 14-14.25 m. Partial replacement of spodumene crystals with vellow-green sericite(2). Oxides and subhedral garnet (<2 mm) present.
RL21-05	14.50	26.74	12.24				GAB	Gabbro	Foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides.
RL21-05				25.14	26.74		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05	26.74	44.69	17.95				MV	Mafic Metavolcanics	Green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained, strongly foliated. Quartz veins and veinlets are commonly oriented parallel to the regional metamorphic fabric and commonly contain pyrrhotite +-pyrite blebs. 1-2% disseminated sulphides are also present. Variably magnetic.
DI 04 05				40.47	44.00		B.7		Mafic and intermediate volcanics in RL21-05 lack the extensive chaotic epi-chlor-otz-carb veining seen in previous holes.
RL21-05				43.17	44.69		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains
DI 04 05	44.00	04.00	40.00				0.45	0.11	common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05	44.69	64.68	19.99	00.00	04.00		GAB	Gabbro	Foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides.
RL21-05				62.60	64.68		IV	Intermediate Volcanics	
RL21-05	64.68	86.00	21.32				MV	Mafic Metavolcanics	common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
	04.00	00.00	21.32	65.40	65.54				Foliated mafic volcanic sequence with fine-grained epidote and chlorite with fine to medium-grained actinolite and minor sulphides.
RL21-05				65.40			IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				65.54	66.59		GN GRAN	Granodiorite Gneiss	Containing 45% quartz, 35% plagioclase, and ~20% mafics (biotite). Medium to coarse-grained quartz and plagioclase with coarse to very coarse-grained biotite. Foliation is contiguous with the volcanic foliation, suggestive of a regional metamorphic fabric.
RL21-05				66.81	68.61		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05	86.00	87.63	1.63				SPD-PEG	Spodumene Pegmatite	Quartz, Albite, secondary cleavelandite, muscovite, spodumene, K-spar +- trace sulphides. Quartz is smoky gray, extremely coarse- grained. Minor Potassium Feldspar occurs as uncommon salmon-pink, blocky or sucrosic habit and is commonly replaced by cleavelandite. Secondary Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. The contact between the MV and the SPD-PEG is at a high angle to the core axis (~70) and is parallel to the regional foliation exhibited
									by the volcanic sequences. The first zone is from approximately 86 m to 87.10 m. The first 15 cm of the interval is banded, with Ab-Qtz and Qtz-Ab-Musc-Clv composing the two types of bands. See detailed photos. One mm-scale bleb of Moly noted. A ~6 cm by 3 cm inclusion is noted at 86.25 m. Presence of xenolith has changed the orientation of internal pegmatite banding. Spodumene displays elongated mint-green crystals ranging from euhedral to subhedral cm-scale crystals(~up to 15 cm long and 1 cm wide). Presence of mildly altered rims and spodumene replacement noted throughout. Muscovite is green/brown, typically subhedral to euhedral.
									The second zone from ~87.10 m to 87.63 m is defined by a decrease in grain size and Spodumene occurs as common white subhedral crystals (~1-3 mm) and uncommon pale mint-green crystals, intergrown with quartz, muscovite, and secondary cleavelandite.
RL21-05	87.63	93.17	5.54				GAB	Gabbro	Strongly foliated greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides. The first 10 cm of the interval contains rubble and a 1.5 cm section of clay-rich gouge.
RL21-05	93.17	173.00	79.83				MV	Mafic Metavolcanics	Foliated mafic volcanic sequence with fine-grained epidote and chlorite with fine to medium-grained actinolite and minor sulphides.
RL21-05				102.35	102.48		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				102.48	102.68		PEG	Pegmatite	Quartz-Cleavelandite-Muscovite pegmatitic interval with minor sulphides and garnet. Triangular mafic xenolith present. Quartz is coarse- grained, smoky-grey to white. Secondary Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit and is strongly associated with quartz. Muscovite is brown-green with euhedral to subhedral crystal habit. Molybdenite blebs are <2mm and are concentrated near the xenolith and the contacts. Garnet is ~1-2 mm, subhedral.
			-					8	Upper and lower contacts are parallel to foliation. Bounded by sub m-scale intermediate volcanic intervals

RL21-05 Lithology

DDH_ID	From_m	To_m	Width	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-05				102.68	105.07		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains
									common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				105.07	105.75		PEG	Pegmatite	Quartz-Cleavelandite-Muscovite pegmatite interval with minor sulphides and garnet. Quartz is coarse-grained, smoky-grey to white. Muscovite is brown-green with euhedral to subhedral crystal habit. Secondary Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. Garnet is ~1-2 mm, subhedral. Molybdenite blebs are <2mm and are concentrated near the contacts. Internal banding present (parallel to regional foliation). Crystal size decreases downhole.
									Upper contact is parallel to foliation while the lower contact is has a beta orientation similar to foliation but a slightly steeper alpha measurement
RL21-05				105.75	106.79		IV	Intermediate Volcanics	
RL21-05				106.79	107.06		PEG	Pegmatite	Quartz-Cleavelandite-Muscovite pegmatitic interval with minor sulphides and garnet. Quartz is coarse-grained, smoky-grey to white. Secondary Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. Muscovite is brown-green with euhedral to subhedral crystal habit. Molybdenite blebs are <2mm and are concentrated near the contacts. Garnet is ~1-2 mm, subhedral.
DI 21.05				107.06	107.22		11/	Intermediate Valegaise	Upper pegmatite contact is parallel to regional foliation while lower contact is slightly steeper than FOLN (beta measurements are parallel to FOLN).
RL21-05				107.06	107.32		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				107.32	108.37		PEG	Pegmatite	Quartz-Cleavelandite-Albite-Muscovite pegmatitic interval with minor sulphides and garnet. Quartz is coarse-grained, smoky-grey to
								Ŭ	white. Albite is sucrosic and commonly replaced by radiating pseudo-acicular euhedral to subhedral Cleavelandite. Muscovite is brown-
									green with euhedral to subhedral crystal habit. Molybdenite blebs are <2mm and are concentrated near the contacts. Garnet is ~1-2
									mm, subhedral. Crystal size decreases downhole.
D 1 04 05									Permatite contacts are slightly steeper than regional foliation (UPCT a=85 b=317 & LWCT a=75 b=324)
RL21-05				112.40	113.00		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				118.81	119.23		IV	Intermediate Volcanics	
									common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				133.01	133.69		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral
									grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle veining, foliation is parallel to regional foliation.
RL21-05				134.95	135.32		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral
									grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle
									veining, foliation is parallel to regional foliation.
RL21-05				137.67	138.24		IV	Intermediate Volcanics	
DI 04 05				1.10.00	1.10.00		N /		common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				140.60	140.88		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				141.17	142.04		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral
THEE T GO					112.01			r oldopar r olphyry	grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle
									veining, foliation is parallel to regional foliation.
RL21-05				142.84	143.33		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral
									grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle
DI 04 05				454.50	450.00		N /		veining, foliation is parallel to regional foliation.
RL21-05				151.50	152.00		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Contains common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.
RL21-05				153.91	154.17		FP	Feldspar Porphyry	Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and fine-
				100.01	101.17				grained biotite. Feldspar grains are typically subhedral to euhedral and exhibit sharp grain boundaries.
									This interval does not display the same alteration and lacks the strong foliation seen in the other Feldspar Porphyry intervals, suggesting
DI 21.05				154 17	154.20		N/	Intermediate Valc	that it's a later intrusion.
RL21-05				154.17	154.39		IV	Intermediate Volcanics	
							1		common sulphide stringers containing magnetic pyrrhotite +- pyrite blebs.

RL21-05 Lithology

DDH_ID	From_m	To_m	Width	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-05				154.87	155.34		FP		Feldspar Porphyry contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and fine- grained biotite. Feldspar grains are typically subhedral to euhedral and exhibit sharp grain boundaries.
									This interval does not display the same alteration and lacks the strong foliation seen in the other Feldspar Porphyry intervals, suggesting that it's a later intrusion.
RL21-05				162.82	163.84		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle veining, foliation is parallel to regional foliation.
RL21-05				167.92	169.05		FP		Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive low angle veining, foliation is parallel to regional foliation.
RL21-05									
	173.00	EOH							
			1						

DDH ID	Erom m	To m	Width m	Somalo#	Codo	Lithology					Mine	ralizati	ion Dis	tributio	n (tr. T	Го %)								Elemer	nts of Int	erest	
טו_חטט	From_m	10_m	width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Grt	Brl	Ру	Mcl	Cst	llm	Tour	Csppm	Lipp	m R	oppm	Tappm	Li%
RL21-05	12.25	13.25	1.00	413080	MV																	34.8	8	736	55.2	0.9	0.0736
RL21-05				413081	MF1	STD																60.	7	8320	1850	129	0.832
RL21-05	13.25	13.76		413082	IV																	64	8	1140	1970	4.1	0.114
RL21-05	13.76	14.50		413083	SPD-PE	3	15				40		30	14	1							86.	7	1150	1850	89.8	0.115
RL21-05	14.50	15.03		413084	GAB																	30	0	953	787	2	0.0953
RL21-05	15.03	16.05		413085	GAB																	63.	6	544	51.6	0.8	0.0544
RL21-05	84.54	85.48		413086	GAB																	31.	9	605	45.2	1.8	0.0605
RL21-05	85.48	86.00		413087	GAB																	64	7	1700	948	13.7	0.17
RL21-05	86.00	87.12		413088	SPD-PE	3	10				40	15	20	14	1							12	5	3330	2670	114	0.333
RL21-05	87.12	87.63		413089	SPD-PE	3	15				35	15	20	14	1							7:	2	683	1340	165	0.0683
RL21-05	87.63	88.10		413090	GAB																	22	0	1650 📘	381	1	0.165
RL21-05				413091	BLANK																	0.1	7	14	5.2		0.0014
RL21-05	88.10	89.14		413092	GAB																	9	5	1040	120	1	0.104

		Hole Id:	RL21-06		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Microlite Lake area			Date Logged:	March 30-31/21
Client:	International Lithium Corp.			Tech By	G.Waldocks

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576335	Azimuth:	308°
	Northing:	5473238	Dip:	-70
	Elevation:	475	Length:	176.0
Proposed:		RK_20_'S'		
	Easting:	576331	Azimuth:	308
	Northing:	5473234	Dip:	-70
	Elevation:	478	Length:	175

Survey Type:	: E	z-trac Single Shot	
Distance	Azi	Dip	Accept
14.00	309.2	-71.50	Y
44.00	303.0	-71.10	Y
74.00	305.8	-70.50	Y
104.00	304.2	-70.10	Y
134.00	304.6	-70.00	Y
161.00	305.0	-69.90	Y

Drilling Inform	nation:		
	Contractor:	Rodren	
	Core Diameter:	NQ	
	Start Date:	March 30/21	
	End Date:	March 31/21	
	Casing In:	Left in hole	
	Casing Capped:	Yes	
	Units:	metres	
	Oriented:	yes	

Hole Objective: Pegmatite Veins in RL21-05 were interpeted to be trending N-S so 06 was designed to test

Hole Summary: Partial loss of water return at 74 m and complete loss at 128 m. RL21-06 started in MV which continued down to 62.22m. Spodumene pegmatite was encountered from 62.22-62.95, 126.58-127.94 and 144.36-145.66m. The zones are generally narrow but slightly wider than up-dip hole RL21-05. The pegmatite occurrence from 126.58-127.94 is gabbro hosted. The contact orientations are parellel to regional volcanic fabric/strat. A cursory structural review indicate a North trend and moderate East dip for pegmatite sills.

		Lithology Summary	
From	То	Lith	Comment
0.00	4.75	OVBD	
4.75	8.98	IV	
8.98	16.13	MV	
16.13	33.41	MV	
33.41	49.22	MV	
49.22	62.22	MV	
62.22	62.95	SPD-PEG	
62.95	74.82	MV	
74.82	80.84	GAB	
80.84	115.40	MV	
115.4	126.58	GAB	
126.58	127.94	SPD-PEG	
127.94	131.46	GAB	
131.46	138.21	GNGRAN	
138.21	144.36	MV	
144.36	145.66	SPD-PEG	
145.66	157.65	MV	
157.65	174.86	GAB	
174.86	176	MV	
176	EOH		

RL21-06 Lithology

DDH ID	From m	To m	SubFROM m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-06	0.00	4.75				OVBD	overburden	
RL21-06	4.75	8.98				FV	Felsic Volcanics	Siliceous volcanic sequence, well-developed foliation.
RL21-06	8.98	16.13				MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
								variably magnetic.
RL21-06			15.49	16.13		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06	16.13	33.41				MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
								variably magnetic.
RL21-06			32.49	33.41		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral
								grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive veining.
RL21-06	33.41	49.22				MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
								variably magnetic.
RL21-06			48.08	49.22		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06	49.22	62.22				MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
								variably magnetic.
RL21-06	62.22	62.95				SPD-PEG	Spodumene Pegmatite	Quartz, Albite, secondary cleavelandite, muscovite, spodumene, K-spar, minor garnet and sulphides. Quartz is smoky gray,
								extremely coarse-grained. Potassium Feldspar is creamy-pink and blocky. Cleavelandite exhibits radiating pseudo-acicular euhedral
								to subhedral habit in crystals. Spodumene displays elongated mint-green crystals ranging from euhedral to subhedral cm-scale
								crystals(~up to 10 cm long and 1 cm wide). Muscovite is brown/green, typically subhedral to euhedral. Molybdenite blebs (<2 mm)
								are concentrated in the internal banding present 3 cm after the UPCT.
								Crystal size generally decreases downhole (especially muscovite) and secondary cleavelandite is more prominent.
								The UPCT is at a high angle to the core axis (~75 degrees) and has a beta measurement of 323 degrees. Crosscuts earlier low-angle barren Qtz-Ab-Musc pegmatitic vein. Lower contact has an alpha measurement of ~75 degrees and a beta of 316 degrees which is
								generally concordant with foliation of the underlying mafic volcanic sequence.
RL21-06	62.95	74.82				MV	Mafic Metavolcanic	Green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably
IXL2 1-00	02.95	74.02						magnetic.
RL21-06			73.59	74.82		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-00	74.82	80.84	10.00	74.02		GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and minor secondary chlorite, epidote, biotite
INEZ I 00	14.02	00.04				Grib	Gubbio	and uncommon sulphide blebs. Variably magnetic.
RL21-06			79.92	80.84		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06	80.84	115.40	10.02	00.01		MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
								variably magnetic.
RL21-06			85.03	85.85		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06			86.24	88.74		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Variably
								deformed and folded.
RL21-06			94.10	95.11		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06			96.01	97.55		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06			108.80	109.95		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06			110.00	110.45		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06			113.15	115.40		IV	Intermediate Volcanics	Folded intermediate volcanic sequence.
RL21-06	115.40	126.58				GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and minor secondary chlorite, epidote, biotite
								and uncommon sulphide blebs. Variably magnetic.

RL21-06 Lithology

RL21-06	126.58	127.94			SPD-PEG	Spodumene Pegmatite	Quartz, Albite, secondary cleavelandite, muscovite, spodumene, K-spar +- trace sulphides. Quartz is smoky gray, extremely coarse- grained. Minor Potassium Feldspar occurs as uncommon salmon-pink, blocky or sucrosic habit and is commonly replaced by cleavelandite. Secondary Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit in crystals. Uncommon molybenite blebs (<2mm) noted. Oxides and staining at 127.40 m, coinciding with sharp decrease in grain size. Tantalite? Spodumene displays elongated mint-green crystals ranging from euhedral to subhedral cm-scale crystals(~up to 10 cm long and 1 cm wide). Muscovite is green/brown, typically subhedral to euhedral.
							Gabbro-hosted. Crystal size increases downhole from the UPCT. At 127.40 m, crystal size decreases and spodumene crystals <5 cm radiate uphole away from the zone of decreased grain size. The interval from ~127.62 to 127.94 m is defined by a general decrease in grain size and spodumene crystals up to 10 mm. Spodumene occurs as pale mint-green and more common white subhedral constals (5.5.00 mm) intervals to 10 mm.
							crystals (~5-10 mm), intergrown with quartz, muscovite, and secondary cleavelandite. Internal banding is present at a high angle to the core axis. LWCT is at a high angle to the core axis.
RL21-06	127.94	131.46			GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and minor secondary chlorite, epidote, biotite and uncommon sulphide blebs. Variably magnetic.
RL21-06	131.46	138.21			GNGRAN	Gneissic Granodiorite	Gneissic granodiorite. 20 cm before the lower contact contains 2 sub-decimeter MV intervals.
RL21-06	.01.10	100.21	138.06	138.21	PEG	Pegmatite	Pegmatitic vein parallel to regional foliation.
RL21-06	138.21	144.36			MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-06			139.37	141.69	GNGRAN	Gneissic Granodiorite	Gneissic granodiorite, metamorphic fabric parallel to regional foliation. Silicic alteration. ~5-10 % less biotite than unaltered gneissic granodiorite.
RL21-06			141.47	141.69	PEG	Pegmatite	Barren pegmatitic vein, contacts concordant with regional foliation.
RL21-06				143.86			At 143.86 m, a fine-grained dull blue mineral with a hardness of ~4 has infiltrated the ground mass and is also present in stringer veinlets parallel to foliation.
RL21-06	144.36	145.66			SPD-PEG	Spodumene Pegmatite	Quartz, Albite, secondary cleavelandite, muscovite, spodumene, K-spar, minor garnet, trace sulphides and tourmaline. Quartz is smoky gray, extremely coarse-grained. Potassium Feldspar is creamy-pink and blocky. Cleavelandite exhibits radiating pseudo- acicular euhedral to subhedral habit in crystals. Spodumene displays elongated mint-green crystals ranging from euhedral to subhedral cm-scale crystals. Muscovite is commonly green or brown, typically subhedral to euhedral with smaller crystal sizes compared to other spd-pegs. Rare grains of acicular sub-mm tourmaline were noted. Contains ~0.5 to 1% soft black mineral with pitted surface, sub-mm scale, possibly biotite???
							Well-developed banding present up to ~145.10 m, comprised of albite, quartz, and muscovite. At 145.15 m, common blocky and rare elongate spodumene occurs in association with quartz, cleavelandite and muscovite.
							The UPCT is at a high angle to the core axis (~90 degrees, no beta taken), cutting the foliation of the gneissic granodiorite. The LWCT has an alpha measurement of 80 degrees and a beta of 17 degrees.
RL21-06	145.66	157.65			MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
			146.28	146.89	PEG	Pegmatite	Barren pegmatite. Contains Quartz, Albite, Cleavelandite, K-spar, Muscovite and trace sulphides. Quartz is smoky gray, varying crystal sizes. K-spar is blocky and salmon-pink. Cleavelandite exhibits radiating pseudo-acicular euhedral to subhedral habit. Muscovite is subhedral to anhedral, varying crystal sizes and is green to brown. Uncommon Pyrite and molybdenite blebs (<1 mm) were noted.
			149.65	149.81	PEG	Pegmatite	Barren pegmatitic vein.
			153.98	155.26	IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
			155.26	155.56	GNGRAN	Granitic Intrusion	Gneissic granite/granodiorite with silicic alteration. Contacts and foliation parallel to regional metamorphic fabric. ~5-10 % less biotite than unaltered gneissic granodiorite.
			155.56	157.65			Increase in grain size downhole towards contact with GAB. No distinct contact noted.
RL21-06	157.65	174.86			GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and minor secondary chlorite, epidote, biotite and uncommon sulphide blebs. Variably magnetic. Scratches easily at hardness ~4. Higher content of mafic minerals (actinolite, hornblende) than previous and following GAB intervals.

RL21-06 Lithology

r	1		404.40		r	N () (
			161.49	161.70		MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
			163.20	165.81		MV	Mafic Metavolcanic	Foliated green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and
			103.20	105.01		IVI V	Mane Metavolcanic	variably magnetic.
			172.86	174.86		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-06	174.86	176.00				MV	Mafic Metavolcanic	Green Mafic Metavolcanic containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
								Silicified, harder than previous MV intervals.
			175.20	175.44		IV	Intermediate Volcanics	Silicified, harder than previous IV intervals.
			175.58	175.72		IV	Intermediate Volcanics	Silicified, harder than previous IV intervals.
	176.00	EOH						

RL21-06

	- -		0					Miner	alizatio	n Dist	ributior	n (tr. To	o %)						Elen	nents of I	nterest	
DDH_ID	From_m To_m	Width_m	Sample#	Code Lithology	Spd Fa/Co	Tur F-ap	Qtz	Ksp	Ab	Ms	Grt	Brl	Р́у	Mcl	Cst	llm	Tour	Csppm	Lippm	Rbppm	Tappm	Li%
RL21-06	60.72 61.72	1.00	413100	MV														4	318	11	.9 1	.7 0.0318
RL21-06	Blank		413101	Blank														0.6	14	5	.2 0	.7 0.0014
RL21-06	61.72 62.22	0.50	413102	MV														48.4			64 2	.6 0.118
RL21-06	62.22 62.95	0.73	413103	SPD PEG														127				
RL21-06	62.95 63.45	0.50	413104	MV														67.7				6 0.144
RL21-06	63.45 64.45	1.00	413105	MV														5.2				
RL21-06	125.58 126.58	1.00	413115	MV														23.9				
RL21-06	126.58 127.94	1.36	413116	SPD PEG														106				
RL21-06	127.94 128.94	1.00	413117	MV														65.8				
RL21-06	141.47 142.86	1.39	413106	MV/PEG														105				
RL21-06	142.86 143.86	1.00	413107	MV														36.1				
RL21-06	143.86 144.36	0.50	413108	MV														201				
RL21-06	144.36 145.66	1.30	413109	SPD PEG														93.6				
RL21-06	145.66 146.28	0.62	413110	MV														205			69	2 0.107
RL21-06	STD MF-1		413111	STD														57.6				
RL21-06	146.28 146.89	0.61	413112	MV														88.3				
RL21-06	146.89 147.50	0.61	413113	MV														214				
RL21-06	147.50 148.50	1.00	413114	MV														260	853	69	6 2	.9 0.0853

		Hole Id:	RL21-07		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Main pegmatite area			Date Logged:	March 31-April 1/21
Client:	International Lithium Corp.			Tech By	P.McLaughlin

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576343	Azimuth:	308
	Northing:	5473516	Dip:	-70
	Elevation:	472	Length:	167.0
Proposed:		RL_20_'G'		
	Easting:	576380	Azimuth:	308
	Northing:	5473517	Dip:	-70
	Elevation:	479	Length:	150

Survey Type		Ez-trac Single Shot	
Distance	Azi	Dip	Accept
14.00	305.7	-72.1	Y
23.00	304.0	-72.0	Y
53.00	305.2	-71.7	Y
83.00	304.4	-71.7	Y
113.00	305.0	-71.7	Y
143.00	307.8	-70.1	Y
167.00	305.4	-70.2	Y

ation:		
Contractor:	Rodren	
Core Diameter:	NQ	
Start Date:	31-Mar-2021	
End Date:	1-Apr-2021	
Casing In:	Left in hole	
Casing Capped:	Yes	
Units:	metric	
Oriented:	Yes	
	Contractor: Core Diameter: Start Date: End Date: Casing In: Casing Capped: Units:	Contractor:RodrenCore Diameter:NQStart Date:31-Mar-2021End Date:1-Apr-2021Casing In:Left in holeCasing Capped:YesUnits:metric

Hole Objective: Along strike to the North and potentially closer to intersection of Pegmatite dikes to pegmatires sill to the west.

Hole Summary: This hole was cored on the western end of the resource area. This drillhole contains a mixture of mafic metavolcanic rocks and narrow spodumene pegmatites. The contact angles across most of the contacts suggest that pegmatites in this drillholes are hosted within the primary bedding foliation in the mafic metvolcanics rocks. This hole is characterized by several narrower pegmatite bodies that occur from 81.38-84.68, 93.4-94.05, 97.76-99.21 and 103.06 to 103.59 metres. This drillhole finished in intermediate metavolcanic rocks.

	Lithology Summary												
From	То	Lith	Comment										
0.00	3.00	Overburden											
3.00	4.35	Mafic Metavolcanics											
4.35	31.92	Intermediate Volcanics											
31.92		Mafic Metavolcanics											
81.38	84.68	Spodumene Pegmatite	20% Spd										
84.68	93.40	Mafic Metavolcanics											
93.40		Spodumene Pegmatite	5% spd										
94.05		Mafic Metavolcanics											
97.76	99.21	Spodumene Pegmatite	22% Spd										
99.21	103.06	Mafic Metavolcanics											
103.06	103.59	Spodumene Pegmatite	15% Spd										
103.59	104.16	Mafic Metavolcanics											
104.16	104.69	Spodumene Pegmatite											
104.69		Mafic Metavolcanics											
116.75		Feldspar Porphyry											
125.24	130.27	Mafic Metavolcanics											
132.03	141.62	Gabbro											
141.62	144.09	Mafic Metavolcanics											
144.09													
150.08	164.85	Mafic Metavolcanics											
164.85	167.00	Intermediate Volcanics											

RL21-07 Lithology

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-07	0.00	3.00				OVBD	Overburden	
RL21-07	3.00	4.35				MV	Mafic Metavolcanics	Foliated mafic volcanic sequence with fine-grained epidote and chlorite with fine to medium-grained actinolite and minor sulphides. Cm-scale veins and veinlets commonly occur parallel to the foliation (med-high angle to the core axis). Sulphides occur as vein- hosted mm-scale blebs.
RL21-07	4.35	31.92				IV	Intermediate Volcanics	Siliceous volcanic sequence, well-developed foliation. Selective silicification of intermediate and possibly felsic volcanics. Interval has undergone significant alteration. Silicified. Unit had textural similarities to IV and appears to have a buff pervasive silicification.
RL21-07			24.89	27.12		IV	Intermediate Volcanics	Highly magnetic and altered volcanic sequences.
RL21-07			27.12	29.17		FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and fine-grained biotite and . Feldspar are ~subhedral. Extensive veining.
RL21-07			29.17	31.92		IV	Intermediate Volcanics	Siliceous volcanic sequence, well-developed foliation. Selective silicification of intermediate and possibly felsic volcanics. Interval has undergone significant alteration.
RL21-07	31.92	81.38				MV	Mafic Metavolcanics	Hydrothermally-altered and foliated blue to grey-black volcanics. Pervasive chlorite-carbonate-clay (talc?) alteration.
RL21-07			36.55	39.42		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Sulphide stringers predominantly containing magnetic pyrrhotite. Secondary magnetite also present. Two ~5 cm intervals of MV near 38 m.
RL21-07			44.13	48.50		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-07			51.04	51.71		IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite. Variably deformed.
RL21-07	81.38	84.68				SPD-PEG	Spodumene Pegmatite	Spodumene-bearing pegmatite containing Quartz, Albite, K-spar, Cleavelandite, Muscovite with minor garnet and trace sulphides. Quartz is smoky grey, crystal size ranges from fine to coarse. Sucrosic albite with variable Cleavelandite replacement is present. K- spar is blocky and creamy to salmon-pink, commonly surrounded by Cleavelandite alteration. Cleavelandite exhibits radiating pseudo- acicular euhedral to subhedral habit and commonly replaces Ab and K-spar. Muscovite occurs as pearly to brown-green euhedral to subhedral crystals. Spodumene crystals are commonly light green to white with subhedral crystal habit. Garnet is typically <2 mm and subhedral. Over 50% of the spodumene crystals in the first meter of the interval have dark alteration rims. Rare acicular tourmaline (<1.5 mm) noted at ~83 m. Interval also contains a soft black mineral with pitted surface, possibly biotite??? Interval is banded and spodumene crystal size is generally smaller than seen in other SPD-PEG intervals, ranging from ~0.3 to 5 cm. Spodumene is oriented approximately normal to internal banding orientations which appear to be disrupted by cm to decimeter-scale Ksp. Approximately 3 zones are present. The first and third zone both contain blocky Ksp which is generally absent from the middle 'core zone'. The middle zone is defined by an increase in quartz and spodumene along with a decrease in crystal size. The orientations of the internal banding vary greatly, with beta measurements ranging from ~170 to 350 degrees. However, the alphas are consistent and range from 65 to 75 degrees. The lower contact has an alpha measurement of approximately 60 degrees with a beta measurement of 68 degrees. These measurements are low confidence, the contact with the pegmatite and Mafic Metavolcanics is spun and the run below contains a zone of rubble/minor gouge.
RL21-07	84.68	93.40				MV	Mafic Metavolcanics	Foliated mafic volcanic sequence with fine-grained epidote and chlorite with fine to medium-grained actinolite and minor sulphides. Cm-scale veins and veinlets commonly occur parallel to the foliation (med-high angle to the core axis). Sulphides occur as vein- hosted mm-scale blebs.
RL21-07	93.40	94.05				SPD-PEG	Spodumene Pegmatite	Ksp is pink and blocky in the first half of the interval and experiences a decrease in crystal size as well as moderate albitization and replacement by cleavelandite. Spodumene has been replaced by yellow-green sericite and pearly muscovite. Upper and lower contacts are at a high angle to the core axis.
RL21-07	94.05	97.76				M∨	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.

RL21-07 Lithology

RL21-07	97.76	99.21			SPD-PEG	Spodumene Pegmatite	Zoned spodumene-bearing pegmatite containing quartz, albite, cleavelandite, muscovite and minor garnet. Quartz is smoky grey and coarse while Cleavelandite
							The first zone is ~30 cm thick and is defined by a smaller crystal size compared to the core zone as well as less spodumene content. The 'core zone' contains coarse quartz, cleavelandite and minor muscovite with elongate mint-green to white spodumene crystals. Spodumene typically ranges from 10-15 cm long by 0.5 to 1cm thick (one crystal measured 25 cm). The third zone spans the last ~20 cm of the interval and contains smaller spodumene crystals (~4-5 cm by 1-3 mm) oriented normal to internal banding.
RL21-07	99.21	103.06			MV	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-07	103.06	103.59			SPD-PEG	Spodumene Pegmatite	Zoned spodumene-bearing pegmatite containing quartz, K-Feldspar, albite, cleavelandite, muscovite and minor garnet.
							Approximately 3 zones. The first and third zones are both ~15 cm and are defined by blocky Ksp (mildly albitized and replaced by cleavelandite), and finer-grained quartz and muscovite compared to the 'core zone'. The core zone is approximately 20 cm and contains randomly oriented spodumene crystals ~3-4 cm by 2-4 mm. Grades into a zone of smaller spodumene crystals oriented normal to the third zone.
RL21-07	103.59	104.16			MV	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-07	104.16	104.69			SPD-PEG	Spodumene Pegmatite	Zoned spodumene-bearing pegmatite containing quartz, albite, cleavelandite, muscovite and minor garnet.
							Internal banding present with 2 main spodumene-bearing intervals ~5 and 8 cm thick. Crystals are oriented normal to the internal banding. Bands are composed of Albite, Qtz, Muscovite. Crystal size decreases downhole.
RL21-07	104.69	116.75			MV	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-07			106.80	110.40	GN GRAN	Gneissic Granitoid Intrusion	40 cm interval of IV present at ~103.2 m. Upper contact with MV is roughly concordant with regional foliation while the lower contact is discordant. 40 cm intermediate volcanic sequence at ~103.3 m.
RL21-07			112.76	114.79	IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-07	116.75	125.24			FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive veining.
RL21-07	125.24	130.27			MV	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-07			130.27	132.03	IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
RL21-07	132.03	141.62			GAB	Gabbro	Amphibole-rich phaneritic mafic intrusive containing actinolite, hornblende, plagioclase and minor secondary chlorite, epidote, biotite and uncommon sulphide blebs. Variably magnetic. Gabbro with quenched contact. Contains ~60 cm of foliated and increasingly folded IV at ~142.75 m.
RL21-07	141.62	144.09			MV	Mafic Metavolcanics	Mafic Metavolcanics with 60 cm foliated and folded intermediate volcanics at ~142.75.
RL21-07	144.09	150.08			DIO	Diorite	Coarse-grained meta-diorite.
RL21-07	150.08	164.85			MV	Mafic Metavolcanics	Foliated green Mafic Metavolcanics containing actinolite, epidote, chlorite, sulphides and minor garnet. Fine to medium-grained and variably magnetic.
RL21-07	164.85	167.00			IV	Intermediate Volcanics	Strongly foliated intermediate to felsic, light grey, fine-grained volcanic sequence containing hornblende and actinolite.
	167.00	EOH					

	T		0						Miner	alizati	on Dis	tributio	on (tr. 1	Го %)							Eleme	ents of Int	erest	
DDH_ID From_m	To_m	Width_m	Sample#	Code Litho	logy Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Ġrt	Bŕl	Ру	Mcl	Cst	llm	Tour	Csppm Lip	opm 🛛	Rbppm	Tappm	Li%
RL21-07 35.00	36.00	1.00	413118																	83.7	74	102	0.7	0.0074
RL21-07 79.82	80.79	0.97	413119																	34.2	547	86.6	0.9	0.0547
RL21-07 80.79	81.38	0.59	413120																	35.9	876	127	0.6	0.0876
RL21-07		0.00	413121	BLANK																				
RL21-07 81.38	82.58	1.20	413122		15				30	20	20	14	1						<1	137	3040	2830		
RL21-07 82.58	83.84	1.26	413123		20				40	5	20	14	1						<1	99.5	3950	1350		
RL21-07 83.84	84.67	0.83	413124		20				40	15	15	9	1						<1	192	1530	3230		
RL21-07 84.67	85.25	0.58	413125																	246	2150		-	
RL21-07 85.25	86.24	0.99	413126																	25.1	379	52.1		
RL21-07 86.24	88.73	2.49	413127																	78.7	526	193		
RL21-07 88.73	89.28	0.55	413128																	40.9	370	100	-	
RL21-07 89.28	90.80	1.52	413129																	1.8	275	5.3		
RL21-07 90.80	92.29	1.49	413130																	2.9	307	5.7		
RL21-07		0.00	413131	STD																60.9	7900	1760	1	
RL21-07 92.29	93.40	1.11	413132																	3	465	14	-	
RL21-07 93.40	94.05	0.65	413133	SPD-PEG	5				35	25	20	14	1						<1	82.7	154	2050		
RL21-07 94.05	95.54	1.49	413134																	13.8	711	101	1.8	
RL21-07 95.54	96.95	1.41	413135																	110	912	167	0.5	
RL21-07 96.95	97.76	0.81	413136																	441	1590		0.8	
RL21-07 97.76	98.69	0.93	413137	SPD-PEG	25				40		25	9	1						<1	97.4	8300	1350		
RL21-07 98.69	99.21	0.52	413138	SPD-PEG	20				35		30	14	1						<1	73.4	3050			
RL21-07 99.21	100.52	1.31	413139	_																684	2200	1810	-	
RL21-07 100.52	101.81	1.29	413140	-							-									5	738	22.3		
RL21-07	400.00	0.00	413141	BLANK																0.9	19	6.4		
RL21-07 101.81	103.06	1.25	413142		00				40	00	40	0	4						.4	49.8	1850	152		
RL21-07 103.06	103.59	0.53	413143	SPD-PEG	20				40	20	10	9	1						<1	59.2	4790	1390		
RL21-07 103.59	104.16	0.57	413144	SPD-PEG	15				35	5	30	14	1						<1	347	2410		3.6	
RL21-07 104.16	104.69	0.53	413145																	54.8	1270			
RL21-07 104.69	106.16	1.47	413146																	23.6	545	53.1	0.7	0.0545

		Hole Id:	RL21-08		
Property:	Raleigh Lake			Logged By:	K.Purdue
Area:	Microlite Lake area			Date Logged:	April 2-4
Client:	International Lithium Corp			Tech By	G.Waldock

Actual:				
	Datum:	Nad 83 Zone 15		
	Easting:	576644	Azimuth:	309
	Northing:	5473380	Dip:	-68.7
	Elevation:	474	Length:	254.0
			Declin.	
Proposed:		RL20-'H"	—	
	Easting:	576612	Azimuth:	308
	Northing:	5473362	Dip:	-70
	Elevation:	480	Length:	250

Survey Type		Ez-trac Single Shot	
Distance	Azi	Dip	Accept
20.00	306.0	-68.50	Y
50.00	309.3	-68.20	Y
80.00	311.0	-68.50	Y
110.00	306.0	-69.40	Y
149.00	309.1	-68.70	Y
179.00	309.6	-68.50	Y
209.00	310.7	-68.90	Y
239.00	311.9	-68.50	Y

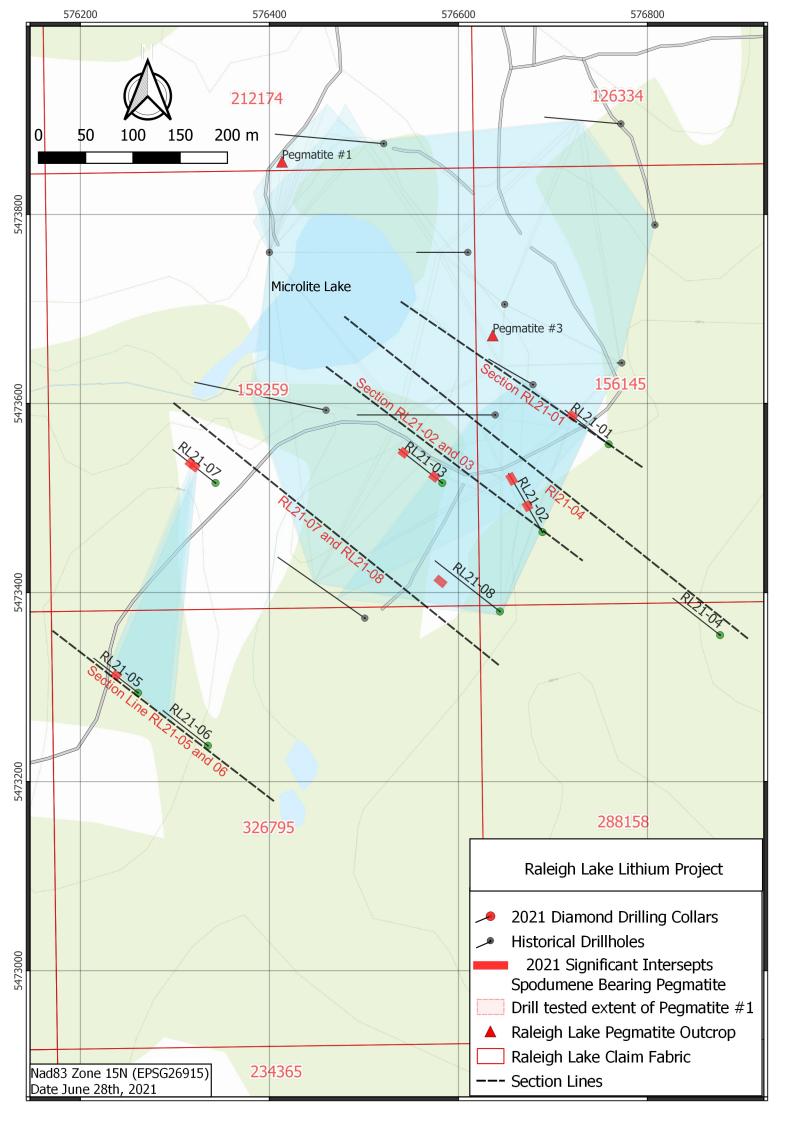
Drilling Information:	
Contracto	or: Rodren
Core Dia	ameter: NQ
Start Dat	te: April 2/21
End Date	e: April 3/21
Casing Ir	n: left in hole
Casing C	Capped: yes
Units:	Metric
Oriented	: Y

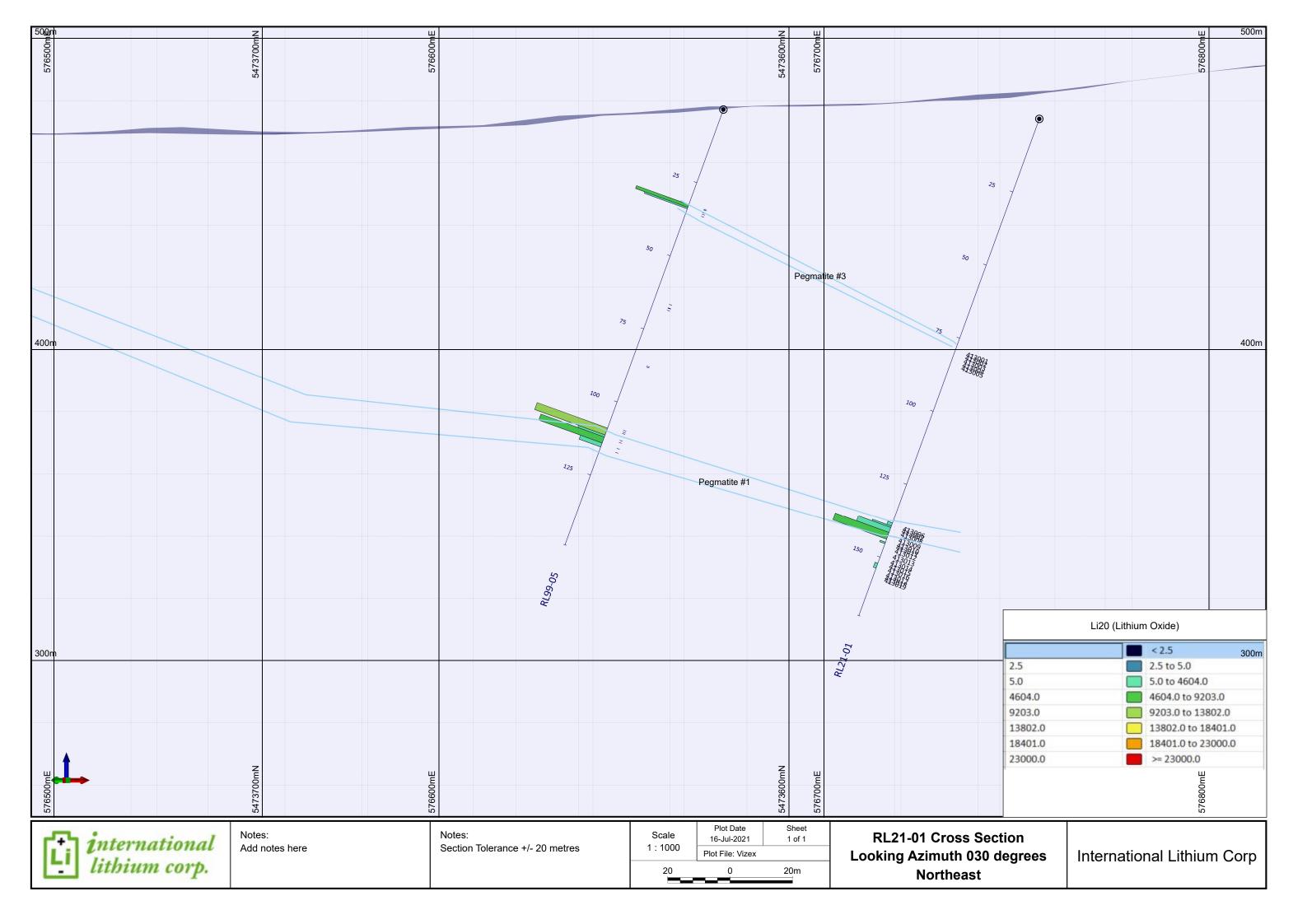
Hole Objective: Informal resource estimation.	

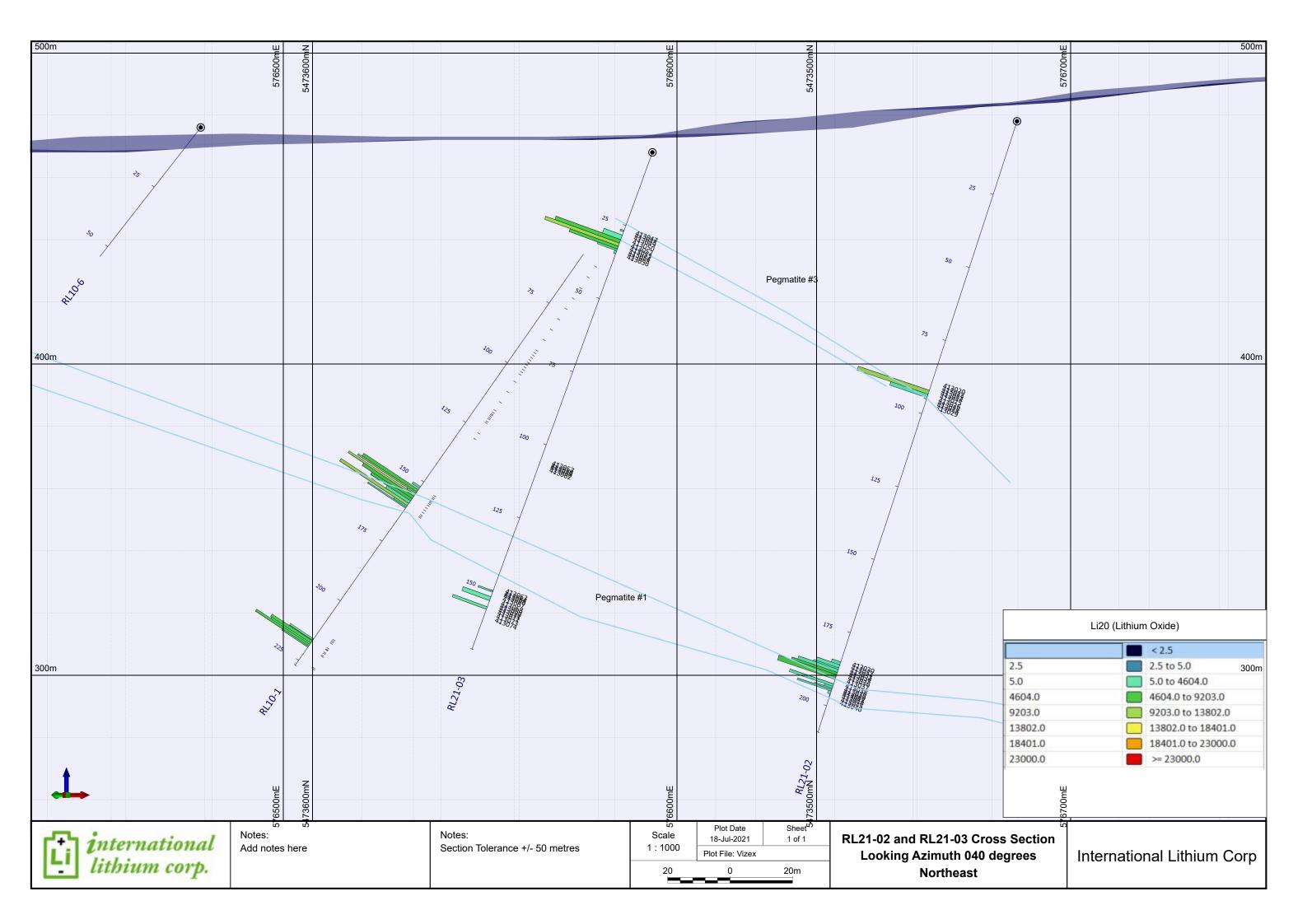
Hole Summary: This hole was designed to test down-dip of spodumene pegmatite intersections of RL21-02 and RL21-03. This hole encountered predominantly mafic metavolcanic rocks and porphyritic gabbro's. Pegmatite #1 and #3 were ecountered where the modelling projected but the grade and thickness were less developed than the updip holes. Spodumene bearing pegmatite was drilled from 139.56-140.71m (pegmatite #3) and 217.88-224.47m (pegmatite #1). Contact measurements were sharp and were determined to have an estimated easterly strike and shallow to moderate dip to the SSW. The drillholes finished in intermediate metevolcanic rocks before finished at 254.0m.

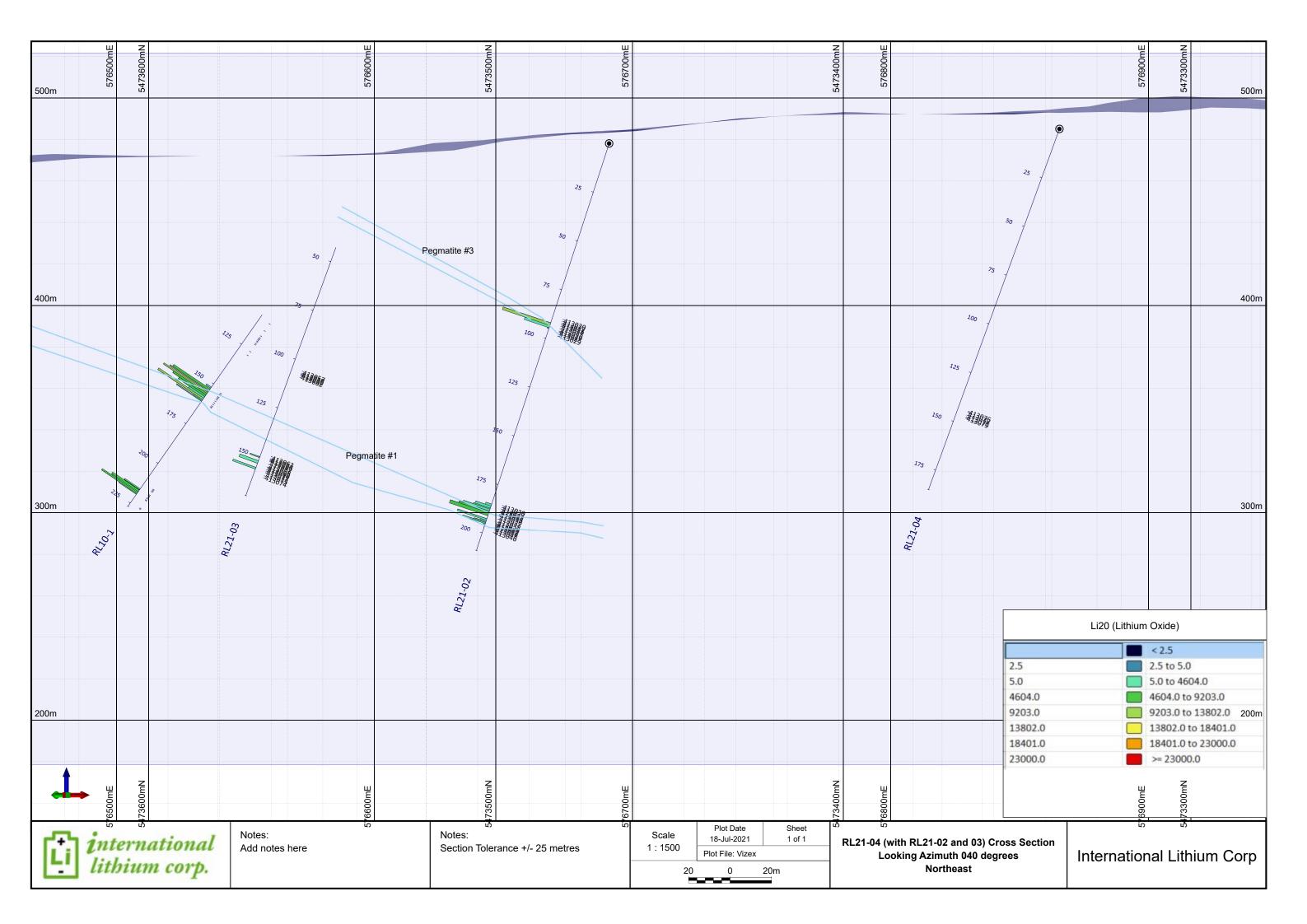
		Lithology Summary	
From	То	Lith	Comment
0.00	3.46	Overburden	
3.46	24.10	Mafic Volcanics	
24.10		Porphorytic Gabbro	
138.78		Feldspar Porphyry	
139.56		Spodumene Pegmatite	5% spd
140.71	141.61	Feldspar Porphyry	
141.61	201.29	Mafic Volcanics	
201.29	108.28	Feldspar Porphyry	
108.28	217.88	Porphorytic Gabbro	
217.88	224.47	Spodumene Pegmatite	10-15% Spd
224.47	241.69	Gabbro	
241.69	242.36	Pegmatite	
242.36	249.13	Gabbro	
249.13	249.34	Pegmatite	
249.34	250.29	Mafic Volcanics	
250.29	254.00	Intermediate Volcanics	

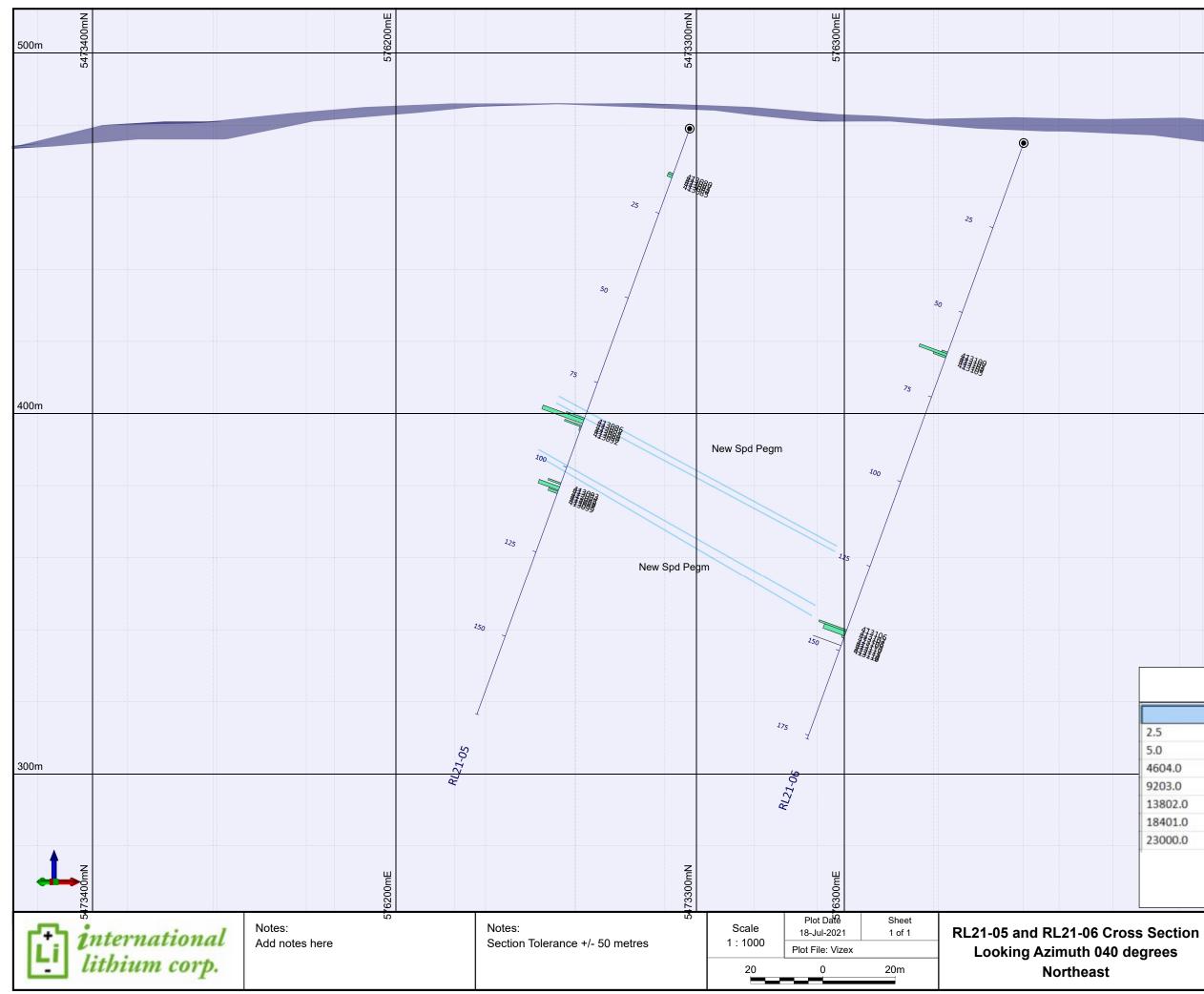
RL21-08 Lithology

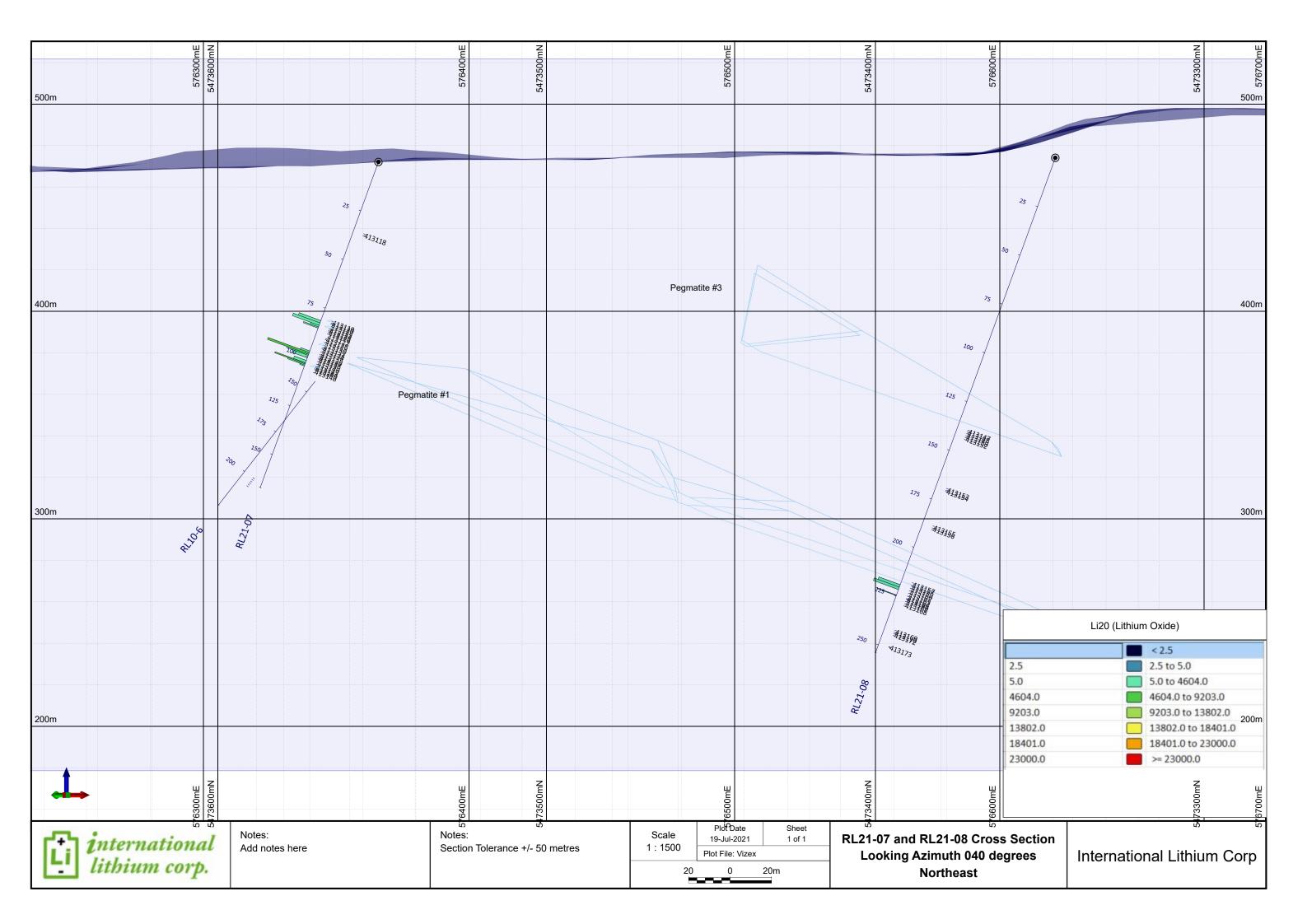

DDH_ID	From_m	To_m	SubFROM_m	SubTO-m	Width	Lith Code	Lithology	Description
RL21-08	0.00	3.46	_			OVBD	Overburden	Granodiorite rubble.
RL21-08	3.46	24.10				MV	Mafic Volcanics	Foliated mafic volcanics containing actinolite, epidote, chlorite, minor garnet and sulphides. Pyrrhotite and pyrite blebs (<2 mm) are found throughout the groundmass and within foliation-parallel and chaotic chlor-epi-carb-garnt veins. Variably magnetic.
			16.76	24.10				Pervasively altered and foliated mafic volcanic sequence. Extensive siliceous alteration.
RL21-08	24.10	138.78				P GAB	Porphorytic Gabbro	Strongly foliated phenocrystic greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor sulphides. Phenocrysts are generally anhedral and range from 5-10 mm on average. Phenocrysts up to 70 m are less altered than other intervals.
			57.21	60.45		FP	Feldspar Porphyry	Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Some chlorite blebs seen in groundmass and ~25% of feldspar crystals show K-spar alteration.
			91.31	93.02		FP	Feldspar Porphyry	Weakly foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Uncommon foliation-parallel quartz veinlets with selvedges.
			93.02	94.12		GAB	Gabbro	low to no phenocrysts
						FP	Feldspar Porphyry	Foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit diffuse grain boundaries. Extensive veining.
RL21-08	138.78	139.56				FP	Feldspar Porphyry	Mildly foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit very diffuse grain boundaries.
RL21-08	139.56	140.71				SPD-PEG	Spodumene Pegmatite	Zoned pegmatite with defined internal banding containing Albite, Quartz, Muscovite, Cleavelandite, Spodumene, and minor Garnet. Albite is sucrosic, opaque white to light pink and commonly replaced by radiating, pseudo-acicular Cleavelandite. Quartz is smoky grey and ranges from fine to very coarse crystals. Muscovite is generally subhedral, fine to very coarse and pearly to light green- brown. Minor garnet is present as fine (<1.5 mm) subhedral crystals. Spodumene crystals are uncommon and replaced by yellow- green sericite and muscovite.
								Approximately 3 zones are noted. First and third zones are defined by internal banding of Ab-Qtz-Musc at a med-high angle to the core axis (~60-65 degrees). Banding orientations have beta measurements of approximately 350 degrees or 45 degrees. The middle zone contains a greater proportion of quartz, albite and less muscovite than the first and third zones. Also contains uncommon spodumene crystals (<3 cm) oriented approximately normal to internal banding and replaced by yellow-green sericite and pearly muscovite.
RL21-08	140.71	141.61				FP	Feldspar Porphyry	Mildly foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit very diffuse grain boundaries.
RL21-08	141.61	201.29				MV	Mafic Volcanics	At 162.50, pegmatitic vein ~5 cm thick noted. Primarily composed of quartz, albite and muscovite. Common foliation-parallel quartz veins.
RL21-08			167.72	169.31		MV	Mafic Volcanics	Hydrothermally altered volcanic sequence containing amphiboles (actinolite + hornblende) and abundant blue-green clay minerals. Non-magnetic. Soft (<2) grey-black bladed/tabular mineral present in veins and in groundmass (stibnite? Graphite?)
RL21-08			186.98	188.89		MV	Hydrothermally altered Volcanics?	Hydrothermally altered volcanic sequence containing amphiboles (actinolite + hornblende) and abundant blue-green clay minerals. Non-magnetic. Soft (<2) grey-black bladed/tabular mineral present in veins and in groundmass (stibnite? Graphite?)
RL21-08	201.29	108.28				FP	Feldspar Porphyry	Mildly foliated and altered Feldspar Porphyry. Contains fine to coarse-grained blocky feldspar (<1-3 mm), fine to medium-grained anhedral grey quartz and coarse-grained biotite. Feldspar are subhedral to anhedral and exhibit very diffuse grain boundaries. Extensive veining with


RL21-08 Lithology


RL21-08	108.28	217.88			P GAB	Porphorytic Gabbro	Strongly foliated phenocrystic greenschist facies meta-gabbro containing actinolite, hornblende, biotite, plagioclase and minor
							sulphides. Phenocrysts are generally anhedral and range from 5-10 mm on average.
RL21-08	217.88	224.47			SPD-PEG	Spodumene Pegmatite	Zoned pegmatite with defined internal banding containing Albite, Quartz, Muscovite, Cleavelandite, Spodumene, and minor Garnet. Albite is sucrosic, opaque white to tan and commonly replaced by radiating, pseudo-acicular Cleavelandite. Quartz is smoky grey. The pegmatite shows mild zoning, with the first zone extending from 217.88 to 219.30 m. It contains large crystals of sucrosic tan albite, coarse grey guartz and medium-grained light brown-green muscovite. Uncommon pale mint-green spodumene crystals with
							dark alteration rims and rare yellow-green sericite alteration is also found in this interval. The middle zone is defined by larger crystal sizes (especially muscovite) and has a greater proportion of spodumene. Spodumene is not oriented parallel to the core axis and is commonly cut across the c-axis. Spodumene crystals range from ~.3 to 3 cm with rare dark alteration rims. The last interval at 221.77
							m contains less spodumene, more albite and muscovite crystal size decreases significantly. It has disrupted internal banding and spodumene in this interval ranges from mm to cm-scale with common dark alteration rims.
							The UPCT is at a high angle to the core axis, with an alpha measurement of ~70 degrees and has a beta measurement of 270 degrees. The lower contact is also at a high angle to the core axis and has an alpha of BLANK and a beta of BLANK. Internal banding is commonly disrupted by blocky albite.
RL21-08	224.47	241.69			GAB	Gabbro	Weakly foliated coarse-grained gabbro.
RL21-08			233.81	241.69	GAB	Gabbro	Fine-grained gabbro transitioning to med-coarse grain size. First 20 cm of interval contains phenocrysts. Massive. Contains a high- angle quartz vein set.
RL21-08	241.69	242.36			PEG	Pegmatite	Pegmatitic interval containing quartz, cleavelandite, albite and muscovite. Quartz is coarse-grained and smoky grey, commonly rimmed by radiating cleavelandite crystals. Muscovite is extremely coarse-grained, light brown and subhedral. Albite is present but almost completely replaced by Cleavelandite.
RL21-08	242.36	249.13			GAB	Gabbro	Coarse-grained gabbro. Contains a high angle quartz vein set.
RL21-08	249.13	249.34			PEG	Pegmatite	Pegmatitic vein containing Albite, cleavelandite, quartz and trace sulphide blebs (pyrrhotite). Albite is almost completely replaced by cleavelandite. Weak internal banding with upper and lower contacts at a high angle to the core axis.
RL21-08	249.34	250.29			MV	Mafic Volcanics	Deformed mafic volcanics containing actinolite, epidote, chlorite and minor sulphides. Chaotic quartz veins.
RL21-08	250.29	254.00			IV	Intermediate Volcanics	Foliated and deformed intermediate volcanic sequence. Upper contact with MV is non-planar and at a low angle to the core axis.
	254.00	EOH					


		-		0							Mine	ralizati	ion Dis	tributio	n (tr. T	o %)							E	leme	ents of Int	erest	
DDH_ID	From_m	i lo_m	Width_m	Sample#	Code	Lithology	Spd	Ta/Col	Tur	F-ap	Qtz	Ksp	Ab	Ms	Ġrt	Bŕl	Ру	Mcl	Cst	llm	Tour	Csppm	Lippm	F	Rbppm	Tappm	Li%
RL21-08	137.77	138.78	1.01	413147																			9	363	45.5	0.4	4 0.0363
RL21-08	138.78	139.58	0.80	413148																		24	4	984 🛽	882	3.8	8 0.0984
RL21-08	139.58	140.71	1.13	413149			2				35	2	40	20	1							82.4		115		105	5 0.0115
RL21-08	140.71	141.61	0.90	413150																		16		905	541		
RL21-08			STD MF-1	413151																		55.4		020	1730		
RL21-08		142.62	1.01	413152																		18.4		511	55.2		
RL21-08		168.73	1.01	413153																		61.		338	128	0.5	
RL21-08		169.31	0.58	413154																		10		454	200	0.4	
RL21-08	186.98	188.00	1.02	413155																		93.		243	192		
RL21-08		188.89	0.89	413156																		55.		175	124	0.4	
RL21-08		217.38	1.07	413157																		18		863 🛛	286		
RL21-08			0.50	413158																		20		986 🛛	409	-	
RL21-08			1.30	413159			10				35		45	9	1							16		954	4300		
RL21-08	219.18	220.45	1.27	413160			10				35		40	14	1							83.		990			
RL21-08				413161		BLANK																0.		18	7.4	8.0	
RL21-08			1.24	413162			20				30		30	19	1							93.:		630			
RL21-08			1.50	413163			10				35		40	14	1							86.		613			
RL21-08			1.28	413164			10				30	15	35	9	1							76.		795	-		
RL21-08		_	0.31	413165																		29		680			
RL21-08			1.12	413166																		11		839	249	0.4	
RL21-08			1.16	413167																		4.		518	50.9		
RL21-08	-	-	1.15	413168																		19.3		597	72	-	
RL21-08			1.03	413169							4.0		10									64.		553	122	0.5	
RL21-08	241.69	242.36	0.67	413170							40		40	20								11:	-	117		1	
RL21-08	040.00	0.40.00	STD MF-1	413171						-												56.		250	1720	137	
RL21-08			1.02	413172						-	20		70									5		643	120	0.7	
RL21-08	249.13	249.34	0.21	413173							30		70									82.		164	201	47.2	2 0.0164
										-																	


APPENDIX III



576400mE 5473200mN	500m
55 547	
	400m
Li20 (Lithiur	n Oxide)

, (ר

	< 2.5
2.5	2.5 to 5.0
5.0	5.0 to 4604.0
4604.0	4604.0 to 9203.0 300m
9203.0	9203.0 to 13802.0
13802.0	13802.0 to 18401.0
18401.0	18401.0 to 23000.0
23000.0	>= 23000.0

International Lithium Corp

APPENDIX IV

Quality Analysis ...

Innovative Technologies

Report No.: A21-05738 **Report Date:** 05-May-21 **Date Submitted:** 05-Apr-21 **Raleigh Project** Your Reference:

International Lithium Corp. PO Box 62 Suite 488 - 625 Howe Street Vancouver B.C. V6C 2T6 Canada

ATTN: Patrick McLaughlin

CERTIFICATE OF ANALYSIS

173 Core samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
UT-7 (Li up to 5%)	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS)	2021-04-27 15:10:49

REPORT A21-05738

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

Activation Laboratories Ltd.

Analyte Symbol	Al	As	В	Ba	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-		FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS-	MS-	MS-	MS-	MS-	Na2O2	MS-	MS-	MS-	MS-	MS-		MS-	MS-	MS-	Na2O2		MS-	MS-	MS-	MS-	MS-
413001	7.55	Na2O2 5	Na2O2 10	Na2O2	Na2O2 < 3	Na2O2 < 2	7.91	Na2O2 < 2	Na2O2 13.1	Na2O2 53.5	Na2O2 150	Na2O2 3.2	Na2O2 132	Na2O2 5.5	Na2O2 3.5	Na2O2 1.2	12.8	Na2O2 21.0	Na2O2 6.4	Na2O2	Na2O2	Na2O2	Na2O2 < 0.2
413002	7.35	< 5	< 10	12 95	< 3	< 2	7.91	< 2	11.5	51.5	130	92.7	132	5.3	3.5	1.2	12.0	21.0	6.2	2.5 2.4	1.3 1.0	< 10 < 10	< 0.2
413003	8.70	< 5	< 10	12	154	21	0.20	< 2	4.3	0.7	30	42.4	4	1.5	< 0.1	< 0.1	0.20	68.5	5.0	4.6	< 0.2	10	< 0.2
413004	7.19	6	< 10	108	< 3	< 2	7.80	< 2	14.5	62.7	110	90.0	216	6.2	3.9	1.1	11.3	19.2	6.1	2.0	1.3	< 10	< 0.2
413005	7.13	8		242	< 3	< 2	10.3	< 2	14.3	56.6	140	6.9	165	5.0	3.9	1.1	10.4	22.5	5.5	1.9	1.3	< 10	0.2
413006	8.13	5		18	< 3	< 2	7.14	< 2	9.5	64.9	140	59.3	152	4.3	3.1	1.0	11.9	17.4	4.1	2.2	0.9	< 10	< 0.2
413007	7.80	< 5	< 10	11	< 3	< 2	6.92	< 2	8.8	57.2	120	114	123	4.1	2.2	0.9	11.1	18.5	3.5	2.4	0.5	< 10	0.2
413008	6.19	5		7	18	2	0.92	< 2		1.1	40	147	123	0.4	< 0.1	< 0.1	0.41	49.2	1.3	3.2	< 0.2	< 10	< 0.2
413009	8.18	< 5		7	25	< 2	0.12	< 2	1.4	1.1	40	147	11	0.4	< 0.1	< 0.1	0.41	66.2	1.3	3.8	< 0.2	10	< 0.2
413010	8.31	5	< 10	5	219	< 2	0.00	< 2	2.0	1.1	40	126	4	0.5	< 0.1	< 0.1	0.42	50.4	2.6	3.6	< 0.2	10	< 0.2
413011	7.67	6		21	7	< 2	6.26	< 2	7.9	46.5	100	189	100	3.2	1.8	0.7	8.56	18.7	3.3	1.9	0.7	< 10	< 0.2
413012	7.81	6		15	< 3	< 2	8.12	< 2	8.2	48.2	140	25.0	100	3.4	1.7	1.0	9.55	18.9	3.5	2.3	0.6	< 10	< 0.2
413013	7.80	6		24	< 3	< 2	7.23	< 2	9.9	56.8	140	27.6	143	4.4	3.7	1.0	11.6	17.1	4.5	2.5	0.0	< 10	< 0.2
413014	7.70	6		12	< 3	< 2	7.36	< 2	8.6	56.8	120	30.5	143	4.3	2.7	1.0	11.5	21.9	4.4	2.5	0.9	< 10	< 0.2
413015	6.72	< 5	10	5	277	5	0.16	< 2	2.0	1.2	90	81.1	5	0.5	< 0.1	< 0.1	0.34	64.7	2.0	3.6	< 0.2	10	< 0.2
413016	8.08	< 5	< 10	23	< 3	< 2	7.24	< 2	9.0	56.2	110	46.3	110	4.1	2.6	1.4	11.1	19.3	3.6	1.7	0.8	< 10	< 0.2
413017	7.83	< 5	< 10	17	8	< 2	6.97	< 2	8.7	56.2	300	228	137	3.9	2.3	0.7	11.2	20.1	4.6	2.5	0.8	< 10	< 0.2
413018	9.94	< 5	10	16	79	< 2	0.78	< 2	7.2	2.5	40	88.5	38	1.5	0.1	< 0.1	0.78	72.0	4.7	3.9	< 0.2	10	< 0.2
413019	7.90	6		36	12	< 2	6.50	< 2		60.0	120	318	150	3.5	2.9	1.2	11.2	24.5	4.1	2.7	0.9	< 10	< 0.2
413020	6.68	6		45	< 3	< 2	10.9	< 2	11.0	49.9	120	3.4	131	4.8	3.0	1.0	11.6	19.9	4.3	2.8	1.0	< 10	< 0.2
413021	8.65	< 5		53	131	< 2	0.08	< 2	< 0.8	< 0.2	180	58.3	4	< 0.3	< 0.1	< 0.1	0.34	65.0	< 0.1	5.4	< 0.2	< 10	< 0.2
413022	6.93	5		26	< 3	2	9.98	< 2	10.9	53.0	130	4.8	212	4.7	4.5	1.4	11.9	19.1	5.1	2.5	1.0	< 10	< 0.2
413023	7.21	< 5	< 10	14	< 3	< 2	8.28	< 2	11.8	50.9	120	2.5	166	4.9	3.9	1.1	12.3	16.4	5.9	2.7	1.0	< 10	< 0.2
413024	7.86	8	< 10	7	60	13	0.19	< 2	2.6	1.1	40	300	3	0.8	< 0.1	< 0.1	0.37	68.4	2.4	4.9	< 0.2	< 10	< 0.2
413025	8.27	8	10	7	201	97	0.11	< 2	< 0.8	1.9	50	266	3	0.4	0.1	< 0.1	0.58	73.3	0.9	3.6	< 0.2	< 10	< 0.2
413026	8.05	< 5	10	5		4	0.20	< 2	1.8	0.6	40	150	< 2	0.6	0.2	< 0.1	0.46	79.9	3.0	3.7	< 0.2	10	< 0.2
413027	7.81	8	< 10	11	< 3	< 2	6.87	< 2	10.9	51.3	120	77.9	187	5.3	3.8	1.1	11.3	19.4	5.4	2.2	0.9	< 10	< 0.2
413028	7.49	10	< 10	8	< 3	< 2	6.92	< 2	11.2	52.5	140	11.1	168	5.2	3.8	1.3	11.7	19.1	4.6	2.1	0.9	< 10	< 0.2
413029	7.24	10	< 10	7	< 3	< 2	6.58	< 2	10.7	52.7	120	1.4	102	4.7	3.4	1.1	11.5	19.1	4.7	2.2	1.1	< 10	< 0.2
413030	8.87	10	< 10	99	< 3	< 2	7.71	< 2	4.8	56.4	230	59.6	110	2.4	2.0	0.6	7.94	16.1	2.1	2.4	0.5	< 10	< 0.2
413031	0.27	10	50	20	< 3	< 2	0.09	< 2	6.0	2.8	40	0.8	4	0.5	0.4	0.2	0.48	1.2	0.6	1.1	< 0.2	< 10	< 0.2
413032	7.24	9	< 10	302	< 3	< 2	6.61	< 2	35.5	70.9	400	178	40	2.5	0.8	0.8	8.71	16.9	3.0	3.2	0.4	< 10	< 0.2
413033	7.90	9	10	457	< 3	< 2	4.77	< 2	15.5	62.2	310	332	56	1.8	0.8	0.8	8.85	19.2	2.4	2.0	0.2	< 10	< 0.2
413034	7.77	10	30	380	5	< 2	5.39	< 2	13.1	64.0	250	303	107	1.4	0.7	0.4	8.35	20.8	1.3	1.8	0.3	< 10	< 0.2
413035	8.17	9	20	22	34	35	0.22	< 2	2.9	1.6	50	133	< 2	0.3	< 0.1	< 0.1	0.56	67.4	2.1	3.4	< 0.2	< 10	< 0.2
413036	7.31	9	< 10	7	3	5	0.14	< 2	10.1	1.5	50	115	6	1.1	0.2	< 0.1	0.46	58.6	5.0	4.0	< 0.2	< 10	< 0.2
413037	7.27	9	< 10	3	118	< 2	0.11	< 2	3.6	1.4	50	59.2	2	0.5	< 0.1	< 0.1	0.44	67.3	2.7	3.8	< 0.2	< 10	< 0.2
413038	7.40	8		4	14	41	0.12	< 2		1.4	70	113	4	0.7	< 0.1	< 0.1	0.24	47.3	2.8	4.0	< 0.2	20	< 0.2
413039	6.89	9	10	< 3	9	< 2	0.15	< 2	7.3	1.6	40	34.7	2	1.4	0.1	< 0.1	0.48	62.8	4.1	4.0	< 0.2	< 10	< 0.2
413040	8.02	9	< 10	21	53	5	0.27	< 2	5.8	1.2	60	79.4	9	0.4	< 0.1	< 0.1	0.43	66.2	2.8	3.2	< 0.2	10	< 0.2
413041	8.71	9	40	49	117	< 2	0.13	< 2	< 0.8	1.8	210	59.7	6	< 0.3	< 0.1	< 0.1	0.26	58.4	< 0.1	6.1	< 0.2	< 10	< 0.2
413042	8.93	10	< 10	338	6	< 2	3.22	< 2	76.9	25.6	90	210	236	1.9	0.9	1.7	3.32	19.9	4.3		0.3	< 10	< 0.2
413043	8.27	7	10	340	< 3	< 2	4.34	< 2	4.6	62.4	200	419	128	2.1	1.3	0.7	8.53	17.9	1.6	2.3	0.3	< 10	< 0.2
413044	8.00	8		206	< 3	< 2	6.32	< 2		64.2	210	135	105	1.9		0.6	7.54	14.8	1.7	2.2	0.3	< 10	< 0.2
413045	7.93			168	< 3	< 2	6.58	< 2		65.8	210	86.8	86	1.9		0.5	8.26	18.2	1.9		0.3	< 10	< 0.2
413046	8.32			103	< 3	< 2	6.75	< 2		58.2	200	61.5	181	1.8	1.0	0.7	7.69	15.2	2.0	2.1	0.4	< 10	< 0.2
413047	7.40	6	< 10	18	< 3	< 2	7.33	< 2	7.9	50.0	190	1.5	168	3.6	3.3	1.0	10.2	15.0	4.1	2.2	0.8	< 10	< 0.2
413048	7.44	6		21	3	4	8.04	< 2	11.0	46.0	180	30.7	118	3.4	2.3	0.8	9.91	22.5	3.3	2.0	0.8	< 10	< 0.2
413049	8.03	5	10	21	26	3	0.29	< 2	0.9	2.3	40	71.4	6	< 0.3	0.1	< 0.1	0.20	50.6	1.3	4.2	< 0.2	< 10	
												İ			l					l	l		

Activation Laboratories Ltd.

Unit Symbol % Lower Limit 0.01 Method Code FUS	ŗ						Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	ln
		opm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Method Code EUG)1 5	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Institute LLCC		FUS-	FUS-		FUS-		FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-		FUS-							
Na2		MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2
413050 7	7.25	< 5	< 10	102.02	10202	< 2	7.43	< 2	9.0	49.2	180	160	169	3.4	2.5	1.0	10.2	22.1	3.6	2.0	0.9	< 10	< 0.2
	0.25	6	20	17	< 3	< 2	0.07	< 2	5.1	1.6	60	0.7	4	0.6	0.2	< 0.1	0.29	1.2	0.6	1.2	< 0.2	< 10	< 0.2
	8.12	< 5	< 10	6	115	16	0.16	< 2	1.2	1.4	50	197	4	< 0.3	< 0.1	< 0.1	0.39	73.2	0.8	4.4	< 0.2	< 10	< 0.2
	8.24	5	< 10	6	175	39	0.11	< 2	2.1	0.8	40	161	4	< 0.3	< 0.1	< 0.1	0.33	75.1	1.2	4.0	< 0.2	< 10	< 0.2
	7.62	5	< 10	9	65	941	0.18	< 2	3.6	1.4	40	179	22	0.6	< 0.1	< 0.1	0.29	68.0	3.7	4.0	< 0.2	< 10	< 0.2
	7.21	6	< 10	20	21	2	6.31	< 2	7.9	45.5	190	997	178	3.8	2.9	0.8	9.87	23.7	4.1	3.2	0.9	< 10	< 0.2
413056 7	7.04	< 5	< 10	11	< 3	< 2	6.97	< 2	5.5	52.7	200	16.3	83	3.3	1.9	1.1	10.3	17.2	3.4	2.2	0.8	< 10	< 0.2
413057 7	7.36	< 5	< 10	119	15	4	9.71	< 2	10.7	50.8	150	22.3	216	4.4	3.0	0.9	10.7	22.1	5.1	3.0	0.9	< 10	< 0.2
413058 7	7.32	< 5	< 10	45	24	9	11.7	< 2	11.8	48.0	120	2.7	144	5.0	3.3	1.2	9.87	28.4	4.4	4.1	0.9	< 10	< 0.2
413059 5	5.40	< 5	< 10	46	8	< 2	0.44	< 2	< 0.8	1.7	40	30.4	7	0.6	< 0.1	< 0.1	0.14	37.5	1.0	3.0	< 0.2	10	< 0.2
413060 7	7.53	< 5	< 10	150	5	4	9.00	< 2	10.6	50.1	120	8.2	210	4.9	3.9	1.1	10.6	20.0	4.8	2.7	1.0	< 10	< 0.2
413061 8	8.54	< 5	40	48	124	< 2	0.18	< 2	< 0.8	1.1	200	57.6	5	< 0.3	< 0.1	< 0.1	0.26	58.7	< 0.1	5.0	< 0.2	< 10	< 0.2
413062 6	6.76	< 5	< 10	156	< 3	< 2	6.82	< 2	11.2	47.2	100	7.0	193	4.9	3.6	1.2	10.8	18.2	4.3	2.3	1.0	< 10	< 0.2
413063 8	8.33	< 5	< 10	1480	7	< 2	1.67	< 2	89.4	5.3	40	102	19	1.9	0.6	1.8	1.53	24.3	4.3	1.9	0.3	10	< 0.2
413064 8	8.38	< 5	< 10	1600	14	3	1.55	< 2	100	4.7	40	237	28	2.1	0.9	2.0	1.66	29.0	5.3	2.1	0.3	< 10	< 0.2
413065 7	7.82	< 5	< 10	122	6	6	0.35	< 2	10.1	1.0	40	139	8	0.8	< 0.1	0.7	0.21	47.9	3.9	4.3	< 0.2	< 10	< 0.2
413066 8	8.40	< 5	< 10	1410	30	< 2	1.19	< 2	83.7	5.5	40	396	46	1.7	0.5	1.7	1.55	35.6	4.1	2.2	0.3	< 10	< 0.2
	8.54	< 5	< 10	69	4	8	0.10	< 2	3.2	0.8	40	174	< 2	< 0.3	< 0.1	< 0.1	0.12	41.9	1.6	3.8	< 0.2	< 10	< 0.2
	8.34	< 5	< 10	29	12	6	0.16	< 2	5.6	0.6	40	92.5	2	1.4	< 0.1	< 0.1	0.34	66.2	4.5	4.7	< 0.2	10	< 0.2
	7.96	< 5	40	1130	7	8	1.48	< 2	93.4	4.7	40	150	49	1.8	0.9	1.8	1.56	23.9	5.5	1.7	0.3	< 10	< 0.2
	8.77	< 5	< 10	1140	6	< 2	2.39	< 2	110	7.8	90	95.4	57	2.8	1.2	2.2	2.41	22.7	6.2	1.7	0.4	10	< 0.2
	0.26	< 5	20	55	< 3	< 2	0.05	< 2	6.4	1.6	50	0.8	3		0.5	< 0.1	0.42	< 0.2	0.6	1.6	< 0.2	< 10	< 0.2
	6.86	< 5	< 10	354	4	< 2	6.45	< 2	4.6	64.1	210	227	55	1.8	1.1	0.4	8.19	14.3	1.5	2.7	0.4	< 10	< 0.2
	8.58	< 5	20	763	25	< 2	2.96	< 2	85.2	11.1	70	103	89	1.9	0.7	1.4	2.23	21.9	5.1	2.5	< 0.2	< 10	< 0.2
	8.18	< 5	< 10	81	3	< 2	8.69	< 2	4.2	55.1	380	40.1	74	2.1	1.3	0.6	8.46	18.2	2.1	2.0	0.4	< 10	< 0.2
	8.25	< 5	< 10	249	< 3	< 2	6.42	< 2	6.7	57.4	160	138	405	3.1	2.0	0.9	10.5	18.2	2.7	2.4	0.6	10	< 0.2
	7.01	< 5	< 10	44	< 3	< 2	6.10	< 2	10.2	67.4	120	115	133	3.9	3.1	1.2	11.8	16.2	5.5	2.8	0.8	< 10	< 0.2
	4.45	< 5	< 10	41	< 3	< 2	4.29	< 2	8.2	38.0	80	48.8	84	2.4	1.7	0.6	7.22	10.6	2.8	2.6	0.6	< 10	< 0.2
	4.27 5.84	< 5	< 10	85	< 3 4	< 2	3.32	< 2	9.1	35.6	80	105	50	2.1	1.5	0.7	6.86	13.3	2.6	2.2	0.5	< 10	< 0.2
	7.20	< 5 < 5	< 10 < 10	53 23	< 3	< 2	11.4 6.80	< 2 < 2	14.4 13.8	53.0 53.3	110 60	0.8 34.8	39 141	5.0 6.5	3.3 4.5	1.1 1.6	11.3 14.1	15.8 21.1	5.6 5.8	3.6 2.5	1.0 1.5	< 10 < 10	< 0.2 < 0.2
	9.15	< 5	< 10 30	23 51	124	< 2	0.00	< 2	< 0.8	0.8	200	60.7	7	< 0.3	< 0.1	< 0.1	0.33	58.0	< 0.1	6.8	< 0.2	< 10	< 0.2
	8.57	< 5	< 10	364	22	13	2.55	< 2	< 0.8 50.6	32.2	80	648	264	< 0.3 5.3	2.8	1.7	7.79	29.7	5.4	3.7	1.1	< 10	< 0.2
	8.45	< 5	10	12	162	25	0.14	< 2	2.2	1.2	50	86.7	< 2	1.0	< 0.1	0.2	0.27	68.0	2.1	4.8	< 0.2	< 10	< 0.2
	8.92	< 5	< 10	84	7	< 2	7.24	< 2	17.1	55.9	250	300	35	3.5	2.7	0.8	8.99	19.4	4.1	3.4	0.7	< 10	< 0.2
	8.66	< 5	< 10	26	< 3	< 2	8.02	< 2	10.4	52.7	250	63.6	69	4.0	2.9	0.9	9.32	20.7	4.2	2.6	0.9	< 10	< 0.2
	8.03	< 5	< 10	24	< 3	< 2	7.15	< 2	9.9	54.4	220	31.9	147	4.4	3.3	1.0	10.3	17.0	3.9	2.2	1.1	< 10	0.2
	7.98	< 5	< 10	54	14	4	6.14	< 2	10.2	65.3	200	647	24	3.3	2.4	0.8	9.87	27.3	3.2	2.4	0.8	10	< 0.2
	8.48	< 5	10	18	111	5	0.31	< 2	2.1	1.1	40	125	3		< 0.1	< 0.1	0.29	54.9	1.4	3.7	< 0.2	< 10	< 0.2
	8.63	< 5	< 10	12	149	< 2	0.54	< 2	4.1	3.7	40	72.0	11	1.0	0.2	0.1	0.73	63.0	4.3	4.7	< 0.2	10	< 0.2
	7.56	< 5	< 10	20	5	< 2	7.04	< 2	7.3	54.7	210	220	40	4.4	3.4	1.0	10.5	18.7	3.8	2.8	1.1	< 10	< 0.2
413091 (0.16	< 5	10	10	< 3	< 2	< 0.01	< 2	4.5	0.8	50	0.7	< 2	0.3	0.2	0.1	0.35		0.4	1.7	< 0.2	< 10	< 0.2
413092 7	7.82	< 5	30	25	5	< 2	6.50	< 2	9.6	54.1	210	95.0	85	4.4	2.4	0.8	10.1	20.0	3.7	3.7	0.9	< 10	< 0.2
	9.25	< 5	< 10	318	48	25	2.97	< 2	46.5	34.7	100	548	268	2.8	1.6	1.2	5.20	34.5	3.7	3.8	0.5	< 10	0.2
413094 2	2.38	< 5	20	42	66	2	2.83	< 2	5.7	1.1	50	76.2	34	1.6	0.2	0.2	9.24	80.4	2.6	4.0	< 0.2	40	< 0.2
413095 9	9.26	< 5	< 10	369	42	3	4.00	< 2	47.5	27.5	120	685	110	3.5	2.6	1.2	5.28	34.9	5.3	3.9	0.7	< 10	< 0.2
413096 8	8.60	< 5	30	47	8	32	0.40	< 2	4.2	1.0	40	47.2	5	0.8	< 0.1	< 0.1	0.43	68.3	1.4	3.7	< 0.2	< 10	< 0.2
	8.74	< 5	< 10	345	16	6	4.91	< 2	51.2	33.2	130	319	188	3.4	1.8	1.3	6.32	23.4	4.6	3.3	0.7	< 10	< 0.2
413098 7	7.37	< 5	< 10	23	18	59	0.37	< 2	4.6	2.3	50	84.1	10	0.7	< 0.1	< 0.1	0.61	55.0	2.4	3.5	< 0.2	< 10	< 0.2
413099 8	8.28	< 5	< 10	207	9	67	6.08	< 2	42.0	35.4	150	125	31	3.5	2.1	1.3	7.26	20.4	3.2	2.5	0.6	< 10	< 0.2

Activation Laboratories Ltd.

Analyte Symbol	Al	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm								
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUS-	FUS-	FUS-		FUS-																		
	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2								
413100	6.93	< 5	40	37	< 3	< 2	9.75	< 2	6.9	55.2	60	4.0	71	3.2	2.7	0.5	9.81	16.9	2.3	2.6	0.8	< 10	< 0.2
413101	0.00	< 5	60	14	< 3	< 2	0.09	< 2	5.5	2.7	50	0.6	10	0.6	0.5	< 0.1	0.48	0.6	0.6	1.8	< 0.2	< 10	< 0.2
413102	7.75	< 5	< 10	43	5	< 2	8.09	< 2	6.3	52.4	50	48.4	55	3.6	2.9	0.6	10.0	16.1	2.8	2.9	0.9	< 10	< 0.2
413103	8.95	< 5	< 10	11	144	< 2	0.20	< 2	7.0	2.0	40	127	7	1.3	< 0.1	< 0.1	0.44	68.3	5.6	4.4	< 0.2	< 10	< 0.2
413104	7.60	< 5	10	60	15	< 2	7.40	< 2	8.2	44.5	40	67.7	61	3.9	2.7	0.3	7.70	24.6	4.1	3.0	0.8	< 10	< 0.2
413105	7.61	< 5	< 10	37	4	< 2	8.46	< 2	6.6	57.4	60	5.2		3.5	3.1	0.5	10.0	14.9	2.8	2.8	0.7	< 10	< 0.2
413106	8.13	< 5	< 10	63	14	< 2	7.45	< 2	11.9	41.9	220	105	154	3.7	2.1	0.8	9.63	27.1	4.3	3.6	0.7	< 10	< 0.2
413107	7.89	< 5	< 10	26	< 3	< 2	8.82	< 2	12.6	50.0	230	36.1	91	4.6	3.1	1.0	9.86	18.1	5.0	2.6	1.1	< 10	< 0.2
413108	8.12	< 5	< 10	24	4	3	7.57	< 2	12.0	45.8	230	201	148	4.4	3.3	1.2	11.1	22.3	4.0	2.6	1.0	< 10	< 0.2
413109	8.19	< 5	< 10	< 3	23	< 2	0.30	< 2	5.8	1.4	40	93.6	5	1.8	0.2	< 0.1	0.41	67.7	4.4	5.0	< 0.2	< 10	< 0.2
413110	8.25	< 5	< 10	16	15	11	9.32	< 2	12.7	47.0	240	205	120	4.6	2.8	1.1	9.39	22.6	4.3	5.0	1.0	< 10	< 0.2
413111	8.74	< 5	40	41	121	< 2	0.15	< 2	< 0.8	0.8	190	57.6	3	< 0.3	< 0.1	< 0.1	0.26	56.0	< 0.1	6.3	< 0.2	< 10	< 0.2
413112	8.37	< 5	< 10	7	72	15	0.30	< 2	2.9	1.3	40	88.3	3		< 0.1	< 0.1	0.29	53.6	2.2	4.4	< 0.2	< 10	< 0.2
413113	8.44	< 5	< 10	32	16	13	6.43	< 2	10.3	39.4	210	214	95	3.8	2.7	1.1	7.89	24.9	4.6	3.6	1.0	< 10	< 0.2
413114	8.94	< 5	< 10	53	5	3	6.04	< 2	15.1	54.5	250	260	107	4.5	3.4	1.0	8.57	21.5	4.6	2.2	1.1	< 10	< 0.2
413115	8.52	< 5	< 10	12	< 3	< 2	8.91	< 2	11.1	50.2	220	23.9	73	4.0	2.7	0.9	9.42	17.9	4.1	2.6	1.0	< 10	< 0.2
413116	7.93	< 5	< 10	7	72	< 2	0.18	< 2	1.7	1.5	40	106	5	0.5	< 0.1	< 0.1	0.37	55.5	1.9	4.4	< 0.2	< 10	< 0.2
413117	8.18	< 5	< 10	18	4	< 2	8.51	< 2	8.5	45.6	210	65.8	49	4.0	2.7	1.1	9.20	16.9	3.4	2.1	0.9	< 10	< 0.2
413118	2.62	< 5	< 10	104	< 3	< 2	7.15	< 2	16.2	104	2440	83.7	203	1.8	1.3	0.8	10.3	11.4	2.7	2.9	0.4	< 10	< 0.2
413119	7.31	< 5	< 10	36	< 3	< 2	7.51	< 2	9.9	56.7	50	34.2	241	3.9	2.4	0.6	10.0	14.6	2.4	2.1	0.9	< 10	< 0.2
413120	7.50	< 5	< 10	47	< 3	< 2	7.78	< 2	7.0	56.9	60	35.9	244	3.5	2.7	0.6	11.6	14.9	2.4	2.6	0.8	< 10	< 0.2
413121	0.17	< 5	< 10	17	< 3	< 2	< 0.01	< 2	5.1	1.5	40	0.8	4	0.4	0.4	0.1	0.58	0.6	0.6	1.3	< 0.2	< 10	< 0.2
413122	7.90	< 5	< 10	9	36	21	0.14	< 2	2.3	1.2	40	137	12	0.9	< 0.1	< 0.1	0.59	59.9	2.5	4.1	< 0.2	10	< 0.2
413123	7.35	< 5	< 10	8	137	12	0.09	< 2	2.4	0.9	40	99.5	2	0.8	0.2	< 0.1	0.55	64.6	4.1	4.3	< 0.2	< 10	< 0.2
413124	7.88	< 5	< 10	20	183	43	0.08	< 2	1.2	0.8	40	192	< 2	< 0.3	< 0.1	< 0.1	0.36	53.2	1.3	4.1	< 0.2	< 10	< 0.2
413125	7.98	< 5	< 10	77	21	5	8.39	< 2	5.2	46.5	90	246	6	2.6	2.1	0.3	7.48	19.1	2.2	4.0	0.7	< 10	< 0.2
413126	7.67	< 5	< 10	52	11	5	9.68	< 2	6.2	47.4	100	25.1	23	2.3	2.3	0.4	8.11	16.5	1.6	3.5	0.6	< 10	< 0.2
413127	7.83	< 5	< 10	441	< 3	< 2	8.70	< 2	46.7	47.5	270	78.7	48	3.6	2.1	1.4	8.16	16.6	4.0	2.7	0.7	< 10	< 0.2
413128	7.58	< 5	< 10	341	< 3	< 2	9.18	< 2	20.0	51.5	200	40.9	38	3.4	2.3	0.9	8.05	13.6	2.9	2.5	0.7	< 10	< 0.2
413129	7.81	< 5	< 10	33	< 3	< 2	9.30	< 2	3.5	52.8	100	1.8	45	2.6	2.4	0.4	8.76	13.6	1.9	2.5	0.7	< 10	< 0.2
413130	7.94	< 5	< 10	18	< 3	< 2	9.37	< 2	3.8	53.8	110	2.9	49	2.9	2.6	0.5	9.87	11.5	2.2	2.5	0.7	< 10	< 0.2
413131	8.79	< 5	30	45	119	< 2	0.07	< 2	< 0.8	1.2	190	60.9	< 2	< 0.3	< 0.1	< 0.1	0.32	56.6	< 0.1	6.3	< 0.2	< 10	< 0.2
413132	8.14	< 5	< 10	27	< 3	< 2	8.49	< 2	4.1	53.6	110	3.0	40	3.0	2.8	0.4	9.06	12.2	1.7	2.3	0.8	< 10	< 0.2
413133	7.70	< 5	< 10	7	11	< 2	0.33	< 2	1.7	1.4	40	82.7	5	0.9	< 0.1	< 0.1	0.39	49.3	1.8	4.6	< 0.2	< 10	< 0.2
413134	7.90	< 5	< 10	35	7	< 2	8.63	< 2	3.7	54.5	110	13.8	53	2.8	2.4	0.4	9.03	12.3	1.4	3.3	0.7	< 10	< 0.2
413135	8.08	< 5	< 10	90	< 3	< 2	8.00	< 2	4.0	53.5	100	110	60	2.6	2.2	0.3	8.72	12.4	1.5	3.5	0.7	< 10	< 0.2
413136	7.44	< 5	< 10	231	12	3	7.14	< 2	17.4	46.8	140	441	145	4.6	3.0	1.1	10.4	19.3	5.3	3.5	1.0	< 10	< 0.2
413137	8.38	< 5	< 10	15	12	28	0.33	< 2	1.0	1.6	50	97.4	4	< 0.3	< 0.1	< 0.1	0.80	64.0	0.9	4.1	< 0.2	< 10	< 0.2
413138	8.13	< 5	20	11	9	2	0.18	< 2	2.5	1.5	60	73.4	< 2	0.4	< 0.1	< 0.1	0.73	82.1	2.3	4.0	< 0.2	< 10	< 0.2
413139	8.46	< 5	< 10	27	40	3	5.86	< 2	9.6	45.3	200	684	96	4.1	2.5	0.6	9.21	36.7	3.9	3.6	0.9	< 10	< 0.2
413140 413141	7.58	< 5 < 5	< 10 30	21 15	< 3 < 3	< 2 < 2	6.99	< 2	15.2 5.0	40.4	140 40	5.0 0.9	103	5.0 0.5	3.5 0.4	1.5 0.1	10.4 0.53	19.6 1.1	5.3 0.5	2.8 1.0	1.0 < 0.2	< 10 < 10	< 0.2 < 0.2
413141	7.46	< 5		15	< 3	< 2	< 0.01	< 2	5.0	46.0	-	49.8	< 2 108	6.0	0.4	1.7	12.9	21.1	0.5 6.0	2.9	< 0.2	< 10	
413142	8.51	< 5	< 10	8	47		0.25			46.0	40	49.8 59.2	108				0.56	67.9	6.0 5.1	2.9	< 0.2		< 0.2
413143	7.41	< 5	< 10	33	47	< 2		< 2	3.7	44.7		59.2 347	3	6.0	< 0.1	< 0.1		26.8				< 10 < 10	< 0.2
413145	8.40	< 5	< 10	33	24	< 2	6.41 0.40	< 2 < 2	17.3 5.4	44.7	100 40	54.8	< 2	6.0	3.8 < 0.1	1.3 < 0.1	12.5 0.63	26.8	6.6 2.9	3.7 4.6	1.3 < 0.2	< 10	< 0.2
413145	7.45	< 5	< 10	102	< 3	4 < 2	7.75	< 2	5.4 16.1	45.9	120	23.6	112	5.6	< 0.1	< 0.1	12.2	22.0	2.9	4.6 2.4	< 0.2	< 10	< 0.2 < 0.2
413146	8.64	< 5	< 10	102	< 3	< 2	8.47	< 2	7.2	45.9	240	23.6	112	2.6	3.0	0.9	9.13	13.3	2.8	2.4	0.6	< 10	< 0.2
413147	8.58	< 5		124	< 3	< 2	2.65	< 2				9.0	63	2.0	1.8	2.5	3.07	25.2	2.8	2.5	0.6	< 10	< 0.2
	0.08	< 5	< 10	1210	12	< 2	2.03	< 2	120	13.2	/0	244	03	3.1	1.0	2.0	3.07	20.2	1.2	2.1	0.4	< 10	< 0.2
	1	I	I	I I			1	1	I	1	I	I	1	I	I	I	1	1	I		1	I I	I.

Activation Laboratories Ltd.

Analyte Symbol	Al	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	5	10	3	3	2	0.01	2	0.8	0.2	30	0.1	2	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	MS-		FUS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- Na2O2	MS-	MS-	MS-	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2
413149	8.24	< 5	< 10	30	25	12	0.16	< 2	6.0	1.0	40	82.4	< 2	0.9	0.1	< 0.1	0.35	71.2	3.9	3.9	< 0.2	< 10	< 0.2
413150	8.70	< 5	< 10	924	8	< 2	2.65	< 2	125	13.1	70	161	52	3.5	1.2	3.0	3.10	25.9	6.0	2.2	0.5	< 10	< 0.2
413151	8.85	< 5	30	52	117	< 2	0.13	< 2	< 0.8	1.5	210	55.4	3	< 0.3	< 0.1	< 0.1	0.32	58.8	0.1	5.8	< 0.2	< 10	< 0.2
413152	7.43	< 5	< 10	147	< 3	< 2	6.78	< 2	10.9	51.5	190	18.4	216	3.6	2.3	1.0	10.7	18.7	3.5	2.7	0.7	< 10	< 0.2
413153	7.09	< 5	100	388	< 3	< 2	8.24	< 2	45.9	58.8	730	61.2	27	3.6	2.2	2.2	8.43	14.9	5.1	2.0	0.7	< 10	< 0.2
413154	6.06	< 5	< 10	980	< 3	< 2	6.92	< 2	31.1	57.7	920	105	< 2	3.0	2.1	1.2	8.82	19.8	3.6	3.9	0.6	< 10	< 0.2
413155	5.90	< 5	< 10	411	< 3	< 2	8.32	< 2	32.5	53.4	810	93.2	97	3.8	1.9	1.5	8.39	15.8	5.4	2.3	0.6	< 10	< 0.2
413156	5.78	< 5	< 10	312	< 3	< 2	8.52	< 2	29.7	51.1	930	55.5	48	3.8	2.1	1.5	8.06	15.8	5.6	2.4	0.7	< 10	< 0.2
413157	8.45	< 5	10	89	< 3	< 2	7.63	< 2	3.7	54.8	220	185	106	1.7	1.2	0.5	8.33	15.1	2.0	2.3	0.4	< 10	< 0.2
413158	8.93	< 5	10	98	< 3	< 2	8.01	< 2	3.7	60.2	250	205	85	1.7	0.9	0.7	8.60	14.9	2.1	2.3	0.4	< 10	< 0.2
413159	8.57	< 5	< 10	11	61	15	0.12	< 2	2.5	1.0	40	169	< 2	< 0.3	< 0.1	< 0.1	0.34	44.0	2.6	4.2	< 0.2	< 10	< 0.2
413160	7.57	< 5	10	6	68	41	0.14	< 2	3.0	0.9	50	83.6	2	0.7	< 0.1	< 0.1	0.62	62.2	2.1	3.4	< 0.2	< 10	< 0.2
413161	0.16	< 5	10	15	< 3	< 2	0.03	< 2	3.8	1.6	60	0.5	2	0.5	0.3	< 0.1	0.62	1.1	0.5	1.3	< 0.2	< 10	< 0.2
413162	7.82	< 5	< 10	4	9	18	0.16	< 2	6.6	0.5	50	93.2	< 2	1.3	0.1	< 0.1	0.71	66.1	4.1	4.0	< 0.2	< 10	< 0.2
413163	7.71	< 5	< 10	5	62	7	0.19	< 2	5.5	0.6	50	86.8	< 2	0.7	< 0.1	< 0.1	0.42	54.5	3.9	3.8	< 0.2	< 10	< 0.2
413164	8.18	< 5	< 10	6	112	10	0.29	< 2	4.2	1.2	40	76.3	7	0.9	< 0.1	< 0.1	0.47	54.0	3.8	4.0	< 0.2	10	< 0.2
413165	8.33	< 5	< 10	30	6	< 2	7.42	< 2	3.6	53.2	200	298	443	1.5	1.1	0.4	6.77	13.6	1.8	2.2	0.4	< 10	< 0.2
413166	8.30	< 5	< 10	38	< 3	< 2	8.36	< 2	5.6	58.0	350	114	64	2.2	1.5	0.7	8.43	16.1	1.9	2.8	0.5	< 10	< 0.2
413167	8.69	< 5	< 10	81	< 3	< 2	8.64	< 2	5.1	50.1	300	4.7	130	2.7	1.3	0.6	8.51	15.6	2.7	2.9	0.6	< 10	< 0.2
413168	8.30	< 5	< 10	68	< 3	< 2	7.66	< 2	5.2	50.1	160	19.3	208	2.9	2.1	0.7	9.62	17.2	3.4	2.6	0.5	< 10	< 0.2
413169	7.72	< 5	< 10	18	4	< 2	7.36	< 2	8.4	51.8	190	64.3	130	3.8	2.6	1.2	9.86	16.7	3.6	2.6	0.9	< 10	< 0.2
413170	8.29	< 5	< 10	12	26	4	0.35	< 2	5.0	1.9	50	112	5	1.0	< 0.1	< 0.1	0.51	59.8	2.9	3.1	< 0.2	< 10	< 0.2
413171	9.20	< 5	30	44	120	< 2	0.13	< 2	< 0.8	1.9	220	56.1	3	< 0.3	< 0.1	< 0.1	0.33	53.5	< 0.1	6.3	< 0.2	< 10	< 0.2
413172	7.75	< 5	< 10	28	< 3	< 2	7.03	< 2	9.4	48.3	220	56.0	215	3.5	2.5	1.1	10.2	18.7	3.1	2.6	0.8	< 10	< 0.2
413173	7.20	< 5	< 10	42	15	< 2	1.10	< 2	9.6	11.2	60	82.5	73	1.0	0.4	0.4	1.45	37.6	2.6	2.8	< 0.2	< 10	< 0.2

Activation Laboratories Ltd.

Analyte Symbol	К	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th
Unit Symbol	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm							
Lower Limit	0.1	0.4	3	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2							
413001	0.2	Na202 4.7	328	3.98	1850	Na202		11.3	Na202 90	Na202 3.5	2.3	15.7	0.18			22.8	1Na2O2 4.2	1.9	161		1.2	Na202 7	0.4
413002	0.2	4.7	410	4.20	1670		4.3 4.6	9.4	90 70	4.0	2.3	180	0.16	< 2	< 8 < 8	22.0	4.2	3.9	145	1.5 2.5	0.8	7	0.4
413003	0.3	1.4	39	0.01	1930	1	86.4	3.5	10		0.8	330	< 0.01	< 2	< 8	> 30.0	4.1	9.7	22	177	0.8	< 6	
413004	0.6	5.3	294	2.99	1690	1	4.9	13.2	90		2.7	242	0.52	< 2	13	23.8	4.3	3.0	93	1.9	1.0	< 6	0.3
413005	0.0	4.5	102	2.33	1800	1	4.7	9.3	100	4.6	2.5	42.3	0.32	< 2	< 8	23.6	2.2	2.1	50	1.6	0.8	< 6	0.4
413006	0.7	4.5	1170	4.69	1850	< 1	3.4	7.3	160	4.0	1.6	132	0.21	< 2	< 8	23.0	1.9	2.1	128	1.0	0.6	< 6	
413007	0.3	2.9	1900	4.09	1920	<1	4.3	7.3	150	2.9	1.0	276		< 2	< 8	21.7	2.6	2.0	120	2.3	0.6	< 6	
413008	2.4	< 0.4	3040	0.04	589	7	28.7	0.7	20	12.4	0.1	2800	< 0.03	< 2	< 8	> 30.0	0.4	11.4	21	41.5	0.0	< 6	
413009	3.0	< 0.4 0.6	6280	< 0.04	1100	< 1	61.9	0.7	20	14.0	0.1	3510	< 0.01	< 2	< 8	> 30.0	1.8	14.3	21	75.3	0.2	< 6	
413010	2.3	0.8	329	< 0.01	405	2	65.1	1.7	10		0.2	2380	0.01	< 2	< 8	> 30.0	2.2	6.5	17	123	0.4	< 6	
413011	0.4	2.2	1200	3.55	1490	< 1	4.5	6.2	110	9.0	1.4	408	0.01	< 2	< 8	25.4	1.5	2.9	144	5.8	0.5	< 6	0.3
413012	0.4	2.6	766	3.45	1430	2	3.0	5.8	140	1.9	1.4	75.5	0.03	< 2	< 8	24.3	2.5	3.2	195	1.3	0.5	< 6	0.3
413012	0.2	3.3	700	4.53	1920	3	3.5	6.4	140	3.6	1.7	26.7	0.19	< 2	< 8	24.3	2.5	2.1	193	1.3	0.5	< 6	0.3
413014	0.2	3.1	789	4.43	1820	< 1	3.7	6.9	130	5.5	1.6	70.3	0.06	< 2	< 8	22.8	2.0	2.0	107	1.1	0.6	< 6	
413015	0.2	0.1	113	0.03	967	9	58.9	1.6	20	4.8	0.2	955	< 0.00	< 2	< 8	> 30.0	1.2	14.7	107	106	0.0	< 6	4.1
413016	0.0	3.3	1100	4.34	1760	1	3.3	7.6	120	28.0	1.9	125	0.15	< 2	8	22.5	2.3	1.9	102	1.2	0.6	< 6	
413017	0.5	3.5	881	4.25	1780	3	4.8	7.6	220	8.3	1.8	568	0.13	< 2	9	22.7	2.9	3.4	102	4.5	0.0	< 6	0.3
413018	0.0	2.6	128	0.17	1590	2	254.5	4.1	20	25.3	1.0	651	0.06	< 2	< 8	> 30.0	4.6	11.0	41	274	0.5	< 6	11.2
413019	0.7	3.0	833	4.13	1860	2	5.6	8.0	120	9.6	1.6	918	0.00	< 2	< 8	22.7	3.2	3.8	93	4.7	0.6	< 6	0.4
413020	0.7	4.2	225	2.81	2320	4	4.0	9.4	70		1.9	11.2	0.21	< 2	< 8	21.5	3.7	2.2	152	1.1	0.0	< 6	0.4
413021	1.6	< 0.4	8020	0.02	351	8	84.3	< 0.4	20		< 0.1	1700	< 0.01	< 2	< 8	> 30.0	< 0.1	123	29	97.5	< 0.1	< 6	
413022	0.2	< 0.4 5.0	293	3.17	2190	9	3.7	9.1	80	6.0	2.1	7.7	0.48	< 2	< 8	21.8	3.2	2.1	147	1.2	0.9	< 6	
413023	0.2	4.5	508	3.57	1890	2	3.4	9.0	80		2.1	24.6	0.40	< 2	< 8	23.0	4.6	2.0	155	1.1	0.3	< 6	
413024	3.0	0.8	440	0.01	1110	< 1	70.4	2.2	10		0.5	3340	0.03	< 2	< 8	> 30.0	1.7	22.3	16	105	0.0	9	
413025	2.9	< 0.4	11200	< 0.01	1030	1	32.3	0.5	20		0.2	3230	0.00	< 2	< 8	> 30.0	0.6	31.2	13	141	0.1	< 6	
413026	1.8	0.8	3550	< 0.01	923	< 1	67.2	2.0	10	15.3	0.4	2150	< 0.01	< 2	< 8	> 30.0	1.5	17.1	21	99.8	0.3	9	
413027	0.4	4.2	1090	3.46	1780	1	4.4	9.5	90		2.0	188	0.26	< 2	12	23.5	3.6	3.1	138	1.4	0.8	< 6	0.3
413028	0.2	4.0	861	3.77	1680	3	4.6	8.8	80		1.9	25.7	0.23	< 2	< 8	23.4	3.1	2.2	147	1.3	0.9	7	0.3
413029	0.2	3.8	574	3.58	1660	10	3.8	9.8	80		1.7	7.4	0.18	< 2	< 8	23.7	3.5	3.0	125	1.2	0.7	< 6	
413030	1.1	1.9	610	5.10	1440	3	2.7	4.1	180	15.0	0.7	142	0.02	< 2	< 8	22.5	1.7	2.1	221	1.0	0.3	< 6	0.1
413031	< 0.1	2.9	21	0.04	75	< 1	2.7	2.6	20	2.3	0.9	4.3	< 0.01	< 2	8	> 30.0	0.9	6.1	14	1.2	0.1	7	1.5
413032	2.5	16.1	1340	7.46	1600	< 1	6.7	18.6	290	5.7	4.9	456	0.02	< 2	< 8	21.5	3.0	1.7	131	1.1	0.4	< 6	
413033	3.5	8.3	2170	7.09	1410	< 1	5.3	9.5	300	7.2	1.9	885	0.08	< 2	8	21.1	2.0	1.7	128	1.0	0.3	< 6	
413034	2.8	5.6	2340	6.41	1560	< 1	6.2	6.5	260	7.7	1.9	802	0.21	< 2	< 8	21.8	1.5	2.8	365	2.0	0.3	< 6	0.3
413035	3.7	1.0	3840	0.06	821	< 1	56.4	1.9	20	14.4	0.4	3110	< 0.01	< 2	< 8	> 30.0	1.5	14.3	23	48.2	0.1	< 6	3.9
413036	3.3	2.9	4660	0.01	1920	< 1	63.2	6.1	20	11.7	1.5	2850	< 0.01	< 2	12	> 30.0	5.4	14.0	14	44.6	0.6	< 6	7.4
413037	0.8	1.5	7090	< 0.01	1120	1	54.1	2.3	20	4.2	0.5	812	< 0.01	< 2	12	> 30.0	3.5	13.6	15	48.8	0.3	9	5.5
413038	3.1	1.9	372	< 0.01	1130	4	36.2	3.3	50	13.4	0.9	2680	< 0.01	< 2	< 8	> 30.0	3.1	10.8	18	30.8	0.3	< 6	
413039	0.6	2.2	4400	< 0.01	1750	< 1	46.4	4.5	40	7.5	1.6	638		< 2	12	> 30.0	3.6	16.5	17	32.9	0.5	< 6	
413040	1.4	1.9	1320	0.01	1160	< 1	73.3	3.6	20	5.9	1.0	1140	< 0.01	< 2	< 8	> 30.0	2.1	18.0	33	78.2	0.3	8	
413041	1.8	0.4	8110	0.02	374	12	99.1	< 0.4	40	6.9	0.1	1850	0.08	< 2	< 8	> 30.0	< 0.1	121	30	117	< 0.1	< 6	2.3
413042	1.1	37.6	1820	1.46	515	< 1	6.7	34.2	60		8.8	561	0.55	< 2	< 8	29.6	5.2	2.1	472	1.1	0.6	< 6	5.7
413043	2.8	2.2	3190	5.57	1740	1	2.7	4.0	270		0.9	751	0.61	< 2	12	22.1	1.0	2.1	253	0.9		< 6	
413044	1.4	2.1	1100	5.40	1600	2		4.4	220		0.8	223	0.22	< 2	< 8	23.0	1.2	2.4	263	0.8	0.2	< 6	
413045	1.7	1.7	1010	6.71	1560	4	< 2.4	2.2	270	6.7	0.8	188		< 2	< 8	22.4	1.3	2.3	128	0.7	0.3	< 6	
413046	1.3	1.7	645	5.96	1480	28	2.7	4.1	180		0.9	116		< 2	< 8	23.1	1.1	1.4	171	1.1	0.3	< 6	
413047	0.2	3.6	484	4.14	1800	2	3.1	7.9	110		1.5	13.2	0.22	< 2	< 8	23.7	2.1	2.1	123	0.9	0.6	< 6	
413048	0.3	3.9	1130	3.77	2120	1	5.4	7.2	110		1.5	92.3		< 2	< 8	24.0	1.6	6.8	150	1.0		9	
413049	1.8	< 0.4	563	0.02	631	< 1	25.5		40		0.2	1640		< 2	< 8	> 30.0	0.8	11.0	27	64.5		< 6	
413043																							

Activation Laboratories Ltd.

Analyte Symbol	к	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th
Unit Symbol	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm						
Lower Limit	0.1	0.4	3	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2						
413050	0.5	3.5	1870	4.09	1860	2	4.5	6.2	90	13.1	1.4	441	0.22	< 2	< 8	23.3	2.0	1.0	122	2.3	0.6	10	0.3
413051	< 0.1	2.4	15	0.03	43	< 1	< 2.4	2.0	30		0.8	5.7	< 0.01	< 2	< 8	> 30.0	0.7	1.5	14	1.0	< 0.1	< 6	1.7
413052	3.9	0.5	9160	0.03	650	< 1	18.5	0.5	40	14.1	0.2	4210	< 0.01	< 2	12	> 30.0	0.5	29.7	18	17.9	< 0.1	< 6	1.1
413053	2.1	0.5	12500	0.02	792	< 1	58.9	1.5	20	11.5	0.4	2470	< 0.01	< 2	< 8	> 30.0	1.9	25.5	21	81.5	0.2	< 6	2.7
413054	1.4	1.2	5210	0.04	899	4	90.4	2.4	20	62.6	0.7	1880	0.01	< 2	< 8	> 30.0	3.7	21.4	14	207	0.3	9	3.7
413055	1.3	2.9	1940	3.74	1780	< 1	7.6	6.6	100	7.4	1.3	2280	0.12	< 2	22	23.5	2.1	4.7	94	13.4	0.6	< 6	0.5
413056	0.2	1.9	1070	4.08	1720	1	3.4	7.1	100	5.9	1.2	49.5	< 0.01	< 2	< 8	23.4	1.8	1.9	119	0.7	0.7	< 6	0.3
413057	0.4	3.6	198	2.24	2030	< 1	4.3	8.6	100	11.3	1.9	124	0.83	< 2	12	23.1	3.3	2.9	158	0.9	0.7	< 6	0.3
413058	0.2	4.0	141	2.02	2030	< 1	6.4	8.4	90	10.0	1.7	32.9	0.51	< 2	< 8	23.5	4.3	8.0	180	1.1	0.8	< 6	0.3
413059	1.0	< 0.4	40	< 0.01	462	< 1	14.4	0.5	20	2.6	< 0.1	685	0.01	< 2	8	> 30.0	0.2	3.2	29	31.4	0.2	< 6	0.9
413060	0.4	4.1	162	2.26	1840	2	5.3	8.6	100	7.7	1.8	56.8	0.94	< 2	16	23.0	2.9	3.7	263	1.1	0.7	< 6	0.3
413061	1.8	< 0.4	8140	0.02	359	7	96.5	< 0.4	30	5.2	< 0.1	1790	< 0.01	< 2	16	> 30.0	< 0.1	126	29	112	< 0.1	7	2.2
413062	0.5	5.3	201	3.33	1630	2	5.3	9.3	100	11.2	2.1	33.6	0.72	< 2	< 8	24.5	2.4	2.6	261	0.8	0.7	< 6	0.4
413063	1.8	45.2	697	0.42	379	4	12.7	37.5	40	64.3	10.5	604	0.45	< 2	< 8	> 30.0	6.7	4.7	905	2.7	0.5	< 6	12.1
413064	1.8	49.7	1000	0.41	394	11	14.2	41.8	10	38.1	12.2	1440	0.44	< 2	< 8	> 30.0	7.4	5.7	854	2.8	0.6	7	12.4
413065	4.2	3.7	84	0.01	317	< 1	62.4	5.2	20	17.9	1.7	2770	0.02	< 2	< 8	> 30.0	3.8	8.7	105	96.1	0.4	< 6	4.5
413066	2.1	44.4	1650	0.38	548	2	24.2	36.5	20	37.1	9.4	3210	0.21	< 2	16	> 30.0	6.9	11.0	652	11.7	0.5	< 6	11.5
413067	6.0	1.2	150	< 0.01	248	< 1	34.7	1.9	20	28.7	0.5	4050	< 0.01	< 2	< 8	> 30.0	1.2	5.1	61	36.4	< 0.1	< 6	1.9
413068	1.3	1.8	2580	0.01	1620	< 1	68.0	3.2	20	12.6	0.6	1090	0.01	< 2	< 8	> 30.0	3.1	10.5	25	88.8	0.5	< 6	6.9
413069	1.0	45.6	542	0.38	319	244	13.2	40.5	20	27.8	11.1	685	0.49	< 2	20	> 30.0	6.3	3.3	816	2.6	0.5	< 6	11.8
413070	0.8	53.7	576	0.95	453	3	13.7	46.1	40	18.3	13.9	219	0.47	< 2	< 8	> 30.0	6.9	4.7	777	1.8	0.7	< 6	12.0
413071	< 0.1	3.0	14	0.02	38	< 1	2.6	2.9	20	2.8	0.6	5.5	< 0.01	< 2	< 8	> 30.0	0.7	3.0	18	0.9	< 0.1	8	1.7
413072	1.6	2.1	3230	6.20	1450	< 1	2.5	4.0	290	3.7	0.9	706	0.16	< 2	24	20.1	0.8	3.3	133	0.8	0.3	< 6	0.2
413073	0.7	41.7	506	0.89	454	< 1	14.0	34.4	40	14.0	10.4	383	0.25	< 2	< 8	> 30.0	6.8	5.1	580	32.1	0.5	< 6	10.3
413074	0.4	1.5		5.27	1540	8	3.2	3.3	130	6.4	0.7	133	0.02	< 2	< 8	22.4	1.3	1.3	136	2.0	0.4	< 6	0.2
413075	1.2	2.2	794	4.24	1640	1	2.9	5.2	90	3.4	1.2	406	0.54	< 2	8	22.6	2.8	4.6	109	1.0	0.5	< 6	0.2
413076	1.8	3.9	202	4.79	1870	1	4.5	8.4	170	9.9	1.9	297	0.31	< 2	< 8	22.7	2.7	2.3	119	0.8	0.7	< 6	0.3
413077	0.9	4.3	111	2.92	1170	< 1	3.7	6.9	100	6.9	1.1	141	0.20	< 2	< 8	> 30.0	0.9	3.8	87	0.8	0.3	< 6	0.2
413078	1.5	3.5	210	2.69	1090	< 1	3.7	4.5	100	5.7	1.3	349	0.16	< 2	< 8	> 30.0	1.5	3.0	78	0.7	0.3	< 6	0.2
413079	0.5	6.3	79	3.71	2560	< 1	5.4	10.7	100	9.1	2.2	16.9	0.16	< 2	12	22.9	3.6	3.6	128	0.7	0.7	< 6	0.4
413080	0.3	4.8	736	2.84	2260	< 1	5.4	10.7	50	1.6	2.6	55.2	0.26	< 2	8	23.1	4.1	3.6	84	0.9	1.1	< 6	0.5
413081 413082	1.8 1.9	< 0.4 23.3	8320 1140	0.02	362 1530	37	95.9	< 0.4 25.0	30 40	5.9 9.1	< 0.1 6.3	1850 1970	< 0.01	< 2 < 2	< 8 21	> 30.0 27.6	0.1	126	35 129	129	< 0.1 0.9	< 6 < 6	2.3 5.3
413083	1.9	23.3	1140	< 0.01	1310	<1	14.4 56.7	25.0	30	10.3	0.5	1850	< 0.01	< 2	< 8	> 30.0	1.4	11.8 10.5	129	4.1 89.8	0.9	< 6	3.4
413084	1.7	7.8	953	4.84	1590	< 1	5.3	10.8	180	4.5	2.4	787	0.10	< 2	< 0	> 30.0	3.3	3.5	112	2.0	0.3	< 6	1.2
413085	0.3	3.5	544	4.63	1590	<1	3.9	7.3	150	8.4	1.8	51.6	0.10	< 2	8	22.4	2.3	3.9	112	0.8	0.8	< 6	0.3
413086	0.3	4.6	605	4.03	1720	2	4.6	9.3	140	4.3	1.8	45.2	0.07	< 2	< 8	22.9	2.3	1.0	112	1.8	0.7	< 6	0.3
413087	1.3	4.1	1700	5.83	1680	18	6.0	7.4	250	7.1	1.6	948	< 0.02	< 2	13	21.9	2.2	1.0	95	13.7	0.6	< 6	0.4
413088	2.6	0.6	3330	0.07	731	64	52.1	0.5	20	15.9	0.2	2670	< 0.01	< 2	< 8	> 30.0	1.1	8.2	27	114	0.0	< 6	2.3
413089	1.2	1.2	683	0.26	905	< 1	70.5	2.2	30	15.1	0.6	1340	< 0.01	< 2	< 8	> 30.0	3.0	8.6	26	165	0.6	< 6	5.6
413090	0.5	3.2		5.07	1800	< 1	4.5	7.0	190	18.7	1.3	381	0.01	< 2	< 8	22.6	2.7	4.5	94	1.0	0.0	< 6	0.4
413091	< 0.1	1.8		< 0.01	46	< 1	< 2.4	1.5	20	7.9	0.7	5.2	< 0.01	< 2	12	> 30.0	0.7	3.1	13	0.6	< 0.1	11	1.3
413092	0.3	3.4	1040		1720	4	4.0	7.3	210		1.6	-		< 2	< 8	23.2	3.9	2.8	110	1.0	0.6	< 6	0.4
413093	1.6	20.7	1450	0.94	1860	79	18.0	19.9	50	9.3	5.5	2190	1.35	< 2	13	28.4	3.9	8.0	151	19.5	0.6	< 6	5.1
413094	0.6	2.5		7.78	1650	40	82.2	2.4	20		0.8	1140		< 2	< 8	11.8	1.8	10.1	40	90.3	0.5	7	6.0
413095	1.9	20.8		1.29	1660	7	18.0	21.0	80		6.2	2810	0.45	< 2	< 8	27.6	4.1	9.6	157	26.9	0.6	< 6	4.1
413096	1.3	1.6		0.03	573	36	92.3	1.8	20		0.6	1130		< 2	< 8		1.8	11.7	39	90.5	0.3	< 6	2.8
413097	1.4	24.3		1.67	1390	10	10.9	21.3	80		6.4	1390	0.57	< 2	12	26.5	4.3	5.5	198	2.4	0.6	< 6	4.3
413098	1.5	2.0	156	0.09	786	85	86.4	2.4	30		0.8	1520	0.03	< 2	< 8		3.0	10.3	36	160	0.3	< 6	4.0
413099	0.8	17.4	729	2.82	1250	18	9.1	19.9	110		5.0	423	0.04	< 2	< 8	25.6	4.0	3.6	257	1.9	0.5	< 6	1.6
	0.0			1.01			0.1			0.0	0.0	0	0.01			10.0		0.0			0.0		

Activation Laboratories Ltd.

Analyte Symbol	К	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Te	Th
Unit Symbol	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm													
Lower Limit	0.1	0.4	3	0.01	3		2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-		FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS-	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2	MS- Na2O2	Na2O2	MS- Na2O2						
413100	0.1	2.9		3.07	2200	1Nd2U2	Na202 2.7	Na2O2 5.2	Na202 50			11.9	0.04			23.3	1.2		Na202 61	1.7	0.7	12	0.3
413100	< 0.1	2.9		0.03	67	< 1	< 2.4	1.7	30	8.7 3.5	1.1 0.8	5.2		< 2 < 2	< 8 < 8	> 30.0	< 0.1	1.1 2.4	19	0.7	0.7	< 6	1.6
413102	0.3	3.2	1180	3.24	2100	21	3.8	4.0	60	3.3	1.0	154	0.07	< 2	< 8	24.3	1.3	2.4	55	2.6	0.1	< 6	0.4
413103	1.5	2.3	2240	0.02	1750	17	60.7	3.1	20	8.1	1.0	1820	< 0.01	< 2	< 8	> 30.0	5.5	12.4	16	123	0.4	< 6	5.9
413104	0.3	2.3		2.60	1810	29	10.7	6.6	50	2.9	1.4	211	0.07	< 2	9	25.9	2.5	3.6	100	6.0	0.7	< 6	1.5
413105	0.0	2.6		3.42	2300	< 1	3.2	4.8	50		1.4	16.9		< 2	< 8	24.3	1.9	3.1	100	0.9	0.5	< 6	0.2
413106	0.6	4.4	522	2.97	2150	8	14.2	8.2	110	9.8	1.7	364	0.35	< 2	25	24.3	2.5	3.4	190	24.8	0.6	< 6	1.1
413107	0.3	4.4	628	3.35	2130	2	4.3	9.4	120	3.2	2.1	84.1	0.00	< 2		22.7	2.6	2.5	150	0.6	0.0	< 6	0.5
413108	0.5	4.8		3.12	3230	2	4.4	9.4	120	5.3	1.8	463	0.30	< 2	9	23.0	3.1	2.9	85	0.0	0.8	< 6	0.0
413109	1.2	1.5		0.02	1820	3	76.5	2.5	20	6.1	0.7	1230		< 2			4.3	10.5	15	87.3	0.8	< 6	8.2
413110	0.6	4.8		2.88	2040	1	5.7	9.0	100	2.7	1.9	569	0.17	< 2	9	23.3	2.5	3.9	135	2.0	0.8	8	0.5
413111	1.8	< 0.4	8030	0.02	342	9	93.0	< 0.4	20	4.5	0.1	1770		< 2	< 8	> 30.0	< 0.1	115	31	123	< 0.1	< 6	2.1
413112	2.6	1.1	96	0.02	529	5	67.2	1.8	20	13.9	0.5	1970		< 2	< 8	> 30.0	1.9	7.1	25	84.5	0.2	< 6	3.4
413113	0.8	4.2		3.16	1890	46	20.1	7.9	90	25.4	1.7	803	0.10	< 2	< 8	24.6	3.3	4.9	108	17.4	0.8	< 6	0.9
413114	0.8	6.5	853	3.61	2280	4	6.4	9.0	130	32.8	2.6	696	0.23	< 2	13	23.8	3.5	2.8	130	2.9	0.7	7	0.5
413115	0.2	3.7	802	4.42	1540	1	3.8	7.8	140	< 0.8	1.7	64.5		< 2	< 8	22.3	2.6	2.2	113	0.6	0.5	< 6	0.4
413116	2.5	0.7	2290	0.04	932	15	52.1	0.8	20	11.2	0.3	2630	< 0.01	< 2	< 8	> 30.0	2.1	8.4	25	118	0.3	< 6	3.1
413117	0.3	3.2	861	4.54	1580	1	4.3	7.1	140	2.5	1.7	250	0.07	< 2	< 8	22.5	2.1	3.2	128	1.3	0.7	< 6	0.4
413118	1.6	6.7	74	11.2	1320	< 1	4.9	10.0	1170	2.3	2.0	102	0.63	< 2	< 8	21.8	2.6	2.1	27	0.7	0.3	< 6	0.4
413119	0.2	4.7	547	3.47	2280	1	2.9	5.1	40	2.4	1.3	86.6	1.20	< 2	< 8	25.2	1.6	1.6	97	0.9	0.4	< 6	0.5
413120	0.3	2.7	876	3.59	3720	< 1	2.8	5.0	60	5.1	1.2	127	0.73	< 2	< 8	22.9	1.2	2.3	104	0.6	0.6	< 6	0.3
413121	< 0.1	2.4	14	0.02	67	< 1	< 2.4	2.5	10	2.3	0.8	4.9	< 0.01	< 2	< 8	> 30.0	0.4	1.9	15	0.9	< 0.1	< 6	1.5
413122	2.7	0.9	3040	0.05	1380	2	51.1	1.2	20	10.3	0.5	2830	< 0.01	< 2	< 8	> 30.0	1.7	11.2	17	60.4	0.3	< 6	3.0
413123	1.1	1.0	3950	0.02	1870	< 1	101.5	1.4	20	5.2	0.4	1350	0.01	< 2	< 8	> 30.0	2.1	11.1	14	216	0.5	< 6	5.5
413124	2.8	0.4	1530	0.01	918	1	57.4	0.9	10	13.2	0.2	3230	< 0.01	< 2	< 8	> 30.0	1.7	7.2	20	173	0.2	< 6	3.2
413125	0.7	2.6	2150	3.43	2110	< 1	7.2	3.1	60	11.0	0.7	804	< 0.01	< 2	< 8	23.6	1.1	4.5	118	12.0	0.3	< 6	0.3
413126	0.3	2.5	379	3.56	1850	< 1	2.8	4.0	60	11.0	0.6	52.1	0.01	< 2	< 8	24.3	1.5	2.9	141	4.2	0.3	< 6	0.1
413127	0.5	21.6	526	4.37	1700	< 1	3.8	25.2	100	7.2	6.0	193	0.02	< 2	20	24.1	4.9	1.8	244	0.5	0.7	< 6	3.8
413128	0.4	8.8	370	4.18	1750	4	3.7	9.5	100	3.8	2.8	100.0	0.03	< 2	< 8	24.2	2.4	2.6	199	3.7	0.5	< 6	1.7
413129	0.2	1.4	275	4.14	1990	< 1	< 2.4	2.4	60	8.4	0.8	5.3	0.01	< 2	< 8	23.8	1.2	1.8	142	0.9	0.4	< 6	0.1
413130	0.2	1.5		4.36	2160	< 1	< 2.4	3.5	70		0.6	5.7	< 0.01	< 2	< 8	23.3	1.0	1.8	100	0.5	0.4	< 6	< 0.1
413131	1.7	< 0.4	7900	0.02	352	8	96.1	< 0.4	20	5.5	< 0.1	1760		< 2	< 8	> 30.0	< 0.1	112	38	129	< 0.1	< 6	2.2
413132	0.2	2.2	465	4.14	2190	< 1	2.6	2.8	60	7.9	0.5	14.0		< 2	16	24.1	1.2	2.2	69	0.7	0.3	< 6	0.2
413133	2.2	0.5		0.03	875	< 1	41.8	1.2	10		0.2	2050		< 2	19	> 30.0	1.5	8.4	23	86.4	0.3	7	3.7
413134	0.4	1.6		4.19	2400	1	2.9	2.8	70		0.7	101	0.03	< 2	21	24.7	0.7	2.4	91	1.8	0.3	< 6	0.1
413135	0.4	1.7	912	4.19	1890	2	< 2.4	2.3	60	4.3	0.5	167	0.12	< 2	< 8	24.2	1.2	3.4	79	0.5	0.4	< 6	0.1
413136	0.9	7.5		3.28	1820	24	5.3	10.3	90	5.2	2.6	821	0.44	< 2	< 8	24.1	2.5	4.1	103	0.8	0.8	< 6	0.8
413137	1.7	0.4	8300	0.08	703	5	52.0	0.8	20	8.6	0.2	1350	0.01	< 2	< 8	> 30.0	1.3	11.6	31	61.1	< 0.1	< 6	1.8
413138	1.2	0.8		0.03	749	1	60.9	1.6	30	1.8	0.4	1190		< 2	< 8	> 30.0	1.3	17.3	22	58.9	0.2	< 6	3.2
413139	1.3	4.1	2200	3.58	1730	6	14.2	7.6	100	4.4	1.7	1810		< 2	< 8	23.8	2.9	8.2	89	22.6	0.6	< 6	0.6
413140	0.2	5.7	738	3.13	1570	2	5.7	12.5	80	< 0.8	2.2	22.3	0.24	< 2	< 8	24.9	3.1	3.1	129	1.1	0.9	< 6	0.5
413141	< 0.1	2.6			62	1	< 2.4	2.9		< 0.8		6.4		< 2	< 8		0.2	2.3	15	0.5		< 6	1.4
413142	0.3	6.1	1850	3.13	1880	3	5.6	14.8	60			152		< 2		22.7	3.4	2.4	103	0.8	0.9	< 6	0.6
413143	1.6	1.5		0.02	2110	< 1	49.8	2.4	10	-		1390	-	< 2			3.4	12.4	22	59.5	0.7	< 6	4.9
413144 413145	1.1 1.0	7.1		2.92	2090 1290	< 1	7.1	13.7	80	2.4	3.0	979 1060		< 2		22.9	4.6 2.6	3.7 18.0	85	3.6	0.8	< 6	0.7
	0.4	1.9		0.03		< 1	58.6	3.4	20 70					< 2					31	83.4		< 6	4.6
413146 413147	0.4	6.3 2.6		3.38 4.23	2030	< 1	5.7 2.7	13.5 5.0	120		2.6 1.3	53.1 45.5	0.26	< 2 < 2	< 8	23.1 22.6	3.8 1.8	2.5 2.4	142 191	0.7	1.0 0.4	< 6 < 6	0.6
413147	0.5	2.6 64.6		4.23	1110 590	< 1	13.9	5.0 57.5	30	-	1.3	45.5		< 2			9.1	2.4	749	0.4 3.8			0.1 13.4
413140	1.5	04.0	904	1.10	590	< 1	13.9	57.5	30	15.4	15.6	002	0.39	< 2	17	> 30.0	9.1	4.9	749	3.8	0.8	< 6	13.4
1	I	I	1	I	1		I		I	1	1	I	1	I	1	I	I	1	I	I	I	I	

Activation Laboratories Ltd.

Analyte Symbol	К	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Te	Th
Unit Symbol	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.4	3	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS- Na2O2	FUS- MS- Na2O2		Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2		MS-	FUS- MS- Na2O2	FUS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-		FUS- MS- Na2O2	FUS- MS- Na2O2
413149	1.5	2.4	115	0.01	1440	< 1	84.9	3.5	10	3.8	0.8	1450	< 0.01	< 2	< 8	> 30.0	2.0	16.5	34	105	0.4	< 6	4.8
413150	1.4	62.0	905	1.11	579	1	10.2	59.7	30	14.7	15.9	541	0.42	< 2	< 8	> 30.0	9.2	5.4	678	2.0	0.7	< 6	13.2
413151	1.8	< 0.4	8020	0.02	357	7	99.1	< 0.4	30	4.9	< 0.1	1730	0.01	< 2	13	> 30.0	< 0.1	116	35	126	< 0.1	< 6	2.1
413152	0.8	4.6	511	4.16	1280	2	3.9	6.4	100	5.4	1.6	55.2	0.18	< 2	< 8	23.2	2.4	1.5	155	0.5	0.6	< 6	0.3
413153	1.7	19.8	338	7.88	1680	< 1	3.5	26.0	280	6.4	7.2	128	< 0.01	< 2	< 8	21.2	3.7	1.5	251	0.5	0.8	< 6	3.0
413154	2.5	13.6	454	9.08	1580	< 1	4.0	17.4	440	2.6	4.5	200	< 0.01	< 2	< 8	21.2	3.2	2.6	146	0.4	0.5	< 6	2.1
413155	2.3	13.6	243	7.08	1510	4	4.0	20.0	200	8.3	5.1	192	0.28	< 2	< 8	22.2	4.5	1.7	234	0.6	0.7	< 6	2.2
413156	1.6	_	175	7.32	1470	3	4.5	18.1	190	5.6	4.2	124	0.09	< 2	< 8	22.9	4.9	2.7	199	0.4	0.6	< 6	2.3
413157	0.9	1.5	863	5.96	1490	2	< 2.4	2.6	210	8.6	0.6	286	0.05	< 2	< 8	22.4	1.2	2.1	109	0.3	0.3	< 6	0.1
413158	1.0	1.3	986	6.10	1590	< 1	< 2.4	3.3	220	7.2	0.9	409	0.05	< 2	< 8	22.0	0.8	2.4	115	0.4	0.3	< 6	< 0.1
413159	5.2	0.7	954	0.03	540	< 1	38.4	2.0	10	21.0	0.5	4300	0.01	< 2	17	> 30.0	1.3	7.7	18	49.4	0.2	< 6	2.9
413160	1.4	0.7	2990	0.02	1050	< 1	68.4	1.9	10	6.3	0.4	1430	< 0.01	< 2	< 8	> 30.0	0.8	19.0	19	85.6	0.2	< 6	3.2
413161	< 0.1	2.1	18	0.01	72	< 1	< 2.4	1.6	30	2.8	0.7	7.4	< 0.01	< 2	12	> 30.0	0.3	3.2	17	0.8	< 0.1	< 6	1.3
413162	1.8	2.1	3630	< 0.01	1360	< 1	73.4	4.4	10	9.5	1.2	1690	< 0.01	< 2	17	> 30.0	3.7	21.1	14	53.4	0.4	< 6	6.0
413163	1.8	1.7	613	< 0.01	825	1	63.5	2.7	20	7.6	0.9	1500	< 0.01	< 2	21	> 30.0	3.2	12.7	19	109	0.3	9	5.1
413164	1.4	1.1	795	0.03	1130	1	84.1	1.8	50	5.8	0.5	1210	0.01	< 2	< 8	> 30.0	3.9	11.2	24	145	0.3	< 6	5.3
413165	0.7	1.1	2680	5.18	1220	< 1	3.7	2.2	250	5.3	0.5	402	0.08	< 2	< 8	23.8	0.6	2.4	112	1.6	0.3	< 6	< 0.1
413166	0.6	1.8	839	5.63	1520	58	2.6	4.3	170	2.3	1.0	249	0.05	< 2	< 8	22.9	1.5	1.3	110	0.4	0.3	< 6	0.1
413167	0.3	1.9	518	4.60	1570	10	2.6	4.7	120	3.2	0.9	50.9	0.06	< 2	< 8	23.5	1.1	2.1	131	0.4	0.4	< 6	0.2
413168	0.3	2.2	597	4.02	1780	< 1	3.2	4.4	80	3.0	1.1	72.0	0.18	< 2	21	23.6	1.7	2.8	113	0.7	0.4	< 6	0.2
413169	0.4	3.7	553	4.17	1630	1	8.4	7.4	110	3.8	1.6	122	0.08	< 2	8	24.1	2.2	2.9	123	0.5	0.7	< 6	0.3
413170	1.8		117	0.05	790	< 1	65.8	2.5	20	5.3	0.9	1480	0.01	< 2	< 8		2.1	17.5	27	57.5	0.2	< 6	3.3
413171	1.8		8250	0.02	363	7	101.8	< 0.4	60	3.4	< 0.1	1720	< 0.01	< 2	< 8		< 0.1	106	29	137	< 0.1	10	2.3
413172	0.5	3.7	643	4.09	1840	4	5.2	8.1	110	0.8	1.5	120	0.41	< 2	13	24.3	2.4	3.1	110	0.7	0.7	< 6	0.3
413173	0.4	4.2	164	0.36	463	3	21.3	5.5	30	1.3	1.6	201	0.24	< 2	< 8	> 30.0	2.6	4.0	56	47.2	0.2	< 6	1.6

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS-	MS-	MS-	MS-	MS-	MS-	MS-	MS-
440004	0.00	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2
413001	0.92	0.1	0.6	< 0.1	372	1.8	32.5	3.1	160
413002	0.85	1.8	0.5	0.4	365	1.4	29.4	3.2	140
413003	< 0.01	2.4	< 0.1	12.3	< 5	1.7	7.4	0.1	< 30
413004	0.95	2.2	0.7	0.3	371	1.6	34.8	4.1	170
413005	0.85	0.4	0.6	< 0.1	379	1.2	24.6	2.9	140
413006	0.71	1.3	0.4	< 0.1	306	1.0	22.5	2.4	150
413007	0.66	2.6	0.4	0.2	274	0.8	24.2	2.7	140
413008	< 0.01	21.3	< 0.1	4.9	9	1.8	1.6	< 0.1	30
413009	< 0.01	26.8	< 0.1	6.0	13	3.3	5.0	0.2	40
413010	< 0.01	19.0	< 0.1	8.4	< 5	1.6	1.5	0.1	80
413011	0.51	3.6	0.3	0.3	214	1.3	18.9	2.1	130
413012	0.55	0.3	0.4	< 0.1	238	0.9	17.0	2.1	100
413013	0.68	0.2	0.3	< 0.1	304	1.2	22.0	2.7	120
413014	0.67	0.6	0.4	< 0.1	289	1.2	24.5	2.5	160
413015	< 0.01	6.2	< 0.1	7.2	8	1.0	1.5	< 0.1	70
413016	0.67	1.0	0.5	< 0.1	292	1.0	23.8	3.0	180
413017	0.68	4.7	0.4	0.1	303	< 0.7	23.0	2.7	160
413018	0.03	3.9	< 0.1	14.2	16	1.8	7.1	0.2	150
413019	0.67	6.6	0.5	0.6	287	< 0.7	22.6	2.5	160
413020	0.75	0.1	0.5	0.1	358	3.0	24.6	3.1	180
413021	< 0.01	14.3	< 0.1	6.0	< 5	2.6	< 0.1	< 0.1	190
413022	0.80	< 0.1	0.5	< 0.1	363	0.8	30.3	3.4	160
413023	0.82	0.1	0.4	< 0.1	352	< 0.7	28.4	3.1	170
413024	< 0.01	24.3	< 0.1	4.9	< 5	2.0	3.8	0.2	150
413025	< 0.01	24.7	< 0.1	4.8	6	< 0.7	1.7	< 0.1	100
413026	< 0.01	15.6	< 0.1	6.4	< 5	1.9	3.0	0.2	30
413027	0.80	1.4	0.4	0.9	337	1.8	24.6	3.0	160
413028	0.82	0.2	0.4	0.0	364	< 0.7	26.6	3.1	130
413029	0.02	0.1	0.1	< 0.1	351	< 0.7	27.4	2.9	190
413030	0.33	1.3	0.3	< 0.1	191	1.1	10.4	1.7	100
413031	0.00	< 0.1	< 0.1	0.5	< 5	1.0	3.2	0.4	40
413032	0.02	3.0	0.1	0.5	192	0.7	12.3	1.0	130
413033	0.36	6.4	0.1	0.9	185	< 0.7	8.4	0.6	130
413034	0.30	6.2	0.1	2.2	164	< 0.7	6.6	1.0	160
413035	< 0.01	22.0	< 0.1	5.6	< 5	< 0.7	1.6	< 0.1	140
413036	< 0.01	22.0	< 0.1	6.9	 	1.8	7.4	0.1	30
413037	< 0.01		< 0.1	7.1				< 0.1	
		4.9			< 5	1.0	2.6		40
413038	< 0.01	20.6	< 0.1	3.4	< 5	1.0	3.7	< 0.1	90
413039	< 0.01	3.4	< 0.1	9.4	< 5	0.7	6.6	0.1	60
413040	< 0.01	7.4	< 0.1	6.1	5	0.8	1.6	0.1	90
413041	< 0.01	13.7	< 0.1	5.6	< 5	2.1	0.1	< 0.1	190
413042	0.32	4.7	< 0.1	1.8	63	0.8	7.8	0.8	
413043	0.24	5.7	0.2	0.4	193	0.9	10.6	1.0	160
413044	0.28	1.6	0.2	0.3	168	< 0.7	7.7	1.0	100
413045	0.27	1.2	0.2	0.2	160	< 0.7	9.0	1.1	90
413046	0.31	0.7	0.2	< 0.1	172	1.2	12.7	1.5	80
413047	0.60	0.2	0.4	< 0.1	312	0.9	19.3	2.8	150
413048	0.60	1.0	0.3	0.8	304	0.8	18.0	2.0	180
413049	< 0.01	11.2	< 0.1	1.2	< 5	0.9	1.5	0.3	30

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS-	MS-	MS-	MS-	MS-	MS-	MS-	MS-
413050	0.60	Na2O2 4.4	Na2O2 0.4	Na2O2 0.3	Na2O2 301	Na2O2 < 0.7	Na2O2 22.1	Na2O2 2.7	Na2O2 120
413051	0.00	< 0.1	< 0.1	0.3		< 0.7		0.7	
413052	< 0.02	30.6	< 0.1	2.5	< 5 < 5	< 0.7	3.0 0.3	< 0.1	< 30 200
413053	< 0.01	19.2	< 0.1	4.5	< 5	< 0.7 0.8	1.0	< 0.1 0.1	130
413054	< 0.01	13.0	< 0.1	4.5	< 3	0.8	3.1	< 0.1	40
413055	0.59	18.8	< 0.1	2.2	289	1.5	23.4	2.3	160
	0.59	0.4	0.4		311	1.1	23.4	2.3	150
413056 413057	0.80	0.4	0.5	0.3	326	1.1	21.0	3.2	130
413058	0.77	0.9	0.5	0.3	320	< 0.7	25.8	3.2	130
413059	< 0.01	4.1	< 0.1	2.7	< 5	< 0.7	3.8	< 0.1	50
413060	0.79	4.1	< 0.1	0.6	317	< 0.7	27.5	< 0.1 3.4	140
		13.8		6.0	< 5	< 0.7 1.9	27.5		140
413061 413062	< 0.01 0.73		< 0.1 0.4	0.0	276	1.9	26.8	< 0.1 3.1	190
	0.73	0.1	-		276				
413063 413064	0.22	4.1 9.7	< 0.1 0.1	10.7 6.2	28	1.8 2.1	8.7 9.5	0.6	190 100
413065	< 0.01	18.8	< 0.1	7.4		0.9	9.5 5.0	< 0.1	
413065	0.20	18.7	< 0.1	9.5	< 5 22	2.1	5.0	< 0.1	< 30 120
413066	< 0.01	28.8	< 0.1	9.5 3.3		< 0.7	1.8	< 0.1	30
		28.8			< 5 < 5				60
413068 413069	< 0.01		< 0.1	6.8		< 0.7	6.6	0.1	
	0.21	5.3	0.1	10.8	26 45	1.9	8.7	0.6	80
413070	0.24	1.8	0.1	4.6	-	2.0	8.4	0.8	80
413071	0.02	0.1	< 0.1	0.6	< 5	0.7	2.5	0.5	< 30
413072 413073	0.29	5.7 2.8	0.2	0.2	163 42	0.9	10.4 6.7	1.0 0.5	110 70
413073		2.0			213	1.2	9.6		-
	0.33		0.2	0.2				1.1	60
413075	0.52	2.6	0.3	< 0.1	308	< 0.7	18.3	1.6	130 140
413076	0.72	1.6	0.5	0.2	316	1.2	28.2	2.9	
413077 413078	0.40	1.0 2.7	0.2	0.3	188 173	1.3	12.1 12.3	1.4 1.5	90
413079	0.41	0.1	0.2	0.4	337	< 0.7 < 0.7	26.0	2.9	130 220
413080	1.08	0.1	0.3	0.0	471	< 0.7	37.5	4.5	160
413081	< 0.01	13.7	< 0.0	5.6	< 5	< 0.7 1.3	0.1	< 0.1	170
413082	0.56	15.3	0.4	1.9	147	< 0.7	28.9	3.5	300
413083	< 0.01	12.7	< 0.1	7.7	< 5	< 0.7	4.5	< 0.1	90
413084	0.53	6.0	0.4	0.6	229	< 0.7	18.6	2.5	170
413085	0.53	0.2	0.4	0.0	229	< 0.7	19.9	3.0	130
413086	0.00	0.2	0.3	0.1	313	< 0.7	30.3	3.8	130
413087	0.72	8.4	0.4	0.3	262	< 0.7	21.7	2.5	110
413088	< 0.01	20.4	< 0.1	5.7	< 5	0.8	1.1	< 0.1	50
413089	0.03	8.9	< 0.1	10.5	16	< 0.7	4.9	0.2	70
413090	0.03	3.4	< 0.1	0.4	296	< 0.7	4.9 25.7	2.6	230
413091	0.00	< 0.1	< 0.1	0.4	< 5	< 0.7	3.2	0.4	< 30
413092	0.68	< 0.1	< 0.1	0.4	295	< 0.7	21.1	2.6	< 30 180
413092	0.68	15.4	0.4	2.6	122	< 0.7	15.2	2.0	470
413093	0.40	6.3	< 0.1	16.7	8	< 0.7	8.7	0.2	60
413094	0.38	18.7	< 0.1	1.6	110	1.7	18.2	1.6	260
413095	0.42	5.6	< 0.3	4.8	7	1.5	3.5	0.4	260
413096	0.01	5.6 9.5	< 0.1	4.8	135	0.8	3.5 17.5	2.0	280
413097	0.47	9.5	< 0.3	8.0	135	< 0.8	3.3	< 0.1	100
413098	0.03	9.0	< 0.1	0.5	149	< 0.7	3.3 18.4	< 0.1	160
66001	0.54	2.9	0.2	0.5	149	0.7	10.4	1.0	100

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS-							
440400	0.00	Na2O2							
413100	0.32	0.3	0.4	0.2	265	4.2	20.3	3.5	90
413101	0.02	< 0.1	< 0.1	0.5	< 5	1.1	2.4	0.7	< 30
413102	0.34	1.1	0.5	0.9	264	< 0.7	21.9	2.8	130
413103	< 0.01	12.6	< 0.1	7.8	< 5	1.1	5.6	< 0.1	40
413104	0.26	1.8	0.6	3.0	209	0.7	25.0	2.4	110
413105	0.34	0.2	0.4	< 0.1	263	< 0.7	25.3	3.3	150
413106	0.66	2.8	0.4	1.5	280	< 0.7	23.0	2.4	140
413107	0.76	0.5	0.4	< 0.1	317	< 0.7	25.8	2.7	120
413108	0.79	3.5	0.5	0.2	323	1.2	24.4	2.7	130
413109	< 0.01	8.1	< 0.1	20.0	< 5	1.0	10.5	0.2	50
413110	0.78	4.9	0.4	0.1	337	< 0.7	26.0	3.2	120
413111	< 0.01	12.6	< 0.1	5.5	< 5	2.0	0.5	< 0.1	190
413112	< 0.01	12.5	< 0.1	5.8	< 5	0.7	3.0	< 0.1	40
413113	0.66	5.6	0.4	1.4	268	0.8	24.3	2.3	160
413114	0.84	4.4	0.4	0.2	338	< 0.7	28.8	3.0	210
413115	0.64	0.6	0.4	< 0.1	282	0.9	23.3	2.7	80
413116	< 0.01	19.2	< 0.1	4.2	< 5	0.8	3.2	< 0.1	40
413117	0.64	1.8	0.4	0.2	276	< 0.7	21.7	2.7	120
413118	0.46	0.7	0.2	< 0.1	152	< 0.7	9.3	0.6	90
413119	0.35	0.6	0.4	0.1	244	0.7	24.5	2.8	150
413120	0.33	1.3	0.5	< 0.1	256	< 0.7	23.3	3.0	170
413121	0.01	< 0.1	< 0.1	0.4	< 5	1.1	3.0	0.5	< 30
413122	< 0.01	18.7	< 0.1	7.1	< 5	0.8	5.5	0.2	70
413123	< 0.01	8.6	< 0.1	9.4	< 5	1.5	3.3	< 0.1	150
413124	< 0.01	25.1	< 0.1	5.9	< 5	< 0.7	1.0	< 0.1	110
413125	0.24	5.1	0.3	1.3	212	0.7	16.1	2.5	130
413126	0.25	0.3	0.3	0.2	229	1.1	16.8	2.3	110
413127	0.45	1.2	0.3	0.8	222	1.9	18.3	1.8	130
413128	0.34	0.5	0.3	0.5	224	0.8	16.2	2.3	110
413129	0.28	< 0.1	0.3	< 0.1	257	1.1	18.5	3.0	120
413130	0.28	< 0.1	0.4	< 0.1	259	< 0.7	19.7	2.2	110
413131	< 0.01	12.8	< 0.1	5.9	< 5	1.7	0.2	< 0.1	170
413132	0.30	< 0.1	0.3	< 0.1	277	< 0.7	16.9	2.9	140
413133	< 0.01	13.2	< 0.1	9.5	< 5	1.0	5.8	0.1	50
413134	0.27	0.6	0.4	< 0.1	253	0.9	18.2	2.5	180
413135	0.27	1.1	0.4	< 0.1	253	0.7	18.7	2.5	300
413136	0.84	5.3	0.4	0.3	291	2.3	27.6	2.1	150
413137	0.01	8.8	< 0.1	4.4	7	< 0.7	1.5	0.1	160
413138	< 0.01	6.0	< 0.1	7.1	5	2.2	2.0	0.1	50
413139	0.69	12.2	0.3	0.8	281	0.7	23.3	2.6	170
413140	0.91	< 0.1	0.5	0.1	289	< 0.7	27.4	3.2	100
413141	0.01	< 0.1	< 0.1	0.4	< 5	< 0.7	2.3	0.2	< 30
413142	1.22	1.2	0.5	< 0.1	347	< 0.7	32.1	3.7	140
413143	< 0.01	8.4	< 0.1	10.6	< 5	< 0.7	12.9	0.3	40
413144	1.22	7.9	0.6	0.3	347	< 0.7	28.5	3.4	160
413145	0.01	4.9	< 0.1	6.9	6	1.1	4.9	< 0.1	70
413146	1.11	0.3	0.5	0.3	337	1.3	30.4	3.3	130
413147	0.38	0.1	0.2	< 0.1	218	< 0.7	13.7	1.9	60
413148	0.30	6.3	0.1	3.8	77	0.7	12.9	1.2	90
			l		İ				

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2		FUS- MS- Na2O2	FUS- MS- Na2O2
413149	< 0.01	8.3	< 0.1	9.0	< 5	< 0.7	5.1	< 0.1	40
413150	0.30	3.9	0.2	3.8	74	< 0.7	13.6	1.4	90
413151	< 0.01	13.0	< 0.1	5.8	< 5	2.5	< 0.1	< 0.1	180
413152	0.63	0.2	0.3	0.2	321	< 0.7	19.2	2.6	110
413153	0.42	0.7	0.3	1.1	239	< 0.7	18.9	1.8	100
413154	0.41	1.3	0.2	0.7	228	< 0.7	15.7	1.4	170
413155	0.51	1.3	0.4	0.6	251	< 0.7	20.4	2.0	110
413156	0.47	0.5	0.3	0.7	230	< 0.7	16.8	2.1	100
413157	0.31	1.9	0.2	< 0.1	181	0.8	10.2	1.2	100
413158	0.33	2.7	0.2	0.1	192	< 0.7	8.9	1.8	90
413159	< 0.01	33.0	< 0.1	3.5	< 5	1.0	1.5	< 0.1	70
413160	< 0.01	9.0	< 0.1	5.8	9	0.7	3.6	0.1	110
413161	0.01	< 0.1	< 0.1	0.4	< 5	1.3	3.0	0.3	< 30
413162	< 0.01	9.8	< 0.1	10.8	5	1.1	8.4	< 0.1	70
413163	< 0.01	9.6	< 0.1	7.0	< 5	1.1	4.3	< 0.1	50
413164	< 0.01	7.6	< 0.1	8.9	< 5	0.9	2.2	< 0.1	40
413165	0.24	3.1	0.2	< 0.1	142	< 0.7	7.8	0.8	90
413166	0.35	1.7	0.2	< 0.1	215	< 0.7	11.1	1.3	90
413167	0.39	0.2	0.2	< 0.1	235	7.0	13.6	1.6	80
413168	0.49	0.5	0.3	< 0.1	280	< 0.7	17.6	1.5	100
413169	0.60	1.0	0.4	< 0.1	301	0.8	19.9	2.5	130
413170	0.01	8.8	< 0.1	5.5	6	< 0.7	5.1	0.1	80
413171	< 0.01	13.9	< 0.1	5.6	< 5	2.0	0.1	< 0.1	200
413172	0.63	0.9	0.4	0.1	302	< 0.7	24.5	2.3	140
413173	0.07	1.4	< 0.1	2.8	24	1.0	3.7	0.5	30

Activation Laboratories Ltd.

Analyte Symbol	Al	As	в	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Dv	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	%	ppm	ppm		ppm	ppm	%		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	5	10		3	2			0.8	0.2	30	0.1	2	0.3	1	0.1		0.2	0.1	0.7	0.2	10	0.2
Method Code	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS-	FUS- MS-	FUS- MS- Na2O2	- FUS- MS- Na2O2		FUS- MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS-	FUS- MS- Na2O2	- FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS-	FUS- MS- Na2O2	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2
PTM-1a Meas		2180								> 5000			> 10000										
PTM-1a Cert		2200								20500. 00			249600 .00										
NIST 696 Meas	> 25.0										340												
NIST 696 Cert	28.9										321.0												
DTS-2b Meas	0.21			17			0.03			140	> 10000		< 2							1.6			
DTS-2b Cert	0.240			16.0			0.0900			120	15500		3.00							0.700			
Oreas 74a (Fusion) Meas		61								568	1810		1240				13.8						
Oreas 74a (Fusion) Cert		50								581	1800.00		1240.0 00				13.7						
OREAS 101a (Fusion) Meas									1390	50.3			437	33.3	20.6	8.2	11.3		37.8		6.6		
OREAS 101a (Fusion) Cert									1396	48.8			434	33.3	19.5	8.06	11.06		43.4		6.46		
OREAS 101a (Fusion) Meas																	11.4						
OREAS 101a (Fusion) Cert																	11.06						
SARM 3 Meas				424					282				8			0.9							
SARM 3 Cert				450					240.000				13			1.2							
NCS DC86315 Meas																							
NCS DC86315 Cert																							
NCS DC86314 Meas												2890											
NCS DC86314 Cert												2830											
NCS DC86314 Meas												2850											
NCS DC86314 Cert												2830											
CZN-4 Meas	0.08	362						2750		89.3			4070										
CZN-4 Cert	0.0715							2604.0 000		93.5			4030.0										
OREAS 922 (Peroxide Fusion) Meas	7.64			500		12	0.52		86.9	21.0	130	8.2	2270	6.0	3.6	1.3	5.76	21.3	7.6		1.1	10	0.3
OREAS 922 (Peroxide Fusion) Cert	7.59			481		11	0.49		88.0	20.9	90	7.5	2220	5.75	3.38	1.52	5.71	21.2	6.94		1.20	5.93	0.3
OREAS 922 (Peroxide Fusion) Meas				486		12			92.3	19.6	130	7.1	2260	6.2	3.4	1.9		21.4	6.9		1.0	10	0.6
OREAS 922 (Peroxide Fusion) Cert				481		11			88.0	20.9	90	7.5	2220	5.75	3.38	1.52		21.2	6.94		1.20	5.93	0.3
OREAS 621 (Peroxide Fusion) Meas	6.98	83		2730	< 3	7	1.96	287	53.6	30.1	70	3.5	3750				3.74	26.3					1.8
OREAS 621 (Peroxide Fusion) Cert	6.63	85		2610	2	4	2.00	295	52.0	31.4	50	3.6	3680				3.71	26.5					1.9
OREAS 621 (Peroxide Fusion)		81		2630	< 3	7		291	51.2	31.6	80	3.0	3700					26.2					1.9

Activation Laboratories Ltd.

Analyte Symbol	AI	As	В	Ba	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu	Dv	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Unit Symbol	%	-	ppm				%	ppm	ppm	ppm		ppm		ppm	ppm		%	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01		10	3	3	2	0.01	2	0.8	0.2	30	0.1		0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10	0.2
Method Code	FUS- Na2O2	MS-	FUS- MS- Na2O2	MS-	MS-	FUS- MS- Na2O2	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2
Meas																							
OREAS 621 (Peroxide Fusion) Cert		85		2610	2	4		295	52.0	31.4	50	3.6	3680					26.5					1.9
CCU-1e Meas	0.15	1170						80		308			> 10000				> 30.0						
CCU-1e Cert	0.139	1010						74.2		301			229000				30.7						<u> </u>
OREAS 680 (Peroxide Fusion) Meas	7.57	121		677		3	5.81	8	40.7	323	2130	4.1	9140	2.9		1.4	11.6		3.7		0.7		
OREAS 680 (Peroxide Fusion) Cert	7.19	120		649		1.66	5.80	8.18	38.7	334	2140	3.94	9040	3.07	1.74	1.30	11.9	16.5	3.77		0.580		l
OREAS 139 (Peroxide Fusion) Meas	3.48	332			3	7	1.20	273	48.2	28.1		3.0	273		1.7		12.0	8.2					1.0
OREAS 139 (Peroxide Fusion) Cert	3.70	332			3.17	6.64	1.20	296	49.4	26.0		3.21	274		1.69		11.9	10.2					0.690
OREAS 139 (Peroxide Fusion) Meas		349			< 3	7		299	54.5	28.5		4.1	273		1.7			10.7					1.0
OREAS 139 (Peroxide Fusion) Cert		332			3.17	6.64		296	49.4	26.0		3.21	274		1.69			10.2					0.690
OREAS 624 (Peroxide Fusion) Meas		122		1070		22		132	33.9	280		2.3	> 10000					23.6					4.2
OREAS 624 (Peroxide Fusion) Cert		115		1070		21.3		133	32.9	273		1.32	30800					22.1					4.14
OREAS 624 (Peroxide Fusion) Meas		129		1060		21		144	33.5	282		2.0	> 10000					19.9					4.0
OREAS 624 (Peroxide Fusion) Cert		115		1070		21.3		133	32.9	273		1.32	30800					22.1					4.14
AMIS 0368 (Peroxide Fusion) Meas																	> 30.0						
AMIS 0368 (Peroxide Fusion) Cert																	53.0						
AMIS 0368 (Peroxide Fusion) Meas																	> 30.0						
AMIS 0368 (Peroxide Fusion) Cert																	53.0						
NCS DC73520 Meas		6				7		< 2		13.2	50		50							6.2			
NCS DC73520 Cert		5				7		0.5		12.9	20		46							6.0			
OREAS 148 (Peroxide Fusion) Meas		66		1040	40	20			787		110	336	354	6.3	2.3	8.1		28.6	17.3		1.0	10	4.4
OREAS 148 (Peroxide Fusion) Cert		59		1010	39	19			795		69	311	351	6.1	2.0	7.2		29.2	15.8		0.9	4	4.2
413004 Orig	7.27	5	< 10	110	< 3	< 2	7.83	< 2	15.3	66.9	110	91.1	216	6.3	3.9	1.1	11.4	18.4	6.3	1.7	1.3	< 10	< 0.2

Activation Laboratories Ltd.

Unit Unit <th< th=""><th>Analyte Symbol</th><th>AI</th><th>As</th><th>в</th><th>Ba</th><th>Be</th><th>Bi</th><th>Са</th><th>Cd</th><th>Ce</th><th>Со</th><th>Cr</th><th>Cs</th><th>Cu</th><th>Dy</th><th>Er</th><th>Eu</th><th>Fe</th><th>Ga</th><th>Gd</th><th>Ge</th><th>Ho</th><th>Hf</th><th>In</th></th<>	Analyte Symbol	AI	As	в	Ba	Be	Bi	Са	Cd	Ce	Со	Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Ho	Hf	In
Lower Linker O S O S D <t< td=""><td></td><td></td><td></td><td>ppm</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				ppm							1			1	· ·									
Mather Code Figs.	Lower Limit	0.01		10			2	0.01										0.05			<u> </u>			
113000 Lup 7.11 6 <100 <3 32 7.77 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <2 137 <3 137 137 137 <td>Method Code</td> <td></td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td></td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td></td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>MS-</td> <td>FUS- MS-</td>	Method Code		MS-	MS-	MS-	MS-	MS-		MS-	MS-	MS-	MS-	MS-	MS-	MS-	MS-	MS-		MS-	MS-	MS-	MS-	MS-	FUS- MS-
419200 tog 877	412004 Dup	7 1 1	_			_	_	7 77										11.2						
41302 top 653 610			-		-							-			-							-		
419020 big 728 0 <10	- V																							
413020 Dup 7 < < 10 51 10 23 81 82 83 82 82 82 83 82 82 82 83 82 82 83 82 82 83 82 82 83 82 82 83 82 82 83 82 83 82 83 83 82 83 83 82 83 83 82 83 83 82 83 83 82 83 83 82 83	· ·													•										
413035 Origing 8.2.8 8 10 23 34 35 0.2.2 <2	- V																							
41305 Dig 8.11 9 20 21 34 4.83 0.22 2.2 3.4 1.5 50 134 2.2 0.4 0.1 0.0 77.7 2.1 3.7 c.02 c.10 c.2 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 4.10 0.0 0.0 1.0 0.0 <t< td=""><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	-																-						
4 19050 Opin < </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																								
413000 Sight 7.71 c 5 <10	- ·	0.11						0.22										0.07						
413085 Drig 7.29 6 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 23 33 11 11 <10 <00 27 33 30 21 13 33 0.0 10 0.0 20 20 70 70 45 20 70 70 40 10 10 22 28 0.0 40 170 33 0.0 10 0.0 0.0 10 <t< td=""><td>413050 Split</td><td>7.71</td><td></td><td></td><td></td><td></td><td></td><td>7.42</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	413050 Split	7.71						7.42										10.1						
419055 Dup 7.11 5 <10		7 29	6	20	20	20	2	6 39	< 2	8.0	44.6	190	1010	177	37	33	0.8	9.89	21.7	3.9	3.1	11	< 10	< 0.2
419067 Ong 8.42 <	v	-																						
413067 Dup 9.86 <5 <10 74 4 8 0.01 <2 3.7 0.7 4.01 79 <20 0.4 <0.1 0.12 41.91 1.7 3.8 <0.2 <0.1 <0.2 41.91 1.7 3.8 <0.2 <0.1 <0.2 41.91 0.1<		-																						
4490730rg 9.48 <5	- V	-					. 8						-					-						
4:3072 Dup 8:3 -5 20 7:61 24 -2 294 <2	· · ·					25																		
43089 Durg 8.23 -5 30 13 149 <2	413073 Dup	8.73	< 5	20	761	24	< 2	2.94	< 2	83.8	10.9	70	102	88	1.7	0.9	1.5	2.23	23.1		2.4	0.2	< 10	< 0.2
413098 Orig 7.22 <5																								
413098 Orig 7.22 <5	413089 Dup	9.03	< 5	< 10	11	150	< 2	0.51	< 2	4.5	3.1	40	69.0	11	0.8	0.3	0.1	0.73	62.6	3.8	5.1	< 0.2	10	< 0.2
413100 Orig 6.93 <5 40 37 <3 <2 9.75 <2 6.9 552 60 40 71 32 2.7 0.55 9.81 16.9 2.3 2.6 0.8 <10 <0.0 PREP DUP 7.90 <5 <10 157 <3 7 9.41 <2 6.5 53.3 50 40 79 3.2 2.9 0.5 9.81 16.9 2.3 2.6 0.8 <10 <0.0 413107 Orig 7.71 <5 <10 2.5 <1.1 <10 <0.0 2.1 2.8 12 9.86 18.1 51.1 2.5 11.1 <10 <0.0 2.4 13.0 2.6 0.6 0.5 9.85 18.1 4.8 2.6 0.11 <0.0 2.4 13.0 2.6 0.6 0.5 9.81 10.0 2.5 11.1 <10 0.2 2.4 2.2 0.6 11.1 <10 0.2 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0 11.0	413098 Orig	7.26		< 10	22	18		0.36			2.2	50	82.8		0.6	0.2	< 0.1	0.61	55.8	2.1	3.3	< 0.2	< 10	
41310 Ospiti 7.90 < 5 <10 157 <3 7 9.41 <2 6.5 53.3 50 4.0 79 3.2 2.8 0.5 9.23 14.8 2.2 2.6 0.8 <10 <0.2 413107 Orig 7.71 <5	413098 Dup	7.47	< 5	< 10	24	18	55	0.39	< 2	4.6	2.4	50	85.3	9	0.8	< 0.1	< 0.1	0.61	54.2	2.7	3.6	< 0.2	< 10	< 0.2
PREP DUP O O O O </td <td>413100 Orig</td> <td>6.93</td> <td>< 5</td> <td>40</td> <td>37</td> <td>< 3</td> <td>< 2</td> <td>9.75</td> <td>< 2</td> <td>6.9</td> <td>55.2</td> <td>60</td> <td>4.0</td> <td>71</td> <td>3.2</td> <td>2.7</td> <td>0.5</td> <td>9.81</td> <td>16.9</td> <td>2.3</td> <td>2.6</td> <td>0.8</td> <td>< 10</td> <td>< 0.2</td>	413100 Orig	6.93	< 5	40	37	< 3	< 2	9.75	< 2	6.9	55.2	60	4.0	71	3.2	2.7	0.5	9.81	16.9	2.3	2.6	0.8	< 10	< 0.2
413107 Dup 8.07 <5 <10 25 <3 <2 8.77 <2 12.9 49.4 220 36.1 90 4.5 33 0.9 9.85 18.1 4.8 2.6 1.1 <10 <0.2 413120 Orig 7.56 <5		7.90	< 5	< 10	157	< 3	7	9.41	< 2	6.5	53.3	50	4.0	79	3.2	2.9	0.5	9.23	14.8	2.2	2.6	0.8	< 10	< 0.2
413120 Orig 7.56 < 5 < 10 46 < 3 < 2 7.76 < 2 7.5 58.3 60 37.5 246 3.6 3.0 0.5 11.7 14.5 2.4 2.9 0.9 < 10 < 0.2 413120 Dup 7.45 < 5	413107 Orig	7.71	< 5	< 10	27	< 3	< 2	8.87	< 2	12.4	50.7	230	36.2	93	4.7	2.8	1.2	9.86	18.1	5.1	2.5	1.1	< 10	< 0.2
413120 Dup 7.45 < 5 < 10 48 < 3 < 2 7.76 < 2 6.6 55.5 70 34.2 243 3.4 2.4 0.7 11.6 15.2 2.4 2.2 0.8 <10 <0.2 413130 Orig 7.96 < 5	413107 Dup	8.07	< 5	< 10	25	< 3	< 2	8.77	< 2	12.9	49.4	220	36.1	90	4.5	3.3	0.9	9.85	18.1	4.8	2.6	1.1	< 10	< 0.2
413130 Orig 7.96 <.5 <10 20 <3 <2 9.36 <2 3.9 54.5 110 2.4 53 3.0 2.6 0.6 9.87 12.7 2.4 2.6 0.7 <10 <0.2 413140 Orig 7.42 <5 90 109 <3 <2 9.37 <2 13.8 53.2 100 3.4 46 2.8 2.6 0.4 9.88 10.3 2.0 2.4 0.7 <10 <0.0 413146 Orig 7.45 <5 <10 95 <3 2 7.77 <2 15.8 46.4 120 23.7 112 5.4 3.4 1.4 12.2 2.8 5.8 2.4 1.1 <10 <0.2 413150 Orig 8.70 <5 <10 975 7 3 2.56 <2 128 128 160 159 48 3.6 1.4 2.5 3.03 2.63 4.0 0.5 <10 0.23 4.10 <0.24 3.0 2.4 4.0 0.5 <10	413120 Orig	7.56	< 5	< 10	46	< 3	< 2	7.79	< 2	7.5	58.3	60	37.5	246	3.6	3.0	0.5	11.7	14.5	2.4	2.9	0.9	< 10	< 0.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	413120 Dup	7.45	< 5	< 10	48	< 3	< 2	7.76	< 2	6.6	55.5	70	34.2	243	3.4		0.7	11.6	15.2	2.4	2.2	0.8	< 10	< 0.2
413146 Orig 7.45 < 5	413130 Orig			< 10					< 2	3.9		110	2.4		3.0		0.6	9.87	12.7	2.4	2.6	-	< 10	< 0.2
413146 Dup 7.45 < 5 < 10 95 < 3 < 2 7.77 < 2 15.8 46.4 120 23.7 112 5.4 3.4 1.4 12.2 22.8 5.8 2.4 1.1 < 10 < 0.2 413150 Orig 8.70 < 5							< 2																	
413150 Orig 8.70 < 5 < 10 924 8 < 2 2.65 < 2 125 13.1 70 161 52 3.5 1.2 3.0 3.10 25.9 6.0 2.2 0.5 < 10 <0.2 413150 Split PREP DUP 8.86 < 5 < 10 975 7 3 2.56 < 2 128 128 60 159 48 3.6 1.4 2.5 3.03 26.3 5.4 2.3 0.5 < 10 <0.2 413154 Orig 6.07 < 5 < 10 979 < 3 < 2 6.88 < 2 31.7 54.2 900 108 2 2.9 2.2 1.2 8.83 18.7 2.6 4.0 0.5 < 10 <0.2 413157 Orig 8.83 < 5 < 10 979 < 3 < 2 6.06 < 2 3.0 4.7 130 2.6 1.3 0.5 8.48 15.5 3.3 2.9 0.5 < 10 <0.2 4.0 0.5 <10 0.5 <10 0.2 <	v																							
413150 Split PREP DUP 8.86 < 5 < 10 975 7 3 2.56 < 2 128 128 60 159 48 3.6 1.4 2.5 3.03 26.3 5.4 2.3 0.5 < 10 <0.2 413150 orig 6.07 < 5																								
413154 Orig 6.07 < 5	413150 Split																							
413154 Dup 6.05 <.5 <.10 981 <.3 <.2 6.96 <.2 30.5 61.1 950 102 <.2 3.0 2.0 1.2 8.82 20.9 4.6 3.9 0.6 < 10 <.2 413167 Orig 8.83 <.5		6.07	. 5	. 10	070	. 0	. 0	C 00	. 0	01.7	E4 O	000	100	0			1.0	0.00	10.7	0.0	1.0	0.5	. 10	. 0.0
413167 Orig 8.83 < 5 < 10 109 < 3 < 2 8.64 < 2 5.0 53.2 300 4.7 130 2.6 1.3 0.5 8.48 15.5 3.3 2.9 0.5 < 10 < 0.2 413167 Dup 8.55 < 5	- V																							
413167 Dup 8.55 < 5 < 10 53 < 3 < 2 8.64 < 2 5.3 46.9 300 4.8 130 2.8 1.2 0.7 8.55 15.7 2.1 2.8 0.6 < 10 < 0.2 Method Blank < 0.01	· ·																							
Method Blank < 0.01 < < < < < < < < <th< td=""><td>- V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	- V																							
Method Blank < 0.01 7 < 10 3 < 3 < 2 0.02 < 2 < 0.8 1.3 50 0.6 2 < 0.3 < 0.1 < 0.07 < 0.07 < 0.02 < 10 < 0.02 < 2 < 0.8 1.0 50 0.5 3 < 0.01 < 0.05 0.4 < 0.01 < 0.07 < 0.02 < 10 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.01 < 0.01 < 0.05 0.4 < 0.01 < 0.07 < 0.02 < 10 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02 < 0.01 < 0.02 < 0.01 < 0.02 < 0.03 < 0.01 < 0.03 < 0.01 < 0.02 < 0.03 < 0.01 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <	· · · · · · · · · · · · · · · · · · ·		< 5		55	< 0	< <u> </u>		< <u>2</u>	5.5	40.3	500	4.0	150	2.0	1.2	0.7		15.7	2.1	2.0	0.0	< 10	< 0.2
Method Blank < 0.01 5 < 10 < 3 < 2 0.02 < 2 < 0.8 1.0 50 0.5 3 < 0.3 < 0.1 < 0.05 0.4 < 0.01 < 0.7 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 10 < 0.2 < 0			7	< 10	3	< 3	< 2		< 2	< 0.8	13	50	0.6	2	< 0.3	< 0.1	< 0.1		0.3	< 0.1	< 0.7	< 0.2	< 10	< 0.2
Method Blank < 0.01 < 5 < 10 3 < 3 < 2 < 0.01 < 2 < 0.8 0.6 0.3 2 < 0.3 < 0.1 < 0.05 0.6 < 0.01 < 0.7 < 0.2 < 10 < 0.2 Method Blank < 0.01																								
Method Blank < 0.01 < 5 < 10 < 3 < 3 < 2 0.03 < 2 < 0.8 0.6 40 0.5 < 2 < 0.3 < 0.1 < 0.01 < 0.05 0.7 < 0.1 < 0.7 < 0.2 < 10 < 0.2 Method Blank < 0.01														-										
Method Blank < 0.01 < 0.01 < 0.01 < 0.05			-	10		-								-					07					
Method Blank < 0.01 < 0.01 < 0.01										1 210		10												
Method Blank < 0.01 0.03 < < < < <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																1								
Method Blank < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <																i –								
Method Blank < 0.01 < 5 < 10 < 3 < 3 < 2 < 0.01 < 2 < 0.03 < 4 < 0.03 < 0.01 < 0.05 0.03 < 0.01 < 0.07 < 0.02 < 10 < 0.02 < 0.03 < 0.01 < 0.05 0.03 < 0.01 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 10 < 0.02 < 0.02 < 10				1							1			1		i –	1							
Method Blank < 0.01 < 5 < 10 3 < 3 < 2 < 0.01 < 2 < 0.0 0.5 < 2 < 0.03 < 0.01 < 0.05 0.0 0.1 < 0.07 < 0.02 < 10 < 0.02			< 5	< 10	< 3	< 3	< 2		< 2	< 0.8	1.0	40	0.3	4	< 0.3	< 0.1	< 0.1		0.3	< 0.1	< 0.7	< 0.2	< 10	< 0.2
														< 2										
	Method Blank		< 5			< 3			< 2	< 0.8			0.6		< 0.3		< 0.1		< 0.2	< 0.1	< 0.7	< 0.2	< 10	

Activation Laboratories Ltd.

Analyte Symbol	К	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th
Unit Symbol		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm		ppm	ppm	ppm	ppm	ppm
Lower Limit		0.4	3	0.01	3	1	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS-	FUS-	5 FUS-	FUS-		FUS-	FUS-		FUS-	FUS-	FUS-	FUS-	FUS-	EUS-	-	FUS-	FUS-		5 FUS-	FUS-		FUS-	FUS-
	Na2O2	MS-	MS- Na2O2	Na2O2	FUS- MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS- Na2O2	MS-	MS- Na2O2	Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	Na2O2	MS- Na2O2	MS-	MS- Na2O2	MS- Na2O2	MS-	MS- Na2O2	MS- Na2O2
PTM-1a Meas									> 10000				23.0										
PTM-1a Cert									474400 .00				22.4										
NIST 696 Meas																							
NIST 696 Cert																							
DTS-2b Meas				> 30.0	792				3770	9.2		2.0		< 2		18.5							
DTS-2b Cert				29.8	830				3780	4.00		2.00		0.600		18.4							
Oreas 74a (Fusion) Meas									> 10000				7.26			15.1							
Oreas 74a (Fusion) Cert									32400. 00				7.25			15.14							
OREAS 101a (Fusion) Meas	2.2	814		1.20	971	21		390			144						49.0				6.6		36.8
OREAS 101a (Fusion) Cert	2.34	816		1.23	964	21.9		403			134						48.8				5.92		36.6
OREAS 101a (Fusion) Meas	2.3			1.20																			
OREAS 101a (Fusion) Cert	2.34			1.23																			
SARM 3 Meas		225			5680		952.8	50.5		47.8		191							4260				65.5
SARM 3 Cert		250.000			5960.0 00		978	48		43		190							4565				66
NCS DC86315 Meas							3651.7													8070			
NCS DC86315 Cert							3640.0 00													8350.0 00			
NCS DC86314 Meas			18200									> 5000						144					
NCS DC86314 Cert			18100. 00									11400						152					
NCS DC86314 Meas			18100									> 5000						141					
NCS DC86314 Cert			18100. 00									11400						152					
CZN-4 Meas										1760			> 25.0		131	0.26							
CZN-4 Cert										1861.0 000			33.07		86.7	0.295							
OREAS 922 (Peroxide Fusion) Meas	2.6	44.3	34	1.59	894		15.9	37.4	60	71.4	10.3	171	0.38			> 30.0	7.1	12.1	62	3.0	1.1		17.1
OREAS 922 (Peroxide Fusion) Cert	2.60	45.6	29	1.61	880		15.2	38.9	40	64.0	10.6	167	0.389			30.51	7.31	10.0	58.0	1.3	1.02		17.7
OREAS 922 (Peroxide Fusion) Meas		47.6	39		847		14.8	41.1	60	65.7	10.7	174					7.9	11.7	72	1.9	1.0		17.9
OREAS 922 (Peroxide Fusion) Cert		45.6	29		880		15.2	38.9	40	64.0	10.6	167					7.31	10.0	58.0	1.3	1.02		17.7
OREAS 621 (Peroxide Fusion) Meas	2.3	27.2		0.50	574	16	9.3	22.9		> 5000	6.4	85.6	4.54	143		28.7			98				8.3
OREAS 621 (Peroxide Fusion) Cert	2.23	26.1		0.516	554	14	10.4	24.2		13300	6.64	89.0	4.51	146		28.1			101				8.6
OREAS 621 (Peroxide Fusion)		27.8			551	14	10.4	21.7		> 5000	6.5	79.2		140					102				8.5

Activation Laboratories Ltd.

Analyte Symbol	К	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th
Unit Symbol	%		ppm	%	ppm		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1		3	0.01	3		2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	0.01	0.1	0.5	3	0.2	0.1	6	0.1
Method Code	FUS- Na2O2	MS-	FUS- MS- Na2O2		MS-	MS-	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	MS-	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2	FUS- MS- Na2O2
Meas																							
OREAS 621 (Peroxide Fusion) Cert		26.1			554	14	10.4	24.2		13300	6.64	89.0		146					101				8.6
CCU-1e Meas				0.72	95					> 5000			> 25.0	120								70	
CCU-1e Cert				0.706	96.0					7030			35.3	104								61.8	
OREAS 680 (Peroxide Fusion) Meas	1.3	18.6	17	3.63	1240		7.6	21.5	> 10000	2500	5.3	77.6	5.14	21		21.0	4.5		406		0.6		6.7
OREAS 680 (Peroxide Fusion) Cert	1.29	18.6	14.5	3.71	1240		5.09	20.8	21500	2580	4.99	76.0	5.14	19.7		20.6	4.26		420		0.550		6.73
OREAS 139 (Peroxide Fusion) Meas	2.9	24.8	39	0.49	6480	12				> 5000		133	14.8	57		15.8			473		0.6		8.3
OREAS 139 (Peroxide Fusion) Cert	3.30	23.1	40.4	0.501	6570	11.1				22000		145	16.04	63.0		16.34			479		0.500		7.54
OREAS 139 (Peroxide Fusion) Meas		26.7	45		6580	10				> 5000		141		61					483		0.6		8.8
OREAS 139 (Peroxide Fusion) Cert		23.1	40.4		6570	11.1				22000		145		63.0					479		0.500		7.54
OREAS 624 (Peroxide Fusion) Meas		16.2	13		676	18	6.0	16.5		> 5000	4.5	33.0		67					47				4.2
OREAS 624 (Peroxide Fusion) Cert		17.3	10.3		660	17.8	5.78	16.8		6120	4.27	33.0		72.0					47.6				4.12
OREAS 624 (Peroxide Fusion) Meas		16.7	15		676	17	6.3	14.6		> 5000	4.4	32.5		72					52				4.2
OREAS 624 (Peroxide Fusion) Cert		17.3	10.3		660	17.8	5.78	16.8		6120	4.27	33.0		72.0					47.6				4.12
AMIS 0368 (Peroxide Fusion) Meas																							
AMIS 0368 (Peroxide Fusion) Cert																							
AMIS 0368 (Peroxide Fusion) Meas																							
AMIS 0368 (Peroxide Fusion) Cert																							
NCS DC73520 Meas					9110	1640			60	11.0			0.44	< 2				4.9					
NCS DC73520 Cert					9100	1500			50	10.5			0.44	0.6				4.5					
OREAS 148 (Peroxide Fusion) Meas		470	4830		389	9	1592.3	264			89.9	1400		15			30.7	1180	196		1.8		49.7
OREAS 148 (Peroxide Fusion) Cert		478	4760		380	10	1680.0	260			82.0	1360		16			34.3	1160	209		1.6		51.0
413004 Orig	0.6	5.3	296	3.01	1690	1	5.2	13.7	90	4.9	2.8	246	0.54	< 2	13	23.9	3.3	3.5	91	2.0	1.0	8	0.5

Activation Laboratories Ltd.

Analyte Symbol	K	La	Li	Mg	Mn	Мо	Nb	Nd	Ni	Pb	Pr	Rb	S	Sb	Se	Si	Sm	Sn	Sr	Та	Tb	Te	Th
Unit Symbol	%	ppm	ppm	%	ppm	ppm	ppm		ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	-	ppm	ppm	ppm	ppm	ppm
Lower Limit		0.4	2	⁷⁰ 0.01	3	т	2.4	0.4	10	0.8	0.1	0.4	0.01	2	8	⁷⁰ 0.01	0.1		3		0.1	6	0.1
Method Code	FUS-	5.4 FUS-	5 FUS-	FUS-	5 FUS-	FUS-	FUS-	U.4 FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	Z FUS-	6 FUS-	FUS-	FUS-		5 FUS-	FUS-	FUS-	6 FUS-	FUS-
	Na2O2	MS-	MS-	Na2O2	MS-	MS-	MS-	MS-	MS-	MS-	MS-	MS-	Na2O2	MS-	MS-	Na2O2	MS-	MS-	MS-	MS-	MS-	MS-	MS-
		Na2O2	Na2O2		Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2		Na2O2	Na2O2		Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2	Na2O2
413004 Dup	0.6	5.2	292	2.97	1700	1	4.5	12.7	90	5.8	2.7	239	0.50	< 2	13	23.8	5.4	2.5	95	1.7	0.9	< 6	0.4
413021 Orig	1.6	< 0.4	7930	0.02	345	8	81.7	< 0.4	20	19.3	< 0.1	1700	< 0.01	< 2	< 8	> 30.0	< 0.1	127	32	101	< 0.1	< 6	2.1
413021 Dup	1.6	0.4	8110	0.02	357	9	86.9	< 0.4	20	17.6	< 0.1	1700	< 0.01	< 2	< 8	> 30.0	< 0.1	119	26	93.5	< 0.1	< 6	2.2
413029 Orig	0.2	3.9	570	3.57	1650	11	3.6	9.4	80	1.1	1.6	7.0	0.18	< 2	8	23.7	3.4	2.7	126	1.1	0.7	< 6	0.3
413029 Dup	0.2	3.8	577	3.59	1680	9	4.1	10.2	90	2.8	1.9	7.8	0.18	< 2	< 8	23.7	3.5	3.4	124	1.2	0.7	7	0.3
413035 Orig	3.7	0.9	3860	0.05	824	< 1	54.4	1.8	20	15.1	0.4	3100	< 0.01	< 2	< 8	> 30.0	1.3	13.7	20	49.6	0.1	< 6	3.7
413035 Dup	3.7	1.0	3810	0.06	818	< 1	58.4	2.0	30	13.8	0.4	3130	0.02	< 2		> 30.0	1.6	14.9	25	46.9	0.1	< 6	4.1
413050 Orig	0.0	3.5	1870	1.00	1860	2	4.5	6.2	90	13.1	1.4	441	0.04	< 2	< 8	00.5	2.0	1.0	122	2.3	0.6	10	0.3
413050 Split PREP DUP	0.6	3.4	1840	4.09	1880	3	3.4	7.2	100	5.3	1.8	437	0.24	< 2	< 8	23.5	2.5	1.4	128	1.6	0.5	7	0.3
413055 Orig	1.3	2.7	1960	3.78	1780	1	7.7	7.3	90	6.5	1.4	2290	0.12	< 2	28	23.9	2.6	4.2	91	13.3	0.6	< 6	0.5
413055 Dup	1.3	3.0	1920	3.70	1780	< 1	7.5	6.0	100	8.2	1.4	2260	0.12	< 2	16	23.1	1.6	5.2	98	13.5	0.6	< 6	0.0
413067 Orig	6.0	1.1	146	< 0.01	236	< 1	37.1	1.8	20	30.0	0.5	4000	< 0.01	< 2	< 8	> 30.0	1.0	5.4	56	38.0	< 0.1	< 6	1.9
413067 Dup	6.0	1.3	154	< 0.01	259	< 1	32.3	2.0	30	27.3	0.5	4090	< 0.01	< 2	< 8	> 30.0	1.2	4.8	66	34.7	0.1	< 6	1.9
413073 Orig	0.7	40.5	511	0.89	469	< 1	13.8	34.6	40	12.7	10.6	380	0.24	< 2	< 8	> 30.0	6.5	5.8	563	33.3	0.5	< 6	10.4
413073 Dup	0.7	43.0	500	0.89	439	< 1	14.2	34.2	50	15.3	10.1	386	0.26	< 2		> 30.0	7.1	4.5	597	30.8	0.5	< 6	10.3
413089 Orig	1.2	1.3	696	0.25	896	< 1	71.5	2.5	30	12.6	0.6	1350	< 0.01	< 2	< 8	> 30.0	3.0	8.6	25	165	0.6	< 6	5.6
413089 Dup	1.1	1.1	671	0.26	913	< 1	69.5	1.9	20	17.5	0.7	1340	< 0.01	< 2	12	> 30.0	3.0	8.6	26	166	0.6	< 6	5.7
413098 Oria	1.5	2.2	154	0.09	811	87	86.1	2.1	20	7.8	0.9	1520	0.03	< 2	< 8	> 30.0	2.3	9.8	32	159	0.3	< 6	3.8
413098 Dup	1.5	1.7	158	0.09	761	83	86.6	2.8	30	7.7	0.7	1520	0.03	< 2		> 30.0	3.7	10.8	39	162	0.4	< 6	4.2
413100 Orig	0.1	2.9	318	3.07	2200	3	2.7	5.2	50	8.7	1.1	11.9	0.04	< 2	< 8	23.3	1.2	1.1	61	1.7	0.7	12	0.3
413100 Split	0.2	2.5	312	3.09	2260	1	2.6	3.7	60	2.2	0.8	11.0	0.03	< 2	20	24.7	1.5	< 0.5	74	1.2	0.4	7	0.2
PREP DUP																							
413107 Orig	0.3	4.5	631	3.31	2090	2	4.8	9.4	110	2.6	2.1	80.3	0.14	< 2			2.5	2.0	145	0.7	0.8	< 6	0.4
413107 Dup	0.3	4.3	625	3.39	2170	2	3.9	9.4	120	3.8	2.0	87.9	0.13	< 2	8	22.9	2.7	3.0	156	0.6	1.0	< 6	0.5
413120 Orig	0.3	3.1	871	3.60	3720	< 1	3.0	5.4	50	2.1	1.2	127	0.72	< 2		23.0	1.2	3.1	113	0.7	0.6	< 6	0.3
413120 Dup	0.3	2.4	880	3.58	3720	< 1	2.6	4.6	60	8.1	1.1	128	0.75	< 2	< 8	22.8	1.3	1.5	95	0.6	0.5	< 6	0.3
413130 Orig	0.2	1.5	305	4.32	2150	< 1	< 2.4	3.3	70	2.2	0.5	6.1	< 0.01	< 2		23.4	1.1	2.1	99	0.5	0.4	< 6	< 0.1
413130 Dup	0.2	1.5	309	4.40	2180	< 1	< 2.4	3.8	80	1.3	0.7	5.3	0.01	< 2	8	23.2	1.0	1.6	100	0.5	0.4	< 6	0.1
413146 Orig	0.4	6.4	552	3.38	2020	< 1	5.6	13.0	60	3.8	2.5	54.3	0.26	< 2		22.9	4.2	2.5	142	0.7	1.0	9	
413146 Dup	0.4	6.2	539	3.39	2040	1	5.8	13.9	80	3.9	2.7	51.9	0.25	< 2	17	23.3	3.4	2.4	141	0.6	1.0	< 6	0.6
413150 Orig	1.4	62.0	905	1.11	579	1	10.2	59.7	30	14.7	15.9	541	0.42	< 2	< 8	> 30.0	9.2	5.4	678	2.0	0.7	< 6	13.2
413150 Split PREP DUP	1.4	63.7	900	1.11	563	< 1	10.4	57.0	40	16.9	15.6	481	0.44	< 2	< 8	> 30.0	8.3	3.8	722	1.9	0.9	< 6	13.5
413154 Orig	2.5	13.8	454	9.18	1530	< 1	3.9	17.9	440	2.7	4.5	196	< 0.01	< 2	9	21.3	3.2	3.0	148	0.4	0.4	< 6	2.0
413154 Dup	2.5	13.4	455	8.99	1630	< 1	4.1	16.9	440	2.6	4.5	203	< 0.01	< 2	< 8	21.1	3.3	2.1	145	0.5	0.5	< 6	2.1
413167 Orig	0.3	1.9	515	4.58	1560	11	2.5	5.1	110	3.0	0.9	53.7	0.07	< 2	< 8	23.8	1.1	2.0	136	0.4	0.3	< 6	0.2
413167 Dup	0.3	1.9	521	4.62	1570	10	2.7	4.4	120	3.4	1.0	48.1	0.06	< 2	< 8	23.3	1.1	2.3	127	0.4	0.4	< 6	0.2
Method Blank	< 0.1			< 0.01		-							< 0.01			< 0.01					-		
Method Blank	< 0.1	< 0.4	5	< 0.01	6	< 1	< 2.4	< 0.4	20	< 0.8	< 0.1	1.8	< 0.01	< 2	8	< 0.01	< 0.1	1.2	10	1.0	< 0.1	< 6	< 0.1
Method Blank	< 0.1	< 0.4	6	< 0.01	5	< 1	< 2.4	< 0.4	20	3.6	< 0.1	1.5	< 0.01	< 2	12	< 0.01	< 0.1	1.5	13	0.7	< 0.1	< 6	< 0.1
Method Blank	< 0.1	< 0.4	7	< 0.01	5	< 1	2.7	< 0.4	10	< 0.8	< 0.1	2.9	< 0.01	< 2	< 8	0.02	< 0.1	3.1	11	1.2	< 0.1	< 6	< 0.1
Method Blank	< 0.1		6	< 0.01	_		< 2.4						< 0.01	-	-	< 0.01	< 0.1	2.3	14			< 6	
Method Blank	< 0.1		1	< 0.01								i	< 0.01			0.03							
Method Blank	< 0.1		l	< 0.01								l	< 0.01		l	< 0.01							
Method Blank	< 0.1		İ	< 0.01						1	1	İ	< 0.01		İ	< 0.01				l			
Method Blank	< 0.1			< 0.01									< 0.01			< 0.01							
Method Blank	< 0.1	< 0.4	9	< 0.01	6	< 1	< 2.4	< 0.4	20	2.1	< 0.1	1.6	< 0.01	< 2	< 8	0.08	< 0.1	1.5	11	0.8	< 0.1	8	< 0.1
Method Blank	< 0.1	< 0.4	4	< 0.01	< 3	< 1	< 2.4	< 0.4	20	2.8	< 0.1	2.5	< 0.01	< 2	< 8	< 0.01	< 0.1	< 0.5	14	1.6	< 0.1	12	< 0.1
Method Blank		< 0.4	6		3	< 1	< 2.4	< 0.4	20	< 0.8	< 0.1	1.9		< 2	< 8		< 0.1	2.2	12	0.8	< 0.1	8	< 0.1
•	-			-			-						-			-				•		-	

Analyte Symbol	Ti	TI	Tm	U	V	w	Y	Yb	Zn
Unit Symbol	%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS- Na2O2	FUS- MS- Na2O2							
PTM-1a Meas									
PTM-1a Cert									
NIST 696 Meas					372				
NIST 696 Cert					403.00 00				
DTS-2b Meas					24				80
DTS-2b Cert					22.0				45.0
Oreas 74a (Fusion) Meas									
Oreas 74a (Fusion) Cert									
OREAS 101a (Fusion) Meas	0.40		2.9	431	78		179	17.8	
OREAS 101a (Fusion) Cert	0.395		2.90	422	83		183	17.5	
OREAS 101a (Fusion) Meas	0.40								
OREAS 101a (Fusion) Cert	0.395								
SARM 3 Meas				17.8	77		18.2		440
SARM 3 Cert				14	81		22		395
NCS DC86315 Meas						28.6			
NCS DC86315 Cert						21.4			
NCS DC86314 Meas						72.7			
NCS DC86314 Cert						79.0			
NCS DC86314 Meas						78.3			
NCS DC86314 Cert						79.0			
CZN-4 Meas									> 10000
CZN-4 Cert									550700 .00
OREAS 922 (Peroxide Fusion) Meas	0.44	1.2	0.5	3.4	97		32.9	2.6	250
OREAS 922 (Peroxide Fusion) Cert	0.439	0.88	0.510	3.6	92.0		31.1	3.17	280
OREAS 922 (Peroxide Fusion) Meas		1.0	0.5	3.5	94		30.2	3.1	290
OREAS 922 (Peroxide Fusion) Cert		0.9	0.510	3.6	92.0		31.1	3.17	280
OREAS 621 (Peroxide Fusion) Meas	0.19	1.9		2.9	35	2.9	13.5	1.1	> 10000
OREAS 621 (Peroxide Fusion) Cert	0.181	2.0		3.0	36.3	2.6	13.9	1.03	52200
OREAS 621 (Peroxide Fusion) Meas		1.4		2.8	36	2.2	15.0	1.1	> 10000

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm							
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS- Na2O2	FUS- MS- Na2O2							
OREAS 621 (Peroxide Fusion) Cert		2.0	NULUE	3.0	36.3	2.6	13.9	1.03	52200
CCU-1e Meas		2.8							> 10000
CCU-1e Cert		2.69							30200
OREAS 680 (Peroxide Fusion) Meas	0.54			1.6	240		15.2	1.6	2400
OREAS 680 (Peroxide Fusion) Cert	0.523			1.55	224		16.2	1.52	2320
OREAS 139 (Peroxide Fusion) Meas	0.15	35.4		12.0			19.9		> 10000
OREAS 139 (Peroxide Fusion) Cert	0.157	35.4		12.2			17.1		133600 .00
OREAS 139 (Peroxide Fusion) Meas		37.8		12.4			18.0		> 10000
OREAS 139 (Peroxide Fusion) Cert		35.4		12.2			17.1		133600 .00
OREAS 624 (Peroxide Fusion) Meas		1.2		1.4	32	6.1	19.0	2.2	> 10000
OREAS 624 (Peroxide Fusion) Cert		0.940		1.34	43.3	4.58	17.3	1.94	24100
OREAS 624 (Peroxide Fusion) Meas		1.0		1.3	27	6.9	15.7	1.6	> 10000
OREAS 624 (Peroxide Fusion) Cert		0.940		1.34	43.3	4.58	17.3	1.94	24100
AMIS 0368 (Peroxide Fusion) Meas	8.00				8100				
AMIS 0368 (Peroxide Fusion) Cert	8.26				8400				
AMIS 0368 (Peroxide Fusion) Meas	7.98								
AMIS 0368 (Peroxide Fusion) Cert	8.26								
NCS DC73520 Meas						519			430
NCS DC73520 Cert						518			370
OREAS 148 (Peroxide Fusion) Meas		14.2	0.4	8.5	60	6.9	22.1	1.6	170
OREAS 148 (Peroxide Fusion) Cert		12.3	0.2	8.6	56	6.4	19.4	1.4	160
413004 Orig	0.95	2.3	0.7	0.4	377	1.8	35.8	3.7	160
413004 Dup	0.95	2.2	0.6	0.3	366		33.8		170

Analyte Symbol	Ti	TI	Tm	U	V	W	Y	Yb	Zn
Unit Symbol	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.01	0.1	0.1	0.1	5	0.7	0.1	0.1	30
Method Code	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
	Na2O2	MS-	MS-	MS-	MS-	MS-	MS-	MS- Na2O2	MS-
413021 Orig	< 0.01	Na2O2 14.2	Na2O2 < 0.1	Na2O2 6.1	Na2O2 < 5	Na2O2 2.5	Na2O2 < 0.1	< 0.1	Na2O2 190
413021 Dup	< 0.01	14.3	< 0.1	5.9	< 5	2.7	0.4	< 0.1	190
413029 Orig	0.77	0.1	0.5	< 0.1	345	0.8	26.5	2.8	200
413029 Dup	0.77	0.1	0.3	< 0.1	357	< 0.7	28.4	3.1	190
413035 Orig	< 0.01	21.5	< 0.1	5.6	< 5	0.7	1.8	< 0.1	140
413035 Dup	< 0.01	22.6	< 0.1	5.7	< 5	< 0.7	1.3	0.2	140
413050 Orig	< 0.01	4.4	0.4	0.3	301	< 0.7	22.1	2.7	120
413050 Split	0.61	4.3	0.4	0.3	312	1.0	22.2	2.2	110
PREP DUP	0.01	1.0	0.1	0.0	012	1.0			
413055 Orig	0.60	18.8	0.3	2.3	290	1.2	24.6	2.4	170
413055 Dup	0.57	18.8	0.4	2.1	289	1.8	22.1	2.2	160
413067 Orig	< 0.01	28.4	< 0.1	3.4	< 5	< 0.7	1.3	< 0.1	30
413067 Dup	< 0.01	29.2	< 0.1	3.2	< 5	1.2	2.3	< 0.1	40
413073 Orig	0.19	2.7	< 0.1	5.7	42	1.3	6.1	0.4	80
413073 Dup	0.19	3.0	< 0.1	5.4	42	1.1	7.3	0.6	70
413089 Orig	0.03	9.0	< 0.1	10.5	16	< 0.7	3.9	0.3	70
413089 Dup	0.03	8.7	< 0.1	10.5	16	< 0.7	6.0	0.2	60
413098 Orig	0.02	9.1	< 0.1	8.1	11	0.9	3.8	0.2	100
413098 Dup	0.03	8.9	< 0.1	7.9	10	< 0.7	2.8	< 0.1	100
413100 Orig	0.32	0.3	0.4	0.2	265	4.2	20.3	3.5	90
413100 Split PREP DUP	0.35	0.2	0.4	0.2	281	1.3	23.7	3.0	130
413107 Orig	0.75	0.5	0.4	< 0.1	318	< 0.7	28.4	3.0	120
413107 Dup	0.78	0.5	0.5	< 0.1	316	0.8	23.2	2.5	120
413120 Orig	0.33	1.3	0.3	0.1	254	< 0.7	22.8	3.3	160
413120 Dup	0.33	1.3	0.6	< 0.1	257	1.0	23.7	2.8	170
413130 Orig	0.28	< 0.1	0.4	< 0.1	257	< 0.7	19.3	1.9	100
413130 Dup	0.27	< 0.1	0.4	< 0.1	261	< 0.7	20.2	2.6	110
413146 Orig	1.11	0.2	0.5	0.3	341	1.6	30.6	2.9	140
413146 Dup	1.10	0.3	0.6	0.3	333	1.0	30.2	3.7	130
413150 Orig	0.30	3.9	0.2	3.8	74	< 0.7	13.6	1.4	90
413150 Split PREP DUP	0.30	3.7	0.1	4.0	77	0.9	14.8	1.1	110
413154 Orig	0.41	1.3	0.2	0.6	225	0.9	16.1	1.1	170
413154 Dup	0.41	1.4	0.2	0.7	231	< 0.7	15.4	1.7	170
413167 Orig	0.40	0.2	0.3	< 0.1	235	7.3	13.7	1.8	80
413167 Dup	0.39	0.2	0.2	< 0.1	236	6.6	13.5	1.3	90
Method Blank	< 0.01								
Method Blank	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	< 0.1	< 30
Method Blank	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	< 0.1	< 30
Method Blank	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	< 0.1	< 30
Method Blank	< 0.01	< 0.1	< 0.1	< 0.1	< 5	0.8	< 0.1	< 0.1	< 30
Method Blank	< 0.01								
Method Blank	< 0.01								
Method Blank	< 0.01								
Method Blank	< 0.01								
Method Blank	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	< 0.1	< 30
Method Blank	< 0.01	< 0.1	< 0.1	0.2	< 5	< 0.7	< 0.1	0.1	< 30
Method Blank		< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	< 0.1	< 30